1 /*******************************************************************
2 * This file is part of the Emulex Linux Device Driver for *
3 * Fibre Channel Host Bus Adapters. *
4 * Copyright (C) 2017-2023 Broadcom. All Rights Reserved. The term *
5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. *
6 * Copyright (C) 2004-2016 Emulex. All rights reserved. *
7 * EMULEX and SLI are trademarks of Emulex. *
8 * www.broadcom.com *
9 * Portions Copyright (C) 2004-2005 Christoph Hellwig *
10 * *
11 * This program is free software; you can redistribute it and/or *
12 * modify it under the terms of version 2 of the GNU General *
13 * Public License as published by the Free Software Foundation. *
14 * This program is distributed in the hope that it will be useful. *
15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND *
16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, *
17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE *
18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
19 * TO BE LEGALLY INVALID. See the GNU General Public License for *
20 * more details, a copy of which can be found in the file COPYING *
21 * included with this package. *
22 *******************************************************************/
23
24 #include <linux/blkdev.h>
25 #include <linux/pci.h>
26 #include <linux/interrupt.h>
27 #include <linux/delay.h>
28 #include <linux/slab.h>
29 #include <linux/lockdep.h>
30
31 #include <scsi/scsi.h>
32 #include <scsi/scsi_cmnd.h>
33 #include <scsi/scsi_device.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_transport_fc.h>
36 #include <scsi/fc/fc_fs.h>
37 #include <linux/crash_dump.h>
38 #ifdef CONFIG_X86
39 #include <asm/set_memory.h>
40 #endif
41
42 #include "lpfc_hw4.h"
43 #include "lpfc_hw.h"
44 #include "lpfc_sli.h"
45 #include "lpfc_sli4.h"
46 #include "lpfc_nl.h"
47 #include "lpfc_disc.h"
48 #include "lpfc.h"
49 #include "lpfc_scsi.h"
50 #include "lpfc_nvme.h"
51 #include "lpfc_crtn.h"
52 #include "lpfc_logmsg.h"
53 #include "lpfc_compat.h"
54 #include "lpfc_debugfs.h"
55 #include "lpfc_vport.h"
56 #include "lpfc_version.h"
57
58 /* There are only four IOCB completion types. */
59 typedef enum _lpfc_iocb_type {
60 LPFC_UNKNOWN_IOCB,
61 LPFC_UNSOL_IOCB,
62 LPFC_SOL_IOCB,
63 LPFC_ABORT_IOCB
64 } lpfc_iocb_type;
65
66
67 /* Provide function prototypes local to this module. */
68 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *,
69 uint32_t);
70 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *,
71 uint8_t *, uint32_t *);
72 static struct lpfc_iocbq *
73 lpfc_sli4_els_preprocess_rspiocbq(struct lpfc_hba *phba,
74 struct lpfc_iocbq *rspiocbq);
75 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *,
76 struct hbq_dmabuf *);
77 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport,
78 struct hbq_dmabuf *dmabuf);
79 static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba,
80 struct lpfc_queue *cq, struct lpfc_cqe *cqe);
81 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *,
82 int);
83 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba,
84 struct lpfc_queue *eq,
85 struct lpfc_eqe *eqe,
86 enum lpfc_poll_mode poll_mode);
87 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba);
88 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba);
89 static struct lpfc_cqe *lpfc_sli4_cq_get(struct lpfc_queue *q);
90 static void __lpfc_sli4_consume_cqe(struct lpfc_hba *phba,
91 struct lpfc_queue *cq,
92 struct lpfc_cqe *cqe);
93 static uint16_t lpfc_wqe_bpl2sgl(struct lpfc_hba *phba,
94 struct lpfc_iocbq *pwqeq,
95 struct lpfc_sglq *sglq);
96
97 union lpfc_wqe128 lpfc_iread_cmd_template;
98 union lpfc_wqe128 lpfc_iwrite_cmd_template;
99 union lpfc_wqe128 lpfc_icmnd_cmd_template;
100
101 /* Setup WQE templates for IOs */
lpfc_wqe_cmd_template(void)102 void lpfc_wqe_cmd_template(void)
103 {
104 union lpfc_wqe128 *wqe;
105
106 /* IREAD template */
107 wqe = &lpfc_iread_cmd_template;
108 memset(wqe, 0, sizeof(union lpfc_wqe128));
109
110 /* Word 0, 1, 2 - BDE is variable */
111
112 /* Word 3 - cmd_buff_len, payload_offset_len is zero */
113
114 /* Word 4 - total_xfer_len is variable */
115
116 /* Word 5 - is zero */
117
118 /* Word 6 - ctxt_tag, xri_tag is variable */
119
120 /* Word 7 */
121 bf_set(wqe_cmnd, &wqe->fcp_iread.wqe_com, CMD_FCP_IREAD64_WQE);
122 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, PARM_READ_CHECK);
123 bf_set(wqe_class, &wqe->fcp_iread.wqe_com, CLASS3);
124 bf_set(wqe_ct, &wqe->fcp_iread.wqe_com, SLI4_CT_RPI);
125
126 /* Word 8 - abort_tag is variable */
127
128 /* Word 9 - reqtag is variable */
129
130 /* Word 10 - dbde, wqes is variable */
131 bf_set(wqe_qosd, &wqe->fcp_iread.wqe_com, 0);
132 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ);
133 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, LPFC_WQE_LENLOC_WORD4);
134 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0);
135 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1);
136
137 /* Word 11 - pbde is variable */
138 bf_set(wqe_cmd_type, &wqe->fcp_iread.wqe_com, COMMAND_DATA_IN);
139 bf_set(wqe_cqid, &wqe->fcp_iread.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
140 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0);
141
142 /* Word 12 - is zero */
143
144 /* Word 13, 14, 15 - PBDE is variable */
145
146 /* IWRITE template */
147 wqe = &lpfc_iwrite_cmd_template;
148 memset(wqe, 0, sizeof(union lpfc_wqe128));
149
150 /* Word 0, 1, 2 - BDE is variable */
151
152 /* Word 3 - cmd_buff_len, payload_offset_len is zero */
153
154 /* Word 4 - total_xfer_len is variable */
155
156 /* Word 5 - initial_xfer_len is variable */
157
158 /* Word 6 - ctxt_tag, xri_tag is variable */
159
160 /* Word 7 */
161 bf_set(wqe_cmnd, &wqe->fcp_iwrite.wqe_com, CMD_FCP_IWRITE64_WQE);
162 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, PARM_READ_CHECK);
163 bf_set(wqe_class, &wqe->fcp_iwrite.wqe_com, CLASS3);
164 bf_set(wqe_ct, &wqe->fcp_iwrite.wqe_com, SLI4_CT_RPI);
165
166 /* Word 8 - abort_tag is variable */
167
168 /* Word 9 - reqtag is variable */
169
170 /* Word 10 - dbde, wqes is variable */
171 bf_set(wqe_qosd, &wqe->fcp_iwrite.wqe_com, 0);
172 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE);
173 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_LENLOC_WORD4);
174 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0);
175 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1);
176
177 /* Word 11 - pbde is variable */
178 bf_set(wqe_cmd_type, &wqe->fcp_iwrite.wqe_com, COMMAND_DATA_OUT);
179 bf_set(wqe_cqid, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
180 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0);
181
182 /* Word 12 - is zero */
183
184 /* Word 13, 14, 15 - PBDE is variable */
185
186 /* ICMND template */
187 wqe = &lpfc_icmnd_cmd_template;
188 memset(wqe, 0, sizeof(union lpfc_wqe128));
189
190 /* Word 0, 1, 2 - BDE is variable */
191
192 /* Word 3 - payload_offset_len is variable */
193
194 /* Word 4, 5 - is zero */
195
196 /* Word 6 - ctxt_tag, xri_tag is variable */
197
198 /* Word 7 */
199 bf_set(wqe_cmnd, &wqe->fcp_icmd.wqe_com, CMD_FCP_ICMND64_WQE);
200 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0);
201 bf_set(wqe_class, &wqe->fcp_icmd.wqe_com, CLASS3);
202 bf_set(wqe_ct, &wqe->fcp_icmd.wqe_com, SLI4_CT_RPI);
203
204 /* Word 8 - abort_tag is variable */
205
206 /* Word 9 - reqtag is variable */
207
208 /* Word 10 - dbde, wqes is variable */
209 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1);
210 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_NONE);
211 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, LPFC_WQE_LENLOC_NONE);
212 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0);
213 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1);
214
215 /* Word 11 */
216 bf_set(wqe_cmd_type, &wqe->fcp_icmd.wqe_com, COMMAND_DATA_IN);
217 bf_set(wqe_cqid, &wqe->fcp_icmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
218 bf_set(wqe_pbde, &wqe->fcp_icmd.wqe_com, 0);
219
220 /* Word 12, 13, 14, 15 - is zero */
221 }
222
223 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN)
224 /**
225 * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function
226 * @srcp: Source memory pointer.
227 * @destp: Destination memory pointer.
228 * @cnt: Number of words required to be copied.
229 * Must be a multiple of sizeof(uint64_t)
230 *
231 * This function is used for copying data between driver memory
232 * and the SLI WQ. This function also changes the endianness
233 * of each word if native endianness is different from SLI
234 * endianness. This function can be called with or without
235 * lock.
236 **/
237 static void
lpfc_sli4_pcimem_bcopy(void * srcp,void * destp,uint32_t cnt)238 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt)
239 {
240 uint64_t *src = srcp;
241 uint64_t *dest = destp;
242 int i;
243
244 for (i = 0; i < (int)cnt; i += sizeof(uint64_t))
245 *dest++ = *src++;
246 }
247 #else
248 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c)
249 #endif
250
251 /**
252 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue
253 * @q: The Work Queue to operate on.
254 * @wqe: The work Queue Entry to put on the Work queue.
255 *
256 * This routine will copy the contents of @wqe to the next available entry on
257 * the @q. This function will then ring the Work Queue Doorbell to signal the
258 * HBA to start processing the Work Queue Entry. This function returns 0 if
259 * successful. If no entries are available on @q then this function will return
260 * -ENOMEM.
261 * The caller is expected to hold the hbalock when calling this routine.
262 **/
263 static int
lpfc_sli4_wq_put(struct lpfc_queue * q,union lpfc_wqe128 * wqe)264 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe)
265 {
266 union lpfc_wqe *temp_wqe;
267 struct lpfc_register doorbell;
268 uint32_t host_index;
269 uint32_t idx;
270 uint32_t i = 0;
271 uint8_t *tmp;
272 u32 if_type;
273
274 /* sanity check on queue memory */
275 if (unlikely(!q))
276 return -ENOMEM;
277
278 temp_wqe = lpfc_sli4_qe(q, q->host_index);
279
280 /* If the host has not yet processed the next entry then we are done */
281 idx = ((q->host_index + 1) % q->entry_count);
282 if (idx == q->hba_index) {
283 q->WQ_overflow++;
284 return -EBUSY;
285 }
286 q->WQ_posted++;
287 /* set consumption flag every once in a while */
288 if (!((q->host_index + 1) % q->notify_interval))
289 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1);
290 else
291 bf_set(wqe_wqec, &wqe->generic.wqe_com, 0);
292 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED)
293 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id);
294 lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size);
295 if (q->dpp_enable && q->phba->cfg_enable_dpp) {
296 /* write to DPP aperture taking advatage of Combined Writes */
297 tmp = (uint8_t *)temp_wqe;
298 #ifdef __raw_writeq
299 for (i = 0; i < q->entry_size; i += sizeof(uint64_t))
300 __raw_writeq(*((uint64_t *)(tmp + i)),
301 q->dpp_regaddr + i);
302 #else
303 for (i = 0; i < q->entry_size; i += sizeof(uint32_t))
304 __raw_writel(*((uint32_t *)(tmp + i)),
305 q->dpp_regaddr + i);
306 #endif
307 }
308 /* ensure WQE bcopy and DPP flushed before doorbell write */
309 wmb();
310
311 /* Update the host index before invoking device */
312 host_index = q->host_index;
313
314 q->host_index = idx;
315
316 /* Ring Doorbell */
317 doorbell.word0 = 0;
318 if (q->db_format == LPFC_DB_LIST_FORMAT) {
319 if (q->dpp_enable && q->phba->cfg_enable_dpp) {
320 bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1);
321 bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1);
322 bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell,
323 q->dpp_id);
324 bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell,
325 q->queue_id);
326 } else {
327 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1);
328 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id);
329
330 /* Leave bits <23:16> clear for if_type 6 dpp */
331 if_type = bf_get(lpfc_sli_intf_if_type,
332 &q->phba->sli4_hba.sli_intf);
333 if (if_type != LPFC_SLI_INTF_IF_TYPE_6)
334 bf_set(lpfc_wq_db_list_fm_index, &doorbell,
335 host_index);
336 }
337 } else if (q->db_format == LPFC_DB_RING_FORMAT) {
338 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1);
339 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id);
340 } else {
341 return -EINVAL;
342 }
343 writel(doorbell.word0, q->db_regaddr);
344
345 return 0;
346 }
347
348 /**
349 * lpfc_sli4_wq_release - Updates internal hba index for WQ
350 * @q: The Work Queue to operate on.
351 * @index: The index to advance the hba index to.
352 *
353 * This routine will update the HBA index of a queue to reflect consumption of
354 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed
355 * an entry the host calls this function to update the queue's internal
356 * pointers.
357 **/
358 static void
lpfc_sli4_wq_release(struct lpfc_queue * q,uint32_t index)359 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index)
360 {
361 /* sanity check on queue memory */
362 if (unlikely(!q))
363 return;
364
365 q->hba_index = index;
366 }
367
368 /**
369 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue
370 * @q: The Mailbox Queue to operate on.
371 * @mqe: The Mailbox Queue Entry to put on the Work queue.
372 *
373 * This routine will copy the contents of @mqe to the next available entry on
374 * the @q. This function will then ring the Work Queue Doorbell to signal the
375 * HBA to start processing the Work Queue Entry. This function returns 0 if
376 * successful. If no entries are available on @q then this function will return
377 * -ENOMEM.
378 * The caller is expected to hold the hbalock when calling this routine.
379 **/
380 static uint32_t
lpfc_sli4_mq_put(struct lpfc_queue * q,struct lpfc_mqe * mqe)381 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe)
382 {
383 struct lpfc_mqe *temp_mqe;
384 struct lpfc_register doorbell;
385
386 /* sanity check on queue memory */
387 if (unlikely(!q))
388 return -ENOMEM;
389 temp_mqe = lpfc_sli4_qe(q, q->host_index);
390
391 /* If the host has not yet processed the next entry then we are done */
392 if (((q->host_index + 1) % q->entry_count) == q->hba_index)
393 return -ENOMEM;
394 lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size);
395 /* Save off the mailbox pointer for completion */
396 q->phba->mbox = (MAILBOX_t *)temp_mqe;
397
398 /* Update the host index before invoking device */
399 q->host_index = ((q->host_index + 1) % q->entry_count);
400
401 /* Ring Doorbell */
402 doorbell.word0 = 0;
403 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1);
404 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id);
405 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr);
406 return 0;
407 }
408
409 /**
410 * lpfc_sli4_mq_release - Updates internal hba index for MQ
411 * @q: The Mailbox Queue to operate on.
412 *
413 * This routine will update the HBA index of a queue to reflect consumption of
414 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed
415 * an entry the host calls this function to update the queue's internal
416 * pointers. This routine returns the number of entries that were consumed by
417 * the HBA.
418 **/
419 static uint32_t
lpfc_sli4_mq_release(struct lpfc_queue * q)420 lpfc_sli4_mq_release(struct lpfc_queue *q)
421 {
422 /* sanity check on queue memory */
423 if (unlikely(!q))
424 return 0;
425
426 /* Clear the mailbox pointer for completion */
427 q->phba->mbox = NULL;
428 q->hba_index = ((q->hba_index + 1) % q->entry_count);
429 return 1;
430 }
431
432 /**
433 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ
434 * @q: The Event Queue to get the first valid EQE from
435 *
436 * This routine will get the first valid Event Queue Entry from @q, update
437 * the queue's internal hba index, and return the EQE. If no valid EQEs are in
438 * the Queue (no more work to do), or the Queue is full of EQEs that have been
439 * processed, but not popped back to the HBA then this routine will return NULL.
440 **/
441 static struct lpfc_eqe *
lpfc_sli4_eq_get(struct lpfc_queue * q)442 lpfc_sli4_eq_get(struct lpfc_queue *q)
443 {
444 struct lpfc_eqe *eqe;
445
446 /* sanity check on queue memory */
447 if (unlikely(!q))
448 return NULL;
449 eqe = lpfc_sli4_qe(q, q->host_index);
450
451 /* If the next EQE is not valid then we are done */
452 if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid)
453 return NULL;
454
455 /*
456 * insert barrier for instruction interlock : data from the hardware
457 * must have the valid bit checked before it can be copied and acted
458 * upon. Speculative instructions were allowing a bcopy at the start
459 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately
460 * after our return, to copy data before the valid bit check above
461 * was done. As such, some of the copied data was stale. The barrier
462 * ensures the check is before any data is copied.
463 */
464 mb();
465 return eqe;
466 }
467
468 /**
469 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ
470 * @q: The Event Queue to disable interrupts
471 *
472 **/
473 void
lpfc_sli4_eq_clr_intr(struct lpfc_queue * q)474 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q)
475 {
476 struct lpfc_register doorbell;
477
478 doorbell.word0 = 0;
479 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
480 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
481 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
482 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
483 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
484 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
485 }
486
487 /**
488 * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ
489 * @q: The Event Queue to disable interrupts
490 *
491 **/
492 void
lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue * q)493 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q)
494 {
495 struct lpfc_register doorbell;
496
497 doorbell.word0 = 0;
498 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id);
499 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
500 }
501
502 /**
503 * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state
504 * @phba: adapter with EQ
505 * @q: The Event Queue that the host has completed processing for.
506 * @count: Number of elements that have been consumed
507 * @arm: Indicates whether the host wants to arms this CQ.
508 *
509 * This routine will notify the HBA, by ringing the doorbell, that count
510 * number of EQEs have been processed. The @arm parameter indicates whether
511 * the queue should be rearmed when ringing the doorbell.
512 **/
513 void
lpfc_sli4_write_eq_db(struct lpfc_hba * phba,struct lpfc_queue * q,uint32_t count,bool arm)514 lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
515 uint32_t count, bool arm)
516 {
517 struct lpfc_register doorbell;
518
519 /* sanity check on queue memory */
520 if (unlikely(!q || (count == 0 && !arm)))
521 return;
522
523 /* ring doorbell for number popped */
524 doorbell.word0 = 0;
525 if (arm) {
526 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
527 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
528 }
529 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count);
530 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
531 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
532 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
533 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
534 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
535 /* PCI read to flush PCI pipeline on re-arming for INTx mode */
536 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM))
537 readl(q->phba->sli4_hba.EQDBregaddr);
538 }
539
540 /**
541 * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state
542 * @phba: adapter with EQ
543 * @q: The Event Queue that the host has completed processing for.
544 * @count: Number of elements that have been consumed
545 * @arm: Indicates whether the host wants to arms this CQ.
546 *
547 * This routine will notify the HBA, by ringing the doorbell, that count
548 * number of EQEs have been processed. The @arm parameter indicates whether
549 * the queue should be rearmed when ringing the doorbell.
550 **/
551 void
lpfc_sli4_if6_write_eq_db(struct lpfc_hba * phba,struct lpfc_queue * q,uint32_t count,bool arm)552 lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
553 uint32_t count, bool arm)
554 {
555 struct lpfc_register doorbell;
556
557 /* sanity check on queue memory */
558 if (unlikely(!q || (count == 0 && !arm)))
559 return;
560
561 /* ring doorbell for number popped */
562 doorbell.word0 = 0;
563 if (arm)
564 bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1);
565 bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count);
566 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id);
567 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
568 /* PCI read to flush PCI pipeline on re-arming for INTx mode */
569 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM))
570 readl(q->phba->sli4_hba.EQDBregaddr);
571 }
572
573 static void
__lpfc_sli4_consume_eqe(struct lpfc_hba * phba,struct lpfc_queue * eq,struct lpfc_eqe * eqe)574 __lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq,
575 struct lpfc_eqe *eqe)
576 {
577 if (!phba->sli4_hba.pc_sli4_params.eqav)
578 bf_set_le32(lpfc_eqe_valid, eqe, 0);
579
580 eq->host_index = ((eq->host_index + 1) % eq->entry_count);
581
582 /* if the index wrapped around, toggle the valid bit */
583 if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index)
584 eq->qe_valid = (eq->qe_valid) ? 0 : 1;
585 }
586
587 static void
lpfc_sli4_eqcq_flush(struct lpfc_hba * phba,struct lpfc_queue * eq)588 lpfc_sli4_eqcq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq)
589 {
590 struct lpfc_eqe *eqe = NULL;
591 u32 eq_count = 0, cq_count = 0;
592 struct lpfc_cqe *cqe = NULL;
593 struct lpfc_queue *cq = NULL, *childq = NULL;
594 int cqid = 0;
595
596 /* walk all the EQ entries and drop on the floor */
597 eqe = lpfc_sli4_eq_get(eq);
598 while (eqe) {
599 /* Get the reference to the corresponding CQ */
600 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
601 cq = NULL;
602
603 list_for_each_entry(childq, &eq->child_list, list) {
604 if (childq->queue_id == cqid) {
605 cq = childq;
606 break;
607 }
608 }
609 /* If CQ is valid, iterate through it and drop all the CQEs */
610 if (cq) {
611 cqe = lpfc_sli4_cq_get(cq);
612 while (cqe) {
613 __lpfc_sli4_consume_cqe(phba, cq, cqe);
614 cq_count++;
615 cqe = lpfc_sli4_cq_get(cq);
616 }
617 /* Clear and re-arm the CQ */
618 phba->sli4_hba.sli4_write_cq_db(phba, cq, cq_count,
619 LPFC_QUEUE_REARM);
620 cq_count = 0;
621 }
622 __lpfc_sli4_consume_eqe(phba, eq, eqe);
623 eq_count++;
624 eqe = lpfc_sli4_eq_get(eq);
625 }
626
627 /* Clear and re-arm the EQ */
628 phba->sli4_hba.sli4_write_eq_db(phba, eq, eq_count, LPFC_QUEUE_REARM);
629 }
630
631 static int
lpfc_sli4_process_eq(struct lpfc_hba * phba,struct lpfc_queue * eq,u8 rearm,enum lpfc_poll_mode poll_mode)632 lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq,
633 u8 rearm, enum lpfc_poll_mode poll_mode)
634 {
635 struct lpfc_eqe *eqe;
636 int count = 0, consumed = 0;
637
638 if (cmpxchg(&eq->queue_claimed, 0, 1) != 0)
639 goto rearm_and_exit;
640
641 eqe = lpfc_sli4_eq_get(eq);
642 while (eqe) {
643 lpfc_sli4_hba_handle_eqe(phba, eq, eqe, poll_mode);
644 __lpfc_sli4_consume_eqe(phba, eq, eqe);
645
646 consumed++;
647 if (!(++count % eq->max_proc_limit))
648 break;
649
650 if (!(count % eq->notify_interval)) {
651 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed,
652 LPFC_QUEUE_NOARM);
653 consumed = 0;
654 }
655
656 eqe = lpfc_sli4_eq_get(eq);
657 }
658 eq->EQ_processed += count;
659
660 /* Track the max number of EQEs processed in 1 intr */
661 if (count > eq->EQ_max_eqe)
662 eq->EQ_max_eqe = count;
663
664 xchg(&eq->queue_claimed, 0);
665
666 rearm_and_exit:
667 /* Always clear the EQ. */
668 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, rearm);
669
670 return count;
671 }
672
673 /**
674 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ
675 * @q: The Completion Queue to get the first valid CQE from
676 *
677 * This routine will get the first valid Completion Queue Entry from @q, update
678 * the queue's internal hba index, and return the CQE. If no valid CQEs are in
679 * the Queue (no more work to do), or the Queue is full of CQEs that have been
680 * processed, but not popped back to the HBA then this routine will return NULL.
681 **/
682 static struct lpfc_cqe *
lpfc_sli4_cq_get(struct lpfc_queue * q)683 lpfc_sli4_cq_get(struct lpfc_queue *q)
684 {
685 struct lpfc_cqe *cqe;
686
687 /* sanity check on queue memory */
688 if (unlikely(!q))
689 return NULL;
690 cqe = lpfc_sli4_qe(q, q->host_index);
691
692 /* If the next CQE is not valid then we are done */
693 if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid)
694 return NULL;
695
696 /*
697 * insert barrier for instruction interlock : data from the hardware
698 * must have the valid bit checked before it can be copied and acted
699 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative
700 * instructions allowing action on content before valid bit checked,
701 * add barrier here as well. May not be needed as "content" is a
702 * single 32-bit entity here (vs multi word structure for cq's).
703 */
704 mb();
705 return cqe;
706 }
707
708 static void
__lpfc_sli4_consume_cqe(struct lpfc_hba * phba,struct lpfc_queue * cq,struct lpfc_cqe * cqe)709 __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
710 struct lpfc_cqe *cqe)
711 {
712 if (!phba->sli4_hba.pc_sli4_params.cqav)
713 bf_set_le32(lpfc_cqe_valid, cqe, 0);
714
715 cq->host_index = ((cq->host_index + 1) % cq->entry_count);
716
717 /* if the index wrapped around, toggle the valid bit */
718 if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index)
719 cq->qe_valid = (cq->qe_valid) ? 0 : 1;
720 }
721
722 /**
723 * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state.
724 * @phba: the adapter with the CQ
725 * @q: The Completion Queue that the host has completed processing for.
726 * @count: the number of elements that were consumed
727 * @arm: Indicates whether the host wants to arms this CQ.
728 *
729 * This routine will notify the HBA, by ringing the doorbell, that the
730 * CQEs have been processed. The @arm parameter specifies whether the
731 * queue should be rearmed when ringing the doorbell.
732 **/
733 void
lpfc_sli4_write_cq_db(struct lpfc_hba * phba,struct lpfc_queue * q,uint32_t count,bool arm)734 lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
735 uint32_t count, bool arm)
736 {
737 struct lpfc_register doorbell;
738
739 /* sanity check on queue memory */
740 if (unlikely(!q || (count == 0 && !arm)))
741 return;
742
743 /* ring doorbell for number popped */
744 doorbell.word0 = 0;
745 if (arm)
746 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
747 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count);
748 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION);
749 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell,
750 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT));
751 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id);
752 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr);
753 }
754
755 /**
756 * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state.
757 * @phba: the adapter with the CQ
758 * @q: The Completion Queue that the host has completed processing for.
759 * @count: the number of elements that were consumed
760 * @arm: Indicates whether the host wants to arms this CQ.
761 *
762 * This routine will notify the HBA, by ringing the doorbell, that the
763 * CQEs have been processed. The @arm parameter specifies whether the
764 * queue should be rearmed when ringing the doorbell.
765 **/
766 void
lpfc_sli4_if6_write_cq_db(struct lpfc_hba * phba,struct lpfc_queue * q,uint32_t count,bool arm)767 lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
768 uint32_t count, bool arm)
769 {
770 struct lpfc_register doorbell;
771
772 /* sanity check on queue memory */
773 if (unlikely(!q || (count == 0 && !arm)))
774 return;
775
776 /* ring doorbell for number popped */
777 doorbell.word0 = 0;
778 if (arm)
779 bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1);
780 bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count);
781 bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id);
782 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr);
783 }
784
785 /*
786 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue
787 *
788 * This routine will copy the contents of @wqe to the next available entry on
789 * the @q. This function will then ring the Receive Queue Doorbell to signal the
790 * HBA to start processing the Receive Queue Entry. This function returns the
791 * index that the rqe was copied to if successful. If no entries are available
792 * on @q then this function will return -ENOMEM.
793 * The caller is expected to hold the hbalock when calling this routine.
794 **/
795 int
lpfc_sli4_rq_put(struct lpfc_queue * hq,struct lpfc_queue * dq,struct lpfc_rqe * hrqe,struct lpfc_rqe * drqe)796 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq,
797 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe)
798 {
799 struct lpfc_rqe *temp_hrqe;
800 struct lpfc_rqe *temp_drqe;
801 struct lpfc_register doorbell;
802 int hq_put_index;
803 int dq_put_index;
804
805 /* sanity check on queue memory */
806 if (unlikely(!hq) || unlikely(!dq))
807 return -ENOMEM;
808 hq_put_index = hq->host_index;
809 dq_put_index = dq->host_index;
810 temp_hrqe = lpfc_sli4_qe(hq, hq_put_index);
811 temp_drqe = lpfc_sli4_qe(dq, dq_put_index);
812
813 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ)
814 return -EINVAL;
815 if (hq_put_index != dq_put_index)
816 return -EINVAL;
817 /* If the host has not yet processed the next entry then we are done */
818 if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index)
819 return -EBUSY;
820 lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size);
821 lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size);
822
823 /* Update the host index to point to the next slot */
824 hq->host_index = ((hq_put_index + 1) % hq->entry_count);
825 dq->host_index = ((dq_put_index + 1) % dq->entry_count);
826 hq->RQ_buf_posted++;
827
828 /* Ring The Header Receive Queue Doorbell */
829 if (!(hq->host_index % hq->notify_interval)) {
830 doorbell.word0 = 0;
831 if (hq->db_format == LPFC_DB_RING_FORMAT) {
832 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell,
833 hq->notify_interval);
834 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id);
835 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) {
836 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell,
837 hq->notify_interval);
838 bf_set(lpfc_rq_db_list_fm_index, &doorbell,
839 hq->host_index);
840 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id);
841 } else {
842 return -EINVAL;
843 }
844 writel(doorbell.word0, hq->db_regaddr);
845 }
846 return hq_put_index;
847 }
848
849 /*
850 * lpfc_sli4_rq_release - Updates internal hba index for RQ
851 *
852 * This routine will update the HBA index of a queue to reflect consumption of
853 * one Receive Queue Entry by the HBA. When the HBA indicates that it has
854 * consumed an entry the host calls this function to update the queue's
855 * internal pointers. This routine returns the number of entries that were
856 * consumed by the HBA.
857 **/
858 static uint32_t
lpfc_sli4_rq_release(struct lpfc_queue * hq,struct lpfc_queue * dq)859 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq)
860 {
861 /* sanity check on queue memory */
862 if (unlikely(!hq) || unlikely(!dq))
863 return 0;
864
865 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ))
866 return 0;
867 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count);
868 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count);
869 return 1;
870 }
871
872 /**
873 * lpfc_cmd_iocb - Get next command iocb entry in the ring
874 * @phba: Pointer to HBA context object.
875 * @pring: Pointer to driver SLI ring object.
876 *
877 * This function returns pointer to next command iocb entry
878 * in the command ring. The caller must hold hbalock to prevent
879 * other threads consume the next command iocb.
880 * SLI-2/SLI-3 provide different sized iocbs.
881 **/
882 static inline IOCB_t *
lpfc_cmd_iocb(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)883 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
884 {
885 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) +
886 pring->sli.sli3.cmdidx * phba->iocb_cmd_size);
887 }
888
889 /**
890 * lpfc_resp_iocb - Get next response iocb entry in the ring
891 * @phba: Pointer to HBA context object.
892 * @pring: Pointer to driver SLI ring object.
893 *
894 * This function returns pointer to next response iocb entry
895 * in the response ring. The caller must hold hbalock to make sure
896 * that no other thread consume the next response iocb.
897 * SLI-2/SLI-3 provide different sized iocbs.
898 **/
899 static inline IOCB_t *
lpfc_resp_iocb(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)900 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
901 {
902 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) +
903 pring->sli.sli3.rspidx * phba->iocb_rsp_size);
904 }
905
906 /**
907 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
908 * @phba: Pointer to HBA context object.
909 *
910 * This function is called with hbalock held. This function
911 * allocates a new driver iocb object from the iocb pool. If the
912 * allocation is successful, it returns pointer to the newly
913 * allocated iocb object else it returns NULL.
914 **/
915 struct lpfc_iocbq *
__lpfc_sli_get_iocbq(struct lpfc_hba * phba)916 __lpfc_sli_get_iocbq(struct lpfc_hba *phba)
917 {
918 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list;
919 struct lpfc_iocbq * iocbq = NULL;
920
921 lockdep_assert_held(&phba->hbalock);
922
923 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list);
924 if (iocbq)
925 phba->iocb_cnt++;
926 if (phba->iocb_cnt > phba->iocb_max)
927 phba->iocb_max = phba->iocb_cnt;
928 return iocbq;
929 }
930
931 /**
932 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI.
933 * @phba: Pointer to HBA context object.
934 * @xritag: XRI value.
935 *
936 * This function clears the sglq pointer from the array of active
937 * sglq's. The xritag that is passed in is used to index into the
938 * array. Before the xritag can be used it needs to be adjusted
939 * by subtracting the xribase.
940 *
941 * Returns sglq ponter = success, NULL = Failure.
942 **/
943 struct lpfc_sglq *
__lpfc_clear_active_sglq(struct lpfc_hba * phba,uint16_t xritag)944 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
945 {
946 struct lpfc_sglq *sglq;
947
948 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag];
949 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL;
950 return sglq;
951 }
952
953 /**
954 * __lpfc_get_active_sglq - Get the active sglq for this XRI.
955 * @phba: Pointer to HBA context object.
956 * @xritag: XRI value.
957 *
958 * This function returns the sglq pointer from the array of active
959 * sglq's. The xritag that is passed in is used to index into the
960 * array. Before the xritag can be used it needs to be adjusted
961 * by subtracting the xribase.
962 *
963 * Returns sglq ponter = success, NULL = Failure.
964 **/
965 struct lpfc_sglq *
__lpfc_get_active_sglq(struct lpfc_hba * phba,uint16_t xritag)966 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
967 {
968 struct lpfc_sglq *sglq;
969
970 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag];
971 return sglq;
972 }
973
974 /**
975 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap.
976 * @phba: Pointer to HBA context object.
977 * @xritag: xri used in this exchange.
978 * @rrq: The RRQ to be cleared.
979 *
980 **/
981 void
lpfc_clr_rrq_active(struct lpfc_hba * phba,uint16_t xritag,struct lpfc_node_rrq * rrq)982 lpfc_clr_rrq_active(struct lpfc_hba *phba,
983 uint16_t xritag,
984 struct lpfc_node_rrq *rrq)
985 {
986 struct lpfc_nodelist *ndlp = NULL;
987
988 /* Lookup did to verify if did is still active on this vport */
989 if (rrq->vport)
990 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID);
991
992 if (!ndlp)
993 goto out;
994
995 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) {
996 rrq->send_rrq = 0;
997 rrq->xritag = 0;
998 rrq->rrq_stop_time = 0;
999 }
1000 out:
1001 mempool_free(rrq, phba->rrq_pool);
1002 }
1003
1004 /**
1005 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV.
1006 * @phba: Pointer to HBA context object.
1007 *
1008 * This function is called with hbalock held. This function
1009 * Checks if stop_time (ratov from setting rrq active) has
1010 * been reached, if it has and the send_rrq flag is set then
1011 * it will call lpfc_send_rrq. If the send_rrq flag is not set
1012 * then it will just call the routine to clear the rrq and
1013 * free the rrq resource.
1014 * The timer is set to the next rrq that is going to expire before
1015 * leaving the routine.
1016 *
1017 **/
1018 void
lpfc_handle_rrq_active(struct lpfc_hba * phba)1019 lpfc_handle_rrq_active(struct lpfc_hba *phba)
1020 {
1021 struct lpfc_node_rrq *rrq;
1022 struct lpfc_node_rrq *nextrrq;
1023 unsigned long next_time;
1024 unsigned long iflags;
1025 LIST_HEAD(send_rrq);
1026
1027 spin_lock_irqsave(&phba->hbalock, iflags);
1028 phba->hba_flag &= ~HBA_RRQ_ACTIVE;
1029 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1));
1030 list_for_each_entry_safe(rrq, nextrrq,
1031 &phba->active_rrq_list, list) {
1032 if (time_after(jiffies, rrq->rrq_stop_time))
1033 list_move(&rrq->list, &send_rrq);
1034 else if (time_before(rrq->rrq_stop_time, next_time))
1035 next_time = rrq->rrq_stop_time;
1036 }
1037 spin_unlock_irqrestore(&phba->hbalock, iflags);
1038 if ((!list_empty(&phba->active_rrq_list)) &&
1039 (!(phba->pport->load_flag & FC_UNLOADING)))
1040 mod_timer(&phba->rrq_tmr, next_time);
1041 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) {
1042 list_del(&rrq->list);
1043 if (!rrq->send_rrq) {
1044 /* this call will free the rrq */
1045 lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
1046 } else if (lpfc_send_rrq(phba, rrq)) {
1047 /* if we send the rrq then the completion handler
1048 * will clear the bit in the xribitmap.
1049 */
1050 lpfc_clr_rrq_active(phba, rrq->xritag,
1051 rrq);
1052 }
1053 }
1054 }
1055
1056 /**
1057 * lpfc_get_active_rrq - Get the active RRQ for this exchange.
1058 * @vport: Pointer to vport context object.
1059 * @xri: The xri used in the exchange.
1060 * @did: The targets DID for this exchange.
1061 *
1062 * returns NULL = rrq not found in the phba->active_rrq_list.
1063 * rrq = rrq for this xri and target.
1064 **/
1065 struct lpfc_node_rrq *
lpfc_get_active_rrq(struct lpfc_vport * vport,uint16_t xri,uint32_t did)1066 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did)
1067 {
1068 struct lpfc_hba *phba = vport->phba;
1069 struct lpfc_node_rrq *rrq;
1070 struct lpfc_node_rrq *nextrrq;
1071 unsigned long iflags;
1072
1073 if (phba->sli_rev != LPFC_SLI_REV4)
1074 return NULL;
1075 spin_lock_irqsave(&phba->hbalock, iflags);
1076 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) {
1077 if (rrq->vport == vport && rrq->xritag == xri &&
1078 rrq->nlp_DID == did){
1079 list_del(&rrq->list);
1080 spin_unlock_irqrestore(&phba->hbalock, iflags);
1081 return rrq;
1082 }
1083 }
1084 spin_unlock_irqrestore(&phba->hbalock, iflags);
1085 return NULL;
1086 }
1087
1088 /**
1089 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport.
1090 * @vport: Pointer to vport context object.
1091 * @ndlp: Pointer to the lpfc_node_list structure.
1092 * If ndlp is NULL Remove all active RRQs for this vport from the
1093 * phba->active_rrq_list and clear the rrq.
1094 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp.
1095 **/
1096 void
lpfc_cleanup_vports_rrqs(struct lpfc_vport * vport,struct lpfc_nodelist * ndlp)1097 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp)
1098
1099 {
1100 struct lpfc_hba *phba = vport->phba;
1101 struct lpfc_node_rrq *rrq;
1102 struct lpfc_node_rrq *nextrrq;
1103 unsigned long iflags;
1104 LIST_HEAD(rrq_list);
1105
1106 if (phba->sli_rev != LPFC_SLI_REV4)
1107 return;
1108 if (!ndlp) {
1109 lpfc_sli4_vport_delete_els_xri_aborted(vport);
1110 lpfc_sli4_vport_delete_fcp_xri_aborted(vport);
1111 }
1112 spin_lock_irqsave(&phba->hbalock, iflags);
1113 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) {
1114 if (rrq->vport != vport)
1115 continue;
1116
1117 if (!ndlp || ndlp == lpfc_findnode_did(vport, rrq->nlp_DID))
1118 list_move(&rrq->list, &rrq_list);
1119
1120 }
1121 spin_unlock_irqrestore(&phba->hbalock, iflags);
1122
1123 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) {
1124 list_del(&rrq->list);
1125 lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
1126 }
1127 }
1128
1129 /**
1130 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap.
1131 * @phba: Pointer to HBA context object.
1132 * @ndlp: Targets nodelist pointer for this exchange.
1133 * @xritag: the xri in the bitmap to test.
1134 *
1135 * This function returns:
1136 * 0 = rrq not active for this xri
1137 * 1 = rrq is valid for this xri.
1138 **/
1139 int
lpfc_test_rrq_active(struct lpfc_hba * phba,struct lpfc_nodelist * ndlp,uint16_t xritag)1140 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
1141 uint16_t xritag)
1142 {
1143 if (!ndlp)
1144 return 0;
1145 if (!ndlp->active_rrqs_xri_bitmap)
1146 return 0;
1147 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap))
1148 return 1;
1149 else
1150 return 0;
1151 }
1152
1153 /**
1154 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap.
1155 * @phba: Pointer to HBA context object.
1156 * @ndlp: nodelist pointer for this target.
1157 * @xritag: xri used in this exchange.
1158 * @rxid: Remote Exchange ID.
1159 * @send_rrq: Flag used to determine if we should send rrq els cmd.
1160 *
1161 * This function takes the hbalock.
1162 * The active bit is always set in the active rrq xri_bitmap even
1163 * if there is no slot avaiable for the other rrq information.
1164 *
1165 * returns 0 rrq actived for this xri
1166 * < 0 No memory or invalid ndlp.
1167 **/
1168 int
lpfc_set_rrq_active(struct lpfc_hba * phba,struct lpfc_nodelist * ndlp,uint16_t xritag,uint16_t rxid,uint16_t send_rrq)1169 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
1170 uint16_t xritag, uint16_t rxid, uint16_t send_rrq)
1171 {
1172 unsigned long iflags;
1173 struct lpfc_node_rrq *rrq;
1174 int empty;
1175
1176 if (!ndlp)
1177 return -EINVAL;
1178
1179 if (!phba->cfg_enable_rrq)
1180 return -EINVAL;
1181
1182 spin_lock_irqsave(&phba->hbalock, iflags);
1183 if (phba->pport->load_flag & FC_UNLOADING) {
1184 phba->hba_flag &= ~HBA_RRQ_ACTIVE;
1185 goto out;
1186 }
1187
1188 if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING))
1189 goto out;
1190
1191 if (!ndlp->active_rrqs_xri_bitmap)
1192 goto out;
1193
1194 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap))
1195 goto out;
1196
1197 spin_unlock_irqrestore(&phba->hbalock, iflags);
1198 rrq = mempool_alloc(phba->rrq_pool, GFP_ATOMIC);
1199 if (!rrq) {
1200 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
1201 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x"
1202 " DID:0x%x Send:%d\n",
1203 xritag, rxid, ndlp->nlp_DID, send_rrq);
1204 return -EINVAL;
1205 }
1206 if (phba->cfg_enable_rrq == 1)
1207 rrq->send_rrq = send_rrq;
1208 else
1209 rrq->send_rrq = 0;
1210 rrq->xritag = xritag;
1211 rrq->rrq_stop_time = jiffies +
1212 msecs_to_jiffies(1000 * (phba->fc_ratov + 1));
1213 rrq->nlp_DID = ndlp->nlp_DID;
1214 rrq->vport = ndlp->vport;
1215 rrq->rxid = rxid;
1216 spin_lock_irqsave(&phba->hbalock, iflags);
1217 empty = list_empty(&phba->active_rrq_list);
1218 list_add_tail(&rrq->list, &phba->active_rrq_list);
1219 phba->hba_flag |= HBA_RRQ_ACTIVE;
1220 spin_unlock_irqrestore(&phba->hbalock, iflags);
1221 if (empty)
1222 lpfc_worker_wake_up(phba);
1223 return 0;
1224 out:
1225 spin_unlock_irqrestore(&phba->hbalock, iflags);
1226 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
1227 "2921 Can't set rrq active xri:0x%x rxid:0x%x"
1228 " DID:0x%x Send:%d\n",
1229 xritag, rxid, ndlp->nlp_DID, send_rrq);
1230 return -EINVAL;
1231 }
1232
1233 /**
1234 * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool
1235 * @phba: Pointer to HBA context object.
1236 * @piocbq: Pointer to the iocbq.
1237 *
1238 * The driver calls this function with either the nvme ls ring lock
1239 * or the fc els ring lock held depending on the iocb usage. This function
1240 * gets a new driver sglq object from the sglq list. If the list is not empty
1241 * then it is successful, it returns pointer to the newly allocated sglq
1242 * object else it returns NULL.
1243 **/
1244 static struct lpfc_sglq *
__lpfc_sli_get_els_sglq(struct lpfc_hba * phba,struct lpfc_iocbq * piocbq)1245 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq)
1246 {
1247 struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list;
1248 struct lpfc_sglq *sglq = NULL;
1249 struct lpfc_sglq *start_sglq = NULL;
1250 struct lpfc_io_buf *lpfc_cmd;
1251 struct lpfc_nodelist *ndlp;
1252 int found = 0;
1253 u8 cmnd;
1254
1255 cmnd = get_job_cmnd(phba, piocbq);
1256
1257 if (piocbq->cmd_flag & LPFC_IO_FCP) {
1258 lpfc_cmd = piocbq->io_buf;
1259 ndlp = lpfc_cmd->rdata->pnode;
1260 } else if ((cmnd == CMD_GEN_REQUEST64_CR) &&
1261 !(piocbq->cmd_flag & LPFC_IO_LIBDFC)) {
1262 ndlp = piocbq->ndlp;
1263 } else if (piocbq->cmd_flag & LPFC_IO_LIBDFC) {
1264 if (piocbq->cmd_flag & LPFC_IO_LOOPBACK)
1265 ndlp = NULL;
1266 else
1267 ndlp = piocbq->ndlp;
1268 } else {
1269 ndlp = piocbq->ndlp;
1270 }
1271
1272 spin_lock(&phba->sli4_hba.sgl_list_lock);
1273 list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list);
1274 start_sglq = sglq;
1275 while (!found) {
1276 if (!sglq)
1277 break;
1278 if (ndlp && ndlp->active_rrqs_xri_bitmap &&
1279 test_bit(sglq->sli4_lxritag,
1280 ndlp->active_rrqs_xri_bitmap)) {
1281 /* This xri has an rrq outstanding for this DID.
1282 * put it back in the list and get another xri.
1283 */
1284 list_add_tail(&sglq->list, lpfc_els_sgl_list);
1285 sglq = NULL;
1286 list_remove_head(lpfc_els_sgl_list, sglq,
1287 struct lpfc_sglq, list);
1288 if (sglq == start_sglq) {
1289 list_add_tail(&sglq->list, lpfc_els_sgl_list);
1290 sglq = NULL;
1291 break;
1292 } else
1293 continue;
1294 }
1295 sglq->ndlp = ndlp;
1296 found = 1;
1297 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq;
1298 sglq->state = SGL_ALLOCATED;
1299 }
1300 spin_unlock(&phba->sli4_hba.sgl_list_lock);
1301 return sglq;
1302 }
1303
1304 /**
1305 * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool
1306 * @phba: Pointer to HBA context object.
1307 * @piocbq: Pointer to the iocbq.
1308 *
1309 * This function is called with the sgl_list lock held. This function
1310 * gets a new driver sglq object from the sglq list. If the
1311 * list is not empty then it is successful, it returns pointer to the newly
1312 * allocated sglq object else it returns NULL.
1313 **/
1314 struct lpfc_sglq *
__lpfc_sli_get_nvmet_sglq(struct lpfc_hba * phba,struct lpfc_iocbq * piocbq)1315 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq)
1316 {
1317 struct list_head *lpfc_nvmet_sgl_list;
1318 struct lpfc_sglq *sglq = NULL;
1319
1320 lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list;
1321
1322 lockdep_assert_held(&phba->sli4_hba.sgl_list_lock);
1323
1324 list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list);
1325 if (!sglq)
1326 return NULL;
1327 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq;
1328 sglq->state = SGL_ALLOCATED;
1329 return sglq;
1330 }
1331
1332 /**
1333 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
1334 * @phba: Pointer to HBA context object.
1335 *
1336 * This function is called with no lock held. This function
1337 * allocates a new driver iocb object from the iocb pool. If the
1338 * allocation is successful, it returns pointer to the newly
1339 * allocated iocb object else it returns NULL.
1340 **/
1341 struct lpfc_iocbq *
lpfc_sli_get_iocbq(struct lpfc_hba * phba)1342 lpfc_sli_get_iocbq(struct lpfc_hba *phba)
1343 {
1344 struct lpfc_iocbq * iocbq = NULL;
1345 unsigned long iflags;
1346
1347 spin_lock_irqsave(&phba->hbalock, iflags);
1348 iocbq = __lpfc_sli_get_iocbq(phba);
1349 spin_unlock_irqrestore(&phba->hbalock, iflags);
1350 return iocbq;
1351 }
1352
1353 /**
1354 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool
1355 * @phba: Pointer to HBA context object.
1356 * @iocbq: Pointer to driver iocb object.
1357 *
1358 * This function is called to release the driver iocb object
1359 * to the iocb pool. The iotag in the iocb object
1360 * does not change for each use of the iocb object. This function
1361 * clears all other fields of the iocb object when it is freed.
1362 * The sqlq structure that holds the xritag and phys and virtual
1363 * mappings for the scatter gather list is retrieved from the
1364 * active array of sglq. The get of the sglq pointer also clears
1365 * the entry in the array. If the status of the IO indiactes that
1366 * this IO was aborted then the sglq entry it put on the
1367 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the
1368 * IO has good status or fails for any other reason then the sglq
1369 * entry is added to the free list (lpfc_els_sgl_list). The hbalock is
1370 * asserted held in the code path calling this routine.
1371 **/
1372 static void
__lpfc_sli_release_iocbq_s4(struct lpfc_hba * phba,struct lpfc_iocbq * iocbq)1373 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1374 {
1375 struct lpfc_sglq *sglq;
1376 unsigned long iflag = 0;
1377 struct lpfc_sli_ring *pring;
1378
1379 if (iocbq->sli4_xritag == NO_XRI)
1380 sglq = NULL;
1381 else
1382 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag);
1383
1384
1385 if (sglq) {
1386 if (iocbq->cmd_flag & LPFC_IO_NVMET) {
1387 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1388 iflag);
1389 sglq->state = SGL_FREED;
1390 sglq->ndlp = NULL;
1391 list_add_tail(&sglq->list,
1392 &phba->sli4_hba.lpfc_nvmet_sgl_list);
1393 spin_unlock_irqrestore(
1394 &phba->sli4_hba.sgl_list_lock, iflag);
1395 goto out;
1396 }
1397
1398 if ((iocbq->cmd_flag & LPFC_EXCHANGE_BUSY) &&
1399 (!(unlikely(pci_channel_offline(phba->pcidev)))) &&
1400 sglq->state != SGL_XRI_ABORTED) {
1401 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1402 iflag);
1403
1404 /* Check if we can get a reference on ndlp */
1405 if (sglq->ndlp && !lpfc_nlp_get(sglq->ndlp))
1406 sglq->ndlp = NULL;
1407
1408 list_add(&sglq->list,
1409 &phba->sli4_hba.lpfc_abts_els_sgl_list);
1410 spin_unlock_irqrestore(
1411 &phba->sli4_hba.sgl_list_lock, iflag);
1412 } else {
1413 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1414 iflag);
1415 sglq->state = SGL_FREED;
1416 sglq->ndlp = NULL;
1417 list_add_tail(&sglq->list,
1418 &phba->sli4_hba.lpfc_els_sgl_list);
1419 spin_unlock_irqrestore(
1420 &phba->sli4_hba.sgl_list_lock, iflag);
1421 pring = lpfc_phba_elsring(phba);
1422 /* Check if TXQ queue needs to be serviced */
1423 if (pring && (!list_empty(&pring->txq)))
1424 lpfc_worker_wake_up(phba);
1425 }
1426 }
1427
1428 out:
1429 /*
1430 * Clean all volatile data fields, preserve iotag and node struct.
1431 */
1432 memset_startat(iocbq, 0, wqe);
1433 iocbq->sli4_lxritag = NO_XRI;
1434 iocbq->sli4_xritag = NO_XRI;
1435 iocbq->cmd_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET | LPFC_IO_CMF |
1436 LPFC_IO_NVME_LS);
1437 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
1438 }
1439
1440
1441 /**
1442 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool
1443 * @phba: Pointer to HBA context object.
1444 * @iocbq: Pointer to driver iocb object.
1445 *
1446 * This function is called to release the driver iocb object to the
1447 * iocb pool. The iotag in the iocb object does not change for each
1448 * use of the iocb object. This function clears all other fields of
1449 * the iocb object when it is freed. The hbalock is asserted held in
1450 * the code path calling this routine.
1451 **/
1452 static void
__lpfc_sli_release_iocbq_s3(struct lpfc_hba * phba,struct lpfc_iocbq * iocbq)1453 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1454 {
1455
1456 /*
1457 * Clean all volatile data fields, preserve iotag and node struct.
1458 */
1459 memset_startat(iocbq, 0, iocb);
1460 iocbq->sli4_xritag = NO_XRI;
1461 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
1462 }
1463
1464 /**
1465 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool
1466 * @phba: Pointer to HBA context object.
1467 * @iocbq: Pointer to driver iocb object.
1468 *
1469 * This function is called with hbalock held to release driver
1470 * iocb object to the iocb pool. The iotag in the iocb object
1471 * does not change for each use of the iocb object. This function
1472 * clears all other fields of the iocb object when it is freed.
1473 **/
1474 static void
__lpfc_sli_release_iocbq(struct lpfc_hba * phba,struct lpfc_iocbq * iocbq)1475 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1476 {
1477 lockdep_assert_held(&phba->hbalock);
1478
1479 phba->__lpfc_sli_release_iocbq(phba, iocbq);
1480 phba->iocb_cnt--;
1481 }
1482
1483 /**
1484 * lpfc_sli_release_iocbq - Release iocb to the iocb pool
1485 * @phba: Pointer to HBA context object.
1486 * @iocbq: Pointer to driver iocb object.
1487 *
1488 * This function is called with no lock held to release the iocb to
1489 * iocb pool.
1490 **/
1491 void
lpfc_sli_release_iocbq(struct lpfc_hba * phba,struct lpfc_iocbq * iocbq)1492 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1493 {
1494 unsigned long iflags;
1495
1496 /*
1497 * Clean all volatile data fields, preserve iotag and node struct.
1498 */
1499 spin_lock_irqsave(&phba->hbalock, iflags);
1500 __lpfc_sli_release_iocbq(phba, iocbq);
1501 spin_unlock_irqrestore(&phba->hbalock, iflags);
1502 }
1503
1504 /**
1505 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list.
1506 * @phba: Pointer to HBA context object.
1507 * @iocblist: List of IOCBs.
1508 * @ulpstatus: ULP status in IOCB command field.
1509 * @ulpWord4: ULP word-4 in IOCB command field.
1510 *
1511 * This function is called with a list of IOCBs to cancel. It cancels the IOCB
1512 * on the list by invoking the complete callback function associated with the
1513 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond
1514 * fields.
1515 **/
1516 void
lpfc_sli_cancel_iocbs(struct lpfc_hba * phba,struct list_head * iocblist,uint32_t ulpstatus,uint32_t ulpWord4)1517 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist,
1518 uint32_t ulpstatus, uint32_t ulpWord4)
1519 {
1520 struct lpfc_iocbq *piocb;
1521
1522 while (!list_empty(iocblist)) {
1523 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list);
1524 if (piocb->cmd_cmpl) {
1525 if (piocb->cmd_flag & LPFC_IO_NVME) {
1526 lpfc_nvme_cancel_iocb(phba, piocb,
1527 ulpstatus, ulpWord4);
1528 } else {
1529 if (phba->sli_rev == LPFC_SLI_REV4) {
1530 bf_set(lpfc_wcqe_c_status,
1531 &piocb->wcqe_cmpl, ulpstatus);
1532 piocb->wcqe_cmpl.parameter = ulpWord4;
1533 } else {
1534 piocb->iocb.ulpStatus = ulpstatus;
1535 piocb->iocb.un.ulpWord[4] = ulpWord4;
1536 }
1537 (piocb->cmd_cmpl) (phba, piocb, piocb);
1538 }
1539 } else {
1540 lpfc_sli_release_iocbq(phba, piocb);
1541 }
1542 }
1543 return;
1544 }
1545
1546 /**
1547 * lpfc_sli_iocb_cmd_type - Get the iocb type
1548 * @iocb_cmnd: iocb command code.
1549 *
1550 * This function is called by ring event handler function to get the iocb type.
1551 * This function translates the iocb command to an iocb command type used to
1552 * decide the final disposition of each completed IOCB.
1553 * The function returns
1554 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb
1555 * LPFC_SOL_IOCB if it is a solicited iocb completion
1556 * LPFC_ABORT_IOCB if it is an abort iocb
1557 * LPFC_UNSOL_IOCB if it is an unsolicited iocb
1558 *
1559 * The caller is not required to hold any lock.
1560 **/
1561 static lpfc_iocb_type
lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd)1562 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd)
1563 {
1564 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB;
1565
1566 if (iocb_cmnd > CMD_MAX_IOCB_CMD)
1567 return 0;
1568
1569 switch (iocb_cmnd) {
1570 case CMD_XMIT_SEQUENCE_CR:
1571 case CMD_XMIT_SEQUENCE_CX:
1572 case CMD_XMIT_BCAST_CN:
1573 case CMD_XMIT_BCAST_CX:
1574 case CMD_ELS_REQUEST_CR:
1575 case CMD_ELS_REQUEST_CX:
1576 case CMD_CREATE_XRI_CR:
1577 case CMD_CREATE_XRI_CX:
1578 case CMD_GET_RPI_CN:
1579 case CMD_XMIT_ELS_RSP_CX:
1580 case CMD_GET_RPI_CR:
1581 case CMD_FCP_IWRITE_CR:
1582 case CMD_FCP_IWRITE_CX:
1583 case CMD_FCP_IREAD_CR:
1584 case CMD_FCP_IREAD_CX:
1585 case CMD_FCP_ICMND_CR:
1586 case CMD_FCP_ICMND_CX:
1587 case CMD_FCP_TSEND_CX:
1588 case CMD_FCP_TRSP_CX:
1589 case CMD_FCP_TRECEIVE_CX:
1590 case CMD_FCP_AUTO_TRSP_CX:
1591 case CMD_ADAPTER_MSG:
1592 case CMD_ADAPTER_DUMP:
1593 case CMD_XMIT_SEQUENCE64_CR:
1594 case CMD_XMIT_SEQUENCE64_CX:
1595 case CMD_XMIT_BCAST64_CN:
1596 case CMD_XMIT_BCAST64_CX:
1597 case CMD_ELS_REQUEST64_CR:
1598 case CMD_ELS_REQUEST64_CX:
1599 case CMD_FCP_IWRITE64_CR:
1600 case CMD_FCP_IWRITE64_CX:
1601 case CMD_FCP_IREAD64_CR:
1602 case CMD_FCP_IREAD64_CX:
1603 case CMD_FCP_ICMND64_CR:
1604 case CMD_FCP_ICMND64_CX:
1605 case CMD_FCP_TSEND64_CX:
1606 case CMD_FCP_TRSP64_CX:
1607 case CMD_FCP_TRECEIVE64_CX:
1608 case CMD_GEN_REQUEST64_CR:
1609 case CMD_GEN_REQUEST64_CX:
1610 case CMD_XMIT_ELS_RSP64_CX:
1611 case DSSCMD_IWRITE64_CR:
1612 case DSSCMD_IWRITE64_CX:
1613 case DSSCMD_IREAD64_CR:
1614 case DSSCMD_IREAD64_CX:
1615 case CMD_SEND_FRAME:
1616 type = LPFC_SOL_IOCB;
1617 break;
1618 case CMD_ABORT_XRI_CN:
1619 case CMD_ABORT_XRI_CX:
1620 case CMD_CLOSE_XRI_CN:
1621 case CMD_CLOSE_XRI_CX:
1622 case CMD_XRI_ABORTED_CX:
1623 case CMD_ABORT_MXRI64_CN:
1624 case CMD_XMIT_BLS_RSP64_CX:
1625 type = LPFC_ABORT_IOCB;
1626 break;
1627 case CMD_RCV_SEQUENCE_CX:
1628 case CMD_RCV_ELS_REQ_CX:
1629 case CMD_RCV_SEQUENCE64_CX:
1630 case CMD_RCV_ELS_REQ64_CX:
1631 case CMD_ASYNC_STATUS:
1632 case CMD_IOCB_RCV_SEQ64_CX:
1633 case CMD_IOCB_RCV_ELS64_CX:
1634 case CMD_IOCB_RCV_CONT64_CX:
1635 case CMD_IOCB_RET_XRI64_CX:
1636 type = LPFC_UNSOL_IOCB;
1637 break;
1638 case CMD_IOCB_XMIT_MSEQ64_CR:
1639 case CMD_IOCB_XMIT_MSEQ64_CX:
1640 case CMD_IOCB_RCV_SEQ_LIST64_CX:
1641 case CMD_IOCB_RCV_ELS_LIST64_CX:
1642 case CMD_IOCB_CLOSE_EXTENDED_CN:
1643 case CMD_IOCB_ABORT_EXTENDED_CN:
1644 case CMD_IOCB_RET_HBQE64_CN:
1645 case CMD_IOCB_FCP_IBIDIR64_CR:
1646 case CMD_IOCB_FCP_IBIDIR64_CX:
1647 case CMD_IOCB_FCP_ITASKMGT64_CX:
1648 case CMD_IOCB_LOGENTRY_CN:
1649 case CMD_IOCB_LOGENTRY_ASYNC_CN:
1650 printk("%s - Unhandled SLI-3 Command x%x\n",
1651 __func__, iocb_cmnd);
1652 type = LPFC_UNKNOWN_IOCB;
1653 break;
1654 default:
1655 type = LPFC_UNKNOWN_IOCB;
1656 break;
1657 }
1658
1659 return type;
1660 }
1661
1662 /**
1663 * lpfc_sli_ring_map - Issue config_ring mbox for all rings
1664 * @phba: Pointer to HBA context object.
1665 *
1666 * This function is called from SLI initialization code
1667 * to configure every ring of the HBA's SLI interface. The
1668 * caller is not required to hold any lock. This function issues
1669 * a config_ring mailbox command for each ring.
1670 * This function returns zero if successful else returns a negative
1671 * error code.
1672 **/
1673 static int
lpfc_sli_ring_map(struct lpfc_hba * phba)1674 lpfc_sli_ring_map(struct lpfc_hba *phba)
1675 {
1676 struct lpfc_sli *psli = &phba->sli;
1677 LPFC_MBOXQ_t *pmb;
1678 MAILBOX_t *pmbox;
1679 int i, rc, ret = 0;
1680
1681 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
1682 if (!pmb)
1683 return -ENOMEM;
1684 pmbox = &pmb->u.mb;
1685 phba->link_state = LPFC_INIT_MBX_CMDS;
1686 for (i = 0; i < psli->num_rings; i++) {
1687 lpfc_config_ring(phba, i, pmb);
1688 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
1689 if (rc != MBX_SUCCESS) {
1690 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1691 "0446 Adapter failed to init (%d), "
1692 "mbxCmd x%x CFG_RING, mbxStatus x%x, "
1693 "ring %d\n",
1694 rc, pmbox->mbxCommand,
1695 pmbox->mbxStatus, i);
1696 phba->link_state = LPFC_HBA_ERROR;
1697 ret = -ENXIO;
1698 break;
1699 }
1700 }
1701 mempool_free(pmb, phba->mbox_mem_pool);
1702 return ret;
1703 }
1704
1705 /**
1706 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq
1707 * @phba: Pointer to HBA context object.
1708 * @pring: Pointer to driver SLI ring object.
1709 * @piocb: Pointer to the driver iocb object.
1710 *
1711 * The driver calls this function with the hbalock held for SLI3 ports or
1712 * the ring lock held for SLI4 ports. The function adds the
1713 * new iocb to txcmplq of the given ring. This function always returns
1714 * 0. If this function is called for ELS ring, this function checks if
1715 * there is a vport associated with the ELS command. This function also
1716 * starts els_tmofunc timer if this is an ELS command.
1717 **/
1718 static int
lpfc_sli_ringtxcmpl_put(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * piocb)1719 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1720 struct lpfc_iocbq *piocb)
1721 {
1722 u32 ulp_command = 0;
1723
1724 BUG_ON(!piocb);
1725 ulp_command = get_job_cmnd(phba, piocb);
1726
1727 list_add_tail(&piocb->list, &pring->txcmplq);
1728 piocb->cmd_flag |= LPFC_IO_ON_TXCMPLQ;
1729 pring->txcmplq_cnt++;
1730 if ((unlikely(pring->ringno == LPFC_ELS_RING)) &&
1731 (ulp_command != CMD_ABORT_XRI_WQE) &&
1732 (ulp_command != CMD_ABORT_XRI_CN) &&
1733 (ulp_command != CMD_CLOSE_XRI_CN)) {
1734 BUG_ON(!piocb->vport);
1735 if (!(piocb->vport->load_flag & FC_UNLOADING))
1736 mod_timer(&piocb->vport->els_tmofunc,
1737 jiffies +
1738 msecs_to_jiffies(1000 * (phba->fc_ratov << 1)));
1739 }
1740
1741 return 0;
1742 }
1743
1744 /**
1745 * lpfc_sli_ringtx_get - Get first element of the txq
1746 * @phba: Pointer to HBA context object.
1747 * @pring: Pointer to driver SLI ring object.
1748 *
1749 * This function is called with hbalock held to get next
1750 * iocb in txq of the given ring. If there is any iocb in
1751 * the txq, the function returns first iocb in the list after
1752 * removing the iocb from the list, else it returns NULL.
1753 **/
1754 struct lpfc_iocbq *
lpfc_sli_ringtx_get(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)1755 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1756 {
1757 struct lpfc_iocbq *cmd_iocb;
1758
1759 lockdep_assert_held(&phba->hbalock);
1760
1761 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list);
1762 return cmd_iocb;
1763 }
1764
1765 /**
1766 * lpfc_cmf_sync_cmpl - Process a CMF_SYNC_WQE cmpl
1767 * @phba: Pointer to HBA context object.
1768 * @cmdiocb: Pointer to driver command iocb object.
1769 * @rspiocb: Pointer to driver response iocb object.
1770 *
1771 * This routine will inform the driver of any BW adjustments we need
1772 * to make. These changes will be picked up during the next CMF
1773 * timer interrupt. In addition, any BW changes will be logged
1774 * with LOG_CGN_MGMT.
1775 **/
1776 static void
lpfc_cmf_sync_cmpl(struct lpfc_hba * phba,struct lpfc_iocbq * cmdiocb,struct lpfc_iocbq * rspiocb)1777 lpfc_cmf_sync_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
1778 struct lpfc_iocbq *rspiocb)
1779 {
1780 union lpfc_wqe128 *wqe;
1781 uint32_t status, info;
1782 struct lpfc_wcqe_complete *wcqe = &rspiocb->wcqe_cmpl;
1783 uint64_t bw, bwdif, slop;
1784 uint64_t pcent, bwpcent;
1785 int asig, afpin, sigcnt, fpincnt;
1786 int wsigmax, wfpinmax, cg, tdp;
1787 char *s;
1788
1789 /* First check for error */
1790 status = bf_get(lpfc_wcqe_c_status, wcqe);
1791 if (status) {
1792 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1793 "6211 CMF_SYNC_WQE Error "
1794 "req_tag x%x status x%x hwstatus x%x "
1795 "tdatap x%x parm x%x\n",
1796 bf_get(lpfc_wcqe_c_request_tag, wcqe),
1797 bf_get(lpfc_wcqe_c_status, wcqe),
1798 bf_get(lpfc_wcqe_c_hw_status, wcqe),
1799 wcqe->total_data_placed,
1800 wcqe->parameter);
1801 goto out;
1802 }
1803
1804 /* Gather congestion information on a successful cmpl */
1805 info = wcqe->parameter;
1806 phba->cmf_active_info = info;
1807
1808 /* See if firmware info count is valid or has changed */
1809 if (info > LPFC_MAX_CMF_INFO || phba->cmf_info_per_interval == info)
1810 info = 0;
1811 else
1812 phba->cmf_info_per_interval = info;
1813
1814 tdp = bf_get(lpfc_wcqe_c_cmf_bw, wcqe);
1815 cg = bf_get(lpfc_wcqe_c_cmf_cg, wcqe);
1816
1817 /* Get BW requirement from firmware */
1818 bw = (uint64_t)tdp * LPFC_CMF_BLK_SIZE;
1819 if (!bw) {
1820 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1821 "6212 CMF_SYNC_WQE x%x: NULL bw\n",
1822 bf_get(lpfc_wcqe_c_request_tag, wcqe));
1823 goto out;
1824 }
1825
1826 /* Gather information needed for logging if a BW change is required */
1827 wqe = &cmdiocb->wqe;
1828 asig = bf_get(cmf_sync_asig, &wqe->cmf_sync);
1829 afpin = bf_get(cmf_sync_afpin, &wqe->cmf_sync);
1830 fpincnt = bf_get(cmf_sync_wfpincnt, &wqe->cmf_sync);
1831 sigcnt = bf_get(cmf_sync_wsigcnt, &wqe->cmf_sync);
1832 if (phba->cmf_max_bytes_per_interval != bw ||
1833 (asig || afpin || sigcnt || fpincnt)) {
1834 /* Are we increasing or decreasing BW */
1835 if (phba->cmf_max_bytes_per_interval < bw) {
1836 bwdif = bw - phba->cmf_max_bytes_per_interval;
1837 s = "Increase";
1838 } else {
1839 bwdif = phba->cmf_max_bytes_per_interval - bw;
1840 s = "Decrease";
1841 }
1842
1843 /* What is the change percentage */
1844 slop = div_u64(phba->cmf_link_byte_count, 200); /*For rounding*/
1845 pcent = div64_u64(bwdif * 100 + slop,
1846 phba->cmf_link_byte_count);
1847 bwpcent = div64_u64(bw * 100 + slop,
1848 phba->cmf_link_byte_count);
1849 /* Because of bytes adjustment due to shorter timer in
1850 * lpfc_cmf_timer() the cmf_link_byte_count can be shorter and
1851 * may seem like BW is above 100%.
