1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef LINUX_MM_INLINE_H
3 #define LINUX_MM_INLINE_H
4
5 #include <linux/atomic.h>
6 #include <linux/huge_mm.h>
7 #include <linux/swap.h>
8 #include <linux/string.h>
9 #include <linux/userfaultfd_k.h>
10 #include <linux/swapops.h>
11
12 /**
13 * folio_is_file_lru - Should the folio be on a file LRU or anon LRU?
14 * @folio: The folio to test.
15 *
16 * We would like to get this info without a page flag, but the state
17 * needs to survive until the folio is last deleted from the LRU, which
18 * could be as far down as __page_cache_release.
19 *
20 * Return: An integer (not a boolean!) used to sort a folio onto the
21 * right LRU list and to account folios correctly.
22 * 1 if @folio is a regular filesystem backed page cache folio
23 * or a lazily freed anonymous folio (e.g. via MADV_FREE).
24 * 0 if @folio is a normal anonymous folio, a tmpfs folio or otherwise
25 * ram or swap backed folio.
26 */
folio_is_file_lru(struct folio * folio)27 static inline int folio_is_file_lru(struct folio *folio)
28 {
29 return !folio_test_swapbacked(folio);
30 }
31
page_is_file_lru(struct page * page)32 static inline int page_is_file_lru(struct page *page)
33 {
34 return folio_is_file_lru(page_folio(page));
35 }
36
__update_lru_size(struct lruvec * lruvec,enum lru_list lru,enum zone_type zid,long nr_pages)37 static __always_inline void __update_lru_size(struct lruvec *lruvec,
38 enum lru_list lru, enum zone_type zid,
39 long nr_pages)
40 {
41 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
42
43 lockdep_assert_held(&lruvec->lru_lock);
44 WARN_ON_ONCE(nr_pages != (int)nr_pages);
45
46 __mod_lruvec_state(lruvec, NR_LRU_BASE + lru, nr_pages);
47 __mod_zone_page_state(&pgdat->node_zones[zid],
48 NR_ZONE_LRU_BASE + lru, nr_pages);
49 }
50
update_lru_size(struct lruvec * lruvec,enum lru_list lru,enum zone_type zid,long nr_pages)51 static __always_inline void update_lru_size(struct lruvec *lruvec,
52 enum lru_list lru, enum zone_type zid,
53 long nr_pages)
54 {
55 __update_lru_size(lruvec, lru, zid, nr_pages);
56 #ifdef CONFIG_MEMCG
57 mem_cgroup_update_lru_size(lruvec, lru, zid, nr_pages);
58 #endif
59 }
60
61 /**
62 * __folio_clear_lru_flags - Clear page lru flags before releasing a page.
63 * @folio: The folio that was on lru and now has a zero reference.
64 */
__folio_clear_lru_flags(struct folio * folio)65 static __always_inline void __folio_clear_lru_flags(struct folio *folio)
66 {
67 VM_BUG_ON_FOLIO(!folio_test_lru(folio), folio);
68
69 __folio_clear_lru(folio);
70
71 /* this shouldn't happen, so leave the flags to bad_page() */
72 if (folio_test_active(folio) && folio_test_unevictable(folio))
73 return;
74
75 __folio_clear_active(folio);
76 __folio_clear_unevictable(folio);
77 }
78
79 /**
80 * folio_lru_list - Which LRU list should a folio be on?
81 * @folio: The folio to test.
82 *
83 * Return: The LRU list a folio should be on, as an index
84 * into the array of LRU lists.
