xref: /openbmc/linux/mm/zsmalloc.c (revision c900529f3d9161bfde5cca0754f83b4d3c3e0220)
1  /*
2   * zsmalloc memory allocator
3   *
4   * Copyright (C) 2011  Nitin Gupta
5   * Copyright (C) 2012, 2013 Minchan Kim
6   *
7   * This code is released using a dual license strategy: BSD/GPL
8   * You can choose the license that better fits your requirements.
9   *
10   * Released under the terms of 3-clause BSD License
11   * Released under the terms of GNU General Public License Version 2.0
12   */
13  
14  /*
15   * Following is how we use various fields and flags of underlying
16   * struct page(s) to form a zspage.
17   *
18   * Usage of struct page fields:
19   *	page->private: points to zspage
20   *	page->index: links together all component pages of a zspage
21   *		For the huge page, this is always 0, so we use this field
22   *		to store handle.
23   *	page->page_type: first object offset in a subpage of zspage
24   *
25   * Usage of struct page flags:
26   *	PG_private: identifies the first component page
27   *	PG_owner_priv_1: identifies the huge component page
28   *
29   */
30  
31  #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32  
33  /*
34   * lock ordering:
35   *	page_lock
36   *	pool->lock
37   *	zspage->lock
38   */
39  
40  #include <linux/module.h>
41  #include <linux/kernel.h>
42  #include <linux/sched.h>
43  #include <linux/bitops.h>
44  #include <linux/errno.h>
45  #include <linux/highmem.h>
46  #include <linux/string.h>
47  #include <linux/slab.h>
48  #include <linux/pgtable.h>
49  #include <asm/tlbflush.h>
50  #include <linux/cpumask.h>
51  #include <linux/cpu.h>
52  #include <linux/vmalloc.h>
53  #include <linux/preempt.h>
54  #include <linux/spinlock.h>
55  #include <linux/shrinker.h>
56  #include <linux/types.h>
57  #include <linux/debugfs.h>
58  #include <linux/zsmalloc.h>
59  #include <linux/zpool.h>
60  #include <linux/migrate.h>
61  #include <linux/wait.h>
62  #include <linux/pagemap.h>
63  #include <linux/fs.h>
64  #include <linux/local_lock.h>
65  
66  #define ZSPAGE_MAGIC	0x58
67  
68  /*
69   * This must be power of 2 and greater than or equal to sizeof(link_free).
70   * These two conditions ensure that any 'struct link_free' itself doesn't
71   * span more than 1 page which avoids complex case of mapping 2 pages simply
72   * to restore link_free pointer values.
73   */
74  #define ZS_ALIGN		8
75  
76  #define ZS_HANDLE_SIZE (sizeof(unsigned long))
77  
78  /*
79   * Object location (<PFN>, <obj_idx>) is encoded as
80   * a single (unsigned long) handle value.
81   *
82   * Note that object index <obj_idx> starts from 0.
83   *
84   * This is made more complicated by various memory models and PAE.
85   */
86  
87  #ifndef MAX_POSSIBLE_PHYSMEM_BITS
88  #ifdef MAX_PHYSMEM_BITS
89  #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
90  #else
91  /*
92   * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
93   * be PAGE_SHIFT
94   */
95  #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
96  #endif
97  #endif
98  
99  #define _PFN_BITS		(MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
100  
101  /*
102   * Head in allocated object should have OBJ_ALLOCATED_TAG
103   * to identify the object was allocated or not.
104   * It's okay to add the status bit in the least bit because
105   * header keeps handle which is 4byte-aligned address so we
106   * have room for two bit at least.
107   */
108  #define OBJ_ALLOCATED_TAG 1
109  
110  #define OBJ_TAG_BITS	1
111  #define OBJ_TAG_MASK	OBJ_ALLOCATED_TAG
112  
113  #define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
114  #define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
115  
116  #define HUGE_BITS	1
117  #define FULLNESS_BITS	4
118  #define CLASS_BITS	8
119  #define ISOLATED_BITS	5
120  #define MAGIC_VAL_BITS	8
121  
122  #define MAX(a, b) ((a) >= (b) ? (a) : (b))
123  
124  #define ZS_MAX_PAGES_PER_ZSPAGE	(_AC(CONFIG_ZSMALLOC_CHAIN_SIZE, UL))
125  
126  /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
127  #define ZS_MIN_ALLOC_SIZE \
128  	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
129  /* each chunk includes extra space to keep handle */
130  #define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
131  
132  /*
133   * On systems with 4K page size, this gives 255 size classes! There is a
134   * trader-off here:
135   *  - Large number of size classes is potentially wasteful as free page are
136   *    spread across these classes
137   *  - Small number of size classes causes large internal fragmentation
138   *  - Probably its better to use specific size classes (empirically
139   *    determined). NOTE: all those class sizes must be set as multiple of
140   *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
141   *
142   *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
143   *  (reason above)
144   */
145  #define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> CLASS_BITS)
146  #define ZS_SIZE_CLASSES	(DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
147  				      ZS_SIZE_CLASS_DELTA) + 1)
148  
149  /*
150   * Pages are distinguished by the ratio of used memory (that is the ratio
151   * of ->inuse objects to all objects that page can store). For example,
152   * INUSE_RATIO_10 means that the ratio of used objects is > 0% and <= 10%.
153   *
154   * The number of fullness groups is not random. It allows us to keep
155   * difference between the least busy page in the group (minimum permitted
156   * number of ->inuse objects) and the most busy page (maximum permitted
157   * number of ->inuse objects) at a reasonable value.
158   */
159  enum fullness_group {
160  	ZS_INUSE_RATIO_0,
161  	ZS_INUSE_RATIO_10,
162  	/* NOTE: 8 more fullness groups here */
163  	ZS_INUSE_RATIO_99       = 10,
164  	ZS_INUSE_RATIO_100,
165  	NR_FULLNESS_GROUPS,
166  };
167  
168  enum class_stat_type {
169  	/* NOTE: stats for 12 fullness groups here: from inuse 0 to 100 */
170  	ZS_OBJS_ALLOCATED       = NR_FULLNESS_GROUPS,
171  	ZS_OBJS_INUSE,
172  	NR_CLASS_STAT_TYPES,
173  };
174  
175  struct zs_size_stat {
176  	unsigned long objs[NR_CLASS_STAT_TYPES];
177  };
178  
179  #ifdef CONFIG_ZSMALLOC_STAT
180  static struct dentry *zs_stat_root;
181  #endif
182  
183  static size_t huge_class_size;
184  
185  struct size_class {
186  	struct list_head fullness_list[NR_FULLNESS_GROUPS];
187  	/*
188  	 * Size of objects stored in this class. Must be multiple
189  	 * of ZS_ALIGN.
190  	 */
191  	int size;
192  	int objs_per_zspage;
193  	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
194  	int pages_per_zspage;
195  
196  	unsigned int index;
197  	struct zs_size_stat stats;
198  };
199  
200  /*
201   * Placed within free objects to form a singly linked list.
202   * For every zspage, zspage->freeobj gives head of this list.
203   *
204   * This must be power of 2 and less than or equal to ZS_ALIGN
205   */
206  struct link_free {
207  	union {
208  		/*
209  		 * Free object index;
210  		 * It's valid for non-allocated object
211  		 */
212  		unsigned long next;
213  		/*
214  		 * Handle of allocated object.
215  		 */
216  		unsigned long handle;
217  	};
218  };
219  
220  struct zs_pool {
221  	const char *name;
222  
223  	struct size_class *size_class[ZS_SIZE_CLASSES];
224  	struct kmem_cache *handle_cachep;
225  	struct kmem_cache *zspage_cachep;
226  
227  	atomic_long_t pages_allocated;
228  
229  	struct zs_pool_stats stats;
230  
231  	/* Compact classes */
232  	struct shrinker shrinker;
233  
234  #ifdef CONFIG_ZSMALLOC_STAT
235  	struct dentry *stat_dentry;
236  #endif
237  #ifdef CONFIG_COMPACTION
238  	struct work_struct free_work;
239  #endif
240  	spinlock_t lock;
241  	atomic_t compaction_in_progress;
242  };
243  
244  struct zspage {
245  	struct {
246  		unsigned int huge:HUGE_BITS;
247  		unsigned int fullness:FULLNESS_BITS;
248  		unsigned int class:CLASS_BITS + 1;
249  		unsigned int isolated:ISOLATED_BITS;
250  		unsigned int magic:MAGIC_VAL_BITS;
251  	};
252  	unsigned int inuse;
253  	unsigned int freeobj;
254  	struct page *first_page;
255  	struct list_head list; /* fullness list */
256  	struct zs_pool *pool;
257  	rwlock_t lock;
258  };
259  
260  struct mapping_area {
261  	local_lock_t lock;
262  	char *vm_buf; /* copy buffer for objects that span pages */
263  	char *vm_addr; /* address of kmap_atomic()'ed pages */
264  	enum zs_mapmode vm_mm; /* mapping mode */
265  };
266  
267  /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
SetZsHugePage(struct zspage * zspage)268  static void SetZsHugePage(struct zspage *zspage)
269  {
270  	zspage->huge = 1;
271  }
272  
ZsHugePage(struct zspage * zspage)273  static bool ZsHugePage(struct zspage *zspage)
274  {
275  	return zspage->huge;
276  }
277  
278  static void migrate_lock_init(struct zspage *zspage);
279  static void migrate_read_lock(struct zspage *zspage);
280  static void migrate_read_unlock(struct zspage *zspage);
281  
282  #ifdef CONFIG_COMPACTION
283  static void migrate_write_lock(struct zspage *zspage);
284  static void migrate_write_lock_nested(struct zspage *zspage);
285  static void migrate_write_unlock(struct zspage *zspage);
286  static void kick_deferred_free(struct zs_pool *pool);
287  static void init_deferred_free(struct zs_pool *pool);
288  static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
289  #else
migrate_write_lock(struct zspage * zspage)290  static void migrate_write_lock(struct zspage *zspage) {}
migrate_write_lock_nested(struct zspage * zspage)291  static void migrate_write_lock_nested(struct zspage *zspage) {}
migrate_write_unlock(struct zspage * zspage)292  static void migrate_write_unlock(struct zspage *zspage) {}
kick_deferred_free(struct zs_pool * pool)293  static void kick_deferred_free(struct zs_pool *pool) {}
init_deferred_free(struct zs_pool * pool)294  static void init_deferred_free(struct zs_pool *pool) {}
SetZsPageMovable(struct zs_pool * pool,struct zspage * zspage)295  static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
296  #endif
297  
create_cache(struct zs_pool * pool)298  static int create_cache(struct zs_pool *pool)
299  {
300  	pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
301  					0, 0, NULL);
302  	if (!pool->handle_cachep)
303  		return 1;
304  
305  	pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
306  					0, 0, NULL);
307  	if (!pool->zspage_cachep) {
308  		kmem_cache_destroy(pool->handle_cachep);
309  		pool->handle_cachep = NULL;
310  		return 1;
311  	}
312  
313  	return 0;
314  }
315  
destroy_cache(struct zs_pool * pool)316  static void destroy_cache(struct zs_pool *pool)
317  {
318  	kmem_cache_destroy(pool->handle_cachep);
319  	kmem_cache_destroy(pool->zspage_cachep);
320  }
321  
cache_alloc_handle(struct zs_pool * pool,gfp_t gfp)322  static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
323  {
324  	return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
325  			gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
326  }
327  
cache_free_handle(struct zs_pool * pool,unsigned long handle)328  static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
329  {
330  	kmem_cache_free(pool->handle_cachep, (void *)handle);
331  }
332  
cache_alloc_zspage(struct zs_pool * pool,gfp_t flags)333  static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
334  {
335  	return kmem_cache_zalloc(pool->zspage_cachep,
336  			flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
337  }
338  
cache_free_zspage(struct zs_pool * pool,struct zspage * zspage)339  static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
340  {
341  	kmem_cache_free(pool->zspage_cachep, zspage);
342  }
343  
344  /* pool->lock(which owns the handle) synchronizes races */
record_obj(unsigned long handle,unsigned long obj)345  static void record_obj(unsigned long handle, unsigned long obj)
346  {
347  	*(unsigned long *)handle = obj;
348  }
349  
350  /* zpool driver */
351  
352  #ifdef CONFIG_ZPOOL
353  
zs_zpool_create(const char * name,gfp_t gfp)354  static void *zs_zpool_create(const char *name, gfp_t gfp)
355  {
356  	/*
357  	 * Ignore global gfp flags: zs_malloc() may be invoked from
358  	 * different contexts and its caller must provide a valid
359  	 * gfp mask.