1852 */
1853 if (bwpcent > 100)
1854 bwpcent = 100;
1855
1856 if (phba->cmf_max_bytes_per_interval < bw &&
1857 bwpcent > 95)
1858 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1859 "6208 Congestion bandwidth "
1860 "limits removed\n");
1861 else if ((phba->cmf_max_bytes_per_interval > bw) &&
1862 ((bwpcent + pcent) <= 100) && ((bwpcent + pcent) > 95))
1863 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1864 "6209 Congestion bandwidth "
1865 "limits in effect\n");
1866
1867 if (asig) {
1868 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1869 "6237 BW Threshold %lld%% (%lld): "
1870 "%lld%% %s: Signal Alarm: cg:%d "
1871 "Info:%u\n",
1872 bwpcent, bw, pcent, s, cg,
1873 phba->cmf_active_info);
1874 } else if (afpin) {
1875 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1876 "6238 BW Threshold %lld%% (%lld): "
1877 "%lld%% %s: FPIN Alarm: cg:%d "
1878 "Info:%u\n",
1879 bwpcent, bw, pcent, s, cg,
1880 phba->cmf_active_info);
1881 } else if (sigcnt) {
1882 wsigmax = bf_get(cmf_sync_wsigmax, &wqe->cmf_sync);
1883 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1884 "6239 BW Threshold %lld%% (%lld): "
1885 "%lld%% %s: Signal Warning: "
1886 "Cnt %d Max %d: cg:%d Info:%u\n",
1887 bwpcent, bw, pcent, s, sigcnt,
1888 wsigmax, cg, phba->cmf_active_info);
1889 } else if (fpincnt) {
1890 wfpinmax = bf_get(cmf_sync_wfpinmax, &wqe->cmf_sync);
1891 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1892 "6240 BW Threshold %lld%% (%lld): "
1893 "%lld%% %s: FPIN Warning: "
1894 "Cnt %d Max %d: cg:%d Info:%u\n",
1895 bwpcent, bw, pcent, s, fpincnt,
1896 wfpinmax, cg, phba->cmf_active_info);
1897 } else {
1898 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1899 "6241 BW Threshold %lld%% (%lld): "
1900 "CMF %lld%% %s: cg:%d Info:%u\n",
1901 bwpcent, bw, pcent, s, cg,
1902 phba->cmf_active_info);
1903 }
1904 } else if (info) {
1905 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1906 "6246 Info Threshold %u\n", info);
1907 }
1908
1909 /* Save BW change to be picked up during next timer interrupt */
1910 phba->cmf_last_sync_bw = bw;
1911 out:
1912 lpfc_sli_release_iocbq(phba, cmdiocb);
1913 }
1914
1915 /**
1916 * lpfc_issue_cmf_sync_wqe - Issue a CMF_SYNC_WQE
1917 * @phba: Pointer to HBA context object.
1918 * @ms: ms to set in WQE interval, 0 means use init op
1919 * @total: Total rcv bytes for this interval
1920 *
1921 * This routine is called every CMF timer interrupt. Its purpose is
1922 * to issue a CMF_SYNC_WQE to the firmware to inform it of any events
1923 * that may indicate we have congestion (FPINs or Signals). Upon
1924 * completion, the firmware will indicate any BW restrictions the
1925 * driver may need to take.
1926 **/
1927 int
lpfc_issue_cmf_sync_wqe(struct lpfc_hba * phba,u32 ms,u64 total)1928 lpfc_issue_cmf_sync_wqe(struct lpfc_hba *phba, u32 ms, u64 total)
1929 {
1930 union lpfc_wqe128 *wqe;
1931 struct lpfc_iocbq *sync_buf;
1932 unsigned long iflags;
1933 u32 ret_val;
1934 u32 atot, wtot, max;
1935 u8 warn_sync_period = 0;
1936
1937 /* First address any alarm / warning activity */
1938 atot = atomic_xchg(&phba->cgn_sync_alarm_cnt, 0);
1939 wtot = atomic_xchg(&phba->cgn_sync_warn_cnt, 0);
1940
1941 /* ONLY Managed mode will send the CMF_SYNC_WQE to the HBA */
1942 if (phba->cmf_active_mode != LPFC_CFG_MANAGED ||
1943 phba->link_state == LPFC_LINK_DOWN)
1944 return 0;
1945
1946 spin_lock_irqsave(&phba->hbalock, iflags);
1947 sync_buf = __lpfc_sli_get_iocbq(phba);
1948 if (!sync_buf) {
1949 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT,
1950 "6244 No available WQEs for CMF_SYNC_WQE\n");
1951 ret_val = ENOMEM;
1952 goto out_unlock;
1953 }
1954
1955 wqe = &sync_buf->wqe;
1956
1957 /* WQEs are reused. Clear stale data and set key fields to zero */
1958 memset(wqe, 0, sizeof(*wqe));
1959
1960 /* If this is the very first CMF_SYNC_WQE, issue an init operation */
1961 if (!ms) {
1962 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1963 "6441 CMF Init %d - CMF_SYNC_WQE\n",
1964 phba->fc_eventTag);
1965 bf_set(cmf_sync_op, &wqe->cmf_sync, 1); /* 1=init */
1966 bf_set(cmf_sync_interval, &wqe->cmf_sync, LPFC_CMF_INTERVAL);
1967 goto initpath;
1968 }
1969
1970 bf_set(cmf_sync_op, &wqe->cmf_sync, 0); /* 0=recalc */
1971 bf_set(cmf_sync_interval, &wqe->cmf_sync, ms);
1972
1973 /* Check for alarms / warnings */
1974 if (atot) {
1975 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) {
1976 /* We hit an Signal alarm condition */
1977 bf_set(cmf_sync_asig, &wqe->cmf_sync, 1);
1978 } else {
1979 /* We hit a FPIN alarm condition */
1980 bf_set(cmf_sync_afpin, &wqe->cmf_sync, 1);
1981 }
1982 } else if (wtot) {
1983 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY ||
1984 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) {
1985 /* We hit an Signal warning condition */
1986 max = LPFC_SEC_TO_MSEC / lpfc_fabric_cgn_frequency *
1987 lpfc_acqe_cgn_frequency;
1988 bf_set(cmf_sync_wsigmax, &wqe->cmf_sync, max);
1989 bf_set(cmf_sync_wsigcnt, &wqe->cmf_sync, wtot);
1990 warn_sync_period = lpfc_acqe_cgn_frequency;
1991 } else {
1992 /* We hit a FPIN warning condition */
1993 bf_set(cmf_sync_wfpinmax, &wqe->cmf_sync, 1);
1994 bf_set(cmf_sync_wfpincnt, &wqe->cmf_sync, 1);
1995 if (phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ)
1996 warn_sync_period =
1997 LPFC_MSECS_TO_SECS(phba->cgn_fpin_frequency);
1998 }
1999 }
2000
2001 /* Update total read blocks during previous timer interval */
2002 wqe->cmf_sync.read_bytes = (u32)(total / LPFC_CMF_BLK_SIZE);
2003
2004 initpath:
2005 bf_set(cmf_sync_ver, &wqe->cmf_sync, LPFC_CMF_SYNC_VER);
2006 wqe->cmf_sync.event_tag = phba->fc_eventTag;
2007 bf_set(cmf_sync_cmnd, &wqe->cmf_sync, CMD_CMF_SYNC_WQE);
2008
2009 /* Setup reqtag to match the wqe completion. */
2010 bf_set(cmf_sync_reqtag, &wqe->cmf_sync, sync_buf->iotag);
2011
2012 bf_set(cmf_sync_qosd, &wqe->cmf_sync, 1);
2013 bf_set(cmf_sync_period, &wqe->cmf_sync, warn_sync_period);
2014
2015 bf_set(cmf_sync_cmd_type, &wqe->cmf_sync, CMF_SYNC_COMMAND);
2016 bf_set(cmf_sync_wqec, &wqe->cmf_sync, 1);
2017 bf_set(cmf_sync_cqid, &wqe->cmf_sync, LPFC_WQE_CQ_ID_DEFAULT);
2018
2019 sync_buf->vport = phba->pport;
2020 sync_buf->cmd_cmpl = lpfc_cmf_sync_cmpl;
2021 sync_buf->cmd_dmabuf = NULL;
2022 sync_buf->rsp_dmabuf = NULL;
2023 sync_buf->bpl_dmabuf = NULL;
2024 sync_buf->sli4_xritag = NO_XRI;
2025
2026 sync_buf->cmd_flag |= LPFC_IO_CMF;
2027 ret_val = lpfc_sli4_issue_wqe(phba, &phba->sli4_hba.hdwq[0], sync_buf);
2028 if (ret_val) {
2029 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
2030 "6214 Cannot issue CMF_SYNC_WQE: x%x\n",
2031 ret_val);
2032 __lpfc_sli_release_iocbq(phba, sync_buf);
2033 }
2034 out_unlock:
2035 spin_unlock_irqrestore(&phba->hbalock, iflags);
2036 return ret_val;
2037 }
2038
2039 /**
2040 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring
2041 * @phba: Pointer to HBA context object.
2042 * @pring: Pointer to driver SLI ring object.
2043 *
2044 * This function is called with hbalock held and the caller must post the
2045 * iocb without releasing the lock. If the caller releases the lock,
2046 * iocb slot returned by the function is not guaranteed to be available.
2047 * The function returns pointer to the next available iocb slot if there
2048 * is available slot in the ring, else it returns NULL.
2049 * If the get index of the ring is ahead of the put index, the function
2050 * will post an error attention event to the worker thread to take the
2051 * HBA to offline state.
2052 **/
2053 static IOCB_t *
lpfc_sli_next_iocb_slot(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)2054 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
2055 {
2056 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
2057 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb;
2058
2059 lockdep_assert_held(&phba->hbalock);
2060
2061 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) &&
2062 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx))
2063 pring->sli.sli3.next_cmdidx = 0;
2064
2065 if (unlikely(pring->sli.sli3.local_getidx ==
2066 pring->sli.sli3.next_cmdidx)) {
2067
2068 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
2069
2070 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) {
2071 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2072 "0315 Ring %d issue: portCmdGet %d "
2073 "is bigger than cmd ring %d\n",
2074 pring->ringno,
2075 pring->sli.sli3.local_getidx,
2076 max_cmd_idx);
2077
2078 phba->link_state = LPFC_HBA_ERROR;
2079 /*
2080 * All error attention handlers are posted to
2081 * worker thread
2082 */
2083 phba->work_ha |= HA_ERATT;
2084 phba->work_hs = HS_FFER3;
2085
2086 lpfc_worker_wake_up(phba);
2087
2088 return NULL;
2089 }
2090
2091 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx)
2092 return NULL;
2093 }
2094
2095 return lpfc_cmd_iocb(phba, pring);
2096 }
2097
2098 /**
2099 * lpfc_sli_next_iotag - Get an iotag for the iocb
2100 * @phba: Pointer to HBA context object.
2101 * @iocbq: Pointer to driver iocb object.
2102 *
2103 * This function gets an iotag for the iocb. If there is no unused iotag and
2104 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup
2105 * array and assigns a new iotag.
2106 * The function returns the allocated iotag if successful, else returns zero.
2107 * Zero is not a valid iotag.
2108 * The caller is not required to hold any lock.
2109 **/
2110 uint16_t
lpfc_sli_next_iotag(struct lpfc_hba * phba,struct lpfc_iocbq * iocbq)2111 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
2112 {
2113 struct lpfc_iocbq **new_arr;
2114 struct lpfc_iocbq **old_arr;
2115 size_t new_len;
2116 struct lpfc_sli *psli = &phba->sli;
2117 uint16_t iotag;
2118
2119 spin_lock_irq(&phba->hbalock);
2120 iotag = psli->last_iotag;
2121 if(++iotag < psli->iocbq_lookup_len) {
2122 psli->last_iotag = iotag;
2123 psli->iocbq_lookup[iotag] = iocbq;
2124 spin_unlock_irq(&phba->hbalock);
2125 iocbq->iotag = iotag;
2126 return iotag;
2127 } else if (psli->iocbq_lookup_len < (0xffff
2128 - LPFC_IOCBQ_LOOKUP_INCREMENT)) {
2129 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT;
2130 spin_unlock_irq(&phba->hbalock);
2131 new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *),
2132 GFP_KERNEL);
2133 if (new_arr) {
2134 spin_lock_irq(&phba->hbalock);
2135 old_arr = psli->iocbq_lookup;
2136 if (new_len <= psli->iocbq_lookup_len) {
2137 /* highly unprobable case */
2138 kfree(new_arr);
2139 iotag = psli->last_iotag;
2140 if(++iotag < psli->iocbq_lookup_len) {
2141 psli->last_iotag = iotag;
2142 psli->iocbq_lookup[iotag] = iocbq;
2143 spin_unlock_irq(&phba->hbalock);
2144 iocbq->iotag = iotag;
2145 return iotag;
2146 }
2147 spin_unlock_irq(&phba->hbalock);
2148 return 0;
2149 }
2150 if (psli->iocbq_lookup)
2151 memcpy(new_arr, old_arr,
2152 ((psli->last_iotag + 1) *
2153 sizeof (struct lpfc_iocbq *)));
2154 psli->iocbq_lookup = new_arr;
2155 psli->iocbq_lookup_len = new_len;
2156 psli->last_iotag = iotag;
2157 psli->iocbq_lookup[iotag] = iocbq;
2158 spin_unlock_irq(&phba->hbalock);
2159 iocbq->iotag = iotag;
2160 kfree(old_arr);
2161 return iotag;
2162 }
2163 } else
2164 spin_unlock_irq(&phba->hbalock);
2165
2166 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
2167 "0318 Failed to allocate IOTAG.last IOTAG is %d\n",
2168 psli->last_iotag);
2169
2170 return 0;
2171 }
2172
2173 /**
2174 * lpfc_sli_submit_iocb - Submit an iocb to the firmware
2175 * @phba: Pointer to HBA context object.
2176 * @pring: Pointer to driver SLI ring object.
2177 * @iocb: Pointer to iocb slot in the ring.
2178 * @nextiocb: Pointer to driver iocb object which need to be
2179 * posted to firmware.
2180 *
2181 * This function is called to post a new iocb to the firmware. This
2182 * function copies the new iocb to ring iocb slot and updates the
2183 * ring pointers. It adds the new iocb to txcmplq if there is
2184 * a completion call back for this iocb else the function will free the
2185 * iocb object. The hbalock is asserted held in the code path calling
2186 * this routine.
2187 **/
2188 static void
lpfc_sli_submit_iocb(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,IOCB_t * iocb,struct lpfc_iocbq * nextiocb)2189 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
2190 IOCB_t *iocb, struct lpfc_iocbq *nextiocb)
2191 {
2192 /*
2193 * Set up an iotag
2194 */
2195 nextiocb->iocb.ulpIoTag = (nextiocb->cmd_cmpl) ? nextiocb->iotag : 0;
2196
2197
2198 if (pring->ringno == LPFC_ELS_RING) {
2199 lpfc_debugfs_slow_ring_trc(phba,
2200 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x",
2201 *(((uint32_t *) &nextiocb->iocb) + 4),
2202 *(((uint32_t *) &nextiocb->iocb) + 6),
2203 *(((uint32_t *) &nextiocb->iocb) + 7));
2204 }
2205
2206 /*
2207 * Issue iocb command to adapter
2208 */
2209 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size);
2210 wmb();
2211 pring->stats.iocb_cmd++;
2212
2213 /*
2214 * If there is no completion routine to call, we can release the
2215 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF,
2216 * that have no rsp ring completion, cmd_cmpl MUST be NULL.
2217 */
2218 if (nextiocb->cmd_cmpl)
2219 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb);
2220 else
2221 __lpfc_sli_release_iocbq(phba, nextiocb);
2222
2223 /*
2224 * Let the HBA know what IOCB slot will be the next one the
2225 * driver will put a command into.
2226 */
2227 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx;
2228 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx);
2229 }
2230
2231 /**
2232 * lpfc_sli_update_full_ring - Update the chip attention register
2233 * @phba: Pointer to HBA context object.
2234 * @pring: Pointer to driver SLI ring object.
2235 *
2236 * The caller is not required to hold any lock for calling this function.
2237 * This function updates the chip attention bits for the ring to inform firmware
2238 * that there are pending work to be done for this ring and requests an
2239 * interrupt when there is space available in the ring. This function is
2240 * called when the driver is unable to post more iocbs to the ring due
2241 * to unavailability of space in the ring.
2242 **/
2243 static void
lpfc_sli_update_full_ring(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)2244 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
2245 {
2246 int ringno = pring->ringno;
2247
2248 pring->flag |= LPFC_CALL_RING_AVAILABLE;
2249
2250 wmb();
2251
2252 /*
2253 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register.
2254 * The HBA will tell us when an IOCB entry is available.
2255 */
2256 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr);
2257 readl(phba->CAregaddr); /* flush */
2258
2259 pring->stats.iocb_cmd_full++;
2260 }
2261
2262 /**
2263 * lpfc_sli_update_ring - Update chip attention register
2264 * @phba: Pointer to HBA context object.
2265 * @pring: Pointer to driver SLI ring object.
2266 *
2267 * This function updates the chip attention register bit for the
2268 * given ring to inform HBA that there is more work to be done
2269 * in this ring. The caller is not required to hold any lock.
2270 **/
2271 static void
lpfc_sli_update_ring(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)2272 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
2273 {
2274 int ringno = pring->ringno;
2275
2276 /*
2277 * Tell the HBA that there is work to do in this ring.
2278 */
2279 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) {
2280 wmb();
2281 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr);
2282 readl(phba->CAregaddr); /* flush */
2283 }
2284 }
2285
2286 /**
2287 * lpfc_sli_resume_iocb - Process iocbs in the txq
2288 * @phba: Pointer to HBA context object.
2289 * @pring: Pointer to driver SLI ring object.
2290 *
2291 * This function is called with hbalock held to post pending iocbs
2292 * in the txq to the firmware. This function is called when driver
2293 * detects space available in the ring.
2294 **/
2295 static void
lpfc_sli_resume_iocb(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)2296 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
2297 {
2298 IOCB_t *iocb;
2299 struct lpfc_iocbq *nextiocb;
2300
2301 lockdep_assert_held(&phba->hbalock);
2302
2303 /*
2304 * Check to see if:
2305 * (a) there is anything on the txq to send
2306 * (b) link is up
2307 * (c) link attention events can be processed (fcp ring only)
2308 * (d) IOCB processing is not blocked by the outstanding mbox command.
2309 */
2310
2311 if (lpfc_is_link_up(phba) &&
2312 (!list_empty(&pring->txq)) &&
2313 (pring->ringno != LPFC_FCP_RING ||
2314 phba->sli.sli_flag & LPFC_PROCESS_LA)) {
2315
2316 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
2317 (nextiocb = lpfc_sli_ringtx_get(phba, pring)))
2318 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
2319
2320 if (iocb)
2321 lpfc_sli_update_ring(phba, pring);
2322 else
2323 lpfc_sli_update_full_ring(phba, pring);
2324 }
2325
2326 return;
2327 }
2328
2329 /**
2330 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ
2331 * @phba: Pointer to HBA context object.
2332 * @hbqno: HBQ number.
2333 *
2334 * This function is called with hbalock held to get the next
2335 * available slot for the given HBQ. If there is free slot
2336 * available for the HBQ it will return pointer to the next available
2337 * HBQ entry else it will return NULL.
2338 **/
2339 static struct lpfc_hbq_entry *
lpfc_sli_next_hbq_slot(struct lpfc_hba * phba,uint32_t hbqno)2340 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno)
2341 {
2342 struct hbq_s *hbqp = &phba->hbqs[hbqno];
2343
2344 lockdep_assert_held(&phba->hbalock);
2345
2346 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx &&
2347 ++hbqp->next_hbqPutIdx >= hbqp->entry_count)
2348 hbqp->next_hbqPutIdx = 0;
2349
2350 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) {
2351 uint32_t raw_index = phba->hbq_get[hbqno];
2352 uint32_t getidx = le32_to_cpu(raw_index);
2353
2354 hbqp->local_hbqGetIdx = getidx;
2355
2356 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) {
2357 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2358 "1802 HBQ %d: local_hbqGetIdx "
2359 "%u is > than hbqp->entry_count %u\n",
2360 hbqno, hbqp->local_hbqGetIdx,
2361 hbqp->entry_count);
2362
2363 phba->link_state = LPFC_HBA_ERROR;
2364 return NULL;
2365 }
2366
2367 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)
2368 return NULL;
2369 }
2370
2371 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt +
2372 hbqp->hbqPutIdx;
2373 }
2374
2375 /**
2376 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers
2377 * @phba: Pointer to HBA context object.
2378 *
2379 * This function is called with no lock held to free all the
2380 * hbq buffers while uninitializing the SLI interface. It also
2381 * frees the HBQ buffers returned by the firmware but not yet
2382 * processed by the upper layers.
2383 **/
2384 void
lpfc_sli_hbqbuf_free_all(struct lpfc_hba * phba)2385 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba)
2386 {
2387 struct lpfc_dmabuf *dmabuf, *next_dmabuf;
2388 struct hbq_dmabuf *hbq_buf;
2389 unsigned long flags;
2390 int i, hbq_count;
2391
2392 hbq_count = lpfc_sli_hbq_count();
2393 /* Return all memory used by all HBQs */
2394 spin_lock_irqsave(&phba->hbalock, flags);
2395 for (i = 0; i < hbq_count; ++i) {
2396 list_for_each_entry_safe(dmabuf, next_dmabuf,
2397 &phba->hbqs[i].hbq_buffer_list, list) {
2398 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf);
2399 list_del(&hbq_buf->dbuf.list);
2400 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf);
2401 }
2402 phba->hbqs[i].buffer_count = 0;
2403 }
2404
2405 /* Mark the HBQs not in use */
2406 phba->hbq_in_use = 0;
2407 spin_unlock_irqrestore(&phba->hbalock, flags);
2408 }
2409
2410 /**
2411 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware
2412 * @phba: Pointer to HBA context object.
2413 * @hbqno: HBQ number.
2414 * @hbq_buf: Pointer to HBQ buffer.
2415 *
2416 * This function is called with the hbalock held to post a
2417 * hbq buffer to the firmware. If the function finds an empty
2418 * slot in the HBQ, it will post the buffer. The function will return
2419 * pointer to the hbq entry if it successfully post the buffer
2420 * else it will return NULL.
2421 **/
2422 static int
lpfc_sli_hbq_to_firmware(struct lpfc_hba * phba,uint32_t hbqno,struct hbq_dmabuf * hbq_buf)2423 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno,
2424 struct hbq_dmabuf *hbq_buf)
2425 {
2426 lockdep_assert_held(&phba->hbalock);
2427 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf);
2428 }
2429
2430 /**
2431 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware
2432 * @phba: Pointer to HBA context object.
2433 * @hbqno: HBQ number.
2434 * @hbq_buf: Pointer to HBQ buffer.
2435 *
2436 * This function is called with the hbalock held to post a hbq buffer to the
2437 * firmware. If the function finds an empty slot in the HBQ, it will post the
2438 * buffer and place it on the hbq_buffer_list. The function will return zero if
2439 * it successfully post the buffer else it will return an error.
2440 **/
2441 static int
lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba * phba,uint32_t hbqno,struct hbq_dmabuf * hbq_buf)2442 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno,
2443 struct hbq_dmabuf *hbq_buf)
2444 {
2445 struct lpfc_hbq_entry *hbqe;
2446 dma_addr_t physaddr = hbq_buf->dbuf.phys;
2447
2448 lockdep_assert_held(&phba->hbalock);
2449 /* Get next HBQ entry slot to use */
2450 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno);
2451 if (hbqe) {
2452 struct hbq_s *hbqp = &phba->hbqs[hbqno];
2453
2454 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr));
2455 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr));
2456 hbqe->bde.tus.f.bdeSize = hbq_buf->total_size;
2457 hbqe->bde.tus.f.bdeFlags = 0;
2458 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w);
2459 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag);
2460 /* Sync SLIM */
2461 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx;
2462 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno);
2463 /* flush */
2464 readl(phba->hbq_put + hbqno);
2465 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list);
2466 return 0;
2467 } else
2468 return -ENOMEM;
2469 }
2470
2471 /**
2472 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware
2473 * @phba: Pointer to HBA context object.
2474 * @hbqno: HBQ number.
2475 * @hbq_buf: Pointer to HBQ buffer.
2476 *
2477 * This function is called with the hbalock held to post an RQE to the SLI4
2478 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to
2479 * the hbq_buffer_list and return zero, otherwise it will return an error.
2480 **/
2481 static int
lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba * phba,uint32_t hbqno,struct hbq_dmabuf * hbq_buf)2482 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno,
2483 struct hbq_dmabuf *hbq_buf)
2484 {
2485 int rc;
2486 struct lpfc_rqe hrqe;
2487 struct lpfc_rqe drqe;
2488 struct lpfc_queue *hrq;
2489 struct lpfc_queue *drq;
2490
2491 if (hbqno != LPFC_ELS_HBQ)
2492 return 1;
2493 hrq = phba->sli4_hba.hdr_rq;
2494 drq = phba->sli4_hba.dat_rq;
2495
2496 lockdep_assert_held(&phba->hbalock);
2497 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys);
2498 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys);
2499 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys);
2500 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys);
2501 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe);
2502 if (rc < 0)
2503 return rc;
2504 hbq_buf->tag = (rc | (hbqno << 16));
2505 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list);
2506 return 0;
2507 }
2508
2509 /* HBQ for ELS and CT traffic. */
2510 static struct lpfc_hbq_init lpfc_els_hbq = {
2511 .rn = 1,
2512 .entry_count = 256,
2513 .mask_count = 0,
2514 .profile = 0,
2515 .ring_mask = (1 << LPFC_ELS_RING),
2516 .buffer_count = 0,
2517 .init_count = 40,
2518 .add_count = 40,
2519 };
2520
2521 /* Array of HBQs */
2522 struct lpfc_hbq_init *lpfc_hbq_defs[] = {
2523 &lpfc_els_hbq,
2524 };
2525
2526 /**
2527 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ
2528 * @phba: Pointer to HBA context object.
2529 * @hbqno: HBQ number.
2530 * @count: Number of HBQ buffers to be posted.
2531 *
2532 * This function is called with no lock held to post more hbq buffers to the
2533 * given HBQ. The function returns the number of HBQ buffers successfully
2534 * posted.
2535 **/
2536 static int
lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba * phba,uint32_t hbqno,uint32_t count)2537 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count)
2538 {
2539 uint32_t i, posted = 0;
2540 unsigned long flags;
2541 struct hbq_dmabuf *hbq_buffer;
2542 LIST_HEAD(hbq_buf_list);
2543 if (!phba->hbqs[hbqno].hbq_alloc_buffer)
2544 return 0;
2545
2546 if ((phba->hbqs[hbqno].buffer_count + count) >
2547 lpfc_hbq_defs[hbqno]->entry_count)
2548 count = lpfc_hbq_defs[hbqno]->entry_count -
2549 phba->hbqs[hbqno].buffer_count;
2550 if (!count)
2551 return 0;
2552 /* Allocate HBQ entries */
2553 for (i = 0; i < count; i++) {
2554 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba);
2555 if (!hbq_buffer)
2556 break;
2557 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list);
2558 }
2559 /* Check whether HBQ is still in use */
2560 spin_lock_irqsave(&phba->hbalock, flags);
2561 if (!phba->hbq_in_use)
2562 goto err;
2563 while (!list_empty(&hbq_buf_list)) {
2564 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
2565 dbuf.list);
2566 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count |
2567 (hbqno << 16));
2568 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) {
2569 phba->hbqs[hbqno].buffer_count++;
2570 posted++;
2571 } else
2572 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2573 }
2574 spin_unlock_irqrestore(&phba->hbalock, flags);
2575 return posted;
2576 err:
2577 spin_unlock_irqrestore(&phba->hbalock, flags);
2578 while (!list_empty(&hbq_buf_list)) {
2579 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
2580 dbuf.list);
2581 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2582 }
2583 return 0;
2584 }
2585
2586 /**
2587 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware
2588 * @phba: Pointer to HBA context object.
2589 * @qno: HBQ number.
2590 *
2591 * This function posts more buffers to the HBQ. This function
2592 * is called with no lock held. The function returns the number of HBQ entries
2593 * successfully allocated.
2594 **/
2595 int
lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba * phba,uint32_t qno)2596 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno)
2597 {
2598 if (phba->sli_rev == LPFC_SLI_REV4)
2599 return 0;
2600 else
2601 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2602 lpfc_hbq_defs[qno]->add_count);
2603 }
2604
2605 /**
2606 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ
2607 * @phba: Pointer to HBA context object.
2608 * @qno: HBQ queue number.
2609 *
2610 * This function is called from SLI initialization code path with
2611 * no lock held to post initial HBQ buffers to firmware. The
2612 * function returns the number of HBQ entries successfully allocated.
2613 **/
2614 static int
lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba * phba,uint32_t qno)2615 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno)
2616 {
2617 if (phba->sli_rev == LPFC_SLI_REV4)
2618 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2619 lpfc_hbq_defs[qno]->entry_count);
2620 else
2621 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2622 lpfc_hbq_defs[qno]->init_count);
2623 }
2624
2625 /*
2626 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list
2627 *
2628 * This function removes the first hbq buffer on an hbq list and returns a
2629 * pointer to that buffer. If it finds no buffers on the list it returns NULL.
2630 **/
2631 static struct hbq_dmabuf *
lpfc_sli_hbqbuf_get(struct list_head * rb_list)2632 lpfc_sli_hbqbuf_get(struct list_head *rb_list)
2633 {
2634 struct lpfc_dmabuf *d_buf;
2635
2636 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list);
2637 if (!d_buf)
2638 return NULL;
2639 return container_of(d_buf, struct hbq_dmabuf, dbuf);
2640 }
2641
2642 /**
2643 * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list
2644 * @phba: Pointer to HBA context object.
2645 * @hrq: HBQ number.
2646 *
2647 * This function removes the first RQ buffer on an RQ buffer list and returns a
2648 * pointer to that buffer. If it finds no buffers on the list it returns NULL.
2649 **/
2650 static struct rqb_dmabuf *
lpfc_sli_rqbuf_get(struct lpfc_hba * phba,struct lpfc_queue * hrq)2651 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq)
2652 {
2653 struct lpfc_dmabuf *h_buf;
2654 struct lpfc_rqb *rqbp;
2655
2656 rqbp = hrq->rqbp;
2657 list_remove_head(&rqbp->rqb_buffer_list, h_buf,
2658 struct lpfc_dmabuf, list);
2659 if (!h_buf)
2660 return NULL;
2661 rqbp->buffer_count--;
2662 return container_of(h_buf, struct rqb_dmabuf, hbuf);
2663 }
2664
2665 /**
2666 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag
2667 * @phba: Pointer to HBA context object.
2668 * @tag: Tag of the hbq buffer.
2669 *
2670 * This function searches for the hbq buffer associated with the given tag in
2671 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer
2672 * otherwise it returns NULL.
2673 **/
2674 static struct hbq_dmabuf *
lpfc_sli_hbqbuf_find(struct lpfc_hba * phba,uint32_t tag)2675 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag)
2676 {
2677 struct lpfc_dmabuf *d_buf;
2678 struct hbq_dmabuf *hbq_buf;
2679 uint32_t hbqno;
2680
2681 hbqno = tag >> 16;
2682 if (hbqno >= LPFC_MAX_HBQS)
2683 return NULL;
2684
2685 spin_lock_irq(&phba->hbalock);
2686 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) {
2687 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
2688 if (hbq_buf->tag == tag) {
2689 spin_unlock_irq(&phba->hbalock);
2690 return hbq_buf;
2691 }
2692 }
2693 spin_unlock_irq(&phba->hbalock);
2694 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2695 "1803 Bad hbq tag. Data: x%x x%x\n",
2696 tag, phba->hbqs[tag >> 16].buffer_count);
2697 return NULL;
2698 }
2699
2700 /**
2701 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware
2702 * @phba: Pointer to HBA context object.
2703 * @hbq_buffer: Pointer to HBQ buffer.
2704 *
2705 * This function is called with hbalock. This function gives back
2706 * the hbq buffer to firmware. If the HBQ does not have space to
2707 * post the buffer, it will free the buffer.
2708 **/
2709 void
lpfc_sli_free_hbq(struct lpfc_hba * phba,struct hbq_dmabuf * hbq_buffer)2710 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer)
2711 {
2712 uint32_t hbqno;
2713
2714 if (hbq_buffer) {
2715 hbqno = hbq_buffer->tag >> 16;
2716 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer))
2717 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2718 }
2719 }
2720
2721 /**
2722 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox
2723 * @mbxCommand: mailbox command code.
2724 *
2725 * This function is called by the mailbox event handler function to verify
2726 * that the completed mailbox command is a legitimate mailbox command. If the
2727 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN
2728 * and the mailbox event handler will take the HBA offline.
2729 **/
2730 static int
lpfc_sli_chk_mbx_command(uint8_t mbxCommand)2731 lpfc_sli_chk_mbx_command(uint8_t mbxCommand)
2732 {
2733 uint8_t ret;
2734
2735 switch (mbxCommand) {
2736 case MBX_LOAD_SM:
2737 case MBX_READ_NV:
2738 case MBX_WRITE_NV:
2739 case MBX_WRITE_VPARMS:
2740 case MBX_RUN_BIU_DIAG:
2741 case MBX_INIT_LINK:
2742 case MBX_DOWN_LINK:
2743 case MBX_CONFIG_LINK:
2744 case MBX_CONFIG_RING:
2745 case MBX_RESET_RING:
2746 case MBX_READ_CONFIG:
2747 case MBX_READ_RCONFIG:
2748 case MBX_READ_SPARM:
2749 case MBX_READ_STATUS:
2750 case MBX_READ_RPI:
2751 case MBX_READ_XRI:
2752 case MBX_READ_REV:
2753 case MBX_READ_LNK_STAT:
2754 case MBX_REG_LOGIN:
2755 case MBX_UNREG_LOGIN:
2756 case MBX_CLEAR_LA:
2757 case MBX_DUMP_MEMORY:
2758 case MBX_DUMP_CONTEXT:
2759 case MBX_RUN_DIAGS:
2760 case MBX_RESTART:
2761 case MBX_UPDATE_CFG:
2762 case MBX_DOWN_LOAD:
2763 case MBX_DEL_LD_ENTRY:
2764 case MBX_RUN_PROGRAM:
2765 case MBX_SET_MASK:
2766 case MBX_SET_VARIABLE:
2767 case MBX_UNREG_D_ID:
2768 case MBX_KILL_BOARD:
2769 case MBX_CONFIG_FARP:
2770 case MBX_BEACON:
2771 case MBX_LOAD_AREA:
2772 case MBX_RUN_BIU_DIAG64:
2773 case MBX_CONFIG_PORT:
2774 case MBX_READ_SPARM64:
2775 case MBX_READ_RPI64:
2776 case MBX_REG_LOGIN64:
2777 case MBX_READ_TOPOLOGY:
2778 case MBX_WRITE_WWN:
2779 case MBX_SET_DEBUG:
2780 case MBX_LOAD_EXP_ROM:
2781 case MBX_ASYNCEVT_ENABLE:
2782 case MBX_REG_VPI:
2783 case MBX_UNREG_VPI:
2784 case MBX_HEARTBEAT:
2785 case MBX_PORT_CAPABILITIES:
2786 case MBX_PORT_IOV_CONTROL:
2787 case MBX_SLI4_CONFIG:
2788 case MBX_SLI4_REQ_FTRS:
2789 case MBX_REG_FCFI:
2790 case MBX_UNREG_FCFI:
2791 case MBX_REG_VFI:
2792 case MBX_UNREG_VFI:
2793 case MBX_INIT_VPI:
2794 case MBX_INIT_VFI:
2795 case MBX_RESUME_RPI:
2796 case MBX_READ_EVENT_LOG_STATUS:
2797 case MBX_READ_EVENT_LOG:
2798 case MBX_SECURITY_MGMT:
2799 case MBX_AUTH_PORT:
2800 case MBX_ACCESS_VDATA:
2801 ret = mbxCommand;
2802 break;
2803 default:
2804 ret = MBX_SHUTDOWN;
2805 break;
2806 }
2807 return ret;
2808 }
2809
2810 /**
2811 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler
2812 * @phba: Pointer to HBA context object.
2813 * @pmboxq: Pointer to mailbox command.
2814 *
2815 * This is completion handler function for mailbox commands issued from
2816 * lpfc_sli_issue_mbox_wait function. This function is called by the
2817 * mailbox event handler function with no lock held. This function
2818 * will wake up thread waiting on the wait queue pointed by context1
2819 * of the mailbox.
2820 **/
2821 void
lpfc_sli_wake_mbox_wait(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmboxq)2822 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq)
2823 {
2824 unsigned long drvr_flag;
2825 struct completion *pmbox_done;
2826
2827 /*
2828 * If pmbox_done is empty, the driver thread gave up waiting and
2829 * continued running.
2830 */
2831 pmboxq->mbox_flag |= LPFC_MBX_WAKE;
2832 spin_lock_irqsave(&phba->hbalock, drvr_flag);
2833 pmbox_done = (struct completion *)pmboxq->context3;
2834 if (pmbox_done)
2835 complete(pmbox_done);
2836 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
2837 return;
2838 }
2839
2840 static void
__lpfc_sli_rpi_release(struct lpfc_vport * vport,struct lpfc_nodelist * ndlp)2841 __lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp)
2842 {
2843 unsigned long iflags;
2844
2845 if (ndlp->nlp_flag & NLP_RELEASE_RPI) {
2846 lpfc_sli4_free_rpi(vport->phba, ndlp->nlp_rpi);
2847 spin_lock_irqsave(&ndlp->lock, iflags);
2848 ndlp->nlp_flag &= ~NLP_RELEASE_RPI;
2849 ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR;
2850 spin_unlock_irqrestore(&ndlp->lock, iflags);
2851 }
2852 ndlp->nlp_flag &= ~NLP_UNREG_INP;
2853 }
2854
2855 void
lpfc_sli_rpi_release(struct lpfc_vport * vport,struct lpfc_nodelist * ndlp)2856 lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp)
2857 {
2858 __lpfc_sli_rpi_release(vport, ndlp);
2859 }
2860
2861 /**
2862 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler
2863 * @phba: Pointer to HBA context object.
2864 * @pmb: Pointer to mailbox object.
2865 *
2866 * This function is the default mailbox completion handler. It
2867 * frees the memory resources associated with the completed mailbox
2868 * command. If the completed command is a REG_LOGIN mailbox command,
2869 * this function will issue a UREG_LOGIN to re-claim the RPI.
2870 **/
2871 void
lpfc_sli_def_mbox_cmpl(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmb)2872 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
2873 {
2874 struct lpfc_vport *vport = pmb->vport;
2875 struct lpfc_dmabuf *mp;
2876 struct lpfc_nodelist *ndlp;
2877 struct Scsi_Host *shost;
2878 uint16_t rpi, vpi;
2879 int rc;
2880
2881 /*
2882 * If a REG_LOGIN succeeded after node is destroyed or node
2883 * is in re-discovery driver need to cleanup the RPI.
2884 */
2885 if (!(phba->pport->load_flag & FC_UNLOADING) &&
2886 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 &&
2887 !pmb->u.mb.mbxStatus) {
2888 mp = (struct lpfc_dmabuf *)pmb->ctx_buf;
2889 if (mp) {
2890 pmb->ctx_buf = NULL;
2891 lpfc_mbuf_free(phba, mp->virt, mp->phys);
2892 kfree(mp);
2893 }
2894 rpi = pmb->u.mb.un.varWords[0];
2895 vpi = pmb->u.mb.un.varRegLogin.vpi;
2896 if (phba->sli_rev == LPFC_SLI_REV4)
2897 vpi -= phba->sli4_hba.max_cfg_param.vpi_base;
2898 lpfc_unreg_login(phba, vpi, rpi, pmb);
2899 pmb->vport = vport;
2900 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
2901 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
2902 if (rc != MBX_NOT_FINISHED)
2903 return;
2904 }
2905
2906 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) &&
2907 !(phba->pport->load_flag & FC_UNLOADING) &&
2908 !pmb->u.mb.mbxStatus) {
2909 shost = lpfc_shost_from_vport(vport);
2910 spin_lock_irq(shost->host_lock);
2911 vport->vpi_state |= LPFC_VPI_REGISTERED;
2912 vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI;
2913 spin_unlock_irq(shost->host_lock);
2914 }
2915
2916 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
2917 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
2918 lpfc_nlp_put(ndlp);
2919 }
2920
2921 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) {
2922 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
2923
2924 /* Check to see if there are any deferred events to process */
2925 if (ndlp) {
2926 lpfc_printf_vlog(
2927 vport,
2928 KERN_INFO, LOG_MBOX | LOG_DISCOVERY,
2929 "1438 UNREG cmpl deferred mbox x%x "
2930 "on NPort x%x Data: x%x x%x x%px x%x x%x\n",
2931 ndlp->nlp_rpi, ndlp->nlp_DID,
2932 ndlp->nlp_flag, ndlp->nlp_defer_did,
2933 ndlp, vport->load_flag, kref_read(&ndlp->kref));
2934
2935 if ((ndlp->nlp_flag & NLP_UNREG_INP) &&
2936 (ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING)) {
2937 ndlp->nlp_flag &= ~NLP_UNREG_INP;
2938 ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING;
2939 lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0);
2940 } else {
2941 __lpfc_sli_rpi_release(vport, ndlp);
2942 }
2943
2944 /* The unreg_login mailbox is complete and had a
2945 * reference that has to be released. The PLOGI
2946 * got its own ref.
2947 */
2948 lpfc_nlp_put(ndlp);
2949 pmb->ctx_ndlp = NULL;
2950 }
2951 }
2952
2953 /* This nlp_put pairs with lpfc_sli4_resume_rpi */
2954 if (pmb->u.mb.mbxCommand == MBX_RESUME_RPI) {
2955 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
2956 lpfc_nlp_put(ndlp);
2957 }
2958
2959 /* Check security permission status on INIT_LINK mailbox command */
2960 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) &&
2961 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION))
2962 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2963 "2860 SLI authentication is required "
2964 "for INIT_LINK but has not done yet\n");
2965
2966 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG)
2967 lpfc_sli4_mbox_cmd_free(phba, pmb);
2968 else
2969 lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED);
2970 }
2971 /**
2972 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler
2973 * @phba: Pointer to HBA context object.
2974 * @pmb: Pointer to mailbox object.
2975 *
2976 * This function is the unreg rpi mailbox completion handler. It
2977 * frees the memory resources associated with the completed mailbox
2978 * command. An additional reference is put on the ndlp to prevent
2979 * lpfc_nlp_release from freeing the rpi bit in the bitmask before
2980 * the unreg mailbox command completes, this routine puts the
2981 * reference back.
2982 *
2983 **/
2984 void
lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmb)2985 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
2986 {
2987 struct lpfc_vport *vport = pmb->vport;
2988 struct lpfc_nodelist *ndlp;
2989
2990 ndlp = pmb->ctx_ndlp;
2991 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) {
2992 if (phba->sli_rev == LPFC_SLI_REV4 &&
2993 (bf_get(lpfc_sli_intf_if_type,
2994 &phba->sli4_hba.sli_intf) >=
2995 LPFC_SLI_INTF_IF_TYPE_2)) {
2996 if (ndlp) {
2997 lpfc_printf_vlog(
2998 vport, KERN_INFO, LOG_MBOX | LOG_SLI,
2999 "0010 UNREG_LOGIN vpi:%x "
3000 "rpi:%x DID:%x defer x%x flg x%x "
3001 "x%px\n",
3002 vport->vpi, ndlp->nlp_rpi,
3003 ndlp->nlp_DID, ndlp->nlp_defer_did,
3004 ndlp->nlp_flag,
3005 ndlp);
3006 ndlp->nlp_flag &= ~NLP_LOGO_ACC;
3007
3008 /* Check to see if there are any deferred
3009 * events to process
3010 */
3011 if ((ndlp->nlp_flag & NLP_UNREG_INP) &&
3012 (ndlp->nlp_defer_did !=
3013 NLP_EVT_NOTHING_PENDING)) {
3014 lpfc_printf_vlog(
3015 vport, KERN_INFO, LOG_DISCOVERY,
3016 "4111 UNREG cmpl deferred "
3017 "clr x%x on "
3018 "NPort x%x Data: x%x x%px\n",
3019 ndlp->nlp_rpi, ndlp->nlp_DID,
3020 ndlp->nlp_defer_did, ndlp);
3021 ndlp->nlp_flag &= ~NLP_UNREG_INP;
3022 ndlp->nlp_defer_did =
3023 NLP_EVT_NOTHING_PENDING;
3024 lpfc_issue_els_plogi(
3025 vport, ndlp->nlp_DID, 0);
3026 } else {
3027 __lpfc_sli_rpi_release(vport, ndlp);
3028 }
3029 lpfc_nlp_put(ndlp);
3030 }
3031 }
3032 }
3033
3034 mempool_free(pmb, phba->mbox_mem_pool);
3035 }
3036
3037 /**
3038 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware
3039 * @phba: Pointer to HBA context object.
3040 *
3041 * This function is called with no lock held. This function processes all
3042 * the completed mailbox commands and gives it to upper layers. The interrupt
3043 * service routine processes mailbox completion interrupt and adds completed
3044 * mailbox commands to the mboxq_cmpl queue and signals the worker thread.
3045 * Worker thread call lpfc_sli_handle_mb_event, which will return the
3046 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This
3047 * function returns the mailbox commands to the upper layer by calling the
3048 * completion handler function of each mailbox.
3049 **/
3050 int
lpfc_sli_handle_mb_event(struct lpfc_hba * phba)3051 lpfc_sli_handle_mb_event(struct lpfc_hba *phba)
3052 {
3053 MAILBOX_t *pmbox;
3054 LPFC_MBOXQ_t *pmb;
3055 int rc;
3056 LIST_HEAD(cmplq);
3057
3058 phba->sli.slistat.mbox_event++;
3059
3060 /* Get all completed mailboxe buffers into the cmplq */
3061 spin_lock_irq(&phba->hbalock);
3062 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq);
3063 spin_unlock_irq(&phba->hbalock);
3064
3065 /* Get a Mailbox buffer to setup mailbox commands for callback */
3066 do {
3067 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list);
3068 if (pmb == NULL)
3069 break;
3070
3071 pmbox = &pmb->u.mb;
3072
3073 if (pmbox->mbxCommand != MBX_HEARTBEAT) {
3074 if (pmb->vport) {
3075 lpfc_debugfs_disc_trc(pmb->vport,
3076 LPFC_DISC_TRC_MBOX_VPORT,
3077 "MBOX cmpl vport: cmd:x%x mb:x%x x%x",
3078 (uint32_t)pmbox->mbxCommand,
3079 pmbox->un.varWords[0],
3080 pmbox->un.varWords[1]);
3081 }
3082 else {
3083 lpfc_debugfs_disc_trc(phba->pport,
3084 LPFC_DISC_TRC_MBOX,
3085 "MBOX cmpl: cmd:x%x mb:x%x x%x",
3086 (uint32_t)pmbox->mbxCommand,
3087 pmbox->un.varWords[0],
3088 pmbox->un.varWords[1]);
3089 }
3090 }
3091
3092 /*
3093 * It is a fatal error if unknown mbox command completion.
3094 */
3095 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) ==
3096 MBX_SHUTDOWN) {
3097 /* Unknown mailbox command compl */
3098 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3099 "(%d):0323 Unknown Mailbox command "
3100 "x%x (x%x/x%x) Cmpl\n",
3101 pmb->vport ? pmb->vport->vpi :
3102 LPFC_VPORT_UNKNOWN,
3103 pmbox->mbxCommand,
3104 lpfc_sli_config_mbox_subsys_get(phba,
3105 pmb),
3106 lpfc_sli_config_mbox_opcode_get(phba,
3107 pmb));
3108 phba->link_state = LPFC_HBA_ERROR;
3109 phba->work_hs = HS_FFER3;
3110 lpfc_handle_eratt(phba);
3111 continue;
3112 }
3113
3114 if (pmbox->mbxStatus) {
3115 phba->sli.slistat.mbox_stat_err++;
3116 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) {
3117 /* Mbox cmd cmpl error - RETRYing */
3118 lpfc_printf_log(phba, KERN_INFO,
3119 LOG_MBOX | LOG_SLI,
3120 "(%d):0305 Mbox cmd cmpl "
3121 "error - RETRYing Data: x%x "
3122 "(x%x/x%x) x%x x%x x%x\n",
3123 pmb->vport ? pmb->vport->vpi :
3124 LPFC_VPORT_UNKNOWN,
3125 pmbox->mbxCommand,
3126 lpfc_sli_config_mbox_subsys_get(phba,
3127 pmb),
3128 lpfc_sli_config_mbox_opcode_get(phba,
3129 pmb),
3130 pmbox->mbxStatus,
3131 pmbox->un.varWords[0],
3132 pmb->vport ? pmb->vport->port_state :
3133 LPFC_VPORT_UNKNOWN);
3134 pmbox->mbxStatus = 0;
3135 pmbox->mbxOwner = OWN_HOST;
3136 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
3137 if (rc != MBX_NOT_FINISHED)
3138 continue;
3139 }
3140 }
3141
3142 /* Mailbox cmd <cmd> Cmpl <cmpl> */
3143 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
3144 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl %ps "
3145 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
3146 "x%x x%x x%x\n",
3147 pmb->vport ? pmb->vport->vpi : 0,
3148 pmbox->mbxCommand,
3149 lpfc_sli_config_mbox_subsys_get(phba, pmb),
3150 lpfc_sli_config_mbox_opcode_get(phba, pmb),
3151 pmb->mbox_cmpl,
3152 *((uint32_t *) pmbox),
3153 pmbox->un.varWords[0],
3154 pmbox->un.varWords[1],
3155 pmbox->un.varWords[2],
3156 pmbox->un.varWords[3],
3157 pmbox->un.varWords[4],
3158 pmbox->un.varWords[5],
3159 pmbox->un.varWords[6],
3160 pmbox->un.varWords[7],
3161 pmbox->un.varWords[8],
3162 pmbox->un.varWords[9],
3163 pmbox->un.varWords[10]);
3164
3165 if (pmb->mbox_cmpl)
3166 pmb->mbox_cmpl(phba,pmb);
3167 } while (1);
3168 return 0;
3169 }
3170
3171 /**
3172 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag
3173 * @phba: Pointer to HBA context object.
3174 * @pring: Pointer to driver SLI ring object.
3175 * @tag: buffer tag.
3176 *
3177 * This function is called with no lock held. When QUE_BUFTAG_BIT bit
3178 * is set in the tag the buffer is posted for a particular exchange,
3179 * the function will return the buffer without replacing the buffer.
3180 * If the buffer is for unsolicited ELS or CT traffic, this function
3181 * returns the buffer and also posts another buffer to the firmware.
3182 **/
3183 static struct lpfc_dmabuf *
lpfc_sli_get_buff(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,uint32_t tag)3184 lpfc_sli_get_buff(struct lpfc_hba *phba,
3185 struct lpfc_sli_ring *pring,
3186 uint32_t tag)
3187 {
3188 struct hbq_dmabuf *hbq_entry;
3189
3190 if (tag & QUE_BUFTAG_BIT)
3191 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag);
3192 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag);
3193 if (!hbq_entry)
3194 return NULL;
3195 return &hbq_entry->dbuf;
3196 }
3197
3198 /**
3199 * lpfc_nvme_unsol_ls_handler - Process an unsolicited event data buffer
3200 * containing a NVME LS request.
3201 * @phba: pointer to lpfc hba data structure.
3202 * @piocb: pointer to the iocbq struct representing the sequence starting
3203 * frame.
3204 *
3205 * This routine initially validates the NVME LS, validates there is a login
3206 * with the port that sent the LS, and then calls the appropriate nvme host
3207 * or target LS request handler.
3208 **/
3209 static void
lpfc_nvme_unsol_ls_handler(struct lpfc_hba * phba,struct lpfc_iocbq * piocb)3210 lpfc_nvme_unsol_ls_handler(struct lpfc_hba *phba, struct lpfc_iocbq *piocb)
3211 {
3212 struct lpfc_nodelist *ndlp;
3213 struct lpfc_dmabuf *d_buf;
3214 struct hbq_dmabuf *nvmebuf;
3215 struct fc_frame_header *fc_hdr;
3216 struct lpfc_async_xchg_ctx *axchg = NULL;
3217 char *failwhy = NULL;
3218 uint32_t oxid, sid, did, fctl, size;
3219 int ret = 1;
3220
3221 d_buf = piocb->cmd_dmabuf;
3222
3223 nvmebuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
3224 fc_hdr = nvmebuf->hbuf.virt;
3225 oxid = be16_to_cpu(fc_hdr->fh_ox_id);
3226 sid = sli4_sid_from_fc_hdr(fc_hdr);
3227 did = sli4_did_from_fc_hdr(fc_hdr);
3228 fctl = (fc_hdr->fh_f_ctl[0] << 16 |
3229 fc_hdr->fh_f_ctl[1] << 8 |
3230 fc_hdr->fh_f_ctl[2]);
3231 size = bf_get(lpfc_rcqe_length, &nvmebuf->cq_event.cqe.rcqe_cmpl);
3232
3233 lpfc_nvmeio_data(phba, "NVME LS RCV: xri x%x sz %d from %06x\n",
3234 oxid, size, sid);
3235
3236 if (phba->pport->load_flag & FC_UNLOADING) {
3237 failwhy = "Driver Unloading";
3238 } else if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) {
3239 failwhy = "NVME FC4 Disabled";
3240 } else if (!phba->nvmet_support && !phba->pport->localport) {
3241 failwhy = "No Localport";
3242 } else if (phba->nvmet_support && !phba->targetport) {
3243 failwhy = "No Targetport";
3244 } else if (unlikely(fc_hdr->fh_r_ctl != FC_RCTL_ELS4_REQ)) {
3245 failwhy = "Bad NVME LS R_CTL";
3246 } else if (unlikely((fctl & 0x00FF0000) !=
3247 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT))) {
3248 failwhy = "Bad NVME LS F_CTL";
3249 } else {
3250 axchg = kzalloc(sizeof(*axchg), GFP_ATOMIC);
3251 if (!axchg)
3252 failwhy = "No CTX memory";
3253 }
3254
3255 if (unlikely(failwhy)) {
3256 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3257 "6154 Drop NVME LS: SID %06X OXID x%X: %s\n",
3258 sid, oxid, failwhy);
3259 goto out_fail;
3260 }
3261
3262 /* validate the source of the LS is logged in */
3263 ndlp = lpfc_findnode_did(phba->pport, sid);
3264 if (!ndlp ||
3265 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) &&
3266 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) {
3267 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC,
3268 "6216 NVME Unsol rcv: No ndlp: "
3269 "NPort_ID x%x oxid x%x\n",
3270 sid, oxid);
3271 goto out_fail;
3272 }
3273
3274 axchg->phba = phba;
3275 axchg->ndlp = ndlp;
3276 axchg->size = size;
3277 axchg->oxid = oxid;
3278 axchg->sid = sid;
3279 axchg->wqeq = NULL;
3280 axchg->state = LPFC_NVME_STE_LS_RCV;
3281 axchg->entry_cnt = 1;
3282 axchg->rqb_buffer = (void *)nvmebuf;
3283 axchg->hdwq = &phba->sli4_hba.hdwq[0];
3284 axchg->payload = nvmebuf->dbuf.virt;
3285 INIT_LIST_HEAD(&axchg->list);
3286
3287 if (phba->nvmet_support) {
3288 ret = lpfc_nvmet_handle_lsreq(phba, axchg);
3289 spin_lock_irq(&ndlp->lock);
3290 if (!ret && !(ndlp->fc4_xpt_flags & NLP_XPT_HAS_HH)) {
3291 ndlp->fc4_xpt_flags |= NLP_XPT_HAS_HH;
3292 spin_unlock_irq(&ndlp->lock);
3293
3294 /* This reference is a single occurrence to hold the
3295 * node valid until the nvmet transport calls
3296 * host_release.
3297 */
3298 if (!lpfc_nlp_get(ndlp))
3299 goto out_fail;
3300
3301 lpfc_printf_log(phba, KERN_ERR, LOG_NODE,
3302 "6206 NVMET unsol ls_req ndlp x%px "
3303 "DID x%x xflags x%x refcnt %d\n",
3304 ndlp, ndlp->nlp_DID,
3305 ndlp->fc4_xpt_flags,
3306 kref_read(&ndlp->kref));
3307 } else {
3308 spin_unlock_irq(&ndlp->lock);
3309 }
3310 } else {
3311 ret = lpfc_nvme_handle_lsreq(phba, axchg);
3312 }
3313
3314 /* if zero, LS was successfully handled. If non-zero, LS not handled */
3315 if (!ret)
3316 return;
3317
3318 out_fail:
3319 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3320 "6155 Drop NVME LS from DID %06X: SID %06X OXID x%X "
3321 "NVMe%s handler failed %d\n",
3322 did, sid, oxid,
3323 (phba->nvmet_support) ? "T" : "I", ret);
3324
3325 /* recycle receive buffer */
3326 lpfc_in_buf_free(phba, &nvmebuf->dbuf);
3327
3328 /* If start of new exchange, abort it */
3329 if (axchg && (fctl & FC_FC_FIRST_SEQ && !(fctl & FC_FC_EX_CTX)))
3330 ret = lpfc_nvme_unsol_ls_issue_abort(phba, axchg, sid, oxid);
3331
3332 if (ret)
3333 kfree(axchg);
3334 }
3335
3336 /**
3337 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence
3338 * @phba: Pointer to HBA context object.
3339 * @pring: Pointer to driver SLI ring object.
3340 * @saveq: Pointer to the iocbq struct representing the sequence starting frame.
3341 * @fch_r_ctl: the r_ctl for the first frame of the sequence.
3342 * @fch_type: the type for the first frame of the sequence.
3343 *
3344 * This function is called with no lock held. This function uses the r_ctl and
3345 * type of the received sequence to find the correct callback function to call
3346 * to process the sequence.
3347 **/
3348 static int
lpfc_complete_unsol_iocb(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * saveq,uint32_t fch_r_ctl,uint32_t fch_type)3349 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3350 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl,
3351 uint32_t fch_type)
3352 {
3353 int i;
3354
3355 switch (fch_type) {
3356 case FC_TYPE_NVME:
3357 lpfc_nvme_unsol_ls_handler(phba, saveq);
3358 return 1;
3359 default:
3360 break;
3361 }
3362
3363 /* unSolicited Responses */
3364 if (pring->prt[0].profile) {
3365 if (pring->prt[0].lpfc_sli_rcv_unsol_event)
3366 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring,
3367 saveq);
3368 return 1;
3369 }
3370 /* We must search, based on rctl / type
3371 for the right routine */
3372 for (i = 0; i < pring->num_mask; i++) {
3373 if ((pring->prt[i].rctl == fch_r_ctl) &&
3374 (pring->prt[i].type == fch_type)) {
3375 if (pring->prt[i].lpfc_sli_rcv_unsol_event)
3376 (pring->prt[i].lpfc_sli_rcv_unsol_event)
3377 (phba, pring, saveq);
3378 return 1;
3379 }
3380 }
3381 return 0;
3382 }
3383
3384 static void
lpfc_sli_prep_unsol_wqe(struct lpfc_hba * phba,struct lpfc_iocbq * saveq)3385 lpfc_sli_prep_unsol_wqe(struct lpfc_hba *phba,
3386 struct lpfc_iocbq *saveq)
3387 {
3388 IOCB_t *irsp;
3389 union lpfc_wqe128 *wqe;
3390 u16 i = 0;
3391
3392 irsp = &saveq->iocb;
3393 wqe = &saveq->wqe;
3394
3395 /* Fill wcqe with the IOCB status fields */
3396 bf_set(lpfc_wcqe_c_status, &saveq->wcqe_cmpl, irsp->ulpStatus);
3397 saveq->wcqe_cmpl.word3 = irsp->ulpBdeCount;
3398 saveq->wcqe_cmpl.parameter = irsp->un.ulpWord[4];
3399 saveq->wcqe_cmpl.total_data_placed = irsp->unsli3.rcvsli3.acc_len;
3400
3401 /* Source ID */
3402 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, irsp->un.rcvels.parmRo);
3403
3404 /* rx-id of the response frame */
3405 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, irsp->ulpContext);
3406
3407 /* ox-id of the frame */
3408 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com,
3409 irsp->unsli3.rcvsli3.ox_id);
3410
3411 /* DID */
3412 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest,
3413 irsp->un.rcvels.remoteID);
3414
3415 /* unsol data len */
3416 for (i = 0; i < irsp->ulpBdeCount; i++) {
3417 struct lpfc_hbq_entry *hbqe = NULL;
3418
3419 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
3420 if (i == 0) {
3421 hbqe = (struct lpfc_hbq_entry *)
3422 &irsp->un.ulpWord[0];
3423 saveq->wqe.gen_req.bde.tus.f.bdeSize =
3424 hbqe->bde.tus.f.bdeSize;
3425 } else if (i == 1) {
3426 hbqe = (struct lpfc_hbq_entry *)
3427 &irsp->unsli3.sli3Words[4];
3428 saveq->unsol_rcv_len = hbqe->bde.tus.f.bdeSize;
3429 }
3430 }
3431 }
3432 }
3433
3434 /**
3435 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler
3436 * @phba: Pointer to HBA context object.
3437 * @pring: Pointer to driver SLI ring object.
3438 * @saveq: Pointer to the unsolicited iocb.
3439 *
3440 * This function is called with no lock held by the ring event handler
3441 * when there is an unsolicited iocb posted to the response ring by the
3442 * firmware. This function gets the buffer associated with the iocbs
3443 * and calls the event handler for the ring. This function handles both
3444 * qring buffers and hbq buffers.
3445 * When the function returns 1 the caller can free the iocb object otherwise
3446 * upper layer functions will free the iocb objects.
3447 **/
3448 static int
lpfc_sli_process_unsol_iocb(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * saveq)3449 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3450 struct lpfc_iocbq *saveq)
3451 {
3452 IOCB_t * irsp;
3453 WORD5 * w5p;
3454 dma_addr_t paddr;
3455 uint32_t Rctl, Type;
3456 struct lpfc_iocbq *iocbq;
3457 struct lpfc_dmabuf *dmzbuf;
3458
3459 irsp = &saveq->iocb;
3460 saveq->vport = phba->pport;
3461
3462 if (irsp->ulpCommand == CMD_ASYNC_STATUS) {
3463 if (pring->lpfc_sli_rcv_async_status)
3464 pring->lpfc_sli_rcv_async_status(phba, pring, saveq);
3465 else
3466 lpfc_printf_log(phba,
3467 KERN_WARNING,
3468 LOG_SLI,
3469 "0316 Ring %d handler: unexpected "
3470 "ASYNC_STATUS iocb received evt_code "
3471 "0x%x\n",
3472 pring->ringno,
3473 irsp->un.asyncstat.evt_code);
3474 return 1;
3475 }
3476
3477 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) &&
3478 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) {
3479 if (irsp->ulpBdeCount > 0) {
3480 dmzbuf = lpfc_sli_get_buff(phba, pring,
3481 irsp->un.ulpWord[3]);
3482 lpfc_in_buf_free(phba, dmzbuf);
3483 }
3484
3485 if (irsp->ulpBdeCount > 1) {
3486 dmzbuf = lpfc_sli_get_buff(phba, pring,
3487 irsp->unsli3.sli3Words[3]);
3488 lpfc_in_buf_free(phba, dmzbuf);
3489 }
3490
3491 if (irsp->ulpBdeCount > 2) {
3492 dmzbuf = lpfc_sli_get_buff(phba, pring,
3493 irsp->unsli3.sli3Words[7]);
3494 lpfc_in_buf_free(phba, dmzbuf);
3495 }
3496
3497 return 1;
3498 }
3499
3500 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
3501 if (irsp->ulpBdeCount != 0) {
3502 saveq->cmd_dmabuf = lpfc_sli_get_buff(phba, pring,
3503 irsp->un.ulpWord[3]);
3504 if (!saveq->cmd_dmabuf)
3505 lpfc_printf_log(phba,
3506 KERN_ERR,
3507 LOG_SLI,
3508 "0341 Ring %d Cannot find buffer for "
3509 "an unsolicited iocb. tag 0x%x\n",
3510 pring->ringno,
3511 irsp->un.ulpWord[3]);
3512 }
3513 if (irsp->ulpBdeCount == 2) {
3514 saveq->bpl_dmabuf = lpfc_sli_get_buff(phba, pring,
3515 irsp->unsli3.sli3Words[7]);
3516 if (!saveq->bpl_dmabuf)
3517 lpfc_printf_log(phba,
3518 KERN_ERR,
3519 LOG_SLI,
3520 "0342 Ring %d Cannot find buffer for an"
3521 " unsolicited iocb. tag 0x%x\n",
3522 pring->ringno,
3523 irsp->unsli3.sli3Words[7]);
3524 }
3525 list_for_each_entry(iocbq, &saveq->list, list) {
3526 irsp = &iocbq->iocb;
3527 if (irsp->ulpBdeCount != 0) {
3528 iocbq->cmd_dmabuf = lpfc_sli_get_buff(phba,
3529 pring,
3530 irsp->un.ulpWord[3]);
3531 if (!iocbq->cmd_dmabuf)
3532 lpfc_printf_log(phba,
3533 KERN_ERR,
3534 LOG_SLI,
3535 "0343 Ring %d Cannot find "
3536 "buffer for an unsolicited iocb"
3537 ". tag 0x%x\n", pring->ringno,
3538 irsp->un.ulpWord[3]);
3539 }
3540 if (irsp->ulpBdeCount == 2) {
3541 iocbq->bpl_dmabuf = lpfc_sli_get_buff(phba,
3542 pring,
3543 irsp->unsli3.sli3Words[7]);
3544 if (!iocbq->bpl_dmabuf)
3545 lpfc_printf_log(phba,
3546 KERN_ERR,
3547 LOG_SLI,
3548 "0344 Ring %d Cannot find "
3549 "buffer for an unsolicited "
3550 "iocb. tag 0x%x\n",
3551 pring->ringno,
3552 irsp->unsli3.sli3Words[7]);
3553 }
3554 }
3555 } else {
3556 paddr = getPaddr(irsp->un.cont64[0].addrHigh,
3557 irsp->un.cont64[0].addrLow);
3558 saveq->cmd_dmabuf = lpfc_sli_ringpostbuf_get(phba, pring,
3559 paddr);
3560 if (irsp->ulpBdeCount == 2) {
3561 paddr = getPaddr(irsp->un.cont64[1].addrHigh,
3562 irsp->un.cont64[1].addrLow);
3563 saveq->bpl_dmabuf = lpfc_sli_ringpostbuf_get(phba,
3564 pring,
3565 paddr);
3566 }
3567 }
3568
3569 if (irsp->ulpBdeCount != 0 &&
3570 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX ||
3571 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) {
3572 int found = 0;
3573
3574 /* search continue save q for same XRI */
3575 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) {
3576 if (iocbq->iocb.unsli3.rcvsli3.ox_id ==
3577 saveq->iocb.unsli3.rcvsli3.ox_id) {
3578 list_add_tail(&saveq->list, &iocbq->list);
3579 found = 1;
3580 break;
3581 }
3582 }
3583 if (!found)
3584 list_add_tail(&saveq->clist,
3585 &pring->iocb_continue_saveq);
3586
3587 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) {
3588 list_del_init(&iocbq->clist);
3589 saveq = iocbq;
3590 irsp = &saveq->iocb;
3591 } else {
3592 return 0;
3593 }
3594 }
3595 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) ||
3596 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) ||
3597 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) {
3598 Rctl = FC_RCTL_ELS_REQ;
3599 Type = FC_TYPE_ELS;
3600 } else {
3601 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]);
3602 Rctl = w5p->hcsw.Rctl;
3603 Type = w5p->hcsw.Type;
3604
3605 /* Firmware Workaround */
3606 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) &&
3607 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX ||
3608 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) {
3609 Rctl = FC_RCTL_ELS_REQ;
3610 Type = FC_TYPE_ELS;
3611 w5p->hcsw.Rctl = Rctl;
3612 w5p->hcsw.Type = Type;
3613 }
3614 }
3615
3616 if ((phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) &&
3617 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX ||
3618 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) {
3619 if (irsp->unsli3.rcvsli3.vpi == 0xffff)
3620 saveq->vport = phba->pport;
3621 else
3622 saveq->vport = lpfc_find_vport_by_vpid(phba,
3623 irsp->unsli3.rcvsli3.vpi);
3624 }
3625
3626 /* Prepare WQE with Unsol frame */
3627 lpfc_sli_prep_unsol_wqe(phba, saveq);
3628
3629 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type))
3630 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3631 "0313 Ring %d handler: unexpected Rctl x%x "
3632 "Type x%x received\n",
3633 pring->ringno, Rctl, Type);
3634
3635 return 1;
3636 }
3637
3638 /**
3639 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb
3640 * @phba: Pointer to HBA context object.
3641 * @pring: Pointer to driver SLI ring object.
3642 * @prspiocb: Pointer to response iocb object.
3643 *
3644 * This function looks up the iocb_lookup table to get the command iocb
3645 * corresponding to the given response iocb using the iotag of the
3646 * response iocb. The driver calls this function with the hbalock held
3647 * for SLI3 ports or the ring lock held for SLI4 ports.
3648 * This function returns the command iocb object if it finds the command
3649 * iocb else returns NULL.
3650 **/
3651 static struct lpfc_iocbq *
lpfc_sli_iocbq_lookup(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * prspiocb)3652 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba,
3653 struct lpfc_sli_ring *pring,
3654 struct lpfc_iocbq *prspiocb)
3655 {
3656 struct lpfc_iocbq *cmd_iocb = NULL;
3657 u16 iotag;
3658
3659 if (phba->sli_rev == LPFC_SLI_REV4)
3660 iotag = get_wqe_reqtag(prspiocb);
3661 else
3662 iotag = prspiocb->iocb.ulpIoTag;
3663
3664 if (iotag != 0 && iotag <= phba->sli.last_iotag) {
3665 cmd_iocb = phba->sli.iocbq_lookup[iotag];
3666 if (cmd_iocb->cmd_flag & LPFC_IO_ON_TXCMPLQ) {
3667 /* remove from txcmpl queue list */
3668 list_del_init(&cmd_iocb->list);
3669 cmd_iocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ;
3670 pring->txcmplq_cnt--;
3671 return cmd_iocb;
3672 }
3673 }
3674
3675 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3676 "0317 iotag x%x is out of "
3677 "range: max iotag x%x\n",
3678 iotag, phba->sli.last_iotag);
3679 return NULL;
3680 }
3681
3682 /**
3683 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag
3684 * @phba: Pointer to HBA context object.
