1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * (C) Copyright 2013
4 * Reinhard Pfau, Guntermann & Drunck GmbH, reinhard.pfau@gdsys.cc
5 */
6
7 /* TODO: some more #ifdef's to avoid unneeded code for stage 1 / stage 2 */
8
9 #ifdef CCDM_ID_DEBUG
10 #define DEBUG
11 #endif
12
13 #include <common.h>
14 #include <dm.h>
15 #include <malloc.h>
16 #include <fs.h>
17 #include <i2c.h>
18 #include <mmc.h>
19 #include <tpm-v1.h>
20 #include <u-boot/sha1.h>
21 #include <asm/byteorder.h>
22 #include <asm/unaligned.h>
23 #include <pca9698.h>
24
25 #undef CCDM_FIRST_STAGE
26 #undef CCDM_SECOND_STAGE
27 #undef CCDM_AUTO_FIRST_STAGE
28
29 #ifdef CONFIG_DEVELOP
30 #define CCDM_DEVELOP
31 #endif
32
33 #ifdef CONFIG_TRAILBLAZER
34 #define CCDM_FIRST_STAGE
35 #undef CCDM_SECOND_STAGE
36 #else
37 #undef CCDM_FIRST_STAGE
38 #define CCDM_SECOND_STAGE
39 #endif
40
41 #if defined(CCDM_DEVELOP) && defined(CCDM_SECOND_STAGE) && \
42 !defined(CCCM_FIRST_STAGE)
43 #define CCDM_AUTO_FIRST_STAGE
44 #endif
45
46 /* CCDM specific contants */
47 enum {
48 /* NV indices */
49 NV_COMMON_DATA_INDEX = 0x40000001,
50 /* magics for key blob chains */
51 MAGIC_KEY_PROGRAM = 0x68726500,
52 MAGIC_HMAC = 0x68616300,
53 MAGIC_END_OF_CHAIN = 0x00000000,
54 /* sizes */
55 NV_COMMON_DATA_MIN_SIZE = 3 * sizeof(uint64_t) + 2 * sizeof(uint16_t),
56 };
57
58 /* other constants */
59 enum {
60 ESDHC_BOOT_IMAGE_SIG_OFS = 0x40,
61 ESDHC_BOOT_IMAGE_SIZE_OFS = 0x48,
62 ESDHC_BOOT_IMAGE_ADDR_OFS = 0x50,
63 ESDHC_BOOT_IMAGE_TARGET_OFS = 0x58,
64 ESDHC_BOOT_IMAGE_ENTRY_OFS = 0x60,
65 };
66
67 enum {
68 I2C_SOC_0 = 0,
69 I2C_SOC_1 = 1,
70 };
71
72 struct key_program {
73 uint32_t magic;
74 uint32_t code_crc;
75 uint32_t code_size;
76 uint8_t code[];
77 };
78
79 struct h_reg {
80 bool valid;
81 uint8_t digest[20];
82 };
83
84
85 enum access_mode {
86 HREG_NONE = 0,
87 HREG_RD = 1,
88 HREG_WR = 2,
89 HREG_RDWR = 3,
90 };
91
92 /* register constants */
93 enum {
94 FIX_HREG_DEVICE_ID_HASH = 0,
95 FIX_HREG_SELF_HASH = 1,
96 FIX_HREG_STAGE2_HASH = 2,
97 FIX_HREG_VENDOR = 3,
98 COUNT_FIX_HREGS
99 };
100
101
102 /* hre opcodes */
103 enum {
104 /* opcodes w/o data */
105 HRE_NOP = 0x00,
106 HRE_SYNC = HRE_NOP,
107 HRE_CHECK0 = 0x01,
108 /* opcodes w/o data, w/ sync dst */
109 /* opcodes w/ data */
110 HRE_LOAD = 0x81,
111 /* opcodes w/data, w/sync dst */
112 HRE_XOR = 0xC1,
113 HRE_AND = 0xC2,
114 HRE_OR = 0xC3,
115 HRE_EXTEND = 0xC4,
116 HRE_LOADKEY = 0xC5,
117 };
118
119 /* hre errors */
120 enum {
121 HRE_E_OK = 0,
122 HRE_E_TPM_FAILURE,
123 HRE_E_INVALID_HREG,
124 };
125
126 static uint64_t device_id;
127 static uint64_t device_cl;
128 static uint64_t device_type;
129
130 static uint32_t platform_key_handle;
131
132 static void(*bl2_entry)(void);
133
134 static struct h_reg pcr_hregs[24];
135 static struct h_reg fix_hregs[COUNT_FIX_HREGS];
136 static struct h_reg var_hregs[8];
137 static uint32_t hre_tpm_err;
138 static int hre_err = HRE_E_OK;
139
140 #define IS_PCR_HREG(spec) ((spec) & 0x20)
141 #define IS_FIX_HREG(spec) (((spec) & 0x38) == 0x08)
142 #define IS_VAR_HREG(spec) (((spec) & 0x38) == 0x10)
143 #define HREG_IDX(spec) ((spec) & (IS_PCR_HREG(spec) ? 0x1f : 0x7))
144
get_tpm(struct udevice ** devp)145 static int get_tpm(struct udevice **devp)
146 {
147 int rc;
148
149 rc = uclass_first_device_err(UCLASS_TPM, devp);
150 if (rc) {
151 printf("Could not find TPM (ret=%d)\n", rc);
152 return CMD_RET_FAILURE;
153 }
154
155 return 0;
156 }
157
158 static const uint8_t vendor[] = "Guntermann & Drunck";
159
160 /**
161 * @brief read a bunch of data from MMC into memory.
162 *
163 * @param mmc pointer to the mmc structure to use.