360  	 */
361  	return zs_create_pool(name);
362  }
363  
zs_zpool_destroy(void * pool)364  static void zs_zpool_destroy(void *pool)
365  {
366  	zs_destroy_pool(pool);
367  }
368  
zs_zpool_malloc(void * pool,size_t size,gfp_t gfp,unsigned long * handle)369  static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
370  			unsigned long *handle)
371  {
372  	*handle = zs_malloc(pool, size, gfp);
373  
374  	if (IS_ERR_VALUE(*handle))
375  		return PTR_ERR((void *)*handle);
376  	return 0;
377  }
zs_zpool_free(void * pool,unsigned long handle)378  static void zs_zpool_free(void *pool, unsigned long handle)
379  {
380  	zs_free(pool, handle);
381  }
382  
zs_zpool_map(void * pool,unsigned long handle,enum zpool_mapmode mm)383  static void *zs_zpool_map(void *pool, unsigned long handle,
384  			enum zpool_mapmode mm)
385  {
386  	enum zs_mapmode zs_mm;
387  
388  	switch (mm) {
389  	case ZPOOL_MM_RO:
390  		zs_mm = ZS_MM_RO;
391  		break;
392  	case ZPOOL_MM_WO:
393  		zs_mm = ZS_MM_WO;
394  		break;
395  	case ZPOOL_MM_RW:
396  	default:
397  		zs_mm = ZS_MM_RW;
398  		break;
399  	}
400  
401  	return zs_map_object(pool, handle, zs_mm);
402  }
zs_zpool_unmap(void * pool,unsigned long handle)403  static void zs_zpool_unmap(void *pool, unsigned long handle)
404  {
405  	zs_unmap_object(pool, handle);
406  }
407  
zs_zpool_total_size(void * pool)408  static u64 zs_zpool_total_size(void *pool)
409  {
410  	return zs_get_total_pages(pool) << PAGE_SHIFT;
411  }
412  
413  static struct zpool_driver zs_zpool_driver = {
414  	.type =			  "zsmalloc",
415  	.owner =		  THIS_MODULE,
416  	.create =		  zs_zpool_create,
417  	.destroy =		  zs_zpool_destroy,
418  	.malloc_support_movable = true,
419  	.malloc =		  zs_zpool_malloc,
420  	.free =			  zs_zpool_free,
421  	.map =			  zs_zpool_map,
422  	.unmap =		  zs_zpool_unmap,
423  	.total_size =		  zs_zpool_total_size,
424  };
425  
426  MODULE_ALIAS("zpool-zsmalloc");
427  #endif /* CONFIG_ZPOOL */
428  
429  /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
430  static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = {
431  	.lock	= INIT_LOCAL_LOCK(lock),
432  };
433  
is_first_page(struct page * page)434  static __maybe_unused int is_first_page(struct page *page)
435  {
436  	return PagePrivate(page);
437  }
438  
439  /* Protected by pool->lock */
get_zspage_inuse(struct zspage * zspage)440  static inline int get_zspage_inuse(struct zspage *zspage)
441  {
442  	return zspage->inuse;
443  }
444  
445  
mod_zspage_inuse(struct zspage * zspage,int val)446  static inline void mod_zspage_inuse(struct zspage *zspage, int val)
447  {
448  	zspage->inuse += val;
449  }
450  
get_first_page(struct zspage * zspage)451  static inline struct page *get_first_page(struct zspage *zspage)
452  {
453  	struct page *first_page = zspage->first_page;
454  
455  	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
456  	return first_page;
457  }
458  
get_first_obj_offset(struct page * page)459  static inline unsigned int get_first_obj_offset(struct page *page)
460  {
461  	return page->page_type;
462  }
463  
set_first_obj_offset(struct page * page,unsigned int offset)464  static inline void set_first_obj_offset(struct page *page, unsigned int offset)
465  {
466  	page->page_type = offset;
467  }
468  
get_freeobj(struct zspage * zspage)469  static inline unsigned int get_freeobj(struct zspage *zspage)
470  {
471  	return zspage->freeobj;
472  }
473  
set_freeobj(struct zspage * zspage,unsigned int obj)474  static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
475  {
476  	zspage->freeobj = obj;
477  }
478  
get_zspage_mapping(struct zspage * zspage,unsigned int * class_idx,int * fullness)479  static void get_zspage_mapping(struct zspage *zspage,
480  			       unsigned int *class_idx,
481  			       int *fullness)
482  {
483  	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
484  
485  	*fullness = zspage->fullness;
486  	*class_idx = zspage->class;
487  }
488  
zspage_class(struct zs_pool * pool,struct zspage * zspage)489  static struct size_class *zspage_class(struct zs_pool *pool,
490  				       struct zspage *zspage)
491  {
492  	return pool->size_class[zspage->class];
493  }
494  
set_zspage_mapping(struct zspage * zspage,unsigned int class_idx,int fullness)495  static void set_zspage_mapping(struct zspage *zspage,
496  			       unsigned int class_idx,
497  			       int fullness)
498  {
499  	zspage->class = class_idx;
500  	zspage->fullness = fullness;
501  }
502  
503  /*
504   * zsmalloc divides the pool into various size classes where each
505   * class maintains a list of zspages where each zspage is divided
506   * into equal sized chunks. Each allocation falls into one of these
507   * classes depending on its size. This function returns index of the
508   * size class which has chunk size big enough to hold the given size.
509   */
get_size_class_index(int size)510  static int get_size_class_index(int size)
511  {
512  	int idx = 0;
513  
514  	if (likely(size > ZS_MIN_ALLOC_SIZE))
515  		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
516  				ZS_SIZE_CLASS_DELTA);
517  
518  	return min_t(int, ZS_SIZE_CLASSES - 1, idx);
519  }
520  
class_stat_inc(struct size_class * class,int type,unsigned long cnt)521  static inline void class_stat_inc(struct size_class *class,
522  				int type, unsigned long cnt)
523  {
524  	class->stats.objs[type] += cnt;
525  }
526  
class_stat_dec(struct size_class * class,int type,unsigned long cnt)527  static inline void class_stat_dec(struct size_class *class,
528  				int type, unsigned long cnt)
529  {
530  	class->stats.objs[type] -= cnt;
531  }
532  
zs_stat_get(struct size_class * class,int type)533  static inline unsigned long zs_stat_get(struct size_class *class, int type)
534  {
535  	return class->stats.objs[type];
536  }
537  
538  #ifdef CONFIG_ZSMALLOC_STAT
539  
zs_stat_init(void)540  static void __init zs_stat_init(void)
541  {
542  	if (!debugfs_initialized()) {
543  		pr_warn("debugfs not available, stat dir not created\n");
544  		return;
545  	}
546  
547  	zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
548  }
549  
zs_stat_exit(void)550  static void __exit zs_stat_exit(void)
551  {
552  	debugfs_remove_recursive(zs_stat_root);
553  }
554  
555  static unsigned long zs_can_compact(struct size_class *class);
556  
zs_stats_size_show(struct seq_file * s,void * v)557  static int zs_stats_size_show(struct seq_file *s, void *v)
558  {
559  	int i, fg;
560  	struct zs_pool *pool = s->private;
561  	struct size_class *class;
562  	int objs_per_zspage;
563  	unsigned long obj_allocated, obj_used, pages_used, freeable;
564  	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
565  	unsigned long total_freeable = 0;
566  	unsigned long inuse_totals[NR_FULLNESS_GROUPS] = {0, };
567  
568  	seq_printf(s, " %5s %5s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %13s %10s %10s %16s %8s\n",
569  			"class", "size", "10%", "20%", "30%", "40%",
570  			"50%", "60%", "70%", "80%", "90%", "99%", "100%",
571  			"obj_allocated", "obj_used", "pages_used",
572  			"pages_per_zspage", "freeable");
573  
574  	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
575  
576  		class = pool->size_class[i];
577  
578  		if (class->index != i)
579  			continue;
580  
581  		spin_lock(&pool->lock);
582  
583  		seq_printf(s, " %5u %5u ", i, class->size);
584  		for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) {
585  			inuse_totals[fg] += zs_stat_get(class, fg);
586  			seq_printf(s, "%9lu ", zs_stat_get(class, fg));
587  		}
588  
589  		obj_allocated = zs_stat_get(class, ZS_OBJS_ALLOCATED);
590  		obj_used = zs_stat_get(class, ZS_OBJS_INUSE);
591  		freeable = zs_can_compact(class);
592  		spin_unlock(&pool->lock);
593  
594  		objs_per_zspage = class->objs_per_zspage;
595  		pages_used = obj_allocated / objs_per_zspage *
596  				class->pages_per_zspage;
597  
598  		seq_printf(s, "%13lu %10lu %10lu %16d %8lu\n",
599  			   obj_allocated, obj_used, pages_used,
600  			   class->pages_per_zspage, freeable);
601  
602  		total_objs += obj_allocated;
603  		total_used_objs += obj_used;
604  		total_pages += pages_used;
605  		total_freeable += freeable;
606  	}
607  
608  	seq_puts(s, "\n");
609  	seq_printf(s, " %5s %5s ", "Total", "");
610  
611  	for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++)
612  		seq_printf(s, "%9lu ", inuse_totals[fg]);
613  
614  	seq_printf(s, "%13lu %10lu %10lu %16s %8lu\n",
615  		   total_objs, total_used_objs, total_pages, "",
616  		   total_freeable);
617  
618  	return 0;
619  }
620  DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
621  
zs_pool_stat_create(struct zs_pool * pool,const char * name)622  static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
623  {
624  	if (!zs_stat_root) {
625  		pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
626  		return;
627  	}
628  
629  	pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
630  
631  	debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
632  			    &zs_stats_size_fops);
633  }
634  
zs_pool_stat_destroy(struct zs_pool * pool)635  static void zs_pool_stat_destroy(struct zs_pool *pool)
636  {
637  	debugfs_remove_recursive(pool->stat_dentry);
638  }
639  
640  #else /* CONFIG_ZSMALLOC_STAT */
zs_stat_init(void)641  static void __init zs_stat_init(void)
642  {
643  }
644  
zs_stat_exit(void)645  static void __exit zs_stat_exit(void)
646  {
647  }
648  
zs_pool_stat_create(struct zs_pool * pool,const char * name)649  static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
650  {
651  }
652  
zs_pool_stat_destroy(struct zs_pool * pool)653  static inline void zs_pool_stat_destroy(struct zs_pool *pool)
654  {
655  }
656  #endif
657  
658  
659  /*
660   * For each size class, zspages are divided into different groups
661   * depending on their usage ratio. This function returns fullness
662   * status of the given page.