3685 * @pring: Pointer to driver SLI ring object.
3686 * @iotag: IOCB tag.
3687 *
3688 * This function looks up the iocb_lookup table to get the command iocb
3689 * corresponding to the given iotag. The driver calls this function with
3690 * the ring lock held because this function is an SLI4 port only helper.
3691 * This function returns the command iocb object if it finds the command
3692 * iocb else returns NULL.
3693 **/
3694 static struct lpfc_iocbq *
lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,uint16_t iotag)3695 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba,
3696 struct lpfc_sli_ring *pring, uint16_t iotag)
3697 {
3698 struct lpfc_iocbq *cmd_iocb = NULL;
3699
3700 if (iotag != 0 && iotag <= phba->sli.last_iotag) {
3701 cmd_iocb = phba->sli.iocbq_lookup[iotag];
3702 if (cmd_iocb->cmd_flag & LPFC_IO_ON_TXCMPLQ) {
3703 /* remove from txcmpl queue list */
3704 list_del_init(&cmd_iocb->list);
3705 cmd_iocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ;
3706 pring->txcmplq_cnt--;
3707 return cmd_iocb;
3708 }
3709 }
3710
3711 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3712 "0372 iotag x%x lookup error: max iotag (x%x) "
3713 "cmd_flag x%x\n",
3714 iotag, phba->sli.last_iotag,
3715 cmd_iocb ? cmd_iocb->cmd_flag : 0xffff);
3716 return NULL;
3717 }
3718
3719 /**
3720 * lpfc_sli_process_sol_iocb - process solicited iocb completion
3721 * @phba: Pointer to HBA context object.
3722 * @pring: Pointer to driver SLI ring object.
3723 * @saveq: Pointer to the response iocb to be processed.
3724 *
3725 * This function is called by the ring event handler for non-fcp
3726 * rings when there is a new response iocb in the response ring.
3727 * The caller is not required to hold any locks. This function
3728 * gets the command iocb associated with the response iocb and
3729 * calls the completion handler for the command iocb. If there
3730 * is no completion handler, the function will free the resources
3731 * associated with command iocb. If the response iocb is for
3732 * an already aborted command iocb, the status of the completion
3733 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED.
3734 * This function always returns 1.
3735 **/
3736 static int
lpfc_sli_process_sol_iocb(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * saveq)3737 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3738 struct lpfc_iocbq *saveq)
3739 {
3740 struct lpfc_iocbq *cmdiocbp;
3741 unsigned long iflag;
3742 u32 ulp_command, ulp_status, ulp_word4, ulp_context, iotag;
3743
3744 if (phba->sli_rev == LPFC_SLI_REV4)
3745 spin_lock_irqsave(&pring->ring_lock, iflag);
3746 else
3747 spin_lock_irqsave(&phba->hbalock, iflag);
3748 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq);
3749 if (phba->sli_rev == LPFC_SLI_REV4)
3750 spin_unlock_irqrestore(&pring->ring_lock, iflag);
3751 else
3752 spin_unlock_irqrestore(&phba->hbalock, iflag);
3753
3754 ulp_command = get_job_cmnd(phba, saveq);
3755 ulp_status = get_job_ulpstatus(phba, saveq);
3756 ulp_word4 = get_job_word4(phba, saveq);
3757 ulp_context = get_job_ulpcontext(phba, saveq);
3758 if (phba->sli_rev == LPFC_SLI_REV4)
3759 iotag = get_wqe_reqtag(saveq);
3760 else
3761 iotag = saveq->iocb.ulpIoTag;
3762
3763 if (cmdiocbp) {
3764 ulp_command = get_job_cmnd(phba, cmdiocbp);
3765 if (cmdiocbp->cmd_cmpl) {
3766 /*
3767 * If an ELS command failed send an event to mgmt
3768 * application.
3769 */
3770 if (ulp_status &&
3771 (pring->ringno == LPFC_ELS_RING) &&
3772 (ulp_command == CMD_ELS_REQUEST64_CR))
3773 lpfc_send_els_failure_event(phba,
3774 cmdiocbp, saveq);
3775
3776 /*
3777 * Post all ELS completions to the worker thread.
3778 * All other are passed to the completion callback.
3779 */
3780 if (pring->ringno == LPFC_ELS_RING) {
3781 if ((phba->sli_rev < LPFC_SLI_REV4) &&
3782 (cmdiocbp->cmd_flag &
3783 LPFC_DRIVER_ABORTED)) {
3784 spin_lock_irqsave(&phba->hbalock,
3785 iflag);
3786 cmdiocbp->cmd_flag &=
3787 ~LPFC_DRIVER_ABORTED;
3788 spin_unlock_irqrestore(&phba->hbalock,
3789 iflag);
3790 saveq->iocb.ulpStatus =
3791 IOSTAT_LOCAL_REJECT;
3792 saveq->iocb.un.ulpWord[4] =
3793 IOERR_SLI_ABORTED;
3794
3795 /* Firmware could still be in progress
3796 * of DMAing payload, so don't free data
3797 * buffer till after a hbeat.
3798 */
3799 spin_lock_irqsave(&phba->hbalock,
3800 iflag);
3801 saveq->cmd_flag |= LPFC_DELAY_MEM_FREE;
3802 spin_unlock_irqrestore(&phba->hbalock,
3803 iflag);
3804 }
3805 if (phba->sli_rev == LPFC_SLI_REV4) {
3806 if (saveq->cmd_flag &
3807 LPFC_EXCHANGE_BUSY) {
3808 /* Set cmdiocb flag for the
3809 * exchange busy so sgl (xri)
3810 * will not be released until
3811 * the abort xri is received
3812 * from hba.
3813 */
3814 spin_lock_irqsave(
3815 &phba->hbalock, iflag);
3816 cmdiocbp->cmd_flag |=
3817 LPFC_EXCHANGE_BUSY;
3818 spin_unlock_irqrestore(
3819 &phba->hbalock, iflag);
3820 }
3821 if (cmdiocbp->cmd_flag &
3822 LPFC_DRIVER_ABORTED) {
3823 /*
3824 * Clear LPFC_DRIVER_ABORTED
3825 * bit in case it was driver
3826 * initiated abort.
3827 */
3828 spin_lock_irqsave(
3829 &phba->hbalock, iflag);
3830 cmdiocbp->cmd_flag &=
3831 ~LPFC_DRIVER_ABORTED;
3832 spin_unlock_irqrestore(
3833 &phba->hbalock, iflag);
3834 set_job_ulpstatus(cmdiocbp,
3835 IOSTAT_LOCAL_REJECT);
3836 set_job_ulpword4(cmdiocbp,
3837 IOERR_ABORT_REQUESTED);
3838 /*
3839 * For SLI4, irspiocb contains
3840 * NO_XRI in sli_xritag, it
3841 * shall not affect releasing
3842 * sgl (xri) process.
3843 */
3844 set_job_ulpstatus(saveq,
3845 IOSTAT_LOCAL_REJECT);
3846 set_job_ulpword4(saveq,
3847 IOERR_SLI_ABORTED);
3848 spin_lock_irqsave(
3849 &phba->hbalock, iflag);
3850 saveq->cmd_flag |=
3851 LPFC_DELAY_MEM_FREE;
3852 spin_unlock_irqrestore(
3853 &phba->hbalock, iflag);
3854 }
3855 }
3856 }
3857 cmdiocbp->cmd_cmpl(phba, cmdiocbp, saveq);
3858 } else
3859 lpfc_sli_release_iocbq(phba, cmdiocbp);
3860 } else {
3861 /*
3862 * Unknown initiating command based on the response iotag.
3863 * This could be the case on the ELS ring because of
3864 * lpfc_els_abort().
3865 */
3866 if (pring->ringno != LPFC_ELS_RING) {
3867 /*
3868 * Ring <ringno> handler: unexpected completion IoTag
3869 * <IoTag>
3870 */
3871 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3872 "0322 Ring %d handler: "
3873 "unexpected completion IoTag x%x "
3874 "Data: x%x x%x x%x x%x\n",
3875 pring->ringno, iotag, ulp_status,
3876 ulp_word4, ulp_command, ulp_context);
3877 }
3878 }
3879
3880 return 1;
3881 }
3882
3883 /**
3884 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler
3885 * @phba: Pointer to HBA context object.
3886 * @pring: Pointer to driver SLI ring object.
3887 *
3888 * This function is called from the iocb ring event handlers when
3889 * put pointer is ahead of the get pointer for a ring. This function signal
3890 * an error attention condition to the worker thread and the worker
3891 * thread will transition the HBA to offline state.
3892 **/
3893 static void
lpfc_sli_rsp_pointers_error(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)3894 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
3895 {
3896 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
3897 /*
3898 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
3899 * rsp ring <portRspMax>
3900 */
3901 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3902 "0312 Ring %d handler: portRspPut %d "
3903 "is bigger than rsp ring %d\n",
3904 pring->ringno, le32_to_cpu(pgp->rspPutInx),
3905 pring->sli.sli3.numRiocb);
3906
3907 phba->link_state = LPFC_HBA_ERROR;
3908
3909 /*
3910 * All error attention handlers are posted to
3911 * worker thread
3912 */
3913 phba->work_ha |= HA_ERATT;
3914 phba->work_hs = HS_FFER3;
3915
3916 lpfc_worker_wake_up(phba);
3917
3918 return;
3919 }
3920
3921 /**
3922 * lpfc_poll_eratt - Error attention polling timer timeout handler
3923 * @t: Context to fetch pointer to address of HBA context object from.
3924 *
3925 * This function is invoked by the Error Attention polling timer when the
3926 * timer times out. It will check the SLI Error Attention register for
3927 * possible attention events. If so, it will post an Error Attention event
3928 * and wake up worker thread to process it. Otherwise, it will set up the
3929 * Error Attention polling timer for the next poll.
3930 **/
lpfc_poll_eratt(struct timer_list * t)3931 void lpfc_poll_eratt(struct timer_list *t)
3932 {
3933 struct lpfc_hba *phba;
3934 uint32_t eratt = 0;
3935 uint64_t sli_intr, cnt;
3936
3937 phba = from_timer(phba, t, eratt_poll);
3938 if (!(phba->hba_flag & HBA_SETUP))
3939 return;
3940
3941 /* Here we will also keep track of interrupts per sec of the hba */
3942 sli_intr = phba->sli.slistat.sli_intr;
3943
3944 if (phba->sli.slistat.sli_prev_intr > sli_intr)
3945 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) +
3946 sli_intr);
3947 else
3948 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr);
3949
3950 /* 64-bit integer division not supported on 32-bit x86 - use do_div */
3951 do_div(cnt, phba->eratt_poll_interval);
3952 phba->sli.slistat.sli_ips = cnt;
3953
3954 phba->sli.slistat.sli_prev_intr = sli_intr;
3955
3956 /* Check chip HA register for error event */
3957 eratt = lpfc_sli_check_eratt(phba);
3958
3959 if (eratt)
3960 /* Tell the worker thread there is work to do */
3961 lpfc_worker_wake_up(phba);
3962 else
3963 /* Restart the timer for next eratt poll */
3964 mod_timer(&phba->eratt_poll,
3965 jiffies +
3966 msecs_to_jiffies(1000 * phba->eratt_poll_interval));
3967 return;
3968 }
3969
3970
3971 /**
3972 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring
3973 * @phba: Pointer to HBA context object.
3974 * @pring: Pointer to driver SLI ring object.
3975 * @mask: Host attention register mask for this ring.
3976 *
3977 * This function is called from the interrupt context when there is a ring
3978 * event for the fcp ring. The caller does not hold any lock.
3979 * The function processes each response iocb in the response ring until it
3980 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with
3981 * LE bit set. The function will call the completion handler of the command iocb
3982 * if the response iocb indicates a completion for a command iocb or it is
3983 * an abort completion. The function will call lpfc_sli_process_unsol_iocb
3984 * function if this is an unsolicited iocb.
3985 * This routine presumes LPFC_FCP_RING handling and doesn't bother
3986 * to check it explicitly.
3987 */
3988 int
lpfc_sli_handle_fast_ring_event(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,uint32_t mask)3989 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba,
3990 struct lpfc_sli_ring *pring, uint32_t mask)
3991 {
3992 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
3993 IOCB_t *irsp = NULL;
3994 IOCB_t *entry = NULL;
3995 struct lpfc_iocbq *cmdiocbq = NULL;
3996 struct lpfc_iocbq rspiocbq;
3997 uint32_t status;
3998 uint32_t portRspPut, portRspMax;
3999 int rc = 1;
4000 lpfc_iocb_type type;
4001 unsigned long iflag;
4002 uint32_t rsp_cmpl = 0;
4003
4004 spin_lock_irqsave(&phba->hbalock, iflag);
4005 pring->stats.iocb_event++;
4006
4007 /*
4008 * The next available response entry should never exceed the maximum
4009 * entries. If it does, treat it as an adapter hardware error.
4010 */
4011 portRspMax = pring->sli.sli3.numRiocb;
4012 portRspPut = le32_to_cpu(pgp->rspPutInx);
4013 if (unlikely(portRspPut >= portRspMax)) {
4014 lpfc_sli_rsp_pointers_error(phba, pring);
4015 spin_unlock_irqrestore(&phba->hbalock, iflag);
4016 return 1;
4017 }
4018 if (phba->fcp_ring_in_use) {
4019 spin_unlock_irqrestore(&phba->hbalock, iflag);
4020 return 1;
4021 } else
4022 phba->fcp_ring_in_use = 1;
4023
4024 rmb();
4025 while (pring->sli.sli3.rspidx != portRspPut) {
4026 /*
4027 * Fetch an entry off the ring and copy it into a local data
4028 * structure. The copy involves a byte-swap since the
4029 * network byte order and pci byte orders are different.
4030 */
4031 entry = lpfc_resp_iocb(phba, pring);
4032 phba->last_completion_time = jiffies;
4033
4034 if (++pring->sli.sli3.rspidx >= portRspMax)
4035 pring->sli.sli3.rspidx = 0;
4036
4037 lpfc_sli_pcimem_bcopy((uint32_t *) entry,
4038 (uint32_t *) &rspiocbq.iocb,
4039 phba->iocb_rsp_size);
4040 INIT_LIST_HEAD(&(rspiocbq.list));
4041 irsp = &rspiocbq.iocb;
4042
4043 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK);
4044 pring->stats.iocb_rsp++;
4045 rsp_cmpl++;
4046
4047 if (unlikely(irsp->ulpStatus)) {
4048 /*
4049 * If resource errors reported from HBA, reduce
4050 * queuedepths of the SCSI device.
4051 */
4052 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) &&
4053 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) ==
4054 IOERR_NO_RESOURCES)) {
4055 spin_unlock_irqrestore(&phba->hbalock, iflag);
4056 phba->lpfc_rampdown_queue_depth(phba);
4057 spin_lock_irqsave(&phba->hbalock, iflag);
4058 }
4059
4060 /* Rsp ring <ringno> error: IOCB */
4061 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
4062 "0336 Rsp Ring %d error: IOCB Data: "
4063 "x%x x%x x%x x%x x%x x%x x%x x%x\n",
4064 pring->ringno,
4065 irsp->un.ulpWord[0],
4066 irsp->un.ulpWord[1],
4067 irsp->un.ulpWord[2],
4068 irsp->un.ulpWord[3],
4069 irsp->un.ulpWord[4],
4070 irsp->un.ulpWord[5],
4071 *(uint32_t *)&irsp->un1,
4072 *((uint32_t *)&irsp->un1 + 1));
4073 }
4074
4075 switch (type) {
4076 case LPFC_ABORT_IOCB:
4077 case LPFC_SOL_IOCB:
4078 /*
4079 * Idle exchange closed via ABTS from port. No iocb
4080 * resources need to be recovered.
4081 */
4082 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) {
4083 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4084 "0333 IOCB cmd 0x%x"
4085 " processed. Skipping"
4086 " completion\n",
4087 irsp->ulpCommand);
4088 break;
4089 }
4090
4091 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring,
4092 &rspiocbq);
4093 if (unlikely(!cmdiocbq))
4094 break;
4095 if (cmdiocbq->cmd_flag & LPFC_DRIVER_ABORTED)
4096 cmdiocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED;
4097 if (cmdiocbq->cmd_cmpl) {
4098 spin_unlock_irqrestore(&phba->hbalock, iflag);
4099 cmdiocbq->cmd_cmpl(phba, cmdiocbq, &rspiocbq);
4100 spin_lock_irqsave(&phba->hbalock, iflag);
4101 }
4102 break;
4103 case LPFC_UNSOL_IOCB:
4104 spin_unlock_irqrestore(&phba->hbalock, iflag);
4105 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq);
4106 spin_lock_irqsave(&phba->hbalock, iflag);
4107 break;
4108 default:
4109 if (irsp->ulpCommand == CMD_ADAPTER_MSG) {
4110 char adaptermsg[LPFC_MAX_ADPTMSG];
4111 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
4112 memcpy(&adaptermsg[0], (uint8_t *) irsp,
4113 MAX_MSG_DATA);
4114 dev_warn(&((phba->pcidev)->dev),
4115 "lpfc%d: %s\n",
4116 phba->brd_no, adaptermsg);
4117 } else {
4118 /* Unknown IOCB command */
4119 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4120 "0334 Unknown IOCB command "
4121 "Data: x%x, x%x x%x x%x x%x\n",
4122 type, irsp->ulpCommand,
4123 irsp->ulpStatus,
4124 irsp->ulpIoTag,
4125 irsp->ulpContext);
4126 }
4127 break;
4128 }
4129
4130 /*
4131 * The response IOCB has been processed. Update the ring
4132 * pointer in SLIM. If the port response put pointer has not
4133 * been updated, sync the pgp->rspPutInx and fetch the new port
4134 * response put pointer.
4135 */
4136 writel(pring->sli.sli3.rspidx,
4137 &phba->host_gp[pring->ringno].rspGetInx);
4138
4139 if (pring->sli.sli3.rspidx == portRspPut)
4140 portRspPut = le32_to_cpu(pgp->rspPutInx);
4141 }
4142
4143 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) {
4144 pring->stats.iocb_rsp_full++;
4145 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
4146 writel(status, phba->CAregaddr);
4147 readl(phba->CAregaddr);
4148 }
4149 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
4150 pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
4151 pring->stats.iocb_cmd_empty++;
4152
4153 /* Force update of the local copy of cmdGetInx */
4154 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
4155 lpfc_sli_resume_iocb(phba, pring);
4156
4157 if ((pring->lpfc_sli_cmd_available))
4158 (pring->lpfc_sli_cmd_available) (phba, pring);
4159
4160 }
4161
4162 phba->fcp_ring_in_use = 0;
4163 spin_unlock_irqrestore(&phba->hbalock, iflag);
4164 return rc;
4165 }
4166
4167 /**
4168 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb
4169 * @phba: Pointer to HBA context object.
4170 * @pring: Pointer to driver SLI ring object.
4171 * @rspiocbp: Pointer to driver response IOCB object.
4172 *
4173 * This function is called from the worker thread when there is a slow-path
4174 * response IOCB to process. This function chains all the response iocbs until
4175 * seeing the iocb with the LE bit set. The function will call
4176 * lpfc_sli_process_sol_iocb function if the response iocb indicates a
4177 * completion of a command iocb. The function will call the
4178 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb.
4179 * The function frees the resources or calls the completion handler if this
4180 * iocb is an abort completion. The function returns NULL when the response
4181 * iocb has the LE bit set and all the chained iocbs are processed, otherwise
4182 * this function shall chain the iocb on to the iocb_continueq and return the
4183 * response iocb passed in.
4184 **/
4185 static struct lpfc_iocbq *
lpfc_sli_sp_handle_rspiocb(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * rspiocbp)4186 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
4187 struct lpfc_iocbq *rspiocbp)
4188 {
4189 struct lpfc_iocbq *saveq;
4190 struct lpfc_iocbq *cmdiocb;
4191 struct lpfc_iocbq *next_iocb;
4192 IOCB_t *irsp;
4193 uint32_t free_saveq;
4194 u8 cmd_type;
4195 lpfc_iocb_type type;
4196 unsigned long iflag;
4197 u32 ulp_status = get_job_ulpstatus(phba, rspiocbp);
4198 u32 ulp_word4 = get_job_word4(phba, rspiocbp);
4199 u32 ulp_command = get_job_cmnd(phba, rspiocbp);
4200 int rc;
4201
4202 spin_lock_irqsave(&phba->hbalock, iflag);
4203 /* First add the response iocb to the countinueq list */
4204 list_add_tail(&rspiocbp->list, &pring->iocb_continueq);
4205 pring->iocb_continueq_cnt++;
4206
4207 /*
4208 * By default, the driver expects to free all resources
4209 * associated with this iocb completion.
4210 */
4211 free_saveq = 1;
4212 saveq = list_get_first(&pring->iocb_continueq,
4213 struct lpfc_iocbq, list);
4214 list_del_init(&pring->iocb_continueq);
4215 pring->iocb_continueq_cnt = 0;
4216
4217 pring->stats.iocb_rsp++;
4218
4219 /*
4220 * If resource errors reported from HBA, reduce
4221 * queuedepths of the SCSI device.
4222 */
4223 if (ulp_status == IOSTAT_LOCAL_REJECT &&
4224 ((ulp_word4 & IOERR_PARAM_MASK) ==
4225 IOERR_NO_RESOURCES)) {
4226 spin_unlock_irqrestore(&phba->hbalock, iflag);
4227 phba->lpfc_rampdown_queue_depth(phba);
4228 spin_lock_irqsave(&phba->hbalock, iflag);
4229 }
4230
4231 if (ulp_status) {
4232 /* Rsp ring <ringno> error: IOCB */
4233 if (phba->sli_rev < LPFC_SLI_REV4) {
4234 irsp = &rspiocbp->iocb;
4235 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
4236 "0328 Rsp Ring %d error: ulp_status x%x "
4237 "IOCB Data: "
4238 "x%08x x%08x x%08x x%08x "
4239 "x%08x x%08x x%08x x%08x "
4240 "x%08x x%08x x%08x x%08x "
4241 "x%08x x%08x x%08x x%08x\n",
4242 pring->ringno, ulp_status,
4243 get_job_ulpword(rspiocbp, 0),
4244 get_job_ulpword(rspiocbp, 1),
4245 get_job_ulpword(rspiocbp, 2),
4246 get_job_ulpword(rspiocbp, 3),
4247 get_job_ulpword(rspiocbp, 4),
4248 get_job_ulpword(rspiocbp, 5),
4249 *(((uint32_t *)irsp) + 6),
4250 *(((uint32_t *)irsp) + 7),
4251 *(((uint32_t *)irsp) + 8),
4252 *(((uint32_t *)irsp) + 9),
4253 *(((uint32_t *)irsp) + 10),
4254 *(((uint32_t *)irsp) + 11),
4255 *(((uint32_t *)irsp) + 12),
4256 *(((uint32_t *)irsp) + 13),
4257 *(((uint32_t *)irsp) + 14),
4258 *(((uint32_t *)irsp) + 15));
4259 } else {
4260 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
4261 "0321 Rsp Ring %d error: "
4262 "IOCB Data: "
4263 "x%x x%x x%x x%x\n",
4264 pring->ringno,
4265 rspiocbp->wcqe_cmpl.word0,
4266 rspiocbp->wcqe_cmpl.total_data_placed,
4267 rspiocbp->wcqe_cmpl.parameter,
4268 rspiocbp->wcqe_cmpl.word3);
4269 }
4270 }
4271
4272
4273 /*
4274 * Fetch the iocb command type and call the correct completion
4275 * routine. Solicited and Unsolicited IOCBs on the ELS ring
4276 * get freed back to the lpfc_iocb_list by the discovery
4277 * kernel thread.
4278 */
4279 cmd_type = ulp_command & CMD_IOCB_MASK;
4280 type = lpfc_sli_iocb_cmd_type(cmd_type);
4281 switch (type) {
4282 case LPFC_SOL_IOCB:
4283 spin_unlock_irqrestore(&phba->hbalock, iflag);
4284 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq);
4285 spin_lock_irqsave(&phba->hbalock, iflag);
4286 break;
4287 case LPFC_UNSOL_IOCB:
4288 spin_unlock_irqrestore(&phba->hbalock, iflag);
4289 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq);
4290 spin_lock_irqsave(&phba->hbalock, iflag);
4291 if (!rc)
4292 free_saveq = 0;
4293 break;
4294 case LPFC_ABORT_IOCB:
4295 cmdiocb = NULL;
4296 if (ulp_command != CMD_XRI_ABORTED_CX)
4297 cmdiocb = lpfc_sli_iocbq_lookup(phba, pring,
4298 saveq);
4299 if (cmdiocb) {
4300 /* Call the specified completion routine */
4301 if (cmdiocb->cmd_cmpl) {
4302 spin_unlock_irqrestore(&phba->hbalock, iflag);
4303 cmdiocb->cmd_cmpl(phba, cmdiocb, saveq);
4304 spin_lock_irqsave(&phba->hbalock, iflag);
4305 } else {
4306 __lpfc_sli_release_iocbq(phba, cmdiocb);
4307 }
4308 }
4309 break;
4310 case LPFC_UNKNOWN_IOCB:
4311 if (ulp_command == CMD_ADAPTER_MSG) {
4312 char adaptermsg[LPFC_MAX_ADPTMSG];
4313
4314 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
4315 memcpy(&adaptermsg[0], (uint8_t *)&rspiocbp->wqe,
4316 MAX_MSG_DATA);
4317 dev_warn(&((phba->pcidev)->dev),
4318 "lpfc%d: %s\n",
4319 phba->brd_no, adaptermsg);
4320 } else {
4321 /* Unknown command */
4322 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4323 "0335 Unknown IOCB "
4324 "command Data: x%x "
4325 "x%x x%x x%x\n",
4326 ulp_command,
4327 ulp_status,
4328 get_wqe_reqtag(rspiocbp),
4329 get_job_ulpcontext(phba, rspiocbp));
4330 }
4331 break;
4332 }
4333
4334 if (free_saveq) {
4335 list_for_each_entry_safe(rspiocbp, next_iocb,
4336 &saveq->list, list) {
4337 list_del_init(&rspiocbp->list);
4338 __lpfc_sli_release_iocbq(phba, rspiocbp);
4339 }
4340 __lpfc_sli_release_iocbq(phba, saveq);
4341 }
4342 rspiocbp = NULL;
4343 spin_unlock_irqrestore(&phba->hbalock, iflag);
4344 return rspiocbp;
4345 }
4346
4347 /**
4348 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs
4349 * @phba: Pointer to HBA context object.
4350 * @pring: Pointer to driver SLI ring object.
4351 * @mask: Host attention register mask for this ring.
4352 *
4353 * This routine wraps the actual slow_ring event process routine from the
4354 * API jump table function pointer from the lpfc_hba struct.
4355 **/
4356 void
lpfc_sli_handle_slow_ring_event(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,uint32_t mask)4357 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba,
4358 struct lpfc_sli_ring *pring, uint32_t mask)
4359 {
4360 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask);
4361 }
4362
4363 /**
4364 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings
4365 * @phba: Pointer to HBA context object.
4366 * @pring: Pointer to driver SLI ring object.
4367 * @mask: Host attention register mask for this ring.
4368 *
4369 * This function is called from the worker thread when there is a ring event
4370 * for non-fcp rings. The caller does not hold any lock. The function will
4371 * remove each response iocb in the response ring and calls the handle
4372 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
4373 **/
4374 static void
lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,uint32_t mask)4375 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba,
4376 struct lpfc_sli_ring *pring, uint32_t mask)
4377 {
4378 struct lpfc_pgp *pgp;
4379 IOCB_t *entry;
4380 IOCB_t *irsp = NULL;
4381 struct lpfc_iocbq *rspiocbp = NULL;
4382 uint32_t portRspPut, portRspMax;
4383 unsigned long iflag;
4384 uint32_t status;
4385
4386 pgp = &phba->port_gp[pring->ringno];
4387 spin_lock_irqsave(&phba->hbalock, iflag);
4388 pring->stats.iocb_event++;
4389
4390 /*
4391 * The next available response entry should never exceed the maximum
4392 * entries. If it does, treat it as an adapter hardware error.
4393 */
4394 portRspMax = pring->sli.sli3.numRiocb;
4395 portRspPut = le32_to_cpu(pgp->rspPutInx);
4396 if (portRspPut >= portRspMax) {
4397 /*
4398 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
4399 * rsp ring <portRspMax>
4400 */
4401 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4402 "0303 Ring %d handler: portRspPut %d "
4403 "is bigger than rsp ring %d\n",
4404 pring->ringno, portRspPut, portRspMax);
4405
4406 phba->link_state = LPFC_HBA_ERROR;
4407 spin_unlock_irqrestore(&phba->hbalock, iflag);
4408
4409 phba->work_hs = HS_FFER3;
4410 lpfc_handle_eratt(phba);
4411
4412 return;
4413 }
4414
4415 rmb();
4416 while (pring->sli.sli3.rspidx != portRspPut) {
4417 /*
4418 * Build a completion list and call the appropriate handler.
4419 * The process is to get the next available response iocb, get
4420 * a free iocb from the list, copy the response data into the
4421 * free iocb, insert to the continuation list, and update the
4422 * next response index to slim. This process makes response
4423 * iocb's in the ring available to DMA as fast as possible but
4424 * pays a penalty for a copy operation. Since the iocb is
4425 * only 32 bytes, this penalty is considered small relative to
4426 * the PCI reads for register values and a slim write. When
4427 * the ulpLe field is set, the entire Command has been
4428 * received.
4429 */
4430 entry = lpfc_resp_iocb(phba, pring);
4431
4432 phba->last_completion_time = jiffies;
4433 rspiocbp = __lpfc_sli_get_iocbq(phba);
4434 if (rspiocbp == NULL) {
4435 printk(KERN_ERR "%s: out of buffers! Failing "
4436 "completion.\n", __func__);
4437 break;
4438 }
4439
4440 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb,
4441 phba->iocb_rsp_size);
4442 irsp = &rspiocbp->iocb;
4443
4444 if (++pring->sli.sli3.rspidx >= portRspMax)
4445 pring->sli.sli3.rspidx = 0;
4446
4447 if (pring->ringno == LPFC_ELS_RING) {
4448 lpfc_debugfs_slow_ring_trc(phba,
4449 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x",
4450 *(((uint32_t *) irsp) + 4),
4451 *(((uint32_t *) irsp) + 6),
4452 *(((uint32_t *) irsp) + 7));
4453 }
4454
4455 writel(pring->sli.sli3.rspidx,
4456 &phba->host_gp[pring->ringno].rspGetInx);
4457
4458 spin_unlock_irqrestore(&phba->hbalock, iflag);
4459 /* Handle the response IOCB */
4460 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp);
4461 spin_lock_irqsave(&phba->hbalock, iflag);
4462
4463 /*
4464 * If the port response put pointer has not been updated, sync
4465 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port
4466 * response put pointer.
4467 */
4468 if (pring->sli.sli3.rspidx == portRspPut) {
4469 portRspPut = le32_to_cpu(pgp->rspPutInx);
4470 }
4471 } /* while (pring->sli.sli3.rspidx != portRspPut) */
4472
4473 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) {
4474 /* At least one response entry has been freed */
4475 pring->stats.iocb_rsp_full++;
4476 /* SET RxRE_RSP in Chip Att register */
4477 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
4478 writel(status, phba->CAregaddr);
4479 readl(phba->CAregaddr); /* flush */
4480 }
4481 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
4482 pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
4483 pring->stats.iocb_cmd_empty++;
4484
4485 /* Force update of the local copy of cmdGetInx */
4486 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
4487 lpfc_sli_resume_iocb(phba, pring);
4488
4489 if ((pring->lpfc_sli_cmd_available))
4490 (pring->lpfc_sli_cmd_available) (phba, pring);
4491
4492 }
4493
4494 spin_unlock_irqrestore(&phba->hbalock, iflag);
4495 return;
4496 }
4497
4498 /**
4499 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events
4500 * @phba: Pointer to HBA context object.
4501 * @pring: Pointer to driver SLI ring object.
4502 * @mask: Host attention register mask for this ring.
4503 *
4504 * This function is called from the worker thread when there is a pending
4505 * ELS response iocb on the driver internal slow-path response iocb worker
4506 * queue. The caller does not hold any lock. The function will remove each
4507 * response iocb from the response worker queue and calls the handle
4508 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
4509 **/
4510 static void
lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,uint32_t mask)4511 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba,
4512 struct lpfc_sli_ring *pring, uint32_t mask)
4513 {
4514 struct lpfc_iocbq *irspiocbq;
4515 struct hbq_dmabuf *dmabuf;
4516 struct lpfc_cq_event *cq_event;
4517 unsigned long iflag;
4518 int count = 0;
4519
4520 spin_lock_irqsave(&phba->hbalock, iflag);
4521 phba->hba_flag &= ~HBA_SP_QUEUE_EVT;
4522 spin_unlock_irqrestore(&phba->hbalock, iflag);
4523 while (!list_empty(&phba->sli4_hba.sp_queue_event)) {
4524 /* Get the response iocb from the head of work queue */
4525 spin_lock_irqsave(&phba->hbalock, iflag);
4526 list_remove_head(&phba->sli4_hba.sp_queue_event,
4527 cq_event, struct lpfc_cq_event, list);
4528 spin_unlock_irqrestore(&phba->hbalock, iflag);
4529
4530 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) {
4531 case CQE_CODE_COMPL_WQE:
4532 irspiocbq = container_of(cq_event, struct lpfc_iocbq,
4533 cq_event);
4534 /* Translate ELS WCQE to response IOCBQ */
4535 irspiocbq = lpfc_sli4_els_preprocess_rspiocbq(phba,
4536 irspiocbq);
4537 if (irspiocbq)
4538 lpfc_sli_sp_handle_rspiocb(phba, pring,
4539 irspiocbq);
4540 count++;
4541 break;
4542 case CQE_CODE_RECEIVE:
4543 case CQE_CODE_RECEIVE_V1:
4544 dmabuf = container_of(cq_event, struct hbq_dmabuf,
4545 cq_event);
4546 lpfc_sli4_handle_received_buffer(phba, dmabuf);
4547 count++;
4548 break;
4549 default:
4550 break;
4551 }
4552
4553 /* Limit the number of events to 64 to avoid soft lockups */
4554 if (count == 64)
4555 break;
4556 }
4557 }
4558
4559 /**
4560 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring
4561 * @phba: Pointer to HBA context object.
4562 * @pring: Pointer to driver SLI ring object.
4563 *
4564 * This function aborts all iocbs in the given ring and frees all the iocb
4565 * objects in txq. This function issues an abort iocb for all the iocb commands
4566 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
4567 * the return of this function. The caller is not required to hold any locks.
4568 **/
4569 void
lpfc_sli_abort_iocb_ring(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)4570 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
4571 {
4572 LIST_HEAD(tx_completions);
4573 LIST_HEAD(txcmplq_completions);
4574 struct lpfc_iocbq *iocb, *next_iocb;
4575 int offline;
4576
4577 if (pring->ringno == LPFC_ELS_RING) {
4578 lpfc_fabric_abort_hba(phba);
4579 }
4580 offline = pci_channel_offline(phba->pcidev);
4581
4582 /* Error everything on txq and txcmplq
4583 * First do the txq.
4584 */
4585 if (phba->sli_rev >= LPFC_SLI_REV4) {
4586 spin_lock_irq(&pring->ring_lock);
4587 list_splice_init(&pring->txq, &tx_completions);
4588 pring->txq_cnt = 0;
4589
4590 if (offline) {
4591 list_splice_init(&pring->txcmplq,
4592 &txcmplq_completions);
4593 } else {
4594 /* Next issue ABTS for everything on the txcmplq */
4595 list_for_each_entry_safe(iocb, next_iocb,
4596 &pring->txcmplq, list)
4597 lpfc_sli_issue_abort_iotag(phba, pring,
4598 iocb, NULL);
4599 }
4600 spin_unlock_irq(&pring->ring_lock);
4601 } else {
4602 spin_lock_irq(&phba->hbalock);
4603 list_splice_init(&pring->txq, &tx_completions);
4604 pring->txq_cnt = 0;
4605
4606 if (offline) {
4607 list_splice_init(&pring->txcmplq, &txcmplq_completions);
4608 } else {
4609 /* Next issue ABTS for everything on the txcmplq */
4610 list_for_each_entry_safe(iocb, next_iocb,
4611 &pring->txcmplq, list)
4612 lpfc_sli_issue_abort_iotag(phba, pring,
4613 iocb, NULL);
4614 }
4615 spin_unlock_irq(&phba->hbalock);
4616 }
4617
4618 if (offline) {
4619 /* Cancel all the IOCBs from the completions list */
4620 lpfc_sli_cancel_iocbs(phba, &txcmplq_completions,
4621 IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED);
4622 } else {
4623 /* Make sure HBA is alive */
4624 lpfc_issue_hb_tmo(phba);
4625 }
4626 /* Cancel all the IOCBs from the completions list */
4627 lpfc_sli_cancel_iocbs(phba, &tx_completions, IOSTAT_LOCAL_REJECT,
4628 IOERR_SLI_ABORTED);
4629 }
4630
4631 /**
4632 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings
4633 * @phba: Pointer to HBA context object.
4634 *
4635 * This function aborts all iocbs in FCP rings and frees all the iocb
4636 * objects in txq. This function issues an abort iocb for all the iocb commands
4637 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
4638 * the return of this function. The caller is not required to hold any locks.
4639 **/
4640 void
lpfc_sli_abort_fcp_rings(struct lpfc_hba * phba)4641 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba)
4642 {
4643 struct lpfc_sli *psli = &phba->sli;
4644 struct lpfc_sli_ring *pring;
4645 uint32_t i;
4646
4647 /* Look on all the FCP Rings for the iotag */
4648 if (phba->sli_rev >= LPFC_SLI_REV4) {
4649 for (i = 0; i < phba->cfg_hdw_queue; i++) {
4650 pring = phba->sli4_hba.hdwq[i].io_wq->pring;
4651 lpfc_sli_abort_iocb_ring(phba, pring);
4652 }
4653 } else {
4654 pring = &psli->sli3_ring[LPFC_FCP_RING];
4655 lpfc_sli_abort_iocb_ring(phba, pring);
4656 }
4657 }
4658
4659 /**
4660 * lpfc_sli_flush_io_rings - flush all iocbs in the IO ring
4661 * @phba: Pointer to HBA context object.
4662 *
4663 * This function flushes all iocbs in the IO ring and frees all the iocb
4664 * objects in txq and txcmplq. This function will not issue abort iocbs
4665 * for all the iocb commands in txcmplq, they will just be returned with
4666 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI
4667 * slot has been permanently disabled.
4668 **/
4669 void
lpfc_sli_flush_io_rings(struct lpfc_hba * phba)4670 lpfc_sli_flush_io_rings(struct lpfc_hba *phba)
4671 {
4672 LIST_HEAD(txq);
4673 LIST_HEAD(txcmplq);
4674 struct lpfc_sli *psli = &phba->sli;
4675 struct lpfc_sli_ring *pring;
4676 uint32_t i;
4677 struct lpfc_iocbq *piocb, *next_iocb;
4678
4679 spin_lock_irq(&phba->hbalock);
4680 /* Indicate the I/O queues are flushed */
4681 phba->hba_flag |= HBA_IOQ_FLUSH;
4682 spin_unlock_irq(&phba->hbalock);
4683
4684 /* Look on all the FCP Rings for the iotag */
4685 if (phba->sli_rev >= LPFC_SLI_REV4) {
4686 for (i = 0; i < phba->cfg_hdw_queue; i++) {
4687 if (!phba->sli4_hba.hdwq ||
4688 !phba->sli4_hba.hdwq[i].io_wq) {
4689 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
4690 "7777 hdwq's deleted %lx "
4691 "%lx %x %x\n",
4692 (unsigned long)phba->pport->load_flag,
4693 (unsigned long)phba->hba_flag,
4694 phba->link_state,
4695 phba->sli.sli_flag);
4696 return;
4697 }
4698 pring = phba->sli4_hba.hdwq[i].io_wq->pring;
4699
4700 spin_lock_irq(&pring->ring_lock);
4701 /* Retrieve everything on txq */
4702 list_splice_init(&pring->txq, &txq);
4703 list_for_each_entry_safe(piocb, next_iocb,
4704 &pring->txcmplq, list)
4705 piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ;
4706 /* Retrieve everything on the txcmplq */
4707 list_splice_init(&pring->txcmplq, &txcmplq);
4708 pring->txq_cnt = 0;
4709 pring->txcmplq_cnt = 0;
4710 spin_unlock_irq(&pring->ring_lock);
4711
4712 /* Flush the txq */
4713 lpfc_sli_cancel_iocbs(phba, &txq,
4714 IOSTAT_LOCAL_REJECT,
4715 IOERR_SLI_DOWN);
4716 /* Flush the txcmplq */
4717 lpfc_sli_cancel_iocbs(phba, &txcmplq,
4718 IOSTAT_LOCAL_REJECT,
4719 IOERR_SLI_DOWN);
4720 if (unlikely(pci_channel_offline(phba->pcidev)))
4721 lpfc_sli4_io_xri_aborted(phba, NULL, 0);
4722 }
4723 } else {
4724 pring = &psli->sli3_ring[LPFC_FCP_RING];
4725
4726 spin_lock_irq(&phba->hbalock);
4727 /* Retrieve everything on txq */
4728 list_splice_init(&pring->txq, &txq);
4729 list_for_each_entry_safe(piocb, next_iocb,
4730 &pring->txcmplq, list)
4731 piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ;
4732 /* Retrieve everything on the txcmplq */
4733 list_splice_init(&pring->txcmplq, &txcmplq);
4734 pring->txq_cnt = 0;
4735 pring->txcmplq_cnt = 0;
4736 spin_unlock_irq(&phba->hbalock);
4737
4738 /* Flush the txq */
4739 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT,
4740 IOERR_SLI_DOWN);
4741 /* Flush the txcmpq */
4742 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT,
4743 IOERR_SLI_DOWN);
4744 }
4745 }
4746
4747 /**
4748 * lpfc_sli_brdready_s3 - Check for sli3 host ready status
4749 * @phba: Pointer to HBA context object.
4750 * @mask: Bit mask to be checked.
4751 *
4752 * This function reads the host status register and compares
4753 * with the provided bit mask to check if HBA completed
4754 * the restart. This function will wait in a loop for the
4755 * HBA to complete restart. If the HBA does not restart within
4756 * 15 iterations, the function will reset the HBA again. The
4757 * function returns 1 when HBA fail to restart otherwise returns
4758 * zero.
4759 **/
4760 static int
lpfc_sli_brdready_s3(struct lpfc_hba * phba,uint32_t mask)4761 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask)
4762 {
4763 uint32_t status;
4764 int i = 0;
4765 int retval = 0;
4766
4767 /* Read the HBA Host Status Register */
4768 if (lpfc_readl(phba->HSregaddr, &status))
4769 return 1;
4770
4771 phba->hba_flag |= HBA_NEEDS_CFG_PORT;
4772
4773 /*
4774 * Check status register every 100ms for 5 retries, then every
4775 * 500ms for 5, then every 2.5 sec for 5, then reset board and
4776 * every 2.5 sec for 4.
4777 * Break our of the loop if errors occurred during init.
4778 */
4779 while (((status & mask) != mask) &&
4780 !(status & HS_FFERM) &&
4781 i++ < 20) {
4782
4783 if (i <= 5)
4784 msleep(10);
4785 else if (i <= 10)
4786 msleep(500);
4787 else
4788 msleep(2500);
4789
4790 if (i == 15) {
4791 /* Do post */
4792 phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4793 lpfc_sli_brdrestart(phba);
4794 }
4795 /* Read the HBA Host Status Register */
4796 if (lpfc_readl(phba->HSregaddr, &status)) {
4797 retval = 1;
4798 break;
4799 }
4800 }
4801
4802 /* Check to see if any errors occurred during init */
4803 if ((status & HS_FFERM) || (i >= 20)) {
4804 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4805 "2751 Adapter failed to restart, "
4806 "status reg x%x, FW Data: A8 x%x AC x%x\n",
4807 status,
4808 readl(phba->MBslimaddr + 0xa8),
4809 readl(phba->MBslimaddr + 0xac));
4810 phba->link_state = LPFC_HBA_ERROR;
4811 retval = 1;
4812 }
4813
4814 return retval;
4815 }
4816
4817 /**
4818 * lpfc_sli_brdready_s4 - Check for sli4 host ready status
4819 * @phba: Pointer to HBA context object.
4820 * @mask: Bit mask to be checked.
4821 *
4822 * This function checks the host status register to check if HBA is
4823 * ready. This function will wait in a loop for the HBA to be ready
4824 * If the HBA is not ready , the function will will reset the HBA PCI
4825 * function again. The function returns 1 when HBA fail to be ready
4826 * otherwise returns zero.
4827 **/
4828 static int
lpfc_sli_brdready_s4(struct lpfc_hba * phba,uint32_t mask)4829 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask)
4830 {
4831 uint32_t status;
4832 int retval = 0;
4833
4834 /* Read the HBA Host Status Register */
4835 status = lpfc_sli4_post_status_check(phba);
4836
4837 if (status) {
4838 phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4839 lpfc_sli_brdrestart(phba);
4840 status = lpfc_sli4_post_status_check(phba);
4841 }
4842
4843 /* Check to see if any errors occurred during init */
4844 if (status) {
4845 phba->link_state = LPFC_HBA_ERROR;
4846 retval = 1;
4847 } else
4848 phba->sli4_hba.intr_enable = 0;
4849
4850 phba->hba_flag &= ~HBA_SETUP;
4851 return retval;
4852 }
4853
4854 /**
4855 * lpfc_sli_brdready - Wrapper func for checking the hba readyness
4856 * @phba: Pointer to HBA context object.
4857 * @mask: Bit mask to be checked.
4858 *
4859 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine
4860 * from the API jump table function pointer from the lpfc_hba struct.
4861 **/
4862 int
lpfc_sli_brdready(struct lpfc_hba * phba,uint32_t mask)4863 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask)
4864 {
4865 return phba->lpfc_sli_brdready(phba, mask);
4866 }
4867
4868 #define BARRIER_TEST_PATTERN (0xdeadbeef)
4869
4870 /**
4871 * lpfc_reset_barrier - Make HBA ready for HBA reset
4872 * @phba: Pointer to HBA context object.
4873 *
4874 * This function is called before resetting an HBA. This function is called
4875 * with hbalock held and requests HBA to quiesce DMAs before a reset.
4876 **/
lpfc_reset_barrier(struct lpfc_hba * phba)4877 void lpfc_reset_barrier(struct lpfc_hba *phba)
4878 {
4879 uint32_t __iomem *resp_buf;
4880 uint32_t __iomem *mbox_buf;
4881 volatile struct MAILBOX_word0 mbox;
4882 uint32_t hc_copy, ha_copy, resp_data;
4883 int i;
4884 uint8_t hdrtype;
4885
4886 lockdep_assert_held(&phba->hbalock);
4887
4888 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype);
4889 if (hdrtype != 0x80 ||
4890 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID &&
4891 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID))
4892 return;
4893
4894 /*
4895 * Tell the other part of the chip to suspend temporarily all
4896 * its DMA activity.
4897 */
4898 resp_buf = phba->MBslimaddr;
4899
4900 /* Disable the error attention */
4901 if (lpfc_readl(phba->HCregaddr, &hc_copy))
4902 return;
4903 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr);
4904 readl(phba->HCregaddr); /* flush */
4905 phba->link_flag |= LS_IGNORE_ERATT;
4906
4907 if (lpfc_readl(phba->HAregaddr, &ha_copy))
4908 return;
4909 if (ha_copy & HA_ERATT) {
4910 /* Clear Chip error bit */
4911 writel(HA_ERATT, phba->HAregaddr);
4912 phba->pport->stopped = 1;
4913 }
4914
4915 mbox.word0 = 0;
4916 mbox.mbxCommand = MBX_KILL_BOARD;
4917 mbox.mbxOwner = OWN_CHIP;
4918
4919 writel(BARRIER_TEST_PATTERN, (resp_buf + 1));
4920 mbox_buf = phba->MBslimaddr;
4921 writel(mbox.word0, mbox_buf);
4922
4923 for (i = 0; i < 50; i++) {
4924 if (lpfc_readl((resp_buf + 1), &resp_data))
4925 return;
4926 if (resp_data != ~(BARRIER_TEST_PATTERN))
4927 mdelay(1);
4928 else
4929 break;
4930 }
4931 resp_data = 0;
4932 if (lpfc_readl((resp_buf + 1), &resp_data))
4933 return;
4934 if (resp_data != ~(BARRIER_TEST_PATTERN)) {
4935 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE ||
4936 phba->pport->stopped)
4937 goto restore_hc;
4938 else
4939 goto clear_errat;
4940 }
4941
4942 mbox.mbxOwner = OWN_HOST;
4943 resp_data = 0;
4944 for (i = 0; i < 500; i++) {
4945 if (lpfc_readl(resp_buf, &resp_data))
4946 return;
4947 if (resp_data != mbox.word0)
4948 mdelay(1);
4949 else
4950 break;
4951 }
4952
4953 clear_errat:
4954
4955 while (++i < 500) {
4956 if (lpfc_readl(phba->HAregaddr, &ha_copy))
4957 return;
4958 if (!(ha_copy & HA_ERATT))
4959 mdelay(1);
4960 else
4961 break;
4962 }
4963
4964 if (readl(phba->HAregaddr) & HA_ERATT) {
4965 writel(HA_ERATT, phba->HAregaddr);
4966 phba->pport->stopped = 1;
4967 }
4968
4969 restore_hc:
4970 phba->link_flag &= ~LS_IGNORE_ERATT;
4971 writel(hc_copy, phba->HCregaddr);
4972 readl(phba->HCregaddr); /* flush */
4973 }
4974
4975 /**
4976 * lpfc_sli_brdkill - Issue a kill_board mailbox command
4977 * @phba: Pointer to HBA context object.
4978 *
4979 * This function issues a kill_board mailbox command and waits for
4980 * the error attention interrupt. This function is called for stopping
4981 * the firmware processing. The caller is not required to hold any
4982 * locks. This function calls lpfc_hba_down_post function to free
4983 * any pending commands after the kill. The function will return 1 when it
4984 * fails to kill the board else will return 0.
4985 **/
4986 int
lpfc_sli_brdkill(struct lpfc_hba * phba)4987 lpfc_sli_brdkill(struct lpfc_hba *phba)
4988 {
4989 struct lpfc_sli *psli;
4990 LPFC_MBOXQ_t *pmb;
4991 uint32_t status;
4992 uint32_t ha_copy;
4993 int retval;
4994 int i = 0;
4995
4996 psli = &phba->sli;
4997
4998 /* Kill HBA */
4999 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5000 "0329 Kill HBA Data: x%x x%x\n",
5001 phba->pport->port_state, psli->sli_flag);
5002
5003 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5004 if (!pmb)
5005 return 1;
5006
5007 /* Disable the error attention */
5008 spin_lock_irq(&phba->hbalock);
5009 if (lpfc_readl(phba->HCregaddr, &status)) {
5010 spin_unlock_irq(&phba->hbalock);
5011 mempool_free(pmb, phba->mbox_mem_pool);
5012 return 1;
5013 }
5014 status &= ~HC_ERINT_ENA;
5015 writel(status, phba->HCregaddr);
5016 readl(phba->HCregaddr); /* flush */
5017 phba->link_flag |= LS_IGNORE_ERATT;
5018 spin_unlock_irq(&phba->hbalock);
5019
5020 lpfc_kill_board(phba, pmb);
5021 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
5022 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
5023
5024 if (retval != MBX_SUCCESS) {
5025 if (retval != MBX_BUSY)
5026 mempool_free(pmb, phba->mbox_mem_pool);
5027 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5028 "2752 KILL_BOARD command failed retval %d\n",
5029 retval);
5030 spin_lock_irq(&phba->hbalock);
5031 phba->link_flag &= ~LS_IGNORE_ERATT;
5032 spin_unlock_irq(&phba->hbalock);
5033 return 1;
5034 }
5035
5036 spin_lock_irq(&phba->hbalock);
5037 psli->sli_flag &= ~LPFC_SLI_ACTIVE;
5038 spin_unlock_irq(&phba->hbalock);
5039
5040 mempool_free(pmb, phba->mbox_mem_pool);
5041
5042 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error
5043 * attention every 100ms for 3 seconds. If we don't get ERATT after
5044 * 3 seconds we still set HBA_ERROR state because the status of the
5045 * board is now undefined.
5046 */
5047 if (lpfc_readl(phba->HAregaddr, &ha_copy))
5048 return 1;
5049 while ((i++ < 30) && !(ha_copy & HA_ERATT)) {
5050 mdelay(100);
5051 if (lpfc_readl(phba->HAregaddr, &ha_copy))
5052 return 1;
5053 }
5054
5055 del_timer_sync(&psli->mbox_tmo);
5056 if (ha_copy & HA_ERATT) {
5057 writel(HA_ERATT, phba->HAregaddr);
5058 phba->pport->stopped = 1;
5059 }
5060 spin_lock_irq(&phba->hbalock);
5061 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
5062 psli->mbox_active = NULL;
5063 phba->link_flag &= ~LS_IGNORE_ERATT;
5064 spin_unlock_irq(&phba->hbalock);
5065
5066 lpfc_hba_down_post(phba);
5067 phba->link_state = LPFC_HBA_ERROR;
5068
5069 return ha_copy & HA_ERATT ? 0 : 1;
5070 }
5071
5072 /**
5073 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA
5074 * @phba: Pointer to HBA context object.
5075 *
5076 * This function resets the HBA by writing HC_INITFF to the control
5077 * register. After the HBA resets, this function resets all the iocb ring
5078 * indices. This function disables PCI layer parity checking during
5079 * the reset.
5080 * This function returns 0 always.
5081 * The caller is not required to hold any locks.
5082 **/
5083 int
lpfc_sli_brdreset(struct lpfc_hba * phba)5084 lpfc_sli_brdreset(struct lpfc_hba *phba)
5085 {
5086 struct lpfc_sli *psli;
5087 struct lpfc_sli_ring *pring;
5088 uint16_t cfg_value;
5089 int i;
5090
5091 psli = &phba->sli;
5092
5093 /* Reset HBA */
5094 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5095 "0325 Reset HBA Data: x%x x%x\n",
5096 (phba->pport) ? phba->pport->port_state : 0,
5097 psli->sli_flag);
5098
5099 /* perform board reset */
5100 phba->fc_eventTag = 0;
5101 phba->link_events = 0;
5102 phba->hba_flag |= HBA_NEEDS_CFG_PORT;
5103 if (phba->pport) {
5104 phba->pport->fc_myDID = 0;
5105 phba->pport->fc_prevDID = 0;
5106 }
5107
5108 /* Turn off parity checking and serr during the physical reset */
5109 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value))
5110 return -EIO;
5111
5112 pci_write_config_word(phba->pcidev, PCI_COMMAND,
5113 (cfg_value &
5114 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
5115
5116 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA);
5117
5118 /* Now toggle INITFF bit in the Host Control Register */
5119 writel(HC_INITFF, phba->HCregaddr);
5120 mdelay(1);
5121 readl(phba->HCregaddr); /* flush */
5122 writel(0, phba->HCregaddr);
5123 readl(phba->HCregaddr); /* flush */
5124
5125 /* Restore PCI cmd register */
5126 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
5127
5128 /* Initialize relevant SLI info */
5129 for (i = 0; i < psli->num_rings; i++) {
5130 pring = &psli->sli3_ring[i];
5131 pring->flag = 0;
5132 pring->sli.sli3.rspidx = 0;
5133 pring->sli.sli3.next_cmdidx = 0;
5134 pring->sli.sli3.local_getidx = 0;
5135 pring->sli.sli3.cmdidx = 0;
5136 pring->missbufcnt = 0;
5137 }
5138
5139 phba->link_state = LPFC_WARM_START;
5140 return 0;
5141 }
5142
5143 /**
5144 * lpfc_sli4_brdreset - Reset a sli-4 HBA
5145 * @phba: Pointer to HBA context object.
5146 *
5147 * This function resets a SLI4 HBA. This function disables PCI layer parity
5148 * checking during resets the device. The caller is not required to hold
5149 * any locks.
5150 *
5151 * This function returns 0 on success else returns negative error code.
5152 **/
5153 int
lpfc_sli4_brdreset(struct lpfc_hba * phba)5154 lpfc_sli4_brdreset(struct lpfc_hba *phba)
5155 {
5156 struct lpfc_sli *psli = &phba->sli;
5157 uint16_t cfg_value;
5158 int rc = 0;
5159
5160 /* Reset HBA */
5161 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5162 "0295 Reset HBA Data: x%x x%x x%x\n",
5163 phba->pport->port_state, psli->sli_flag,
5164 phba->hba_flag);
5165
5166 /* perform board reset */
5167 phba->fc_eventTag = 0;
5168 phba->link_events = 0;
5169 phba->pport->fc_myDID = 0;
5170 phba->pport->fc_prevDID = 0;
5171 phba->hba_flag &= ~HBA_SETUP;
5172
5173 spin_lock_irq(&phba->hbalock);
5174 psli->sli_flag &= ~(LPFC_PROCESS_LA);
5175 phba->fcf.fcf_flag = 0;
5176 spin_unlock_irq(&phba->hbalock);
5177
5178 /* Now physically reset the device */
5179 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5180 "0389 Performing PCI function reset!\n");
5181
5182 /* Turn off parity checking and serr during the physical reset */
5183 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) {
5184 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5185 "3205 PCI read Config failed\n");
5186 return -EIO;
5187 }
5188
5189 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value &
5190 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
5191
5192 /* Perform FCoE PCI function reset before freeing queue memory */
5193 rc = lpfc_pci_function_reset(phba);
5194
5195 /* Restore PCI cmd register */
5196 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
5197
5198 return rc;
5199 }
5200
5201 /**
5202 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba
5203 * @phba: Pointer to HBA context object.
5204 *
5205 * This function is called in the SLI initialization code path to
5206 * restart the HBA. The caller is not required to hold any lock.
5207 * This function writes MBX_RESTART mailbox command to the SLIM and
5208 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post
5209 * function to free any pending commands. The function enables
5210 * POST only during the first initialization. The function returns zero.
5211 * The function does not guarantee completion of MBX_RESTART mailbox
5212 * command before the return of this function.
5213 **/
5214 static int
lpfc_sli_brdrestart_s3(struct lpfc_hba * phba)5215 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba)
5216 {
5217 volatile struct MAILBOX_word0 mb;
5218 struct lpfc_sli *psli;
5219 void __iomem *to_slim;
5220
5221 spin_lock_irq(&phba->hbalock);
5222
5223 psli = &phba->sli;
5224
5225 /* Restart HBA */
5226 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5227 "0337 Restart HBA Data: x%x x%x\n",
5228 (phba->pport) ? phba->pport->port_state : 0,
5229 psli->sli_flag);
5230
5231 mb.word0 = 0;
5232 mb.mbxCommand = MBX_RESTART;
5233 mb.mbxHc = 1;
5234
5235 lpfc_reset_barrier(phba);
5236
5237 to_slim = phba->MBslimaddr;
5238 writel(mb.word0, to_slim);
5239 readl(to_slim); /* flush */
5240
5241 /* Only skip post after fc_ffinit is completed */
5242 if (phba->pport && phba->pport->port_state)
5243 mb.word0 = 1; /* This is really setting up word1 */
5244 else
5245 mb.word0 = 0; /* This is really setting up word1 */
5246 to_slim = phba->MBslimaddr + sizeof (uint32_t);
5247 writel(mb.word0, to_slim);
5248 readl(to_slim); /* flush */
5249
5250 lpfc_sli_brdreset(phba);
5251 if (phba->pport)
5252 phba->pport->stopped = 0;
5253 phba->link_state = LPFC_INIT_START;
5254 phba->hba_flag = 0;
5255 spin_unlock_irq(&phba->hbalock);
5256
5257 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
5258 psli->stats_start = ktime_get_seconds();
5259
5260 /* Give the INITFF and Post time to settle. */
5261 mdelay(100);
5262
5263 lpfc_hba_down_post(phba);
5264
5265 return 0;
5266 }
5267
5268 /**
5269 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba
5270 * @phba: Pointer to HBA context object.
5271 *
5272 * This function is called in the SLI initialization code path to restart
5273 * a SLI4 HBA. The caller is not required to hold any lock.
5274 * At the end of the function, it calls lpfc_hba_down_post function to
5275 * free any pending commands.
5276 **/
5277 static int
lpfc_sli_brdrestart_s4(struct lpfc_hba * phba)5278 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba)
5279 {
5280 struct lpfc_sli *psli = &phba->sli;
5281 int rc;
5282
5283 /* Restart HBA */
5284 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5285 "0296 Restart HBA Data: x%x x%x\n",
5286 phba->pport->port_state, psli->sli_flag);
5287
5288 lpfc_sli4_queue_unset(phba);
5289
5290 rc = lpfc_sli4_brdreset(phba);
5291 if (rc) {
5292 phba->link_state = LPFC_HBA_ERROR;
5293 goto hba_down_queue;
5294 }
5295
5296 spin_lock_irq(&phba->hbalock);
5297 phba->pport->stopped = 0;
5298 phba->link_state = LPFC_INIT_START;
5299 phba->hba_flag = 0;
5300 /* Preserve FA-PWWN expectation */
5301 phba->sli4_hba.fawwpn_flag &= LPFC_FAWWPN_FABRIC;
5302 spin_unlock_irq(&phba->hbalock);
5303
5304 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
5305 psli->stats_start = ktime_get_seconds();
5306
5307 hba_down_queue:
5308 lpfc_hba_down_post(phba);
5309 lpfc_sli4_queue_destroy(phba);
5310
5311 return rc;
5312 }
5313
5314 /**
5315 * lpfc_sli_brdrestart - Wrapper func for restarting hba
5316 * @phba: Pointer to HBA context object.
5317 *
5318 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the
5319 * API jump table function pointer from the lpfc_hba struct.
5320 **/
5321 int
lpfc_sli_brdrestart(struct lpfc_hba * phba)5322 lpfc_sli_brdrestart(struct lpfc_hba *phba)
5323 {
5324 return phba->lpfc_sli_brdrestart(phba);
5325 }
5326
5327 /**
5328 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart
5329 * @phba: Pointer to HBA context object.
5330 *
5331 * This function is called after a HBA restart to wait for successful
5332 * restart of the HBA. Successful restart of the HBA is indicated by
5333 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15
5334 * iteration, the function will restart the HBA again. The function returns
5335 * zero if HBA successfully restarted else returns negative error code.
5336 **/
5337 int
lpfc_sli_chipset_init(struct lpfc_hba * phba)5338 lpfc_sli_chipset_init(struct lpfc_hba *phba)
5339 {
5340 uint32_t status, i = 0;
5341
5342 /* Read the HBA Host Status Register */
5343 if (lpfc_readl(phba->HSregaddr, &status))
5344 return -EIO;
5345
5346 /* Check status register to see what current state is */
5347 i = 0;
5348 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) {
5349
5350 /* Check every 10ms for 10 retries, then every 100ms for 90
5351 * retries, then every 1 sec for 50 retires for a total of
5352 * ~60 seconds before reset the board again and check every
5353 * 1 sec for 50 retries. The up to 60 seconds before the
5354 * board ready is required by the Falcon FIPS zeroization
5355 * complete, and any reset the board in between shall cause
5356 * restart of zeroization, further delay the board ready.
5357 */
5358 if (i++ >= 200) {
5359 /* Adapter failed to init, timeout, status reg
5360 <status> */
5361 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5362 "0436 Adapter failed to init, "
5363 "timeout, status reg x%x, "
5364 "FW Data: A8 x%x AC x%x\n", status,
5365 readl(phba->MBslimaddr + 0xa8),
5366 readl(phba->MBslimaddr + 0xac));
5367 phba->link_state = LPFC_HBA_ERROR;
5368 return -ETIMEDOUT;
5369 }
5370
5371 /* Check to see if any errors occurred during init */
5372 if (status & HS_FFERM) {
5373 /* ERROR: During chipset initialization */
5374 /* Adapter failed to init, chipset, status reg
5375 <status> */
5376 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5377 "0437 Adapter failed to init, "
5378 "chipset, status reg x%x, "
5379 "FW Data: A8 x%x AC x%x\n", status,
5380 readl(phba->MBslimaddr + 0xa8),
5381 readl(phba->MBslimaddr + 0xac));
5382 phba->link_state = LPFC_HBA_ERROR;
5383 return -EIO;
5384 }
5385
5386 if (i <= 10)
5387 msleep(10);
5388 else if (i <= 100)
5389 msleep(100);
5390 else
5391 msleep(1000);
5392
5393 if (i == 150) {
5394 /* Do post */
5395 phba->pport->port_state = LPFC_VPORT_UNKNOWN;
5396 lpfc_sli_brdrestart(phba);
5397 }
5398 /* Read the HBA Host Status Register */
5399 if (lpfc_readl(phba->HSregaddr, &status))
5400 return -EIO;
5401 }
5402
5403 /* Check to see if any errors occurred during init */
5404 if (status & HS_FFERM) {
5405 /* ERROR: During chipset initialization */
5406 /* Adapter failed to init, chipset, status reg <status> */
5407 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5408 "0438 Adapter failed to init, chipset, "
5409 "status reg x%x, "
5410 "FW Data: A8 x%x AC x%x\n", status,
5411 readl(phba->MBslimaddr + 0xa8),
5412 readl(phba->MBslimaddr + 0xac));
5413 phba->link_state = LPFC_HBA_ERROR;
5414 return -EIO;
5415 }
5416
5417 phba->hba_flag |= HBA_NEEDS_CFG_PORT;
5418
5419 /* Clear all interrupt enable conditions */
5420 writel(0, phba->HCregaddr);
5421 readl(phba->HCregaddr); /* flush */
5422
5423 /* setup host attn register */
5424 writel(0xffffffff, phba->HAregaddr);
5425 readl(phba->HAregaddr); /* flush */
5426 return 0;
5427 }
5428
5429 /**
5430 * lpfc_sli_hbq_count - Get the number of HBQs to be configured
5431 *
5432 * This function calculates and returns the number of HBQs required to be
5433 * configured.
5434 **/
5435 int
lpfc_sli_hbq_count(void)5436 lpfc_sli_hbq_count(void)
5437 {
5438 return ARRAY_SIZE(lpfc_hbq_defs);
5439 }
5440
5441 /**
5442 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries
5443 *
5444 * This function adds the number of hbq entries in every HBQ to get
5445 * the total number of hbq entries required for the HBA and returns
5446 * the total count.
5447 **/
5448 static int
lpfc_sli_hbq_entry_count(void)5449 lpfc_sli_hbq_entry_count(void)
5450 {
5451 int hbq_count = lpfc_sli_hbq_count();
5452 int count = 0;
5453 int i;
5454
5455 for (i = 0; i < hbq_count; ++i)
5456 count += lpfc_hbq_defs[i]->entry_count;
5457 return count;
5458 }
5459
5460 /**
5461 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries
5462 *
5463 * This function calculates amount of memory required for all hbq entries
5464 * to be configured and returns the total memory required.
5465 **/
5466 int
lpfc_sli_hbq_size(void)5467 lpfc_sli_hbq_size(void)
5468 {
5469 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry);
5470 }
5471
5472 /**
5473 * lpfc_sli_hbq_setup - configure and initialize HBQs
5474 * @phba: Pointer to HBA context object.
5475 *
5476 * This function is called during the SLI initialization to configure
5477 * all the HBQs and post buffers to the HBQ. The caller is not
5478 * required to hold any locks. This function will return zero if successful
5479 * else it will return negative error code.
5480 **/
5481 static int
lpfc_sli_hbq_setup(struct lpfc_hba * phba)5482 lpfc_sli_hbq_setup(struct lpfc_hba *phba)
5483 {
5484 int hbq_count = lpfc_sli_hbq_count();
5485 LPFC_MBOXQ_t *pmb;
5486 MAILBOX_t *pmbox;
5487 uint32_t hbqno;
5488 uint32_t hbq_entry_index;
5489
5490 /* Get a Mailbox buffer to setup mailbox
5491 * commands for HBA initialization
5492 */
5493 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5494
5495 if (!pmb)
5496 return -ENOMEM;
5497
5498 pmbox = &pmb->u.mb;
5499
5500 /* Initialize the struct lpfc_sli_hbq structure for each hbq */
5501 phba->link_state = LPFC_INIT_MBX_CMDS;
5502 phba->hbq_in_use = 1;
5503
5504 hbq_entry_index = 0;
5505 for (hbqno = 0; hbqno < hbq_count; ++hbqno) {
5506 phba->hbqs[hbqno].next_hbqPutIdx = 0;
5507 phba->hbqs[hbqno].hbqPutIdx = 0;
5508 phba->hbqs[hbqno].local_hbqGetIdx = 0;
5509 phba->hbqs[hbqno].entry_count =
5510 lpfc_hbq_defs[hbqno]->entry_count;
5511 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno],
5512 hbq_entry_index, pmb);
5513 hbq_entry_index += phba->hbqs[hbqno].entry_count;
5514
5515 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
5516 /* Adapter failed to init, mbxCmd <cmd> CFG_RING,
5517 mbxStatus <status>, ring <num> */
5518
5519 lpfc_printf_log(phba, KERN_ERR,
5520 LOG_SLI | LOG_VPORT,
5521 "1805 Adapter failed to init. "
5522 "Data: x%x x%x x%x\n",
5523 pmbox->mbxCommand,
5524 pmbox->mbxStatus, hbqno);
5525
5526 phba->link_state = LPFC_HBA_ERROR;
5527 mempool_free(pmb, phba->mbox_mem_pool);
5528 return -ENXIO;
5529 }
5530 }
5531 phba->hbq_count = hbq_count;
5532
5533 mempool_free(pmb, phba->mbox_mem_pool);
5534
5535 /* Initially populate or replenish the HBQs */
5536 for (hbqno = 0; hbqno < hbq_count; ++hbqno)
5537 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno);
5538 return 0;
5539 }
5540
5541 /**
5542 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA
5543 * @phba: Pointer to HBA context object.
5544 *
5545 * This function is called during the SLI initialization to configure
5546 * all the HBQs and post buffers to the HBQ. The caller is not
5547 * required to hold any locks. This function will return zero if successful
5548 * else it will return negative error code.