164 * @param src offset where the data starts on MMC/SD device (in bytes).
165 * @param dst pointer to the location where the read data should be stored.
166 * @param size number of bytes to read from the MMC/SD device.
167 * @return number of bytes read or -1 on error.
168 */
ccdm_mmc_read(struct mmc * mmc,u64 src,u8 * dst,int size)169 static int ccdm_mmc_read(struct mmc *mmc, u64 src, u8 *dst, int size)
170 {
171 int result = 0;
172 u32 blk_len, ofs;
173 ulong block_no, n, cnt;
174 u8 *tmp_buf = NULL;
175
176 if (size <= 0)
177 goto end;
178
179 blk_len = mmc->read_bl_len;
180 tmp_buf = malloc(blk_len);
181 if (!tmp_buf)
182 goto failure;
183 block_no = src / blk_len;
184 ofs = src % blk_len;
185
186 if (ofs) {
187 n = mmc->block_dev.block_read(&mmc->block_dev, block_no++, 1,
188 tmp_buf);
189 if (!n)
190 goto failure;
191 result = min(size, (int)(blk_len - ofs));
192 memcpy(dst, tmp_buf + ofs, result);
193 dst += result;
194 size -= result;
195 }
196 cnt = size / blk_len;
197 if (cnt) {
198 n = mmc->block_dev.block_read(&mmc->block_dev, block_no, cnt,
199 dst);
200 if (n != cnt)
201 goto failure;
202 size -= cnt * blk_len;
203 result += cnt * blk_len;
204 dst += cnt * blk_len;
205 block_no += cnt;
206 }
207 if (size) {
208 n = mmc->block_dev.block_read(&mmc->block_dev, block_no++, 1,
209 tmp_buf);
210 if (!n)
211 goto failure;
212 memcpy(dst, tmp_buf, size);
213 result += size;
214 }
215 goto end;
216 failure:
217 result = -1;
218 end:
219 if (tmp_buf)
220 free(tmp_buf);
221 return result;
222 }
223
224 /**
225 * @brief returns a location where the 2nd stage bootloader can be(/ is) placed.
226 *
227 * @return pointer to the location for/of the 2nd stage bootloader
228 */
get_2nd_stage_bl_location(ulong target_addr)229 static u8 *get_2nd_stage_bl_location(ulong target_addr)
230 {
231 ulong addr;
232 #ifdef CCDM_SECOND_STAGE
233 addr = env_get_ulong("loadaddr", 16, CONFIG_LOADADDR);
234 #else
235 addr = target_addr;
236 #endif
237 return (u8 *)(addr);
238 }
239
240
241 #ifdef CCDM_SECOND_STAGE
242 /**
243 * @brief returns a location where the image can be(/ is) placed.
244 *
245 * @return pointer to the location for/of the image
246 */
get_image_location(void)247 static u8 *get_image_location(void)
248 {
249 ulong addr;
250 /* TODO use other area? */
251 addr = env_get_ulong("loadaddr", 16, CONFIG_LOADADDR);
252 return (u8 *)(addr);
253 }
254 #endif
255
256 /**
257 * @brief get the size of a given (TPM) NV area
258 * @param index NV index of the area to get size for
259 * @param size pointer to the size
260 * @return 0 on success, != 0 on error
261 */
get_tpm_nv_size(struct udevice * tpm,uint32_t index,uint32_t * size)262 static int get_tpm_nv_size(struct udevice *tpm, uint32_t index, uint32_t *size)
263 {
264 uint32_t err;
265 uint8_t info[72];
266 uint8_t *ptr;
267 uint16_t v16;
268
269 err = tpm_get_capability(tpm, TPM_CAP_NV_INDEX, index,
270 info, sizeof(info));
271 if (err) {
272 printf("tpm_get_capability(CAP_NV_INDEX, %08x) failed: %u\n",
273 index, err);
274 return 1;
275 }
276
277 /* skip tag and nvIndex */
278 ptr = info + 6;
279 /* skip 2 pcr info fields */
280 v16 = get_unaligned_be16(ptr);
281 ptr += 2 + v16 + 1 + 20;
282 v16 = get_unaligned_be16(ptr);
283 ptr += 2 + v16 + 1 + 20;
284 /* skip permission and flags */
285 ptr += 6 + 3;
286
287 *size = get_unaligned_be32(ptr);
288 return 0;
289 }
290
291 /**
292 * @brief search for a key by usage auth and pub key hash.
293 * @param auth usage auth of the key to search for
294 * @param pubkey_digest (SHA1) hash of the pub key structure of the key
295 * @param[out] handle the handle of the key iff found
296 * @return 0 if key was found in TPM; != 0 if not.
297 */
find_key(struct udevice * tpm,const uint8_t auth[20],const uint8_t pubkey_digest[20],uint32_t * handle)298 static int find_key(struct udevice *tpm, const uint8_t auth[20],
299 const uint8_t pubkey_digest[20], uint32_t *handle)
300 {
301 uint16_t key_count;
302 uint32_t key_handles[10];
303 uint8_t buf[288];
304 uint8_t *ptr;
305 uint32_t err;
306 uint8_t digest[20];
307 size_t buf_len;
308 unsigned int i;
309
310 /* fetch list of already loaded keys in the TPM */
311 err = tpm_get_capability(tpm, TPM_CAP_HANDLE, TPM_RT_KEY, buf,
312 sizeof(buf));
313 if (err)
314 return -1;
315 key_count = get_unaligned_be16(buf);
316 ptr = buf + 2;
317 for (i = 0; i < key_count; ++i, ptr += 4)
318 key_handles[i] = get_unaligned_be32(ptr);
319
320 /* now search a(/ the) key which we can access with the given auth */
321 for (i = 0; i < key_count; ++i) {
322 buf_len = sizeof(buf);
323 err = tpm_get_pub_key_oiap(tpm, key_handles[i], auth, buf,
324 &buf_len);
325 if (err && err != TPM_AUTHFAIL)
326 return -1;
327 if (err)
328 continue;
329 sha1_csum(buf, buf_len, digest);
330 if (!memcmp(digest, pubkey_digest, 20)) {
331 *handle = key_handles[i];
332 return 0;
333 }
334 }
335 return 1;
336 }
337
338 /**
339 * @brief read CCDM common data from TPM NV
340 * @return 0 if CCDM common data was found and read, !=0 if something failed.