85 */
folio_lru_list(struct folio * folio)86 static __always_inline enum lru_list folio_lru_list(struct folio *folio)
87 {
88 enum lru_list lru;
89
90 VM_BUG_ON_FOLIO(folio_test_active(folio) && folio_test_unevictable(folio), folio);
91
92 if (folio_test_unevictable(folio))
93 return LRU_UNEVICTABLE;
94
95 lru = folio_is_file_lru(folio) ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON;
96 if (folio_test_active(folio))
97 lru += LRU_ACTIVE;
98
99 return lru;
100 }
101
102 #ifdef CONFIG_LRU_GEN
103
104 #ifdef CONFIG_LRU_GEN_ENABLED
lru_gen_enabled(void)105 static inline bool lru_gen_enabled(void)
106 {
107 DECLARE_STATIC_KEY_TRUE(lru_gen_caps[NR_LRU_GEN_CAPS]);
108
109 return static_branch_likely(&lru_gen_caps[LRU_GEN_CORE]);
110 }
111 #else
lru_gen_enabled(void)112 static inline bool lru_gen_enabled(void)
113 {
114 DECLARE_STATIC_KEY_FALSE(lru_gen_caps[NR_LRU_GEN_CAPS]);
115
116 return static_branch_unlikely(&lru_gen_caps[LRU_GEN_CORE]);
117 }
118 #endif
119
lru_gen_in_fault(void)120 static inline bool lru_gen_in_fault(void)
121 {
122 return current->in_lru_fault;
123 }
124
lru_gen_from_seq(unsigned long seq)125 static inline int lru_gen_from_seq(unsigned long seq)
126 {
127 return seq % MAX_NR_GENS;
128 }
129
lru_hist_from_seq(unsigned long seq)130 static inline int lru_hist_from_seq(unsigned long seq)
131 {
132 return seq % NR_HIST_GENS;
133 }
134
lru_tier_from_refs(int refs)135 static inline int lru_tier_from_refs(int refs)
136 {
137 VM_WARN_ON_ONCE(refs > BIT(LRU_REFS_WIDTH));
138
139 /* see the comment in folio_lru_refs() */
140 return order_base_2(refs + 1);
141 }
142
folio_lru_refs(struct folio * folio)143 static inline int folio_lru_refs(struct folio *folio)
144 {
145 unsigned long flags = READ_ONCE(folio->flags);
146 bool workingset = flags & BIT(PG_workingset);
147
148 /*
149 * Return the number of accesses beyond PG_referenced, i.e., N-1 if the
150 * total number of accesses is N>1, since N=0,1 both map to the first
151 * tier. lru_tier_from_refs() will account for this off-by-one. Also see
152 * the comment on MAX_NR_TIERS.
153 */
154 return ((flags & LRU_REFS_MASK) >> LRU_REFS_PGOFF) + workingset;
155 }
156
folio_lru_gen(struct folio * folio)157 static inline int folio_lru_gen(struct folio *folio)
158 {
159 unsigned long flags = READ_ONCE(folio->flags);
160
161 return ((flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
162 }
163
lru_gen_is_active(struct lruvec * lruvec,int gen)164 static inline bool lru_gen_is_active(struct lruvec *lruvec, int gen)
165 {
166 unsigned long max_seq = lruvec->lrugen.max_seq;
167
168 VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
169
170 /* see the comment on MIN_NR_GENS */
171 return gen == lru_gen_from_seq(max_seq) || gen == lru_gen_from_seq(max_seq - 1);
172 }
173
lru_gen_update_size(struct lruvec * lruvec,struct folio * folio,int old_gen,int new_gen)174 static inline void lru_gen_update_size(struct lruvec *lruvec, struct folio *folio,
175 int old_gen, int new_gen)
176 {
177 int type = folio_is_file_lru(folio);
178 int zone = folio_zonenum(folio);
179 int delta = folio_nr_pages(folio);
180 enum lru_list lru = type * LRU_INACTIVE_FILE;
181 struct lru_gen_folio *lrugen = &lruvec->lrugen;
182
183 VM_WARN_ON_ONCE(old_gen != -1 && old_gen >= MAX_NR_GENS);
184 VM_WARN_ON_ONCE(new_gen != -1 && new_gen >= MAX_NR_GENS);
185 VM_WARN_ON_ONCE(old_gen == -1 && new_gen == -1);
186
187 if (old_gen >= 0)
188 WRITE_ONCE(lrugen->nr_pages[old_gen][type][zone],
189 lrugen->nr_pages[old_gen][type][zone] - delta);
190 if (new_gen >= 0)
191 WRITE_ONCE(lrugen->nr_pages[new_gen][type][zone],
192 lrugen->nr_pages[new_gen][type][zone] + delta);
193
194 /* addition */
195 if (old_gen < 0) {
196 if (lru_gen_is_active(lruvec, new_gen))
197 lru += LRU_ACTIVE;