5549 **/
5550 static int
lpfc_sli4_rb_setup(struct lpfc_hba * phba)5551 lpfc_sli4_rb_setup(struct lpfc_hba *phba)
5552 {
5553 phba->hbq_in_use = 1;
5554 /**
5555 * Specific case when the MDS diagnostics is enabled and supported.
5556 * The receive buffer count is truncated to manage the incoming
5557 * traffic.
5558 **/
5559 if (phba->cfg_enable_mds_diags && phba->mds_diags_support)
5560 phba->hbqs[LPFC_ELS_HBQ].entry_count =
5561 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count >> 1;
5562 else
5563 phba->hbqs[LPFC_ELS_HBQ].entry_count =
5564 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count;
5565 phba->hbq_count = 1;
5566 lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ);
5567 /* Initially populate or replenish the HBQs */
5568 return 0;
5569 }
5570
5571 /**
5572 * lpfc_sli_config_port - Issue config port mailbox command
5573 * @phba: Pointer to HBA context object.
5574 * @sli_mode: sli mode - 2/3
5575 *
5576 * This function is called by the sli initialization code path
5577 * to issue config_port mailbox command. This function restarts the
5578 * HBA firmware and issues a config_port mailbox command to configure
5579 * the SLI interface in the sli mode specified by sli_mode
5580 * variable. The caller is not required to hold any locks.
5581 * The function returns 0 if successful, else returns negative error
5582 * code.
5583 **/
5584 int
lpfc_sli_config_port(struct lpfc_hba * phba,int sli_mode)5585 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode)
5586 {
5587 LPFC_MBOXQ_t *pmb;
5588 uint32_t resetcount = 0, rc = 0, done = 0;
5589
5590 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5591 if (!pmb) {
5592 phba->link_state = LPFC_HBA_ERROR;
5593 return -ENOMEM;
5594 }
5595
5596 phba->sli_rev = sli_mode;
5597 while (resetcount < 2 && !done) {
5598 spin_lock_irq(&phba->hbalock);
5599 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE;
5600 spin_unlock_irq(&phba->hbalock);
5601 phba->pport->port_state = LPFC_VPORT_UNKNOWN;
5602 lpfc_sli_brdrestart(phba);
5603 rc = lpfc_sli_chipset_init(phba);
5604 if (rc)
5605 break;
5606
5607 spin_lock_irq(&phba->hbalock);
5608 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
5609 spin_unlock_irq(&phba->hbalock);
5610 resetcount++;
5611
5612 /* Call pre CONFIG_PORT mailbox command initialization. A
5613 * value of 0 means the call was successful. Any other
5614 * nonzero value is a failure, but if ERESTART is returned,
5615 * the driver may reset the HBA and try again.
5616 */
5617 rc = lpfc_config_port_prep(phba);
5618 if (rc == -ERESTART) {
5619 phba->link_state = LPFC_LINK_UNKNOWN;
5620 continue;
5621 } else if (rc)
5622 break;
5623
5624 phba->link_state = LPFC_INIT_MBX_CMDS;
5625 lpfc_config_port(phba, pmb);
5626 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
5627 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED |
5628 LPFC_SLI3_HBQ_ENABLED |
5629 LPFC_SLI3_CRP_ENABLED |
5630 LPFC_SLI3_DSS_ENABLED);
5631 if (rc != MBX_SUCCESS) {
5632 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5633 "0442 Adapter failed to init, mbxCmd x%x "
5634 "CONFIG_PORT, mbxStatus x%x Data: x%x\n",
5635 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0);
5636 spin_lock_irq(&phba->hbalock);
5637 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE;
5638 spin_unlock_irq(&phba->hbalock);
5639 rc = -ENXIO;
5640 } else {
5641 /* Allow asynchronous mailbox command to go through */
5642 spin_lock_irq(&phba->hbalock);
5643 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
5644 spin_unlock_irq(&phba->hbalock);
5645 done = 1;
5646
5647 if ((pmb->u.mb.un.varCfgPort.casabt == 1) &&
5648 (pmb->u.mb.un.varCfgPort.gasabt == 0))
5649 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
5650 "3110 Port did not grant ASABT\n");
5651 }
5652 }
5653 if (!done) {
5654 rc = -EINVAL;
5655 goto do_prep_failed;
5656 }
5657 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) {
5658 if (!pmb->u.mb.un.varCfgPort.cMA) {
5659 rc = -ENXIO;
5660 goto do_prep_failed;
5661 }
5662 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) {
5663 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED;
5664 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi;
5665 phba->max_vports = (phba->max_vpi > phba->max_vports) ?
5666 phba->max_vpi : phba->max_vports;
5667
5668 } else
5669 phba->max_vpi = 0;
5670 if (pmb->u.mb.un.varCfgPort.gerbm)
5671 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED;
5672 if (pmb->u.mb.un.varCfgPort.gcrp)
5673 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED;
5674
5675 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get;
5676 phba->port_gp = phba->mbox->us.s3_pgp.port;
5677
5678 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
5679 if (pmb->u.mb.un.varCfgPort.gbg == 0) {
5680 phba->cfg_enable_bg = 0;
5681 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED;
5682 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5683 "0443 Adapter did not grant "
5684 "BlockGuard\n");
5685 }
5686 }
5687 } else {
5688 phba->hbq_get = NULL;
5689 phba->port_gp = phba->mbox->us.s2.port;
5690 phba->max_vpi = 0;
5691 }
5692 do_prep_failed:
5693 mempool_free(pmb, phba->mbox_mem_pool);
5694 return rc;
5695 }
5696
5697
5698 /**
5699 * lpfc_sli_hba_setup - SLI initialization function
5700 * @phba: Pointer to HBA context object.
5701 *
5702 * This function is the main SLI initialization function. This function
5703 * is called by the HBA initialization code, HBA reset code and HBA
5704 * error attention handler code. Caller is not required to hold any
5705 * locks. This function issues config_port mailbox command to configure
5706 * the SLI, setup iocb rings and HBQ rings. In the end the function
5707 * calls the config_port_post function to issue init_link mailbox
5708 * command and to start the discovery. The function will return zero
5709 * if successful, else it will return negative error code.
5710 **/
5711 int
lpfc_sli_hba_setup(struct lpfc_hba * phba)5712 lpfc_sli_hba_setup(struct lpfc_hba *phba)
5713 {
5714 uint32_t rc;
5715 int i;
5716 int longs;
5717
5718 /* Enable ISR already does config_port because of config_msi mbx */
5719 if (phba->hba_flag & HBA_NEEDS_CFG_PORT) {
5720 rc = lpfc_sli_config_port(phba, LPFC_SLI_REV3);
5721 if (rc)
5722 return -EIO;
5723 phba->hba_flag &= ~HBA_NEEDS_CFG_PORT;
5724 }
5725 phba->fcp_embed_io = 0; /* SLI4 FC support only */
5726
5727 if (phba->sli_rev == 3) {
5728 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE;
5729 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE;
5730 } else {
5731 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE;
5732 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE;
5733 phba->sli3_options = 0;
5734 }
5735
5736 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5737 "0444 Firmware in SLI %x mode. Max_vpi %d\n",
5738 phba->sli_rev, phba->max_vpi);
5739 rc = lpfc_sli_ring_map(phba);
5740
5741 if (rc)
5742 goto lpfc_sli_hba_setup_error;
5743
5744 /* Initialize VPIs. */
5745 if (phba->sli_rev == LPFC_SLI_REV3) {
5746 /*
5747 * The VPI bitmask and physical ID array are allocated
5748 * and initialized once only - at driver load. A port
5749 * reset doesn't need to reinitialize this memory.
5750 */
5751 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) {
5752 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG;
5753 phba->vpi_bmask = kcalloc(longs,
5754 sizeof(unsigned long),
5755 GFP_KERNEL);
5756 if (!phba->vpi_bmask) {
5757 rc = -ENOMEM;
5758 goto lpfc_sli_hba_setup_error;
5759 }
5760
5761 phba->vpi_ids = kcalloc(phba->max_vpi + 1,
5762 sizeof(uint16_t),
5763 GFP_KERNEL);
5764 if (!phba->vpi_ids) {
5765 kfree(phba->vpi_bmask);
5766 rc = -ENOMEM;
5767 goto lpfc_sli_hba_setup_error;
5768 }
5769 for (i = 0; i < phba->max_vpi; i++)
5770 phba->vpi_ids[i] = i;
5771 }
5772 }
5773
5774 /* Init HBQs */
5775 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
5776 rc = lpfc_sli_hbq_setup(phba);
5777 if (rc)
5778 goto lpfc_sli_hba_setup_error;
5779 }
5780 spin_lock_irq(&phba->hbalock);
5781 phba->sli.sli_flag |= LPFC_PROCESS_LA;
5782 spin_unlock_irq(&phba->hbalock);
5783
5784 rc = lpfc_config_port_post(phba);
5785 if (rc)
5786 goto lpfc_sli_hba_setup_error;
5787
5788 return rc;
5789
5790 lpfc_sli_hba_setup_error:
5791 phba->link_state = LPFC_HBA_ERROR;
5792 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5793 "0445 Firmware initialization failed\n");
5794 return rc;
5795 }
5796
5797 /**
5798 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region
5799 * @phba: Pointer to HBA context object.
5800 *
5801 * This function issue a dump mailbox command to read config region
5802 * 23 and parse the records in the region and populate driver
5803 * data structure.
5804 **/
5805 static int
lpfc_sli4_read_fcoe_params(struct lpfc_hba * phba)5806 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba)
5807 {
5808 LPFC_MBOXQ_t *mboxq;
5809 struct lpfc_dmabuf *mp;
5810 struct lpfc_mqe *mqe;
5811 uint32_t data_length;
5812 int rc;
5813
5814 /* Program the default value of vlan_id and fc_map */
5815 phba->valid_vlan = 0;
5816 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0;
5817 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1;
5818 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2;
5819
5820 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5821 if (!mboxq)
5822 return -ENOMEM;
5823
5824 mqe = &mboxq->u.mqe;
5825 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) {
5826 rc = -ENOMEM;
5827 goto out_free_mboxq;
5828 }
5829
5830 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
5831 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5832
5833 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
5834 "(%d):2571 Mailbox cmd x%x Status x%x "
5835 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
5836 "x%x x%x x%x x%x x%x x%x x%x x%x x%x "
5837 "CQ: x%x x%x x%x x%x\n",
5838 mboxq->vport ? mboxq->vport->vpi : 0,
5839 bf_get(lpfc_mqe_command, mqe),
5840 bf_get(lpfc_mqe_status, mqe),
5841 mqe->un.mb_words[0], mqe->un.mb_words[1],
5842 mqe->un.mb_words[2], mqe->un.mb_words[3],
5843 mqe->un.mb_words[4], mqe->un.mb_words[5],
5844 mqe->un.mb_words[6], mqe->un.mb_words[7],
5845 mqe->un.mb_words[8], mqe->un.mb_words[9],
5846 mqe->un.mb_words[10], mqe->un.mb_words[11],
5847 mqe->un.mb_words[12], mqe->un.mb_words[13],
5848 mqe->un.mb_words[14], mqe->un.mb_words[15],
5849 mqe->un.mb_words[16], mqe->un.mb_words[50],
5850 mboxq->mcqe.word0,
5851 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1,
5852 mboxq->mcqe.trailer);
5853
5854 if (rc) {
5855 rc = -EIO;
5856 goto out_free_mboxq;
5857 }
5858 data_length = mqe->un.mb_words[5];
5859 if (data_length > DMP_RGN23_SIZE) {
5860 rc = -EIO;
5861 goto out_free_mboxq;
5862 }
5863
5864 lpfc_parse_fcoe_conf(phba, mp->virt, data_length);
5865 rc = 0;
5866
5867 out_free_mboxq:
5868 lpfc_mbox_rsrc_cleanup(phba, mboxq, MBOX_THD_UNLOCKED);
5869 return rc;
5870 }
5871
5872 /**
5873 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data
5874 * @phba: pointer to lpfc hba data structure.
5875 * @mboxq: pointer to the LPFC_MBOXQ_t structure.
5876 * @vpd: pointer to the memory to hold resulting port vpd data.
5877 * @vpd_size: On input, the number of bytes allocated to @vpd.
5878 * On output, the number of data bytes in @vpd.
5879 *
5880 * This routine executes a READ_REV SLI4 mailbox command. In
5881 * addition, this routine gets the port vpd data.
5882 *
5883 * Return codes
5884 * 0 - successful
5885 * -ENOMEM - could not allocated memory.
5886 **/
5887 static int
lpfc_sli4_read_rev(struct lpfc_hba * phba,LPFC_MBOXQ_t * mboxq,uint8_t * vpd,uint32_t * vpd_size)5888 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
5889 uint8_t *vpd, uint32_t *vpd_size)
5890 {
5891 int rc = 0;
5892 uint32_t dma_size;
5893 struct lpfc_dmabuf *dmabuf;
5894 struct lpfc_mqe *mqe;
5895
5896 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
5897 if (!dmabuf)
5898 return -ENOMEM;
5899
5900 /*
5901 * Get a DMA buffer for the vpd data resulting from the READ_REV
5902 * mailbox command.
5903 */
5904 dma_size = *vpd_size;
5905 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size,
5906 &dmabuf->phys, GFP_KERNEL);
5907 if (!dmabuf->virt) {
5908 kfree(dmabuf);
5909 return -ENOMEM;
5910 }
5911
5912 /*
5913 * The SLI4 implementation of READ_REV conflicts at word1,
5914 * bits 31:16 and SLI4 adds vpd functionality not present
5915 * in SLI3. This code corrects the conflicts.
5916 */
5917 lpfc_read_rev(phba, mboxq);
5918 mqe = &mboxq->u.mqe;
5919 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys);
5920 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys);
5921 mqe->un.read_rev.word1 &= 0x0000FFFF;
5922 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1);
5923 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size);
5924
5925 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5926 if (rc) {
5927 dma_free_coherent(&phba->pcidev->dev, dma_size,
5928 dmabuf->virt, dmabuf->phys);
5929 kfree(dmabuf);
5930 return -EIO;
5931 }
5932
5933 /*
5934 * The available vpd length cannot be bigger than the
5935 * DMA buffer passed to the port. Catch the less than
5936 * case and update the caller's size.
5937 */
5938 if (mqe->un.read_rev.avail_vpd_len < *vpd_size)
5939 *vpd_size = mqe->un.read_rev.avail_vpd_len;
5940
5941 memcpy(vpd, dmabuf->virt, *vpd_size);
5942
5943 dma_free_coherent(&phba->pcidev->dev, dma_size,
5944 dmabuf->virt, dmabuf->phys);
5945 kfree(dmabuf);
5946 return 0;
5947 }
5948
5949 /**
5950 * lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes
5951 * @phba: pointer to lpfc hba data structure.
5952 *
5953 * This routine retrieves SLI4 device physical port name this PCI function
5954 * is attached to.
5955 *
5956 * Return codes
5957 * 0 - successful
5958 * otherwise - failed to retrieve controller attributes
5959 **/
5960 static int
lpfc_sli4_get_ctl_attr(struct lpfc_hba * phba)5961 lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba)
5962 {
5963 LPFC_MBOXQ_t *mboxq;
5964 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr;
5965 struct lpfc_controller_attribute *cntl_attr;
5966 void *virtaddr = NULL;
5967 uint32_t alloclen, reqlen;
5968 uint32_t shdr_status, shdr_add_status;
5969 union lpfc_sli4_cfg_shdr *shdr;
5970 int rc;
5971
5972 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5973 if (!mboxq)
5974 return -ENOMEM;
5975
5976 /* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */
5977 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes);
5978 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
5979 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen,
5980 LPFC_SLI4_MBX_NEMBED);
5981
5982 if (alloclen < reqlen) {
5983 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5984 "3084 Allocated DMA memory size (%d) is "
5985 "less than the requested DMA memory size "
5986 "(%d)\n", alloclen, reqlen);
5987 rc = -ENOMEM;
5988 goto out_free_mboxq;
5989 }
5990 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5991 virtaddr = mboxq->sge_array->addr[0];
5992 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr;
5993 shdr = &mbx_cntl_attr->cfg_shdr;
5994 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
5995 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
5996 if (shdr_status || shdr_add_status || rc) {
5997 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
5998 "3085 Mailbox x%x (x%x/x%x) failed, "
5999 "rc:x%x, status:x%x, add_status:x%x\n",
6000 bf_get(lpfc_mqe_command, &mboxq->u.mqe),
6001 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
6002 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
6003 rc, shdr_status, shdr_add_status);
6004 rc = -ENXIO;
6005 goto out_free_mboxq;
6006 }
6007
6008 cntl_attr = &mbx_cntl_attr->cntl_attr;
6009 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL;
6010 phba->sli4_hba.lnk_info.lnk_tp =
6011 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr);
6012 phba->sli4_hba.lnk_info.lnk_no =
6013 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr);
6014 phba->sli4_hba.flash_id = bf_get(lpfc_cntl_attr_flash_id, cntl_attr);
6015 phba->sli4_hba.asic_rev = bf_get(lpfc_cntl_attr_asic_rev, cntl_attr);
6016
6017 memset(phba->BIOSVersion, 0, sizeof(phba->BIOSVersion));
6018 strlcat(phba->BIOSVersion, (char *)cntl_attr->bios_ver_str,
6019 sizeof(phba->BIOSVersion));
6020
6021 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6022 "3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s, "
6023 "flash_id: x%02x, asic_rev: x%02x\n",
6024 phba->sli4_hba.lnk_info.lnk_tp,
6025 phba->sli4_hba.lnk_info.lnk_no,
6026 phba->BIOSVersion, phba->sli4_hba.flash_id,
6027 phba->sli4_hba.asic_rev);
6028 out_free_mboxq:
6029 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG)
6030 lpfc_sli4_mbox_cmd_free(phba, mboxq);
6031 else
6032 mempool_free(mboxq, phba->mbox_mem_pool);
6033 return rc;
6034 }
6035
6036 /**
6037 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name
6038 * @phba: pointer to lpfc hba data structure.
6039 *
6040 * This routine retrieves SLI4 device physical port name this PCI function
6041 * is attached to.
6042 *
6043 * Return codes
6044 * 0 - successful
6045 * otherwise - failed to retrieve physical port name
6046 **/
6047 static int
lpfc_sli4_retrieve_pport_name(struct lpfc_hba * phba)6048 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba)
6049 {
6050 LPFC_MBOXQ_t *mboxq;
6051 struct lpfc_mbx_get_port_name *get_port_name;
6052 uint32_t shdr_status, shdr_add_status;
6053 union lpfc_sli4_cfg_shdr *shdr;
6054 char cport_name = 0;
6055 int rc;
6056
6057 /* We assume nothing at this point */
6058 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
6059 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON;
6060
6061 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6062 if (!mboxq)
6063 return -ENOMEM;
6064 /* obtain link type and link number via READ_CONFIG */
6065 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
6066 lpfc_sli4_read_config(phba);
6067
6068 if (phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_CONFIG)
6069 phba->sli4_hba.fawwpn_flag |= LPFC_FAWWPN_FABRIC;
6070
6071 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL)
6072 goto retrieve_ppname;
6073
6074 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */
6075 rc = lpfc_sli4_get_ctl_attr(phba);
6076 if (rc)
6077 goto out_free_mboxq;
6078
6079 retrieve_ppname:
6080 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
6081 LPFC_MBOX_OPCODE_GET_PORT_NAME,
6082 sizeof(struct lpfc_mbx_get_port_name) -
6083 sizeof(struct lpfc_sli4_cfg_mhdr),
6084 LPFC_SLI4_MBX_EMBED);
6085 get_port_name = &mboxq->u.mqe.un.get_port_name;
6086 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr;
6087 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1);
6088 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request,
6089 phba->sli4_hba.lnk_info.lnk_tp);
6090 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
6091 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
6092 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
6093 if (shdr_status || shdr_add_status || rc) {
6094 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
6095 "3087 Mailbox x%x (x%x/x%x) failed: "
6096 "rc:x%x, status:x%x, add_status:x%x\n",
6097 bf_get(lpfc_mqe_command, &mboxq->u.mqe),
6098 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
6099 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
6100 rc, shdr_status, shdr_add_status);
6101 rc = -ENXIO;
6102 goto out_free_mboxq;
6103 }
6104 switch (phba->sli4_hba.lnk_info.lnk_no) {
6105 case LPFC_LINK_NUMBER_0:
6106 cport_name = bf_get(lpfc_mbx_get_port_name_name0,
6107 &get_port_name->u.response);
6108 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
6109 break;
6110 case LPFC_LINK_NUMBER_1:
6111 cport_name = bf_get(lpfc_mbx_get_port_name_name1,
6112 &get_port_name->u.response);
6113 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
6114 break;
6115 case LPFC_LINK_NUMBER_2:
6116 cport_name = bf_get(lpfc_mbx_get_port_name_name2,
6117 &get_port_name->u.response);
6118 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
6119 break;
6120 case LPFC_LINK_NUMBER_3:
6121 cport_name = bf_get(lpfc_mbx_get_port_name_name3,
6122 &get_port_name->u.response);
6123 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
6124 break;
6125 default:
6126 break;
6127 }
6128
6129 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) {
6130 phba->Port[0] = cport_name;
6131 phba->Port[1] = '\0';
6132 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6133 "3091 SLI get port name: %s\n", phba->Port);
6134 }
6135
6136 out_free_mboxq:
6137 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG)
6138 lpfc_sli4_mbox_cmd_free(phba, mboxq);
6139 else
6140 mempool_free(mboxq, phba->mbox_mem_pool);
6141 return rc;
6142 }
6143
6144 /**
6145 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues
6146 * @phba: pointer to lpfc hba data structure.
6147 *
6148 * This routine is called to explicitly arm the SLI4 device's completion and
6149 * event queues
6150 **/
6151 static void
lpfc_sli4_arm_cqeq_intr(struct lpfc_hba * phba)6152 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba)
6153 {
6154 int qidx;
6155 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba;
6156 struct lpfc_sli4_hdw_queue *qp;
6157 struct lpfc_queue *eq;
6158
6159 sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM);
6160 sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM);
6161 if (sli4_hba->nvmels_cq)
6162 sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0,
6163 LPFC_QUEUE_REARM);
6164
6165 if (sli4_hba->hdwq) {
6166 /* Loop thru all Hardware Queues */
6167 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
6168 qp = &sli4_hba->hdwq[qidx];
6169 /* ARM the corresponding CQ */
6170 sli4_hba->sli4_write_cq_db(phba, qp->io_cq, 0,
6171 LPFC_QUEUE_REARM);
6172 }
6173
6174 /* Loop thru all IRQ vectors */
6175 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
6176 eq = sli4_hba->hba_eq_hdl[qidx].eq;
6177 /* ARM the corresponding EQ */
6178 sli4_hba->sli4_write_eq_db(phba, eq,
6179 0, LPFC_QUEUE_REARM);
6180 }
6181 }
6182
6183 if (phba->nvmet_support) {
6184 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) {
6185 sli4_hba->sli4_write_cq_db(phba,
6186 sli4_hba->nvmet_cqset[qidx], 0,
6187 LPFC_QUEUE_REARM);
6188 }
6189 }
6190 }
6191
6192 /**
6193 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count.
6194 * @phba: Pointer to HBA context object.
6195 * @type: The resource extent type.
6196 * @extnt_count: buffer to hold port available extent count.
6197 * @extnt_size: buffer to hold element count per extent.
6198 *
6199 * This function calls the port and retrievs the number of available
6200 * extents and their size for a particular extent type.
6201 *
6202 * Returns: 0 if successful. Nonzero otherwise.
6203 **/
6204 int
lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba * phba,uint16_t type,uint16_t * extnt_count,uint16_t * extnt_size)6205 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type,
6206 uint16_t *extnt_count, uint16_t *extnt_size)
6207 {
6208 int rc = 0;
6209 uint32_t length;
6210 uint32_t mbox_tmo;
6211 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info;
6212 LPFC_MBOXQ_t *mbox;
6213
6214 *extnt_count = 0;
6215 *extnt_size = 0;
6216
6217 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6218 if (!mbox)
6219 return -ENOMEM;
6220
6221 /* Find out how many extents are available for this resource type */
6222 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) -
6223 sizeof(struct lpfc_sli4_cfg_mhdr));
6224 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6225 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO,
6226 length, LPFC_SLI4_MBX_EMBED);
6227
6228 /* Send an extents count of 0 - the GET doesn't use it. */
6229 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
6230 LPFC_SLI4_MBX_EMBED);
6231 if (unlikely(rc)) {
6232 rc = -EIO;
6233 goto err_exit;
6234 }
6235
6236 if (!phba->sli4_hba.intr_enable)
6237 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6238 else {
6239 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6240 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6241 }
6242 if (unlikely(rc)) {
6243 rc = -EIO;
6244 goto err_exit;
6245 }
6246
6247 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info;
6248 if (bf_get(lpfc_mbox_hdr_status,
6249 &rsrc_info->header.cfg_shdr.response)) {
6250 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6251 "2930 Failed to get resource extents "
6252 "Status 0x%x Add'l Status 0x%x\n",
6253 bf_get(lpfc_mbox_hdr_status,
6254 &rsrc_info->header.cfg_shdr.response),
6255 bf_get(lpfc_mbox_hdr_add_status,
6256 &rsrc_info->header.cfg_shdr.response));
6257 rc = -EIO;
6258 goto err_exit;
6259 }
6260
6261 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt,
6262 &rsrc_info->u.rsp);
6263 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size,
6264 &rsrc_info->u.rsp);
6265
6266 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6267 "3162 Retrieved extents type-%d from port: count:%d, "
6268 "size:%d\n", type, *extnt_count, *extnt_size);
6269
6270 err_exit:
6271 mempool_free(mbox, phba->mbox_mem_pool);
6272 return rc;
6273 }
6274
6275 /**
6276 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents.
6277 * @phba: Pointer to HBA context object.
6278 * @type: The extent type to check.
6279 *
6280 * This function reads the current available extents from the port and checks
6281 * if the extent count or extent size has changed since the last access.
6282 * Callers use this routine post port reset to understand if there is a
6283 * extent reprovisioning requirement.
6284 *
6285 * Returns:
6286 * -Error: error indicates problem.
6287 * 1: Extent count or size has changed.
6288 * 0: No changes.
6289 **/
6290 static int
lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba * phba,uint16_t type)6291 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type)
6292 {
6293 uint16_t curr_ext_cnt, rsrc_ext_cnt;
6294 uint16_t size_diff, rsrc_ext_size;
6295 int rc = 0;
6296 struct lpfc_rsrc_blks *rsrc_entry;
6297 struct list_head *rsrc_blk_list = NULL;
6298
6299 size_diff = 0;
6300 curr_ext_cnt = 0;
6301 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
6302 &rsrc_ext_cnt,
6303 &rsrc_ext_size);
6304 if (unlikely(rc))
6305 return -EIO;
6306
6307 switch (type) {
6308 case LPFC_RSC_TYPE_FCOE_RPI:
6309 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
6310 break;
6311 case LPFC_RSC_TYPE_FCOE_VPI:
6312 rsrc_blk_list = &phba->lpfc_vpi_blk_list;
6313 break;
6314 case LPFC_RSC_TYPE_FCOE_XRI:
6315 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
6316 break;
6317 case LPFC_RSC_TYPE_FCOE_VFI:
6318 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
6319 break;
6320 default:
6321 break;
6322 }
6323
6324 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) {
6325 curr_ext_cnt++;
6326 if (rsrc_entry->rsrc_size != rsrc_ext_size)
6327 size_diff++;
6328 }
6329
6330 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0)
6331 rc = 1;
6332
6333 return rc;
6334 }
6335
6336 /**
6337 * lpfc_sli4_cfg_post_extnts -
6338 * @phba: Pointer to HBA context object.
6339 * @extnt_cnt: number of available extents.
6340 * @type: the extent type (rpi, xri, vfi, vpi).
6341 * @emb: buffer to hold either MBX_EMBED or MBX_NEMBED operation.
6342 * @mbox: pointer to the caller's allocated mailbox structure.
6343 *
6344 * This function executes the extents allocation request. It also
6345 * takes care of the amount of memory needed to allocate or get the
6346 * allocated extents. It is the caller's responsibility to evaluate
6347 * the response.
6348 *
6349 * Returns:
6350 * -Error: Error value describes the condition found.
6351 * 0: if successful
6352 **/
6353 static int
lpfc_sli4_cfg_post_extnts(struct lpfc_hba * phba,uint16_t extnt_cnt,uint16_t type,bool * emb,LPFC_MBOXQ_t * mbox)6354 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt,
6355 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox)
6356 {
6357 int rc = 0;
6358 uint32_t req_len;
6359 uint32_t emb_len;
6360 uint32_t alloc_len, mbox_tmo;
6361
6362 /* Calculate the total requested length of the dma memory */
6363 req_len = extnt_cnt * sizeof(uint16_t);
6364
6365 /*
6366 * Calculate the size of an embedded mailbox. The uint32_t
6367 * accounts for extents-specific word.
6368 */
6369 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
6370 sizeof(uint32_t);
6371
6372 /*
6373 * Presume the allocation and response will fit into an embedded
6374 * mailbox. If not true, reconfigure to a non-embedded mailbox.
6375 */
6376 *emb = LPFC_SLI4_MBX_EMBED;
6377 if (req_len > emb_len) {
6378 req_len = extnt_cnt * sizeof(uint16_t) +
6379 sizeof(union lpfc_sli4_cfg_shdr) +
6380 sizeof(uint32_t);
6381 *emb = LPFC_SLI4_MBX_NEMBED;
6382 }
6383
6384 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6385 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT,
6386 req_len, *emb);
6387 if (alloc_len < req_len) {
6388 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6389 "2982 Allocated DMA memory size (x%x) is "
6390 "less than the requested DMA memory "
6391 "size (x%x)\n", alloc_len, req_len);
6392 return -ENOMEM;
6393 }
6394 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb);
6395 if (unlikely(rc))
6396 return -EIO;
6397
6398 if (!phba->sli4_hba.intr_enable)
6399 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6400 else {
6401 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6402 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6403 }
6404
6405 if (unlikely(rc))
6406 rc = -EIO;
6407 return rc;
6408 }
6409
6410 /**
6411 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent.
6412 * @phba: Pointer to HBA context object.
6413 * @type: The resource extent type to allocate.
6414 *
6415 * This function allocates the number of elements for the specified
6416 * resource type.
6417 **/
6418 static int
lpfc_sli4_alloc_extent(struct lpfc_hba * phba,uint16_t type)6419 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type)
6420 {
6421 bool emb = false;
6422 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size;
6423 uint16_t rsrc_id, rsrc_start, j, k;
6424 uint16_t *ids;
6425 int i, rc;
6426 unsigned long longs;
6427 unsigned long *bmask;
6428 struct lpfc_rsrc_blks *rsrc_blks;
6429 LPFC_MBOXQ_t *mbox;
6430 uint32_t length;
6431 struct lpfc_id_range *id_array = NULL;
6432 void *virtaddr = NULL;
6433 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
6434 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
6435 struct list_head *ext_blk_list;
6436
6437 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
6438 &rsrc_cnt,
6439 &rsrc_size);
6440 if (unlikely(rc))
6441 return -EIO;
6442
6443 if ((rsrc_cnt == 0) || (rsrc_size == 0)) {
6444 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6445 "3009 No available Resource Extents "
6446 "for resource type 0x%x: Count: 0x%x, "
6447 "Size 0x%x\n", type, rsrc_cnt,
6448 rsrc_size);
6449 return -ENOMEM;
6450 }
6451
6452 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI,
6453 "2903 Post resource extents type-0x%x: "
6454 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size);
6455
6456 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6457 if (!mbox)
6458 return -ENOMEM;
6459
6460 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox);
6461 if (unlikely(rc)) {
6462 rc = -EIO;
6463 goto err_exit;
6464 }
6465
6466 /*
6467 * Figure out where the response is located. Then get local pointers
6468 * to the response data. The port does not guarantee to respond to
6469 * all extents counts request so update the local variable with the
6470 * allocated count from the port.
6471 */
6472 if (emb == LPFC_SLI4_MBX_EMBED) {
6473 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
6474 id_array = &rsrc_ext->u.rsp.id[0];
6475 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
6476 } else {
6477 virtaddr = mbox->sge_array->addr[0];
6478 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
6479 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
6480 id_array = &n_rsrc->id;
6481 }
6482
6483 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG;
6484 rsrc_id_cnt = rsrc_cnt * rsrc_size;
6485
6486 /*
6487 * Based on the resource size and count, correct the base and max
6488 * resource values.
6489 */
6490 length = sizeof(struct lpfc_rsrc_blks);
6491 switch (type) {
6492 case LPFC_RSC_TYPE_FCOE_RPI:
6493 phba->sli4_hba.rpi_bmask = kcalloc(longs,
6494 sizeof(unsigned long),
6495 GFP_KERNEL);
6496 if (unlikely(!phba->sli4_hba.rpi_bmask)) {
6497 rc = -ENOMEM;
6498 goto err_exit;
6499 }
6500 phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt,
6501 sizeof(uint16_t),
6502 GFP_KERNEL);
6503 if (unlikely(!phba->sli4_hba.rpi_ids)) {
6504 kfree(phba->sli4_hba.rpi_bmask);
6505 rc = -ENOMEM;
6506 goto err_exit;
6507 }
6508
6509 /*
6510 * The next_rpi was initialized with the maximum available
6511 * count but the port may allocate a smaller number. Catch
6512 * that case and update the next_rpi.
6513 */
6514 phba->sli4_hba.next_rpi = rsrc_id_cnt;
6515
6516 /* Initialize local ptrs for common extent processing later. */
6517 bmask = phba->sli4_hba.rpi_bmask;
6518 ids = phba->sli4_hba.rpi_ids;
6519 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
6520 break;
6521 case LPFC_RSC_TYPE_FCOE_VPI:
6522 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long),
6523 GFP_KERNEL);
6524 if (unlikely(!phba->vpi_bmask)) {
6525 rc = -ENOMEM;
6526 goto err_exit;
6527 }
6528 phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t),
6529 GFP_KERNEL);
6530 if (unlikely(!phba->vpi_ids)) {
6531 kfree(phba->vpi_bmask);
6532 rc = -ENOMEM;
6533 goto err_exit;
6534 }
6535
6536 /* Initialize local ptrs for common extent processing later. */
6537 bmask = phba->vpi_bmask;
6538 ids = phba->vpi_ids;
6539 ext_blk_list = &phba->lpfc_vpi_blk_list;
6540 break;
6541 case LPFC_RSC_TYPE_FCOE_XRI:
6542 phba->sli4_hba.xri_bmask = kcalloc(longs,
6543 sizeof(unsigned long),
6544 GFP_KERNEL);
6545 if (unlikely(!phba->sli4_hba.xri_bmask)) {
6546 rc = -ENOMEM;
6547 goto err_exit;
6548 }
6549 phba->sli4_hba.max_cfg_param.xri_used = 0;
6550 phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt,
6551 sizeof(uint16_t),
6552 GFP_KERNEL);
6553 if (unlikely(!phba->sli4_hba.xri_ids)) {
6554 kfree(phba->sli4_hba.xri_bmask);
6555 rc = -ENOMEM;
6556 goto err_exit;
6557 }
6558
6559 /* Initialize local ptrs for common extent processing later. */
6560 bmask = phba->sli4_hba.xri_bmask;
6561 ids = phba->sli4_hba.xri_ids;
6562 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
6563 break;
6564 case LPFC_RSC_TYPE_FCOE_VFI:
6565 phba->sli4_hba.vfi_bmask = kcalloc(longs,
6566 sizeof(unsigned long),
6567 GFP_KERNEL);
6568 if (unlikely(!phba->sli4_hba.vfi_bmask)) {
6569 rc = -ENOMEM;
6570 goto err_exit;
6571 }
6572 phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt,
6573 sizeof(uint16_t),
6574 GFP_KERNEL);
6575 if (unlikely(!phba->sli4_hba.vfi_ids)) {
6576 kfree(phba->sli4_hba.vfi_bmask);
6577 rc = -ENOMEM;
6578 goto err_exit;
6579 }
6580
6581 /* Initialize local ptrs for common extent processing later. */
6582 bmask = phba->sli4_hba.vfi_bmask;
6583 ids = phba->sli4_hba.vfi_ids;
6584 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
6585 break;
6586 default:
6587 /* Unsupported Opcode. Fail call. */
6588 id_array = NULL;
6589 bmask = NULL;
6590 ids = NULL;
6591 ext_blk_list = NULL;
6592 goto err_exit;
6593 }
6594
6595 /*
6596 * Complete initializing the extent configuration with the
6597 * allocated ids assigned to this function. The bitmask serves
6598 * as an index into the array and manages the available ids. The
6599 * array just stores the ids communicated to the port via the wqes.
6600 */
6601 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) {
6602 if ((i % 2) == 0)
6603 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0,
6604 &id_array[k]);
6605 else
6606 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1,
6607 &id_array[k]);
6608
6609 rsrc_blks = kzalloc(length, GFP_KERNEL);
6610 if (unlikely(!rsrc_blks)) {
6611 rc = -ENOMEM;
6612 kfree(bmask);
6613 kfree(ids);
6614 goto err_exit;
6615 }
6616 rsrc_blks->rsrc_start = rsrc_id;
6617 rsrc_blks->rsrc_size = rsrc_size;
6618 list_add_tail(&rsrc_blks->list, ext_blk_list);
6619 rsrc_start = rsrc_id;
6620 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) {
6621 phba->sli4_hba.io_xri_start = rsrc_start +
6622 lpfc_sli4_get_iocb_cnt(phba);
6623 }
6624
6625 while (rsrc_id < (rsrc_start + rsrc_size)) {
6626 ids[j] = rsrc_id;
6627 rsrc_id++;
6628 j++;
6629 }
6630 /* Entire word processed. Get next word.*/
6631 if ((i % 2) == 1)
6632 k++;
6633 }
6634 err_exit:
6635 lpfc_sli4_mbox_cmd_free(phba, mbox);
6636 return rc;
6637 }
6638
6639
6640
6641 /**
6642 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent.
6643 * @phba: Pointer to HBA context object.
6644 * @type: the extent's type.
6645 *
6646 * This function deallocates all extents of a particular resource type.
6647 * SLI4 does not allow for deallocating a particular extent range. It
6648 * is the caller's responsibility to release all kernel memory resources.
6649 **/
6650 static int
lpfc_sli4_dealloc_extent(struct lpfc_hba * phba,uint16_t type)6651 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type)
6652 {
6653 int rc;
6654 uint32_t length, mbox_tmo = 0;
6655 LPFC_MBOXQ_t *mbox;
6656 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc;
6657 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next;
6658
6659 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6660 if (!mbox)
6661 return -ENOMEM;
6662
6663 /*
6664 * This function sends an embedded mailbox because it only sends the
6665 * the resource type. All extents of this type are released by the
6666 * port.
6667 */
6668 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) -
6669 sizeof(struct lpfc_sli4_cfg_mhdr));
6670 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6671 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT,
6672 length, LPFC_SLI4_MBX_EMBED);
6673
6674 /* Send an extents count of 0 - the dealloc doesn't use it. */
6675 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
6676 LPFC_SLI4_MBX_EMBED);
6677 if (unlikely(rc)) {
6678 rc = -EIO;
6679 goto out_free_mbox;
6680 }
6681 if (!phba->sli4_hba.intr_enable)
6682 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6683 else {
6684 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6685 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6686 }
6687 if (unlikely(rc)) {
6688 rc = -EIO;
6689 goto out_free_mbox;
6690 }
6691
6692 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents;
6693 if (bf_get(lpfc_mbox_hdr_status,
6694 &dealloc_rsrc->header.cfg_shdr.response)) {
6695 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6696 "2919 Failed to release resource extents "
6697 "for type %d - Status 0x%x Add'l Status 0x%x. "
6698 "Resource memory not released.\n",
6699 type,
6700 bf_get(lpfc_mbox_hdr_status,
6701 &dealloc_rsrc->header.cfg_shdr.response),
6702 bf_get(lpfc_mbox_hdr_add_status,
6703 &dealloc_rsrc->header.cfg_shdr.response));
6704 rc = -EIO;
6705 goto out_free_mbox;
6706 }
6707
6708 /* Release kernel memory resources for the specific type. */
6709 switch (type) {
6710 case LPFC_RSC_TYPE_FCOE_VPI:
6711 kfree(phba->vpi_bmask);
6712 kfree(phba->vpi_ids);
6713 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6714 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6715 &phba->lpfc_vpi_blk_list, list) {
6716 list_del_init(&rsrc_blk->list);
6717 kfree(rsrc_blk);
6718 }
6719 phba->sli4_hba.max_cfg_param.vpi_used = 0;
6720 break;
6721 case LPFC_RSC_TYPE_FCOE_XRI:
6722 kfree(phba->sli4_hba.xri_bmask);
6723 kfree(phba->sli4_hba.xri_ids);
6724 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6725 &phba->sli4_hba.lpfc_xri_blk_list, list) {
6726 list_del_init(&rsrc_blk->list);
6727 kfree(rsrc_blk);
6728 }
6729 break;
6730 case LPFC_RSC_TYPE_FCOE_VFI:
6731 kfree(phba->sli4_hba.vfi_bmask);
6732 kfree(phba->sli4_hba.vfi_ids);
6733 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6734 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6735 &phba->sli4_hba.lpfc_vfi_blk_list, list) {
6736 list_del_init(&rsrc_blk->list);
6737 kfree(rsrc_blk);
6738 }
6739 break;
6740 case LPFC_RSC_TYPE_FCOE_RPI:
6741 /* RPI bitmask and physical id array are cleaned up earlier. */
6742 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6743 &phba->sli4_hba.lpfc_rpi_blk_list, list) {
6744 list_del_init(&rsrc_blk->list);
6745 kfree(rsrc_blk);
6746 }
6747 break;
6748 default:
6749 break;
6750 }
6751
6752 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6753
6754 out_free_mbox:
6755 mempool_free(mbox, phba->mbox_mem_pool);
6756 return rc;
6757 }
6758
6759 static void
lpfc_set_features(struct lpfc_hba * phba,LPFC_MBOXQ_t * mbox,uint32_t feature)6760 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox,
6761 uint32_t feature)
6762 {
6763 uint32_t len;
6764 u32 sig_freq = 0;
6765
6766 len = sizeof(struct lpfc_mbx_set_feature) -
6767 sizeof(struct lpfc_sli4_cfg_mhdr);
6768 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6769 LPFC_MBOX_OPCODE_SET_FEATURES, len,
6770 LPFC_SLI4_MBX_EMBED);
6771
6772 switch (feature) {
6773 case LPFC_SET_UE_RECOVERY:
6774 bf_set(lpfc_mbx_set_feature_UER,
6775 &mbox->u.mqe.un.set_feature, 1);
6776 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY;
6777 mbox->u.mqe.un.set_feature.param_len = 8;
6778 break;
6779 case LPFC_SET_MDS_DIAGS:
6780 bf_set(lpfc_mbx_set_feature_mds,
6781 &mbox->u.mqe.un.set_feature, 1);
6782 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk,
6783 &mbox->u.mqe.un.set_feature, 1);
6784 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS;
6785 mbox->u.mqe.un.set_feature.param_len = 8;
6786 break;
6787 case LPFC_SET_CGN_SIGNAL:
6788 if (phba->cmf_active_mode == LPFC_CFG_OFF)
6789 sig_freq = 0;
6790 else
6791 sig_freq = phba->cgn_sig_freq;
6792
6793 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) {
6794 bf_set(lpfc_mbx_set_feature_CGN_alarm_freq,
6795 &mbox->u.mqe.un.set_feature, sig_freq);
6796 bf_set(lpfc_mbx_set_feature_CGN_warn_freq,
6797 &mbox->u.mqe.un.set_feature, sig_freq);
6798 }
6799
6800 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY)
6801 bf_set(lpfc_mbx_set_feature_CGN_warn_freq,
6802 &mbox->u.mqe.un.set_feature, sig_freq);
6803
6804 if (phba->cmf_active_mode == LPFC_CFG_OFF ||
6805 phba->cgn_reg_signal == EDC_CG_SIG_NOTSUPPORTED)
6806 sig_freq = 0;
6807 else
6808 sig_freq = lpfc_acqe_cgn_frequency;
6809
6810 bf_set(lpfc_mbx_set_feature_CGN_acqe_freq,
6811 &mbox->u.mqe.un.set_feature, sig_freq);
6812
6813 mbox->u.mqe.un.set_feature.feature = LPFC_SET_CGN_SIGNAL;
6814 mbox->u.mqe.un.set_feature.param_len = 12;
6815 break;
6816 case LPFC_SET_DUAL_DUMP:
6817 bf_set(lpfc_mbx_set_feature_dd,
6818 &mbox->u.mqe.un.set_feature, LPFC_ENABLE_DUAL_DUMP);
6819 bf_set(lpfc_mbx_set_feature_ddquery,
6820 &mbox->u.mqe.un.set_feature, 0);
6821 mbox->u.mqe.un.set_feature.feature = LPFC_SET_DUAL_DUMP;
6822 mbox->u.mqe.un.set_feature.param_len = 4;
6823 break;
6824 case LPFC_SET_ENABLE_MI:
6825 mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_MI;
6826 mbox->u.mqe.un.set_feature.param_len = 4;
6827 bf_set(lpfc_mbx_set_feature_milunq, &mbox->u.mqe.un.set_feature,
6828 phba->pport->cfg_lun_queue_depth);
6829 bf_set(lpfc_mbx_set_feature_mi, &mbox->u.mqe.un.set_feature,
6830 phba->sli4_hba.pc_sli4_params.mi_ver);
6831 break;
6832 case LPFC_SET_LD_SIGNAL:
6833 mbox->u.mqe.un.set_feature.feature = LPFC_SET_LD_SIGNAL;
6834 mbox->u.mqe.un.set_feature.param_len = 16;
6835 bf_set(lpfc_mbx_set_feature_lds_qry,
6836 &mbox->u.mqe.un.set_feature, LPFC_QUERY_LDS_OP);
6837 break;
6838 case LPFC_SET_ENABLE_CMF:
6839 mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_CMF;
6840 mbox->u.mqe.un.set_feature.param_len = 4;
6841 bf_set(lpfc_mbx_set_feature_cmf,
6842 &mbox->u.mqe.un.set_feature, 1);
6843 break;
6844 }
6845 return;
6846 }
6847
6848 /**
6849 * lpfc_ras_stop_fwlog: Disable FW logging by the adapter
6850 * @phba: Pointer to HBA context object.
6851 *
6852 * Disable FW logging into host memory on the adapter. To
6853 * be done before reading logs from the host memory.
6854 **/
6855 void
lpfc_ras_stop_fwlog(struct lpfc_hba * phba)6856 lpfc_ras_stop_fwlog(struct lpfc_hba *phba)
6857 {
6858 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6859
6860 spin_lock_irq(&phba->ras_fwlog_lock);
6861 ras_fwlog->state = INACTIVE;
6862 spin_unlock_irq(&phba->ras_fwlog_lock);
6863
6864 /* Disable FW logging to host memory */
6865 writel(LPFC_CTL_PDEV_CTL_DDL_RAS,
6866 phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET);
6867
6868 /* Wait 10ms for firmware to stop using DMA buffer */
6869 usleep_range(10 * 1000, 20 * 1000);
6870 }
6871
6872 /**
6873 * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging.
6874 * @phba: Pointer to HBA context object.
6875 *
6876 * This function is called to free memory allocated for RAS FW logging
6877 * support in the driver.
6878 **/
6879 void
lpfc_sli4_ras_dma_free(struct lpfc_hba * phba)6880 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba)
6881 {
6882 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6883 struct lpfc_dmabuf *dmabuf, *next;
6884
6885 if (!list_empty(&ras_fwlog->fwlog_buff_list)) {
6886 list_for_each_entry_safe(dmabuf, next,
6887 &ras_fwlog->fwlog_buff_list,
6888 list) {
6889 list_del(&dmabuf->list);
6890 dma_free_coherent(&phba->pcidev->dev,
6891 LPFC_RAS_MAX_ENTRY_SIZE,
6892 dmabuf->virt, dmabuf->phys);
6893 kfree(dmabuf);
6894 }
6895 }
6896
6897 if (ras_fwlog->lwpd.virt) {
6898 dma_free_coherent(&phba->pcidev->dev,
6899 sizeof(uint32_t) * 2,
6900 ras_fwlog->lwpd.virt,
6901 ras_fwlog->lwpd.phys);
6902 ras_fwlog->lwpd.virt = NULL;
6903 }
6904
6905 spin_lock_irq(&phba->ras_fwlog_lock);
6906 ras_fwlog->state = INACTIVE;
6907 spin_unlock_irq(&phba->ras_fwlog_lock);
6908 }
6909
6910 /**
6911 * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support
6912 * @phba: Pointer to HBA context object.
6913 * @fwlog_buff_count: Count of buffers to be created.
6914 *
6915 * This routine DMA memory for Log Write Position Data[LPWD] and buffer
6916 * to update FW log is posted to the adapter.
6917 * Buffer count is calculated based on module param ras_fwlog_buffsize
6918 * Size of each buffer posted to FW is 64K.
6919 **/
6920
6921 static int
lpfc_sli4_ras_dma_alloc(struct lpfc_hba * phba,uint32_t fwlog_buff_count)6922 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba,
6923 uint32_t fwlog_buff_count)
6924 {
6925 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6926 struct lpfc_dmabuf *dmabuf;
6927 int rc = 0, i = 0;
6928
6929 /* Initialize List */
6930 INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list);
6931
6932 /* Allocate memory for the LWPD */
6933 ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev,
6934 sizeof(uint32_t) * 2,
6935 &ras_fwlog->lwpd.phys,
6936 GFP_KERNEL);
6937 if (!ras_fwlog->lwpd.virt) {
6938 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6939 "6185 LWPD Memory Alloc Failed\n");
6940
6941 return -ENOMEM;
6942 }
6943
6944 ras_fwlog->fw_buffcount = fwlog_buff_count;
6945 for (i = 0; i < ras_fwlog->fw_buffcount; i++) {
6946 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf),
6947 GFP_KERNEL);
6948 if (!dmabuf) {
6949 rc = -ENOMEM;
6950 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6951 "6186 Memory Alloc failed FW logging");
6952 goto free_mem;
6953 }
6954
6955 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
6956 LPFC_RAS_MAX_ENTRY_SIZE,
6957 &dmabuf->phys, GFP_KERNEL);
6958 if (!dmabuf->virt) {
6959 kfree(dmabuf);
6960 rc = -ENOMEM;
6961 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6962 "6187 DMA Alloc Failed FW logging");
6963 goto free_mem;
6964 }
6965 dmabuf->buffer_tag = i;
6966 list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list);
6967 }
6968
6969 free_mem:
6970 if (rc)
6971 lpfc_sli4_ras_dma_free(phba);
6972
6973 return rc;
6974 }
6975
6976 /**
6977 * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command
6978 * @phba: pointer to lpfc hba data structure.
6979 * @pmb: pointer to the driver internal queue element for mailbox command.
6980 *
6981 * Completion handler for driver's RAS MBX command to the device.
6982 **/
6983 static void
lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmb)6984 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
6985 {
6986 MAILBOX_t *mb;
6987 union lpfc_sli4_cfg_shdr *shdr;
6988 uint32_t shdr_status, shdr_add_status;
6989 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6990
6991 mb = &pmb->u.mb;
6992
6993 shdr = (union lpfc_sli4_cfg_shdr *)
6994 &pmb->u.mqe.un.ras_fwlog.header.cfg_shdr;
6995 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
6996 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
6997
6998 if (mb->mbxStatus != MBX_SUCCESS || shdr_status) {
6999 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7000 "6188 FW LOG mailbox "
7001 "completed with status x%x add_status x%x,"
7002 " mbx status x%x\n",
7003 shdr_status, shdr_add_status, mb->mbxStatus);
7004
7005 ras_fwlog->ras_hwsupport = false;
7006 goto disable_ras;
7007 }
7008
7009 spin_lock_irq(&phba->ras_fwlog_lock);
7010 ras_fwlog->state = ACTIVE;
7011 spin_unlock_irq(&phba->ras_fwlog_lock);
7012 mempool_free(pmb, phba->mbox_mem_pool);
7013
7014 return;
7015
7016 disable_ras:
7017 /* Free RAS DMA memory */
7018 lpfc_sli4_ras_dma_free(phba);
7019 mempool_free(pmb, phba->mbox_mem_pool);
7020 }
7021
7022 /**
7023 * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command
7024 * @phba: pointer to lpfc hba data structure.
7025 * @fwlog_level: Logging verbosity level.
7026 * @fwlog_enable: Enable/Disable logging.
7027 *
7028 * Initialize memory and post mailbox command to enable FW logging in host
7029 * memory.
7030 **/
7031 int
lpfc_sli4_ras_fwlog_init(struct lpfc_hba * phba,uint32_t fwlog_level,uint32_t fwlog_enable)7032 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba,
7033 uint32_t fwlog_level,
7034 uint32_t fwlog_enable)
7035 {
7036 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
7037 struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL;
7038 struct lpfc_dmabuf *dmabuf;
7039 LPFC_MBOXQ_t *mbox;
7040 uint32_t len = 0, fwlog_buffsize, fwlog_entry_count;
7041 int rc = 0;
7042
7043 spin_lock_irq(&phba->ras_fwlog_lock);
7044 ras_fwlog->state = INACTIVE;
7045 spin_unlock_irq(&phba->ras_fwlog_lock);
7046
7047 fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE *
7048 phba->cfg_ras_fwlog_buffsize);
7049 fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE);
7050
7051 /*
7052 * If re-enabling FW logging support use earlier allocated
7053 * DMA buffers while posting MBX command.
7054 **/
7055 if (!ras_fwlog->lwpd.virt) {
7056 rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count);
7057 if (rc) {
7058 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7059 "6189 FW Log Memory Allocation Failed");
7060 return rc;
7061 }
7062 }
7063
7064 /* Setup Mailbox command */
7065 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
7066 if (!mbox) {
7067 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7068 "6190 RAS MBX Alloc Failed");
7069 rc = -ENOMEM;
7070 goto mem_free;
7071 }
7072
7073 ras_fwlog->fw_loglevel = fwlog_level;
7074 len = (sizeof(struct lpfc_mbx_set_ras_fwlog) -
7075 sizeof(struct lpfc_sli4_cfg_mhdr));
7076
7077 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL,
7078 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION,
7079 len, LPFC_SLI4_MBX_EMBED);
7080
7081 mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog;
7082 bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request,
7083 fwlog_enable);
7084 bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request,
7085 ras_fwlog->fw_loglevel);
7086 bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request,
7087 ras_fwlog->fw_buffcount);
7088 bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request,
7089 LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE);
7090
7091 /* Update DMA buffer address */
7092 list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) {
7093 memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE);
7094
7095 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo =
7096 putPaddrLow(dmabuf->phys);
7097
7098 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi =
7099 putPaddrHigh(dmabuf->phys);
7100 }
7101
7102 /* Update LPWD address */
7103 mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys);
7104 mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys);
7105
7106 spin_lock_irq(&phba->ras_fwlog_lock);
7107 ras_fwlog->state = REG_INPROGRESS;
7108 spin_unlock_irq(&phba->ras_fwlog_lock);
7109 mbox->vport = phba->pport;
7110 mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl;
7111
7112 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
7113
7114 if (rc == MBX_NOT_FINISHED) {
7115 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7116 "6191 FW-Log Mailbox failed. "
7117 "status %d mbxStatus : x%x", rc,
7118 bf_get(lpfc_mqe_status, &mbox->u.mqe));
7119 mempool_free(mbox, phba->mbox_mem_pool);
7120 rc = -EIO;
7121 goto mem_free;
7122 } else
7123 rc = 0;
7124 mem_free:
7125 if (rc)
7126 lpfc_sli4_ras_dma_free(phba);
7127
7128 return rc;
7129 }
7130
7131 /**
7132 * lpfc_sli4_ras_setup - Check if RAS supported on the adapter
7133 * @phba: Pointer to HBA context object.
7134 *
7135 * Check if RAS is supported on the adapter and initialize it.
7136 **/
7137 void
lpfc_sli4_ras_setup(struct lpfc_hba * phba)7138 lpfc_sli4_ras_setup(struct lpfc_hba *phba)
7139 {
7140 /* Check RAS FW Log needs to be enabled or not */
7141 if (lpfc_check_fwlog_support(phba))
7142 return;
7143
7144 lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level,
7145 LPFC_RAS_ENABLE_LOGGING);
7146 }
7147
7148 /**
7149 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents.
7150 * @phba: Pointer to HBA context object.
7151 *
7152 * This function allocates all SLI4 resource identifiers.
7153 **/
7154 int
lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba * phba)7155 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba)
7156 {
7157 int i, rc, error = 0;
7158 uint16_t count, base;
7159 unsigned long longs;
7160
7161 if (!phba->sli4_hba.rpi_hdrs_in_use)
7162 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
7163 if (phba->sli4_hba.extents_in_use) {
7164 /*
7165 * The port supports resource extents. The XRI, VPI, VFI, RPI
7166 * resource extent count must be read and allocated before
7167 * provisioning the resource id arrays.
7168 */
7169 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
7170 LPFC_IDX_RSRC_RDY) {
7171 /*
7172 * Extent-based resources are set - the driver could
7173 * be in a port reset. Figure out if any corrective
7174 * actions need to be taken.
7175 */
7176 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
7177 LPFC_RSC_TYPE_FCOE_VFI);
7178 if (rc != 0)
7179 error++;
7180 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
7181 LPFC_RSC_TYPE_FCOE_VPI);
7182 if (rc != 0)
7183 error++;
7184 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
7185 LPFC_RSC_TYPE_FCOE_XRI);
7186 if (rc != 0)
7187 error++;
7188 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
7189 LPFC_RSC_TYPE_FCOE_RPI);
7190 if (rc != 0)
7191 error++;
7192
7193 /*
7194 * It's possible that the number of resources
7195 * provided to this port instance changed between
7196 * resets. Detect this condition and reallocate
7197 * resources. Otherwise, there is no action.
7198 */
7199 if (error) {
7200 lpfc_printf_log(phba, KERN_INFO,
7201 LOG_MBOX | LOG_INIT,
7202 "2931 Detected extent resource "
7203 "change. Reallocating all "
7204 "extents.\n");
7205 rc = lpfc_sli4_dealloc_extent(phba,
7206 LPFC_RSC_TYPE_FCOE_VFI);
7207 rc = lpfc_sli4_dealloc_extent(phba,
7208 LPFC_RSC_TYPE_FCOE_VPI);
7209 rc = lpfc_sli4_dealloc_extent(phba,
7210 LPFC_RSC_TYPE_FCOE_XRI);
7211 rc = lpfc_sli4_dealloc_extent(phba,
7212 LPFC_RSC_TYPE_FCOE_RPI);
7213 } else
7214 return 0;
7215 }
7216
7217 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
7218 if (unlikely(rc))
7219 goto err_exit;
7220
7221 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
7222 if (unlikely(rc))
7223 goto err_exit;
7224
7225 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
7226 if (unlikely(rc))
7227 goto err_exit;
7228
7229 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
7230 if (unlikely(rc))
7231 goto err_exit;
7232 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
7233 LPFC_IDX_RSRC_RDY);
7234 return rc;
7235 } else {
7236 /*
7237 * The port does not support resource extents. The XRI, VPI,
7238 * VFI, RPI resource ids were determined from READ_CONFIG.
7239 * Just allocate the bitmasks and provision the resource id
7240 * arrays. If a port reset is active, the resources don't
7241 * need any action - just exit.
7242 */
7243 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
7244 LPFC_IDX_RSRC_RDY) {
7245 lpfc_sli4_dealloc_resource_identifiers(phba);
7246 lpfc_sli4_remove_rpis(phba);
7247 }
7248 /* RPIs. */
7249 count = phba->sli4_hba.max_cfg_param.max_rpi;
7250 if (count <= 0) {
7251 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7252 "3279 Invalid provisioning of "
7253 "rpi:%d\n", count);
7254 rc = -EINVAL;
7255 goto err_exit;
7256 }
7257 base = phba->sli4_hba.max_cfg_param.rpi_base;
7258 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
7259 phba->sli4_hba.rpi_bmask = kcalloc(longs,
7260 sizeof(unsigned long),
7261 GFP_KERNEL);
7262 if (unlikely(!phba->sli4_hba.rpi_bmask)) {
7263 rc = -ENOMEM;
7264 goto err_exit;
7265 }
7266 phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t),
7267 GFP_KERNEL);
7268 if (unlikely(!phba->sli4_hba.rpi_ids)) {
7269 rc = -ENOMEM;
7270 goto free_rpi_bmask;
7271 }
7272
7273 for (i = 0; i < count; i++)
7274 phba->sli4_hba.rpi_ids[i] = base + i;
7275
7276 /* VPIs. */
7277 count = phba->sli4_hba.max_cfg_param.max_vpi;
7278 if (count <= 0) {
7279 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7280 "3280 Invalid provisioning of "
7281 "vpi:%d\n", count);
7282 rc = -EINVAL;
7283 goto free_rpi_ids;
7284 }
7285 base = phba->sli4_hba.max_cfg_param.vpi_base;
7286 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
7287 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long),
7288 GFP_KERNEL);
7289 if (unlikely(!phba->vpi_bmask)) {
7290 rc = -ENOMEM;
7291 goto free_rpi_ids;
7292 }
7293 phba->vpi_ids = kcalloc(count, sizeof(uint16_t),
7294 GFP_KERNEL);
7295 if (unlikely(!phba->vpi_ids)) {
7296 rc = -ENOMEM;
7297 goto free_vpi_bmask;
7298 }
7299
7300 for (i = 0; i < count; i++)
7301 phba->vpi_ids[i] = base + i;
7302
7303 /* XRIs. */
7304 count = phba->sli4_hba.max_cfg_param.max_xri;
7305 if (count <= 0) {
7306 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7307 "3281 Invalid provisioning of "
7308 "xri:%d\n", count);
7309 rc = -EINVAL;
7310 goto free_vpi_ids;
7311 }
7312 base = phba->sli4_hba.max_cfg_param.xri_base;
7313 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
7314 phba->sli4_hba.xri_bmask = kcalloc(longs,
7315 sizeof(unsigned long),
7316 GFP_KERNEL);
7317 if (unlikely(!phba->sli4_hba.xri_bmask)) {
7318 rc = -ENOMEM;
7319 goto free_vpi_ids;
7320 }
7321 phba->sli4_hba.max_cfg_param.xri_used = 0;
7322 phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t),
7323 GFP_KERNEL);
7324 if (unlikely(!phba->sli4_hba.xri_ids)) {
7325 rc = -ENOMEM;
7326 goto free_xri_bmask;
7327 }
7328
7329 for (i = 0; i < count; i++)
7330 phba->sli4_hba.xri_ids[i] = base + i;
7331
7332 /* VFIs. */
7333 count = phba->sli4_hba.max_cfg_param.max_vfi;
7334 if (count <= 0) {
7335 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7336 "3282 Invalid provisioning of "
7337 "vfi:%d\n", count);
7338 rc = -EINVAL;
7339 goto free_xri_ids;
7340 }
7341 base = phba->sli4_hba.max_cfg_param.vfi_base;
7342 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
7343 phba->sli4_hba.vfi_bmask = kcalloc(longs,
7344 sizeof(unsigned long),
7345 GFP_KERNEL);
7346 if (unlikely(!phba->sli4_hba.vfi_bmask)) {
7347 rc = -ENOMEM;
7348 goto free_xri_ids;
7349 }
7350 phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t),
7351 GFP_KERNEL);
7352 if (unlikely(!phba->sli4_hba.vfi_ids)) {
7353 rc = -ENOMEM;
7354 goto free_vfi_bmask;
7355 }
7356
7357 for (i = 0; i < count; i++)
7358 phba->sli4_hba.vfi_ids[i] = base + i;
7359
7360 /*
7361 * Mark all resources ready. An HBA reset doesn't need
7362 * to reset the initialization.
7363 */
7364 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
7365 LPFC_IDX_RSRC_RDY);
7366 return 0;
7367 }
7368
7369 free_vfi_bmask:
7370 kfree(phba->sli4_hba.vfi_bmask);
7371 phba->sli4_hba.vfi_bmask = NULL;
7372 free_xri_ids:
7373 kfree(phba->sli4_hba.xri_ids);
7374 phba->sli4_hba.xri_ids = NULL;
7375 free_xri_bmask:
7376 kfree(phba->sli4_hba.xri_bmask);
7377 phba->sli4_hba.xri_bmask = NULL;
7378 free_vpi_ids:
7379 kfree(phba->vpi_ids);
7380 phba->vpi_ids = NULL;
7381 free_vpi_bmask:
7382 kfree(phba->vpi_bmask);
7383 phba->vpi_bmask = NULL;
7384 free_rpi_ids:
7385 kfree(phba->sli4_hba.rpi_ids);
7386 phba->sli4_hba.rpi_ids = NULL;
7387 free_rpi_bmask:
7388 kfree(phba->sli4_hba.rpi_bmask);
7389 phba->sli4_hba.rpi_bmask = NULL;
7390 err_exit:
7391 return rc;
7392 }
7393
7394 /**
7395 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents.
7396 * @phba: Pointer to HBA context object.
7397 *
7398 * This function allocates the number of elements for the specified
7399 * resource type.
7400 **/
7401 int
lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba * phba)7402 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba)
7403 {
7404 if (phba->sli4_hba.extents_in_use) {
7405 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
7406 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
7407 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
7408 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
7409 } else {
7410 kfree(phba->vpi_bmask);
7411 phba->sli4_hba.max_cfg_param.vpi_used = 0;
7412 kfree(phba->vpi_ids);
7413 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
7414 kfree(phba->sli4_hba.xri_bmask);
7415 kfree(phba->sli4_hba.xri_ids);
7416 kfree(phba->sli4_hba.vfi_bmask);
7417 kfree(phba->sli4_hba.vfi_ids);
7418 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
7419 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
7420 }
7421
7422 return 0;
7423 }
7424
7425 /**
7426 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents.
7427 * @phba: Pointer to HBA context object.
7428 * @type: The resource extent type.
7429 * @extnt_cnt: buffer to hold port extent count response
7430 * @extnt_size: buffer to hold port extent size response.
7431 *
7432 * This function calls the port to read the host allocated extents
7433 * for a particular type.
7434 **/
7435 int
lpfc_sli4_get_allocated_extnts(struct lpfc_hba * phba,uint16_t type,uint16_t * extnt_cnt,uint16_t * extnt_size)7436 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type,
7437 uint16_t *extnt_cnt, uint16_t *extnt_size)
7438 {
7439 bool emb;
7440 int rc = 0;
7441 uint16_t curr_blks = 0;
7442 uint32_t req_len, emb_len;
7443 uint32_t alloc_len, mbox_tmo;
7444 struct list_head *blk_list_head;
7445 struct lpfc_rsrc_blks *rsrc_blk;
7446 LPFC_MBOXQ_t *mbox;
7447 void *virtaddr = NULL;
7448 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
7449 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
7450 union lpfc_sli4_cfg_shdr *shdr;
7451
7452 switch (type) {
7453 case LPFC_RSC_TYPE_FCOE_VPI:
7454 blk_list_head = &phba->lpfc_vpi_blk_list;
7455 break;
7456 case LPFC_RSC_TYPE_FCOE_XRI:
7457 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list;
7458 break;
7459 case LPFC_RSC_TYPE_FCOE_VFI:
7460 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list;
7461 break;
7462 case LPFC_RSC_TYPE_FCOE_RPI:
7463 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list;
7464 break;
7465 default:
7466 return -EIO;
7467 }
7468
7469 /* Count the number of extents currently allocatd for this type. */
7470 list_for_each_entry(rsrc_blk, blk_list_head, list) {
7471 if (curr_blks == 0) {
7472 /*
7473 * The GET_ALLOCATED mailbox does not return the size,
7474 * just the count. The size should be just the size
7475 * stored in the current allocated block and all sizes
7476 * for an extent type are the same so set the return
7477 * value now.
7478 */
7479 *extnt_size = rsrc_blk->rsrc_size;
7480 }
7481 curr_blks++;
7482 }
7483
7484 /*
7485 * Calculate the size of an embedded mailbox. The uint32_t
7486 * accounts for extents-specific word.
7487 */
7488 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
7489 sizeof(uint32_t);
7490
7491 /*
7492 * Presume the allocation and response will fit into an embedded
7493 * mailbox. If not true, reconfigure to a non-embedded mailbox.
7494 */
7495 emb = LPFC_SLI4_MBX_EMBED;
7496 req_len = emb_len;
7497 if (req_len > emb_len) {
7498 req_len = curr_blks * sizeof(uint16_t) +
7499 sizeof(union lpfc_sli4_cfg_shdr) +
7500 sizeof(uint32_t);
7501 emb = LPFC_SLI4_MBX_NEMBED;
7502 }
7503
7504 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
7505 if (!mbox)
7506 return -ENOMEM;
7507 memset(mbox, 0, sizeof(LPFC_MBOXQ_t));
7508
7509 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
7510 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT,
7511 req_len, emb);
7512 if (alloc_len < req_len) {
7513 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7514 "2983 Allocated DMA memory size (x%x) is "
7515 "less than the requested DMA memory "
7516 "size (x%x)\n", alloc_len, req_len);
7517 rc = -ENOMEM;
7518 goto err_exit;
7519 }
7520 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb);
7521 if (unlikely(rc)) {
7522 rc = -EIO;
7523 goto err_exit;
7524 }
7525
7526 if (!phba->sli4_hba.intr_enable)
7527 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
7528 else {
7529 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
7530 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
7531 }
7532
7533 if (unlikely(rc)) {
7534 rc = -EIO;
7535 goto err_exit;
7536 }
7537
7538 /*
7539 * Figure out where the response is located. Then get local pointers
7540 * to the response data. The port does not guarantee to respond to
7541 * all extents counts request so update the local variable with the
7542 * allocated count from the port.