663   */
get_fullness_group(struct size_class * class,struct zspage * zspage)664  static int get_fullness_group(struct size_class *class, struct zspage *zspage)
665  {
666  	int inuse, objs_per_zspage, ratio;
667  
668  	inuse = get_zspage_inuse(zspage);
669  	objs_per_zspage = class->objs_per_zspage;
670  
671  	if (inuse == 0)
672  		return ZS_INUSE_RATIO_0;
673  	if (inuse == objs_per_zspage)
674  		return ZS_INUSE_RATIO_100;
675  
676  	ratio = 100 * inuse / objs_per_zspage;
677  	/*
678  	 * Take integer division into consideration: a page with one inuse
679  	 * object out of 127 possible, will end up having 0 usage ratio,
680  	 * which is wrong as it belongs in ZS_INUSE_RATIO_10 fullness group.
681  	 */
682  	return ratio / 10 + 1;
683  }
684  
685  /*
686   * Each size class maintains various freelists and zspages are assigned
687   * to one of these freelists based on the number of live objects they
688   * have. This functions inserts the given zspage into the freelist
689   * identified by <class, fullness_group>.
690   */
insert_zspage(struct size_class * class,struct zspage * zspage,int fullness)691  static void insert_zspage(struct size_class *class,
692  				struct zspage *zspage,
693  				int fullness)
694  {
695  	class_stat_inc(class, fullness, 1);
696  	list_add(&zspage->list, &class->fullness_list[fullness]);
697  }
698  
699  /*
700   * This function removes the given zspage from the freelist identified
701   * by <class, fullness_group>.
702   */
remove_zspage(struct size_class * class,struct zspage * zspage,int fullness)703  static void remove_zspage(struct size_class *class,
704  				struct zspage *zspage,
705  				int fullness)
706  {
707  	VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
708  
709  	list_del_init(&zspage->list);
710  	class_stat_dec(class, fullness, 1);
711  }
712  
713  /*
714   * Each size class maintains zspages in different fullness groups depending
715   * on the number of live objects they contain. When allocating or freeing
716   * objects, the fullness status of the page can change, for instance, from
717   * INUSE_RATIO_80 to INUSE_RATIO_70 when freeing an object. This function
718   * checks if such a status change has occurred for the given page and
719   * accordingly moves the page from the list of the old fullness group to that
720   * of the new fullness group.
721   */
fix_fullness_group(struct size_class * class,struct zspage * zspage)722  static int fix_fullness_group(struct size_class *class, struct zspage *zspage)
723  {
724  	int class_idx;
725  	int currfg, newfg;
726  
727  	get_zspage_mapping(zspage, &class_idx, &currfg);
728  	newfg = get_fullness_group(class, zspage);
729  	if (newfg == currfg)
730  		goto out;
731  
732  	remove_zspage(class, zspage, currfg);
733  	insert_zspage(class, zspage, newfg);
734  	set_zspage_mapping(zspage, class_idx, newfg);
735  out:
736  	return newfg;
737  }
738  
get_zspage(struct page * page)739  static struct zspage *get_zspage(struct page *page)
740  {
741  	struct zspage *zspage = (struct zspage *)page_private(page);
742  
743  	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
744  	return zspage;
745  }
746  
get_next_page(struct page * page)747  static struct page *get_next_page(struct page *page)
748  {
749  	struct zspage *zspage = get_zspage(page);
750  
751  	if (unlikely(ZsHugePage(zspage)))
752  		return NULL;
753  
754  	return (struct page *)page->index;
755  }
756  
757  /**
758   * obj_to_location - get (<page>, <obj_idx>) from encoded object value
759   * @obj: the encoded object value
760   * @page: page object resides in zspage
761   * @obj_idx: object index
762   */
obj_to_location(unsigned long obj,struct page ** page,unsigned int * obj_idx)763  static void obj_to_location(unsigned long obj, struct page **page,
764  				unsigned int *obj_idx)
765  {
766  	obj >>= OBJ_TAG_BITS;
767  	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
768  	*obj_idx = (obj & OBJ_INDEX_MASK);
769  }
770  
obj_to_page(unsigned long obj,struct page ** page)771  static void obj_to_page(unsigned long obj, struct page **page)
772  {
773  	obj >>= OBJ_TAG_BITS;
774  	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
775  }
776  
777  /**
778   * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
779   * @page: page object resides in zspage
780   * @obj_idx: object index
781   */
location_to_obj(struct page * page,unsigned int obj_idx)782  static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
783  {
784  	unsigned long obj;
785  
786  	obj = page_to_pfn(page) << OBJ_INDEX_BITS;
787  	obj |= obj_idx & OBJ_INDEX_MASK;
788  	obj <<= OBJ_TAG_BITS;
789  
790  	return obj;
791  }
792  
handle_to_obj(unsigned long handle)793  static unsigned long handle_to_obj(unsigned long handle)
794  {
795  	return *(unsigned long *)handle;
796  }
797  
obj_allocated(struct page * page,void * obj,unsigned long * phandle)798  static inline bool obj_allocated(struct page *page, void *obj,
799  				 unsigned long *phandle)
800  {
801  	unsigned long handle;
802  	struct zspage *zspage = get_zspage(page);
803  
804  	if (unlikely(ZsHugePage(zspage))) {
805  		VM_BUG_ON_PAGE(!is_first_page(page), page);
806  		handle = page->index;
807  	} else
808  		handle = *(unsigned long *)obj;
809  
810  	if (!(handle & OBJ_ALLOCATED_TAG))
811  		return false;
812  
813  	/* Clear all tags before returning the handle */
814  	*phandle = handle & ~OBJ_TAG_MASK;
815  	return true;
816  }
817  
reset_page(struct page * page)818  static void reset_page(struct page *page)
819  {
820  	__ClearPageMovable(page);
821  	ClearPagePrivate(page);
822  	set_page_private(page, 0);
823  	page_mapcount_reset(page);
824  	page->index = 0;
825  }
826  
trylock_zspage(struct zspage * zspage)827  static int trylock_zspage(struct zspage *zspage)
828  {
829  	struct page *cursor, *fail;
830  
831  	for (cursor = get_first_page(zspage); cursor != NULL; cursor =
832  					get_next_page(cursor)) {
833  		if (!trylock_page(cursor)) {
834  			fail = cursor;
835  			goto unlock;
836  		}
837  	}
838  
839  	return 1;
840  unlock:
841  	for (cursor = get_first_page(zspage); cursor != fail; cursor =
842  					get_next_page(cursor))
843  		unlock_page(cursor);
844  
845  	return 0;
846  }
847  
__free_zspage(struct zs_pool * pool,struct size_class * class,struct zspage * zspage)848  static void __free_zspage(struct zs_pool *pool, struct size_class *class,
849  				struct zspage *zspage)
850  {
851  	struct page *page, *next;
852  	int fg;
853  	unsigned int class_idx;
854  
855  	get_zspage_mapping(zspage, &class_idx, &fg);
856  
857  	assert_spin_locked(&pool->lock);
858  
859  	VM_BUG_ON(get_zspage_inuse(zspage));
860  	VM_BUG_ON(fg != ZS_INUSE_RATIO_0);
861  
862  	next = page = get_first_page(zspage);
863  	do {
864  		VM_BUG_ON_PAGE(!PageLocked(page), page);
865  		next = get_next_page(page);
866  		reset_page(page);
867  		unlock_page(page);
868  		dec_zone_page_state(page, NR_ZSPAGES);
869  		put_page(page);
870  		page = next;
871  	} while (page != NULL);
872  
873  	cache_free_zspage(pool, zspage);
874  
875  	class_stat_dec(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
876  	atomic_long_sub(class->pages_per_zspage, &pool->pages_allocated);
877  }
878  
free_zspage(struct zs_pool * pool,struct size_class * class,struct zspage * zspage)879  static void free_zspage(struct zs_pool *pool, struct size_class *class,
880  				struct zspage *zspage)
881  {
882  	VM_BUG_ON(get_zspage_inuse(zspage));
883  	VM_BUG_ON(list_empty(&zspage->list));
884  
885  	/*
886  	 * Since zs_free couldn't be sleepable, this function cannot call
887  	 * lock_page. The page locks trylock_zspage got will be released
888  	 * by __free_zspage.