341 */
read_common_data(struct udevice * tpm)342 static int read_common_data(struct udevice *tpm)
343 {
344 uint32_t size;
345 uint32_t err;
346 uint8_t buf[256];
347 sha1_context ctx;
348
349 if (get_tpm_nv_size(tpm, NV_COMMON_DATA_INDEX, &size) ||
350 size < NV_COMMON_DATA_MIN_SIZE)
351 return 1;
352 err = tpm_nv_read_value(tpm, NV_COMMON_DATA_INDEX,
353 buf, min(sizeof(buf), size));
354 if (err) {
355 printf("tpm_nv_read_value() failed: %u\n", err);
356 return 1;
357 }
358
359 device_id = get_unaligned_be64(buf);
360 device_cl = get_unaligned_be64(buf + 8);
361 device_type = get_unaligned_be64(buf + 16);
362
363 sha1_starts(&ctx);
364 sha1_update(&ctx, buf, 24);
365 sha1_finish(&ctx, fix_hregs[FIX_HREG_DEVICE_ID_HASH].digest);
366 fix_hregs[FIX_HREG_DEVICE_ID_HASH].valid = true;
367
368 platform_key_handle = get_unaligned_be32(buf + 24);
369
370 return 0;
371 }
372
373 /**
374 * @brief compute hash of bootloader itself.
375 * @param[out] dst hash register where the hash should be stored
376 * @return 0 on success, != 0 on failure.
377 *
378 * @note MUST be called at a time where the boot loader is accessible at the
379 * configured location (; so take care when code is reallocated).
380 */
compute_self_hash(struct h_reg * dst)381 static int compute_self_hash(struct h_reg *dst)
382 {
383 sha1_csum((const uint8_t *)CONFIG_SYS_MONITOR_BASE,
384 CONFIG_SYS_MONITOR_LEN, dst->digest);
385 dst->valid = true;
386 return 0;
387 }
388
ccdm_compute_self_hash(void)389 int ccdm_compute_self_hash(void)
390 {
391 if (!fix_hregs[FIX_HREG_SELF_HASH].valid)
392 compute_self_hash(&fix_hregs[FIX_HREG_SELF_HASH]);
393 return 0;
394 }
395
396 /**
397 * @brief compute the hash of the 2nd stage boot loader (on SD card)
398 * @param[out] dst hash register to store the computed hash
399 * @return 0 on success, != 0 on failure
400 *
401 * Determines the size and location of the 2nd stage boot loader on SD card,
402 * loads the 2nd stage boot loader and computes the (SHA1) hash value.
403 * Within the 1st stage boot loader, the 2nd stage boot loader is loaded at
404 * the desired memory location and the variable @a bl2_entry is set.
405 *
406 * @note This sets the variable @a bl2_entry to the entry point when the
407 * 2nd stage boot loader is loaded at its configured memory location.
408 */
compute_second_stage_hash(struct h_reg * dst)409 static int compute_second_stage_hash(struct h_reg *dst)
410 {
411 int result = 0;
412 u32 code_len, code_offset, target_addr, exec_entry;
413 struct mmc *mmc;
414 u8 *load_addr = NULL;
415 u8 buf[128];
416
417 mmc = find_mmc_device(0);
418 if (!mmc)
419 goto failure;
420 mmc_init(mmc);
421
422 if (ccdm_mmc_read(mmc, 0, buf, sizeof(buf)) < 0)
423 goto failure;
424
425 code_offset = *(u32 *)(buf + ESDHC_BOOT_IMAGE_ADDR_OFS);
426 code_len = *(u32 *)(buf + ESDHC_BOOT_IMAGE_SIZE_OFS);
427 target_addr = *(u32 *)(buf + ESDHC_BOOT_IMAGE_TARGET_OFS);
428 exec_entry = *(u32 *)(buf + ESDHC_BOOT_IMAGE_ENTRY_OFS);
429
430 load_addr = get_2nd_stage_bl_location(target_addr);
431 if (load_addr == (u8 *)target_addr)
432 bl2_entry = (void(*)(void))exec_entry;
433
434 if (ccdm_mmc_read(mmc, code_offset, load_addr, code_len) < 0)
435 goto failure;
436
437 sha1_csum(load_addr, code_len, dst->digest);
438 dst->valid = true;
439
440 goto end;
441 failure:
442 result = 1;
443 bl2_entry = NULL;
444 end:
445 return result;
446 }
447
448 /**
449 * @brief get pointer to hash register by specification
450 * @param spec specification of a hash register
451 * @return pointer to hash register or NULL if @a spec does not qualify a
452 * valid hash register; NULL else.