7543 */
7544 if (emb == LPFC_SLI4_MBX_EMBED) {
7545 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
7546 shdr = &rsrc_ext->header.cfg_shdr;
7547 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
7548 } else {
7549 virtaddr = mbox->sge_array->addr[0];
7550 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
7551 shdr = &n_rsrc->cfg_shdr;
7552 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
7553 }
7554
7555 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) {
7556 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7557 "2984 Failed to read allocated resources "
7558 "for type %d - Status 0x%x Add'l Status 0x%x.\n",
7559 type,
7560 bf_get(lpfc_mbox_hdr_status, &shdr->response),
7561 bf_get(lpfc_mbox_hdr_add_status, &shdr->response));
7562 rc = -EIO;
7563 goto err_exit;
7564 }
7565 err_exit:
7566 lpfc_sli4_mbox_cmd_free(phba, mbox);
7567 return rc;
7568 }
7569
7570 /**
7571 * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block
7572 * @phba: pointer to lpfc hba data structure.
7573 * @sgl_list: linked link of sgl buffers to post
7574 * @cnt: number of linked list buffers
7575 *
7576 * This routine walks the list of buffers that have been allocated and
7577 * repost them to the port by using SGL block post. This is needed after a
7578 * pci_function_reset/warm_start or start. It attempts to construct blocks
7579 * of buffer sgls which contains contiguous xris and uses the non-embedded
7580 * SGL block post mailbox commands to post them to the port. For single
7581 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post
7582 * mailbox command for posting.
7583 *
7584 * Returns: 0 = success, non-zero failure.
7585 **/
7586 static int
lpfc_sli4_repost_sgl_list(struct lpfc_hba * phba,struct list_head * sgl_list,int cnt)7587 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba,
7588 struct list_head *sgl_list, int cnt)
7589 {
7590 struct lpfc_sglq *sglq_entry = NULL;
7591 struct lpfc_sglq *sglq_entry_next = NULL;
7592 struct lpfc_sglq *sglq_entry_first = NULL;
7593 int status = 0, total_cnt;
7594 int post_cnt = 0, num_posted = 0, block_cnt = 0;
7595 int last_xritag = NO_XRI;
7596 LIST_HEAD(prep_sgl_list);
7597 LIST_HEAD(blck_sgl_list);
7598 LIST_HEAD(allc_sgl_list);
7599 LIST_HEAD(post_sgl_list);
7600 LIST_HEAD(free_sgl_list);
7601
7602 spin_lock_irq(&phba->hbalock);
7603 spin_lock(&phba->sli4_hba.sgl_list_lock);
7604 list_splice_init(sgl_list, &allc_sgl_list);
7605 spin_unlock(&phba->sli4_hba.sgl_list_lock);
7606 spin_unlock_irq(&phba->hbalock);
7607
7608 total_cnt = cnt;
7609 list_for_each_entry_safe(sglq_entry, sglq_entry_next,
7610 &allc_sgl_list, list) {
7611 list_del_init(&sglq_entry->list);
7612 block_cnt++;
7613 if ((last_xritag != NO_XRI) &&
7614 (sglq_entry->sli4_xritag != last_xritag + 1)) {
7615 /* a hole in xri block, form a sgl posting block */
7616 list_splice_init(&prep_sgl_list, &blck_sgl_list);
7617 post_cnt = block_cnt - 1;
7618 /* prepare list for next posting block */
7619 list_add_tail(&sglq_entry->list, &prep_sgl_list);
7620 block_cnt = 1;
7621 } else {
7622 /* prepare list for next posting block */
7623 list_add_tail(&sglq_entry->list, &prep_sgl_list);
7624 /* enough sgls for non-embed sgl mbox command */
7625 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) {
7626 list_splice_init(&prep_sgl_list,
7627 &blck_sgl_list);
7628 post_cnt = block_cnt;
7629 block_cnt = 0;
7630 }
7631 }
7632 num_posted++;
7633
7634 /* keep track of last sgl's xritag */
7635 last_xritag = sglq_entry->sli4_xritag;
7636
7637 /* end of repost sgl list condition for buffers */
7638 if (num_posted == total_cnt) {
7639 if (post_cnt == 0) {
7640 list_splice_init(&prep_sgl_list,
7641 &blck_sgl_list);
7642 post_cnt = block_cnt;
7643 } else if (block_cnt == 1) {
7644 status = lpfc_sli4_post_sgl(phba,
7645 sglq_entry->phys, 0,
7646 sglq_entry->sli4_xritag);
7647 if (!status) {
7648 /* successful, put sgl to posted list */
7649 list_add_tail(&sglq_entry->list,
7650 &post_sgl_list);
7651 } else {
7652 /* Failure, put sgl to free list */
7653 lpfc_printf_log(phba, KERN_WARNING,
7654 LOG_SLI,
7655 "3159 Failed to post "
7656 "sgl, xritag:x%x\n",
7657 sglq_entry->sli4_xritag);
7658 list_add_tail(&sglq_entry->list,
7659 &free_sgl_list);
7660 total_cnt--;
7661 }
7662 }
7663 }
7664
7665 /* continue until a nembed page worth of sgls */
7666 if (post_cnt == 0)
7667 continue;
7668
7669 /* post the buffer list sgls as a block */
7670 status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list,
7671 post_cnt);
7672
7673 if (!status) {
7674 /* success, put sgl list to posted sgl list */
7675 list_splice_init(&blck_sgl_list, &post_sgl_list);
7676 } else {
7677 /* Failure, put sgl list to free sgl list */
7678 sglq_entry_first = list_first_entry(&blck_sgl_list,
7679 struct lpfc_sglq,
7680 list);
7681 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
7682 "3160 Failed to post sgl-list, "
7683 "xritag:x%x-x%x\n",
7684 sglq_entry_first->sli4_xritag,
7685 (sglq_entry_first->sli4_xritag +
7686 post_cnt - 1));
7687 list_splice_init(&blck_sgl_list, &free_sgl_list);
7688 total_cnt -= post_cnt;
7689 }
7690
7691 /* don't reset xirtag due to hole in xri block */
7692 if (block_cnt == 0)
7693 last_xritag = NO_XRI;
7694
7695 /* reset sgl post count for next round of posting */
7696 post_cnt = 0;
7697 }
7698
7699 /* free the sgls failed to post */
7700 lpfc_free_sgl_list(phba, &free_sgl_list);
7701
7702 /* push sgls posted to the available list */
7703 if (!list_empty(&post_sgl_list)) {
7704 spin_lock_irq(&phba->hbalock);
7705 spin_lock(&phba->sli4_hba.sgl_list_lock);
7706 list_splice_init(&post_sgl_list, sgl_list);
7707 spin_unlock(&phba->sli4_hba.sgl_list_lock);
7708 spin_unlock_irq(&phba->hbalock);
7709 } else {
7710 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7711 "3161 Failure to post sgl to port,status %x "
7712 "blkcnt %d totalcnt %d postcnt %d\n",
7713 status, block_cnt, total_cnt, post_cnt);
7714 return -EIO;
7715 }
7716
7717 /* return the number of XRIs actually posted */
7718 return total_cnt;
7719 }
7720
7721 /**
7722 * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls
7723 * @phba: pointer to lpfc hba data structure.
7724 *
7725 * This routine walks the list of nvme buffers that have been allocated and
7726 * repost them to the port by using SGL block post. This is needed after a
7727 * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine
7728 * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list
7729 * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers.
7730 *
7731 * Returns: 0 = success, non-zero failure.
7732 **/
7733 static int
lpfc_sli4_repost_io_sgl_list(struct lpfc_hba * phba)7734 lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba)
7735 {
7736 LIST_HEAD(post_nblist);
7737 int num_posted, rc = 0;
7738
7739 /* get all NVME buffers need to repost to a local list */
7740 lpfc_io_buf_flush(phba, &post_nblist);
7741
7742 /* post the list of nvme buffer sgls to port if available */
7743 if (!list_empty(&post_nblist)) {
7744 num_posted = lpfc_sli4_post_io_sgl_list(
7745 phba, &post_nblist, phba->sli4_hba.io_xri_cnt);
7746 /* failed to post any nvme buffer, return error */
7747 if (num_posted == 0)
7748 rc = -EIO;
7749 }
7750 return rc;
7751 }
7752
7753 static void
lpfc_set_host_data(struct lpfc_hba * phba,LPFC_MBOXQ_t * mbox)7754 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
7755 {
7756 uint32_t len;
7757
7758 len = sizeof(struct lpfc_mbx_set_host_data) -
7759 sizeof(struct lpfc_sli4_cfg_mhdr);
7760 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
7761 LPFC_MBOX_OPCODE_SET_HOST_DATA, len,
7762 LPFC_SLI4_MBX_EMBED);
7763
7764 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION;
7765 mbox->u.mqe.un.set_host_data.param_len =
7766 LPFC_HOST_OS_DRIVER_VERSION_SIZE;
7767 snprintf(mbox->u.mqe.un.set_host_data.un.data,
7768 LPFC_HOST_OS_DRIVER_VERSION_SIZE,
7769 "Linux %s v"LPFC_DRIVER_VERSION,
7770 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC");
7771 }
7772
7773 int
lpfc_post_rq_buffer(struct lpfc_hba * phba,struct lpfc_queue * hrq,struct lpfc_queue * drq,int count,int idx)7774 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq,
7775 struct lpfc_queue *drq, int count, int idx)
7776 {
7777 int rc, i;
7778 struct lpfc_rqe hrqe;
7779 struct lpfc_rqe drqe;
7780 struct lpfc_rqb *rqbp;
7781 unsigned long flags;
7782 struct rqb_dmabuf *rqb_buffer;
7783 LIST_HEAD(rqb_buf_list);
7784
7785 rqbp = hrq->rqbp;
7786 for (i = 0; i < count; i++) {
7787 spin_lock_irqsave(&phba->hbalock, flags);
7788 /* IF RQ is already full, don't bother */
7789 if (rqbp->buffer_count + i >= rqbp->entry_count - 1) {
7790 spin_unlock_irqrestore(&phba->hbalock, flags);
7791 break;
7792 }
7793 spin_unlock_irqrestore(&phba->hbalock, flags);
7794
7795 rqb_buffer = rqbp->rqb_alloc_buffer(phba);
7796 if (!rqb_buffer)
7797 break;
7798 rqb_buffer->hrq = hrq;
7799 rqb_buffer->drq = drq;
7800 rqb_buffer->idx = idx;
7801 list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list);
7802 }
7803
7804 spin_lock_irqsave(&phba->hbalock, flags);
7805 while (!list_empty(&rqb_buf_list)) {
7806 list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf,
7807 hbuf.list);
7808
7809 hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys);
7810 hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys);
7811 drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys);
7812 drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys);
7813 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe);
7814 if (rc < 0) {
7815 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7816 "6421 Cannot post to HRQ %d: %x %x %x "
7817 "DRQ %x %x\n",
7818 hrq->queue_id,
7819 hrq->host_index,
7820 hrq->hba_index,
7821 hrq->entry_count,
7822 drq->host_index,
7823 drq->hba_index);
7824 rqbp->rqb_free_buffer(phba, rqb_buffer);
7825 } else {
7826 list_add_tail(&rqb_buffer->hbuf.list,
7827 &rqbp->rqb_buffer_list);
7828 rqbp->buffer_count++;
7829 }
7830 }
7831 spin_unlock_irqrestore(&phba->hbalock, flags);
7832 return 1;
7833 }
7834
7835 static void
lpfc_mbx_cmpl_read_lds_params(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmb)7836 lpfc_mbx_cmpl_read_lds_params(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
7837 {
7838 union lpfc_sli4_cfg_shdr *shdr;
7839 u32 shdr_status, shdr_add_status;
7840
7841 shdr = (union lpfc_sli4_cfg_shdr *)
7842 &pmb->u.mqe.un.sli4_config.header.cfg_shdr;
7843 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
7844 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
7845 if (shdr_status || shdr_add_status || pmb->u.mb.mbxStatus) {
7846 lpfc_printf_log(phba, KERN_INFO, LOG_LDS_EVENT | LOG_MBOX,
7847 "4622 SET_FEATURE (x%x) mbox failed, "
7848 "status x%x add_status x%x, mbx status x%x\n",
7849 LPFC_SET_LD_SIGNAL, shdr_status,
7850 shdr_add_status, pmb->u.mb.mbxStatus);
7851 phba->degrade_activate_threshold = 0;
7852 phba->degrade_deactivate_threshold = 0;
7853 phba->fec_degrade_interval = 0;
7854 goto out;
7855 }
7856
7857 phba->degrade_activate_threshold = pmb->u.mqe.un.set_feature.word7;
7858 phba->degrade_deactivate_threshold = pmb->u.mqe.un.set_feature.word8;
7859 phba->fec_degrade_interval = pmb->u.mqe.un.set_feature.word10;
7860
7861 lpfc_printf_log(phba, KERN_INFO, LOG_LDS_EVENT,
7862 "4624 Success: da x%x dd x%x interval x%x\n",
7863 phba->degrade_activate_threshold,
7864 phba->degrade_deactivate_threshold,
7865 phba->fec_degrade_interval);
7866 out:
7867 mempool_free(pmb, phba->mbox_mem_pool);
7868 }
7869
7870 int
lpfc_read_lds_params(struct lpfc_hba * phba)7871 lpfc_read_lds_params(struct lpfc_hba *phba)
7872 {
7873 LPFC_MBOXQ_t *mboxq;
7874 int rc;
7875
7876 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
7877 if (!mboxq)
7878 return -ENOMEM;
7879
7880 lpfc_set_features(phba, mboxq, LPFC_SET_LD_SIGNAL);
7881 mboxq->vport = phba->pport;
7882 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_lds_params;
7883 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
7884 if (rc == MBX_NOT_FINISHED) {
7885 mempool_free(mboxq, phba->mbox_mem_pool);
7886 return -EIO;
7887 }
7888 return 0;
7889 }
7890
7891 static void
lpfc_mbx_cmpl_cgn_set_ftrs(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmb)7892 lpfc_mbx_cmpl_cgn_set_ftrs(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
7893 {
7894 struct lpfc_vport *vport = pmb->vport;
7895 union lpfc_sli4_cfg_shdr *shdr;
7896 u32 shdr_status, shdr_add_status;
7897 u32 sig, acqe;
7898
7899 /* Two outcomes. (1) Set featurs was successul and EDC negotiation
7900 * is done. (2) Mailbox failed and send FPIN support only.
7901 */
7902 shdr = (union lpfc_sli4_cfg_shdr *)
7903 &pmb->u.mqe.un.sli4_config.header.cfg_shdr;
7904 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
7905 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
7906 if (shdr_status || shdr_add_status || pmb->u.mb.mbxStatus) {
7907 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT,
7908 "2516 CGN SET_FEATURE mbox failed with "
7909 "status x%x add_status x%x, mbx status x%x "
7910 "Reset Congestion to FPINs only\n",
7911 shdr_status, shdr_add_status,
7912 pmb->u.mb.mbxStatus);
7913 /* If there is a mbox error, move on to RDF */
7914 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED;
7915 phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM;
7916 goto out;
7917 }
7918
7919 /* Zero out Congestion Signal ACQE counter */
7920 phba->cgn_acqe_cnt = 0;
7921
7922 acqe = bf_get(lpfc_mbx_set_feature_CGN_acqe_freq,
7923 &pmb->u.mqe.un.set_feature);
7924 sig = bf_get(lpfc_mbx_set_feature_CGN_warn_freq,
7925 &pmb->u.mqe.un.set_feature);
7926 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
7927 "4620 SET_FEATURES Success: Freq: %ds %dms "
7928 " Reg: x%x x%x\n", acqe, sig,
7929 phba->cgn_reg_signal, phba->cgn_reg_fpin);
7930 out:
7931 mempool_free(pmb, phba->mbox_mem_pool);
7932
7933 /* Register for FPIN events from the fabric now that the
7934 * EDC common_set_features has completed.
7935 */
7936 lpfc_issue_els_rdf(vport, 0);
7937 }
7938
7939 int
lpfc_config_cgn_signal(struct lpfc_hba * phba)7940 lpfc_config_cgn_signal(struct lpfc_hba *phba)
7941 {
7942 LPFC_MBOXQ_t *mboxq;
7943 u32 rc;
7944
7945 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
7946 if (!mboxq)
7947 goto out_rdf;
7948
7949 lpfc_set_features(phba, mboxq, LPFC_SET_CGN_SIGNAL);
7950 mboxq->vport = phba->pport;
7951 mboxq->mbox_cmpl = lpfc_mbx_cmpl_cgn_set_ftrs;
7952
7953 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
7954 "4621 SET_FEATURES: FREQ sig x%x acqe x%x: "
7955 "Reg: x%x x%x\n",
7956 phba->cgn_sig_freq, lpfc_acqe_cgn_frequency,
7957 phba->cgn_reg_signal, phba->cgn_reg_fpin);
7958
7959 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
7960 if (rc == MBX_NOT_FINISHED)
7961 goto out;
7962 return 0;
7963
7964 out:
7965 mempool_free(mboxq, phba->mbox_mem_pool);
7966 out_rdf:
7967 /* If there is a mbox error, move on to RDF */
7968 phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM;
7969 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED;
7970 lpfc_issue_els_rdf(phba->pport, 0);
7971 return -EIO;
7972 }
7973
7974 /**
7975 * lpfc_init_idle_stat_hb - Initialize idle_stat tracking
7976 * @phba: pointer to lpfc hba data structure.
7977 *
7978 * This routine initializes the per-eq idle_stat to dynamically dictate
7979 * polling decisions.
7980 *
7981 * Return codes:
7982 * None
7983 **/
lpfc_init_idle_stat_hb(struct lpfc_hba * phba)7984 static void lpfc_init_idle_stat_hb(struct lpfc_hba *phba)
7985 {
7986 int i;
7987 struct lpfc_sli4_hdw_queue *hdwq;
7988 struct lpfc_queue *eq;
7989 struct lpfc_idle_stat *idle_stat;
7990 u64 wall;
7991
7992 for_each_present_cpu(i) {
7993 hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq];
7994 eq = hdwq->hba_eq;
7995
7996 /* Skip if we've already handled this eq's primary CPU */
7997 if (eq->chann != i)
7998 continue;
7999
8000 idle_stat = &phba->sli4_hba.idle_stat[i];
8001
8002 idle_stat->prev_idle = get_cpu_idle_time(i, &wall, 1);
8003 idle_stat->prev_wall = wall;
8004
8005 if (phba->nvmet_support ||
8006 phba->cmf_active_mode != LPFC_CFG_OFF ||
8007 phba->intr_type != MSIX)
8008 eq->poll_mode = LPFC_QUEUE_WORK;
8009 else
8010 eq->poll_mode = LPFC_THREADED_IRQ;
8011 }
8012
8013 if (!phba->nvmet_support && phba->intr_type == MSIX)
8014 schedule_delayed_work(&phba->idle_stat_delay_work,
8015 msecs_to_jiffies(LPFC_IDLE_STAT_DELAY));
8016 }
8017
lpfc_sli4_dip(struct lpfc_hba * phba)8018 static void lpfc_sli4_dip(struct lpfc_hba *phba)
8019 {
8020 uint32_t if_type;
8021
8022 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
8023 if (if_type == LPFC_SLI_INTF_IF_TYPE_2 ||
8024 if_type == LPFC_SLI_INTF_IF_TYPE_6) {
8025 struct lpfc_register reg_data;
8026
8027 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
8028 ®_data.word0))
8029 return;
8030
8031 if (bf_get(lpfc_sliport_status_dip, ®_data))
8032 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
8033 "2904 Firmware Dump Image Present"
8034 " on Adapter");
8035 }
8036 }
8037
8038 /**
8039 * lpfc_rx_monitor_create_ring - Initialize ring buffer for rx_monitor
8040 * @rx_monitor: Pointer to lpfc_rx_info_monitor object
8041 * @entries: Number of rx_info_entry objects to allocate in ring
8042 *
8043 * Return:
8044 * 0 - Success
8045 * ENOMEM - Failure to kmalloc
8046 **/
lpfc_rx_monitor_create_ring(struct lpfc_rx_info_monitor * rx_monitor,u32 entries)8047 int lpfc_rx_monitor_create_ring(struct lpfc_rx_info_monitor *rx_monitor,
8048 u32 entries)
8049 {
8050 rx_monitor->ring = kmalloc_array(entries, sizeof(struct rx_info_entry),
8051 GFP_KERNEL);
8052 if (!rx_monitor->ring)
8053 return -ENOMEM;
8054
8055 rx_monitor->head_idx = 0;
8056 rx_monitor->tail_idx = 0;
8057 spin_lock_init(&rx_monitor->lock);
8058 rx_monitor->entries = entries;
8059
8060 return 0;
8061 }
8062
8063 /**
8064 * lpfc_rx_monitor_destroy_ring - Free ring buffer for rx_monitor
8065 * @rx_monitor: Pointer to lpfc_rx_info_monitor object
8066 *
8067 * Called after cancellation of cmf_timer.
8068 **/
lpfc_rx_monitor_destroy_ring(struct lpfc_rx_info_monitor * rx_monitor)8069 void lpfc_rx_monitor_destroy_ring(struct lpfc_rx_info_monitor *rx_monitor)
8070 {
8071 kfree(rx_monitor->ring);
8072 rx_monitor->ring = NULL;
8073 rx_monitor->entries = 0;
8074 rx_monitor->head_idx = 0;
8075 rx_monitor->tail_idx = 0;
8076 }
8077
8078 /**
8079 * lpfc_rx_monitor_record - Insert an entry into rx_monitor's ring
8080 * @rx_monitor: Pointer to lpfc_rx_info_monitor object
8081 * @entry: Pointer to rx_info_entry
8082 *
8083 * Used to insert an rx_info_entry into rx_monitor's ring. Note that this is a
8084 * deep copy of rx_info_entry not a shallow copy of the rx_info_entry ptr.
8085 *
8086 * This is called from lpfc_cmf_timer, which is in timer/softirq context.
8087 *
8088 * In cases of old data overflow, we do a best effort of FIFO order.
8089 **/
lpfc_rx_monitor_record(struct lpfc_rx_info_monitor * rx_monitor,struct rx_info_entry * entry)8090 void lpfc_rx_monitor_record(struct lpfc_rx_info_monitor *rx_monitor,
8091 struct rx_info_entry *entry)
8092 {
8093 struct rx_info_entry *ring = rx_monitor->ring;
8094 u32 *head_idx = &rx_monitor->head_idx;
8095 u32 *tail_idx = &rx_monitor->tail_idx;
8096 spinlock_t *ring_lock = &rx_monitor->lock;
8097 u32 ring_size = rx_monitor->entries;
8098
8099 spin_lock(ring_lock);
8100 memcpy(&ring[*tail_idx], entry, sizeof(*entry));
8101 *tail_idx = (*tail_idx + 1) % ring_size;
8102
8103 /* Best effort of FIFO saved data */
8104 if (*tail_idx == *head_idx)
8105 *head_idx = (*head_idx + 1) % ring_size;
8106
8107 spin_unlock(ring_lock);
8108 }
8109
8110 /**
8111 * lpfc_rx_monitor_report - Read out rx_monitor's ring
8112 * @phba: Pointer to lpfc_hba object
8113 * @rx_monitor: Pointer to lpfc_rx_info_monitor object
8114 * @buf: Pointer to char buffer that will contain rx monitor info data
8115 * @buf_len: Length buf including null char
8116 * @max_read_entries: Maximum number of entries to read out of ring
8117 *
8118 * Used to dump/read what's in rx_monitor's ring buffer.
8119 *
8120 * If buf is NULL || buf_len == 0, then it is implied that we want to log the
8121 * information to kmsg instead of filling out buf.
8122 *
8123 * Return:
8124 * Number of entries read out of the ring
8125 **/
lpfc_rx_monitor_report(struct lpfc_hba * phba,struct lpfc_rx_info_monitor * rx_monitor,char * buf,u32 buf_len,u32 max_read_entries)8126 u32 lpfc_rx_monitor_report(struct lpfc_hba *phba,
8127 struct lpfc_rx_info_monitor *rx_monitor, char *buf,
8128 u32 buf_len, u32 max_read_entries)
8129 {
8130 struct rx_info_entry *ring = rx_monitor->ring;
8131 struct rx_info_entry *entry;
8132 u32 *head_idx = &rx_monitor->head_idx;
8133 u32 *tail_idx = &rx_monitor->tail_idx;
8134 spinlock_t *ring_lock = &rx_monitor->lock;
8135 u32 ring_size = rx_monitor->entries;
8136 u32 cnt = 0;
8137 char tmp[DBG_LOG_STR_SZ] = {0};
8138 bool log_to_kmsg = (!buf || !buf_len) ? true : false;
8139
8140 if (!log_to_kmsg) {
8141 /* clear the buffer to be sure */
8142 memset(buf, 0, buf_len);
8143
8144 scnprintf(buf, buf_len, "\t%-16s%-16s%-16s%-16s%-8s%-8s%-8s"
8145 "%-8s%-8s%-8s%-16s\n",
8146 "MaxBPI", "Tot_Data_CMF",
8147 "Tot_Data_Cmd", "Tot_Data_Cmpl",
8148 "Lat(us)", "Avg_IO", "Max_IO", "Bsy",
8149 "IO_cnt", "Info", "BWutil(ms)");
8150 }
8151
8152 /* Needs to be _irq because record is called from timer interrupt
8153 * context
8154 */
8155 spin_lock_irq(ring_lock);
8156 while (*head_idx != *tail_idx) {
8157 entry = &ring[*head_idx];
8158
8159 /* Read out this entry's data. */
8160 if (!log_to_kmsg) {
8161 /* If !log_to_kmsg, then store to buf. */
8162 scnprintf(tmp, sizeof(tmp),
8163 "%03d:\t%-16llu%-16llu%-16llu%-16llu%-8llu"
8164 "%-8llu%-8llu%-8u%-8u%-8u%u(%u)\n",
8165 *head_idx, entry->max_bytes_per_interval,
8166 entry->cmf_bytes, entry->total_bytes,
8167 entry->rcv_bytes, entry->avg_io_latency,
8168 entry->avg_io_size, entry->max_read_cnt,
8169 entry->cmf_busy, entry->io_cnt,
8170 entry->cmf_info, entry->timer_utilization,
8171 entry->timer_interval);
8172
8173 /* Check for buffer overflow */
8174 if ((strlen(buf) + strlen(tmp)) >= buf_len)
8175 break;
8176
8177 /* Append entry's data to buffer */
8178 strlcat(buf, tmp, buf_len);
8179 } else {
8180 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
8181 "4410 %02u: MBPI %llu Xmit %llu "
8182 "Cmpl %llu Lat %llu ASz %llu Info %02u "
8183 "BWUtil %u Int %u slot %u\n",
8184 cnt, entry->max_bytes_per_interval,
8185 entry->total_bytes, entry->rcv_bytes,
8186 entry->avg_io_latency,
8187 entry->avg_io_size, entry->cmf_info,
8188 entry->timer_utilization,
8189 entry->timer_interval, *head_idx);
8190 }
8191
8192 *head_idx = (*head_idx + 1) % ring_size;
8193
8194 /* Don't feed more than max_read_entries */
8195 cnt++;
8196 if (cnt >= max_read_entries)
8197 break;
8198 }
8199 spin_unlock_irq(ring_lock);
8200
8201 return cnt;
8202 }
8203
8204 /**
8205 * lpfc_cmf_setup - Initialize idle_stat tracking
8206 * @phba: Pointer to HBA context object.
8207 *
8208 * This is called from HBA setup during driver load or when the HBA
8209 * comes online. this does all the initialization to support CMF and MI.
8210 **/
8211 static int
lpfc_cmf_setup(struct lpfc_hba * phba)8212 lpfc_cmf_setup(struct lpfc_hba *phba)
8213 {
8214 LPFC_MBOXQ_t *mboxq;
8215 struct lpfc_dmabuf *mp;
8216 struct lpfc_pc_sli4_params *sli4_params;
8217 int rc, cmf, mi_ver;
8218
8219 rc = lpfc_sli4_refresh_params(phba);
8220 if (unlikely(rc))
8221 return rc;
8222
8223 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
8224 if (!mboxq)
8225 return -ENOMEM;
8226
8227 sli4_params = &phba->sli4_hba.pc_sli4_params;
8228
8229 /* Always try to enable MI feature if we can */
8230 if (sli4_params->mi_ver) {
8231 lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_MI);
8232 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8233 mi_ver = bf_get(lpfc_mbx_set_feature_mi,
8234 &mboxq->u.mqe.un.set_feature);
8235
8236 if (rc == MBX_SUCCESS) {
8237 if (mi_ver) {
8238 lpfc_printf_log(phba,
8239 KERN_WARNING, LOG_CGN_MGMT,
8240 "6215 MI is enabled\n");
8241 sli4_params->mi_ver = mi_ver;
8242 } else {
8243 lpfc_printf_log(phba,
8244 KERN_WARNING, LOG_CGN_MGMT,
8245 "6338 MI is disabled\n");
8246 sli4_params->mi_ver = 0;
8247 }
8248 } else {
8249 /* mi_ver is already set from GET_SLI4_PARAMETERS */
8250 lpfc_printf_log(phba, KERN_INFO,
8251 LOG_CGN_MGMT | LOG_INIT,
8252 "6245 Enable MI Mailbox x%x (x%x/x%x) "
8253 "failed, rc:x%x mi:x%x\n",
8254 bf_get(lpfc_mqe_command, &mboxq->u.mqe),
8255 lpfc_sli_config_mbox_subsys_get
8256 (phba, mboxq),
8257 lpfc_sli_config_mbox_opcode_get
8258 (phba, mboxq),
8259 rc, sli4_params->mi_ver);
8260 }
8261 } else {
8262 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT,
8263 "6217 MI is disabled\n");
8264 }
8265
8266 /* Ensure FDMI is enabled for MI if enable_mi is set */
8267 if (sli4_params->mi_ver)
8268 phba->cfg_fdmi_on = LPFC_FDMI_SUPPORT;
8269
8270 /* Always try to enable CMF feature if we can */
8271 if (sli4_params->cmf) {
8272 lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_CMF);
8273 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8274 cmf = bf_get(lpfc_mbx_set_feature_cmf,
8275 &mboxq->u.mqe.un.set_feature);
8276 if (rc == MBX_SUCCESS && cmf) {
8277 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT,
8278 "6218 CMF is enabled: mode %d\n",
8279 phba->cmf_active_mode);
8280 } else {
8281 lpfc_printf_log(phba, KERN_WARNING,
8282 LOG_CGN_MGMT | LOG_INIT,
8283 "6219 Enable CMF Mailbox x%x (x%x/x%x) "
8284 "failed, rc:x%x dd:x%x\n",
8285 bf_get(lpfc_mqe_command, &mboxq->u.mqe),
8286 lpfc_sli_config_mbox_subsys_get
8287 (phba, mboxq),
8288 lpfc_sli_config_mbox_opcode_get
8289 (phba, mboxq),
8290 rc, cmf);
8291 sli4_params->cmf = 0;
8292 phba->cmf_active_mode = LPFC_CFG_OFF;
8293 goto no_cmf;
8294 }
8295
8296 /* Allocate Congestion Information Buffer */
8297 if (!phba->cgn_i) {
8298 mp = kmalloc(sizeof(*mp), GFP_KERNEL);
8299 if (mp)
8300 mp->virt = dma_alloc_coherent
8301 (&phba->pcidev->dev,
8302 sizeof(struct lpfc_cgn_info),
8303 &mp->phys, GFP_KERNEL);
8304 if (!mp || !mp->virt) {
8305 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
8306 "2640 Failed to alloc memory "
8307 "for Congestion Info\n");
8308 kfree(mp);
8309 sli4_params->cmf = 0;
8310 phba->cmf_active_mode = LPFC_CFG_OFF;
8311 goto no_cmf;
8312 }
8313 phba->cgn_i = mp;
8314
8315 /* initialize congestion buffer info */
8316 lpfc_init_congestion_buf(phba);
8317 lpfc_init_congestion_stat(phba);
8318
8319 /* Zero out Congestion Signal counters */
8320 atomic64_set(&phba->cgn_acqe_stat.alarm, 0);
8321 atomic64_set(&phba->cgn_acqe_stat.warn, 0);
8322 }
8323
8324 rc = lpfc_sli4_cgn_params_read(phba);
8325 if (rc < 0) {
8326 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
8327 "6242 Error reading Cgn Params (%d)\n",
8328 rc);
8329 /* Ensure CGN Mode is off */
8330 sli4_params->cmf = 0;
8331 } else if (!rc) {
8332 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
8333 "6243 CGN Event empty object.\n");
8334 /* Ensure CGN Mode is off */
8335 sli4_params->cmf = 0;
8336 }
8337 } else {
8338 no_cmf:
8339 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT,
8340 "6220 CMF is disabled\n");
8341 }
8342
8343 /* Only register congestion buffer with firmware if BOTH
8344 * CMF and E2E are enabled.
8345 */
8346 if (sli4_params->cmf && sli4_params->mi_ver) {
8347 rc = lpfc_reg_congestion_buf(phba);
8348 if (rc) {
8349 dma_free_coherent(&phba->pcidev->dev,
8350 sizeof(struct lpfc_cgn_info),
8351 phba->cgn_i->virt, phba->cgn_i->phys);
8352 kfree(phba->cgn_i);
8353 phba->cgn_i = NULL;
8354 /* Ensure CGN Mode is off */
8355 phba->cmf_active_mode = LPFC_CFG_OFF;
8356 sli4_params->cmf = 0;
8357 return 0;
8358 }
8359 }
8360 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
8361 "6470 Setup MI version %d CMF %d mode %d\n",
8362 sli4_params->mi_ver, sli4_params->cmf,
8363 phba->cmf_active_mode);
8364
8365 mempool_free(mboxq, phba->mbox_mem_pool);
8366
8367 /* Initialize atomic counters */
8368 atomic_set(&phba->cgn_fabric_warn_cnt, 0);
8369 atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
8370 atomic_set(&phba->cgn_sync_alarm_cnt, 0);
8371 atomic_set(&phba->cgn_sync_warn_cnt, 0);
8372 atomic_set(&phba->cgn_driver_evt_cnt, 0);
8373 atomic_set(&phba->cgn_latency_evt_cnt, 0);
8374 atomic64_set(&phba->cgn_latency_evt, 0);
8375
8376 phba->cmf_interval_rate = LPFC_CMF_INTERVAL;
8377
8378 /* Allocate RX Monitor Buffer */
8379 if (!phba->rx_monitor) {
8380 phba->rx_monitor = kzalloc(sizeof(*phba->rx_monitor),
8381 GFP_KERNEL);
8382
8383 if (!phba->rx_monitor) {
8384 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
8385 "2644 Failed to alloc memory "
8386 "for RX Monitor Buffer\n");
8387 return -ENOMEM;
8388 }
8389
8390 /* Instruct the rx_monitor object to instantiate its ring */
8391 if (lpfc_rx_monitor_create_ring(phba->rx_monitor,
8392 LPFC_MAX_RXMONITOR_ENTRY)) {
8393 kfree(phba->rx_monitor);
8394 phba->rx_monitor = NULL;
8395 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
8396 "2645 Failed to alloc memory "
8397 "for RX Monitor's Ring\n");
8398 return -ENOMEM;
8399 }
8400 }
8401
8402 return 0;
8403 }
8404
8405 static int
lpfc_set_host_tm(struct lpfc_hba * phba)8406 lpfc_set_host_tm(struct lpfc_hba *phba)
8407 {
8408 LPFC_MBOXQ_t *mboxq;
8409 uint32_t len, rc;
8410 struct timespec64 cur_time;
8411 struct tm broken;
8412 uint32_t month, day, year;
8413 uint32_t hour, minute, second;
8414 struct lpfc_mbx_set_host_date_time *tm;
8415
8416 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
8417 if (!mboxq)
8418 return -ENOMEM;
8419
8420 len = sizeof(struct lpfc_mbx_set_host_data) -
8421 sizeof(struct lpfc_sli4_cfg_mhdr);
8422 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
8423 LPFC_MBOX_OPCODE_SET_HOST_DATA, len,
8424 LPFC_SLI4_MBX_EMBED);
8425
8426 mboxq->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_DATE_TIME;
8427 mboxq->u.mqe.un.set_host_data.param_len =
8428 sizeof(struct lpfc_mbx_set_host_date_time);
8429 tm = &mboxq->u.mqe.un.set_host_data.un.tm;
8430 ktime_get_real_ts64(&cur_time);
8431 time64_to_tm(cur_time.tv_sec, 0, &broken);
8432 month = broken.tm_mon + 1;
8433 day = broken.tm_mday;
8434 year = broken.tm_year - 100;
8435 hour = broken.tm_hour;
8436 minute = broken.tm_min;
8437 second = broken.tm_sec;
8438 bf_set(lpfc_mbx_set_host_month, tm, month);
8439 bf_set(lpfc_mbx_set_host_day, tm, day);
8440 bf_set(lpfc_mbx_set_host_year, tm, year);
8441 bf_set(lpfc_mbx_set_host_hour, tm, hour);
8442 bf_set(lpfc_mbx_set_host_min, tm, minute);
8443 bf_set(lpfc_mbx_set_host_sec, tm, second);
8444
8445 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8446 mempool_free(mboxq, phba->mbox_mem_pool);
8447 return rc;
8448 }
8449
8450 /**
8451 * lpfc_sli4_hba_setup - SLI4 device initialization PCI function
8452 * @phba: Pointer to HBA context object.
8453 *
8454 * This function is the main SLI4 device initialization PCI function. This
8455 * function is called by the HBA initialization code, HBA reset code and
8456 * HBA error attention handler code. Caller is not required to hold any
8457 * locks.
8458 **/
8459 int
lpfc_sli4_hba_setup(struct lpfc_hba * phba)8460 lpfc_sli4_hba_setup(struct lpfc_hba *phba)
8461 {
8462 int rc, i, cnt, len, dd;
8463 LPFC_MBOXQ_t *mboxq;
8464 struct lpfc_mqe *mqe;
8465 uint8_t *vpd;
8466 uint32_t vpd_size;
8467 uint32_t ftr_rsp = 0;
8468 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport);
8469 struct lpfc_vport *vport = phba->pport;
8470 struct lpfc_dmabuf *mp;
8471 struct lpfc_rqb *rqbp;
8472 u32 flg;
8473
8474 /* Perform a PCI function reset to start from clean */
8475 rc = lpfc_pci_function_reset(phba);
8476 if (unlikely(rc))
8477 return -ENODEV;
8478
8479 /* Check the HBA Host Status Register for readyness */
8480 rc = lpfc_sli4_post_status_check(phba);
8481 if (unlikely(rc))
8482 return -ENODEV;
8483 else {
8484 spin_lock_irq(&phba->hbalock);
8485 phba->sli.sli_flag |= LPFC_SLI_ACTIVE;
8486 flg = phba->sli.sli_flag;
8487 spin_unlock_irq(&phba->hbalock);
8488 /* Allow a little time after setting SLI_ACTIVE for any polled
8489 * MBX commands to complete via BSG.
8490 */
8491 for (i = 0; i < 50 && (flg & LPFC_SLI_MBOX_ACTIVE); i++) {
8492 msleep(20);
8493 spin_lock_irq(&phba->hbalock);
8494 flg = phba->sli.sli_flag;
8495 spin_unlock_irq(&phba->hbalock);
8496 }
8497 }
8498 phba->hba_flag &= ~HBA_SETUP;
8499
8500 lpfc_sli4_dip(phba);
8501
8502 /*
8503 * Allocate a single mailbox container for initializing the
8504 * port.
8505 */
8506 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
8507 if (!mboxq)
8508 return -ENOMEM;
8509
8510 /* Issue READ_REV to collect vpd and FW information. */
8511 vpd_size = SLI4_PAGE_SIZE;
8512 vpd = kzalloc(vpd_size, GFP_KERNEL);
8513 if (!vpd) {
8514 rc = -ENOMEM;
8515 goto out_free_mbox;
8516 }
8517
8518 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size);
8519 if (unlikely(rc)) {
8520 kfree(vpd);
8521 goto out_free_mbox;
8522 }
8523
8524 mqe = &mboxq->u.mqe;
8525 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev);
8526 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) {
8527 phba->hba_flag |= HBA_FCOE_MODE;
8528 phba->fcp_embed_io = 0; /* SLI4 FC support only */
8529 } else {
8530 phba->hba_flag &= ~HBA_FCOE_MODE;
8531 }
8532
8533 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) ==
8534 LPFC_DCBX_CEE_MODE)
8535 phba->hba_flag |= HBA_FIP_SUPPORT;
8536 else
8537 phba->hba_flag &= ~HBA_FIP_SUPPORT;
8538
8539 phba->hba_flag &= ~HBA_IOQ_FLUSH;
8540
8541 if (phba->sli_rev != LPFC_SLI_REV4) {
8542 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8543 "0376 READ_REV Error. SLI Level %d "
8544 "FCoE enabled %d\n",
8545 phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE);
8546 rc = -EIO;
8547 kfree(vpd);
8548 goto out_free_mbox;
8549 }
8550
8551 rc = lpfc_set_host_tm(phba);
8552 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
8553 "6468 Set host date / time: Status x%x:\n", rc);
8554
8555 /*
8556 * Continue initialization with default values even if driver failed
8557 * to read FCoE param config regions, only read parameters if the
8558 * board is FCoE
8559 */
8560 if (phba->hba_flag & HBA_FCOE_MODE &&
8561 lpfc_sli4_read_fcoe_params(phba))
8562 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT,
8563 "2570 Failed to read FCoE parameters\n");
8564
8565 /*
8566 * Retrieve sli4 device physical port name, failure of doing it
8567 * is considered as non-fatal.
8568 */
8569 rc = lpfc_sli4_retrieve_pport_name(phba);
8570 if (!rc)
8571 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8572 "3080 Successful retrieving SLI4 device "
8573 "physical port name: %s.\n", phba->Port);
8574
8575 rc = lpfc_sli4_get_ctl_attr(phba);
8576 if (!rc)
8577 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8578 "8351 Successful retrieving SLI4 device "
8579 "CTL ATTR\n");
8580
8581 /*
8582 * Evaluate the read rev and vpd data. Populate the driver
8583 * state with the results. If this routine fails, the failure
8584 * is not fatal as the driver will use generic values.
8585 */
8586 rc = lpfc_parse_vpd(phba, vpd, vpd_size);
8587 if (unlikely(!rc)) {
8588 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8589 "0377 Error %d parsing vpd. "
8590 "Using defaults.\n", rc);
8591 rc = 0;
8592 }
8593 kfree(vpd);
8594
8595 /* Save information as VPD data */
8596 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev;
8597 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev;
8598
8599 /*
8600 * This is because first G7 ASIC doesn't support the standard
8601 * 0x5a NVME cmd descriptor type/subtype
8602 */
8603 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
8604 LPFC_SLI_INTF_IF_TYPE_6) &&
8605 (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) &&
8606 (phba->vpd.rev.smRev == 0) &&
8607 (phba->cfg_nvme_embed_cmd == 1))
8608 phba->cfg_nvme_embed_cmd = 0;
8609
8610 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev;
8611 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high,
8612 &mqe->un.read_rev);
8613 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low,
8614 &mqe->un.read_rev);
8615 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high,
8616 &mqe->un.read_rev);
8617 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low,
8618 &mqe->un.read_rev);
8619 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev;
8620 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16);
8621 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev;
8622 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16);
8623 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev;
8624 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16);
8625 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8626 "(%d):0380 READ_REV Status x%x "
8627 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n",
8628 mboxq->vport ? mboxq->vport->vpi : 0,
8629 bf_get(lpfc_mqe_status, mqe),
8630 phba->vpd.rev.opFwName,
8631 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow,
8632 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow);
8633
8634 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
8635 LPFC_SLI_INTF_IF_TYPE_0) {
8636 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY);
8637 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8638 if (rc == MBX_SUCCESS) {
8639 phba->hba_flag |= HBA_RECOVERABLE_UE;
8640 /* Set 1Sec interval to detect UE */
8641 phba->eratt_poll_interval = 1;
8642 phba->sli4_hba.ue_to_sr = bf_get(
8643 lpfc_mbx_set_feature_UESR,
8644 &mboxq->u.mqe.un.set_feature);
8645 phba->sli4_hba.ue_to_rp = bf_get(
8646 lpfc_mbx_set_feature_UERP,
8647 &mboxq->u.mqe.un.set_feature);
8648 }
8649 }
8650
8651 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) {
8652 /* Enable MDS Diagnostics only if the SLI Port supports it */
8653 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS);
8654 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8655 if (rc != MBX_SUCCESS)
8656 phba->mds_diags_support = 0;
8657 }
8658
8659 /*
8660 * Discover the port's supported feature set and match it against the
8661 * hosts requests.
8662 */
8663 lpfc_request_features(phba, mboxq);
8664 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8665 if (unlikely(rc)) {
8666 rc = -EIO;
8667 goto out_free_mbox;
8668 }
8669
8670 /* Disable VMID if app header is not supported */
8671 if (phba->cfg_vmid_app_header && !(bf_get(lpfc_mbx_rq_ftr_rsp_ashdr,
8672 &mqe->un.req_ftrs))) {
8673 bf_set(lpfc_ftr_ashdr, &phba->sli4_hba.sli4_flags, 0);
8674 phba->cfg_vmid_app_header = 0;
8675 lpfc_printf_log(phba, KERN_DEBUG, LOG_SLI,
8676 "1242 vmid feature not supported\n");
8677 }
8678
8679 /*
8680 * The port must support FCP initiator mode as this is the
8681 * only mode running in the host.
8682 */
8683 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) {
8684 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
8685 "0378 No support for fcpi mode.\n");
8686 ftr_rsp++;
8687 }
8688
8689 /* Performance Hints are ONLY for FCoE */
8690 if (phba->hba_flag & HBA_FCOE_MODE) {
8691 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs))
8692 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED;
8693 else
8694 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED;
8695 }
8696
8697 /*
8698 * If the port cannot support the host's requested features
8699 * then turn off the global config parameters to disable the
8700 * feature in the driver. This is not a fatal error.
8701 */
8702 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
8703 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) {
8704 phba->cfg_enable_bg = 0;
8705 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED;
8706 ftr_rsp++;
8707 }
8708 }
8709
8710 if (phba->max_vpi && phba->cfg_enable_npiv &&
8711 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
8712 ftr_rsp++;
8713
8714 if (ftr_rsp) {
8715 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
8716 "0379 Feature Mismatch Data: x%08x %08x "
8717 "x%x x%x x%x\n", mqe->un.req_ftrs.word2,
8718 mqe->un.req_ftrs.word3, phba->cfg_enable_bg,
8719 phba->cfg_enable_npiv, phba->max_vpi);
8720 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs)))
8721 phba->cfg_enable_bg = 0;
8722 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
8723 phba->cfg_enable_npiv = 0;
8724 }
8725
8726 /* These SLI3 features are assumed in SLI4 */
8727 spin_lock_irq(&phba->hbalock);
8728 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED);
8729 spin_unlock_irq(&phba->hbalock);
8730
8731 /* Always try to enable dual dump feature if we can */
8732 lpfc_set_features(phba, mboxq, LPFC_SET_DUAL_DUMP);
8733 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8734 dd = bf_get(lpfc_mbx_set_feature_dd, &mboxq->u.mqe.un.set_feature);
8735 if ((rc == MBX_SUCCESS) && (dd == LPFC_ENABLE_DUAL_DUMP))
8736 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
8737 "6448 Dual Dump is enabled\n");
8738 else
8739 lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_INIT,
8740 "6447 Dual Dump Mailbox x%x (x%x/x%x) failed, "
8741 "rc:x%x dd:x%x\n",
8742 bf_get(lpfc_mqe_command, &mboxq->u.mqe),
8743 lpfc_sli_config_mbox_subsys_get(
8744 phba, mboxq),
8745 lpfc_sli_config_mbox_opcode_get(
8746 phba, mboxq),
8747 rc, dd);
8748 /*
8749 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent
8750 * calls depends on these resources to complete port setup.
8751 */
8752 rc = lpfc_sli4_alloc_resource_identifiers(phba);
8753 if (rc) {
8754 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8755 "2920 Failed to alloc Resource IDs "
8756 "rc = x%x\n", rc);
8757 goto out_free_mbox;
8758 }
8759
8760 lpfc_set_host_data(phba, mboxq);
8761
8762 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8763 if (rc) {
8764 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
8765 "2134 Failed to set host os driver version %x",
8766 rc);
8767 }
8768
8769 /* Read the port's service parameters. */
8770 rc = lpfc_read_sparam(phba, mboxq, vport->vpi);
8771 if (rc) {
8772 phba->link_state = LPFC_HBA_ERROR;
8773 rc = -ENOMEM;
8774 goto out_free_mbox;
8775 }
8776
8777 mboxq->vport = vport;
8778 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8779 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
8780 if (rc == MBX_SUCCESS) {
8781 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm));
8782 rc = 0;
8783 }
8784
8785 /*
8786 * This memory was allocated by the lpfc_read_sparam routine but is
8787 * no longer needed. It is released and ctx_buf NULLed to prevent
8788 * unintended pointer access as the mbox is reused.
8789 */
8790 lpfc_mbuf_free(phba, mp->virt, mp->phys);
8791 kfree(mp);
8792 mboxq->ctx_buf = NULL;
8793 if (unlikely(rc)) {
8794 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8795 "0382 READ_SPARAM command failed "
8796 "status %d, mbxStatus x%x\n",
8797 rc, bf_get(lpfc_mqe_status, mqe));
8798 phba->link_state = LPFC_HBA_ERROR;
8799 rc = -EIO;
8800 goto out_free_mbox;
8801 }
8802
8803 lpfc_update_vport_wwn(vport);
8804
8805 /* Update the fc_host data structures with new wwn. */
8806 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
8807 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
8808
8809 /* Create all the SLI4 queues */
8810 rc = lpfc_sli4_queue_create(phba);
8811 if (rc) {
8812 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8813 "3089 Failed to allocate queues\n");
8814 rc = -ENODEV;
8815 goto out_free_mbox;
8816 }
8817 /* Set up all the queues to the device */
8818 rc = lpfc_sli4_queue_setup(phba);
8819 if (unlikely(rc)) {
8820 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8821 "0381 Error %d during queue setup.\n ", rc);
8822 goto out_stop_timers;
8823 }
8824 /* Initialize the driver internal SLI layer lists. */
8825 lpfc_sli4_setup(phba);
8826 lpfc_sli4_queue_init(phba);
8827
8828 /* update host els xri-sgl sizes and mappings */
8829 rc = lpfc_sli4_els_sgl_update(phba);
8830 if (unlikely(rc)) {
8831 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8832 "1400 Failed to update xri-sgl size and "
8833 "mapping: %d\n", rc);
8834 goto out_destroy_queue;
8835 }
8836
8837 /* register the els sgl pool to the port */
8838 rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list,
8839 phba->sli4_hba.els_xri_cnt);
8840 if (unlikely(rc < 0)) {
8841 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8842 "0582 Error %d during els sgl post "
8843 "operation\n", rc);
8844 rc = -ENODEV;
8845 goto out_destroy_queue;
8846 }
8847 phba->sli4_hba.els_xri_cnt = rc;
8848
8849 if (phba->nvmet_support) {
8850 /* update host nvmet xri-sgl sizes and mappings */
8851 rc = lpfc_sli4_nvmet_sgl_update(phba);
8852 if (unlikely(rc)) {
8853 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8854 "6308 Failed to update nvmet-sgl size "
8855 "and mapping: %d\n", rc);
8856 goto out_destroy_queue;
8857 }
8858
8859 /* register the nvmet sgl pool to the port */
8860 rc = lpfc_sli4_repost_sgl_list(
8861 phba,
8862 &phba->sli4_hba.lpfc_nvmet_sgl_list,
8863 phba->sli4_hba.nvmet_xri_cnt);
8864 if (unlikely(rc < 0)) {
8865 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8866 "3117 Error %d during nvmet "
8867 "sgl post\n", rc);
8868 rc = -ENODEV;
8869 goto out_destroy_queue;
8870 }
8871 phba->sli4_hba.nvmet_xri_cnt = rc;
8872
8873 /* We allocate an iocbq for every receive context SGL.
8874 * The additional allocation is for abort and ls handling.
8875 */
8876 cnt = phba->sli4_hba.nvmet_xri_cnt +
8877 phba->sli4_hba.max_cfg_param.max_xri;
8878 } else {
8879 /* update host common xri-sgl sizes and mappings */
8880 rc = lpfc_sli4_io_sgl_update(phba);
8881 if (unlikely(rc)) {
8882 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8883 "6082 Failed to update nvme-sgl size "
8884 "and mapping: %d\n", rc);
8885 goto out_destroy_queue;
8886 }
8887
8888 /* register the allocated common sgl pool to the port */
8889 rc = lpfc_sli4_repost_io_sgl_list(phba);
8890 if (unlikely(rc)) {
8891 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8892 "6116 Error %d during nvme sgl post "
8893 "operation\n", rc);
8894 /* Some NVME buffers were moved to abort nvme list */
8895 /* A pci function reset will repost them */
8896 rc = -ENODEV;
8897 goto out_destroy_queue;
8898 }
8899 /* Each lpfc_io_buf job structure has an iocbq element.
8900 * This cnt provides for abort, els, ct and ls requests.
8901 */
8902 cnt = phba->sli4_hba.max_cfg_param.max_xri;
8903 }
8904
8905 if (!phba->sli.iocbq_lookup) {
8906 /* Initialize and populate the iocb list per host */
8907 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
8908 "2821 initialize iocb list with %d entries\n",
8909 cnt);
8910 rc = lpfc_init_iocb_list(phba, cnt);
8911 if (rc) {
8912 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8913 "1413 Failed to init iocb list.\n");
8914 goto out_destroy_queue;
8915 }
8916 }
8917
8918 if (phba->nvmet_support)
8919 lpfc_nvmet_create_targetport(phba);
8920
8921 if (phba->nvmet_support && phba->cfg_nvmet_mrq) {
8922 /* Post initial buffers to all RQs created */
8923 for (i = 0; i < phba->cfg_nvmet_mrq; i++) {
8924 rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp;
8925 INIT_LIST_HEAD(&rqbp->rqb_buffer_list);
8926 rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc;
8927 rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free;
8928 rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT;
8929 rqbp->buffer_count = 0;
8930
8931 lpfc_post_rq_buffer(
8932 phba, phba->sli4_hba.nvmet_mrq_hdr[i],
8933 phba->sli4_hba.nvmet_mrq_data[i],
8934 phba->cfg_nvmet_mrq_post, i);
8935 }
8936 }
8937
8938 /* Post the rpi header region to the device. */
8939 rc = lpfc_sli4_post_all_rpi_hdrs(phba);
8940 if (unlikely(rc)) {
8941 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8942 "0393 Error %d during rpi post operation\n",
8943 rc);
8944 rc = -ENODEV;
8945 goto out_free_iocblist;
8946 }
8947 lpfc_sli4_node_prep(phba);
8948
8949 if (!(phba->hba_flag & HBA_FCOE_MODE)) {
8950 if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) {
8951 /*
8952 * The FC Port needs to register FCFI (index 0)
8953 */
8954 lpfc_reg_fcfi(phba, mboxq);
8955 mboxq->vport = phba->pport;
8956 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8957 if (rc != MBX_SUCCESS)
8958 goto out_unset_queue;
8959 rc = 0;
8960 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi,
8961 &mboxq->u.mqe.un.reg_fcfi);
8962 } else {
8963 /* We are a NVME Target mode with MRQ > 1 */
8964
8965 /* First register the FCFI */
8966 lpfc_reg_fcfi_mrq(phba, mboxq, 0);
8967 mboxq->vport = phba->pport;
8968 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8969 if (rc != MBX_SUCCESS)
8970 goto out_unset_queue;
8971 rc = 0;
8972 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi,
8973 &mboxq->u.mqe.un.reg_fcfi_mrq);
8974
8975 /* Next register the MRQs */
8976 lpfc_reg_fcfi_mrq(phba, mboxq, 1);
8977 mboxq->vport = phba->pport;
8978 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8979 if (rc != MBX_SUCCESS)
8980 goto out_unset_queue;
8981 rc = 0;
8982 }
8983 /* Check if the port is configured to be disabled */
8984 lpfc_sli_read_link_ste(phba);
8985 }
8986
8987 /* Don't post more new bufs if repost already recovered
8988 * the nvme sgls.
8989 */
8990 if (phba->nvmet_support == 0) {
8991 if (phba->sli4_hba.io_xri_cnt == 0) {
8992 len = lpfc_new_io_buf(
8993 phba, phba->sli4_hba.io_xri_max);
8994 if (len == 0) {
8995 rc = -ENOMEM;
8996 goto out_unset_queue;
8997 }
8998
8999 if (phba->cfg_xri_rebalancing)
9000 lpfc_create_multixri_pools(phba);
9001 }
9002 } else {
9003 phba->cfg_xri_rebalancing = 0;
9004 }
9005
9006 /* Allow asynchronous mailbox command to go through */
9007 spin_lock_irq(&phba->hbalock);
9008 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
9009 spin_unlock_irq(&phba->hbalock);
9010
9011 /* Post receive buffers to the device */
9012 lpfc_sli4_rb_setup(phba);
9013
9014 /* Reset HBA FCF states after HBA reset */
9015 phba->fcf.fcf_flag = 0;
9016 phba->fcf.current_rec.flag = 0;
9017
9018 /* Start the ELS watchdog timer */
9019 mod_timer(&vport->els_tmofunc,
9020 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2)));
9021
9022 /* Start heart beat timer */
9023 mod_timer(&phba->hb_tmofunc,
9024 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
9025 phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO);
9026 phba->last_completion_time = jiffies;
9027
9028 /* start eq_delay heartbeat */
9029 if (phba->cfg_auto_imax)
9030 queue_delayed_work(phba->wq, &phba->eq_delay_work,
9031 msecs_to_jiffies(LPFC_EQ_DELAY_MSECS));
9032
9033 /* start per phba idle_stat_delay heartbeat */
9034 lpfc_init_idle_stat_hb(phba);
9035
9036 /* Start error attention (ERATT) polling timer */
9037 mod_timer(&phba->eratt_poll,
9038 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval));
9039
9040 /*
9041 * The port is ready, set the host's link state to LINK_DOWN
9042 * in preparation for link interrupts.
9043 */
9044 spin_lock_irq(&phba->hbalock);
9045 phba->link_state = LPFC_LINK_DOWN;
9046
9047 /* Check if physical ports are trunked */
9048 if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba))
9049 phba->trunk_link.link0.state = LPFC_LINK_DOWN;
9050 if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba))
9051 phba->trunk_link.link1.state = LPFC_LINK_DOWN;
9052 if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba))
9053 phba->trunk_link.link2.state = LPFC_LINK_DOWN;
9054 if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba))
9055 phba->trunk_link.link3.state = LPFC_LINK_DOWN;
9056 spin_unlock_irq(&phba->hbalock);
9057
9058 /* Arm the CQs and then EQs on device */
9059 lpfc_sli4_arm_cqeq_intr(phba);
9060
9061 /* Indicate device interrupt mode */
9062 phba->sli4_hba.intr_enable = 1;
9063
9064 /* Setup CMF after HBA is initialized */
9065 lpfc_cmf_setup(phba);
9066
9067 if (!(phba->hba_flag & HBA_FCOE_MODE) &&
9068 (phba->hba_flag & LINK_DISABLED)) {
9069 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9070 "3103 Adapter Link is disabled.\n");
9071 lpfc_down_link(phba, mboxq);
9072 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
9073 if (rc != MBX_SUCCESS) {
9074 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9075 "3104 Adapter failed to issue "
9076 "DOWN_LINK mbox cmd, rc:x%x\n", rc);
9077 goto out_io_buff_free;
9078 }
9079 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) {
9080 /* don't perform init_link on SLI4 FC port loopback test */
9081 if (!(phba->link_flag & LS_LOOPBACK_MODE)) {
9082 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT);
9083 if (rc)
9084 goto out_io_buff_free;
9085 }
9086 }
9087 mempool_free(mboxq, phba->mbox_mem_pool);
9088
9089 /* Enable RAS FW log support */
9090 lpfc_sli4_ras_setup(phba);
9091
9092 phba->hba_flag |= HBA_SETUP;
9093 return rc;
9094
9095 out_io_buff_free:
9096 /* Free allocated IO Buffers */
9097 lpfc_io_free(phba);
9098 out_unset_queue:
9099 /* Unset all the queues set up in this routine when error out */
9100 lpfc_sli4_queue_unset(phba);
9101 out_free_iocblist:
9102 lpfc_free_iocb_list(phba);
9103 out_destroy_queue:
9104 lpfc_sli4_queue_destroy(phba);
9105 out_stop_timers:
9106 lpfc_stop_hba_timers(phba);
9107 out_free_mbox:
9108 mempool_free(mboxq, phba->mbox_mem_pool);
9109 return rc;
9110 }
9111
9112 /**
9113 * lpfc_mbox_timeout - Timeout call back function for mbox timer
9114 * @t: Context to fetch pointer to hba structure from.
9115 *
9116 * This is the callback function for mailbox timer. The mailbox
9117 * timer is armed when a new mailbox command is issued and the timer
9118 * is deleted when the mailbox complete. The function is called by
9119 * the kernel timer code when a mailbox does not complete within
9120 * expected time. This function wakes up the worker thread to
9121 * process the mailbox timeout and returns. All the processing is
9122 * done by the worker thread function lpfc_mbox_timeout_handler.
9123 **/
9124 void
lpfc_mbox_timeout(struct timer_list * t)9125 lpfc_mbox_timeout(struct timer_list *t)
9126 {
9127 struct lpfc_hba *phba = from_timer(phba, t, sli.mbox_tmo);
9128 unsigned long iflag;
9129 uint32_t tmo_posted;
9130
9131 spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
9132 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO;
9133 if (!tmo_posted)
9134 phba->pport->work_port_events |= WORKER_MBOX_TMO;
9135 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
9136
9137 if (!tmo_posted)
9138 lpfc_worker_wake_up(phba);
9139 return;
9140 }
9141
9142 /**
9143 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions
9144 * are pending
9145 * @phba: Pointer to HBA context object.
9146 *
9147 * This function checks if any mailbox completions are present on the mailbox
9148 * completion queue.
9149 **/
9150 static bool
lpfc_sli4_mbox_completions_pending(struct lpfc_hba * phba)9151 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba)
9152 {
9153
9154 uint32_t idx;
9155 struct lpfc_queue *mcq;
9156 struct lpfc_mcqe *mcqe;
9157 bool pending_completions = false;
9158 uint8_t qe_valid;
9159
9160 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
9161 return false;
9162
9163 /* Check for completions on mailbox completion queue */
9164
9165 mcq = phba->sli4_hba.mbx_cq;
9166 idx = mcq->hba_index;
9167 qe_valid = mcq->qe_valid;
9168 while (bf_get_le32(lpfc_cqe_valid,
9169 (struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) {
9170 mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx));
9171 if (bf_get_le32(lpfc_trailer_completed, mcqe) &&
9172 (!bf_get_le32(lpfc_trailer_async, mcqe))) {
9173 pending_completions = true;
9174 break;
9175 }
9176 idx = (idx + 1) % mcq->entry_count;
9177 if (mcq->hba_index == idx)
9178 break;
9179
9180 /* if the index wrapped around, toggle the valid bit */
9181 if (phba->sli4_hba.pc_sli4_params.cqav && !idx)
9182 qe_valid = (qe_valid) ? 0 : 1;
9183 }
9184 return pending_completions;
9185
9186 }
9187
9188 /**
9189 * lpfc_sli4_process_missed_mbox_completions - process mbox completions
9190 * that were missed.
9191 * @phba: Pointer to HBA context object.
9192 *
9193 * For sli4, it is possible to miss an interrupt. As such mbox completions
9194 * maybe missed causing erroneous mailbox timeouts to occur. This function
9195 * checks to see if mbox completions are on the mailbox completion queue
9196 * and will process all the completions associated with the eq for the
9197 * mailbox completion queue.
9198 **/
9199 static bool
lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba * phba)9200 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba)
9201 {
9202 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba;
9203 uint32_t eqidx;
9204 struct lpfc_queue *fpeq = NULL;
9205 struct lpfc_queue *eq;
9206 bool mbox_pending;
9207
9208 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
9209 return false;
9210
9211 /* Find the EQ associated with the mbox CQ */
9212 if (sli4_hba->hdwq) {
9213 for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++) {
9214 eq = phba->sli4_hba.hba_eq_hdl[eqidx].eq;
9215 if (eq && eq->queue_id == sli4_hba->mbx_cq->assoc_qid) {
9216 fpeq = eq;
9217 break;
9218 }
9219 }
9220 }
9221 if (!fpeq)
9222 return false;
9223
9224 /* Turn off interrupts from this EQ */
9225
9226 sli4_hba->sli4_eq_clr_intr(fpeq);
9227
9228 /* Check to see if a mbox completion is pending */
9229
9230 mbox_pending = lpfc_sli4_mbox_completions_pending(phba);
9231
9232 /*
9233 * If a mbox completion is pending, process all the events on EQ
9234 * associated with the mbox completion queue (this could include
9235 * mailbox commands, async events, els commands, receive queue data
9236 * and fcp commands)
9237 */
9238
9239 if (mbox_pending)
9240 /* process and rearm the EQ */
9241 lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM,
9242 LPFC_QUEUE_WORK);
9243 else
9244 /* Always clear and re-arm the EQ */
9245 sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM);
9246
9247 return mbox_pending;
9248
9249 }
9250
9251 /**
9252 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout
9253 * @phba: Pointer to HBA context object.
9254 *
9255 * This function is called from worker thread when a mailbox command times out.
9256 * The caller is not required to hold any locks. This function will reset the
9257 * HBA and recover all the pending commands.
9258 **/
9259 void
lpfc_mbox_timeout_handler(struct lpfc_hba * phba)9260 lpfc_mbox_timeout_handler(struct lpfc_hba *phba)
9261 {
9262 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active;
9263 MAILBOX_t *mb = NULL;
9264
9265 struct lpfc_sli *psli = &phba->sli;
9266
9267 /* If the mailbox completed, process the completion */
9268 lpfc_sli4_process_missed_mbox_completions(phba);
9269
9270 if (!(psli->sli_flag & LPFC_SLI_ACTIVE))
9271 return;
9272
9273 if (pmbox != NULL)
9274 mb = &pmbox->u.mb;
9275 /* Check the pmbox pointer first. There is a race condition
9276 * between the mbox timeout handler getting executed in the
9277 * worklist and the mailbox actually completing. When this
9278 * race condition occurs, the mbox_active will be NULL.
9279 */
9280 spin_lock_irq(&phba->hbalock);
9281 if (pmbox == NULL) {
9282 lpfc_printf_log(phba, KERN_WARNING,
9283 LOG_MBOX | LOG_SLI,
9284 "0353 Active Mailbox cleared - mailbox timeout "
9285 "exiting\n");
9286 spin_unlock_irq(&phba->hbalock);
9287 return;
9288 }
9289
9290 /* Mbox cmd <mbxCommand> timeout */
9291 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9292 "0310 Mailbox command x%x timeout Data: x%x x%x x%px\n",
9293 mb->mbxCommand,
9294 phba->pport->port_state,
9295 phba->sli.sli_flag,
9296 phba->sli.mbox_active);
9297 spin_unlock_irq(&phba->hbalock);
9298
9299 /* Setting state unknown so lpfc_sli_abort_iocb_ring
9300 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing
9301 * it to fail all outstanding SCSI IO.
9302 */
9303 set_bit(MBX_TMO_ERR, &phba->bit_flags);
9304 spin_lock_irq(&phba->pport->work_port_lock);
9305 phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
9306 spin_unlock_irq(&phba->pport->work_port_lock);
9307 spin_lock_irq(&phba->hbalock);
9308 phba->link_state = LPFC_LINK_UNKNOWN;
9309 psli->sli_flag &= ~LPFC_SLI_ACTIVE;
9310 spin_unlock_irq(&phba->hbalock);
9311
9312 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9313 "0345 Resetting board due to mailbox timeout\n");
9314
9315 /* Reset the HBA device */
9316 lpfc_reset_hba(phba);
9317 }
9318
9319 /**
9320 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware
9321 * @phba: Pointer to HBA context object.
9322 * @pmbox: Pointer to mailbox object.
9323 * @flag: Flag indicating how the mailbox need to be processed.
9324 *
9325 * This function is called by discovery code and HBA management code
9326 * to submit a mailbox command to firmware with SLI-3 interface spec. This
9327 * function gets the hbalock to protect the data structures.
9328 * The mailbox command can be submitted in polling mode, in which case
9329 * this function will wait in a polling loop for the completion of the
9330 * mailbox.
9331 * If the mailbox is submitted in no_wait mode (not polling) the
9332 * function will submit the command and returns immediately without waiting
9333 * for the mailbox completion. The no_wait is supported only when HBA
9334 * is in SLI2/SLI3 mode - interrupts are enabled.
9335 * The SLI interface allows only one mailbox pending at a time. If the
9336 * mailbox is issued in polling mode and there is already a mailbox
9337 * pending, then the function will return an error. If the mailbox is issued
9338 * in NO_WAIT mode and there is a mailbox pending already, the function
9339 * will return MBX_BUSY after queuing the mailbox into mailbox queue.
9340 * The sli layer owns the mailbox object until the completion of mailbox
9341 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other
9342 * return codes the caller owns the mailbox command after the return of
9343 * the function.