889  	 */
890  	if (!trylock_zspage(zspage)) {
891  		kick_deferred_free(pool);
892  		return;
893  	}
894  
895  	remove_zspage(class, zspage, ZS_INUSE_RATIO_0);
896  	__free_zspage(pool, class, zspage);
897  }
898  
899  /* Initialize a newly allocated zspage */
init_zspage(struct size_class * class,struct zspage * zspage)900  static void init_zspage(struct size_class *class, struct zspage *zspage)
901  {
902  	unsigned int freeobj = 1;
903  	unsigned long off = 0;
904  	struct page *page = get_first_page(zspage);
905  
906  	while (page) {
907  		struct page *next_page;
908  		struct link_free *link;
909  		void *vaddr;
910  
911  		set_first_obj_offset(page, off);
912  
913  		vaddr = kmap_atomic(page);
914  		link = (struct link_free *)vaddr + off / sizeof(*link);
915  
916  		while ((off += class->size) < PAGE_SIZE) {
917  			link->next = freeobj++ << OBJ_TAG_BITS;
918  			link += class->size / sizeof(*link);
919  		}
920  
921  		/*
922  		 * We now come to the last (full or partial) object on this
923  		 * page, which must point to the first object on the next
924  		 * page (if present)
925  		 */
926  		next_page = get_next_page(page);
927  		if (next_page) {
928  			link->next = freeobj++ << OBJ_TAG_BITS;
929  		} else {
930  			/*
931  			 * Reset OBJ_TAG_BITS bit to last link to tell
932  			 * whether it's allocated object or not.
933  			 */
934  			link->next = -1UL << OBJ_TAG_BITS;
935  		}
936  		kunmap_atomic(vaddr);
937  		page = next_page;
938  		off %= PAGE_SIZE;
939  	}
940  
941  	set_freeobj(zspage, 0);
942  }
943  
create_page_chain(struct size_class * class,struct zspage * zspage,struct page * pages[])944  static void create_page_chain(struct size_class *class, struct zspage *zspage,
945  				struct page *pages[])
946  {
947  	int i;
948  	struct page *page;
949  	struct page *prev_page = NULL;
950  	int nr_pages = class->pages_per_zspage;
951  
952  	/*
953  	 * Allocate individual pages and link them together as:
954  	 * 1. all pages are linked together using page->index
955  	 * 2. each sub-page point to zspage using page->private
956  	 *
957  	 * we set PG_private to identify the first page (i.e. no other sub-page
958  	 * has this flag set).
959  	 */
960  	for (i = 0; i < nr_pages; i++) {
961  		page = pages[i];
962  		set_page_private(page, (unsigned long)zspage);
963  		page->index = 0;
964  		if (i == 0) {
965  			zspage->first_page = page;
966  			SetPagePrivate(page);
967  			if (unlikely(class->objs_per_zspage == 1 &&
968  					class->pages_per_zspage == 1))
969  				SetZsHugePage(zspage);
970  		} else {
971  			prev_page->index = (unsigned long)page;
972  		}
973  		prev_page = page;
974  	}
975  }
976  
977  /*
978   * Allocate a zspage for the given size class
979   */
alloc_zspage(struct zs_pool * pool,struct size_class * class,gfp_t gfp)980  static struct zspage *alloc_zspage(struct zs_pool *pool,
981  					struct size_class *class,
982  					gfp_t gfp)
983  {
984  	int i;
985  	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
986  	struct zspage *zspage = cache_alloc_zspage(pool, gfp);
987  
988  	if (!zspage)
989  		return NULL;
990  
991  	zspage->magic = ZSPAGE_MAGIC;
992  	migrate_lock_init(zspage);
993  
994  	for (i = 0; i < class->pages_per_zspage; i++) {
995  		struct page *page;
996  
997  		page = alloc_page(gfp);
998  		if (!page) {
999  			while (--i >= 0) {
1000  				dec_zone_page_state(pages[i], NR_ZSPAGES);
1001  				__free_page(pages[i]);
1002  			}
1003  			cache_free_zspage(pool, zspage);
1004  			return NULL;
1005  		}
1006  
1007  		inc_zone_page_state(page, NR_ZSPAGES);
1008  		pages[i] = page;
1009  	}
1010  
1011  	create_page_chain(class, zspage, pages);
1012  	init_zspage(class, zspage);
1013  	zspage->pool = pool;
1014  
1015  	return zspage;
1016  }
1017  
find_get_zspage(struct size_class * class)1018  static struct zspage *find_get_zspage(struct size_class *class)
1019  {
1020  	int i;
1021  	struct zspage *zspage;
1022  
1023  	for (i = ZS_INUSE_RATIO_99; i >= ZS_INUSE_RATIO_0; i--) {
1024  		zspage = list_first_entry_or_null(&class->fullness_list[i],
1025  						  struct zspage, list);
1026  		if (zspage)
1027  			break;
1028  	}
1029  
1030  	return zspage;
1031  }
1032  
__zs_cpu_up(struct mapping_area * area)1033  static inline int __zs_cpu_up(struct mapping_area *area)
1034  {
1035  	/*
1036  	 * Make sure we don't leak memory if a cpu UP notification
1037  	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1038  	 */
1039  	if (area->vm_buf)
1040  		return 0;
1041  	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1042  	if (!area->vm_buf)
1043  		return -ENOMEM;
1044  	return 0;
1045  }
1046  
__zs_cpu_down(struct mapping_area * area)1047  static inline void __zs_cpu_down(struct mapping_area *area)
1048  {
1049  	kfree(area->vm_buf);
1050  	area->vm_buf = NULL;
1051  }
1052  
__zs_map_object(struct mapping_area * area,struct page * pages[2],int off,int size)1053  static void *__zs_map_object(struct mapping_area *area,
1054  			struct page *pages[2], int off, int size)
1055  {
1056  	int sizes[2];
1057  	void *addr;
1058  	char *buf = area->vm_buf;
1059  
1060  	/* disable page faults to match kmap_atomic() return conditions */
1061  	pagefault_disable();
1062  
1063  	/* no read fastpath */
1064  	if (area->vm_mm == ZS_MM_WO)
1065  		goto out;
1066  
1067  	sizes[0] = PAGE_SIZE - off;
1068  	sizes[1] = size - sizes[0];
1069  
1070  	/* copy object to per-cpu buffer */
1071  	addr = kmap_atomic(pages[0]);
1072  	memcpy(buf, addr + off, sizes[0]);
1073  	kunmap_atomic(addr);
1074  	addr = kmap_atomic(pages[1]);
1075  	memcpy(buf + sizes[0], addr, sizes[1]);
1076  	kunmap_atomic(addr);
1077  out:
1078  	return area->vm_buf;
1079  }
1080  
__zs_unmap_object(struct mapping_area * area,struct page * pages[2],int off,int size)1081  static void __zs_unmap_object(struct mapping_area *area,
1082  			struct page *pages[2], int off, int size)
1083  {
1084  	int sizes[2];
1085  	void *addr;
1086  	char *buf;
1087  
1088  	/* no write fastpath */
1089  	if (area->vm_mm == ZS_MM_RO)
1090  		goto out;
1091  
1092  	buf = area->vm_buf;
1093  	buf = buf + ZS_HANDLE_SIZE;
1094  	size -= ZS_HANDLE_SIZE;
1095  	off += ZS_HANDLE_SIZE;
1096  
1097  	sizes[0] = PAGE_SIZE - off;
1098  	sizes[1] = size - sizes[0];
1099  
1100  	/* copy per-cpu buffer to object */
1101  	addr = kmap_atomic(pages[0]);
1102  	memcpy(addr + off, buf, sizes[0]);
1103  	kunmap_atomic(addr);
1104  	addr = kmap_atomic(pages[1]);
1105  	memcpy(addr, buf + sizes[0], sizes[1]);
1106  	kunmap_atomic(addr);
1107  
1108  out:
1109  	/* enable page faults to match kunmap_atomic() return conditions */
1110  	pagefault_enable();
1111  }
1112  
zs_cpu_prepare(unsigned int cpu)1113  static int zs_cpu_prepare(unsigned int cpu)
1114  {
1115  	struct mapping_area *area;
1116  
1117  	area = &per_cpu(zs_map_area, cpu);
1118  	return __zs_cpu_up(area);
1119  }
1120  
zs_cpu_dead(unsigned int cpu)1121  static int zs_cpu_dead(unsigned int cpu)
1122  {
1123  	struct mapping_area *area;
1124  
1125  	area = &per_cpu(zs_map_area, cpu);
1126  	__zs_cpu_down(area);
1127  	return 0;
1128  }
1129  
can_merge(struct size_class * prev,int pages_per_zspage,int objs_per_zspage)1130  static bool can_merge(struct size_class *prev, int pages_per_zspage,
1131  					int objs_per_zspage)
1132  {
1133  	if (prev->pages_per_zspage == pages_per_zspage &&
1134  		prev->objs_per_zspage == objs_per_zspage)
1135  		return true;
1136  
1137  	return false;
1138  }
1139  
zspage_full(struct size_class * class,struct zspage * zspage)1140  static bool zspage_full(struct size_class *class, struct zspage *zspage)
1141  {
1142  	return get_zspage_inuse(zspage) == class->objs_per_zspage;
1143  }
1144  
zspage_empty(struct zspage * zspage)1145  static bool zspage_empty(struct zspage *zspage)
1146  {
1147  	return get_zspage_inuse(zspage) == 0;
1148  }
1149  
1150  /**
1151   * zs_lookup_class_index() - Returns index of the zsmalloc &size_class
1152   * that hold objects of the provided size.
1153   * @pool: zsmalloc pool to use
1154   * @size: object size
1155   *
1156   * Context: Any context.
1157   *
1158   * Return: the index of the zsmalloc &size_class that hold objects of the
1159   * provided size.
1160   */
zs_lookup_class_index(struct zs_pool * pool,unsigned int size)1161  unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size)
1162  {
1163  	struct size_class *class;
1164  
1165  	class = pool->size_class[get_size_class_index(size)];
1166  
1167  	return class->index;
1168  }
1169  EXPORT_SYMBOL_GPL(zs_lookup_class_index);
1170  
zs_get_total_pages(struct zs_pool * pool)1171  unsigned long zs_get_total_pages(struct zs_pool *pool)
1172  {
1173  	return atomic_long_read(&pool->pages_allocated);
1174  }
1175  EXPORT_SYMBOL_GPL(zs_get_total_pages);
1176  
1177  /**
1178   * zs_map_object - get address of allocated object from handle.
1179   * @pool: pool from which the object was allocated
1180   * @handle: handle returned from zs_malloc
1181   * @mm: mapping mode to use
1182   *
1183   * Before using an object allocated from zs_malloc, it must be mapped using
1184   * this function. When done with the object, it must be unmapped using
1185   * zs_unmap_object.
1186   *
1187   * Only one object can be mapped per cpu at a time. There is no protection
1188   * against nested mappings.