198 __update_lru_size(lruvec, lru, zone, delta);
199 return;
200 }
201
202 /* deletion */
203 if (new_gen < 0) {
204 if (lru_gen_is_active(lruvec, old_gen))
205 lru += LRU_ACTIVE;
206 __update_lru_size(lruvec, lru, zone, -delta);
207 return;
208 }
209
210 /* promotion */
211 if (!lru_gen_is_active(lruvec, old_gen) && lru_gen_is_active(lruvec, new_gen)) {
212 __update_lru_size(lruvec, lru, zone, -delta);
213 __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, delta);
214 }
215
216 /* demotion requires isolation, e.g., lru_deactivate_fn() */
217 VM_WARN_ON_ONCE(lru_gen_is_active(lruvec, old_gen) && !lru_gen_is_active(lruvec, new_gen));
218 }
219
lru_gen_add_folio(struct lruvec * lruvec,struct folio * folio,bool reclaiming)220 static inline bool lru_gen_add_folio(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
221 {
222 unsigned long seq;
223 unsigned long flags;
224 int gen = folio_lru_gen(folio);
225 int type = folio_is_file_lru(folio);
226 int zone = folio_zonenum(folio);
227 struct lru_gen_folio *lrugen = &lruvec->lrugen;
228
229 VM_WARN_ON_ONCE_FOLIO(gen != -1, folio);
230
231 if (folio_test_unevictable(folio) || !lrugen->enabled)
232 return false;
233 /*
234 * There are four common cases for this page:
235 * 1. If it's hot, i.e., freshly faulted in, add it to the youngest
236 * generation, and it's protected over the rest below.
237 * 2. If it can't be evicted immediately, i.e., a dirty page pending
238 * writeback, add it to the second youngest generation.
239 * 3. If it should be evicted first, e.g., cold and clean from
240 * folio_rotate_reclaimable(), add it to the oldest generation.
241 * 4. Everything else falls between 2 & 3 above and is added to the
242 * second oldest generation if it's considered inactive, or the
243 * oldest generation otherwise. See lru_gen_is_active().
244 */
245 if (folio_test_active(folio))
246 seq = lrugen->max_seq;
247 else if ((type == LRU_GEN_ANON && !folio_test_swapcache(folio)) ||
248 (folio_test_reclaim(folio) &&
249 (folio_test_dirty(folio) || folio_test_writeback(folio))))
250 seq = lrugen->max_seq - 1;
251 else if (reclaiming || lrugen->min_seq[type] + MIN_NR_GENS >= lrugen->max_seq)
252 seq = lrugen->min_seq[type];
253 else
254 seq = lrugen->min_seq[type] + 1;
255
256 gen = lru_gen_from_seq(seq);
257 flags = (gen + 1UL) << LRU_GEN_PGOFF;
258 /* see the comment on MIN_NR_GENS about PG_active */
259 set_mask_bits(&folio->flags, LRU_GEN_MASK | BIT(PG_active), flags);
260
261 lru_gen_update_size(lruvec, folio, -1, gen);
262 /* for folio_rotate_reclaimable() */
263 if (reclaiming)
264 list_add_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
265 else
266 list_add(&folio->lru, &lrugen->folios[gen][type][zone]);
267
268 return true;
269 }
270
lru_gen_del_folio(struct lruvec * lruvec,struct folio * folio,bool reclaiming)271 static inline bool lru_gen_del_folio(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
272 {
273 unsigned long flags;
274 int gen = folio_lru_gen(folio);
275
276 if (gen < 0)
277 return false;
278
279 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
280 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
281
282 /* for folio_migrate_flags() */
283 flags = !reclaiming && lru_gen_is_active(lruvec, gen) ? BIT(PG_active) : 0;
284 flags = set_mask_bits(&folio->flags, LRU_GEN_MASK, flags);
285 gen = ((flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
286
287 lru_gen_update_size(lruvec, folio, gen, -1);
288 list_del(&folio->lru);
289
290 return true;
291 }
292
293 #else /* !CONFIG_LRU_GEN */
294
lru_gen_enabled(void)295 static inline bool lru_gen_enabled(void)
296 {
297 return false;
298 }
299
lru_gen_in_fault(void)300 static inline bool lru_gen_in_fault(void)
301 {
302 return false;
303 }