9344 **/
9345 static int
lpfc_sli_issue_mbox_s3(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmbox,uint32_t flag)9346 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox,
9347 uint32_t flag)
9348 {
9349 MAILBOX_t *mbx;
9350 struct lpfc_sli *psli = &phba->sli;
9351 uint32_t status, evtctr;
9352 uint32_t ha_copy, hc_copy;
9353 int i;
9354 unsigned long timeout;
9355 unsigned long drvr_flag = 0;
9356 uint32_t word0, ldata;
9357 void __iomem *to_slim;
9358 int processing_queue = 0;
9359
9360 spin_lock_irqsave(&phba->hbalock, drvr_flag);
9361 if (!pmbox) {
9362 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
9363 /* processing mbox queue from intr_handler */
9364 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
9365 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9366 return MBX_SUCCESS;
9367 }
9368 processing_queue = 1;
9369 pmbox = lpfc_mbox_get(phba);
9370 if (!pmbox) {
9371 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9372 return MBX_SUCCESS;
9373 }
9374 }
9375
9376 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl &&
9377 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) {
9378 if(!pmbox->vport) {
9379 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9380 lpfc_printf_log(phba, KERN_ERR,
9381 LOG_MBOX | LOG_VPORT,
9382 "1806 Mbox x%x failed. No vport\n",
9383 pmbox->u.mb.mbxCommand);
9384 dump_stack();
9385 goto out_not_finished;
9386 }
9387 }
9388
9389 /* If the PCI channel is in offline state, do not post mbox. */
9390 if (unlikely(pci_channel_offline(phba->pcidev))) {
9391 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9392 goto out_not_finished;
9393 }
9394
9395 /* If HBA has a deferred error attention, fail the iocb. */
9396 if (unlikely(phba->hba_flag & DEFER_ERATT)) {
9397 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9398 goto out_not_finished;
9399 }
9400
9401 psli = &phba->sli;
9402
9403 mbx = &pmbox->u.mb;
9404 status = MBX_SUCCESS;
9405
9406 if (phba->link_state == LPFC_HBA_ERROR) {
9407 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9408
9409 /* Mbox command <mbxCommand> cannot issue */
9410 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9411 "(%d):0311 Mailbox command x%x cannot "
9412 "issue Data: x%x x%x\n",
9413 pmbox->vport ? pmbox->vport->vpi : 0,
9414 pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
9415 goto out_not_finished;
9416 }
9417
9418 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) {
9419 if (lpfc_readl(phba->HCregaddr, &hc_copy) ||
9420 !(hc_copy & HC_MBINT_ENA)) {
9421 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9422 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9423 "(%d):2528 Mailbox command x%x cannot "
9424 "issue Data: x%x x%x\n",
9425 pmbox->vport ? pmbox->vport->vpi : 0,
9426 pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
9427 goto out_not_finished;
9428 }
9429 }
9430
9431 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
9432 /* Polling for a mbox command when another one is already active
9433 * is not allowed in SLI. Also, the driver must have established
9434 * SLI2 mode to queue and process multiple mbox commands.
9435 */
9436
9437 if (flag & MBX_POLL) {
9438 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9439
9440 /* Mbox command <mbxCommand> cannot issue */
9441 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9442 "(%d):2529 Mailbox command x%x "
9443 "cannot issue Data: x%x x%x\n",
9444 pmbox->vport ? pmbox->vport->vpi : 0,
9445 pmbox->u.mb.mbxCommand,
9446 psli->sli_flag, flag);
9447 goto out_not_finished;
9448 }
9449
9450 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) {
9451 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9452 /* Mbox command <mbxCommand> cannot issue */
9453 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9454 "(%d):2530 Mailbox command x%x "
9455 "cannot issue Data: x%x x%x\n",
9456 pmbox->vport ? pmbox->vport->vpi : 0,
9457 pmbox->u.mb.mbxCommand,
9458 psli->sli_flag, flag);
9459 goto out_not_finished;
9460 }
9461
9462 /* Another mailbox command is still being processed, queue this
9463 * command to be processed later.
9464 */
9465 lpfc_mbox_put(phba, pmbox);
9466
9467 /* Mbox cmd issue - BUSY */
9468 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
9469 "(%d):0308 Mbox cmd issue - BUSY Data: "
9470 "x%x x%x x%x x%x\n",
9471 pmbox->vport ? pmbox->vport->vpi : 0xffffff,
9472 mbx->mbxCommand,
9473 phba->pport ? phba->pport->port_state : 0xff,
9474 psli->sli_flag, flag);
9475
9476 psli->slistat.mbox_busy++;
9477 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9478
9479 if (pmbox->vport) {
9480 lpfc_debugfs_disc_trc(pmbox->vport,
9481 LPFC_DISC_TRC_MBOX_VPORT,
9482 "MBOX Bsy vport: cmd:x%x mb:x%x x%x",
9483 (uint32_t)mbx->mbxCommand,
9484 mbx->un.varWords[0], mbx->un.varWords[1]);
9485 }
9486 else {
9487 lpfc_debugfs_disc_trc(phba->pport,
9488 LPFC_DISC_TRC_MBOX,
9489 "MBOX Bsy: cmd:x%x mb:x%x x%x",
9490 (uint32_t)mbx->mbxCommand,
9491 mbx->un.varWords[0], mbx->un.varWords[1]);
9492 }
9493
9494 return MBX_BUSY;
9495 }
9496
9497 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
9498
9499 /* If we are not polling, we MUST be in SLI2 mode */
9500 if (flag != MBX_POLL) {
9501 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) &&
9502 (mbx->mbxCommand != MBX_KILL_BOARD)) {
9503 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
9504 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9505 /* Mbox command <mbxCommand> cannot issue */
9506 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9507 "(%d):2531 Mailbox command x%x "
9508 "cannot issue Data: x%x x%x\n",
9509 pmbox->vport ? pmbox->vport->vpi : 0,
9510 pmbox->u.mb.mbxCommand,
9511 psli->sli_flag, flag);
9512 goto out_not_finished;
9513 }
9514 /* timeout active mbox command */
9515 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) *
9516 1000);
9517 mod_timer(&psli->mbox_tmo, jiffies + timeout);
9518 }
9519
9520 /* Mailbox cmd <cmd> issue */
9521 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
9522 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x "
9523 "x%x\n",
9524 pmbox->vport ? pmbox->vport->vpi : 0,
9525 mbx->mbxCommand,
9526 phba->pport ? phba->pport->port_state : 0xff,
9527 psli->sli_flag, flag);
9528
9529 if (mbx->mbxCommand != MBX_HEARTBEAT) {
9530 if (pmbox->vport) {
9531 lpfc_debugfs_disc_trc(pmbox->vport,
9532 LPFC_DISC_TRC_MBOX_VPORT,
9533 "MBOX Send vport: cmd:x%x mb:x%x x%x",
9534 (uint32_t)mbx->mbxCommand,
9535 mbx->un.varWords[0], mbx->un.varWords[1]);
9536 }
9537 else {
9538 lpfc_debugfs_disc_trc(phba->pport,
9539 LPFC_DISC_TRC_MBOX,
9540 "MBOX Send: cmd:x%x mb:x%x x%x",
9541 (uint32_t)mbx->mbxCommand,
9542 mbx->un.varWords[0], mbx->un.varWords[1]);
9543 }
9544 }
9545
9546 psli->slistat.mbox_cmd++;
9547 evtctr = psli->slistat.mbox_event;
9548
9549 /* next set own bit for the adapter and copy over command word */
9550 mbx->mbxOwner = OWN_CHIP;
9551
9552 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
9553 /* Populate mbox extension offset word. */
9554 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) {
9555 *(((uint32_t *)mbx) + pmbox->mbox_offset_word)
9556 = (uint8_t *)phba->mbox_ext
9557 - (uint8_t *)phba->mbox;
9558 }
9559
9560 /* Copy the mailbox extension data */
9561 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) {
9562 lpfc_sli_pcimem_bcopy(pmbox->ctx_buf,
9563 (uint8_t *)phba->mbox_ext,
9564 pmbox->in_ext_byte_len);
9565 }
9566 /* Copy command data to host SLIM area */
9567 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE);
9568 } else {
9569 /* Populate mbox extension offset word. */
9570 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len)
9571 *(((uint32_t *)mbx) + pmbox->mbox_offset_word)
9572 = MAILBOX_HBA_EXT_OFFSET;
9573
9574 /* Copy the mailbox extension data */
9575 if (pmbox->in_ext_byte_len && pmbox->ctx_buf)
9576 lpfc_memcpy_to_slim(phba->MBslimaddr +
9577 MAILBOX_HBA_EXT_OFFSET,
9578 pmbox->ctx_buf, pmbox->in_ext_byte_len);
9579
9580 if (mbx->mbxCommand == MBX_CONFIG_PORT)
9581 /* copy command data into host mbox for cmpl */
9582 lpfc_sli_pcimem_bcopy(mbx, phba->mbox,
9583 MAILBOX_CMD_SIZE);
9584
9585 /* First copy mbox command data to HBA SLIM, skip past first
9586 word */
9587 to_slim = phba->MBslimaddr + sizeof (uint32_t);
9588 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0],
9589 MAILBOX_CMD_SIZE - sizeof (uint32_t));
9590
9591 /* Next copy over first word, with mbxOwner set */
9592 ldata = *((uint32_t *)mbx);
9593 to_slim = phba->MBslimaddr;
9594 writel(ldata, to_slim);
9595 readl(to_slim); /* flush */
9596
9597 if (mbx->mbxCommand == MBX_CONFIG_PORT)
9598 /* switch over to host mailbox */
9599 psli->sli_flag |= LPFC_SLI_ACTIVE;
9600 }
9601
9602 wmb();
9603
9604 switch (flag) {
9605 case MBX_NOWAIT:
9606 /* Set up reference to mailbox command */
9607 psli->mbox_active = pmbox;
9608 /* Interrupt board to do it */
9609 writel(CA_MBATT, phba->CAregaddr);
9610 readl(phba->CAregaddr); /* flush */
9611 /* Don't wait for it to finish, just return */
9612 break;
9613
9614 case MBX_POLL:
9615 /* Set up null reference to mailbox command */
9616 psli->mbox_active = NULL;
9617 /* Interrupt board to do it */
9618 writel(CA_MBATT, phba->CAregaddr);
9619 readl(phba->CAregaddr); /* flush */
9620
9621 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
9622 /* First read mbox status word */
9623 word0 = *((uint32_t *)phba->mbox);
9624 word0 = le32_to_cpu(word0);
9625 } else {
9626 /* First read mbox status word */
9627 if (lpfc_readl(phba->MBslimaddr, &word0)) {
9628 spin_unlock_irqrestore(&phba->hbalock,
9629 drvr_flag);
9630 goto out_not_finished;
9631 }
9632 }
9633
9634 /* Read the HBA Host Attention Register */
9635 if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
9636 spin_unlock_irqrestore(&phba->hbalock,
9637 drvr_flag);
9638 goto out_not_finished;
9639 }
9640 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) *
9641 1000) + jiffies;
9642 i = 0;
9643 /* Wait for command to complete */
9644 while (((word0 & OWN_CHIP) == OWN_CHIP) ||
9645 (!(ha_copy & HA_MBATT) &&
9646 (phba->link_state > LPFC_WARM_START))) {
9647 if (time_after(jiffies, timeout)) {
9648 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
9649 spin_unlock_irqrestore(&phba->hbalock,
9650 drvr_flag);
9651 goto out_not_finished;
9652 }
9653
9654 /* Check if we took a mbox interrupt while we were
9655 polling */
9656 if (((word0 & OWN_CHIP) != OWN_CHIP)
9657 && (evtctr != psli->slistat.mbox_event))
9658 break;
9659
9660 if (i++ > 10) {
9661 spin_unlock_irqrestore(&phba->hbalock,
9662 drvr_flag);
9663 msleep(1);
9664 spin_lock_irqsave(&phba->hbalock, drvr_flag);
9665 }
9666
9667 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
9668 /* First copy command data */
9669 word0 = *((uint32_t *)phba->mbox);
9670 word0 = le32_to_cpu(word0);
9671 if (mbx->mbxCommand == MBX_CONFIG_PORT) {
9672 MAILBOX_t *slimmb;
9673 uint32_t slimword0;
9674 /* Check real SLIM for any errors */
9675 slimword0 = readl(phba->MBslimaddr);
9676 slimmb = (MAILBOX_t *) & slimword0;
9677 if (((slimword0 & OWN_CHIP) != OWN_CHIP)
9678 && slimmb->mbxStatus) {
9679 psli->sli_flag &=
9680 ~LPFC_SLI_ACTIVE;
9681 word0 = slimword0;
9682 }
9683 }
9684 } else {
9685 /* First copy command data */
9686 word0 = readl(phba->MBslimaddr);
9687 }
9688 /* Read the HBA Host Attention Register */
9689 if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
9690 spin_unlock_irqrestore(&phba->hbalock,
9691 drvr_flag);
9692 goto out_not_finished;
9693 }
9694 }
9695
9696 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
9697 /* copy results back to user */
9698 lpfc_sli_pcimem_bcopy(phba->mbox, mbx,
9699 MAILBOX_CMD_SIZE);
9700 /* Copy the mailbox extension data */
9701 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) {
9702 lpfc_sli_pcimem_bcopy(phba->mbox_ext,
9703 pmbox->ctx_buf,
9704 pmbox->out_ext_byte_len);
9705 }
9706 } else {
9707 /* First copy command data */
9708 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr,
9709 MAILBOX_CMD_SIZE);
9710 /* Copy the mailbox extension data */
9711 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) {
9712 lpfc_memcpy_from_slim(
9713 pmbox->ctx_buf,
9714 phba->MBslimaddr +
9715 MAILBOX_HBA_EXT_OFFSET,
9716 pmbox->out_ext_byte_len);
9717 }
9718 }
9719
9720 writel(HA_MBATT, phba->HAregaddr);
9721 readl(phba->HAregaddr); /* flush */
9722
9723 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
9724 status = mbx->mbxStatus;
9725 }
9726
9727 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9728 return status;
9729
9730 out_not_finished:
9731 if (processing_queue) {
9732 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED;
9733 lpfc_mbox_cmpl_put(phba, pmbox);
9734 }
9735 return MBX_NOT_FINISHED;
9736 }
9737
9738 /**
9739 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command
9740 * @phba: Pointer to HBA context object.
9741 *
9742 * The function blocks the posting of SLI4 asynchronous mailbox commands from
9743 * the driver internal pending mailbox queue. It will then try to wait out the
9744 * possible outstanding mailbox command before return.
9745 *
9746 * Returns:
9747 * 0 - the outstanding mailbox command completed; otherwise, the wait for
9748 * the outstanding mailbox command timed out.
9749 **/
9750 static int
lpfc_sli4_async_mbox_block(struct lpfc_hba * phba)9751 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba)
9752 {
9753 struct lpfc_sli *psli = &phba->sli;
9754 LPFC_MBOXQ_t *mboxq;
9755 int rc = 0;
9756 unsigned long timeout = 0;
9757 u32 sli_flag;
9758 u8 cmd, subsys, opcode;
9759
9760 /* Mark the asynchronous mailbox command posting as blocked */
9761 spin_lock_irq(&phba->hbalock);
9762 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
9763 /* Determine how long we might wait for the active mailbox
9764 * command to be gracefully completed by firmware.
9765 */
9766 if (phba->sli.mbox_active)
9767 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
9768 phba->sli.mbox_active) *
9769 1000) + jiffies;
9770 spin_unlock_irq(&phba->hbalock);
9771
9772 /* Make sure the mailbox is really active */
9773 if (timeout)
9774 lpfc_sli4_process_missed_mbox_completions(phba);
9775
9776 /* Wait for the outstanding mailbox command to complete */
9777 while (phba->sli.mbox_active) {
9778 /* Check active mailbox complete status every 2ms */
9779 msleep(2);
9780 if (time_after(jiffies, timeout)) {
9781 /* Timeout, mark the outstanding cmd not complete */
9782
9783 /* Sanity check sli.mbox_active has not completed or
9784 * cancelled from another context during last 2ms sleep,
9785 * so take hbalock to be sure before logging.
9786 */
9787 spin_lock_irq(&phba->hbalock);
9788 if (phba->sli.mbox_active) {
9789 mboxq = phba->sli.mbox_active;
9790 cmd = mboxq->u.mb.mbxCommand;
9791 subsys = lpfc_sli_config_mbox_subsys_get(phba,
9792 mboxq);
9793 opcode = lpfc_sli_config_mbox_opcode_get(phba,
9794 mboxq);
9795 sli_flag = psli->sli_flag;
9796 spin_unlock_irq(&phba->hbalock);
9797 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9798 "2352 Mailbox command x%x "
9799 "(x%x/x%x) sli_flag x%x could "
9800 "not complete\n",
9801 cmd, subsys, opcode,
9802 sli_flag);
9803 } else {
9804 spin_unlock_irq(&phba->hbalock);
9805 }
9806
9807 rc = 1;
9808 break;
9809 }
9810 }
9811
9812 /* Can not cleanly block async mailbox command, fails it */
9813 if (rc) {
9814 spin_lock_irq(&phba->hbalock);
9815 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
9816 spin_unlock_irq(&phba->hbalock);
9817 }
9818 return rc;
9819 }
9820
9821 /**
9822 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command
9823 * @phba: Pointer to HBA context object.
9824 *
9825 * The function unblocks and resume posting of SLI4 asynchronous mailbox
9826 * commands from the driver internal pending mailbox queue. It makes sure
9827 * that there is no outstanding mailbox command before resuming posting
9828 * asynchronous mailbox commands. If, for any reason, there is outstanding
9829 * mailbox command, it will try to wait it out before resuming asynchronous
9830 * mailbox command posting.
9831 **/
9832 static void
lpfc_sli4_async_mbox_unblock(struct lpfc_hba * phba)9833 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba)
9834 {
9835 struct lpfc_sli *psli = &phba->sli;
9836
9837 spin_lock_irq(&phba->hbalock);
9838 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
9839 /* Asynchronous mailbox posting is not blocked, do nothing */
9840 spin_unlock_irq(&phba->hbalock);
9841 return;
9842 }
9843
9844 /* Outstanding synchronous mailbox command is guaranteed to be done,
9845 * successful or timeout, after timing-out the outstanding mailbox
9846 * command shall always be removed, so just unblock posting async
9847 * mailbox command and resume
9848 */
9849 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
9850 spin_unlock_irq(&phba->hbalock);
9851
9852 /* wake up worker thread to post asynchronous mailbox command */
9853 lpfc_worker_wake_up(phba);
9854 }
9855
9856 /**
9857 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready
9858 * @phba: Pointer to HBA context object.
9859 * @mboxq: Pointer to mailbox object.
9860 *
9861 * The function waits for the bootstrap mailbox register ready bit from
9862 * port for twice the regular mailbox command timeout value.
9863 *
9864 * 0 - no timeout on waiting for bootstrap mailbox register ready.
9865 * MBXERR_ERROR - wait for bootstrap mailbox register timed out or port
9866 * is in an unrecoverable state.
9867 **/
9868 static int
lpfc_sli4_wait_bmbx_ready(struct lpfc_hba * phba,LPFC_MBOXQ_t * mboxq)9869 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
9870 {
9871 uint32_t db_ready;
9872 unsigned long timeout;
9873 struct lpfc_register bmbx_reg;
9874 struct lpfc_register portstat_reg = {-1};
9875
9876 /* Sanity check - there is no point to wait if the port is in an
9877 * unrecoverable state.
9878 */
9879 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >=
9880 LPFC_SLI_INTF_IF_TYPE_2) {
9881 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
9882 &portstat_reg.word0) ||
9883 lpfc_sli4_unrecoverable_port(&portstat_reg)) {
9884 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
9885 "3858 Skipping bmbx ready because "
9886 "Port Status x%x\n",
9887 portstat_reg.word0);
9888 return MBXERR_ERROR;
9889 }
9890 }
9891
9892 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq)
9893 * 1000) + jiffies;
9894
9895 do {
9896 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr);
9897 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg);
9898 if (!db_ready)
9899 mdelay(2);
9900
9901 if (time_after(jiffies, timeout))
9902 return MBXERR_ERROR;
9903 } while (!db_ready);
9904
9905 return 0;
9906 }
9907
9908 /**
9909 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox
9910 * @phba: Pointer to HBA context object.
9911 * @mboxq: Pointer to mailbox object.
9912 *
9913 * The function posts a mailbox to the port. The mailbox is expected
9914 * to be comletely filled in and ready for the port to operate on it.
9915 * This routine executes a synchronous completion operation on the
9916 * mailbox by polling for its completion.
9917 *
9918 * The caller must not be holding any locks when calling this routine.
9919 *
9920 * Returns:
9921 * MBX_SUCCESS - mailbox posted successfully
9922 * Any of the MBX error values.
9923 **/
9924 static int
lpfc_sli4_post_sync_mbox(struct lpfc_hba * phba,LPFC_MBOXQ_t * mboxq)9925 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
9926 {
9927 int rc = MBX_SUCCESS;
9928 unsigned long iflag;
9929 uint32_t mcqe_status;
9930 uint32_t mbx_cmnd;
9931 struct lpfc_sli *psli = &phba->sli;
9932 struct lpfc_mqe *mb = &mboxq->u.mqe;
9933 struct lpfc_bmbx_create *mbox_rgn;
9934 struct dma_address *dma_address;
9935
9936 /*
9937 * Only one mailbox can be active to the bootstrap mailbox region
9938 * at a time and there is no queueing provided.
9939 */
9940 spin_lock_irqsave(&phba->hbalock, iflag);
9941 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
9942 spin_unlock_irqrestore(&phba->hbalock, iflag);
9943 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9944 "(%d):2532 Mailbox command x%x (x%x/x%x) "
9945 "cannot issue Data: x%x x%x\n",
9946 mboxq->vport ? mboxq->vport->vpi : 0,
9947 mboxq->u.mb.mbxCommand,
9948 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
9949 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
9950 psli->sli_flag, MBX_POLL);
9951 return MBXERR_ERROR;
9952 }
9953 /* The server grabs the token and owns it until release */
9954 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
9955 phba->sli.mbox_active = mboxq;
9956 spin_unlock_irqrestore(&phba->hbalock, iflag);
9957
9958 /* wait for bootstrap mbox register for readyness */
9959 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
9960 if (rc)
9961 goto exit;
9962 /*
9963 * Initialize the bootstrap memory region to avoid stale data areas
9964 * in the mailbox post. Then copy the caller's mailbox contents to
9965 * the bmbx mailbox region.
9966 */
9967 mbx_cmnd = bf_get(lpfc_mqe_command, mb);
9968 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create));
9969 lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt,
9970 sizeof(struct lpfc_mqe));
9971
9972 /* Post the high mailbox dma address to the port and wait for ready. */
9973 dma_address = &phba->sli4_hba.bmbx.dma_address;
9974 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr);
9975
9976 /* wait for bootstrap mbox register for hi-address write done */
9977 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
9978 if (rc)
9979 goto exit;
9980
9981 /* Post the low mailbox dma address to the port. */
9982 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr);
9983
9984 /* wait for bootstrap mbox register for low address write done */
9985 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
9986 if (rc)
9987 goto exit;
9988
9989 /*
9990 * Read the CQ to ensure the mailbox has completed.
9991 * If so, update the mailbox status so that the upper layers
9992 * can complete the request normally.
9993 */
9994 lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb,
9995 sizeof(struct lpfc_mqe));
9996 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt;
9997 lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe,
9998 sizeof(struct lpfc_mcqe));
9999 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe);
10000 /*
10001 * When the CQE status indicates a failure and the mailbox status
10002 * indicates success then copy the CQE status into the mailbox status
10003 * (and prefix it with x4000).
10004 */
10005 if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
10006 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS)
10007 bf_set(lpfc_mqe_status, mb,
10008 (LPFC_MBX_ERROR_RANGE | mcqe_status));
10009 rc = MBXERR_ERROR;
10010 } else
10011 lpfc_sli4_swap_str(phba, mboxq);
10012
10013 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
10014 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x "
10015 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x"
10016 " x%x x%x CQ: x%x x%x x%x x%x\n",
10017 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
10018 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
10019 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
10020 bf_get(lpfc_mqe_status, mb),
10021 mb->un.mb_words[0], mb->un.mb_words[1],
10022 mb->un.mb_words[2], mb->un.mb_words[3],
10023 mb->un.mb_words[4], mb->un.mb_words[5],
10024 mb->un.mb_words[6], mb->un.mb_words[7],
10025 mb->un.mb_words[8], mb->un.mb_words[9],
10026 mb->un.mb_words[10], mb->un.mb_words[11],
10027 mb->un.mb_words[12], mboxq->mcqe.word0,
10028 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1,
10029 mboxq->mcqe.trailer);
10030 exit:
10031 /* We are holding the token, no needed for lock when release */
10032 spin_lock_irqsave(&phba->hbalock, iflag);
10033 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
10034 phba->sli.mbox_active = NULL;
10035 spin_unlock_irqrestore(&phba->hbalock, iflag);
10036 return rc;
10037 }
10038
10039 /**
10040 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware
10041 * @phba: Pointer to HBA context object.
10042 * @mboxq: Pointer to mailbox object.
10043 * @flag: Flag indicating how the mailbox need to be processed.
10044 *
10045 * This function is called by discovery code and HBA management code to submit
10046 * a mailbox command to firmware with SLI-4 interface spec.
10047 *
10048 * Return codes the caller owns the mailbox command after the return of the
10049 * function.
10050 **/
10051 static int
lpfc_sli_issue_mbox_s4(struct lpfc_hba * phba,LPFC_MBOXQ_t * mboxq,uint32_t flag)10052 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
10053 uint32_t flag)
10054 {
10055 struct lpfc_sli *psli = &phba->sli;
10056 unsigned long iflags;
10057 int rc;
10058
10059 /* dump from issue mailbox command if setup */
10060 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb);
10061
10062 rc = lpfc_mbox_dev_check(phba);
10063 if (unlikely(rc)) {
10064 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10065 "(%d):2544 Mailbox command x%x (x%x/x%x) "
10066 "cannot issue Data: x%x x%x\n",
10067 mboxq->vport ? mboxq->vport->vpi : 0,
10068 mboxq->u.mb.mbxCommand,
10069 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
10070 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
10071 psli->sli_flag, flag);
10072 goto out_not_finished;
10073 }
10074
10075 /* Detect polling mode and jump to a handler */
10076 if (!phba->sli4_hba.intr_enable) {
10077 if (flag == MBX_POLL)
10078 rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
10079 else
10080 rc = -EIO;
10081 if (rc != MBX_SUCCESS)
10082 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
10083 "(%d):2541 Mailbox command x%x "
10084 "(x%x/x%x) failure: "
10085 "mqe_sta: x%x mcqe_sta: x%x/x%x "
10086 "Data: x%x x%x\n",
10087 mboxq->vport ? mboxq->vport->vpi : 0,
10088 mboxq->u.mb.mbxCommand,
10089 lpfc_sli_config_mbox_subsys_get(phba,
10090 mboxq),
10091 lpfc_sli_config_mbox_opcode_get(phba,
10092 mboxq),
10093 bf_get(lpfc_mqe_status, &mboxq->u.mqe),
10094 bf_get(lpfc_mcqe_status, &mboxq->mcqe),
10095 bf_get(lpfc_mcqe_ext_status,
10096 &mboxq->mcqe),
10097 psli->sli_flag, flag);
10098 return rc;
10099 } else if (flag == MBX_POLL) {
10100 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
10101 "(%d):2542 Try to issue mailbox command "
10102 "x%x (x%x/x%x) synchronously ahead of async "
10103 "mailbox command queue: x%x x%x\n",
10104 mboxq->vport ? mboxq->vport->vpi : 0,
10105 mboxq->u.mb.mbxCommand,
10106 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
10107 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
10108 psli->sli_flag, flag);
10109 /* Try to block the asynchronous mailbox posting */
10110 rc = lpfc_sli4_async_mbox_block(phba);
10111 if (!rc) {
10112 /* Successfully blocked, now issue sync mbox cmd */
10113 rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
10114 if (rc != MBX_SUCCESS)
10115 lpfc_printf_log(phba, KERN_WARNING,
10116 LOG_MBOX | LOG_SLI,
10117 "(%d):2597 Sync Mailbox command "
10118 "x%x (x%x/x%x) failure: "
10119 "mqe_sta: x%x mcqe_sta: x%x/x%x "
10120 "Data: x%x x%x\n",
10121 mboxq->vport ? mboxq->vport->vpi : 0,
10122 mboxq->u.mb.mbxCommand,
10123 lpfc_sli_config_mbox_subsys_get(phba,
10124 mboxq),
10125 lpfc_sli_config_mbox_opcode_get(phba,
10126 mboxq),
10127 bf_get(lpfc_mqe_status, &mboxq->u.mqe),
10128 bf_get(lpfc_mcqe_status, &mboxq->mcqe),
10129 bf_get(lpfc_mcqe_ext_status,
10130 &mboxq->mcqe),
10131 psli->sli_flag, flag);
10132 /* Unblock the async mailbox posting afterward */
10133 lpfc_sli4_async_mbox_unblock(phba);
10134 }
10135 return rc;
10136 }
10137
10138 /* Now, interrupt mode asynchronous mailbox command */
10139 rc = lpfc_mbox_cmd_check(phba, mboxq);
10140 if (rc) {
10141 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10142 "(%d):2543 Mailbox command x%x (x%x/x%x) "
10143 "cannot issue Data: x%x x%x\n",
10144 mboxq->vport ? mboxq->vport->vpi : 0,
10145 mboxq->u.mb.mbxCommand,
10146 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
10147 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
10148 psli->sli_flag, flag);
10149 goto out_not_finished;
10150 }
10151
10152 /* Put the mailbox command to the driver internal FIFO */
10153 psli->slistat.mbox_busy++;
10154 spin_lock_irqsave(&phba->hbalock, iflags);
10155 lpfc_mbox_put(phba, mboxq);
10156 spin_unlock_irqrestore(&phba->hbalock, iflags);
10157 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
10158 "(%d):0354 Mbox cmd issue - Enqueue Data: "
10159 "x%x (x%x/x%x) x%x x%x x%x\n",
10160 mboxq->vport ? mboxq->vport->vpi : 0xffffff,
10161 bf_get(lpfc_mqe_command, &mboxq->u.mqe),
10162 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
10163 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
10164 phba->pport->port_state,
10165 psli->sli_flag, MBX_NOWAIT);
10166 /* Wake up worker thread to transport mailbox command from head */
10167 lpfc_worker_wake_up(phba);
10168
10169 return MBX_BUSY;
10170
10171 out_not_finished:
10172 return MBX_NOT_FINISHED;
10173 }
10174
10175 /**
10176 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device
10177 * @phba: Pointer to HBA context object.
10178 *
10179 * This function is called by worker thread to send a mailbox command to
10180 * SLI4 HBA firmware.
10181 *
10182 **/
10183 int
lpfc_sli4_post_async_mbox(struct lpfc_hba * phba)10184 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba)
10185 {
10186 struct lpfc_sli *psli = &phba->sli;
10187 LPFC_MBOXQ_t *mboxq;
10188 int rc = MBX_SUCCESS;
10189 unsigned long iflags;
10190 struct lpfc_mqe *mqe;
10191 uint32_t mbx_cmnd;
10192
10193 /* Check interrupt mode before post async mailbox command */
10194 if (unlikely(!phba->sli4_hba.intr_enable))
10195 return MBX_NOT_FINISHED;
10196
10197 /* Check for mailbox command service token */
10198 spin_lock_irqsave(&phba->hbalock, iflags);
10199 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
10200 spin_unlock_irqrestore(&phba->hbalock, iflags);
10201 return MBX_NOT_FINISHED;
10202 }
10203 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
10204 spin_unlock_irqrestore(&phba->hbalock, iflags);
10205 return MBX_NOT_FINISHED;
10206 }
10207 if (unlikely(phba->sli.mbox_active)) {
10208 spin_unlock_irqrestore(&phba->hbalock, iflags);
10209 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10210 "0384 There is pending active mailbox cmd\n");
10211 return MBX_NOT_FINISHED;
10212 }
10213 /* Take the mailbox command service token */
10214 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
10215
10216 /* Get the next mailbox command from head of queue */
10217 mboxq = lpfc_mbox_get(phba);
10218
10219 /* If no more mailbox command waiting for post, we're done */
10220 if (!mboxq) {
10221 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
10222 spin_unlock_irqrestore(&phba->hbalock, iflags);
10223 return MBX_SUCCESS;
10224 }
10225 phba->sli.mbox_active = mboxq;
10226 spin_unlock_irqrestore(&phba->hbalock, iflags);
10227
10228 /* Check device readiness for posting mailbox command */
10229 rc = lpfc_mbox_dev_check(phba);
10230 if (unlikely(rc))
10231 /* Driver clean routine will clean up pending mailbox */
10232 goto out_not_finished;
10233
10234 /* Prepare the mbox command to be posted */
10235 mqe = &mboxq->u.mqe;
10236 mbx_cmnd = bf_get(lpfc_mqe_command, mqe);
10237
10238 /* Start timer for the mbox_tmo and log some mailbox post messages */
10239 mod_timer(&psli->mbox_tmo, (jiffies +
10240 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq))));
10241
10242 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
10243 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: "
10244 "x%x x%x\n",
10245 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
10246 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
10247 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
10248 phba->pport->port_state, psli->sli_flag);
10249
10250 if (mbx_cmnd != MBX_HEARTBEAT) {
10251 if (mboxq->vport) {
10252 lpfc_debugfs_disc_trc(mboxq->vport,
10253 LPFC_DISC_TRC_MBOX_VPORT,
10254 "MBOX Send vport: cmd:x%x mb:x%x x%x",
10255 mbx_cmnd, mqe->un.mb_words[0],
10256 mqe->un.mb_words[1]);
10257 } else {
10258 lpfc_debugfs_disc_trc(phba->pport,
10259 LPFC_DISC_TRC_MBOX,
10260 "MBOX Send: cmd:x%x mb:x%x x%x",
10261 mbx_cmnd, mqe->un.mb_words[0],
10262 mqe->un.mb_words[1]);
10263 }
10264 }
10265 psli->slistat.mbox_cmd++;
10266
10267 /* Post the mailbox command to the port */
10268 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe);
10269 if (rc != MBX_SUCCESS) {
10270 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10271 "(%d):2533 Mailbox command x%x (x%x/x%x) "
10272 "cannot issue Data: x%x x%x\n",
10273 mboxq->vport ? mboxq->vport->vpi : 0,
10274 mboxq->u.mb.mbxCommand,
10275 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
10276 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
10277 psli->sli_flag, MBX_NOWAIT);
10278 goto out_not_finished;
10279 }
10280
10281 return rc;
10282
10283 out_not_finished:
10284 spin_lock_irqsave(&phba->hbalock, iflags);
10285 if (phba->sli.mbox_active) {
10286 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
10287 __lpfc_mbox_cmpl_put(phba, mboxq);
10288 /* Release the token */
10289 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
10290 phba->sli.mbox_active = NULL;
10291 }
10292 spin_unlock_irqrestore(&phba->hbalock, iflags);
10293
10294 return MBX_NOT_FINISHED;
10295 }
10296
10297 /**
10298 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command
10299 * @phba: Pointer to HBA context object.
10300 * @pmbox: Pointer to mailbox object.
10301 * @flag: Flag indicating how the mailbox need to be processed.
10302 *
10303 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from
10304 * the API jump table function pointer from the lpfc_hba struct.
10305 *
10306 * Return codes the caller owns the mailbox command after the return of the
10307 * function.
10308 **/
10309 int
lpfc_sli_issue_mbox(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmbox,uint32_t flag)10310 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag)
10311 {
10312 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag);
10313 }
10314
10315 /**
10316 * lpfc_mbox_api_table_setup - Set up mbox api function jump table
10317 * @phba: The hba struct for which this call is being executed.
10318 * @dev_grp: The HBA PCI-Device group number.
10319 *
10320 * This routine sets up the mbox interface API function jump table in @phba
10321 * struct.
10322 * Returns: 0 - success, -ENODEV - failure.
10323 **/
10324 int
lpfc_mbox_api_table_setup(struct lpfc_hba * phba,uint8_t dev_grp)10325 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
10326 {
10327
10328 switch (dev_grp) {
10329 case LPFC_PCI_DEV_LP:
10330 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3;
10331 phba->lpfc_sli_handle_slow_ring_event =
10332 lpfc_sli_handle_slow_ring_event_s3;
10333 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3;
10334 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3;
10335 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3;
10336 break;
10337 case LPFC_PCI_DEV_OC:
10338 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4;
10339 phba->lpfc_sli_handle_slow_ring_event =
10340 lpfc_sli_handle_slow_ring_event_s4;
10341 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4;
10342 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4;
10343 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4;
10344 break;
10345 default:
10346 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10347 "1420 Invalid HBA PCI-device group: 0x%x\n",
10348 dev_grp);
10349 return -ENODEV;
10350 }
10351 return 0;
10352 }
10353
10354 /**
10355 * __lpfc_sli_ringtx_put - Add an iocb to the txq
10356 * @phba: Pointer to HBA context object.
10357 * @pring: Pointer to driver SLI ring object.
10358 * @piocb: Pointer to address of newly added command iocb.
10359 *
10360 * This function is called with hbalock held for SLI3 ports or
10361 * the ring lock held for SLI4 ports to add a command
10362 * iocb to the txq when SLI layer cannot submit the command iocb
10363 * to the ring.
10364 **/
10365 void
__lpfc_sli_ringtx_put(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * piocb)10366 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10367 struct lpfc_iocbq *piocb)
10368 {
10369 if (phba->sli_rev == LPFC_SLI_REV4)
10370 lockdep_assert_held(&pring->ring_lock);
10371 else
10372 lockdep_assert_held(&phba->hbalock);
10373 /* Insert the caller's iocb in the txq tail for later processing. */
10374 list_add_tail(&piocb->list, &pring->txq);
10375 }
10376
10377 /**
10378 * lpfc_sli_next_iocb - Get the next iocb in the txq
10379 * @phba: Pointer to HBA context object.
10380 * @pring: Pointer to driver SLI ring object.
10381 * @piocb: Pointer to address of newly added command iocb.
10382 *
10383 * This function is called with hbalock held before a new
10384 * iocb is submitted to the firmware. This function checks
10385 * txq to flush the iocbs in txq to Firmware before
10386 * submitting new iocbs to the Firmware.
10387 * If there are iocbs in the txq which need to be submitted
10388 * to firmware, lpfc_sli_next_iocb returns the first element
10389 * of the txq after dequeuing it from txq.
10390 * If there is no iocb in the txq then the function will return
10391 * *piocb and *piocb is set to NULL. Caller needs to check
10392 * *piocb to find if there are more commands in the txq.
10393 **/
10394 static struct lpfc_iocbq *
lpfc_sli_next_iocb(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq ** piocb)10395 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10396 struct lpfc_iocbq **piocb)
10397 {
10398 struct lpfc_iocbq * nextiocb;
10399
10400 lockdep_assert_held(&phba->hbalock);
10401
10402 nextiocb = lpfc_sli_ringtx_get(phba, pring);
10403 if (!nextiocb) {
10404 nextiocb = *piocb;
10405 *piocb = NULL;
10406 }
10407
10408 return nextiocb;
10409 }
10410
10411 /**
10412 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb
10413 * @phba: Pointer to HBA context object.
10414 * @ring_number: SLI ring number to issue iocb on.
10415 * @piocb: Pointer to command iocb.
10416 * @flag: Flag indicating if this command can be put into txq.
10417 *
10418 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue
10419 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is
10420 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT
10421 * flag is turned on, the function returns IOCB_ERROR. When the link is down,
10422 * this function allows only iocbs for posting buffers. This function finds
10423 * next available slot in the command ring and posts the command to the
10424 * available slot and writes the port attention register to request HBA start
10425 * processing new iocb. If there is no slot available in the ring and
10426 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise
10427 * the function returns IOCB_BUSY.
10428 *
10429 * This function is called with hbalock held. The function will return success
10430 * after it successfully submit the iocb to firmware or after adding to the
10431 * txq.
10432 **/
10433 static int
__lpfc_sli_issue_iocb_s3(struct lpfc_hba * phba,uint32_t ring_number,struct lpfc_iocbq * piocb,uint32_t flag)10434 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number,
10435 struct lpfc_iocbq *piocb, uint32_t flag)
10436 {
10437 struct lpfc_iocbq *nextiocb;
10438 IOCB_t *iocb;
10439 struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number];
10440
10441 lockdep_assert_held(&phba->hbalock);
10442
10443 if (piocb->cmd_cmpl && (!piocb->vport) &&
10444 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) &&
10445 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) {
10446 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10447 "1807 IOCB x%x failed. No vport\n",
10448 piocb->iocb.ulpCommand);
10449 dump_stack();
10450 return IOCB_ERROR;
10451 }
10452
10453
10454 /* If the PCI channel is in offline state, do not post iocbs. */
10455 if (unlikely(pci_channel_offline(phba->pcidev)))
10456 return IOCB_ERROR;
10457
10458 /* If HBA has a deferred error attention, fail the iocb. */
10459 if (unlikely(phba->hba_flag & DEFER_ERATT))
10460 return IOCB_ERROR;
10461
10462 /*
10463 * We should never get an IOCB if we are in a < LINK_DOWN state
10464 */
10465 if (unlikely(phba->link_state < LPFC_LINK_DOWN))
10466 return IOCB_ERROR;
10467
10468 /*
10469 * Check to see if we are blocking IOCB processing because of a
10470 * outstanding event.
10471 */
10472 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT))
10473 goto iocb_busy;
10474
10475 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) {
10476 /*
10477 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF
10478 * can be issued if the link is not up.
10479 */
10480 switch (piocb->iocb.ulpCommand) {
10481 case CMD_QUE_RING_BUF_CN:
10482 case CMD_QUE_RING_BUF64_CN:
10483 /*
10484 * For IOCBs, like QUE_RING_BUF, that have no rsp ring
10485 * completion, cmd_cmpl MUST be 0.
10486 */
10487 if (piocb->cmd_cmpl)
10488 piocb->cmd_cmpl = NULL;
10489 fallthrough;
10490 case CMD_CREATE_XRI_CR:
10491 case CMD_CLOSE_XRI_CN:
10492 case CMD_CLOSE_XRI_CX:
10493 break;
10494 default:
10495 goto iocb_busy;
10496 }
10497
10498 /*
10499 * For FCP commands, we must be in a state where we can process link
10500 * attention events.
10501 */
10502 } else if (unlikely(pring->ringno == LPFC_FCP_RING &&
10503 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) {
10504 goto iocb_busy;
10505 }
10506
10507 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
10508 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb)))
10509 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
10510
10511 if (iocb)
10512 lpfc_sli_update_ring(phba, pring);
10513 else
10514 lpfc_sli_update_full_ring(phba, pring);
10515
10516 if (!piocb)
10517 return IOCB_SUCCESS;
10518
10519 goto out_busy;
10520
10521 iocb_busy:
10522 pring->stats.iocb_cmd_delay++;
10523
10524 out_busy:
10525
10526 if (!(flag & SLI_IOCB_RET_IOCB)) {
10527 __lpfc_sli_ringtx_put(phba, pring, piocb);
10528 return IOCB_SUCCESS;
10529 }
10530
10531 return IOCB_BUSY;
10532 }
10533
10534 /**
10535 * __lpfc_sli_issue_fcp_io_s3 - SLI3 device for sending fcp io iocb
10536 * @phba: Pointer to HBA context object.
10537 * @ring_number: SLI ring number to issue wqe on.
10538 * @piocb: Pointer to command iocb.
10539 * @flag: Flag indicating if this command can be put into txq.
10540 *
10541 * __lpfc_sli_issue_fcp_io_s3 is wrapper function to invoke lockless func to
10542 * send an iocb command to an HBA with SLI-3 interface spec.
10543 *
10544 * This function takes the hbalock before invoking the lockless version.
10545 * The function will return success after it successfully submit the wqe to
10546 * firmware or after adding to the txq.
10547 **/
10548 static int
__lpfc_sli_issue_fcp_io_s3(struct lpfc_hba * phba,uint32_t ring_number,struct lpfc_iocbq * piocb,uint32_t flag)10549 __lpfc_sli_issue_fcp_io_s3(struct lpfc_hba *phba, uint32_t ring_number,
10550 struct lpfc_iocbq *piocb, uint32_t flag)
10551 {
10552 unsigned long iflags;
10553 int rc;
10554
10555 spin_lock_irqsave(&phba->hbalock, iflags);
10556 rc = __lpfc_sli_issue_iocb_s3(phba, ring_number, piocb, flag);
10557 spin_unlock_irqrestore(&phba->hbalock, iflags);
10558
10559 return rc;
10560 }
10561
10562 /**
10563 * __lpfc_sli_issue_fcp_io_s4 - SLI4 device for sending fcp io wqe
10564 * @phba: Pointer to HBA context object.
10565 * @ring_number: SLI ring number to issue wqe on.
10566 * @piocb: Pointer to command iocb.
10567 * @flag: Flag indicating if this command can be put into txq.
10568 *
10569 * __lpfc_sli_issue_fcp_io_s4 is used by other functions in the driver to issue
10570 * an wqe command to an HBA with SLI-4 interface spec.
10571 *
10572 * This function is a lockless version. The function will return success
10573 * after it successfully submit the wqe to firmware or after adding to the
10574 * txq.
10575 **/
10576 static int
__lpfc_sli_issue_fcp_io_s4(struct lpfc_hba * phba,uint32_t ring_number,struct lpfc_iocbq * piocb,uint32_t flag)10577 __lpfc_sli_issue_fcp_io_s4(struct lpfc_hba *phba, uint32_t ring_number,
10578 struct lpfc_iocbq *piocb, uint32_t flag)
10579 {
10580 struct lpfc_io_buf *lpfc_cmd = piocb->io_buf;
10581
10582 lpfc_prep_embed_io(phba, lpfc_cmd);
10583 return lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, piocb);
10584 }
10585
10586 void
lpfc_prep_embed_io(struct lpfc_hba * phba,struct lpfc_io_buf * lpfc_cmd)10587 lpfc_prep_embed_io(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_cmd)
10588 {
10589 struct lpfc_iocbq *piocb = &lpfc_cmd->cur_iocbq;
10590 union lpfc_wqe128 *wqe = &lpfc_cmd->cur_iocbq.wqe;
10591 struct sli4_sge *sgl;
10592
10593 /* 128 byte wqe support here */
10594 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl;
10595
10596 if (phba->fcp_embed_io) {
10597 struct fcp_cmnd *fcp_cmnd;
10598 u32 *ptr;
10599
10600 fcp_cmnd = lpfc_cmd->fcp_cmnd;
10601
10602 /* Word 0-2 - FCP_CMND */
10603 wqe->generic.bde.tus.f.bdeFlags =
10604 BUFF_TYPE_BDE_IMMED;
10605 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
10606 wqe->generic.bde.addrHigh = 0;
10607 wqe->generic.bde.addrLow = 88; /* Word 22 */
10608
10609 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1);
10610 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0);
10611
10612 /* Word 22-29 FCP CMND Payload */
10613 ptr = &wqe->words[22];
10614 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
10615 } else {
10616 /* Word 0-2 - Inline BDE */
10617 wqe->generic.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64;
10618 wqe->generic.bde.tus.f.bdeSize = sizeof(struct fcp_cmnd);
10619 wqe->generic.bde.addrHigh = sgl->addr_hi;
10620 wqe->generic.bde.addrLow = sgl->addr_lo;
10621
10622 /* Word 10 */
10623 bf_set(wqe_dbde, &wqe->generic.wqe_com, 1);
10624 bf_set(wqe_wqes, &wqe->generic.wqe_com, 0);
10625 }
10626
10627 /* add the VMID tags as per switch response */
10628 if (unlikely(piocb->cmd_flag & LPFC_IO_VMID)) {
10629 if (phba->pport->vmid_flag & LPFC_VMID_TYPE_PRIO) {
10630 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1);
10631 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com,
10632 (piocb->vmid_tag.cs_ctl_vmid));
10633 } else if (phba->cfg_vmid_app_header) {
10634 bf_set(wqe_appid, &wqe->fcp_iwrite.wqe_com, 1);
10635 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1);
10636 wqe->words[31] = piocb->vmid_tag.app_id;
10637 }
10638 }
10639 }
10640
10641 /**
10642 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb
10643 * @phba: Pointer to HBA context object.
10644 * @ring_number: SLI ring number to issue iocb on.
10645 * @piocb: Pointer to command iocb.
10646 * @flag: Flag indicating if this command can be put into txq.
10647 *
10648 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue
10649 * an iocb command to an HBA with SLI-4 interface spec.
10650 *
10651 * This function is called with ringlock held. The function will return success
10652 * after it successfully submit the iocb to firmware or after adding to the
10653 * txq.
10654 **/
10655 static int
__lpfc_sli_issue_iocb_s4(struct lpfc_hba * phba,uint32_t ring_number,struct lpfc_iocbq * piocb,uint32_t flag)10656 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number,
10657 struct lpfc_iocbq *piocb, uint32_t flag)
10658 {
10659 struct lpfc_sglq *sglq;
10660 union lpfc_wqe128 *wqe;
10661 struct lpfc_queue *wq;
10662 struct lpfc_sli_ring *pring;
10663 u32 ulp_command = get_job_cmnd(phba, piocb);
10664
10665 /* Get the WQ */
10666 if ((piocb->cmd_flag & LPFC_IO_FCP) ||
10667 (piocb->cmd_flag & LPFC_USE_FCPWQIDX)) {
10668 wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq;
10669 } else {
10670 wq = phba->sli4_hba.els_wq;
10671 }
10672
10673 /* Get corresponding ring */
10674 pring = wq->pring;
10675
10676 /*
10677 * The WQE can be either 64 or 128 bytes,
10678 */
10679
10680 lockdep_assert_held(&pring->ring_lock);
10681 wqe = &piocb->wqe;
10682 if (piocb->sli4_xritag == NO_XRI) {
10683 if (ulp_command == CMD_ABORT_XRI_CX)
10684 sglq = NULL;
10685 else {
10686 sglq = __lpfc_sli_get_els_sglq(phba, piocb);
10687 if (!sglq) {
10688 if (!(flag & SLI_IOCB_RET_IOCB)) {
10689 __lpfc_sli_ringtx_put(phba,
10690 pring,
10691 piocb);
10692 return IOCB_SUCCESS;
10693 } else {
10694 return IOCB_BUSY;
10695 }
10696 }
10697 }
10698 } else if (piocb->cmd_flag & LPFC_IO_FCP) {
10699 /* These IO's already have an XRI and a mapped sgl. */
10700 sglq = NULL;
10701 }
10702 else {
10703 /*
10704 * This is a continuation of a commandi,(CX) so this
10705 * sglq is on the active list
10706 */
10707 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag);
10708 if (!sglq)
10709 return IOCB_ERROR;
10710 }
10711
10712 if (sglq) {
10713 piocb->sli4_lxritag = sglq->sli4_lxritag;
10714 piocb->sli4_xritag = sglq->sli4_xritag;
10715
10716 /* ABTS sent by initiator to CT exchange, the
10717 * RX_ID field will be filled with the newly
10718 * allocated responder XRI.
10719 */
10720 if (ulp_command == CMD_XMIT_BLS_RSP64_CX &&
10721 piocb->abort_bls == LPFC_ABTS_UNSOL_INT)
10722 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp,
10723 piocb->sli4_xritag);
10724
10725 bf_set(wqe_xri_tag, &wqe->generic.wqe_com,
10726 piocb->sli4_xritag);
10727
10728 if (lpfc_wqe_bpl2sgl(phba, piocb, sglq) == NO_XRI)
10729 return IOCB_ERROR;
10730 }
10731
10732 if (lpfc_sli4_wq_put(wq, wqe))
10733 return IOCB_ERROR;
10734
10735 lpfc_sli_ringtxcmpl_put(phba, pring, piocb);
10736
10737 return 0;
10738 }
10739
10740 /*
10741 * lpfc_sli_issue_fcp_io - Wrapper func for issuing fcp i/o
10742 *
10743 * This routine wraps the actual fcp i/o function for issusing WQE for sli-4
10744 * or IOCB for sli-3 function.
10745 * pointer from the lpfc_hba struct.
10746 *
10747 * Return codes:
10748 * IOCB_ERROR - Error
10749 * IOCB_SUCCESS - Success
10750 * IOCB_BUSY - Busy
10751 **/
10752 int
lpfc_sli_issue_fcp_io(struct lpfc_hba * phba,uint32_t ring_number,struct lpfc_iocbq * piocb,uint32_t flag)10753 lpfc_sli_issue_fcp_io(struct lpfc_hba *phba, uint32_t ring_number,
10754 struct lpfc_iocbq *piocb, uint32_t flag)
10755 {
10756 return phba->__lpfc_sli_issue_fcp_io(phba, ring_number, piocb, flag);
10757 }
10758
10759 /*
10760 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb
10761 *
10762 * This routine wraps the actual lockless version for issusing IOCB function
10763 * pointer from the lpfc_hba struct.
10764 *
10765 * Return codes:
10766 * IOCB_ERROR - Error
10767 * IOCB_SUCCESS - Success
10768 * IOCB_BUSY - Busy
10769 **/
10770 int
__lpfc_sli_issue_iocb(struct lpfc_hba * phba,uint32_t ring_number,struct lpfc_iocbq * piocb,uint32_t flag)10771 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
10772 struct lpfc_iocbq *piocb, uint32_t flag)
10773 {
10774 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
10775 }
10776
10777 static void
__lpfc_sli_prep_els_req_rsp_s3(struct lpfc_iocbq * cmdiocbq,struct lpfc_vport * vport,struct lpfc_dmabuf * bmp,u16 cmd_size,u32 did,u32 elscmd,u8 tmo,u8 expect_rsp)10778 __lpfc_sli_prep_els_req_rsp_s3(struct lpfc_iocbq *cmdiocbq,
10779 struct lpfc_vport *vport,
10780 struct lpfc_dmabuf *bmp, u16 cmd_size, u32 did,
10781 u32 elscmd, u8 tmo, u8 expect_rsp)
10782 {
10783 struct lpfc_hba *phba = vport->phba;
10784 IOCB_t *cmd;
10785
10786 cmd = &cmdiocbq->iocb;
10787 memset(cmd, 0, sizeof(*cmd));
10788
10789 cmd->un.elsreq64.bdl.addrHigh = putPaddrHigh(bmp->phys);
10790 cmd->un.elsreq64.bdl.addrLow = putPaddrLow(bmp->phys);
10791 cmd->un.elsreq64.bdl.bdeFlags = BUFF_TYPE_BLP_64;
10792
10793 if (expect_rsp) {
10794 cmd->un.elsreq64.bdl.bdeSize = (2 * sizeof(struct ulp_bde64));
10795 cmd->un.elsreq64.remoteID = did; /* DID */
10796 cmd->ulpCommand = CMD_ELS_REQUEST64_CR;
10797 cmd->ulpTimeout = tmo;
10798 } else {
10799 cmd->un.elsreq64.bdl.bdeSize = sizeof(struct ulp_bde64);
10800 cmd->un.genreq64.xmit_els_remoteID = did; /* DID */
10801 cmd->ulpCommand = CMD_XMIT_ELS_RSP64_CX;
10802 cmd->ulpPU = PARM_NPIV_DID;
10803 }
10804 cmd->ulpBdeCount = 1;
10805 cmd->ulpLe = 1;
10806 cmd->ulpClass = CLASS3;
10807
10808 /* If we have NPIV enabled, we want to send ELS traffic by VPI. */
10809 if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) {
10810 if (expect_rsp) {
10811 cmd->un.elsreq64.myID = vport->fc_myDID;
10812
10813 /* For ELS_REQUEST64_CR, use the VPI by default */
10814 cmd->ulpContext = phba->vpi_ids[vport->vpi];
10815 }
10816
10817 cmd->ulpCt_h = 0;
10818 /* The CT field must be 0=INVALID_RPI for the ECHO cmd */
10819 if (elscmd == ELS_CMD_ECHO)
10820 cmd->ulpCt_l = 0; /* context = invalid RPI */
10821 else
10822 cmd->ulpCt_l = 1; /* context = VPI */
10823 }
10824 }
10825
10826 static void
__lpfc_sli_prep_els_req_rsp_s4(struct lpfc_iocbq * cmdiocbq,struct lpfc_vport * vport,struct lpfc_dmabuf * bmp,u16 cmd_size,u32 did,u32 elscmd,u8 tmo,u8 expect_rsp)10827 __lpfc_sli_prep_els_req_rsp_s4(struct lpfc_iocbq *cmdiocbq,
10828 struct lpfc_vport *vport,
10829 struct lpfc_dmabuf *bmp, u16 cmd_size, u32 did,
10830 u32 elscmd, u8 tmo, u8 expect_rsp)
10831 {
10832 struct lpfc_hba *phba = vport->phba;
10833 union lpfc_wqe128 *wqe;
10834 struct ulp_bde64_le *bde;
10835 u8 els_id;
10836
10837 wqe = &cmdiocbq->wqe;
10838 memset(wqe, 0, sizeof(*wqe));
10839
10840 /* Word 0 - 2 BDE */
10841 bde = (struct ulp_bde64_le *)&wqe->generic.bde;
10842 bde->addr_low = cpu_to_le32(putPaddrLow(bmp->phys));
10843 bde->addr_high = cpu_to_le32(putPaddrHigh(bmp->phys));
10844 bde->type_size = cpu_to_le32(cmd_size);
10845 bde->type_size |= cpu_to_le32(ULP_BDE64_TYPE_BDE_64);
10846
10847 if (expect_rsp) {
10848 bf_set(wqe_cmnd, &wqe->els_req.wqe_com, CMD_ELS_REQUEST64_WQE);
10849
10850 /* Transfer length */
10851 wqe->els_req.payload_len = cmd_size;
10852 wqe->els_req.max_response_payload_len = FCELSSIZE;
10853
10854 /* DID */
10855 bf_set(wqe_els_did, &wqe->els_req.wqe_dest, did);
10856
10857 /* Word 11 - ELS_ID */
10858 switch (elscmd) {
10859 case ELS_CMD_PLOGI:
10860 els_id = LPFC_ELS_ID_PLOGI;
10861 break;
10862 case ELS_CMD_FLOGI:
10863 els_id = LPFC_ELS_ID_FLOGI;
10864 break;
10865 case ELS_CMD_LOGO:
10866 els_id = LPFC_ELS_ID_LOGO;
10867 break;
10868 case ELS_CMD_FDISC:
10869 if (!vport->fc_myDID) {
10870 els_id = LPFC_ELS_ID_FDISC;
10871 break;
10872 }
10873 fallthrough;
10874 default:
10875 els_id = LPFC_ELS_ID_DEFAULT;
10876 break;
10877 }
10878
10879 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id);
10880 } else {
10881 /* DID */
10882 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, did);
10883
10884 /* Transfer length */
10885 wqe->xmit_els_rsp.response_payload_len = cmd_size;
10886
10887 bf_set(wqe_cmnd, &wqe->xmit_els_rsp.wqe_com,
10888 CMD_XMIT_ELS_RSP64_WQE);
10889 }
10890
10891 bf_set(wqe_tmo, &wqe->generic.wqe_com, tmo);
10892 bf_set(wqe_reqtag, &wqe->generic.wqe_com, cmdiocbq->iotag);
10893 bf_set(wqe_class, &wqe->generic.wqe_com, CLASS3);
10894
10895 /* If we have NPIV enabled, we want to send ELS traffic by VPI.
10896 * For SLI4, since the driver controls VPIs we also want to include
10897 * all ELS pt2pt protocol traffic as well.
10898 */
10899 if ((phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) ||
10900 (vport->fc_flag & FC_PT2PT)) {
10901 if (expect_rsp) {
10902 bf_set(els_req64_sid, &wqe->els_req, vport->fc_myDID);
10903
10904 /* For ELS_REQUEST64_WQE, use the VPI by default */
10905 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
10906 phba->vpi_ids[vport->vpi]);
10907 }
10908
10909 /* The CT field must be 0=INVALID_RPI for the ECHO cmd */
10910 if (elscmd == ELS_CMD_ECHO)
10911 bf_set(wqe_ct, &wqe->generic.wqe_com, 0);
10912 else
10913 bf_set(wqe_ct, &wqe->generic.wqe_com, 1);
10914 }
10915 }
10916
10917 void
lpfc_sli_prep_els_req_rsp(struct lpfc_hba * phba,struct lpfc_iocbq * cmdiocbq,struct lpfc_vport * vport,struct lpfc_dmabuf * bmp,u16 cmd_size,u32 did,u32 elscmd,u8 tmo,u8 expect_rsp)10918 lpfc_sli_prep_els_req_rsp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq,
10919 struct lpfc_vport *vport, struct lpfc_dmabuf *bmp,
10920 u16 cmd_size, u32 did, u32 elscmd, u8 tmo,
10921 u8 expect_rsp)
10922 {
10923 phba->__lpfc_sli_prep_els_req_rsp(cmdiocbq, vport, bmp, cmd_size, did,
10924 elscmd, tmo, expect_rsp);
10925 }
10926
10927 static void
__lpfc_sli_prep_gen_req_s3(struct lpfc_iocbq * cmdiocbq,struct lpfc_dmabuf * bmp,u16 rpi,u32 num_entry,u8 tmo)10928 __lpfc_sli_prep_gen_req_s3(struct lpfc_iocbq *cmdiocbq, struct lpfc_dmabuf *bmp,
10929 u16 rpi, u32 num_entry, u8 tmo)
10930 {
10931 IOCB_t *cmd;
10932
10933 cmd = &cmdiocbq->iocb;
10934 memset(cmd, 0, sizeof(*cmd));
10935
10936 cmd->un.genreq64.bdl.addrHigh = putPaddrHigh(bmp->phys);
10937 cmd->un.genreq64.bdl.addrLow = putPaddrLow(bmp->phys);
10938 cmd->un.genreq64.bdl.bdeFlags = BUFF_TYPE_BLP_64;
10939 cmd->un.genreq64.bdl.bdeSize = num_entry * sizeof(struct ulp_bde64);
10940
10941 cmd->un.genreq64.w5.hcsw.Rctl = FC_RCTL_DD_UNSOL_CTL;
10942 cmd->un.genreq64.w5.hcsw.Type = FC_TYPE_CT;
10943 cmd->un.genreq64.w5.hcsw.Fctl = (SI | LA);
10944
10945 cmd->ulpContext = rpi;
10946 cmd->ulpClass = CLASS3;
10947 cmd->ulpCommand = CMD_GEN_REQUEST64_CR;
10948 cmd->ulpBdeCount = 1;
10949 cmd->ulpLe = 1;
10950 cmd->ulpOwner = OWN_CHIP;
10951 cmd->ulpTimeout = tmo;
10952 }
10953
10954 static void
__lpfc_sli_prep_gen_req_s4(struct lpfc_iocbq * cmdiocbq,struct lpfc_dmabuf * bmp,u16 rpi,u32 num_entry,u8 tmo)10955 __lpfc_sli_prep_gen_req_s4(struct lpfc_iocbq *cmdiocbq, struct lpfc_dmabuf *bmp,
10956 u16 rpi, u32 num_entry, u8 tmo)
10957 {
10958 union lpfc_wqe128 *cmdwqe;
10959 struct ulp_bde64_le *bde, *bpl;
10960 u32 xmit_len = 0, total_len = 0, size, type, i;
10961
10962 cmdwqe = &cmdiocbq->wqe;
10963 memset(cmdwqe, 0, sizeof(*cmdwqe));
10964
10965 /* Calculate total_len and xmit_len */
10966 bpl = (struct ulp_bde64_le *)bmp->virt;
10967 for (i = 0; i < num_entry; i++) {
10968 size = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_SIZE_MASK;
10969 total_len += size;
10970 }
10971 for (i = 0; i < num_entry; i++) {
10972 size = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_SIZE_MASK;
10973 type = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_TYPE_MASK;
10974 if (type != ULP_BDE64_TYPE_BDE_64)
10975 break;
10976 xmit_len += size;
10977 }
10978
10979 /* Words 0 - 2 */
10980 bde = (struct ulp_bde64_le *)&cmdwqe->generic.bde;
10981 bde->addr_low = bpl->addr_low;
10982 bde->addr_high = bpl->addr_high;
10983 bde->type_size = cpu_to_le32(xmit_len);
10984 bde->type_size |= cpu_to_le32(ULP_BDE64_TYPE_BDE_64);
10985
10986 /* Word 3 */
10987 cmdwqe->gen_req.request_payload_len = xmit_len;
10988
10989 /* Word 5 */
10990 bf_set(wqe_type, &cmdwqe->gen_req.wge_ctl, FC_TYPE_CT);
10991 bf_set(wqe_rctl, &cmdwqe->gen_req.wge_ctl, FC_RCTL_DD_UNSOL_CTL);
10992 bf_set(wqe_si, &cmdwqe->gen_req.wge_ctl, 1);
10993 bf_set(wqe_la, &cmdwqe->gen_req.wge_ctl, 1);
10994
10995 /* Word 6 */
10996 bf_set(wqe_ctxt_tag, &cmdwqe->gen_req.wqe_com, rpi);
10997
10998 /* Word 7 */
10999 bf_set(wqe_tmo, &cmdwqe->gen_req.wqe_com, tmo);
11000 bf_set(wqe_class, &cmdwqe->gen_req.wqe_com, CLASS3);
11001 bf_set(wqe_cmnd, &cmdwqe->gen_req.wqe_com, CMD_GEN_REQUEST64_CR);
11002 bf_set(wqe_ct, &cmdwqe->gen_req.wqe_com, SLI4_CT_RPI);
11003
11004 /* Word 12 */
11005 cmdwqe->gen_req.max_response_payload_len = total_len - xmit_len;
11006 }
11007
11008 void
lpfc_sli_prep_gen_req(struct lpfc_hba * phba,struct lpfc_iocbq * cmdiocbq,struct lpfc_dmabuf * bmp,u16 rpi,u32 num_entry,u8 tmo)11009 lpfc_sli_prep_gen_req(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq,
11010 struct lpfc_dmabuf *bmp, u16 rpi, u32 num_entry, u8 tmo)
11011 {
11012 phba->__lpfc_sli_prep_gen_req(cmdiocbq, bmp, rpi, num_entry, tmo);
11013 }
11014
11015 static void
__lpfc_sli_prep_xmit_seq64_s3(struct lpfc_iocbq * cmdiocbq,struct lpfc_dmabuf * bmp,u16 rpi,u16 ox_id,u32 num_entry,u8 rctl,u8 last_seq,u8 cr_cx_cmd)11016 __lpfc_sli_prep_xmit_seq64_s3(struct lpfc_iocbq *cmdiocbq,
11017 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id,
11018 u32 num_entry, u8 rctl, u8 last_seq, u8 cr_cx_cmd)
11019 {
11020 IOCB_t *icmd;
11021
11022 icmd = &cmdiocbq->iocb;
11023 memset(icmd, 0, sizeof(*icmd));
11024
11025 icmd->un.xseq64.bdl.addrHigh = putPaddrHigh(bmp->phys);
11026 icmd->un.xseq64.bdl.addrLow = putPaddrLow(bmp->phys);
11027 icmd->un.xseq64.bdl.bdeFlags = BUFF_TYPE_BLP_64;
11028 icmd->un.xseq64.bdl.bdeSize = (num_entry * sizeof(struct ulp_bde64));
11029 icmd->un.xseq64.w5.hcsw.Fctl = LA;
11030 if (last_seq)
11031 icmd->un.xseq64.w5.hcsw.Fctl |= LS;
11032 icmd->un.xseq64.w5.hcsw.Dfctl = 0;
11033 icmd->un.xseq64.w5.hcsw.Rctl = rctl;
11034 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_CT;
11035
11036 icmd->ulpBdeCount = 1;
11037 icmd->ulpLe = 1;
11038 icmd->ulpClass = CLASS3;
11039
11040 switch (cr_cx_cmd) {
11041 case CMD_XMIT_SEQUENCE64_CR:
11042 icmd->ulpContext = rpi;
11043 icmd->ulpCommand = CMD_XMIT_SEQUENCE64_CR;
11044 break;
11045 case CMD_XMIT_SEQUENCE64_CX:
11046 icmd->ulpContext = ox_id;
11047 icmd->ulpCommand = CMD_XMIT_SEQUENCE64_CX;
11048 break;
11049 default:
11050 break;
11051 }
11052 }
11053
11054 static void
__lpfc_sli_prep_xmit_seq64_s4(struct lpfc_iocbq * cmdiocbq,struct lpfc_dmabuf * bmp,u16 rpi,u16 ox_id,u32 full_size,u8 rctl,u8 last_seq,u8 cr_cx_cmd)11055 __lpfc_sli_prep_xmit_seq64_s4(struct lpfc_iocbq *cmdiocbq,
11056 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id,
11057 u32 full_size, u8 rctl, u8 last_seq, u8 cr_cx_cmd)
11058 {
11059 union lpfc_wqe128 *wqe;
11060 struct ulp_bde64 *bpl;
11061
11062 wqe = &cmdiocbq->wqe;
11063 memset(wqe, 0, sizeof(*wqe));
11064
11065 /* Words 0 - 2 */
11066 bpl = (struct ulp_bde64 *)bmp->virt;
11067 wqe->xmit_sequence.bde.addrHigh = bpl->addrHigh;
11068 wqe->xmit_sequence.bde.addrLow = bpl->addrLow;
11069 wqe->xmit_sequence.bde.tus.w = bpl->tus.w;
11070
11071 /* Word 5 */
11072 bf_set(wqe_ls, &wqe->xmit_sequence.wge_ctl, last_seq);
11073 bf_set(wqe_la, &wqe->xmit_sequence.wge_ctl, 1);
11074 bf_set(wqe_dfctl, &wqe->xmit_sequence.wge_ctl, 0);
11075 bf_set(wqe_rctl, &wqe->xmit_sequence.wge_ctl, rctl);
11076 bf_set(wqe_type, &wqe->xmit_sequence.wge_ctl, FC_TYPE_CT);
11077
11078 /* Word 6 */
11079 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, rpi);
11080
11081 bf_set(wqe_cmnd, &wqe->xmit_sequence.wqe_com,
11082 CMD_XMIT_SEQUENCE64_WQE);
11083
11084 /* Word 7 */
11085 bf_set(wqe_class, &wqe->xmit_sequence.wqe_com, CLASS3);
11086
11087 /* Word 9 */
11088 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, ox_id);
11089
11090 /* Word 12 */
11091 if (cmdiocbq->cmd_flag & (LPFC_IO_LIBDFC | LPFC_IO_LOOPBACK))
11092 wqe->xmit_sequence.xmit_len = full_size;
11093 else
11094 wqe->xmit_sequence.xmit_len =
11095 wqe->xmit_sequence.bde.tus.f.bdeSize;
11096 }
11097
11098 void
lpfc_sli_prep_xmit_seq64(struct lpfc_hba * phba,struct lpfc_iocbq * cmdiocbq,struct lpfc_dmabuf * bmp,u16 rpi,u16 ox_id,u32 num_entry,u8 rctl,u8 last_seq,u8 cr_cx_cmd)11099 lpfc_sli_prep_xmit_seq64(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq,
11100 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id,
11101 u32 num_entry, u8 rctl, u8 last_seq, u8 cr_cx_cmd)
11102 {
11103 phba->__lpfc_sli_prep_xmit_seq64(cmdiocbq, bmp, rpi, ox_id, num_entry,
11104 rctl, last_seq, cr_cx_cmd);
11105 }
11106
11107 static void
__lpfc_sli_prep_abort_xri_s3(struct lpfc_iocbq * cmdiocbq,u16 ulp_context,u16 iotag,u8 ulp_class,u16 cqid,bool ia,bool wqec)11108 __lpfc_sli_prep_abort_xri_s3(struct lpfc_iocbq *cmdiocbq, u16 ulp_context,
11109 u16 iotag, u8 ulp_class, u16 cqid, bool ia,
11110 bool wqec)
11111 {
11112 IOCB_t *icmd = NULL;
11113
11114 icmd = &cmdiocbq->iocb;
11115 memset(icmd, 0, sizeof(*icmd));
11116
11117 /* Word 5 */
11118 icmd->un.acxri.abortContextTag = ulp_context;
11119 icmd->un.acxri.abortIoTag = iotag;
11120
11121 if (ia) {
11122 /* Word 7 */
11123 icmd->ulpCommand = CMD_CLOSE_XRI_CN;
11124 } else {
11125 /* Word 3 */
11126 icmd->un.acxri.abortType = ABORT_TYPE_ABTS;
11127
11128 /* Word 7 */
11129 icmd->ulpClass = ulp_class;
11130 icmd->ulpCommand = CMD_ABORT_XRI_CN;
11131 }
11132
11133 /* Word 7 */
11134 icmd->ulpLe = 1;
11135 }
11136
11137 static void
__lpfc_sli_prep_abort_xri_s4(struct lpfc_iocbq * cmdiocbq,u16 ulp_context,u16 iotag,u8 ulp_class,u16 cqid,bool ia,bool wqec)11138 __lpfc_sli_prep_abort_xri_s4(struct lpfc_iocbq *cmdiocbq, u16 ulp_context,
11139 u16 iotag, u8 ulp_class, u16 cqid, bool ia,
11140 bool wqec)
11141 {
11142 union lpfc_wqe128 *wqe;
11143
11144 wqe = &cmdiocbq->wqe;
11145 memset(wqe, 0, sizeof(*wqe));
11146
11147 /* Word 3 */
11148 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG);
11149 if (ia)
11150 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1);
11151 else
11152 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0);
11153
11154 /* Word 7 */
11155 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_WQE);
11156
11157 /* Word 8 */
11158 wqe->abort_cmd.wqe_com.abort_tag = ulp_context;
11159
11160 /* Word 9 */
11161 bf_set(wqe_reqtag, &wqe->abort_cmd.wqe_com, iotag);
11162
11163 /* Word 10 */
11164 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1);
11165
11166 /* Word 11 */
11167 if (wqec)
11168 bf_set(wqe_wqec, &wqe->abort_cmd.wqe_com, 1);
11169 bf_set(wqe_cqid, &wqe->abort_cmd.wqe_com, cqid);
11170 bf_set(wqe_cmd_type, &wqe->abort_cmd.wqe_com, OTHER_COMMAND);
11171 }
11172
11173 void
lpfc_sli_prep_abort_xri(struct lpfc_hba * phba,struct lpfc_iocbq * cmdiocbq,u16 ulp_context,u16 iotag,u8 ulp_class,u16 cqid,bool ia,bool wqec)11174 lpfc_sli_prep_abort_xri(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq,
11175 u16 ulp_context, u16 iotag, u8 ulp_class, u16 cqid,
11176 bool ia, bool wqec)
11177 {
11178 phba->__lpfc_sli_prep_abort_xri(cmdiocbq, ulp_context, iotag, ulp_class,
11179 cqid, ia, wqec);
11180 }
11181
11182 /**
11183 * lpfc_sli_api_table_setup - Set up sli api function jump table
11184 * @phba: The hba struct for which this call is being executed.