1189   *
1190   * This function returns with preemption and page faults disabled.
1191   */
zs_map_object(struct zs_pool * pool,unsigned long handle,enum zs_mapmode mm)1192  void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1193  			enum zs_mapmode mm)
1194  {
1195  	struct zspage *zspage;
1196  	struct page *page;
1197  	unsigned long obj, off;
1198  	unsigned int obj_idx;
1199  
1200  	struct size_class *class;
1201  	struct mapping_area *area;
1202  	struct page *pages[2];
1203  	void *ret;
1204  
1205  	/*
1206  	 * Because we use per-cpu mapping areas shared among the
1207  	 * pools/users, we can't allow mapping in interrupt context
1208  	 * because it can corrupt another users mappings.
1209  	 */
1210  	BUG_ON(in_interrupt());
1211  
1212  	/* It guarantees it can get zspage from handle safely */
1213  	spin_lock(&pool->lock);
1214  	obj = handle_to_obj(handle);
1215  	obj_to_location(obj, &page, &obj_idx);
1216  	zspage = get_zspage(page);
1217  
1218  	/*
1219  	 * migration cannot move any zpages in this zspage. Here, pool->lock
1220  	 * is too heavy since callers would take some time until they calls
1221  	 * zs_unmap_object API so delegate the locking from class to zspage
1222  	 * which is smaller granularity.
1223  	 */
1224  	migrate_read_lock(zspage);
1225  	spin_unlock(&pool->lock);
1226  
1227  	class = zspage_class(pool, zspage);
1228  	off = offset_in_page(class->size * obj_idx);
1229  
1230  	local_lock(&zs_map_area.lock);
1231  	area = this_cpu_ptr(&zs_map_area);
1232  	area->vm_mm = mm;
1233  	if (off + class->size <= PAGE_SIZE) {
1234  		/* this object is contained entirely within a page */
1235  		area->vm_addr = kmap_atomic(page);
1236  		ret = area->vm_addr + off;
1237  		goto out;
1238  	}
1239  
1240  	/* this object spans two pages */
1241  	pages[0] = page;
1242  	pages[1] = get_next_page(page);
1243  	BUG_ON(!pages[1]);
1244  
1245  	ret = __zs_map_object(area, pages, off, class->size);
1246  out:
1247  	if (likely(!ZsHugePage(zspage)))
1248  		ret += ZS_HANDLE_SIZE;
1249  
1250  	return ret;
1251  }
1252  EXPORT_SYMBOL_GPL(zs_map_object);
1253  
zs_unmap_object(struct zs_pool * pool,unsigned long handle)1254  void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1255  {
1256  	struct zspage *zspage;
1257  	struct page *page;
1258  	unsigned long obj, off;
1259  	unsigned int obj_idx;
1260  
1261  	struct size_class *class;
1262  	struct mapping_area *area;
1263  
1264  	obj = handle_to_obj(handle);
1265  	obj_to_location(obj, &page, &obj_idx);
1266  	zspage = get_zspage(page);
1267  	class = zspage_class(pool, zspage);
1268  	off = offset_in_page(class->size * obj_idx);
1269  
1270  	area = this_cpu_ptr(&zs_map_area);
1271  	if (off + class->size <= PAGE_SIZE)
1272  		kunmap_atomic(area->vm_addr);
1273  	else {
1274  		struct page *pages[2];
1275  
1276  		pages[0] = page;
1277  		pages[1] = get_next_page(page);
1278  		BUG_ON(!pages[1]);
1279  
1280  		__zs_unmap_object(area, pages, off, class->size);
1281  	}
1282  	local_unlock(&zs_map_area.lock);
1283  
1284  	migrate_read_unlock(zspage);
1285  }
1286  EXPORT_SYMBOL_GPL(zs_unmap_object);
1287  
1288  /**
1289   * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1290   *                        zsmalloc &size_class.
1291   * @pool: zsmalloc pool to use
1292   *
1293   * The function returns the size of the first huge class - any object of equal
1294   * or bigger size will be stored in zspage consisting of a single physical
1295   * page.
1296   *
1297   * Context: Any context.
1298   *
1299   * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1300   */
zs_huge_class_size(struct zs_pool * pool)1301  size_t zs_huge_class_size(struct zs_pool *pool)
1302  {
1303  	return huge_class_size;
1304  }
1305  EXPORT_SYMBOL_GPL(zs_huge_class_size);
1306  
obj_malloc(struct zs_pool * pool,struct zspage * zspage,unsigned long handle)1307  static unsigned long obj_malloc(struct zs_pool *pool,
1308  				struct zspage *zspage, unsigned long handle)
1309  {
1310  	int i, nr_page, offset;
1311  	unsigned long obj;
1312  	struct link_free *link;
1313  	struct size_class *class;
1314  
1315  	struct page *m_page;
1316  	unsigned long m_offset;
1317  	void *vaddr;
1318  
1319  	class = pool->size_class[zspage->class];
1320  	handle |= OBJ_ALLOCATED_TAG;
1321  	obj = get_freeobj(zspage);
1322  
1323  	offset = obj * class->size;
1324  	nr_page = offset >> PAGE_SHIFT;
1325  	m_offset = offset_in_page(offset);
1326  	m_page = get_first_page(zspage);
1327  
1328  	for (i = 0; i < nr_page; i++)
1329  		m_page = get_next_page(m_page);
1330  
1331  	vaddr = kmap_atomic(m_page);
1332  	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1333  	set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1334  	if (likely(!ZsHugePage(zspage)))
1335  		/* record handle in the header of allocated chunk */
1336  		link->handle = handle;
1337  	else
1338  		/* record handle to page->index */
1339  		zspage->first_page->index = handle;
1340  
1341  	kunmap_atomic(vaddr);
1342  	mod_zspage_inuse(zspage, 1);
1343  
1344  	obj = location_to_obj(m_page, obj);
1345  
1346  	return obj;
1347  }
1348  
1349  
1350  /**
1351   * zs_malloc - Allocate block of given size from pool.
1352   * @pool: pool to allocate from
1353   * @size: size of block to allocate
1354   * @gfp: gfp flags when allocating object
1355   *
1356   * On success, handle to the allocated object is returned,
1357   * otherwise an ERR_PTR().
1358   * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1359   */
zs_malloc(struct zs_pool * pool,size_t size,gfp_t gfp)1360  unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1361  {
1362  	unsigned long handle, obj;
1363  	struct size_class *class;
1364  	int newfg;
1365  	struct zspage *zspage;
1366  
1367  	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1368  		return (unsigned long)ERR_PTR(-EINVAL);
1369  
1370  	handle = cache_alloc_handle(pool, gfp);
1371  	if (!handle)
1372  		return (unsigned long)ERR_PTR(-ENOMEM);
1373  
1374  	/* extra space in chunk to keep the handle */
1375  	size += ZS_HANDLE_SIZE;
1376  	class = pool->size_class[get_size_class_index(size)];
1377  
1378  	/* pool->lock effectively protects the zpage migration */
1379  	spin_lock(&pool->lock);
1380  	zspage = find_get_zspage(class);
1381  	if (likely(zspage)) {
1382  		obj = obj_malloc(pool, zspage, handle);
1383  		/* Now move the zspage to another fullness group, if required */
1384  		fix_fullness_group(class, zspage);
1385  		record_obj(handle, obj);
1386  		class_stat_inc(class, ZS_OBJS_INUSE, 1);
1387  
1388  		goto out;
1389  	}
1390  
1391  	spin_unlock(&pool->lock);
1392  
1393  	zspage = alloc_zspage(pool, class, gfp);
1394  	if (!zspage) {
1395  		cache_free_handle(pool, handle);
1396  		return (unsigned long)ERR_PTR(-ENOMEM);
1397  	}
1398  
1399  	spin_lock(&pool->lock);
1400  	obj = obj_malloc(pool, zspage, handle);
1401  	newfg = get_fullness_group(class, zspage);
1402  	insert_zspage(class, zspage, newfg);
1403  	set_zspage_mapping(zspage, class->index, newfg);
1404  	record_obj(handle, obj);
1405  	atomic_long_add(class->pages_per_zspage, &pool->pages_allocated);
1406  	class_stat_inc(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
1407  	class_stat_inc(class, ZS_OBJS_INUSE, 1);
1408  
1409  	/* We completely set up zspage so mark them as movable */
1410  	SetZsPageMovable(pool, zspage);
1411  out:
1412  	spin_unlock(&pool->lock);
1413  
1414  	return handle;
1415  }
1416  EXPORT_SYMBOL_GPL(zs_malloc);
1417  
obj_free(int class_size,unsigned long obj)1418  static void obj_free(int class_size, unsigned long obj)
1419  {
1420  	struct link_free *link;
1421  	struct zspage *zspage;
1422  	struct page *f_page;
1423  	unsigned long f_offset;
1424  	unsigned int f_objidx;
1425  	void *vaddr;
1426  
1427  	obj_to_location(obj, &f_page, &f_objidx);
1428  	f_offset = offset_in_page(class_size * f_objidx);
1429  	zspage = get_zspage(f_page);
1430  
1431  	vaddr = kmap_atomic(f_page);
1432  	link = (struct link_free *)(vaddr + f_offset);
1433  
1434  	/* Insert this object in containing zspage's freelist */
1435  	if (likely(!ZsHugePage(zspage)))
1436  		link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1437  	else
1438  		f_page->index = 0;
1439  	set_freeobj(zspage, f_objidx);
1440  
1441  	kunmap_atomic(vaddr);
1442  	mod_zspage_inuse(zspage, -1);
1443  }
1444  
zs_free(struct zs_pool * pool,unsigned long handle)1445  void zs_free(struct zs_pool *pool, unsigned long handle)
1446  {
1447  	struct zspage *zspage;
1448  	struct page *f_page;
1449  	unsigned long obj;
1450  	struct size_class *class;
1451  	int fullness;
1452  
1453  	if (IS_ERR_OR_NULL((void *)handle))
1454  		return;
1455  
1456  	/*
1457  	 * The pool->lock protects the race with zpage's migration
1458  	 * so it's safe to get the page from handle.