453 */
get_hreg(uint8_t spec)454 static struct h_reg *get_hreg(uint8_t spec)
455 {
456 uint8_t idx;
457
458 idx = HREG_IDX(spec);
459 if (IS_FIX_HREG(spec)) {
460 if (idx < ARRAY_SIZE(fix_hregs))
461 return fix_hregs + idx;
462 hre_err = HRE_E_INVALID_HREG;
463 } else if (IS_PCR_HREG(spec)) {
464 if (idx < ARRAY_SIZE(pcr_hregs))
465 return pcr_hregs + idx;
466 hre_err = HRE_E_INVALID_HREG;
467 } else if (IS_VAR_HREG(spec)) {
468 if (idx < ARRAY_SIZE(var_hregs))
469 return var_hregs + idx;
470 hre_err = HRE_E_INVALID_HREG;
471 }
472 return NULL;
473 }
474
475 /**
476 * @brief get pointer of a hash register by specification and usage.
477 * @param spec specification of a hash register
478 * @param mode access mode (read or write or read/write)
479 * @return pointer to hash register if found and valid; NULL else.
480 *
481 * This func uses @a get_reg() to determine the hash register for a given spec.
482 * If a register is found it is validated according to the desired access mode.
483 * The value of automatic registers (PCR register and fixed registers) is
484 * loaded or computed on read access.
485 */
access_hreg(struct udevice * tpm,uint8_t spec,enum access_mode mode)486 static struct h_reg *access_hreg(struct udevice *tpm, uint8_t spec,
487 enum access_mode mode)
488 {
489 struct h_reg *result;
490
491 result = get_hreg(spec);
492 if (!result)
493 return NULL;
494
495 if (mode & HREG_WR) {
496 if (IS_FIX_HREG(spec)) {
497 hre_err = HRE_E_INVALID_HREG;
498 return NULL;
499 }
500 }
501 if (mode & HREG_RD) {
502 if (!result->valid) {
503 if (IS_PCR_HREG(spec)) {
504 hre_tpm_err = tpm_pcr_read(tpm, HREG_IDX(spec),
505 result->digest, 20);
506 result->valid = (hre_tpm_err == TPM_SUCCESS);
507 } else if (IS_FIX_HREG(spec)) {
508 switch (HREG_IDX(spec)) {
509 case FIX_HREG_DEVICE_ID_HASH:
510 read_common_data(tpm);
511 break;
512 case FIX_HREG_SELF_HASH:
513 ccdm_compute_self_hash();
514 break;
515 case FIX_HREG_STAGE2_HASH:
516 compute_second_stage_hash(result);
517 break;
518 case FIX_HREG_VENDOR:
519 memcpy(result->digest, vendor, 20);
520 result->valid = true;
521 break;
522 }
523 } else {
524 result->valid = true;
525 }
526 }
527 if (!result->valid) {
528 hre_err = HRE_E_INVALID_HREG;
529 return NULL;
530 }
531 }
532
533 return result;
534 }
535
compute_and(void * _dst,const void * _src,size_t n)536 static void *compute_and(void *_dst, const void *_src, size_t n)
537 {
538 uint8_t *dst = _dst;
539 const uint8_t *src = _src;
540 size_t i;
541
542 for (i = n; i-- > 0; )
543 *dst++ &= *src++;
544
545 return _dst;
546 }
547
compute_or(void * _dst,const void * _src,size_t n)548 static void *compute_or(void *_dst, const void *_src, size_t n)
549 {
550 uint8_t *dst = _dst;
551 const uint8_t *src = _src;
552 size_t i;
553
554 for (i = n; i-- > 0; )
555 *dst++ |= *src++;
556
557 return _dst;
558 }
559
compute_xor(void * _dst,const void * _src,size_t n)560 static void *compute_xor(void *_dst, const void *_src, size_t n)
561 {
562 uint8_t *dst = _dst;
563 const uint8_t *src = _src;
564 size_t i;
565
566 for (i = n; i-- > 0; )
567 *dst++ ^= *src++;
568
569 return _dst;
570 }
571
compute_extend(void * _dst,const void * _src,size_t n)572 static void *compute_extend(void *_dst, const void *_src, size_t n)
573 {
574 uint8_t digest[20];
575 sha1_context ctx;
576
577 sha1_starts(&ctx);
578 sha1_update(&ctx, _dst, n);
579 sha1_update(&ctx, _src, n);
580 sha1_finish(&ctx, digest);
581 memcpy(_dst, digest, min(n, sizeof(digest)));
582
583 return _dst;
584 }
585
hre_op_loadkey(struct udevice * tpm,struct h_reg * src_reg,struct h_reg * dst_reg,const void * key,size_t key_size)586 static int hre_op_loadkey(struct udevice *tpm, struct h_reg *src_reg,
587 struct h_reg *dst_reg, const void *key,
588 size_t key_size)
589 {
590 uint32_t parent_handle;
591 uint32_t key_handle;
592
593 if (!src_reg || !dst_reg || !src_reg->valid || !dst_reg->valid)
594 return -1;
595 if (find_key(tpm, src_reg->digest, dst_reg->digest, &parent_handle))
596 return -1;
597 hre_tpm_err = tpm_load_key2_oiap(tpm, parent_handle, key, key_size,
598 src_reg->digest, &key_handle);
599 if (hre_tpm_err) {
600 hre_err = HRE_E_TPM_FAILURE;
601 return -1;
602 }
603 /* TODO remember key handle somehow? */
604
605 return 0;
606 }
607
608 /**
609 * @brief executes the next opcode on the hash register engine.
610 * @param[in,out] ip pointer to the opcode (instruction pointer)
611 * @param[in,out] code_size (remaining) size of the code
612 * @return new instruction pointer on success, NULL on error.