11185 * @dev_grp: The HBA PCI-Device group number.
11186 *
11187 * This routine sets up the SLI interface API function jump table in @phba
11188 * struct.
11189 * Returns: 0 - success, -ENODEV - failure.
11190 **/
11191 int
lpfc_sli_api_table_setup(struct lpfc_hba * phba,uint8_t dev_grp)11192 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
11193 {
11194
11195 switch (dev_grp) {
11196 case LPFC_PCI_DEV_LP:
11197 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3;
11198 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3;
11199 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s3;
11200 phba->__lpfc_sli_prep_els_req_rsp = __lpfc_sli_prep_els_req_rsp_s3;
11201 phba->__lpfc_sli_prep_gen_req = __lpfc_sli_prep_gen_req_s3;
11202 phba->__lpfc_sli_prep_xmit_seq64 = __lpfc_sli_prep_xmit_seq64_s3;
11203 phba->__lpfc_sli_prep_abort_xri = __lpfc_sli_prep_abort_xri_s3;
11204 break;
11205 case LPFC_PCI_DEV_OC:
11206 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4;
11207 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4;
11208 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s4;
11209 phba->__lpfc_sli_prep_els_req_rsp = __lpfc_sli_prep_els_req_rsp_s4;
11210 phba->__lpfc_sli_prep_gen_req = __lpfc_sli_prep_gen_req_s4;
11211 phba->__lpfc_sli_prep_xmit_seq64 = __lpfc_sli_prep_xmit_seq64_s4;
11212 phba->__lpfc_sli_prep_abort_xri = __lpfc_sli_prep_abort_xri_s4;
11213 break;
11214 default:
11215 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
11216 "1419 Invalid HBA PCI-device group: 0x%x\n",
11217 dev_grp);
11218 return -ENODEV;
11219 }
11220 return 0;
11221 }
11222
11223 /**
11224 * lpfc_sli4_calc_ring - Calculates which ring to use
11225 * @phba: Pointer to HBA context object.
11226 * @piocb: Pointer to command iocb.
11227 *
11228 * For SLI4 only, FCP IO can deferred to one fo many WQs, based on
11229 * hba_wqidx, thus we need to calculate the corresponding ring.
11230 * Since ABORTS must go on the same WQ of the command they are
11231 * aborting, we use command's hba_wqidx.
11232 */
11233 struct lpfc_sli_ring *
lpfc_sli4_calc_ring(struct lpfc_hba * phba,struct lpfc_iocbq * piocb)11234 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb)
11235 {
11236 struct lpfc_io_buf *lpfc_cmd;
11237
11238 if (piocb->cmd_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) {
11239 if (unlikely(!phba->sli4_hba.hdwq))
11240 return NULL;
11241 /*
11242 * for abort iocb hba_wqidx should already
11243 * be setup based on what work queue we used.
11244 */
11245 if (!(piocb->cmd_flag & LPFC_USE_FCPWQIDX)) {
11246 lpfc_cmd = piocb->io_buf;
11247 piocb->hba_wqidx = lpfc_cmd->hdwq_no;
11248 }
11249 return phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq->pring;
11250 } else {
11251 if (unlikely(!phba->sli4_hba.els_wq))
11252 return NULL;
11253 piocb->hba_wqidx = 0;
11254 return phba->sli4_hba.els_wq->pring;
11255 }
11256 }
11257
lpfc_sli4_poll_eq(struct lpfc_queue * eq)11258 inline void lpfc_sli4_poll_eq(struct lpfc_queue *eq)
11259 {
11260 struct lpfc_hba *phba = eq->phba;
11261
11262 /*
11263 * Unlocking an irq is one of the entry point to check
11264 * for re-schedule, but we are good for io submission
11265 * path as midlayer does a get_cpu to glue us in. Flush
11266 * out the invalidate queue so we can see the updated
11267 * value for flag.
11268 */
11269 smp_rmb();
11270
11271 if (READ_ONCE(eq->mode) == LPFC_EQ_POLL)
11272 /* We will not likely get the completion for the caller
11273 * during this iteration but i guess that's fine.
11274 * Future io's coming on this eq should be able to
11275 * pick it up. As for the case of single io's, they
11276 * will be handled through a sched from polling timer
11277 * function which is currently triggered every 1msec.
11278 */
11279 lpfc_sli4_process_eq(phba, eq, LPFC_QUEUE_NOARM,
11280 LPFC_QUEUE_WORK);
11281 }
11282
11283 /**
11284 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb
11285 * @phba: Pointer to HBA context object.
11286 * @ring_number: Ring number
11287 * @piocb: Pointer to command iocb.
11288 * @flag: Flag indicating if this command can be put into txq.
11289 *
11290 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb
11291 * function. This function gets the hbalock and calls
11292 * __lpfc_sli_issue_iocb function and will return the error returned
11293 * by __lpfc_sli_issue_iocb function. This wrapper is used by
11294 * functions which do not hold hbalock.
11295 **/
11296 int
lpfc_sli_issue_iocb(struct lpfc_hba * phba,uint32_t ring_number,struct lpfc_iocbq * piocb,uint32_t flag)11297 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
11298 struct lpfc_iocbq *piocb, uint32_t flag)
11299 {
11300 struct lpfc_sli_ring *pring;
11301 struct lpfc_queue *eq;
11302 unsigned long iflags;
11303 int rc;
11304
11305 /* If the PCI channel is in offline state, do not post iocbs. */
11306 if (unlikely(pci_channel_offline(phba->pcidev)))
11307 return IOCB_ERROR;
11308
11309 if (phba->sli_rev == LPFC_SLI_REV4) {
11310 lpfc_sli_prep_wqe(phba, piocb);
11311
11312 eq = phba->sli4_hba.hdwq[piocb->hba_wqidx].hba_eq;
11313
11314 pring = lpfc_sli4_calc_ring(phba, piocb);
11315 if (unlikely(pring == NULL))
11316 return IOCB_ERROR;
11317
11318 spin_lock_irqsave(&pring->ring_lock, iflags);
11319 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
11320 spin_unlock_irqrestore(&pring->ring_lock, iflags);
11321
11322 lpfc_sli4_poll_eq(eq);
11323 } else {
11324 /* For now, SLI2/3 will still use hbalock */
11325 spin_lock_irqsave(&phba->hbalock, iflags);
11326 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
11327 spin_unlock_irqrestore(&phba->hbalock, iflags);
11328 }
11329 return rc;
11330 }
11331
11332 /**
11333 * lpfc_extra_ring_setup - Extra ring setup function
11334 * @phba: Pointer to HBA context object.
11335 *
11336 * This function is called while driver attaches with the
11337 * HBA to setup the extra ring. The extra ring is used
11338 * only when driver needs to support target mode functionality
11339 * or IP over FC functionalities.
11340 *
11341 * This function is called with no lock held. SLI3 only.
11342 **/
11343 static int
lpfc_extra_ring_setup(struct lpfc_hba * phba)11344 lpfc_extra_ring_setup( struct lpfc_hba *phba)
11345 {
11346 struct lpfc_sli *psli;
11347 struct lpfc_sli_ring *pring;
11348
11349 psli = &phba->sli;
11350
11351 /* Adjust cmd/rsp ring iocb entries more evenly */
11352
11353 /* Take some away from the FCP ring */
11354 pring = &psli->sli3_ring[LPFC_FCP_RING];
11355 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES;
11356 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES;
11357 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES;
11358 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES;
11359
11360 /* and give them to the extra ring */
11361 pring = &psli->sli3_ring[LPFC_EXTRA_RING];
11362
11363 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES;
11364 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES;
11365 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES;
11366 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES;
11367
11368 /* Setup default profile for this ring */
11369 pring->iotag_max = 4096;
11370 pring->num_mask = 1;
11371 pring->prt[0].profile = 0; /* Mask 0 */
11372 pring->prt[0].rctl = phba->cfg_multi_ring_rctl;
11373 pring->prt[0].type = phba->cfg_multi_ring_type;
11374 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL;
11375 return 0;
11376 }
11377
11378 static void
lpfc_sli_post_recovery_event(struct lpfc_hba * phba,struct lpfc_nodelist * ndlp)11379 lpfc_sli_post_recovery_event(struct lpfc_hba *phba,
11380 struct lpfc_nodelist *ndlp)
11381 {
11382 unsigned long iflags;
11383 struct lpfc_work_evt *evtp = &ndlp->recovery_evt;
11384
11385 /* Hold a node reference for outstanding queued work */
11386 if (!lpfc_nlp_get(ndlp))
11387 return;
11388
11389 spin_lock_irqsave(&phba->hbalock, iflags);
11390 if (!list_empty(&evtp->evt_listp)) {
11391 spin_unlock_irqrestore(&phba->hbalock, iflags);
11392 lpfc_nlp_put(ndlp);
11393 return;
11394 }
11395
11396 evtp->evt_arg1 = ndlp;
11397 evtp->evt = LPFC_EVT_RECOVER_PORT;
11398 list_add_tail(&evtp->evt_listp, &phba->work_list);
11399 spin_unlock_irqrestore(&phba->hbalock, iflags);
11400
11401 lpfc_worker_wake_up(phba);
11402 }
11403
11404 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port.
11405 * @phba: Pointer to HBA context object.
11406 * @iocbq: Pointer to iocb object.
11407 *
11408 * The async_event handler calls this routine when it receives
11409 * an ASYNC_STATUS_CN event from the port. The port generates
11410 * this event when an Abort Sequence request to an rport fails
11411 * twice in succession. The abort could be originated by the
11412 * driver or by the port. The ABTS could have been for an ELS
11413 * or FCP IO. The port only generates this event when an ABTS
11414 * fails to complete after one retry.
11415 */
11416 static void
lpfc_sli_abts_err_handler(struct lpfc_hba * phba,struct lpfc_iocbq * iocbq)11417 lpfc_sli_abts_err_handler(struct lpfc_hba *phba,
11418 struct lpfc_iocbq *iocbq)
11419 {
11420 struct lpfc_nodelist *ndlp = NULL;
11421 uint16_t rpi = 0, vpi = 0;
11422 struct lpfc_vport *vport = NULL;
11423
11424 /* The rpi in the ulpContext is vport-sensitive. */
11425 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag;
11426 rpi = iocbq->iocb.ulpContext;
11427
11428 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
11429 "3092 Port generated ABTS async event "
11430 "on vpi %d rpi %d status 0x%x\n",
11431 vpi, rpi, iocbq->iocb.ulpStatus);
11432
11433 vport = lpfc_find_vport_by_vpid(phba, vpi);
11434 if (!vport)
11435 goto err_exit;
11436 ndlp = lpfc_findnode_rpi(vport, rpi);
11437 if (!ndlp)
11438 goto err_exit;
11439
11440 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT)
11441 lpfc_sli_abts_recover_port(vport, ndlp);
11442 return;
11443
11444 err_exit:
11445 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11446 "3095 Event Context not found, no "
11447 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n",
11448 vpi, rpi, iocbq->iocb.ulpStatus,
11449 iocbq->iocb.ulpContext);
11450 }
11451
11452 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port.
11453 * @phba: pointer to HBA context object.
11454 * @ndlp: nodelist pointer for the impacted rport.
11455 * @axri: pointer to the wcqe containing the failed exchange.
11456 *
11457 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the
11458 * port. The port generates this event when an abort exchange request to an
11459 * rport fails twice in succession with no reply. The abort could be originated
11460 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO.
11461 */
11462 void
lpfc_sli4_abts_err_handler(struct lpfc_hba * phba,struct lpfc_nodelist * ndlp,struct sli4_wcqe_xri_aborted * axri)11463 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba,
11464 struct lpfc_nodelist *ndlp,
11465 struct sli4_wcqe_xri_aborted *axri)
11466 {
11467 uint32_t ext_status = 0;
11468
11469 if (!ndlp) {
11470 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11471 "3115 Node Context not found, driver "
11472 "ignoring abts err event\n");
11473 return;
11474 }
11475
11476 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
11477 "3116 Port generated FCP XRI ABORT event on "
11478 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n",
11479 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi],
11480 bf_get(lpfc_wcqe_xa_xri, axri),
11481 bf_get(lpfc_wcqe_xa_status, axri),
11482 axri->parameter);
11483
11484 /*
11485 * Catch the ABTS protocol failure case. Older OCe FW releases returned
11486 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and
11487 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT.
11488 */
11489 ext_status = axri->parameter & IOERR_PARAM_MASK;
11490 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) &&
11491 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0)))
11492 lpfc_sli_post_recovery_event(phba, ndlp);
11493 }
11494
11495 /**
11496 * lpfc_sli_async_event_handler - ASYNC iocb handler function
11497 * @phba: Pointer to HBA context object.
11498 * @pring: Pointer to driver SLI ring object.
11499 * @iocbq: Pointer to iocb object.
11500 *
11501 * This function is called by the slow ring event handler
11502 * function when there is an ASYNC event iocb in the ring.
11503 * This function is called with no lock held.
11504 * Currently this function handles only temperature related
11505 * ASYNC events. The function decodes the temperature sensor
11506 * event message and posts events for the management applications.
11507 **/
11508 static void
lpfc_sli_async_event_handler(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * iocbq)11509 lpfc_sli_async_event_handler(struct lpfc_hba * phba,
11510 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq)
11511 {
11512 IOCB_t *icmd;
11513 uint16_t evt_code;
11514 struct temp_event temp_event_data;
11515 struct Scsi_Host *shost;
11516 uint32_t *iocb_w;
11517
11518 icmd = &iocbq->iocb;
11519 evt_code = icmd->un.asyncstat.evt_code;
11520
11521 switch (evt_code) {
11522 case ASYNC_TEMP_WARN:
11523 case ASYNC_TEMP_SAFE:
11524 temp_event_data.data = (uint32_t) icmd->ulpContext;
11525 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
11526 if (evt_code == ASYNC_TEMP_WARN) {
11527 temp_event_data.event_code = LPFC_THRESHOLD_TEMP;
11528 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11529 "0347 Adapter is very hot, please take "
11530 "corrective action. temperature : %d Celsius\n",
11531 (uint32_t) icmd->ulpContext);
11532 } else {
11533 temp_event_data.event_code = LPFC_NORMAL_TEMP;
11534 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11535 "0340 Adapter temperature is OK now. "
11536 "temperature : %d Celsius\n",
11537 (uint32_t) icmd->ulpContext);
11538 }
11539
11540 /* Send temperature change event to applications */
11541 shost = lpfc_shost_from_vport(phba->pport);
11542 fc_host_post_vendor_event(shost, fc_get_event_number(),
11543 sizeof(temp_event_data), (char *) &temp_event_data,
11544 LPFC_NL_VENDOR_ID);
11545 break;
11546 case ASYNC_STATUS_CN:
11547 lpfc_sli_abts_err_handler(phba, iocbq);
11548 break;
11549 default:
11550 iocb_w = (uint32_t *) icmd;
11551 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11552 "0346 Ring %d handler: unexpected ASYNC_STATUS"
11553 " evt_code 0x%x\n"
11554 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n"
11555 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n"
11556 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n"
11557 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n",
11558 pring->ringno, icmd->un.asyncstat.evt_code,
11559 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3],
11560 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7],
11561 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11],
11562 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]);
11563
11564 break;
11565 }
11566 }
11567
11568
11569 /**
11570 * lpfc_sli4_setup - SLI ring setup function
11571 * @phba: Pointer to HBA context object.
11572 *
11573 * lpfc_sli_setup sets up rings of the SLI interface with
11574 * number of iocbs per ring and iotags. This function is
11575 * called while driver attach to the HBA and before the
11576 * interrupts are enabled. So there is no need for locking.
11577 *
11578 * This function always returns 0.
11579 **/
11580 int
lpfc_sli4_setup(struct lpfc_hba * phba)11581 lpfc_sli4_setup(struct lpfc_hba *phba)
11582 {
11583 struct lpfc_sli_ring *pring;
11584
11585 pring = phba->sli4_hba.els_wq->pring;
11586 pring->num_mask = LPFC_MAX_RING_MASK;
11587 pring->prt[0].profile = 0; /* Mask 0 */
11588 pring->prt[0].rctl = FC_RCTL_ELS_REQ;
11589 pring->prt[0].type = FC_TYPE_ELS;
11590 pring->prt[0].lpfc_sli_rcv_unsol_event =
11591 lpfc_els_unsol_event;
11592 pring->prt[1].profile = 0; /* Mask 1 */
11593 pring->prt[1].rctl = FC_RCTL_ELS_REP;
11594 pring->prt[1].type = FC_TYPE_ELS;
11595 pring->prt[1].lpfc_sli_rcv_unsol_event =
11596 lpfc_els_unsol_event;
11597 pring->prt[2].profile = 0; /* Mask 2 */
11598 /* NameServer Inquiry */
11599 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
11600 /* NameServer */
11601 pring->prt[2].type = FC_TYPE_CT;
11602 pring->prt[2].lpfc_sli_rcv_unsol_event =
11603 lpfc_ct_unsol_event;
11604 pring->prt[3].profile = 0; /* Mask 3 */
11605 /* NameServer response */
11606 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
11607 /* NameServer */
11608 pring->prt[3].type = FC_TYPE_CT;
11609 pring->prt[3].lpfc_sli_rcv_unsol_event =
11610 lpfc_ct_unsol_event;
11611 return 0;
11612 }
11613
11614 /**
11615 * lpfc_sli_setup - SLI ring setup function
11616 * @phba: Pointer to HBA context object.
11617 *
11618 * lpfc_sli_setup sets up rings of the SLI interface with
11619 * number of iocbs per ring and iotags. This function is
11620 * called while driver attach to the HBA and before the
11621 * interrupts are enabled. So there is no need for locking.
11622 *
11623 * This function always returns 0. SLI3 only.
11624 **/
11625 int
lpfc_sli_setup(struct lpfc_hba * phba)11626 lpfc_sli_setup(struct lpfc_hba *phba)
11627 {
11628 int i, totiocbsize = 0;
11629 struct lpfc_sli *psli = &phba->sli;
11630 struct lpfc_sli_ring *pring;
11631
11632 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS;
11633 psli->sli_flag = 0;
11634
11635 psli->iocbq_lookup = NULL;
11636 psli->iocbq_lookup_len = 0;
11637 psli->last_iotag = 0;
11638
11639 for (i = 0; i < psli->num_rings; i++) {
11640 pring = &psli->sli3_ring[i];
11641 switch (i) {
11642 case LPFC_FCP_RING: /* ring 0 - FCP */
11643 /* numCiocb and numRiocb are used in config_port */
11644 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES;
11645 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES;
11646 pring->sli.sli3.numCiocb +=
11647 SLI2_IOCB_CMD_R1XTRA_ENTRIES;
11648 pring->sli.sli3.numRiocb +=
11649 SLI2_IOCB_RSP_R1XTRA_ENTRIES;
11650 pring->sli.sli3.numCiocb +=
11651 SLI2_IOCB_CMD_R3XTRA_ENTRIES;
11652 pring->sli.sli3.numRiocb +=
11653 SLI2_IOCB_RSP_R3XTRA_ENTRIES;
11654 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
11655 SLI3_IOCB_CMD_SIZE :
11656 SLI2_IOCB_CMD_SIZE;
11657 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
11658 SLI3_IOCB_RSP_SIZE :
11659 SLI2_IOCB_RSP_SIZE;
11660 pring->iotag_ctr = 0;
11661 pring->iotag_max =
11662 (phba->cfg_hba_queue_depth * 2);
11663 pring->fast_iotag = pring->iotag_max;
11664 pring->num_mask = 0;
11665 break;
11666 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */
11667 /* numCiocb and numRiocb are used in config_port */
11668 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES;
11669 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES;
11670 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
11671 SLI3_IOCB_CMD_SIZE :
11672 SLI2_IOCB_CMD_SIZE;
11673 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
11674 SLI3_IOCB_RSP_SIZE :
11675 SLI2_IOCB_RSP_SIZE;
11676 pring->iotag_max = phba->cfg_hba_queue_depth;
11677 pring->num_mask = 0;
11678 break;
11679 case LPFC_ELS_RING: /* ring 2 - ELS / CT */
11680 /* numCiocb and numRiocb are used in config_port */
11681 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES;
11682 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES;
11683 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
11684 SLI3_IOCB_CMD_SIZE :
11685 SLI2_IOCB_CMD_SIZE;
11686 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
11687 SLI3_IOCB_RSP_SIZE :
11688 SLI2_IOCB_RSP_SIZE;
11689 pring->fast_iotag = 0;
11690 pring->iotag_ctr = 0;
11691 pring->iotag_max = 4096;
11692 pring->lpfc_sli_rcv_async_status =
11693 lpfc_sli_async_event_handler;
11694 pring->num_mask = LPFC_MAX_RING_MASK;
11695 pring->prt[0].profile = 0; /* Mask 0 */
11696 pring->prt[0].rctl = FC_RCTL_ELS_REQ;
11697 pring->prt[0].type = FC_TYPE_ELS;
11698 pring->prt[0].lpfc_sli_rcv_unsol_event =
11699 lpfc_els_unsol_event;
11700 pring->prt[1].profile = 0; /* Mask 1 */
11701 pring->prt[1].rctl = FC_RCTL_ELS_REP;
11702 pring->prt[1].type = FC_TYPE_ELS;
11703 pring->prt[1].lpfc_sli_rcv_unsol_event =
11704 lpfc_els_unsol_event;
11705 pring->prt[2].profile = 0; /* Mask 2 */
11706 /* NameServer Inquiry */
11707 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
11708 /* NameServer */
11709 pring->prt[2].type = FC_TYPE_CT;
11710 pring->prt[2].lpfc_sli_rcv_unsol_event =
11711 lpfc_ct_unsol_event;
11712 pring->prt[3].profile = 0; /* Mask 3 */
11713 /* NameServer response */
11714 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
11715 /* NameServer */
11716 pring->prt[3].type = FC_TYPE_CT;
11717 pring->prt[3].lpfc_sli_rcv_unsol_event =
11718 lpfc_ct_unsol_event;
11719 break;
11720 }
11721 totiocbsize += (pring->sli.sli3.numCiocb *
11722 pring->sli.sli3.sizeCiocb) +
11723 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb);
11724 }
11725 if (totiocbsize > MAX_SLIM_IOCB_SIZE) {
11726 /* Too many cmd / rsp ring entries in SLI2 SLIM */
11727 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in "
11728 "SLI2 SLIM Data: x%x x%lx\n",
11729 phba->brd_no, totiocbsize,
11730 (unsigned long) MAX_SLIM_IOCB_SIZE);
11731 }
11732 if (phba->cfg_multi_ring_support == 2)
11733 lpfc_extra_ring_setup(phba);
11734
11735 return 0;
11736 }
11737
11738 /**
11739 * lpfc_sli4_queue_init - Queue initialization function
11740 * @phba: Pointer to HBA context object.
11741 *
11742 * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each
11743 * ring. This function also initializes ring indices of each ring.
11744 * This function is called during the initialization of the SLI
11745 * interface of an HBA.
11746 * This function is called with no lock held and always returns
11747 * 1.
11748 **/
11749 void
lpfc_sli4_queue_init(struct lpfc_hba * phba)11750 lpfc_sli4_queue_init(struct lpfc_hba *phba)
11751 {
11752 struct lpfc_sli *psli;
11753 struct lpfc_sli_ring *pring;
11754 int i;
11755
11756 psli = &phba->sli;
11757 spin_lock_irq(&phba->hbalock);
11758 INIT_LIST_HEAD(&psli->mboxq);
11759 INIT_LIST_HEAD(&psli->mboxq_cmpl);
11760 /* Initialize list headers for txq and txcmplq as double linked lists */
11761 for (i = 0; i < phba->cfg_hdw_queue; i++) {
11762 pring = phba->sli4_hba.hdwq[i].io_wq->pring;
11763 pring->flag = 0;
11764 pring->ringno = LPFC_FCP_RING;
11765 pring->txcmplq_cnt = 0;
11766 INIT_LIST_HEAD(&pring->txq);
11767 INIT_LIST_HEAD(&pring->txcmplq);
11768 INIT_LIST_HEAD(&pring->iocb_continueq);
11769 spin_lock_init(&pring->ring_lock);
11770 }
11771 pring = phba->sli4_hba.els_wq->pring;
11772 pring->flag = 0;
11773 pring->ringno = LPFC_ELS_RING;
11774 pring->txcmplq_cnt = 0;
11775 INIT_LIST_HEAD(&pring->txq);
11776 INIT_LIST_HEAD(&pring->txcmplq);
11777 INIT_LIST_HEAD(&pring->iocb_continueq);
11778 spin_lock_init(&pring->ring_lock);
11779
11780 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
11781 pring = phba->sli4_hba.nvmels_wq->pring;
11782 pring->flag = 0;
11783 pring->ringno = LPFC_ELS_RING;
11784 pring->txcmplq_cnt = 0;
11785 INIT_LIST_HEAD(&pring->txq);
11786 INIT_LIST_HEAD(&pring->txcmplq);
11787 INIT_LIST_HEAD(&pring->iocb_continueq);
11788 spin_lock_init(&pring->ring_lock);
11789 }
11790
11791 spin_unlock_irq(&phba->hbalock);
11792 }
11793
11794 /**
11795 * lpfc_sli_queue_init - Queue initialization function
11796 * @phba: Pointer to HBA context object.
11797 *
11798 * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each
11799 * ring. This function also initializes ring indices of each ring.
11800 * This function is called during the initialization of the SLI
11801 * interface of an HBA.
11802 * This function is called with no lock held and always returns
11803 * 1.
11804 **/
11805 void
lpfc_sli_queue_init(struct lpfc_hba * phba)11806 lpfc_sli_queue_init(struct lpfc_hba *phba)
11807 {
11808 struct lpfc_sli *psli;
11809 struct lpfc_sli_ring *pring;
11810 int i;
11811
11812 psli = &phba->sli;
11813 spin_lock_irq(&phba->hbalock);
11814 INIT_LIST_HEAD(&psli->mboxq);
11815 INIT_LIST_HEAD(&psli->mboxq_cmpl);
11816 /* Initialize list headers for txq and txcmplq as double linked lists */
11817 for (i = 0; i < psli->num_rings; i++) {
11818 pring = &psli->sli3_ring[i];
11819 pring->ringno = i;
11820 pring->sli.sli3.next_cmdidx = 0;
11821 pring->sli.sli3.local_getidx = 0;
11822 pring->sli.sli3.cmdidx = 0;
11823 INIT_LIST_HEAD(&pring->iocb_continueq);
11824 INIT_LIST_HEAD(&pring->iocb_continue_saveq);
11825 INIT_LIST_HEAD(&pring->postbufq);
11826 pring->flag = 0;
11827 INIT_LIST_HEAD(&pring->txq);
11828 INIT_LIST_HEAD(&pring->txcmplq);
11829 spin_lock_init(&pring->ring_lock);
11830 }
11831 spin_unlock_irq(&phba->hbalock);
11832 }
11833
11834 /**
11835 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system
11836 * @phba: Pointer to HBA context object.
11837 *
11838 * This routine flushes the mailbox command subsystem. It will unconditionally
11839 * flush all the mailbox commands in the three possible stages in the mailbox
11840 * command sub-system: pending mailbox command queue; the outstanding mailbox
11841 * command; and completed mailbox command queue. It is caller's responsibility
11842 * to make sure that the driver is in the proper state to flush the mailbox
11843 * command sub-system. Namely, the posting of mailbox commands into the
11844 * pending mailbox command queue from the various clients must be stopped;
11845 * either the HBA is in a state that it will never works on the outstanding
11846 * mailbox command (such as in EEH or ERATT conditions) or the outstanding
11847 * mailbox command has been completed.
11848 **/
11849 static void
lpfc_sli_mbox_sys_flush(struct lpfc_hba * phba)11850 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba)
11851 {
11852 LIST_HEAD(completions);
11853 struct lpfc_sli *psli = &phba->sli;
11854 LPFC_MBOXQ_t *pmb;
11855 unsigned long iflag;
11856
11857 /* Disable softirqs, including timers from obtaining phba->hbalock */
11858 local_bh_disable();
11859
11860 /* Flush all the mailbox commands in the mbox system */
11861 spin_lock_irqsave(&phba->hbalock, iflag);
11862
11863 /* The pending mailbox command queue */
11864 list_splice_init(&phba->sli.mboxq, &completions);
11865 /* The outstanding active mailbox command */
11866 if (psli->mbox_active) {
11867 list_add_tail(&psli->mbox_active->list, &completions);
11868 psli->mbox_active = NULL;
11869 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
11870 }
11871 /* The completed mailbox command queue */
11872 list_splice_init(&phba->sli.mboxq_cmpl, &completions);
11873 spin_unlock_irqrestore(&phba->hbalock, iflag);
11874
11875 /* Enable softirqs again, done with phba->hbalock */
11876 local_bh_enable();
11877
11878 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */
11879 while (!list_empty(&completions)) {
11880 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list);
11881 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED;
11882 if (pmb->mbox_cmpl)
11883 pmb->mbox_cmpl(phba, pmb);
11884 }
11885 }
11886
11887 /**
11888 * lpfc_sli_host_down - Vport cleanup function
11889 * @vport: Pointer to virtual port object.
11890 *
11891 * lpfc_sli_host_down is called to clean up the resources
11892 * associated with a vport before destroying virtual
11893 * port data structures.
11894 * This function does following operations:
11895 * - Free discovery resources associated with this virtual
11896 * port.
11897 * - Free iocbs associated with this virtual port in
11898 * the txq.
11899 * - Send abort for all iocb commands associated with this
11900 * vport in txcmplq.
11901 *
11902 * This function is called with no lock held and always returns 1.
11903 **/
11904 int
lpfc_sli_host_down(struct lpfc_vport * vport)11905 lpfc_sli_host_down(struct lpfc_vport *vport)
11906 {
11907 LIST_HEAD(completions);
11908 struct lpfc_hba *phba = vport->phba;
11909 struct lpfc_sli *psli = &phba->sli;
11910 struct lpfc_queue *qp = NULL;
11911 struct lpfc_sli_ring *pring;
11912 struct lpfc_iocbq *iocb, *next_iocb;
11913 int i;
11914 unsigned long flags = 0;
11915 uint16_t prev_pring_flag;
11916
11917 lpfc_cleanup_discovery_resources(vport);
11918
11919 spin_lock_irqsave(&phba->hbalock, flags);
11920
11921 /*
11922 * Error everything on the txq since these iocbs
11923 * have not been given to the FW yet.
11924 * Also issue ABTS for everything on the txcmplq
11925 */
11926 if (phba->sli_rev != LPFC_SLI_REV4) {
11927 for (i = 0; i < psli->num_rings; i++) {
11928 pring = &psli->sli3_ring[i];
11929 prev_pring_flag = pring->flag;
11930 /* Only slow rings */
11931 if (pring->ringno == LPFC_ELS_RING) {
11932 pring->flag |= LPFC_DEFERRED_RING_EVENT;
11933 /* Set the lpfc data pending flag */
11934 set_bit(LPFC_DATA_READY, &phba->data_flags);
11935 }
11936 list_for_each_entry_safe(iocb, next_iocb,
11937 &pring->txq, list) {
11938 if (iocb->vport != vport)
11939 continue;
11940 list_move_tail(&iocb->list, &completions);
11941 }
11942 list_for_each_entry_safe(iocb, next_iocb,
11943 &pring->txcmplq, list) {
11944 if (iocb->vport != vport)
11945 continue;
11946 lpfc_sli_issue_abort_iotag(phba, pring, iocb,
11947 NULL);
11948 }
11949 pring->flag = prev_pring_flag;
11950 }
11951 } else {
11952 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
11953 pring = qp->pring;
11954 if (!pring)
11955 continue;
11956 if (pring == phba->sli4_hba.els_wq->pring) {
11957 pring->flag |= LPFC_DEFERRED_RING_EVENT;
11958 /* Set the lpfc data pending flag */
11959 set_bit(LPFC_DATA_READY, &phba->data_flags);
11960 }
11961 prev_pring_flag = pring->flag;
11962 spin_lock(&pring->ring_lock);
11963 list_for_each_entry_safe(iocb, next_iocb,
11964 &pring->txq, list) {
11965 if (iocb->vport != vport)
11966 continue;
11967 list_move_tail(&iocb->list, &completions);
11968 }
11969 spin_unlock(&pring->ring_lock);
11970 list_for_each_entry_safe(iocb, next_iocb,
11971 &pring->txcmplq, list) {
11972 if (iocb->vport != vport)
11973 continue;
11974 lpfc_sli_issue_abort_iotag(phba, pring, iocb,
11975 NULL);
11976 }
11977 pring->flag = prev_pring_flag;
11978 }
11979 }
11980 spin_unlock_irqrestore(&phba->hbalock, flags);
11981
11982 /* Make sure HBA is alive */
11983 lpfc_issue_hb_tmo(phba);
11984
11985 /* Cancel all the IOCBs from the completions list */
11986 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
11987 IOERR_SLI_DOWN);
11988 return 1;
11989 }
11990
11991 /**
11992 * lpfc_sli_hba_down - Resource cleanup function for the HBA
11993 * @phba: Pointer to HBA context object.
11994 *
11995 * This function cleans up all iocb, buffers, mailbox commands
11996 * while shutting down the HBA. This function is called with no
11997 * lock held and always returns 1.
11998 * This function does the following to cleanup driver resources:
11999 * - Free discovery resources for each virtual port
12000 * - Cleanup any pending fabric iocbs
12001 * - Iterate through the iocb txq and free each entry
12002 * in the list.
12003 * - Free up any buffer posted to the HBA
12004 * - Free mailbox commands in the mailbox queue.
12005 **/
12006 int
lpfc_sli_hba_down(struct lpfc_hba * phba)12007 lpfc_sli_hba_down(struct lpfc_hba *phba)
12008 {
12009 LIST_HEAD(completions);
12010 struct lpfc_sli *psli = &phba->sli;
12011 struct lpfc_queue *qp = NULL;
12012 struct lpfc_sli_ring *pring;
12013 struct lpfc_dmabuf *buf_ptr;
12014 unsigned long flags = 0;
12015 int i;
12016
12017 /* Shutdown the mailbox command sub-system */
12018 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT);
12019
12020 lpfc_hba_down_prep(phba);
12021
12022 /* Disable softirqs, including timers from obtaining phba->hbalock */
12023 local_bh_disable();
12024
12025 lpfc_fabric_abort_hba(phba);
12026
12027 spin_lock_irqsave(&phba->hbalock, flags);
12028
12029 /*
12030 * Error everything on the txq since these iocbs
12031 * have not been given to the FW yet.
12032 */
12033 if (phba->sli_rev != LPFC_SLI_REV4) {
12034 for (i = 0; i < psli->num_rings; i++) {
12035 pring = &psli->sli3_ring[i];
12036 /* Only slow rings */
12037 if (pring->ringno == LPFC_ELS_RING) {
12038 pring->flag |= LPFC_DEFERRED_RING_EVENT;
12039 /* Set the lpfc data pending flag */
12040 set_bit(LPFC_DATA_READY, &phba->data_flags);
12041 }
12042 list_splice_init(&pring->txq, &completions);
12043 }
12044 } else {
12045 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
12046 pring = qp->pring;
12047 if (!pring)
12048 continue;
12049 spin_lock(&pring->ring_lock);
12050 list_splice_init(&pring->txq, &completions);
12051 spin_unlock(&pring->ring_lock);
12052 if (pring == phba->sli4_hba.els_wq->pring) {
12053 pring->flag |= LPFC_DEFERRED_RING_EVENT;
12054 /* Set the lpfc data pending flag */
12055 set_bit(LPFC_DATA_READY, &phba->data_flags);
12056 }
12057 }
12058 }
12059 spin_unlock_irqrestore(&phba->hbalock, flags);
12060
12061 /* Cancel all the IOCBs from the completions list */
12062 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
12063 IOERR_SLI_DOWN);
12064
12065 spin_lock_irqsave(&phba->hbalock, flags);
12066 list_splice_init(&phba->elsbuf, &completions);
12067 phba->elsbuf_cnt = 0;
12068 phba->elsbuf_prev_cnt = 0;
12069 spin_unlock_irqrestore(&phba->hbalock, flags);
12070
12071 while (!list_empty(&completions)) {
12072 list_remove_head(&completions, buf_ptr,
12073 struct lpfc_dmabuf, list);
12074 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys);
12075 kfree(buf_ptr);
12076 }
12077
12078 /* Enable softirqs again, done with phba->hbalock */
12079 local_bh_enable();
12080
12081 /* Return any active mbox cmds */
12082 del_timer_sync(&psli->mbox_tmo);
12083
12084 spin_lock_irqsave(&phba->pport->work_port_lock, flags);
12085 phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
12086 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags);
12087
12088 return 1;
12089 }
12090
12091 /**
12092 * lpfc_sli_pcimem_bcopy - SLI memory copy function
12093 * @srcp: Source memory pointer.
12094 * @destp: Destination memory pointer.
12095 * @cnt: Number of words required to be copied.
12096 *
12097 * This function is used for copying data between driver memory
12098 * and the SLI memory. This function also changes the endianness
12099 * of each word if native endianness is different from SLI
12100 * endianness. This function can be called with or without
12101 * lock.
12102 **/
12103 void
lpfc_sli_pcimem_bcopy(void * srcp,void * destp,uint32_t cnt)12104 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt)
12105 {
12106 uint32_t *src = srcp;
12107 uint32_t *dest = destp;
12108 uint32_t ldata;
12109 int i;
12110
12111 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) {
12112 ldata = *src;
12113 ldata = le32_to_cpu(ldata);
12114 *dest = ldata;
12115 src++;
12116 dest++;
12117 }
12118 }
12119
12120
12121 /**
12122 * lpfc_sli_bemem_bcopy - SLI memory copy function
12123 * @srcp: Source memory pointer.
12124 * @destp: Destination memory pointer.
12125 * @cnt: Number of words required to be copied.
12126 *
12127 * This function is used for copying data between a data structure
12128 * with big endian representation to local endianness.
12129 * This function can be called with or without lock.
12130 **/
12131 void
lpfc_sli_bemem_bcopy(void * srcp,void * destp,uint32_t cnt)12132 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt)
12133 {
12134 uint32_t *src = srcp;
12135 uint32_t *dest = destp;
12136 uint32_t ldata;
12137 int i;
12138
12139 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) {
12140 ldata = *src;
12141 ldata = be32_to_cpu(ldata);
12142 *dest = ldata;
12143 src++;
12144 dest++;
12145 }
12146 }
12147
12148 /**
12149 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq
12150 * @phba: Pointer to HBA context object.
12151 * @pring: Pointer to driver SLI ring object.
12152 * @mp: Pointer to driver buffer object.
12153 *
12154 * This function is called with no lock held.
12155 * It always return zero after adding the buffer to the postbufq
12156 * buffer list.
12157 **/
12158 int
lpfc_sli_ringpostbuf_put(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_dmabuf * mp)12159 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
12160 struct lpfc_dmabuf *mp)
12161 {
12162 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up
12163 later */
12164 spin_lock_irq(&phba->hbalock);
12165 list_add_tail(&mp->list, &pring->postbufq);
12166 pring->postbufq_cnt++;
12167 spin_unlock_irq(&phba->hbalock);
12168 return 0;
12169 }
12170
12171 /**
12172 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer
12173 * @phba: Pointer to HBA context object.
12174 *
12175 * When HBQ is enabled, buffers are searched based on tags. This function
12176 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The
12177 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag
12178 * does not conflict with tags of buffer posted for unsolicited events.
12179 * The function returns the allocated tag. The function is called with
12180 * no locks held.
12181 **/
12182 uint32_t
lpfc_sli_get_buffer_tag(struct lpfc_hba * phba)12183 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba)
12184 {
12185 spin_lock_irq(&phba->hbalock);
12186 phba->buffer_tag_count++;
12187 /*
12188 * Always set the QUE_BUFTAG_BIT to distiguish between
12189 * a tag assigned by HBQ.
12190 */
12191 phba->buffer_tag_count |= QUE_BUFTAG_BIT;
12192 spin_unlock_irq(&phba->hbalock);
12193 return phba->buffer_tag_count;
12194 }
12195
12196 /**
12197 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag
12198 * @phba: Pointer to HBA context object.
12199 * @pring: Pointer to driver SLI ring object.
12200 * @tag: Buffer tag.
12201 *
12202 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq
12203 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX
12204 * iocb is posted to the response ring with the tag of the buffer.
12205 * This function searches the pring->postbufq list using the tag
12206 * to find buffer associated with CMD_IOCB_RET_XRI64_CX
12207 * iocb. If the buffer is found then lpfc_dmabuf object of the
12208 * buffer is returned to the caller else NULL is returned.
12209 * This function is called with no lock held.
12210 **/
12211 struct lpfc_dmabuf *
lpfc_sli_ring_taggedbuf_get(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,uint32_t tag)12212 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
12213 uint32_t tag)
12214 {
12215 struct lpfc_dmabuf *mp, *next_mp;
12216 struct list_head *slp = &pring->postbufq;
12217
12218 /* Search postbufq, from the beginning, looking for a match on tag */
12219 spin_lock_irq(&phba->hbalock);
12220 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
12221 if (mp->buffer_tag == tag) {
12222 list_del_init(&mp->list);
12223 pring->postbufq_cnt--;
12224 spin_unlock_irq(&phba->hbalock);
12225 return mp;
12226 }
12227 }
12228
12229 spin_unlock_irq(&phba->hbalock);
12230 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12231 "0402 Cannot find virtual addr for buffer tag on "
12232 "ring %d Data x%lx x%px x%px x%x\n",
12233 pring->ringno, (unsigned long) tag,
12234 slp->next, slp->prev, pring->postbufq_cnt);
12235
12236 return NULL;
12237 }
12238
12239 /**
12240 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events
12241 * @phba: Pointer to HBA context object.
12242 * @pring: Pointer to driver SLI ring object.
12243 * @phys: DMA address of the buffer.
12244 *
12245 * This function searches the buffer list using the dma_address
12246 * of unsolicited event to find the driver's lpfc_dmabuf object
12247 * corresponding to the dma_address. The function returns the
12248 * lpfc_dmabuf object if a buffer is found else it returns NULL.
12249 * This function is called by the ct and els unsolicited event
12250 * handlers to get the buffer associated with the unsolicited
12251 * event.
12252 *
12253 * This function is called with no lock held.
12254 **/
12255 struct lpfc_dmabuf *
lpfc_sli_ringpostbuf_get(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,dma_addr_t phys)12256 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
12257 dma_addr_t phys)
12258 {
12259 struct lpfc_dmabuf *mp, *next_mp;
12260 struct list_head *slp = &pring->postbufq;
12261
12262 /* Search postbufq, from the beginning, looking for a match on phys */
12263 spin_lock_irq(&phba->hbalock);
12264 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
12265 if (mp->phys == phys) {
12266 list_del_init(&mp->list);
12267 pring->postbufq_cnt--;
12268 spin_unlock_irq(&phba->hbalock);
12269 return mp;
12270 }
12271 }
12272
12273 spin_unlock_irq(&phba->hbalock);
12274 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12275 "0410 Cannot find virtual addr for mapped buf on "
12276 "ring %d Data x%llx x%px x%px x%x\n",
12277 pring->ringno, (unsigned long long)phys,
12278 slp->next, slp->prev, pring->postbufq_cnt);
12279 return NULL;
12280 }
12281
12282 /**
12283 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs
12284 * @phba: Pointer to HBA context object.
12285 * @cmdiocb: Pointer to driver command iocb object.
12286 * @rspiocb: Pointer to driver response iocb object.
12287 *
12288 * This function is the completion handler for the abort iocbs for
12289 * ELS commands. This function is called from the ELS ring event
12290 * handler with no lock held. This function frees memory resources
12291 * associated with the abort iocb.
12292 **/
12293 static void
lpfc_sli_abort_els_cmpl(struct lpfc_hba * phba,struct lpfc_iocbq * cmdiocb,struct lpfc_iocbq * rspiocb)12294 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
12295 struct lpfc_iocbq *rspiocb)
12296 {
12297 u32 ulp_status = get_job_ulpstatus(phba, rspiocb);
12298 u32 ulp_word4 = get_job_word4(phba, rspiocb);
12299 u8 cmnd = get_job_cmnd(phba, cmdiocb);
12300
12301 if (ulp_status) {
12302 /*
12303 * Assume that the port already completed and returned, or
12304 * will return the iocb. Just Log the message.
12305 */
12306 if (phba->sli_rev < LPFC_SLI_REV4) {
12307 if (cmnd == CMD_ABORT_XRI_CX &&
12308 ulp_status == IOSTAT_LOCAL_REJECT &&
12309 ulp_word4 == IOERR_ABORT_REQUESTED) {
12310 goto release_iocb;
12311 }
12312 }
12313
12314 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI,
12315 "0327 Cannot abort els iocb x%px "
12316 "with io cmd xri %x abort tag : x%x, "
12317 "abort status %x abort code %x\n",
12318 cmdiocb, get_job_abtsiotag(phba, cmdiocb),
12319 (phba->sli_rev == LPFC_SLI_REV4) ?
12320 get_wqe_reqtag(cmdiocb) :
12321 cmdiocb->iocb.un.acxri.abortContextTag,
12322 ulp_status, ulp_word4);
12323
12324 }
12325 release_iocb:
12326 lpfc_sli_release_iocbq(phba, cmdiocb);
12327 return;
12328 }
12329
12330 /**
12331 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command
12332 * @phba: Pointer to HBA context object.
12333 * @cmdiocb: Pointer to driver command iocb object.
12334 * @rspiocb: Pointer to driver response iocb object.
12335 *
12336 * The function is called from SLI ring event handler with no
12337 * lock held. This function is the completion handler for ELS commands
12338 * which are aborted. The function frees memory resources used for
12339 * the aborted ELS commands.
12340 **/
12341 void
lpfc_ignore_els_cmpl(struct lpfc_hba * phba,struct lpfc_iocbq * cmdiocb,struct lpfc_iocbq * rspiocb)12342 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
12343 struct lpfc_iocbq *rspiocb)
12344 {
12345 struct lpfc_nodelist *ndlp = cmdiocb->ndlp;
12346 IOCB_t *irsp;
12347 LPFC_MBOXQ_t *mbox;
12348 u32 ulp_command, ulp_status, ulp_word4, iotag;
12349
12350 ulp_command = get_job_cmnd(phba, cmdiocb);
12351 ulp_status = get_job_ulpstatus(phba, rspiocb);
12352 ulp_word4 = get_job_word4(phba, rspiocb);
12353
12354 if (phba->sli_rev == LPFC_SLI_REV4) {
12355 iotag = get_wqe_reqtag(cmdiocb);
12356 } else {
12357 irsp = &rspiocb->iocb;
12358 iotag = irsp->ulpIoTag;
12359
12360 /* It is possible a PLOGI_RJT for NPIV ports to get aborted.
12361 * The MBX_REG_LOGIN64 mbox command is freed back to the
12362 * mbox_mem_pool here.
12363 */
12364 if (cmdiocb->context_un.mbox) {
12365 mbox = cmdiocb->context_un.mbox;
12366 lpfc_mbox_rsrc_cleanup(phba, mbox, MBOX_THD_UNLOCKED);
12367 cmdiocb->context_un.mbox = NULL;
12368 }
12369 }
12370
12371 /* ELS cmd tag <ulpIoTag> completes */
12372 lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
12373 "0139 Ignoring ELS cmd code x%x completion Data: "
12374 "x%x x%x x%x x%px\n",
12375 ulp_command, ulp_status, ulp_word4, iotag,
12376 cmdiocb->ndlp);
12377 /*
12378 * Deref the ndlp after free_iocb. sli_release_iocb will access the ndlp
12379 * if exchange is busy.
12380 */
12381 if (ulp_command == CMD_GEN_REQUEST64_CR)
12382 lpfc_ct_free_iocb(phba, cmdiocb);
12383 else
12384 lpfc_els_free_iocb(phba, cmdiocb);
12385
12386 lpfc_nlp_put(ndlp);
12387 }
12388
12389 /**
12390 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb
12391 * @phba: Pointer to HBA context object.
12392 * @pring: Pointer to driver SLI ring object.
12393 * @cmdiocb: Pointer to driver command iocb object.
12394 * @cmpl: completion function.
12395 *
12396 * This function issues an abort iocb for the provided command iocb. In case
12397 * of unloading, the abort iocb will not be issued to commands on the ELS
12398 * ring. Instead, the callback function shall be changed to those commands
12399 * so that nothing happens when them finishes. This function is called with
12400 * hbalock held andno ring_lock held (SLI4). The function returns IOCB_SUCCESS
12401 * when the command iocb is an abort request.
12402 *
12403 **/
12404 int
lpfc_sli_issue_abort_iotag(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * cmdiocb,void * cmpl)12405 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
12406 struct lpfc_iocbq *cmdiocb, void *cmpl)
12407 {
12408 struct lpfc_vport *vport = cmdiocb->vport;
12409 struct lpfc_iocbq *abtsiocbp;
12410 int retval = IOCB_ERROR;
12411 unsigned long iflags;
12412 struct lpfc_nodelist *ndlp = NULL;
12413 u32 ulp_command = get_job_cmnd(phba, cmdiocb);
12414 u16 ulp_context, iotag;
12415 bool ia;
12416
12417 /*
12418 * There are certain command types we don't want to abort. And we
12419 * don't want to abort commands that are already in the process of
12420 * being aborted.
12421 */
12422 if (ulp_command == CMD_ABORT_XRI_WQE ||
12423 ulp_command == CMD_ABORT_XRI_CN ||
12424 ulp_command == CMD_CLOSE_XRI_CN ||
12425 cmdiocb->cmd_flag & LPFC_DRIVER_ABORTED)
12426 return IOCB_ABORTING;
12427
12428 if (!pring) {
12429 if (cmdiocb->cmd_flag & LPFC_IO_FABRIC)
12430 cmdiocb->fabric_cmd_cmpl = lpfc_ignore_els_cmpl;
12431 else
12432 cmdiocb->cmd_cmpl = lpfc_ignore_els_cmpl;
12433 return retval;
12434 }
12435
12436 /*
12437 * If we're unloading, don't abort iocb on the ELS ring, but change
12438 * the callback so that nothing happens when it finishes.
12439 */
12440 if ((vport->load_flag & FC_UNLOADING) &&
12441 pring->ringno == LPFC_ELS_RING) {
12442 if (cmdiocb->cmd_flag & LPFC_IO_FABRIC)
12443 cmdiocb->fabric_cmd_cmpl = lpfc_ignore_els_cmpl;
12444 else
12445 cmdiocb->cmd_cmpl = lpfc_ignore_els_cmpl;
12446 return retval;
12447 }
12448
12449 /* issue ABTS for this IOCB based on iotag */
12450 abtsiocbp = __lpfc_sli_get_iocbq(phba);
12451 if (abtsiocbp == NULL)
12452 return IOCB_NORESOURCE;
12453
12454 /* This signals the response to set the correct status
12455 * before calling the completion handler
12456 */
12457 cmdiocb->cmd_flag |= LPFC_DRIVER_ABORTED;
12458
12459 if (phba->sli_rev == LPFC_SLI_REV4) {
12460 ulp_context = cmdiocb->sli4_xritag;
12461 iotag = abtsiocbp->iotag;
12462 } else {
12463 iotag = cmdiocb->iocb.ulpIoTag;
12464 if (pring->ringno == LPFC_ELS_RING) {
12465 ndlp = cmdiocb->ndlp;
12466 ulp_context = ndlp->nlp_rpi;
12467 } else {
12468 ulp_context = cmdiocb->iocb.ulpContext;
12469 }
12470 }
12471
12472 if (phba->link_state < LPFC_LINK_UP ||
12473 (phba->sli_rev == LPFC_SLI_REV4 &&
12474 phba->sli4_hba.link_state.status == LPFC_FC_LA_TYPE_LINK_DOWN) ||
12475 (phba->link_flag & LS_EXTERNAL_LOOPBACK))
12476 ia = true;
12477 else
12478 ia = false;
12479
12480 lpfc_sli_prep_abort_xri(phba, abtsiocbp, ulp_context, iotag,
12481 cmdiocb->iocb.ulpClass,
12482 LPFC_WQE_CQ_ID_DEFAULT, ia, false);
12483
12484 abtsiocbp->vport = vport;
12485
12486 /* ABTS WQE must go to the same WQ as the WQE to be aborted */
12487 abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx;
12488 if (cmdiocb->cmd_flag & LPFC_IO_FCP)
12489 abtsiocbp->cmd_flag |= (LPFC_IO_FCP | LPFC_USE_FCPWQIDX);
12490
12491 if (cmdiocb->cmd_flag & LPFC_IO_FOF)
12492 abtsiocbp->cmd_flag |= LPFC_IO_FOF;
12493
12494 if (cmpl)
12495 abtsiocbp->cmd_cmpl = cmpl;
12496 else
12497 abtsiocbp->cmd_cmpl = lpfc_sli_abort_els_cmpl;
12498 abtsiocbp->vport = vport;
12499
12500 if (phba->sli_rev == LPFC_SLI_REV4) {
12501 pring = lpfc_sli4_calc_ring(phba, abtsiocbp);
12502 if (unlikely(pring == NULL))
12503 goto abort_iotag_exit;
12504 /* Note: both hbalock and ring_lock need to be set here */
12505 spin_lock_irqsave(&pring->ring_lock, iflags);
12506 retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
12507 abtsiocbp, 0);
12508 spin_unlock_irqrestore(&pring->ring_lock, iflags);
12509 } else {
12510 retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
12511 abtsiocbp, 0);
12512 }
12513
12514 abort_iotag_exit:
12515
12516 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI,
12517 "0339 Abort IO XRI x%x, Original iotag x%x, "
12518 "abort tag x%x Cmdjob : x%px Abortjob : x%px "
12519 "retval x%x\n",
12520 ulp_context, (phba->sli_rev == LPFC_SLI_REV4) ?
12521 cmdiocb->iotag : iotag, iotag, cmdiocb, abtsiocbp,
12522 retval);
12523 if (retval) {
12524 cmdiocb->cmd_flag &= ~LPFC_DRIVER_ABORTED;
12525 __lpfc_sli_release_iocbq(phba, abtsiocbp);
12526 }
12527
12528 /*
12529 * Caller to this routine should check for IOCB_ERROR
12530 * and handle it properly. This routine no longer removes
12531 * iocb off txcmplq and call compl in case of IOCB_ERROR.
12532 */
12533 return retval;
12534 }
12535
12536 /**
12537 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba.
12538 * @phba: pointer to lpfc HBA data structure.
12539 *
12540 * This routine will abort all pending and outstanding iocbs to an HBA.
12541 **/
12542 void
lpfc_sli_hba_iocb_abort(struct lpfc_hba * phba)12543 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba)
12544 {
12545 struct lpfc_sli *psli = &phba->sli;
12546 struct lpfc_sli_ring *pring;
12547 struct lpfc_queue *qp = NULL;
12548 int i;
12549
12550 if (phba->sli_rev != LPFC_SLI_REV4) {
12551 for (i = 0; i < psli->num_rings; i++) {
12552 pring = &psli->sli3_ring[i];
12553 lpfc_sli_abort_iocb_ring(phba, pring);
12554 }
12555 return;
12556 }
12557 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
12558 pring = qp->pring;
12559 if (!pring)
12560 continue;
12561 lpfc_sli_abort_iocb_ring(phba, pring);
12562 }
12563 }
12564
12565 /**
12566 * lpfc_sli_validate_fcp_iocb_for_abort - filter iocbs appropriate for FCP aborts
12567 * @iocbq: Pointer to iocb object.
12568 * @vport: Pointer to driver virtual port object.
12569 *
12570 * This function acts as an iocb filter for functions which abort FCP iocbs.
12571 *
12572 * Return values
12573 * -ENODEV, if a null iocb or vport ptr is encountered
12574 * -EINVAL, if the iocb is not an FCP I/O, not on the TX cmpl queue, premarked as
12575 * driver already started the abort process, or is an abort iocb itself
12576 * 0, passes criteria for aborting the FCP I/O iocb
12577 **/
12578 static int
lpfc_sli_validate_fcp_iocb_for_abort(struct lpfc_iocbq * iocbq,struct lpfc_vport * vport)12579 lpfc_sli_validate_fcp_iocb_for_abort(struct lpfc_iocbq *iocbq,
12580 struct lpfc_vport *vport)
12581 {
12582 u8 ulp_command;
12583
12584 /* No null ptr vports */
12585 if (!iocbq || iocbq->vport != vport)
12586 return -ENODEV;
12587
12588 /* iocb must be for FCP IO, already exists on the TX cmpl queue,
12589 * can't be premarked as driver aborted, nor be an ABORT iocb itself
12590 */
12591 ulp_command = get_job_cmnd(vport->phba, iocbq);
12592 if (!(iocbq->cmd_flag & LPFC_IO_FCP) ||
12593 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ) ||
12594 (iocbq->cmd_flag & LPFC_DRIVER_ABORTED) ||
12595 (ulp_command == CMD_ABORT_XRI_CN ||
12596 ulp_command == CMD_CLOSE_XRI_CN ||
12597 ulp_command == CMD_ABORT_XRI_WQE))
12598 return -EINVAL;
12599
12600 return 0;
12601 }
12602
12603 /**
12604 * lpfc_sli_validate_fcp_iocb - validate commands associated with a SCSI target
12605 * @iocbq: Pointer to driver iocb object.
12606 * @vport: Pointer to driver virtual port object.
12607 * @tgt_id: SCSI ID of the target.
12608 * @lun_id: LUN ID of the scsi device.
12609 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST
12610 *
12611 * This function acts as an iocb filter for validating a lun/SCSI target/SCSI
12612 * host.
12613 *
12614 * It will return
12615 * 0 if the filtering criteria is met for the given iocb and will return
12616 * 1 if the filtering criteria is not met.
12617 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the
12618 * given iocb is for the SCSI device specified by vport, tgt_id and
12619 * lun_id parameter.
12620 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the
12621 * given iocb is for the SCSI target specified by vport and tgt_id
12622 * parameters.
12623 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the
12624 * given iocb is for the SCSI host associated with the given vport.
12625 * This function is called with no locks held.
12626 **/
12627 static int
lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq * iocbq,struct lpfc_vport * vport,uint16_t tgt_id,uint64_t lun_id,lpfc_ctx_cmd ctx_cmd)12628 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport,
12629 uint16_t tgt_id, uint64_t lun_id,
12630 lpfc_ctx_cmd ctx_cmd)
12631 {
12632 struct lpfc_io_buf *lpfc_cmd;
12633 int rc = 1;
12634
12635 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq);
12636
12637 if (lpfc_cmd->pCmd == NULL)
12638 return rc;
12639
12640 switch (ctx_cmd) {
12641 case LPFC_CTX_LUN:
12642 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) &&
12643 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) &&
12644 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id))
12645 rc = 0;
12646 break;
12647 case LPFC_CTX_TGT:
12648 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) &&
12649 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id))
12650 rc = 0;
12651 break;
12652 case LPFC_CTX_HOST:
12653 rc = 0;
12654 break;
12655 default:
12656 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n",
12657 __func__, ctx_cmd);
12658 break;
12659 }
12660
12661 return rc;
12662 }
12663
12664 /**
12665 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending
12666 * @vport: Pointer to virtual port.
12667 * @tgt_id: SCSI ID of the target.
12668 * @lun_id: LUN ID of the scsi device.
12669 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
12670 *
12671 * This function returns number of FCP commands pending for the vport.
12672 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP
12673 * commands pending on the vport associated with SCSI device specified
12674 * by tgt_id and lun_id parameters.
12675 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP
12676 * commands pending on the vport associated with SCSI target specified
12677 * by tgt_id parameter.
12678 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP
12679 * commands pending on the vport.
12680 * This function returns the number of iocbs which satisfy the filter.
12681 * This function is called without any lock held.
12682 **/
12683 int
lpfc_sli_sum_iocb(struct lpfc_vport * vport,uint16_t tgt_id,uint64_t lun_id,lpfc_ctx_cmd ctx_cmd)12684 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id,
12685 lpfc_ctx_cmd ctx_cmd)
12686 {
12687 struct lpfc_hba *phba = vport->phba;
12688 struct lpfc_iocbq *iocbq;
12689 int sum, i;
12690 unsigned long iflags;
12691 u8 ulp_command;
12692
12693 spin_lock_irqsave(&phba->hbalock, iflags);
12694 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) {
12695 iocbq = phba->sli.iocbq_lookup[i];
12696
12697 if (!iocbq || iocbq->vport != vport)
12698 continue;
12699 if (!(iocbq->cmd_flag & LPFC_IO_FCP) ||
12700 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ))
12701 continue;
12702
12703 /* Include counting outstanding aborts */
12704 ulp_command = get_job_cmnd(phba, iocbq);
12705 if (ulp_command == CMD_ABORT_XRI_CN ||
12706 ulp_command == CMD_CLOSE_XRI_CN ||
12707 ulp_command == CMD_ABORT_XRI_WQE) {
12708 sum++;
12709 continue;
12710 }
12711
12712 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
12713 ctx_cmd) == 0)
12714 sum++;
12715 }
12716 spin_unlock_irqrestore(&phba->hbalock, iflags);
12717
12718 return sum;
12719 }
12720
12721 /**
12722 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs
12723 * @phba: Pointer to HBA context object
12724 * @cmdiocb: Pointer to command iocb object.
12725 * @rspiocb: Pointer to response iocb object.
12726 *
12727 * This function is called when an aborted FCP iocb completes. This
12728 * function is called by the ring event handler with no lock held.
12729 * This function frees the iocb.
12730 **/
12731 void
lpfc_sli_abort_fcp_cmpl(struct lpfc_hba * phba,struct lpfc_iocbq * cmdiocb,struct lpfc_iocbq * rspiocb)12732 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
12733 struct lpfc_iocbq *rspiocb)
12734 {
12735 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
12736 "3096 ABORT_XRI_CX completing on rpi x%x "
12737 "original iotag x%x, abort cmd iotag x%x "
12738 "status 0x%x, reason 0x%x\n",
12739 (phba->sli_rev == LPFC_SLI_REV4) ?
12740 cmdiocb->sli4_xritag :
12741 cmdiocb->iocb.un.acxri.abortContextTag,
12742 get_job_abtsiotag(phba, cmdiocb),
12743 cmdiocb->iotag, get_job_ulpstatus(phba, rspiocb),
12744 get_job_word4(phba, rspiocb));
12745 lpfc_sli_release_iocbq(phba, cmdiocb);
12746 return;
12747 }
12748
12749 /**
12750 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN
12751 * @vport: Pointer to virtual port.
12752 * @tgt_id: SCSI ID of the target.
12753 * @lun_id: LUN ID of the scsi device.
12754 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
12755 *
12756 * This function sends an abort command for every SCSI command
12757 * associated with the given virtual port pending on the ring
12758 * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then
12759 * lpfc_sli_validate_fcp_iocb function. The ordering for validation before
12760 * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort
12761 * followed by lpfc_sli_validate_fcp_iocb.
12762 *
12763 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the
12764 * FCP iocbs associated with lun specified by tgt_id and lun_id
12765 * parameters
12766 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the
12767 * FCP iocbs associated with SCSI target specified by tgt_id parameter.
12768 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all
12769 * FCP iocbs associated with virtual port.
12770 * The pring used for SLI3 is sli3_ring[LPFC_FCP_RING], for SLI4
12771 * lpfc_sli4_calc_ring is used.
12772 * This function returns number of iocbs it failed to abort.
12773 * This function is called with no locks held.
12774 **/
12775 int
lpfc_sli_abort_iocb(struct lpfc_vport * vport,u16 tgt_id,u64 lun_id,lpfc_ctx_cmd abort_cmd)12776 lpfc_sli_abort_iocb(struct lpfc_vport *vport, u16 tgt_id, u64 lun_id,
12777 lpfc_ctx_cmd abort_cmd)
12778 {
12779 struct lpfc_hba *phba = vport->phba;
12780 struct lpfc_sli_ring *pring = NULL;
12781 struct lpfc_iocbq *iocbq;
12782 int errcnt = 0, ret_val = 0;
12783 unsigned long iflags;
12784 int i;
12785
12786 /* all I/Os are in process of being flushed */
12787 if (phba->hba_flag & HBA_IOQ_FLUSH)
12788 return errcnt;
12789
12790 for (i = 1; i <= phba->sli.last_iotag; i++) {
12791 iocbq = phba->sli.iocbq_lookup[i];
12792
12793 if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport))
12794 continue;
12795
12796 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
12797 abort_cmd) != 0)
12798 continue;
12799
12800 spin_lock_irqsave(&phba->hbalock, iflags);
12801 if (phba->sli_rev == LPFC_SLI_REV3) {
12802 pring = &phba->sli.sli3_ring[LPFC_FCP_RING];
12803 } else if (phba->sli_rev == LPFC_SLI_REV4) {
12804 pring = lpfc_sli4_calc_ring(phba, iocbq);
12805 }
12806 ret_val = lpfc_sli_issue_abort_iotag(phba, pring, iocbq,
12807 lpfc_sli_abort_fcp_cmpl);
12808 spin_unlock_irqrestore(&phba->hbalock, iflags);
12809 if (ret_val != IOCB_SUCCESS)
12810 errcnt++;
12811 }
12812
12813 return errcnt;
12814 }
12815
12816 /**
12817 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN
12818 * @vport: Pointer to virtual port.
12819 * @pring: Pointer to driver SLI ring object.
12820 * @tgt_id: SCSI ID of the target.
12821 * @lun_id: LUN ID of the scsi device.
12822 * @cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
12823 *
12824 * This function sends an abort command for every SCSI command
12825 * associated with the given virtual port pending on the ring
12826 * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then
12827 * lpfc_sli_validate_fcp_iocb function. The ordering for validation before
12828 * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort
12829 * followed by lpfc_sli_validate_fcp_iocb.
12830 *
12831 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the
12832 * FCP iocbs associated with lun specified by tgt_id and lun_id
12833 * parameters
12834 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the
12835 * FCP iocbs associated with SCSI target specified by tgt_id parameter.
12836 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all
12837 * FCP iocbs associated with virtual port.
12838 * This function returns number of iocbs it aborted .
12839 * This function is called with no locks held right after a taskmgmt
12840 * command is sent.