1459  	 */
1460  	spin_lock(&pool->lock);
1461  	obj = handle_to_obj(handle);
1462  	obj_to_page(obj, &f_page);
1463  	zspage = get_zspage(f_page);
1464  	class = zspage_class(pool, zspage);
1465  
1466  	class_stat_dec(class, ZS_OBJS_INUSE, 1);
1467  	obj_free(class->size, obj);
1468  
1469  	fullness = fix_fullness_group(class, zspage);
1470  	if (fullness == ZS_INUSE_RATIO_0)
1471  		free_zspage(pool, class, zspage);
1472  
1473  	spin_unlock(&pool->lock);
1474  	cache_free_handle(pool, handle);
1475  }
1476  EXPORT_SYMBOL_GPL(zs_free);
1477  
zs_object_copy(struct size_class * class,unsigned long dst,unsigned long src)1478  static void zs_object_copy(struct size_class *class, unsigned long dst,
1479  				unsigned long src)
1480  {
1481  	struct page *s_page, *d_page;
1482  	unsigned int s_objidx, d_objidx;
1483  	unsigned long s_off, d_off;
1484  	void *s_addr, *d_addr;
1485  	int s_size, d_size, size;
1486  	int written = 0;
1487  
1488  	s_size = d_size = class->size;
1489  
1490  	obj_to_location(src, &s_page, &s_objidx);
1491  	obj_to_location(dst, &d_page, &d_objidx);
1492  
1493  	s_off = offset_in_page(class->size * s_objidx);
1494  	d_off = offset_in_page(class->size * d_objidx);
1495  
1496  	if (s_off + class->size > PAGE_SIZE)
1497  		s_size = PAGE_SIZE - s_off;
1498  
1499  	if (d_off + class->size > PAGE_SIZE)
1500  		d_size = PAGE_SIZE - d_off;
1501  
1502  	s_addr = kmap_atomic(s_page);
1503  	d_addr = kmap_atomic(d_page);
1504  
1505  	while (1) {
1506  		size = min(s_size, d_size);
1507  		memcpy(d_addr + d_off, s_addr + s_off, size);
1508  		written += size;
1509  
1510  		if (written == class->size)
1511  			break;
1512  
1513  		s_off += size;
1514  		s_size -= size;
1515  		d_off += size;
1516  		d_size -= size;
1517  
1518  		/*
1519  		 * Calling kunmap_atomic(d_addr) is necessary. kunmap_atomic()
1520  		 * calls must occurs in reverse order of calls to kmap_atomic().
1521  		 * So, to call kunmap_atomic(s_addr) we should first call
1522  		 * kunmap_atomic(d_addr). For more details see
1523  		 * Documentation/mm/highmem.rst.
1524  		 */
1525  		if (s_off >= PAGE_SIZE) {
1526  			kunmap_atomic(d_addr);
1527  			kunmap_atomic(s_addr);
1528  			s_page = get_next_page(s_page);
1529  			s_addr = kmap_atomic(s_page);
1530  			d_addr = kmap_atomic(d_page);
1531  			s_size = class->size - written;
1532  			s_off = 0;
1533  		}
1534  
1535  		if (d_off >= PAGE_SIZE) {
1536  			kunmap_atomic(d_addr);
1537  			d_page = get_next_page(d_page);
1538  			d_addr = kmap_atomic(d_page);
1539  			d_size = class->size - written;
1540  			d_off = 0;
1541  		}
1542  	}
1543  
1544  	kunmap_atomic(d_addr);
1545  	kunmap_atomic(s_addr);
1546  }
1547  
1548  /*
1549   * Find alloced object in zspage from index object and
1550   * return handle.
1551   */
find_alloced_obj(struct size_class * class,struct page * page,int * obj_idx)1552  static unsigned long find_alloced_obj(struct size_class *class,
1553  				      struct page *page, int *obj_idx)
1554  {
1555  	unsigned int offset;
1556  	int index = *obj_idx;
1557  	unsigned long handle = 0;
1558  	void *addr = kmap_atomic(page);
1559  
1560  	offset = get_first_obj_offset(page);
1561  	offset += class->size * index;
1562  
1563  	while (offset < PAGE_SIZE) {
1564  		if (obj_allocated(page, addr + offset, &handle))
1565  			break;
1566  
1567  		offset += class->size;
1568  		index++;
1569  	}
1570  
1571  	kunmap_atomic(addr);
1572  
1573  	*obj_idx = index;
1574  
1575  	return handle;
1576  }
1577  
migrate_zspage(struct zs_pool * pool,struct zspage * src_zspage,struct zspage * dst_zspage)1578  static void migrate_zspage(struct zs_pool *pool, struct zspage *src_zspage,
1579  			   struct zspage *dst_zspage)
1580  {
1581  	unsigned long used_obj, free_obj;
1582  	unsigned long handle;
1583  	int obj_idx = 0;
1584  	struct page *s_page = get_first_page(src_zspage);
1585  	struct size_class *class = pool->size_class[src_zspage->class];
1586  
1587  	while (1) {
1588  		handle = find_alloced_obj(class, s_page, &obj_idx);
1589  		if (!handle) {
1590  			s_page = get_next_page(s_page);
1591  			if (!s_page)
1592  				break;
1593  			obj_idx = 0;
1594  			continue;
1595  		}
1596  
1597  		used_obj = handle_to_obj(handle);
1598  		free_obj = obj_malloc(pool, dst_zspage, handle);
1599  		zs_object_copy(class, free_obj, used_obj);
1600  		obj_idx++;
1601  		record_obj(handle, free_obj);
1602  		obj_free(class->size, used_obj);
1603  
1604  		/* Stop if there is no more space */
1605  		if (zspage_full(class, dst_zspage))
1606  			break;
1607  
1608  		/* Stop if there are no more objects to migrate */
1609  		if (zspage_empty(src_zspage))
1610  			break;
1611  	}
1612  }
1613  
isolate_src_zspage(struct size_class * class)1614  static struct zspage *isolate_src_zspage(struct size_class *class)
1615  {
1616  	struct zspage *zspage;
1617  	int fg;
1618  
1619  	for (fg = ZS_INUSE_RATIO_10; fg <= ZS_INUSE_RATIO_99; fg++) {
1620  		zspage = list_first_entry_or_null(&class->fullness_list[fg],
1621  						  struct zspage, list);
1622  		if (zspage) {
1623  			remove_zspage(class, zspage, fg);
1624  			return zspage;
1625  		}
1626  	}
1627  
1628  	return zspage;
1629  }
1630  
isolate_dst_zspage(struct size_class * class)1631  static struct zspage *isolate_dst_zspage(struct size_class *class)
1632  {
1633  	struct zspage *zspage;
1634  	int fg;
1635  
1636  	for (fg = ZS_INUSE_RATIO_99; fg >= ZS_INUSE_RATIO_10; fg--) {
1637  		zspage = list_first_entry_or_null(&class->fullness_list[fg],
1638  						  struct zspage, list);
1639  		if (zspage) {
1640  			remove_zspage(class, zspage, fg);
1641  			return zspage;
1642  		}
1643  	}
1644  
1645  	return zspage;
1646  }
1647  
1648  /*
1649   * putback_zspage - add @zspage into right class's fullness list
1650   * @class: destination class
1651   * @zspage: target page
1652   *
1653   * Return @zspage's fullness status
1654   */
putback_zspage(struct size_class * class,struct zspage * zspage)1655  static int putback_zspage(struct size_class *class, struct zspage *zspage)
1656  {
1657  	int fullness;
1658  
1659  	fullness = get_fullness_group(class, zspage);
1660  	insert_zspage(class, zspage, fullness);
1661  	set_zspage_mapping(zspage, class->index, fullness);
1662  
1663  	return fullness;
1664  }
1665  
1666  #ifdef CONFIG_COMPACTION
1667  /*
1668   * To prevent zspage destroy during migration, zspage freeing should
1669   * hold locks of all pages in the zspage.
1670   */
lock_zspage(struct zspage * zspage)1671  static void lock_zspage(struct zspage *zspage)
1672  {
1673  	struct page *curr_page, *page;
1674  
1675  	/*
1676  	 * Pages we haven't locked yet can be migrated off the list while we're
1677  	 * trying to lock them, so we need to be careful and only attempt to
1678  	 * lock each page under migrate_read_lock(). Otherwise, the page we lock
1679  	 * may no longer belong to the zspage. This means that we may wait for
1680  	 * the wrong page to unlock, so we must take a reference to the page
1681  	 * prior to waiting for it to unlock outside migrate_read_lock().
1682  	 */
1683  	while (1) {
1684  		migrate_read_lock(zspage);
1685  		page = get_first_page(zspage);
1686  		if (trylock_page(page))
1687  			break;
1688  		get_page(page);
1689  		migrate_read_unlock(zspage);
1690  		wait_on_page_locked(page);
1691  		put_page(page);
1692  	}
1693  
1694  	curr_page = page;
1695  	while ((page = get_next_page(curr_page))) {
1696  		if (trylock_page(page)) {
1697  			curr_page = page;
1698  		} else {
1699  			get_page(page);
1700  			migrate_read_unlock(zspage);
1701  			wait_on_page_locked(page);
1702  			put_page(page);
1703  			migrate_read_lock(zspage);
1704  		}
1705  	}
1706  	migrate_read_unlock(zspage);
1707  }
1708  #endif /* CONFIG_COMPACTION */
1709  
migrate_lock_init(struct zspage * zspage)1710  static void migrate_lock_init(struct zspage *zspage)
1711  {
1712  	rwlock_init(&zspage->lock);
1713  }
1714  
migrate_read_lock(struct zspage * zspage)1715  static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1716  {
1717  	read_lock(&zspage->lock);
1718  }
1719  
migrate_read_unlock(struct zspage * zspage)1720  static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1721  {
1722  	read_unlock(&zspage->lock);
1723  }
1724  
1725  #ifdef CONFIG_COMPACTION
migrate_write_lock(struct zspage * zspage)1726  static void migrate_write_lock(struct zspage *zspage)
1727  {
1728  	write_lock(&zspage->lock);
1729  }
1730  
migrate_write_lock_nested(struct zspage * zspage)1731  static void migrate_write_lock_nested(struct zspage *zspage)
1732  {
1733  	write_lock_nested(&zspage->lock, SINGLE_DEPTH_NESTING);
1734  }
1735  
migrate_write_unlock(struct zspage * zspage)1736  static void migrate_write_unlock(struct zspage *zspage)
1737  {
1738  	write_unlock(&zspage->lock);
1739  }
1740  
1741  /* Number of isolated subpage for *page migration* in this zspage */
inc_zspage_isolation(struct zspage * zspage)1742  static void inc_zspage_isolation(struct zspage *zspage)
1743  {
1744  	zspage->isolated++;
1745  }
1746  
dec_zspage_isolation(struct zspage * zspage)1747  static void dec_zspage_isolation(struct zspage *zspage)
1748  {
1749  	VM_BUG_ON(zspage->isolated == 0);
1750  	zspage->isolated--;
1751  }
1752  
1753  static const struct movable_operations zsmalloc_mops;
1754  
replace_sub_page(struct size_class * class,struct zspage * zspage,struct page * newpage,struct page * oldpage)1755  static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1756  				struct page *newpage, struct page *oldpage)
1757  {
1758  	struct page *page;
1759  	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1760  	int idx = 0;
1761  
1762  	page = get_first_page(zspage);
1763  	do {
1764  		if (page == oldpage)
1765  			pages[idx] = newpage;
1766  		else
1767  			pages[idx] = page;
1768  		idx++;
1769  	} while ((page = get_next_page(page)) != NULL);
1770  
1771  	create_page_chain(class, zspage, pages);
1772  	set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1773  	if (unlikely(ZsHugePage(zspage)))
1774  		newpage->index = oldpage->index;
1775  	__SetPageMovable(newpage, &zsmalloc_mops);
1776  }
1777  
zs_page_isolate(struct page * page,isolate_mode_t mode)1778  static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1779  {
1780  	struct zs_pool *pool;
1781  	struct zspage *zspage;
1782  
1783  	/*
1784  	 * Page is locked so zspage couldn't be destroyed. For detail, look at
1785  	 * lock_zspage in free_zspage.