613 */
hre_execute_op(struct udevice * tpm,const uint8_t ** ip,size_t * code_size)614 static const uint8_t *hre_execute_op(struct udevice *tpm, const uint8_t **ip,
615 size_t *code_size)
616 {
617 bool dst_modified = false;
618 uint32_t ins;
619 uint8_t opcode;
620 uint8_t src_spec;
621 uint8_t dst_spec;
622 uint16_t data_size;
623 struct h_reg *src_reg, *dst_reg;
624 uint8_t buf[20];
625 const uint8_t *src_buf, *data;
626 uint8_t *ptr;
627 int i;
628 void * (*bin_func)(void *, const void *, size_t);
629
630 if (*code_size < 4)
631 return NULL;
632
633 ins = get_unaligned_be32(*ip);
634 opcode = **ip;
635 data = *ip + 4;
636 src_spec = (ins >> 18) & 0x3f;
637 dst_spec = (ins >> 12) & 0x3f;
638 data_size = (ins & 0x7ff);
639
640 debug("HRE: ins=%08x (op=%02x, s=%02x, d=%02x, L=%d)\n", ins,
641 opcode, src_spec, dst_spec, data_size);
642
643 if ((opcode & 0x80) && (data_size + 4) > *code_size)
644 return NULL;
645
646 src_reg = access_hreg(tpm, src_spec, HREG_RD);
647 if (hre_err || hre_tpm_err)
648 return NULL;
649 dst_reg = access_hreg(tpm, dst_spec,
650 (opcode & 0x40) ? HREG_RDWR : HREG_WR);
651 if (hre_err || hre_tpm_err)
652 return NULL;
653
654 switch (opcode) {
655 case HRE_NOP:
656 goto end;
657 case HRE_CHECK0:
658 if (src_reg) {
659 for (i = 0; i < 20; ++i) {
660 if (src_reg->digest[i])
661 return NULL;
662 }
663 }
664 break;
665 case HRE_LOAD:
666 bin_func = memcpy;
667 goto do_bin_func;
668 case HRE_XOR:
669 bin_func = compute_xor;
670 goto do_bin_func;
671 case HRE_AND:
672 bin_func = compute_and;
673 goto do_bin_func;
674 case HRE_OR:
675 bin_func = compute_or;
676 goto do_bin_func;
677 case HRE_EXTEND:
678 bin_func = compute_extend;
679 do_bin_func:
680 if (!dst_reg)
681 return NULL;
682 if (src_reg) {
683 src_buf = src_reg->digest;
684 } else {
685 if (!data_size) {
686 memset(buf, 0, 20);
687 src_buf = buf;
688 } else if (data_size == 1) {
689 memset(buf, *data, 20);
690 src_buf = buf;
691 } else if (data_size >= 20) {
692 src_buf = data;
693 } else {
694 src_buf = buf;
695 for (ptr = (uint8_t *)src_buf, i = 20; i > 0;
696 i -= data_size, ptr += data_size)
697 memcpy(ptr, data,
698 min_t(size_t, i, data_size));
699 }
700 }
701 bin_func(dst_reg->digest, src_buf, 20);
702 dst_reg->valid = true;
703 dst_modified = true;
704 break;
705 case HRE_LOADKEY:
706 if (hre_op_loadkey(tpm, src_reg, dst_reg, data, data_size))
707 return NULL;
708 break;
709 default:
710 return NULL;
711 }
712
713 if (dst_reg && dst_modified && IS_PCR_HREG(dst_spec)) {
714 hre_tpm_err = tpm_extend(tpm, HREG_IDX(dst_spec),
715 dst_reg->digest, dst_reg->digest);
716 if (hre_tpm_err) {
717 hre_err = HRE_E_TPM_FAILURE;
718 return NULL;
719 }
720 }
721 end:
722 *ip += 4;
723 *code_size -= 4;
724 if (opcode & 0x80) {
725 *ip += data_size;
726 *code_size -= data_size;
727 }
728
729 return *ip;
730 }
731
732 /**
733 * @brief runs a program on the hash register engine.
734 * @param code pointer to the (HRE) code.
735 * @param code_size size of the code (in bytes).
736 * @return 0 on success, != 0 on failure.
737 */
hre_run_program(struct udevice * tpm,const uint8_t * code,size_t code_size)738 static int hre_run_program(struct udevice *tpm, const uint8_t *code,
739 size_t code_size)
740 {
741 size_t code_left;
742 const uint8_t *ip = code;
743
744 code_left = code_size;
745 hre_tpm_err = 0;
746 hre_err = HRE_E_OK;
747 while (code_left > 0)
748 if (!hre_execute_op(tpm, &ip, &code_left))
749 return -1;
750
751 return hre_err;
752 }
753
check_hmac(struct key_program * hmac,const uint8_t * data,size_t data_size)754 static int check_hmac(struct key_program *hmac,
755 const uint8_t *data, size_t data_size)
756 {
757 uint8_t key[20], computed_hmac[20];
758 uint32_t type;
759
760 type = get_unaligned_be32(hmac->code);
761 if (type != 0)
762 return 1;
763 memset(key, 0, sizeof(key));
764 compute_extend(key, pcr_hregs[1].digest, 20);
765 compute_extend(key, pcr_hregs[2].digest, 20);
766 compute_extend(key, pcr_hregs[3].digest, 20);
767 compute_extend(key, pcr_hregs[4].digest, 20);
768
769 sha1_hmac(key, sizeof(key), data, data_size, computed_hmac);
770
771 return memcmp(computed_hmac, hmac->code + 4, 20);
772 }
773
verify_program(struct key_program * prg)774 static int verify_program(struct key_program *prg)
775 {