304
lru_gen_add_folio(struct lruvec * lruvec,struct folio * folio,bool reclaiming)305 static inline bool lru_gen_add_folio(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
306 {
307 return false;
308 }
309
lru_gen_del_folio(struct lruvec * lruvec,struct folio * folio,bool reclaiming)310 static inline bool lru_gen_del_folio(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
311 {
312 return false;
313 }
314
315 #endif /* CONFIG_LRU_GEN */
316
317 static __always_inline
lruvec_add_folio(struct lruvec * lruvec,struct folio * folio)318 void lruvec_add_folio(struct lruvec *lruvec, struct folio *folio)
319 {
320 enum lru_list lru = folio_lru_list(folio);
321
322 if (lru_gen_add_folio(lruvec, folio, false))
323 return;
324
325 update_lru_size(lruvec, lru, folio_zonenum(folio),
326 folio_nr_pages(folio));
327 if (lru != LRU_UNEVICTABLE)
328 list_add(&folio->lru, &lruvec->lists[lru]);
329 }
330
331 static __always_inline
lruvec_add_folio_tail(struct lruvec * lruvec,struct folio * folio)332 void lruvec_add_folio_tail(struct lruvec *lruvec, struct folio *folio)
333 {
334 enum lru_list lru = folio_lru_list(folio);
335
336 if (lru_gen_add_folio(lruvec, folio, true))
337 return;
338
339 update_lru_size(lruvec, lru, folio_zonenum(folio),
340 folio_nr_pages(folio));
341 /* This is not expected to be used on LRU_UNEVICTABLE */
342 list_add_tail(&folio->lru, &lruvec->lists[lru]);
343 }
344
345 static __always_inline
lruvec_del_folio(struct lruvec * lruvec,struct folio * folio)346 void lruvec_del_folio(struct lruvec *lruvec, struct folio *folio)
347 {
348 enum lru_list lru = folio_lru_list(folio);
349
350 if (lru_gen_del_folio(lruvec, folio, false))
351 return;
352
353 if (lru != LRU_UNEVICTABLE)
354 list_del(&folio->lru);
355 update_lru_size(lruvec, lru, folio_zonenum(folio),
356 -folio_nr_pages(folio));
357 }
358
359 #ifdef CONFIG_ANON_VMA_NAME
360 /*
361 * mmap_lock should be read-locked when calling anon_vma_name(). Caller should
362 * either keep holding the lock while using the returned pointer or it should
363 * raise anon_vma_name refcount before releasing the lock.
364 */
365 extern struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma);
366 extern struct anon_vma_name *anon_vma_name_alloc(const char *name);
367 extern void anon_vma_name_free(struct kref *kref);
368
369 /* mmap_lock should be read-locked */
anon_vma_name_get(struct anon_vma_name * anon_name)370 static inline void anon_vma_name_get(struct anon_vma_name *anon_name)
371 {
372 if (anon_name)
373 kref_get(&anon_name->kref);
374 }
375
anon_vma_name_put(struct anon_vma_name * anon_name)376 static inline void anon_vma_name_put(struct anon_vma_name *anon_name)
377 {
378 if (anon_name)
379 kref_put(&anon_name->kref, anon_vma_name_free);
380 }
381
382 static inline
anon_vma_name_reuse(struct anon_vma_name * anon_name)383 struct anon_vma_name *anon_vma_name_reuse(struct anon_vma_name *anon_name)
384 {
385 /* Prevent anon_name refcount saturation early on */
386 if (kref_read(&anon_name->kref) < REFCOUNT_MAX) {
387 anon_vma_name_get(anon_name);
388 return anon_name;
389
390 }
391 return anon_vma_name_alloc(anon_name->name);
392 }
393
dup_anon_vma_name(struct vm_area_struct * orig_vma,struct vm_area_struct * new_vma)394 static inline void dup_anon_vma_name(struct vm_area_struct *orig_vma,
395 struct vm_area_struct *new_vma)
396 {
397 struct anon_vma_name *anon_name = anon_vma_name(orig_vma);
398
399 if (anon_name)
400 new_vma->anon_name = anon_vma_name_reuse(anon_name);
401 }
402
free_anon_vma_name(struct vm_area_struct * vma)403 static inline void free_anon_vma_name(struct vm_area_struct *vma)
404 {
405 /*
406 * Not using anon_vma_name because it generates a warning if mmap_lock
407 * is not held, which might be the case here.