1786  	 */
1787  	VM_BUG_ON_PAGE(PageIsolated(page), page);
1788  
1789  	zspage = get_zspage(page);
1790  	pool = zspage->pool;
1791  	spin_lock(&pool->lock);
1792  	inc_zspage_isolation(zspage);
1793  	spin_unlock(&pool->lock);
1794  
1795  	return true;
1796  }
1797  
zs_page_migrate(struct page * newpage,struct page * page,enum migrate_mode mode)1798  static int zs_page_migrate(struct page *newpage, struct page *page,
1799  		enum migrate_mode mode)
1800  {
1801  	struct zs_pool *pool;
1802  	struct size_class *class;
1803  	struct zspage *zspage;
1804  	struct page *dummy;
1805  	void *s_addr, *d_addr, *addr;
1806  	unsigned int offset;
1807  	unsigned long handle;
1808  	unsigned long old_obj, new_obj;
1809  	unsigned int obj_idx;
1810  
1811  	/*
1812  	 * We cannot support the _NO_COPY case here, because copy needs to
1813  	 * happen under the zs lock, which does not work with
1814  	 * MIGRATE_SYNC_NO_COPY workflow.
1815  	 */
1816  	if (mode == MIGRATE_SYNC_NO_COPY)
1817  		return -EINVAL;
1818  
1819  	VM_BUG_ON_PAGE(!PageIsolated(page), page);
1820  
1821  	/* The page is locked, so this pointer must remain valid */
1822  	zspage = get_zspage(page);
1823  	pool = zspage->pool;
1824  
1825  	/*
1826  	 * The pool's lock protects the race between zpage migration
1827  	 * and zs_free.
1828  	 */
1829  	spin_lock(&pool->lock);
1830  	class = zspage_class(pool, zspage);
1831  
1832  	/* the migrate_write_lock protects zpage access via zs_map_object */
1833  	migrate_write_lock(zspage);
1834  
1835  	offset = get_first_obj_offset(page);
1836  	s_addr = kmap_atomic(page);
1837  
1838  	/*
1839  	 * Here, any user cannot access all objects in the zspage so let's move.
1840  	 */
1841  	d_addr = kmap_atomic(newpage);
1842  	memcpy(d_addr, s_addr, PAGE_SIZE);
1843  	kunmap_atomic(d_addr);
1844  
1845  	for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
1846  					addr += class->size) {
1847  		if (obj_allocated(page, addr, &handle)) {
1848  
1849  			old_obj = handle_to_obj(handle);
1850  			obj_to_location(old_obj, &dummy, &obj_idx);
1851  			new_obj = (unsigned long)location_to_obj(newpage,
1852  								obj_idx);
1853  			record_obj(handle, new_obj);
1854  		}
1855  	}
1856  	kunmap_atomic(s_addr);
1857  
1858  	replace_sub_page(class, zspage, newpage, page);
1859  	dec_zspage_isolation(zspage);
1860  	/*
1861  	 * Since we complete the data copy and set up new zspage structure,
1862  	 * it's okay to release the pool's lock.
1863  	 */
1864  	spin_unlock(&pool->lock);
1865  	migrate_write_unlock(zspage);
1866  
1867  	get_page(newpage);
1868  	if (page_zone(newpage) != page_zone(page)) {
1869  		dec_zone_page_state(page, NR_ZSPAGES);
1870  		inc_zone_page_state(newpage, NR_ZSPAGES);
1871  	}
1872  
1873  	reset_page(page);
1874  	put_page(page);
1875  
1876  	return MIGRATEPAGE_SUCCESS;
1877  }
1878  
zs_page_putback(struct page * page)1879  static void zs_page_putback(struct page *page)
1880  {
1881  	struct zs_pool *pool;
1882  	struct zspage *zspage;
1883  
1884  	VM_BUG_ON_PAGE(!PageIsolated(page), page);
1885  
1886  	zspage = get_zspage(page);
1887  	pool = zspage->pool;
1888  	spin_lock(&pool->lock);
1889  	dec_zspage_isolation(zspage);
1890  	spin_unlock(&pool->lock);
1891  }
1892  
1893  static const struct movable_operations zsmalloc_mops = {
1894  	.isolate_page = zs_page_isolate,
1895  	.migrate_page = zs_page_migrate,
1896  	.putback_page = zs_page_putback,
1897  };
1898  
1899  /*
1900   * Caller should hold page_lock of all pages in the zspage
1901   * In here, we cannot use zspage meta data.
1902   */
async_free_zspage(struct work_struct * work)1903  static void async_free_zspage(struct work_struct *work)
1904  {
1905  	int i;
1906  	struct size_class *class;
1907  	unsigned int class_idx;
1908  	int fullness;
1909  	struct zspage *zspage, *tmp;
1910  	LIST_HEAD(free_pages);
1911  	struct zs_pool *pool = container_of(work, struct zs_pool,
1912  					free_work);
1913  
1914  	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
1915  		class = pool->size_class[i];
1916  		if (class->index != i)
1917  			continue;
1918  
1919  		spin_lock(&pool->lock);
1920  		list_splice_init(&class->fullness_list[ZS_INUSE_RATIO_0],
1921  				 &free_pages);
1922  		spin_unlock(&pool->lock);
1923  	}
1924  
1925  	list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
1926  		list_del(&zspage->list);
1927  		lock_zspage(zspage);
1928  
1929  		get_zspage_mapping(zspage, &class_idx, &fullness);
1930  		VM_BUG_ON(fullness != ZS_INUSE_RATIO_0);
1931  		class = pool->size_class[class_idx];
1932  		spin_lock(&pool->lock);
1933  		__free_zspage(pool, class, zspage);
1934  		spin_unlock(&pool->lock);
1935  	}
1936  };
1937  
kick_deferred_free(struct zs_pool * pool)1938  static void kick_deferred_free(struct zs_pool *pool)
1939  {
1940  	schedule_work(&pool->free_work);
1941  }
1942  
zs_flush_migration(struct zs_pool * pool)1943  static void zs_flush_migration(struct zs_pool *pool)
1944  {
1945  	flush_work(&pool->free_work);
1946  }
1947  
init_deferred_free(struct zs_pool * pool)1948  static void init_deferred_free(struct zs_pool *pool)
1949  {
1950  	INIT_WORK(&pool->free_work, async_free_zspage);
1951  }
1952  
SetZsPageMovable(struct zs_pool * pool,struct zspage * zspage)1953  static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
1954  {
1955  	struct page *page = get_first_page(zspage);
1956  
1957  	do {
1958  		WARN_ON(!trylock_page(page));
1959  		__SetPageMovable(page, &zsmalloc_mops);
1960  		unlock_page(page);
1961  	} while ((page = get_next_page(page)) != NULL);
1962  }
1963  #else
zs_flush_migration(struct zs_pool * pool)1964  static inline void zs_flush_migration(struct zs_pool *pool) { }
1965  #endif
1966  
1967  /*
1968   *
1969   * Based on the number of unused allocated objects calculate
1970   * and return the number of pages that we can free.
1971   */
zs_can_compact(struct size_class * class)1972  static unsigned long zs_can_compact(struct size_class *class)
1973  {
1974  	unsigned long obj_wasted;
1975  	unsigned long obj_allocated = zs_stat_get(class, ZS_OBJS_ALLOCATED);
1976  	unsigned long obj_used = zs_stat_get(class, ZS_OBJS_INUSE);
1977  
1978  	if (obj_allocated <= obj_used)
1979  		return 0;
1980  
1981  	obj_wasted = obj_allocated - obj_used;
1982  	obj_wasted /= class->objs_per_zspage;
1983  
1984  	return obj_wasted * class->pages_per_zspage;
1985  }
1986  
__zs_compact(struct zs_pool * pool,struct size_class * class)1987  static unsigned long __zs_compact(struct zs_pool *pool,
1988  				  struct size_class *class)
1989  {
1990  	struct zspage *src_zspage = NULL;
1991  	struct zspage *dst_zspage = NULL;
1992  	unsigned long pages_freed = 0;
1993  
1994  	/*
1995  	 * protect the race between zpage migration and zs_free
1996  	 * as well as zpage allocation/free
1997  	 */
1998  	spin_lock(&pool->lock);
1999  	while (zs_can_compact(class)) {
2000  		int fg;
2001  
2002  		if (!dst_zspage) {
2003  			dst_zspage = isolate_dst_zspage(class);
2004  			if (!dst_zspage)
2005  				break;
2006  			migrate_write_lock(dst_zspage);
2007  		}
2008  
2009  		src_zspage = isolate_src_zspage(class);
2010  		if (!src_zspage)
2011  			break;
2012  
2013  		migrate_write_lock_nested(src_zspage);
2014  
2015  		migrate_zspage(pool, src_zspage, dst_zspage);
2016  		fg = putback_zspage(class, src_zspage);
2017  		migrate_write_unlock(src_zspage);
2018  
2019  		if (fg == ZS_INUSE_RATIO_0) {
2020  			free_zspage(pool, class, src_zspage);
2021  			pages_freed += class->pages_per_zspage;
2022  		}
2023  		src_zspage = NULL;
2024  
2025  		if (get_fullness_group(class, dst_zspage) == ZS_INUSE_RATIO_100
2026  		    || spin_is_contended(&pool->lock)) {
2027  			putback_zspage(class, dst_zspage);
2028  			migrate_write_unlock(dst_zspage);
2029  			dst_zspage = NULL;
2030  
2031  			spin_unlock(&pool->lock);
2032  			cond_resched();
2033  			spin_lock(&pool->lock);
2034  		}
2035  	}
2036  
2037  	if (src_zspage) {
2038  		putback_zspage(class, src_zspage);
2039  		migrate_write_unlock(src_zspage);
2040  	}
2041  
2042  	if (dst_zspage) {
2043  		putback_zspage(class, dst_zspage);
2044  		migrate_write_unlock(dst_zspage);
2045  	}
2046  	spin_unlock(&pool->lock);
2047  
2048  	return pages_freed;
2049  }
2050  
zs_compact(struct zs_pool * pool)2051  unsigned long zs_compact(struct zs_pool *pool)
2052  {
2053  	int i;
2054  	struct size_class *class;
2055  	unsigned long pages_freed = 0;
2056  
2057  	/*
2058  	 * Pool compaction is performed under pool->lock so it is basically
2059  	 * single-threaded. Having more than one thread in __zs_compact()
2060  	 * will increase pool->lock contention, which will impact other
2061  	 * zsmalloc operations that need pool->lock.