776 uint32_t crc;
777 crc = crc32(0, prg->code, prg->code_size);
778
779 if (crc != prg->code_crc) {
780 printf("HRC crc mismatch: %08x != %08x\n",
781 crc, prg->code_crc);
782 return 1;
783 }
784 return 0;
785 }
786
787 #if defined(CCDM_FIRST_STAGE) || (defined CCDM_AUTO_FIRST_STAGE)
load_sd_key_program(void)788 static struct key_program *load_sd_key_program(void)
789 {
790 u32 code_len, code_offset;
791 struct mmc *mmc;
792 u8 buf[128];
793 struct key_program *result = NULL, *hmac = NULL;
794 struct key_program header;
795
796 mmc = find_mmc_device(0);
797 if (!mmc)
798 return NULL;
799 mmc_init(mmc);
800
801 if (ccdm_mmc_read(mmc, 0, buf, sizeof(buf)) <= 0)
802 goto failure;
803
804 code_offset = *(u32 *)(buf + ESDHC_BOOT_IMAGE_ADDR_OFS);
805 code_len = *(u32 *)(buf + ESDHC_BOOT_IMAGE_SIZE_OFS);
806
807 code_offset += code_len;
808 /* TODO: the following needs to be the size of the 2nd stage env */
809 code_offset += CONFIG_ENV_SIZE;
810
811 if (ccdm_mmc_read(mmc, code_offset, buf, 4*3) < 0)
812 goto failure;
813
814 header.magic = get_unaligned_be32(buf);
815 header.code_crc = get_unaligned_be32(buf + 4);
816 header.code_size = get_unaligned_be32(buf + 8);
817
818 if (header.magic != MAGIC_KEY_PROGRAM)
819 goto failure;
820
821 result = malloc(sizeof(struct key_program) + header.code_size);
822 if (!result)
823 goto failure;
824 *result = header;
825
826 printf("load key program chunk from SD card (%u bytes) ",
827 header.code_size);
828 code_offset += 12;
829 if (ccdm_mmc_read(mmc, code_offset, result->code, header.code_size)
830 < 0)
831 goto failure;
832 code_offset += header.code_size;
833 puts("\n");
834
835 if (verify_program(result))
836 goto failure;
837
838 if (ccdm_mmc_read(mmc, code_offset, buf, 4*3) < 0)
839 goto failure;
840
841 header.magic = get_unaligned_be32(buf);
842 header.code_crc = get_unaligned_be32(buf + 4);
843 header.code_size = get_unaligned_be32(buf + 8);
844
845 if (header.magic == MAGIC_HMAC) {
846 puts("check integrity\n");
847 hmac = malloc(sizeof(struct key_program) + header.code_size);
848 if (!hmac)
849 goto failure;
850 *hmac = header;
851 code_offset += 12;
852 if (ccdm_mmc_read(mmc, code_offset, hmac->code,
853 hmac->code_size) < 0)
854 goto failure;
855 if (verify_program(hmac))
856 goto failure;
857 if (check_hmac(hmac, result->code, result->code_size)) {
858 puts("key program integrity could not be verified\n");
859 goto failure;
860 }
861 puts("key program verified\n");
862 }
863
864 goto end;
865 failure:
866 if (result)
867 free(result);
868 result = NULL;
869 end:
870 if (hmac)
871 free(hmac);
872
873 return result;
874 }
875 #endif
876
877 #ifdef CCDM_SECOND_STAGE
878 /**
879 * @brief load a key program from file system.
880 * @param ifname interface of the file system
881 * @param dev_part_str device part of the file system
882 * @param fs_type tyep of the file system
883 * @param path path of the file to load.
884 * @return the loaded structure or NULL on failure.
885 */
load_key_chunk(const char * ifname,const char * dev_part_str,int fs_type,const char * path)886 static struct key_program *load_key_chunk(const char *ifname,
887 const char *dev_part_str, int fs_type,
888 const char *path)
889 {
890 struct key_program *result = NULL;
891 struct key_program header;
892 uint32_t crc;
893 uint8_t buf[12];
894 loff_t i;
895
896 if (fs_set_blk_dev(ifname, dev_part_str, fs_type))
897 goto failure;
898 if (fs_read(path, (ulong)buf, 0, 12, &i) < 0)
899 goto failure;
900 if (i < 12)
901 goto failure;
902 header.magic = get_unaligned_be32(buf);
903 header.code_crc = get_unaligned_be32(buf + 4);
904 header.code_size = get_unaligned_be32(buf + 8);
905
906 if (header.magic != MAGIC_HMAC && header.magic != MAGIC_KEY_PROGRAM)
907 goto failure;
908
909 result = malloc(sizeof(struct key_program) + header.code_size);
910 if (!result)
911 goto failure;
912 if (fs_set_blk_dev(ifname, dev_part_str, fs_type))
913 goto failure;
914 if (fs_read(path, (ulong)result, 0,
915 sizeof(struct key_program) + header.code_size, &i) < 0)
916 goto failure;
917 if (i <= 0)
918 goto failure;
919 *result = header;
920
921 crc = crc32(0, result->code, result->code_size);
922
923 if (crc != result->code_crc) {
924 printf("%s: HRC crc mismatch: %08x != %08x\n",
925 path, crc, result->code_crc);