408 */
409 anon_vma_name_put(vma->anon_name);
410 }
411
anon_vma_name_eq(struct anon_vma_name * anon_name1,struct anon_vma_name * anon_name2)412 static inline bool anon_vma_name_eq(struct anon_vma_name *anon_name1,
413 struct anon_vma_name *anon_name2)
414 {
415 if (anon_name1 == anon_name2)
416 return true;
417
418 return anon_name1 && anon_name2 &&
419 !strcmp(anon_name1->name, anon_name2->name);
420 }
421
422 #else /* CONFIG_ANON_VMA_NAME */
anon_vma_name(struct vm_area_struct * vma)423 static inline struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma)
424 {
425 return NULL;
426 }
427
anon_vma_name_alloc(const char * name)428 static inline struct anon_vma_name *anon_vma_name_alloc(const char *name)
429 {
430 return NULL;
431 }
432
anon_vma_name_get(struct anon_vma_name * anon_name)433 static inline void anon_vma_name_get(struct anon_vma_name *anon_name) {}
anon_vma_name_put(struct anon_vma_name * anon_name)434 static inline void anon_vma_name_put(struct anon_vma_name *anon_name) {}
dup_anon_vma_name(struct vm_area_struct * orig_vma,struct vm_area_struct * new_vma)435 static inline void dup_anon_vma_name(struct vm_area_struct *orig_vma,
436 struct vm_area_struct *new_vma) {}
free_anon_vma_name(struct vm_area_struct * vma)437 static inline void free_anon_vma_name(struct vm_area_struct *vma) {}
438
anon_vma_name_eq(struct anon_vma_name * anon_name1,struct anon_vma_name * anon_name2)439 static inline bool anon_vma_name_eq(struct anon_vma_name *anon_name1,
440 struct anon_vma_name *anon_name2)
441 {
442 return true;
443 }
444
445 #endif /* CONFIG_ANON_VMA_NAME */
446
init_tlb_flush_pending(struct mm_struct * mm)447 static inline void init_tlb_flush_pending(struct mm_struct *mm)
448 {
449 atomic_set(&mm->tlb_flush_pending, 0);
450 }
451
inc_tlb_flush_pending(struct mm_struct * mm)452 static inline void inc_tlb_flush_pending(struct mm_struct *mm)
453 {
454 atomic_inc(&mm->tlb_flush_pending);
455 /*
456 * The only time this value is relevant is when there are indeed pages
457 * to flush. And we'll only flush pages after changing them, which
458 * requires the PTL.
459 *
460 * So the ordering here is:
461 *
462 * atomic_inc(&mm->tlb_flush_pending);
463 * spin_lock(&ptl);
464 * ...
465 * set_pte_at();
466 * spin_unlock(&ptl);
467 *
468 * spin_lock(&ptl)
469 * mm_tlb_flush_pending();
470 * ....
471 * spin_unlock(&ptl);
472 *
473 * flush_tlb_range();
474 * atomic_dec(&mm->tlb_flush_pending);
475 *
476 * Where the increment if constrained by the PTL unlock, it thus
477 * ensures that the increment is visible if the PTE modification is
478 * visible. After all, if there is no PTE modification, nobody cares
479 * about TLB flushes either.
480 *
481 * This very much relies on users (mm_tlb_flush_pending() and
482 * mm_tlb_flush_nested()) only caring about _specific_ PTEs (and
483 * therefore specific PTLs), because with SPLIT_PTE_PTLOCKS and RCpc
484 * locks (PPC) the unlock of one doesn't order against the lock of
485 * another PTL.
486 *
487 * The decrement is ordered by the flush_tlb_range(), such that
488 * mm_tlb_flush_pending() will not return false unless all flushes have
489 * completed.
490 */
491 }
492
dec_tlb_flush_pending(struct mm_struct * mm)493 static inline void dec_tlb_flush_pending(struct mm_struct *mm)
494 {
495 /*
496 * See inc_tlb_flush_pending().
497 *
498 * This cannot be smp_mb__before_atomic() because smp_mb() simply does
499 * not order against TLB invalidate completion, which is what we need.
500 *
501 * Therefore we must rely on tlb_flush_*() to guarantee order.
502 */
503 atomic_dec(&mm->tlb_flush_pending);
504 }
505
mm_tlb_flush_pending(struct mm_struct * mm)506 static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
507 {
508 /*
509 * Must be called after having acquired the PTL; orders against that
510 * PTLs release and therefore ensures that if we observe the modified
511 * PTE we must also observe the increment from inc_tlb_flush_pending().