2062  	 */
2063  	if (atomic_xchg(&pool->compaction_in_progress, 1))
2064  		return 0;
2065  
2066  	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2067  		class = pool->size_class[i];
2068  		if (class->index != i)
2069  			continue;
2070  		pages_freed += __zs_compact(pool, class);
2071  	}
2072  	atomic_long_add(pages_freed, &pool->stats.pages_compacted);
2073  	atomic_set(&pool->compaction_in_progress, 0);
2074  
2075  	return pages_freed;
2076  }
2077  EXPORT_SYMBOL_GPL(zs_compact);
2078  
zs_pool_stats(struct zs_pool * pool,struct zs_pool_stats * stats)2079  void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2080  {
2081  	memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2082  }
2083  EXPORT_SYMBOL_GPL(zs_pool_stats);
2084  
zs_shrinker_scan(struct shrinker * shrinker,struct shrink_control * sc)2085  static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2086  		struct shrink_control *sc)
2087  {
2088  	unsigned long pages_freed;
2089  	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2090  			shrinker);
2091  
2092  	/*
2093  	 * Compact classes and calculate compaction delta.
2094  	 * Can run concurrently with a manually triggered
2095  	 * (by user) compaction.
2096  	 */
2097  	pages_freed = zs_compact(pool);
2098  
2099  	return pages_freed ? pages_freed : SHRINK_STOP;
2100  }
2101  
zs_shrinker_count(struct shrinker * shrinker,struct shrink_control * sc)2102  static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2103  		struct shrink_control *sc)
2104  {
2105  	int i;
2106  	struct size_class *class;
2107  	unsigned long pages_to_free = 0;
2108  	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2109  			shrinker);
2110  
2111  	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2112  		class = pool->size_class[i];
2113  		if (class->index != i)
2114  			continue;
2115  
2116  		pages_to_free += zs_can_compact(class);
2117  	}
2118  
2119  	return pages_to_free;
2120  }
2121  
zs_unregister_shrinker(struct zs_pool * pool)2122  static void zs_unregister_shrinker(struct zs_pool *pool)
2123  {
2124  	unregister_shrinker(&pool->shrinker);
2125  }
2126  
zs_register_shrinker(struct zs_pool * pool)2127  static int zs_register_shrinker(struct zs_pool *pool)
2128  {
2129  	pool->shrinker.scan_objects = zs_shrinker_scan;
2130  	pool->shrinker.count_objects = zs_shrinker_count;
2131  	pool->shrinker.batch = 0;
2132  	pool->shrinker.seeks = DEFAULT_SEEKS;
2133  
2134  	return register_shrinker(&pool->shrinker, "mm-zspool:%s",
2135  				 pool->name);
2136  }
2137  
calculate_zspage_chain_size(int class_size)2138  static int calculate_zspage_chain_size(int class_size)
2139  {
2140  	int i, min_waste = INT_MAX;
2141  	int chain_size = 1;
2142  
2143  	if (is_power_of_2(class_size))
2144  		return chain_size;
2145  
2146  	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
2147  		int waste;
2148  
2149  		waste = (i * PAGE_SIZE) % class_size;
2150  		if (waste < min_waste) {
2151  			min_waste = waste;
2152  			chain_size = i;
2153  		}
2154  	}
2155  
2156  	return chain_size;
2157  }
2158  
2159  /**
2160   * zs_create_pool - Creates an allocation pool to work from.
2161   * @name: pool name to be created
2162   *
2163   * This function must be called before anything when using
2164   * the zsmalloc allocator.
2165   *
2166   * On success, a pointer to the newly created pool is returned,
2167   * otherwise NULL.
2168   */
zs_create_pool(const char * name)2169  struct zs_pool *zs_create_pool(const char *name)
2170  {
2171  	int i;
2172  	struct zs_pool *pool;
2173  	struct size_class *prev_class = NULL;
2174  
2175  	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2176  	if (!pool)
2177  		return NULL;
2178  
2179  	init_deferred_free(pool);
2180  	spin_lock_init(&pool->lock);
2181  	atomic_set(&pool->compaction_in_progress, 0);
2182  
2183  	pool->name = kstrdup(name, GFP_KERNEL);
2184  	if (!pool->name)
2185  		goto err;
2186  
2187  	if (create_cache(pool))
2188  		goto err;
2189  
2190  	/*
2191  	 * Iterate reversely, because, size of size_class that we want to use
2192  	 * for merging should be larger or equal to current size.
2193  	 */
2194  	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2195  		int size;
2196  		int pages_per_zspage;
2197  		int objs_per_zspage;
2198  		struct size_class *class;
2199  		int fullness;
2200  
2201  		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2202  		if (size > ZS_MAX_ALLOC_SIZE)
2203  			size = ZS_MAX_ALLOC_SIZE;
2204  		pages_per_zspage = calculate_zspage_chain_size(size);
2205  		objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2206  
2207  		/*
2208  		 * We iterate from biggest down to smallest classes,
2209  		 * so huge_class_size holds the size of the first huge
2210  		 * class. Any object bigger than or equal to that will
2211  		 * endup in the huge class.
2212  		 */
2213  		if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2214  				!huge_class_size) {
2215  			huge_class_size = size;
2216  			/*
2217  			 * The object uses ZS_HANDLE_SIZE bytes to store the
2218  			 * handle. We need to subtract it, because zs_malloc()
2219  			 * unconditionally adds handle size before it performs
2220  			 * size class search - so object may be smaller than
2221  			 * huge class size, yet it still can end up in the huge
2222  			 * class because it grows by ZS_HANDLE_SIZE extra bytes
2223  			 * right before class lookup.
2224  			 */
2225  			huge_class_size -= (ZS_HANDLE_SIZE - 1);
2226  		}
2227  
2228  		/*
2229  		 * size_class is used for normal zsmalloc operation such
2230  		 * as alloc/free for that size. Although it is natural that we
2231  		 * have one size_class for each size, there is a chance that we
2232  		 * can get more memory utilization if we use one size_class for
2233  		 * many different sizes whose size_class have same
2234  		 * characteristics. So, we makes size_class point to
2235  		 * previous size_class if possible.
2236  		 */
2237  		if (prev_class) {
2238  			if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2239  				pool->size_class[i] = prev_class;
2240  				continue;
2241  			}
2242  		}
2243  
2244  		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2245  		if (!class)
2246  			goto err;
2247  
2248  		class->size = size;
2249  		class->index = i;
2250  		class->pages_per_zspage = pages_per_zspage;
2251  		class->objs_per_zspage = objs_per_zspage;
2252  		pool->size_class[i] = class;
2253  
2254  		fullness = ZS_INUSE_RATIO_0;
2255  		while (fullness < NR_FULLNESS_GROUPS) {
2256  			INIT_LIST_HEAD(&class->fullness_list[fullness]);
2257  			fullness++;
2258  		}
2259  
2260  		prev_class = class;
2261  	}
2262  
2263  	/* debug only, don't abort if it fails */
2264  	zs_pool_stat_create(pool, name);
2265  
2266  	/*
2267  	 * Not critical since shrinker is only used to trigger internal
2268  	 * defragmentation of the pool which is pretty optional thing.  If
2269  	 * registration fails we still can use the pool normally and user can
2270  	 * trigger compaction manually. Thus, ignore return code.
2271  	 */
2272  	zs_register_shrinker(pool);
2273  
2274  	return pool;
2275  
2276  err:
2277  	zs_destroy_pool(pool);
2278  	return NULL;
2279  }
2280  EXPORT_SYMBOL_GPL(zs_create_pool);
2281  
zs_destroy_pool(struct zs_pool * pool)2282  void zs_destroy_pool(struct zs_pool *pool)
2283  {
2284  	int i;
2285  
2286  	zs_unregister_shrinker(pool);
2287  	zs_flush_migration(pool);
2288  	zs_pool_stat_destroy(pool);
2289  
2290  	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2291  		int fg;
2292  		struct size_class *class = pool->size_class[i];
2293  
2294  		if (!class)
2295  			continue;
2296  
2297  		if (class->index != i)
2298  			continue;
2299  
2300  		for (fg = ZS_INUSE_RATIO_0; fg < NR_FULLNESS_GROUPS; fg++) {
2301  			if (list_empty(&class->fullness_list[fg]))
2302  				continue;
2303  
2304  			pr_err("Class-%d fullness group %d is not empty\n",
2305  			       class->size, fg);
2306  		}
2307  		kfree(class);
2308  	}
2309  
2310  	destroy_cache(pool);
2311  	kfree(pool->name);
2312  	kfree(pool);
2313  }
2314  EXPORT_SYMBOL_GPL(zs_destroy_pool);
2315  
zs_init(void)2316  static int __init zs_init(void)
2317  {
2318  	int ret;
2319  
2320  	ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2321  				zs_cpu_prepare, zs_cpu_dead);
2322  	if (ret)
2323  		goto out;
2324  
2325  #ifdef CONFIG_ZPOOL
2326  	zpool_register_driver(&zs_zpool_driver);
2327  #endif
2328  
2329  	zs_stat_init();
2330  
2331  	return 0;
2332  
2333  out:
2334  	return ret;
2335  }
2336  
zs_exit(void)2337  static void __exit zs_exit(void)
2338  {
2339  #ifdef CONFIG_ZPOOL
2340  	zpool_unregister_driver(&zs_zpool_driver);
2341  #endif
2342  	cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2343  
2344  	zs_stat_exit();
2345  }
2346  
2347  module_init(zs_init);
2348  module_exit(zs_exit);
2349  
2350  MODULE_LICENSE("Dual BSD/GPL");
2351  MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2352