926 goto failure;
927 }
928 goto end;
929 failure:
930 if (result) {
931 free(result);
932 result = NULL;
933 }
934 end:
935 return result;
936 }
937 #endif
938
939 #if defined(CCDM_FIRST_STAGE) || (defined CCDM_AUTO_FIRST_STAGE)
940 static const uint8_t prg_stage1_prepare[] = {
941 0x00, 0x20, 0x00, 0x00, /* opcode: SYNC f0 */
942 0x00, 0x24, 0x00, 0x00, /* opcode: SYNC f1 */
943 0x01, 0x80, 0x00, 0x00, /* opcode: CHECK0 PCR0 */
944 0x81, 0x22, 0x00, 0x00, /* opcode: LOAD PCR0, f0 */
945 0x01, 0x84, 0x00, 0x00, /* opcode: CHECK0 PCR1 */
946 0x81, 0x26, 0x10, 0x00, /* opcode: LOAD PCR1, f1 */
947 0x01, 0x88, 0x00, 0x00, /* opcode: CHECK0 PCR2 */
948 0x81, 0x2a, 0x20, 0x00, /* opcode: LOAD PCR2, f2 */
949 0x01, 0x8c, 0x00, 0x00, /* opcode: CHECK0 PCR3 */
950 0x81, 0x2e, 0x30, 0x00, /* opcode: LOAD PCR3, f3 */
951 };
952
first_stage_actions(struct udevice * tpm)953 static int first_stage_actions(struct udevice *tpm)
954 {
955 int result = 0;
956 struct key_program *sd_prg = NULL;
957
958 puts("CCDM S1: start actions\n");
959 #ifndef CCDM_SECOND_STAGE
960 if (tpm_continue_self_test(tpm))
961 goto failure;
962 #else
963 tpm_continue_self_test(tpm);
964 #endif
965 mdelay(37);
966
967 if (hre_run_program(tpm, prg_stage1_prepare,
968 sizeof(prg_stage1_prepare)))
969 goto failure;
970
971 sd_prg = load_sd_key_program();
972 if (sd_prg) {
973 if (hre_run_program(tpm, sd_prg->code, sd_prg->code_size))
974 goto failure;
975 puts("SD code run successfully\n");
976 } else {
977 puts("no key program found on SD\n");
978 goto failure;
979 }
980 goto end;
981 failure:
982 result = 1;
983 end:
984 if (sd_prg)
985 free(sd_prg);
986 printf("CCDM S1: actions done (%d)\n", result);
987 return result;
988 }
989 #endif
990
991 #ifdef CCDM_FIRST_STAGE
first_stage_init(void)992 static int first_stage_init(void)
993 {
994 struct udevice *tpm;
995 int ret;
996
997 puts("CCDM S1\n");
998 ret = get_tpm(&tpm);
999 if (ret || tpm_init(tpm) || tpm_startup(tpm, TPM_ST_CLEAR))
1000 return 1;
1001 ret = first_stage_actions(tpm);
1002 #ifndef CCDM_SECOND_STAGE
1003 if (!ret) {
1004 if (bl2_entry)
1005 (*bl2_entry)();
1006 ret = 1;
1007 }
1008 #endif
1009 return ret;
1010 }
1011 #endif
1012
1013 #ifdef CCDM_SECOND_STAGE
1014 static const uint8_t prg_stage2_prepare[] = {
1015 0x00, 0x80, 0x00, 0x00, /* opcode: SYNC PCR0 */
1016 0x00, 0x84, 0x00, 0x00, /* opcode: SYNC PCR1 */
1017 0x00, 0x88, 0x00, 0x00, /* opcode: SYNC PCR2 */
1018 0x00, 0x8c, 0x00, 0x00, /* opcode: SYNC PCR3 */
1019 0x00, 0x90, 0x00, 0x00, /* opcode: SYNC PCR4 */
1020 };
1021
1022 static const uint8_t prg_stage2_success[] = {
1023 0x81, 0x02, 0x40, 0x14, /* opcode: LOAD PCR4, #<20B data> */
1024 0x48, 0xfd, 0x95, 0x17, 0xe7, 0x54, 0x6b, 0x68, /* data */
1025 0x92, 0x31, 0x18, 0x05, 0xf8, 0x58, 0x58, 0x3c, /* data */
1026 0xe4, 0xd2, 0x81, 0xe0, /* data */
1027 };
1028
1029 static const uint8_t prg_stage_fail[] = {
1030 0x81, 0x01, 0x00, 0x14, /* opcode: LOAD v0, #<20B data> */
1031 0xc0, 0x32, 0xad, 0xc1, 0xff, 0x62, 0x9c, 0x9b, /* data */
1032 0x66, 0xf2, 0x27, 0x49, 0xad, 0x66, 0x7e, 0x6b, /* data */
1033 0xea, 0xdf, 0x14, 0x4b, /* data */
1034 0x81, 0x42, 0x30, 0x00, /* opcode: LOAD PCR3, v0 */
1035 0x81, 0x42, 0x40, 0x00, /* opcode: LOAD PCR4, v0 */
1036 };
1037
second_stage_init(void)1038 static int second_stage_init(void)
1039 {
1040 static const char mac_suffix[] = ".mac";
1041 bool did_first_stage_run = true;
1042 int result = 0;
1043 char *cptr, *mmcdev = NULL;
1044 struct key_program *hmac_blob = NULL;
1045 const char *image_path = "/ccdm.itb";
1046 char *mac_path = NULL;
1047 ulong image_addr;
1048 loff_t image_size;
1049 struct udevice *tpm;
1050 uint32_t err;
1051 int ret;
1052
1053 printf("CCDM S2\n");
1054 ret = get_tpm(&tpm);
1055 if (ret || tpm_init(tpm))
1056 return 1;
1057 err = tpm_startup(tpm, TPM_ST_CLEAR);
1058 if (err != TPM_INVALID_POSTINIT)
1059 did_first_stage_run = false;
1060
1061 #ifdef CCDM_AUTO_FIRST_STAGE
1062 if (!did_first_stage_run && first_stage_actions(tpm))
1063 goto failure;
1064 #else
1065 if (!did_first_stage_run)
1066 goto failure;
1067 #endif
1068
1069 if (hre_run_program(tpm, prg_stage2_prepare,
1070 sizeof(prg_stage2_prepare)))
1071 goto failure;
1072
1073 /* run "prepboot" from env to get "mmcdev" set */