512 *
513 * That is, it only guarantees to return true if there is a flush
514 * pending for _this_ PTL.
515 */
516 return atomic_read(&mm->tlb_flush_pending);
517 }
518
mm_tlb_flush_nested(struct mm_struct * mm)519 static inline bool mm_tlb_flush_nested(struct mm_struct *mm)
520 {
521 /*
522 * Similar to mm_tlb_flush_pending(), we must have acquired the PTL
523 * for which there is a TLB flush pending in order to guarantee
524 * we've seen both that PTE modification and the increment.
525 *
526 * (no requirement on actually still holding the PTL, that is irrelevant)
527 */
528 return atomic_read(&mm->tlb_flush_pending) > 1;
529 }
530
531 #ifdef CONFIG_MMU
532 /*
533 * Computes the pte marker to copy from the given source entry into dst_vma.
534 * If no marker should be copied, returns 0.
535 * The caller should insert a new pte created with make_pte_marker().
536 */
copy_pte_marker(swp_entry_t entry,struct vm_area_struct * dst_vma)537 static inline pte_marker copy_pte_marker(
538 swp_entry_t entry, struct vm_area_struct *dst_vma)
539 {
540 pte_marker srcm = pte_marker_get(entry);
541 /* Always copy error entries. */
542 pte_marker dstm = srcm & PTE_MARKER_POISONED;
543
544 /* Only copy PTE markers if UFFD register matches. */
545 if ((srcm & PTE_MARKER_UFFD_WP) && userfaultfd_wp(dst_vma))
546 dstm |= PTE_MARKER_UFFD_WP;
547
548 return dstm;
549 }
550 #endif
551
552 /*
553 * If this pte is wr-protected by uffd-wp in any form, arm the special pte to
554 * replace a none pte. NOTE! This should only be called when *pte is already
555 * cleared so we will never accidentally replace something valuable. Meanwhile
556 * none pte also means we are not demoting the pte so tlb flushed is not needed.
557 * E.g., when pte cleared the caller should have taken care of the tlb flush.
558 *
559 * Must be called with pgtable lock held so that no thread will see the none
560 * pte, and if they see it, they'll fault and serialize at the pgtable lock.
561 *
562 * This function is a no-op if PTE_MARKER_UFFD_WP is not enabled.
563 */
564 static inline void
pte_install_uffd_wp_if_needed(struct vm_area_struct * vma,unsigned long addr,pte_t * pte,pte_t pteval)565 pte_install_uffd_wp_if_needed(struct vm_area_struct *vma, unsigned long addr,
566 pte_t *pte, pte_t pteval)
567 {
568 #ifdef CONFIG_PTE_MARKER_UFFD_WP
569 bool arm_uffd_pte = false;
570
571 /* The current status of the pte should be "cleared" before calling */
572 WARN_ON_ONCE(!pte_none(ptep_get(pte)));
573
574 /*
575 * NOTE: userfaultfd_wp_unpopulated() doesn't need this whole
576 * thing, because when zapping either it means it's dropping the
577 * page, or in TTU where the present pte will be quickly replaced
578 * with a swap pte. There's no way of leaking the bit.
579 */
580 if (vma_is_anonymous(vma) || !userfaultfd_wp(vma))
581 return;
582
583 /* A uffd-wp wr-protected normal pte */
584 if (unlikely(pte_present(pteval) && pte_uffd_wp(pteval)))
585 arm_uffd_pte = true;
586
587 /*
588 * A uffd-wp wr-protected swap pte. Note: this should even cover an
589 * existing pte marker with uffd-wp bit set.
590 */
591 if (unlikely(pte_swp_uffd_wp_any(pteval)))
592 arm_uffd_pte = true;
593
594 if (unlikely(arm_uffd_pte))
595 set_pte_at(vma->vm_mm, addr, pte,
596 make_pte_marker(PTE_MARKER_UFFD_WP));
597 #endif
598 }
599
vma_has_recency(struct vm_area_struct * vma)600 static inline bool vma_has_recency(struct vm_area_struct *vma)
601 {
602 if (vma->vm_flags & (VM_SEQ_READ | VM_RAND_READ))
603 return false;
604
605 if (vma->vm_file && (vma->vm_file->f_mode & FMODE_NOREUSE))
606 return false;
607
608 return true;
609 }
610
611 #endif
612