1074 cptr = env_get("prepboot");
1075 if (cptr && !run_command(cptr, 0))
1076 mmcdev = env_get("mmcdev");
1077 if (!mmcdev)
1078 goto failure;
1079
1080 cptr = env_get("ramdiskimage");
1081 if (cptr)
1082 image_path = cptr;
1083
1084 mac_path = malloc(strlen(image_path) + strlen(mac_suffix) + 1);
1085 if (mac_path == NULL)
1086 goto failure;
1087 strcpy(mac_path, image_path);
1088 strcat(mac_path, mac_suffix);
1089
1090 /* read image from mmcdev (ccdm.itb) */
1091 image_addr = (ulong)get_image_location();
1092 if (fs_set_blk_dev("mmc", mmcdev, FS_TYPE_EXT))
1093 goto failure;
1094 if (fs_read(image_path, image_addr, 0, 0, &image_size) < 0)
1095 goto failure;
1096 if (image_size <= 0)
1097 goto failure;
1098 printf("CCDM image found on %s, %lld bytes\n", mmcdev, image_size);
1099
1100 hmac_blob = load_key_chunk("mmc", mmcdev, FS_TYPE_EXT, mac_path);
1101 if (!hmac_blob) {
1102 puts("failed to load mac file\n");
1103 goto failure;
1104 }
1105 if (verify_program(hmac_blob)) {
1106 puts("corrupted mac file\n");
1107 goto failure;
1108 }
1109 if (check_hmac(hmac_blob, (u8 *)image_addr, image_size)) {
1110 puts("image integrity could not be verified\n");
1111 goto failure;
1112 }
1113 puts("CCDM image OK\n");
1114
1115 hre_run_program(tpm, prg_stage2_success, sizeof(prg_stage2_success));
1116
1117 goto end;
1118 failure:
1119 result = 1;
1120 hre_run_program(tpm, prg_stage_fail, sizeof(prg_stage_fail));
1121 end:
1122 if (hmac_blob)
1123 free(hmac_blob);
1124 if (mac_path)
1125 free(mac_path);
1126
1127 return result;
1128 }
1129 #endif
1130
show_self_hash(void)1131 int show_self_hash(void)
1132 {
1133 struct h_reg *hash_ptr;
1134 #ifdef CCDM_SECOND_STAGE
1135 struct h_reg hash;
1136
1137 hash_ptr = &hash;
1138 if (compute_self_hash(hash_ptr))
1139 return 1;
1140 #else
1141 hash_ptr = &fix_hregs[FIX_HREG_SELF_HASH];
1142 #endif
1143 puts("self hash: ");
1144 if (hash_ptr && hash_ptr->valid)
1145 print_buffer(0, hash_ptr->digest, 1, 20, 20);
1146 else
1147 puts("INVALID\n");
1148
1149 return 0;
1150 }
1151
1152 /**
1153 * @brief let the system hang.
1154 *
1155 * Called on error.
1156 * Will stop the boot process; display a message and signal the error condition
1157 * by blinking the "status" and the "finder" LED of the controller board.
1158 *
1159 * @note the develop version runs the blink cycle 2 times and then returns.
1160 * The release version never returns.
1161 */
ccdm_hang(void)1162 static void ccdm_hang(void)
1163 {
1164 static const u64 f0 = 0x0ba3bb8ba2e880; /* blink code "finder" LED */
1165 static const u64 s0 = 0x00f0f0f0f0f0f0; /* blink code "status" LED */
1166 u64 f, s;
1167 int i;
1168 #ifdef CCDM_DEVELOP
1169 int j;
1170 #endif
1171
1172 I2C_SET_BUS(I2C_SOC_0);
1173 pca9698_direction_output(0x22, 0, 0); /* Finder */
1174 pca9698_direction_output(0x22, 4, 0); /* Status */
1175
1176 puts("### ERROR ### Please RESET the board ###\n");
1177 bootstage_error(BOOTSTAGE_ID_NEED_RESET);
1178 #ifdef CCDM_DEVELOP
1179 puts("*** ERROR ******** THIS WOULD HANG ******** ERROR ***\n");
1180 puts("** but we continue since this is a DEVELOP version **\n");
1181 puts("*** ERROR ******** THIS WOULD HANG ******** ERROR ***\n");
1182 for (j = 2; j-- > 0;) {
1183 putc('#');
1184 #else
1185 for (;;) {
1186 #endif
1187 f = f0;
1188 s = s0;
1189 for (i = 54; i-- > 0;) {
1190 pca9698_set_value(0x22, 0, !(f & 1));
1191 pca9698_set_value(0x22, 4, (s & 1));
1192 f >>= 1;
1193 s >>= 1;
1194 mdelay(120);
1195 }
1196 }
1197 puts("\ncontinue...\n");
1198 }
1199
1200 int startup_ccdm_id_module(void)
1201 {
1202 int result = 0;
1203 unsigned int orig_i2c_bus;
1204
1205 orig_i2c_bus = i2c_get_bus_num();
1206 i2c_set_bus_num(I2C_SOC_1);
1207
1208 /* goto end; */
1209
1210 #ifdef CCDM_DEVELOP
1211 show_self_hash();
1212 #endif
1213 #ifdef CCDM_FIRST_STAGE
1214 result = first_stage_init();
1215 if (result) {
1216 puts("1st stage init failed\n");
1217 goto failure;
1218 }
1219 #endif
1220 #ifdef CCDM_SECOND_STAGE
1221 result = second_stage_init();
1222 if (result) {
1223 puts("2nd stage init failed\n");
1224 goto failure;
1225 }
1226 #endif
1227
1228 goto end;
1229 failure:
1230 result = 1;
1231 end:
1232 i2c_set_bus_num(orig_i2c_bus);
1233 if (result)
1234 ccdm_hang();
1235
1236 return result;
1237 }
1238