12841 **/
12842 int
lpfc_sli_abort_taskmgmt(struct lpfc_vport * vport,struct lpfc_sli_ring * pring,uint16_t tgt_id,uint64_t lun_id,lpfc_ctx_cmd cmd)12843 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring,
12844 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd)
12845 {
12846 struct lpfc_hba *phba = vport->phba;
12847 struct lpfc_io_buf *lpfc_cmd;
12848 struct lpfc_iocbq *abtsiocbq;
12849 struct lpfc_nodelist *ndlp = NULL;
12850 struct lpfc_iocbq *iocbq;
12851 int sum, i, ret_val;
12852 unsigned long iflags;
12853 struct lpfc_sli_ring *pring_s4 = NULL;
12854 u16 ulp_context, iotag, cqid = LPFC_WQE_CQ_ID_DEFAULT;
12855 bool ia;
12856
12857 spin_lock_irqsave(&phba->hbalock, iflags);
12858
12859 /* all I/Os are in process of being flushed */
12860 if (phba->hba_flag & HBA_IOQ_FLUSH) {
12861 spin_unlock_irqrestore(&phba->hbalock, iflags);
12862 return 0;
12863 }
12864 sum = 0;
12865
12866 for (i = 1; i <= phba->sli.last_iotag; i++) {
12867 iocbq = phba->sli.iocbq_lookup[i];
12868
12869 if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport))
12870 continue;
12871
12872 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
12873 cmd) != 0)
12874 continue;
12875
12876 /* Guard against IO completion being called at same time */
12877 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq);
12878 spin_lock(&lpfc_cmd->buf_lock);
12879
12880 if (!lpfc_cmd->pCmd) {
12881 spin_unlock(&lpfc_cmd->buf_lock);
12882 continue;
12883 }
12884
12885 if (phba->sli_rev == LPFC_SLI_REV4) {
12886 pring_s4 =
12887 phba->sli4_hba.hdwq[iocbq->hba_wqidx].io_wq->pring;
12888 if (!pring_s4) {
12889 spin_unlock(&lpfc_cmd->buf_lock);
12890 continue;
12891 }
12892 /* Note: both hbalock and ring_lock must be set here */
12893 spin_lock(&pring_s4->ring_lock);
12894 }
12895
12896 /*
12897 * If the iocbq is already being aborted, don't take a second
12898 * action, but do count it.
12899 */
12900 if ((iocbq->cmd_flag & LPFC_DRIVER_ABORTED) ||
12901 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ)) {
12902 if (phba->sli_rev == LPFC_SLI_REV4)
12903 spin_unlock(&pring_s4->ring_lock);
12904 spin_unlock(&lpfc_cmd->buf_lock);
12905 continue;
12906 }
12907
12908 /* issue ABTS for this IOCB based on iotag */
12909 abtsiocbq = __lpfc_sli_get_iocbq(phba);
12910 if (!abtsiocbq) {
12911 if (phba->sli_rev == LPFC_SLI_REV4)
12912 spin_unlock(&pring_s4->ring_lock);
12913 spin_unlock(&lpfc_cmd->buf_lock);
12914 continue;
12915 }
12916
12917 if (phba->sli_rev == LPFC_SLI_REV4) {
12918 iotag = abtsiocbq->iotag;
12919 ulp_context = iocbq->sli4_xritag;
12920 cqid = lpfc_cmd->hdwq->io_cq_map;
12921 } else {
12922 iotag = iocbq->iocb.ulpIoTag;
12923 if (pring->ringno == LPFC_ELS_RING) {
12924 ndlp = iocbq->ndlp;
12925 ulp_context = ndlp->nlp_rpi;
12926 } else {
12927 ulp_context = iocbq->iocb.ulpContext;
12928 }
12929 }
12930
12931 ndlp = lpfc_cmd->rdata->pnode;
12932
12933 if (lpfc_is_link_up(phba) &&
12934 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE) &&
12935 !(phba->link_flag & LS_EXTERNAL_LOOPBACK))
12936 ia = false;
12937 else
12938 ia = true;
12939
12940 lpfc_sli_prep_abort_xri(phba, abtsiocbq, ulp_context, iotag,
12941 iocbq->iocb.ulpClass, cqid,
12942 ia, false);
12943
12944 abtsiocbq->vport = vport;
12945
12946 /* ABTS WQE must go to the same WQ as the WQE to be aborted */
12947 abtsiocbq->hba_wqidx = iocbq->hba_wqidx;
12948 if (iocbq->cmd_flag & LPFC_IO_FCP)
12949 abtsiocbq->cmd_flag |= LPFC_USE_FCPWQIDX;
12950 if (iocbq->cmd_flag & LPFC_IO_FOF)
12951 abtsiocbq->cmd_flag |= LPFC_IO_FOF;
12952
12953 /* Setup callback routine and issue the command. */
12954 abtsiocbq->cmd_cmpl = lpfc_sli_abort_fcp_cmpl;
12955
12956 /*
12957 * Indicate the IO is being aborted by the driver and set
12958 * the caller's flag into the aborted IO.
12959 */
12960 iocbq->cmd_flag |= LPFC_DRIVER_ABORTED;
12961
12962 if (phba->sli_rev == LPFC_SLI_REV4) {
12963 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno,
12964 abtsiocbq, 0);
12965 spin_unlock(&pring_s4->ring_lock);
12966 } else {
12967 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno,
12968 abtsiocbq, 0);
12969 }
12970
12971 spin_unlock(&lpfc_cmd->buf_lock);
12972
12973 if (ret_val == IOCB_ERROR)
12974 __lpfc_sli_release_iocbq(phba, abtsiocbq);
12975 else
12976 sum++;
12977 }
12978 spin_unlock_irqrestore(&phba->hbalock, iflags);
12979 return sum;
12980 }
12981
12982 /**
12983 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler
12984 * @phba: Pointer to HBA context object.
12985 * @cmdiocbq: Pointer to command iocb.
12986 * @rspiocbq: Pointer to response iocb.
12987 *
12988 * This function is the completion handler for iocbs issued using
12989 * lpfc_sli_issue_iocb_wait function. This function is called by the
12990 * ring event handler function without any lock held. This function
12991 * can be called from both worker thread context and interrupt
12992 * context. This function also can be called from other thread which
12993 * cleans up the SLI layer objects.
12994 * This function copy the contents of the response iocb to the
12995 * response iocb memory object provided by the caller of
12996 * lpfc_sli_issue_iocb_wait and then wakes up the thread which
12997 * sleeps for the iocb completion.
12998 **/
12999 static void
lpfc_sli_wake_iocb_wait(struct lpfc_hba * phba,struct lpfc_iocbq * cmdiocbq,struct lpfc_iocbq * rspiocbq)13000 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba,
13001 struct lpfc_iocbq *cmdiocbq,
13002 struct lpfc_iocbq *rspiocbq)
13003 {
13004 wait_queue_head_t *pdone_q;
13005 unsigned long iflags;
13006 struct lpfc_io_buf *lpfc_cmd;
13007 size_t offset = offsetof(struct lpfc_iocbq, wqe);
13008
13009 spin_lock_irqsave(&phba->hbalock, iflags);
13010 if (cmdiocbq->cmd_flag & LPFC_IO_WAKE_TMO) {
13011
13012 /*
13013 * A time out has occurred for the iocb. If a time out
13014 * completion handler has been supplied, call it. Otherwise,
13015 * just free the iocbq.
13016 */
13017
13018 spin_unlock_irqrestore(&phba->hbalock, iflags);
13019 cmdiocbq->cmd_cmpl = cmdiocbq->wait_cmd_cmpl;
13020 cmdiocbq->wait_cmd_cmpl = NULL;
13021 if (cmdiocbq->cmd_cmpl)
13022 cmdiocbq->cmd_cmpl(phba, cmdiocbq, NULL);
13023 else
13024 lpfc_sli_release_iocbq(phba, cmdiocbq);
13025 return;
13026 }
13027
13028 /* Copy the contents of the local rspiocb into the caller's buffer. */
13029 cmdiocbq->cmd_flag |= LPFC_IO_WAKE;
13030 if (cmdiocbq->rsp_iocb && rspiocbq)
13031 memcpy((char *)cmdiocbq->rsp_iocb + offset,
13032 (char *)rspiocbq + offset, sizeof(*rspiocbq) - offset);
13033
13034 /* Set the exchange busy flag for task management commands */
13035 if ((cmdiocbq->cmd_flag & LPFC_IO_FCP) &&
13036 !(cmdiocbq->cmd_flag & LPFC_IO_LIBDFC)) {
13037 lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf,
13038 cur_iocbq);
13039 if (rspiocbq && (rspiocbq->cmd_flag & LPFC_EXCHANGE_BUSY))
13040 lpfc_cmd->flags |= LPFC_SBUF_XBUSY;
13041 else
13042 lpfc_cmd->flags &= ~LPFC_SBUF_XBUSY;
13043 }
13044
13045 pdone_q = cmdiocbq->context_un.wait_queue;
13046 if (pdone_q)
13047 wake_up(pdone_q);
13048 spin_unlock_irqrestore(&phba->hbalock, iflags);
13049 return;
13050 }
13051
13052 /**
13053 * lpfc_chk_iocb_flg - Test IOCB flag with lock held.
13054 * @phba: Pointer to HBA context object..
13055 * @piocbq: Pointer to command iocb.
13056 * @flag: Flag to test.
13057 *
13058 * This routine grabs the hbalock and then test the cmd_flag to
13059 * see if the passed in flag is set.
13060 * Returns:
13061 * 1 if flag is set.
13062 * 0 if flag is not set.
13063 **/
13064 static int
lpfc_chk_iocb_flg(struct lpfc_hba * phba,struct lpfc_iocbq * piocbq,uint32_t flag)13065 lpfc_chk_iocb_flg(struct lpfc_hba *phba,
13066 struct lpfc_iocbq *piocbq, uint32_t flag)
13067 {
13068 unsigned long iflags;
13069 int ret;
13070
13071 spin_lock_irqsave(&phba->hbalock, iflags);
13072 ret = piocbq->cmd_flag & flag;
13073 spin_unlock_irqrestore(&phba->hbalock, iflags);
13074 return ret;
13075
13076 }
13077
13078 /**
13079 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands
13080 * @phba: Pointer to HBA context object..
13081 * @ring_number: Ring number
13082 * @piocb: Pointer to command iocb.
13083 * @prspiocbq: Pointer to response iocb.
13084 * @timeout: Timeout in number of seconds.
13085 *
13086 * This function issues the iocb to firmware and waits for the
13087 * iocb to complete. The cmd_cmpl field of the shall be used
13088 * to handle iocbs which time out. If the field is NULL, the
13089 * function shall free the iocbq structure. If more clean up is
13090 * needed, the caller is expected to provide a completion function
13091 * that will provide the needed clean up. If the iocb command is
13092 * not completed within timeout seconds, the function will either
13093 * free the iocbq structure (if cmd_cmpl == NULL) or execute the
13094 * completion function set in the cmd_cmpl field and then return
13095 * a status of IOCB_TIMEDOUT. The caller should not free the iocb
13096 * resources if this function returns IOCB_TIMEDOUT.
13097 * The function waits for the iocb completion using an
13098 * non-interruptible wait.
13099 * This function will sleep while waiting for iocb completion.
13100 * So, this function should not be called from any context which
13101 * does not allow sleeping. Due to the same reason, this function
13102 * cannot be called with interrupt disabled.
13103 * This function assumes that the iocb completions occur while
13104 * this function sleep. So, this function cannot be called from
13105 * the thread which process iocb completion for this ring.
13106 * This function clears the cmd_flag of the iocb object before
13107 * issuing the iocb and the iocb completion handler sets this
13108 * flag and wakes this thread when the iocb completes.
13109 * The contents of the response iocb will be copied to prspiocbq
13110 * by the completion handler when the command completes.
13111 * This function returns IOCB_SUCCESS when success.
13112 * This function is called with no lock held.
13113 **/
13114 int
lpfc_sli_issue_iocb_wait(struct lpfc_hba * phba,uint32_t ring_number,struct lpfc_iocbq * piocb,struct lpfc_iocbq * prspiocbq,uint32_t timeout)13115 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba,
13116 uint32_t ring_number,
13117 struct lpfc_iocbq *piocb,
13118 struct lpfc_iocbq *prspiocbq,
13119 uint32_t timeout)
13120 {
13121 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q);
13122 long timeleft, timeout_req = 0;
13123 int retval = IOCB_SUCCESS;
13124 uint32_t creg_val;
13125 struct lpfc_iocbq *iocb;
13126 int txq_cnt = 0;
13127 int txcmplq_cnt = 0;
13128 struct lpfc_sli_ring *pring;
13129 unsigned long iflags;
13130 bool iocb_completed = true;
13131
13132 if (phba->sli_rev >= LPFC_SLI_REV4) {
13133 lpfc_sli_prep_wqe(phba, piocb);
13134
13135 pring = lpfc_sli4_calc_ring(phba, piocb);
13136 } else
13137 pring = &phba->sli.sli3_ring[ring_number];
13138 /*
13139 * If the caller has provided a response iocbq buffer, then rsp_iocb
13140 * is NULL or its an error.
13141 */
13142 if (prspiocbq) {
13143 if (piocb->rsp_iocb)
13144 return IOCB_ERROR;
13145 piocb->rsp_iocb = prspiocbq;
13146 }
13147
13148 piocb->wait_cmd_cmpl = piocb->cmd_cmpl;
13149 piocb->cmd_cmpl = lpfc_sli_wake_iocb_wait;
13150 piocb->context_un.wait_queue = &done_q;
13151 piocb->cmd_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO);
13152
13153 if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
13154 if (lpfc_readl(phba->HCregaddr, &creg_val))
13155 return IOCB_ERROR;
13156 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING);
13157 writel(creg_val, phba->HCregaddr);
13158 readl(phba->HCregaddr); /* flush */
13159 }
13160
13161 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb,
13162 SLI_IOCB_RET_IOCB);
13163 if (retval == IOCB_SUCCESS) {
13164 timeout_req = msecs_to_jiffies(timeout * 1000);
13165 timeleft = wait_event_timeout(done_q,
13166 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE),
13167 timeout_req);
13168 spin_lock_irqsave(&phba->hbalock, iflags);
13169 if (!(piocb->cmd_flag & LPFC_IO_WAKE)) {
13170
13171 /*
13172 * IOCB timed out. Inform the wake iocb wait
13173 * completion function and set local status
13174 */
13175
13176 iocb_completed = false;
13177 piocb->cmd_flag |= LPFC_IO_WAKE_TMO;
13178 }
13179 spin_unlock_irqrestore(&phba->hbalock, iflags);
13180 if (iocb_completed) {
13181 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13182 "0331 IOCB wake signaled\n");
13183 /* Note: we are not indicating if the IOCB has a success
13184 * status or not - that's for the caller to check.
13185 * IOCB_SUCCESS means just that the command was sent and
13186 * completed. Not that it completed successfully.
13187 * */
13188 } else if (timeleft == 0) {
13189 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13190 "0338 IOCB wait timeout error - no "
13191 "wake response Data x%x\n", timeout);
13192 retval = IOCB_TIMEDOUT;
13193 } else {
13194 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13195 "0330 IOCB wake NOT set, "
13196 "Data x%x x%lx\n",
13197 timeout, (timeleft / jiffies));
13198 retval = IOCB_TIMEDOUT;
13199 }
13200 } else if (retval == IOCB_BUSY) {
13201 if (phba->cfg_log_verbose & LOG_SLI) {
13202 list_for_each_entry(iocb, &pring->txq, list) {
13203 txq_cnt++;
13204 }
13205 list_for_each_entry(iocb, &pring->txcmplq, list) {
13206 txcmplq_cnt++;
13207 }
13208 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13209 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n",
13210 phba->iocb_cnt, txq_cnt, txcmplq_cnt);
13211 }
13212 return retval;
13213 } else {
13214 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13215 "0332 IOCB wait issue failed, Data x%x\n",
13216 retval);
13217 retval = IOCB_ERROR;
13218 }
13219
13220 if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
13221 if (lpfc_readl(phba->HCregaddr, &creg_val))
13222 return IOCB_ERROR;
13223 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING);
13224 writel(creg_val, phba->HCregaddr);
13225 readl(phba->HCregaddr); /* flush */
13226 }
13227
13228 if (prspiocbq)
13229 piocb->rsp_iocb = NULL;
13230
13231 piocb->context_un.wait_queue = NULL;
13232 piocb->cmd_cmpl = NULL;
13233 return retval;
13234 }
13235
13236 /**
13237 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox
13238 * @phba: Pointer to HBA context object.
13239 * @pmboxq: Pointer to driver mailbox object.
13240 * @timeout: Timeout in number of seconds.
13241 *
13242 * This function issues the mailbox to firmware and waits for the
13243 * mailbox command to complete. If the mailbox command is not
13244 * completed within timeout seconds, it returns MBX_TIMEOUT.
13245 * The function waits for the mailbox completion using an
13246 * interruptible wait. If the thread is woken up due to a
13247 * signal, MBX_TIMEOUT error is returned to the caller. Caller
13248 * should not free the mailbox resources, if this function returns
13249 * MBX_TIMEOUT.
13250 * This function will sleep while waiting for mailbox completion.
13251 * So, this function should not be called from any context which
13252 * does not allow sleeping. Due to the same reason, this function
13253 * cannot be called with interrupt disabled.
13254 * This function assumes that the mailbox completion occurs while
13255 * this function sleep. So, this function cannot be called from
13256 * the worker thread which processes mailbox completion.
13257 * This function is called in the context of HBA management
13258 * applications.
13259 * This function returns MBX_SUCCESS when successful.
13260 * This function is called with no lock held.
13261 **/
13262 int
lpfc_sli_issue_mbox_wait(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmboxq,uint32_t timeout)13263 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq,
13264 uint32_t timeout)
13265 {
13266 struct completion mbox_done;
13267 int retval;
13268 unsigned long flag;
13269
13270 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE;
13271 /* setup wake call as IOCB callback */
13272 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait;
13273
13274 /* setup context3 field to pass wait_queue pointer to wake function */
13275 init_completion(&mbox_done);
13276 pmboxq->context3 = &mbox_done;
13277 /* now issue the command */
13278 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT);
13279 if (retval == MBX_BUSY || retval == MBX_SUCCESS) {
13280 wait_for_completion_timeout(&mbox_done,
13281 msecs_to_jiffies(timeout * 1000));
13282
13283 spin_lock_irqsave(&phba->hbalock, flag);
13284 pmboxq->context3 = NULL;
13285 /*
13286 * if LPFC_MBX_WAKE flag is set the mailbox is completed
13287 * else do not free the resources.
13288 */
13289 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) {
13290 retval = MBX_SUCCESS;
13291 } else {
13292 retval = MBX_TIMEOUT;
13293 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
13294 }
13295 spin_unlock_irqrestore(&phba->hbalock, flag);
13296 }
13297 return retval;
13298 }
13299
13300 /**
13301 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system
13302 * @phba: Pointer to HBA context.
13303 * @mbx_action: Mailbox shutdown options.
13304 *
13305 * This function is called to shutdown the driver's mailbox sub-system.
13306 * It first marks the mailbox sub-system is in a block state to prevent
13307 * the asynchronous mailbox command from issued off the pending mailbox
13308 * command queue. If the mailbox command sub-system shutdown is due to
13309 * HBA error conditions such as EEH or ERATT, this routine shall invoke
13310 * the mailbox sub-system flush routine to forcefully bring down the
13311 * mailbox sub-system. Otherwise, if it is due to normal condition (such
13312 * as with offline or HBA function reset), this routine will wait for the
13313 * outstanding mailbox command to complete before invoking the mailbox
13314 * sub-system flush routine to gracefully bring down mailbox sub-system.
13315 **/
13316 void
lpfc_sli_mbox_sys_shutdown(struct lpfc_hba * phba,int mbx_action)13317 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action)
13318 {
13319 struct lpfc_sli *psli = &phba->sli;
13320 unsigned long timeout;
13321
13322 if (mbx_action == LPFC_MBX_NO_WAIT) {
13323 /* delay 100ms for port state */
13324 msleep(100);
13325 lpfc_sli_mbox_sys_flush(phba);
13326 return;
13327 }
13328 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies;
13329
13330 /* Disable softirqs, including timers from obtaining phba->hbalock */
13331 local_bh_disable();
13332
13333 spin_lock_irq(&phba->hbalock);
13334 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
13335
13336 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
13337 /* Determine how long we might wait for the active mailbox
13338 * command to be gracefully completed by firmware.
13339 */
13340 if (phba->sli.mbox_active)
13341 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
13342 phba->sli.mbox_active) *
13343 1000) + jiffies;
13344 spin_unlock_irq(&phba->hbalock);
13345
13346 /* Enable softirqs again, done with phba->hbalock */
13347 local_bh_enable();
13348
13349 while (phba->sli.mbox_active) {
13350 /* Check active mailbox complete status every 2ms */
13351 msleep(2);
13352 if (time_after(jiffies, timeout))
13353 /* Timeout, let the mailbox flush routine to
13354 * forcefully release active mailbox command
13355 */
13356 break;
13357 }
13358 } else {
13359 spin_unlock_irq(&phba->hbalock);
13360
13361 /* Enable softirqs again, done with phba->hbalock */
13362 local_bh_enable();
13363 }
13364
13365 lpfc_sli_mbox_sys_flush(phba);
13366 }
13367
13368 /**
13369 * lpfc_sli_eratt_read - read sli-3 error attention events
13370 * @phba: Pointer to HBA context.
13371 *
13372 * This function is called to read the SLI3 device error attention registers
13373 * for possible error attention events. The caller must hold the hostlock
13374 * with spin_lock_irq().
13375 *
13376 * This function returns 1 when there is Error Attention in the Host Attention
13377 * Register and returns 0 otherwise.
13378 **/
13379 static int
lpfc_sli_eratt_read(struct lpfc_hba * phba)13380 lpfc_sli_eratt_read(struct lpfc_hba *phba)
13381 {
13382 uint32_t ha_copy;
13383
13384 /* Read chip Host Attention (HA) register */
13385 if (lpfc_readl(phba->HAregaddr, &ha_copy))
13386 goto unplug_err;
13387
13388 if (ha_copy & HA_ERATT) {
13389 /* Read host status register to retrieve error event */
13390 if (lpfc_sli_read_hs(phba))
13391 goto unplug_err;
13392
13393 /* Check if there is a deferred error condition is active */
13394 if ((HS_FFER1 & phba->work_hs) &&
13395 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
13396 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) {
13397 phba->hba_flag |= DEFER_ERATT;
13398 /* Clear all interrupt enable conditions */
13399 writel(0, phba->HCregaddr);
13400 readl(phba->HCregaddr);
13401 }
13402
13403 /* Set the driver HA work bitmap */
13404 phba->work_ha |= HA_ERATT;
13405 /* Indicate polling handles this ERATT */
13406 phba->hba_flag |= HBA_ERATT_HANDLED;
13407 return 1;
13408 }
13409 return 0;
13410
13411 unplug_err:
13412 /* Set the driver HS work bitmap */
13413 phba->work_hs |= UNPLUG_ERR;
13414 /* Set the driver HA work bitmap */
13415 phba->work_ha |= HA_ERATT;
13416 /* Indicate polling handles this ERATT */
13417 phba->hba_flag |= HBA_ERATT_HANDLED;
13418 return 1;
13419 }
13420
13421 /**
13422 * lpfc_sli4_eratt_read - read sli-4 error attention events
13423 * @phba: Pointer to HBA context.
13424 *
13425 * This function is called to read the SLI4 device error attention registers
13426 * for possible error attention events. The caller must hold the hostlock
13427 * with spin_lock_irq().
13428 *
13429 * This function returns 1 when there is Error Attention in the Host Attention
13430 * Register and returns 0 otherwise.
13431 **/
13432 static int
lpfc_sli4_eratt_read(struct lpfc_hba * phba)13433 lpfc_sli4_eratt_read(struct lpfc_hba *phba)
13434 {
13435 uint32_t uerr_sta_hi, uerr_sta_lo;
13436 uint32_t if_type, portsmphr;
13437 struct lpfc_register portstat_reg;
13438 u32 logmask;
13439
13440 /*
13441 * For now, use the SLI4 device internal unrecoverable error
13442 * registers for error attention. This can be changed later.
13443 */
13444 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
13445 switch (if_type) {
13446 case LPFC_SLI_INTF_IF_TYPE_0:
13447 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr,
13448 &uerr_sta_lo) ||
13449 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr,
13450 &uerr_sta_hi)) {
13451 phba->work_hs |= UNPLUG_ERR;
13452 phba->work_ha |= HA_ERATT;
13453 phba->hba_flag |= HBA_ERATT_HANDLED;
13454 return 1;
13455 }
13456 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) ||
13457 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) {
13458 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13459 "1423 HBA Unrecoverable error: "
13460 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, "
13461 "ue_mask_lo_reg=0x%x, "
13462 "ue_mask_hi_reg=0x%x\n",
13463 uerr_sta_lo, uerr_sta_hi,
13464 phba->sli4_hba.ue_mask_lo,
13465 phba->sli4_hba.ue_mask_hi);
13466 phba->work_status[0] = uerr_sta_lo;
13467 phba->work_status[1] = uerr_sta_hi;
13468 phba->work_ha |= HA_ERATT;
13469 phba->hba_flag |= HBA_ERATT_HANDLED;
13470 return 1;
13471 }
13472 break;
13473 case LPFC_SLI_INTF_IF_TYPE_2:
13474 case LPFC_SLI_INTF_IF_TYPE_6:
13475 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
13476 &portstat_reg.word0) ||
13477 lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
13478 &portsmphr)){
13479 phba->work_hs |= UNPLUG_ERR;
13480 phba->work_ha |= HA_ERATT;
13481 phba->hba_flag |= HBA_ERATT_HANDLED;
13482 return 1;
13483 }
13484 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) {
13485 phba->work_status[0] =
13486 readl(phba->sli4_hba.u.if_type2.ERR1regaddr);
13487 phba->work_status[1] =
13488 readl(phba->sli4_hba.u.if_type2.ERR2regaddr);
13489 logmask = LOG_TRACE_EVENT;
13490 if (phba->work_status[0] ==
13491 SLIPORT_ERR1_REG_ERR_CODE_2 &&
13492 phba->work_status[1] == SLIPORT_ERR2_REG_FW_RESTART)
13493 logmask = LOG_SLI;
13494 lpfc_printf_log(phba, KERN_ERR, logmask,
13495 "2885 Port Status Event: "
13496 "port status reg 0x%x, "
13497 "port smphr reg 0x%x, "
13498 "error 1=0x%x, error 2=0x%x\n",
13499 portstat_reg.word0,
13500 portsmphr,
13501 phba->work_status[0],
13502 phba->work_status[1]);
13503 phba->work_ha |= HA_ERATT;
13504 phba->hba_flag |= HBA_ERATT_HANDLED;
13505 return 1;
13506 }
13507 break;
13508 case LPFC_SLI_INTF_IF_TYPE_1:
13509 default:
13510 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13511 "2886 HBA Error Attention on unsupported "
13512 "if type %d.", if_type);
13513 return 1;
13514 }
13515
13516 return 0;
13517 }
13518
13519 /**
13520 * lpfc_sli_check_eratt - check error attention events
13521 * @phba: Pointer to HBA context.
13522 *
13523 * This function is called from timer soft interrupt context to check HBA's
13524 * error attention register bit for error attention events.
13525 *
13526 * This function returns 1 when there is Error Attention in the Host Attention
13527 * Register and returns 0 otherwise.
13528 **/
13529 int
lpfc_sli_check_eratt(struct lpfc_hba * phba)13530 lpfc_sli_check_eratt(struct lpfc_hba *phba)
13531 {
13532 uint32_t ha_copy;
13533
13534 /* If somebody is waiting to handle an eratt, don't process it
13535 * here. The brdkill function will do this.
13536 */
13537 if (phba->link_flag & LS_IGNORE_ERATT)
13538 return 0;
13539
13540 /* Check if interrupt handler handles this ERATT */
13541 spin_lock_irq(&phba->hbalock);
13542 if (phba->hba_flag & HBA_ERATT_HANDLED) {
13543 /* Interrupt handler has handled ERATT */
13544 spin_unlock_irq(&phba->hbalock);
13545 return 0;
13546 }
13547
13548 /*
13549 * If there is deferred error attention, do not check for error
13550 * attention
13551 */
13552 if (unlikely(phba->hba_flag & DEFER_ERATT)) {
13553 spin_unlock_irq(&phba->hbalock);
13554 return 0;
13555 }
13556
13557 /* If PCI channel is offline, don't process it */
13558 if (unlikely(pci_channel_offline(phba->pcidev))) {
13559 spin_unlock_irq(&phba->hbalock);
13560 return 0;
13561 }
13562
13563 switch (phba->sli_rev) {
13564 case LPFC_SLI_REV2:
13565 case LPFC_SLI_REV3:
13566 /* Read chip Host Attention (HA) register */
13567 ha_copy = lpfc_sli_eratt_read(phba);
13568 break;
13569 case LPFC_SLI_REV4:
13570 /* Read device Uncoverable Error (UERR) registers */
13571 ha_copy = lpfc_sli4_eratt_read(phba);
13572 break;
13573 default:
13574 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13575 "0299 Invalid SLI revision (%d)\n",
13576 phba->sli_rev);
13577 ha_copy = 0;
13578 break;
13579 }
13580 spin_unlock_irq(&phba->hbalock);
13581
13582 return ha_copy;
13583 }
13584
13585 /**
13586 * lpfc_intr_state_check - Check device state for interrupt handling
13587 * @phba: Pointer to HBA context.
13588 *
13589 * This inline routine checks whether a device or its PCI slot is in a state
13590 * that the interrupt should be handled.
13591 *
13592 * This function returns 0 if the device or the PCI slot is in a state that
13593 * interrupt should be handled, otherwise -EIO.
13594 */
13595 static inline int
lpfc_intr_state_check(struct lpfc_hba * phba)13596 lpfc_intr_state_check(struct lpfc_hba *phba)
13597 {
13598 /* If the pci channel is offline, ignore all the interrupts */
13599 if (unlikely(pci_channel_offline(phba->pcidev)))
13600 return -EIO;
13601
13602 /* Update device level interrupt statistics */
13603 phba->sli.slistat.sli_intr++;
13604
13605 /* Ignore all interrupts during initialization. */
13606 if (unlikely(phba->link_state < LPFC_LINK_DOWN))
13607 return -EIO;
13608
13609 return 0;
13610 }
13611
13612 /**
13613 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device
13614 * @irq: Interrupt number.
13615 * @dev_id: The device context pointer.
13616 *
13617 * This function is directly called from the PCI layer as an interrupt
13618 * service routine when device with SLI-3 interface spec is enabled with
13619 * MSI-X multi-message interrupt mode and there are slow-path events in
13620 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ
13621 * interrupt mode, this function is called as part of the device-level
13622 * interrupt handler. When the PCI slot is in error recovery or the HBA
13623 * is undergoing initialization, the interrupt handler will not process
13624 * the interrupt. The link attention and ELS ring attention events are
13625 * handled by the worker thread. The interrupt handler signals the worker
13626 * thread and returns for these events. This function is called without
13627 * any lock held. It gets the hbalock to access and update SLI data
13628 * structures.
13629 *
13630 * This function returns IRQ_HANDLED when interrupt is handled else it
13631 * returns IRQ_NONE.
13632 **/
13633 irqreturn_t
lpfc_sli_sp_intr_handler(int irq,void * dev_id)13634 lpfc_sli_sp_intr_handler(int irq, void *dev_id)
13635 {
13636 struct lpfc_hba *phba;
13637 uint32_t ha_copy, hc_copy;
13638 uint32_t work_ha_copy;
13639 unsigned long status;
13640 unsigned long iflag;
13641 uint32_t control;
13642
13643 MAILBOX_t *mbox, *pmbox;
13644 struct lpfc_vport *vport;
13645 struct lpfc_nodelist *ndlp;
13646 struct lpfc_dmabuf *mp;
13647 LPFC_MBOXQ_t *pmb;
13648 int rc;
13649
13650 /*
13651 * Get the driver's phba structure from the dev_id and
13652 * assume the HBA is not interrupting.
13653 */
13654 phba = (struct lpfc_hba *)dev_id;
13655
13656 if (unlikely(!phba))
13657 return IRQ_NONE;
13658
13659 /*
13660 * Stuff needs to be attented to when this function is invoked as an
13661 * individual interrupt handler in MSI-X multi-message interrupt mode
13662 */
13663 if (phba->intr_type == MSIX) {
13664 /* Check device state for handling interrupt */
13665 if (lpfc_intr_state_check(phba))
13666 return IRQ_NONE;
13667 /* Need to read HA REG for slow-path events */
13668 spin_lock_irqsave(&phba->hbalock, iflag);
13669 if (lpfc_readl(phba->HAregaddr, &ha_copy))
13670 goto unplug_error;
13671 /* If somebody is waiting to handle an eratt don't process it
13672 * here. The brdkill function will do this.
13673 */
13674 if (phba->link_flag & LS_IGNORE_ERATT)
13675 ha_copy &= ~HA_ERATT;
13676 /* Check the need for handling ERATT in interrupt handler */
13677 if (ha_copy & HA_ERATT) {
13678 if (phba->hba_flag & HBA_ERATT_HANDLED)
13679 /* ERATT polling has handled ERATT */
13680 ha_copy &= ~HA_ERATT;
13681 else
13682 /* Indicate interrupt handler handles ERATT */
13683 phba->hba_flag |= HBA_ERATT_HANDLED;
13684 }
13685
13686 /*
13687 * If there is deferred error attention, do not check for any
13688 * interrupt.
13689 */
13690 if (unlikely(phba->hba_flag & DEFER_ERATT)) {
13691 spin_unlock_irqrestore(&phba->hbalock, iflag);
13692 return IRQ_NONE;
13693 }
13694
13695 /* Clear up only attention source related to slow-path */
13696 if (lpfc_readl(phba->HCregaddr, &hc_copy))
13697 goto unplug_error;
13698
13699 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA |
13700 HC_LAINT_ENA | HC_ERINT_ENA),
13701 phba->HCregaddr);
13702 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)),
13703 phba->HAregaddr);
13704 writel(hc_copy, phba->HCregaddr);
13705 readl(phba->HAregaddr); /* flush */
13706 spin_unlock_irqrestore(&phba->hbalock, iflag);
13707 } else
13708 ha_copy = phba->ha_copy;
13709
13710 work_ha_copy = ha_copy & phba->work_ha_mask;
13711
13712 if (work_ha_copy) {
13713 if (work_ha_copy & HA_LATT) {
13714 if (phba->sli.sli_flag & LPFC_PROCESS_LA) {
13715 /*
13716 * Turn off Link Attention interrupts
13717 * until CLEAR_LA done
13718 */
13719 spin_lock_irqsave(&phba->hbalock, iflag);
13720 phba->sli.sli_flag &= ~LPFC_PROCESS_LA;
13721 if (lpfc_readl(phba->HCregaddr, &control))
13722 goto unplug_error;
13723 control &= ~HC_LAINT_ENA;
13724 writel(control, phba->HCregaddr);
13725 readl(phba->HCregaddr); /* flush */
13726 spin_unlock_irqrestore(&phba->hbalock, iflag);
13727 }
13728 else
13729 work_ha_copy &= ~HA_LATT;
13730 }
13731
13732 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) {
13733 /*
13734 * Turn off Slow Rings interrupts, LPFC_ELS_RING is
13735 * the only slow ring.
13736 */
13737 status = (work_ha_copy &
13738 (HA_RXMASK << (4*LPFC_ELS_RING)));
13739 status >>= (4*LPFC_ELS_RING);
13740 if (status & HA_RXMASK) {
13741 spin_lock_irqsave(&phba->hbalock, iflag);
13742 if (lpfc_readl(phba->HCregaddr, &control))
13743 goto unplug_error;
13744
13745 lpfc_debugfs_slow_ring_trc(phba,
13746 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x",
13747 control, status,
13748 (uint32_t)phba->sli.slistat.sli_intr);
13749
13750 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) {
13751 lpfc_debugfs_slow_ring_trc(phba,
13752 "ISR Disable ring:"
13753 "pwork:x%x hawork:x%x wait:x%x",
13754 phba->work_ha, work_ha_copy,
13755 (uint32_t)((unsigned long)
13756 &phba->work_waitq));
13757
13758 control &=
13759 ~(HC_R0INT_ENA << LPFC_ELS_RING);
13760 writel(control, phba->HCregaddr);
13761 readl(phba->HCregaddr); /* flush */
13762 }
13763 else {
13764 lpfc_debugfs_slow_ring_trc(phba,
13765 "ISR slow ring: pwork:"
13766 "x%x hawork:x%x wait:x%x",
13767 phba->work_ha, work_ha_copy,
13768 (uint32_t)((unsigned long)
13769 &phba->work_waitq));
13770 }
13771 spin_unlock_irqrestore(&phba->hbalock, iflag);
13772 }
13773 }
13774 spin_lock_irqsave(&phba->hbalock, iflag);
13775 if (work_ha_copy & HA_ERATT) {
13776 if (lpfc_sli_read_hs(phba))
13777 goto unplug_error;
13778 /*
13779 * Check if there is a deferred error condition
13780 * is active
13781 */
13782 if ((HS_FFER1 & phba->work_hs) &&
13783 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
13784 HS_FFER6 | HS_FFER7 | HS_FFER8) &
13785 phba->work_hs)) {
13786 phba->hba_flag |= DEFER_ERATT;
13787 /* Clear all interrupt enable conditions */
13788 writel(0, phba->HCregaddr);
13789 readl(phba->HCregaddr);
13790 }
13791 }
13792
13793 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) {
13794 pmb = phba->sli.mbox_active;
13795 pmbox = &pmb->u.mb;
13796 mbox = phba->mbox;
13797 vport = pmb->vport;
13798
13799 /* First check out the status word */
13800 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t));
13801 if (pmbox->mbxOwner != OWN_HOST) {
13802 spin_unlock_irqrestore(&phba->hbalock, iflag);
13803 /*
13804 * Stray Mailbox Interrupt, mbxCommand <cmd>
13805 * mbxStatus <status>
13806 */
13807 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13808 "(%d):0304 Stray Mailbox "
13809 "Interrupt mbxCommand x%x "
13810 "mbxStatus x%x\n",
13811 (vport ? vport->vpi : 0),
13812 pmbox->mbxCommand,
13813 pmbox->mbxStatus);
13814 /* clear mailbox attention bit */
13815 work_ha_copy &= ~HA_MBATT;
13816 } else {
13817 phba->sli.mbox_active = NULL;
13818 spin_unlock_irqrestore(&phba->hbalock, iflag);
13819 phba->last_completion_time = jiffies;
13820 del_timer(&phba->sli.mbox_tmo);
13821 if (pmb->mbox_cmpl) {
13822 lpfc_sli_pcimem_bcopy(mbox, pmbox,
13823 MAILBOX_CMD_SIZE);
13824 if (pmb->out_ext_byte_len &&
13825 pmb->ctx_buf)
13826 lpfc_sli_pcimem_bcopy(
13827 phba->mbox_ext,
13828 pmb->ctx_buf,
13829 pmb->out_ext_byte_len);
13830 }
13831 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
13832 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
13833
13834 lpfc_debugfs_disc_trc(vport,
13835 LPFC_DISC_TRC_MBOX_VPORT,
13836 "MBOX dflt rpi: : "
13837 "status:x%x rpi:x%x",
13838 (uint32_t)pmbox->mbxStatus,
13839 pmbox->un.varWords[0], 0);
13840
13841 if (!pmbox->mbxStatus) {
13842 mp = (struct lpfc_dmabuf *)
13843 (pmb->ctx_buf);
13844 ndlp = (struct lpfc_nodelist *)
13845 pmb->ctx_ndlp;
13846
13847 /* Reg_LOGIN of dflt RPI was
13848 * successful. new lets get
13849 * rid of the RPI using the
13850 * same mbox buffer.
13851 */
13852 lpfc_unreg_login(phba,
13853 vport->vpi,
13854 pmbox->un.varWords[0],
13855 pmb);
13856 pmb->mbox_cmpl =
13857 lpfc_mbx_cmpl_dflt_rpi;
13858 pmb->ctx_buf = mp;
13859 pmb->ctx_ndlp = ndlp;
13860 pmb->vport = vport;
13861 rc = lpfc_sli_issue_mbox(phba,
13862 pmb,
13863 MBX_NOWAIT);
13864 if (rc != MBX_BUSY)
13865 lpfc_printf_log(phba,
13866 KERN_ERR,
13867 LOG_TRACE_EVENT,
13868 "0350 rc should have"
13869 "been MBX_BUSY\n");
13870 if (rc != MBX_NOT_FINISHED)
13871 goto send_current_mbox;
13872 }
13873 }
13874 spin_lock_irqsave(
13875 &phba->pport->work_port_lock,
13876 iflag);
13877 phba->pport->work_port_events &=
13878 ~WORKER_MBOX_TMO;
13879 spin_unlock_irqrestore(
13880 &phba->pport->work_port_lock,
13881 iflag);
13882
13883 /* Do NOT queue MBX_HEARTBEAT to the worker
13884 * thread for processing.
13885 */
13886 if (pmbox->mbxCommand == MBX_HEARTBEAT) {
13887 /* Process mbox now */
13888 phba->sli.mbox_active = NULL;
13889 phba->sli.sli_flag &=
13890 ~LPFC_SLI_MBOX_ACTIVE;
13891 if (pmb->mbox_cmpl)
13892 pmb->mbox_cmpl(phba, pmb);
13893 } else {
13894 /* Queue to worker thread to process */
13895 lpfc_mbox_cmpl_put(phba, pmb);
13896 }
13897 }
13898 } else
13899 spin_unlock_irqrestore(&phba->hbalock, iflag);
13900
13901 if ((work_ha_copy & HA_MBATT) &&
13902 (phba->sli.mbox_active == NULL)) {
13903 send_current_mbox:
13904 /* Process next mailbox command if there is one */
13905 do {
13906 rc = lpfc_sli_issue_mbox(phba, NULL,
13907 MBX_NOWAIT);
13908 } while (rc == MBX_NOT_FINISHED);
13909 if (rc != MBX_SUCCESS)
13910 lpfc_printf_log(phba, KERN_ERR,
13911 LOG_TRACE_EVENT,
13912 "0349 rc should be "
13913 "MBX_SUCCESS\n");
13914 }
13915
13916 spin_lock_irqsave(&phba->hbalock, iflag);
13917 phba->work_ha |= work_ha_copy;
13918 spin_unlock_irqrestore(&phba->hbalock, iflag);
13919 lpfc_worker_wake_up(phba);
13920 }
13921 return IRQ_HANDLED;
13922 unplug_error:
13923 spin_unlock_irqrestore(&phba->hbalock, iflag);
13924 return IRQ_HANDLED;
13925
13926 } /* lpfc_sli_sp_intr_handler */
13927
13928 /**
13929 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device.
13930 * @irq: Interrupt number.
13931 * @dev_id: The device context pointer.
13932 *
13933 * This function is directly called from the PCI layer as an interrupt
13934 * service routine when device with SLI-3 interface spec is enabled with
13935 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
13936 * ring event in the HBA. However, when the device is enabled with either
13937 * MSI or Pin-IRQ interrupt mode, this function is called as part of the
13938 * device-level interrupt handler. When the PCI slot is in error recovery
13939 * or the HBA is undergoing initialization, the interrupt handler will not
13940 * process the interrupt. The SCSI FCP fast-path ring event are handled in
13941 * the intrrupt context. This function is called without any lock held.
13942 * It gets the hbalock to access and update SLI data structures.
13943 *
13944 * This function returns IRQ_HANDLED when interrupt is handled else it
13945 * returns IRQ_NONE.
13946 **/
13947 irqreturn_t
lpfc_sli_fp_intr_handler(int irq,void * dev_id)13948 lpfc_sli_fp_intr_handler(int irq, void *dev_id)
13949 {
13950 struct lpfc_hba *phba;
13951 uint32_t ha_copy;
13952 unsigned long status;
13953 unsigned long iflag;
13954 struct lpfc_sli_ring *pring;
13955
13956 /* Get the driver's phba structure from the dev_id and
13957 * assume the HBA is not interrupting.
13958 */
13959 phba = (struct lpfc_hba *) dev_id;
13960
13961 if (unlikely(!phba))
13962 return IRQ_NONE;
13963
13964 /*
13965 * Stuff needs to be attented to when this function is invoked as an
13966 * individual interrupt handler in MSI-X multi-message interrupt mode
13967 */
13968 if (phba->intr_type == MSIX) {
13969 /* Check device state for handling interrupt */
13970 if (lpfc_intr_state_check(phba))
13971 return IRQ_NONE;
13972 /* Need to read HA REG for FCP ring and other ring events */
13973 if (lpfc_readl(phba->HAregaddr, &ha_copy))
13974 return IRQ_HANDLED;
13975 /* Clear up only attention source related to fast-path */
13976 spin_lock_irqsave(&phba->hbalock, iflag);
13977 /*
13978 * If there is deferred error attention, do not check for
13979 * any interrupt.
13980 */
13981 if (unlikely(phba->hba_flag & DEFER_ERATT)) {
13982 spin_unlock_irqrestore(&phba->hbalock, iflag);
13983 return IRQ_NONE;
13984 }
13985 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)),
13986 phba->HAregaddr);
13987 readl(phba->HAregaddr); /* flush */
13988 spin_unlock_irqrestore(&phba->hbalock, iflag);
13989 } else
13990 ha_copy = phba->ha_copy;
13991
13992 /*
13993 * Process all events on FCP ring. Take the optimized path for FCP IO.
13994 */
13995 ha_copy &= ~(phba->work_ha_mask);
13996
13997 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
13998 status >>= (4*LPFC_FCP_RING);
13999 pring = &phba->sli.sli3_ring[LPFC_FCP_RING];
14000 if (status & HA_RXMASK)
14001 lpfc_sli_handle_fast_ring_event(phba, pring, status);
14002
14003 if (phba->cfg_multi_ring_support == 2) {
14004 /*
14005 * Process all events on extra ring. Take the optimized path
14006 * for extra ring IO.
14007 */
14008 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
14009 status >>= (4*LPFC_EXTRA_RING);
14010 if (status & HA_RXMASK) {
14011 lpfc_sli_handle_fast_ring_event(phba,
14012 &phba->sli.sli3_ring[LPFC_EXTRA_RING],
14013 status);
14014 }
14015 }
14016 return IRQ_HANDLED;
14017 } /* lpfc_sli_fp_intr_handler */
14018
14019 /**
14020 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device
14021 * @irq: Interrupt number.
14022 * @dev_id: The device context pointer.
14023 *
14024 * This function is the HBA device-level interrupt handler to device with
14025 * SLI-3 interface spec, called from the PCI layer when either MSI or
14026 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which
14027 * requires driver attention. This function invokes the slow-path interrupt
14028 * attention handling function and fast-path interrupt attention handling
14029 * function in turn to process the relevant HBA attention events. This
14030 * function is called without any lock held. It gets the hbalock to access
14031 * and update SLI data structures.
14032 *
14033 * This function returns IRQ_HANDLED when interrupt is handled, else it
14034 * returns IRQ_NONE.
14035 **/
14036 irqreturn_t
lpfc_sli_intr_handler(int irq,void * dev_id)14037 lpfc_sli_intr_handler(int irq, void *dev_id)
14038 {
14039 struct lpfc_hba *phba;
14040 irqreturn_t sp_irq_rc, fp_irq_rc;
14041 unsigned long status1, status2;
14042 uint32_t hc_copy;
14043
14044 /*
14045 * Get the driver's phba structure from the dev_id and
14046 * assume the HBA is not interrupting.
14047 */
14048 phba = (struct lpfc_hba *) dev_id;
14049
14050 if (unlikely(!phba))
14051 return IRQ_NONE;
14052
14053 /* Check device state for handling interrupt */
14054 if (lpfc_intr_state_check(phba))
14055 return IRQ_NONE;
14056
14057 spin_lock(&phba->hbalock);
14058 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) {
14059 spin_unlock(&phba->hbalock);
14060 return IRQ_HANDLED;
14061 }
14062
14063 if (unlikely(!phba->ha_copy)) {
14064 spin_unlock(&phba->hbalock);
14065 return IRQ_NONE;
14066 } else if (phba->ha_copy & HA_ERATT) {
14067 if (phba->hba_flag & HBA_ERATT_HANDLED)
14068 /* ERATT polling has handled ERATT */
14069 phba->ha_copy &= ~HA_ERATT;
14070 else
14071 /* Indicate interrupt handler handles ERATT */
14072 phba->hba_flag |= HBA_ERATT_HANDLED;
14073 }
14074
14075 /*
14076 * If there is deferred error attention, do not check for any interrupt.
14077 */
14078 if (unlikely(phba->hba_flag & DEFER_ERATT)) {
14079 spin_unlock(&phba->hbalock);
14080 return IRQ_NONE;
14081 }
14082
14083 /* Clear attention sources except link and error attentions */
14084 if (lpfc_readl(phba->HCregaddr, &hc_copy)) {
14085 spin_unlock(&phba->hbalock);
14086 return IRQ_HANDLED;
14087 }
14088 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA
14089 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA),
14090 phba->HCregaddr);
14091 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr);
14092 writel(hc_copy, phba->HCregaddr);
14093 readl(phba->HAregaddr); /* flush */
14094 spin_unlock(&phba->hbalock);
14095
14096 /*
14097 * Invokes slow-path host attention interrupt handling as appropriate.
14098 */
14099
14100 /* status of events with mailbox and link attention */
14101 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT);
14102
14103 /* status of events with ELS ring */
14104 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING)));
14105 status2 >>= (4*LPFC_ELS_RING);
14106
14107 if (status1 || (status2 & HA_RXMASK))
14108 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id);
14109 else
14110 sp_irq_rc = IRQ_NONE;
14111
14112 /*
14113 * Invoke fast-path host attention interrupt handling as appropriate.
14114 */
14115
14116 /* status of events with FCP ring */
14117 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
14118 status1 >>= (4*LPFC_FCP_RING);
14119
14120 /* status of events with extra ring */
14121 if (phba->cfg_multi_ring_support == 2) {
14122 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
14123 status2 >>= (4*LPFC_EXTRA_RING);
14124 } else
14125 status2 = 0;
14126
14127 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK))
14128 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id);
14129 else
14130 fp_irq_rc = IRQ_NONE;
14131
14132 /* Return device-level interrupt handling status */
14133 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc;
14134 } /* lpfc_sli_intr_handler */
14135
14136 /**
14137 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event
14138 * @phba: pointer to lpfc hba data structure.
14139 *
14140 * This routine is invoked by the worker thread to process all the pending
14141 * SLI4 els abort xri events.
14142 **/
lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba * phba)14143 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba)
14144 {
14145 struct lpfc_cq_event *cq_event;
14146 unsigned long iflags;
14147
14148 /* First, declare the els xri abort event has been handled */
14149 spin_lock_irqsave(&phba->hbalock, iflags);
14150 phba->hba_flag &= ~ELS_XRI_ABORT_EVENT;
14151 spin_unlock_irqrestore(&phba->hbalock, iflags);
14152
14153 /* Now, handle all the els xri abort events */
14154 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
14155 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) {
14156 /* Get the first event from the head of the event queue */
14157 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue,
14158 cq_event, struct lpfc_cq_event, list);
14159 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock,
14160 iflags);
14161 /* Notify aborted XRI for ELS work queue */
14162 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri);
14163
14164 /* Free the event processed back to the free pool */
14165 lpfc_sli4_cq_event_release(phba, cq_event);
14166 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock,
14167 iflags);
14168 }
14169 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
14170 }
14171
14172 /**
14173 * lpfc_sli4_els_preprocess_rspiocbq - Get response iocbq from els wcqe
14174 * @phba: Pointer to HBA context object.
14175 * @irspiocbq: Pointer to work-queue completion queue entry.
14176 *
14177 * This routine handles an ELS work-queue completion event and construct
14178 * a pseudo response ELS IOCBQ from the SLI4 ELS WCQE for the common
14179 * discovery engine to handle.
14180 *
14181 * Return: Pointer to the receive IOCBQ, NULL otherwise.
14182 **/
14183 static struct lpfc_iocbq *
lpfc_sli4_els_preprocess_rspiocbq(struct lpfc_hba * phba,struct lpfc_iocbq * irspiocbq)14184 lpfc_sli4_els_preprocess_rspiocbq(struct lpfc_hba *phba,
14185 struct lpfc_iocbq *irspiocbq)
14186 {
14187 struct lpfc_sli_ring *pring;
14188 struct lpfc_iocbq *cmdiocbq;
14189 struct lpfc_wcqe_complete *wcqe;
14190 unsigned long iflags;
14191
14192 pring = lpfc_phba_elsring(phba);
14193 if (unlikely(!pring))
14194 return NULL;
14195
14196 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl;
14197 spin_lock_irqsave(&pring->ring_lock, iflags);
14198 pring->stats.iocb_event++;
14199 /* Look up the ELS command IOCB and create pseudo response IOCB */
14200 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
14201 bf_get(lpfc_wcqe_c_request_tag, wcqe));
14202 if (unlikely(!cmdiocbq)) {
14203 spin_unlock_irqrestore(&pring->ring_lock, iflags);
14204 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
14205 "0386 ELS complete with no corresponding "
14206 "cmdiocb: 0x%x 0x%x 0x%x 0x%x\n",
14207 wcqe->word0, wcqe->total_data_placed,
14208 wcqe->parameter, wcqe->word3);
14209 lpfc_sli_release_iocbq(phba, irspiocbq);
14210 return NULL;
14211 }
14212
14213 memcpy(&irspiocbq->wqe, &cmdiocbq->wqe, sizeof(union lpfc_wqe128));
14214 memcpy(&irspiocbq->wcqe_cmpl, wcqe, sizeof(*wcqe));
14215
14216 /* Put the iocb back on the txcmplq */
14217 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq);
14218 spin_unlock_irqrestore(&pring->ring_lock, iflags);
14219
14220 if (bf_get(lpfc_wcqe_c_xb, wcqe)) {
14221 spin_lock_irqsave(&phba->hbalock, iflags);
14222 irspiocbq->cmd_flag |= LPFC_EXCHANGE_BUSY;
14223 spin_unlock_irqrestore(&phba->hbalock, iflags);
14224 }
14225
14226 return irspiocbq;
14227 }
14228
14229 inline struct lpfc_cq_event *
lpfc_cq_event_setup(struct lpfc_hba * phba,void * entry,int size)14230 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size)
14231 {
14232 struct lpfc_cq_event *cq_event;
14233
14234 /* Allocate a new internal CQ_EVENT entry */
14235 cq_event = lpfc_sli4_cq_event_alloc(phba);
14236 if (!cq_event) {
14237 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14238 "0602 Failed to alloc CQ_EVENT entry\n");
14239 return NULL;
14240 }
14241
14242 /* Move the CQE into the event */
14243 memcpy(&cq_event->cqe, entry, size);
14244 return cq_event;
14245 }
14246
14247 /**
14248 * lpfc_sli4_sp_handle_async_event - Handle an asynchronous event
14249 * @phba: Pointer to HBA context object.
14250 * @mcqe: Pointer to mailbox completion queue entry.
14251 *
14252 * This routine process a mailbox completion queue entry with asynchronous
14253 * event.
14254 *
14255 * Return: true if work posted to worker thread, otherwise false.
14256 **/
14257 static bool
lpfc_sli4_sp_handle_async_event(struct lpfc_hba * phba,struct lpfc_mcqe * mcqe)14258 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
14259 {
14260 struct lpfc_cq_event *cq_event;
14261 unsigned long iflags;
14262
14263 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
14264 "0392 Async Event: word0:x%x, word1:x%x, "
14265 "word2:x%x, word3:x%x\n", mcqe->word0,
14266 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer);
14267
14268 cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe));
14269 if (!cq_event)
14270 return false;
14271
14272 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
14273 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue);
14274 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags);
14275
14276 /* Set the async event flag */
14277 spin_lock_irqsave(&phba->hbalock, iflags);
14278 phba->hba_flag |= ASYNC_EVENT;
14279 spin_unlock_irqrestore(&phba->hbalock, iflags);
14280
14281 return true;
14282 }
14283
14284 /**
14285 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event
14286 * @phba: Pointer to HBA context object.
14287 * @mcqe: Pointer to mailbox completion queue entry.
14288 *
14289 * This routine process a mailbox completion queue entry with mailbox
14290 * completion event.
14291 *
14292 * Return: true if work posted to worker thread, otherwise false.
14293 **/
14294 static bool
lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba * phba,struct lpfc_mcqe * mcqe)14295 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
14296 {
14297 uint32_t mcqe_status;
14298 MAILBOX_t *mbox, *pmbox;
14299 struct lpfc_mqe *mqe;
14300 struct lpfc_vport *vport;
14301 struct lpfc_nodelist *ndlp;
14302 struct lpfc_dmabuf *mp;
14303 unsigned long iflags;
14304 LPFC_MBOXQ_t *pmb;
14305 bool workposted = false;
14306 int rc;
14307
14308 /* If not a mailbox complete MCQE, out by checking mailbox consume */
14309 if (!bf_get(lpfc_trailer_completed, mcqe))
14310 goto out_no_mqe_complete;
14311
14312 /* Get the reference to the active mbox command */
14313 spin_lock_irqsave(&phba->hbalock, iflags);
14314 pmb = phba->sli.mbox_active;
14315 if (unlikely(!pmb)) {
14316 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14317 "1832 No pending MBOX command to handle\n");
14318 spin_unlock_irqrestore(&phba->hbalock, iflags);
14319 goto out_no_mqe_complete;
14320 }
14321 spin_unlock_irqrestore(&phba->hbalock, iflags);
14322 mqe = &pmb->u.mqe;
14323 pmbox = (MAILBOX_t *)&pmb->u.mqe;
14324 mbox = phba->mbox;
14325 vport = pmb->vport;
14326
14327 /* Reset heartbeat timer */
14328 phba->last_completion_time = jiffies;
14329 del_timer(&phba->sli.mbox_tmo);
14330
14331 /* Move mbox data to caller's mailbox region, do endian swapping */
14332 if (pmb->mbox_cmpl && mbox)
14333 lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe));
14334
14335 /*
14336 * For mcqe errors, conditionally move a modified error code to
14337 * the mbox so that the error will not be missed.
14338 */
14339 mcqe_status = bf_get(lpfc_mcqe_status, mcqe);
14340 if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
14341 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS)
14342 bf_set(lpfc_mqe_status, mqe,
14343 (LPFC_MBX_ERROR_RANGE | mcqe_status));
14344 }
14345 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
14346 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
14347 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT,
14348 "MBOX dflt rpi: status:x%x rpi:x%x",
14349 mcqe_status,
14350 pmbox->un.varWords[0], 0);
14351 if (mcqe_status == MB_CQE_STATUS_SUCCESS) {
14352 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf);
14353 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
14354
14355 /* Reg_LOGIN of dflt RPI was successful. Mark the
14356 * node as having an UNREG_LOGIN in progress to stop
14357 * an unsolicited PLOGI from the same NPortId from
14358 * starting another mailbox transaction.
14359 */
14360 spin_lock_irqsave(&ndlp->lock, iflags);
14361 ndlp->nlp_flag |= NLP_UNREG_INP;
14362 spin_unlock_irqrestore(&ndlp->lock, iflags);
14363 lpfc_unreg_login(phba, vport->vpi,
14364 pmbox->un.varWords[0], pmb);
14365 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi;
14366 pmb->ctx_buf = mp;
14367
14368 /* No reference taken here. This is a default
14369 * RPI reg/immediate unreg cycle. The reference was
14370 * taken in the reg rpi path and is released when
14371 * this mailbox completes.
14372 */
14373 pmb->ctx_ndlp = ndlp;
14374 pmb->vport = vport;
14375 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
14376 if (rc != MBX_BUSY)
14377 lpfc_printf_log(phba, KERN_ERR,
14378 LOG_TRACE_EVENT,
14379 "0385 rc should "
14380 "have been MBX_BUSY\n");
14381 if (rc != MBX_NOT_FINISHED)
14382 goto send_current_mbox;
14383 }
14384 }
14385 spin_lock_irqsave(&phba->pport->work_port_lock, iflags);
14386 phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
14387 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags);
14388
14389 /* Do NOT queue MBX_HEARTBEAT to the worker thread for processing. */
14390 if (pmbox->mbxCommand == MBX_HEARTBEAT) {
14391 spin_lock_irqsave(&phba->hbalock, iflags);
14392 /* Release the mailbox command posting token */
14393 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
14394 phba->sli.mbox_active = NULL;
14395 if (bf_get(lpfc_trailer_consumed, mcqe))
14396 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq);
14397 spin_unlock_irqrestore(&phba->hbalock, iflags);
14398
14399 /* Post the next mbox command, if there is one */
14400 lpfc_sli4_post_async_mbox(phba);
14401
14402 /* Process cmpl now */
14403 if (pmb->mbox_cmpl)
14404 pmb->mbox_cmpl(phba, pmb);
14405 return false;
14406 }
14407
14408 /* There is mailbox completion work to queue to the worker thread */
14409 spin_lock_irqsave(&phba->hbalock, iflags);
14410 __lpfc_mbox_cmpl_put(phba, pmb);
14411 phba->work_ha |= HA_MBATT;
14412 spin_unlock_irqrestore(&phba->hbalock, iflags);
14413 workposted = true;
14414
14415 send_current_mbox:
14416 spin_lock_irqsave(&phba->hbalock, iflags);
14417 /* Release the mailbox command posting token */
14418 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
14419 /* Setting active mailbox pointer need to be in sync to flag clear */
14420 phba->sli.mbox_active = NULL;
14421 if (bf_get(lpfc_trailer_consumed, mcqe))
14422 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq);
14423 spin_unlock_irqrestore(&phba->hbalock, iflags);
14424 /* Wake up worker thread to post the next pending mailbox command */
14425 lpfc_worker_wake_up(phba);
14426 return workposted;
14427
14428 out_no_mqe_complete:
14429 spin_lock_irqsave(&phba->hbalock, iflags);
14430 if (bf_get(lpfc_trailer_consumed, mcqe))
14431 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq);
14432 spin_unlock_irqrestore(&phba->hbalock, iflags);
14433 return false;
14434 }
14435
14436 /**
14437 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry
14438 * @phba: Pointer to HBA context object.
14439 * @cq: Pointer to associated CQ
14440 * @cqe: Pointer to mailbox completion queue entry.
14441 *
14442 * This routine process a mailbox completion queue entry, it invokes the
14443 * proper mailbox complete handling or asynchronous event handling routine
14444 * according to the MCQE's async bit.
14445 *
14446 * Return: true if work posted to worker thread, otherwise false.
14447 **/
14448 static bool
lpfc_sli4_sp_handle_mcqe(struct lpfc_hba * phba,struct lpfc_queue * cq,struct lpfc_cqe * cqe)14449 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
14450 struct lpfc_cqe *cqe)
14451 {
14452 struct lpfc_mcqe mcqe;
14453 bool workposted;
14454
14455 cq->CQ_mbox++;
14456
14457 /* Copy the mailbox MCQE and convert endian order as needed */
14458 lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe));
14459
14460 /* Invoke the proper event handling routine */
14461 if (!bf_get(lpfc_trailer_async, &mcqe))
14462 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe);
14463 else
14464 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe);
14465 return workposted;
14466 }
14467
14468 /**
14469 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event
14470 * @phba: Pointer to HBA context object.
14471 * @cq: Pointer to associated CQ
14472 * @wcqe: Pointer to work-queue completion queue entry.
14473 *
14474 * This routine handles an ELS work-queue completion event.
14475 *
14476 * Return: true if work posted to worker thread, otherwise false.
14477 **/
14478 static bool
lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba * phba,struct lpfc_queue * cq,struct lpfc_wcqe_complete * wcqe)14479 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
14480 struct lpfc_wcqe_complete *wcqe)
14481 {
14482 struct lpfc_iocbq *irspiocbq;
14483 unsigned long iflags;
14484 struct lpfc_sli_ring *pring = cq->pring;
14485 int txq_cnt = 0;
14486 int txcmplq_cnt = 0;
14487
14488 /* Check for response status */
14489 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) {
14490 /* Log the error status */
14491 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
14492 "0357 ELS CQE error: status=x%x: "
14493 "CQE: %08x %08x %08x %08x\n",
14494 bf_get(lpfc_wcqe_c_status, wcqe),
14495 wcqe->word0, wcqe->total_data_placed,
14496 wcqe->parameter, wcqe->word3);
14497 }
14498
14499 /* Get an irspiocbq for later ELS response processing use */
14500 irspiocbq = lpfc_sli_get_iocbq(phba);
14501 if (!irspiocbq) {
14502 if (!list_empty(&pring->txq))
14503 txq_cnt++;
14504 if (!list_empty(&pring->txcmplq))
14505 txcmplq_cnt++;
14506 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14507 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d "
14508 "els_txcmplq_cnt=%d\n",
14509 txq_cnt, phba->iocb_cnt,
14510 txcmplq_cnt);
14511 return false;
14512 }
14513
14514 /* Save off the slow-path queue event for work thread to process */
14515 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe));
14516 spin_lock_irqsave(&phba->hbalock, iflags);
14517 list_add_tail(&irspiocbq->cq_event.list,
14518 &phba->sli4_hba.sp_queue_event);
14519 phba->hba_flag |= HBA_SP_QUEUE_EVT;
14520 spin_unlock_irqrestore(&phba->hbalock, iflags);
14521
14522 return true;
14523 }
14524
14525 /**
14526 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event
14527 * @phba: Pointer to HBA context object.
14528 * @wcqe: Pointer to work-queue completion queue entry.
14529 *
14530 * This routine handles slow-path WQ entry consumed event by invoking the
14531 * proper WQ release routine to the slow-path WQ.
14532 **/
14533 static void
lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba * phba,struct lpfc_wcqe_release * wcqe)14534 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba,
14535 struct lpfc_wcqe_release *wcqe)
14536 {
14537 /* sanity check on queue memory */
14538 if (unlikely(!phba->sli4_hba.els_wq))
14539 return;
14540 /* Check for the slow-path ELS work queue */
14541 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id)
14542 lpfc_sli4_wq_release(phba->sli4_hba.els_wq,
14543 bf_get(lpfc_wcqe_r_wqe_index, wcqe));
14544 else
14545 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
14546 "2579 Slow-path wqe consume event carries "
14547 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n",
14548 bf_get(lpfc_wcqe_r_wqe_index, wcqe),
14549 phba->sli4_hba.els_wq->queue_id);
14550 }
14551
14552 /**
14553 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event
14554 * @phba: Pointer to HBA context object.
14555 * @cq: Pointer to a WQ completion queue.
14556 * @wcqe: Pointer to work-queue completion queue entry.
14557 *
14558 * This routine handles an XRI abort event.
14559 *
14560 * Return: true if work posted to worker thread, otherwise false.
14561 **/
14562 static bool
lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba * phba,struct lpfc_queue * cq,struct sli4_wcqe_xri_aborted * wcqe)14563 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba,
14564 struct lpfc_queue *cq,
14565 struct sli4_wcqe_xri_aborted *wcqe)
14566 {
14567 bool workposted = false;
14568 struct lpfc_cq_event *cq_event;
14569 unsigned long iflags;
14570
14571 switch (cq->subtype) {
14572 case LPFC_IO:
14573 lpfc_sli4_io_xri_aborted(phba, wcqe, cq->hdwq);
14574 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
14575 /* Notify aborted XRI for NVME work queue */
14576 if (phba->nvmet_support)
14577 lpfc_sli4_nvmet_xri_aborted(phba, wcqe);
14578 }
14579 workposted = false;
14580 break;
14581 case LPFC_NVME_LS: /* NVME LS uses ELS resources */
14582 case LPFC_ELS:
14583 cq_event = lpfc_cq_event_setup(phba, wcqe, sizeof(*wcqe));
14584 if (!cq_event) {
14585 workposted = false;
14586 break;
14587 }
14588 cq_event->hdwq = cq->hdwq;
14589 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock,
14590 iflags);
14591 list_add_tail(&cq_event->list,
14592 &phba->sli4_hba.sp_els_xri_aborted_work_queue);
14593 /* Set the els xri abort event flag */
14594 phba->hba_flag |= ELS_XRI_ABORT_EVENT;
14595 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock,
14596 iflags);
14597 workposted = true;
14598 break;
14599 default:
14600 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14601 "0603 Invalid CQ subtype %d: "
14602 "%08x %08x %08x %08x\n",
14603 cq->subtype, wcqe->word0, wcqe->parameter,
14604 wcqe->word2, wcqe->word3);
14605 workposted = false;
14606 break;
14607 }
14608 return workposted;
14609 }
14610
14611 #define FC_RCTL_MDS_DIAGS 0xF4
14612
14613 /**
14614 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry
14615 * @phba: Pointer to HBA context object.
14616 * @rcqe: Pointer to receive-queue completion queue entry.
14617 *
14618 * This routine process a receive-queue completion queue entry.
14619 *
14620 * Return: true if work posted to worker thread, otherwise false.
14621 **/
14622 static bool
lpfc_sli4_sp_handle_rcqe(struct lpfc_hba * phba,struct lpfc_rcqe * rcqe)14623 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe)
14624 {
14625 bool workposted = false;
14626 struct fc_frame_header *fc_hdr;
14627 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq;
14628 struct lpfc_queue *drq = phba->sli4_hba.dat_rq;
14629 struct lpfc_nvmet_tgtport *tgtp;
14630 struct hbq_dmabuf *dma_buf;
14631 uint32_t status, rq_id;
14632 unsigned long iflags;
14633
14634 /* sanity check on queue memory */
14635 if (unlikely(!hrq) || unlikely(!drq))
14636 return workposted;
14637
14638 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1)
14639 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe);
14640 else
14641 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe);
14642 if (rq_id != hrq->queue_id)
14643 goto out;
14644
14645 status = bf_get(lpfc_rcqe_status, rcqe);
14646 switch (status) {
14647 case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
14648 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14649 "2537 Receive Frame Truncated!!\n");
14650 fallthrough;
14651 case FC_STATUS_RQ_SUCCESS:
14652 spin_lock_irqsave(&phba->hbalock, iflags);
14653 lpfc_sli4_rq_release(hrq, drq);
14654 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list);
14655 if (!dma_buf) {
14656 hrq->RQ_no_buf_found++;
14657 spin_unlock_irqrestore(&phba->hbalock, iflags);
14658 goto out;
14659 }
14660 hrq->RQ_rcv_buf++;
14661 hrq->RQ_buf_posted--;
14662 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe));
14663
14664 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt;
14665
14666 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS ||
14667 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) {
14668 spin_unlock_irqrestore(&phba->hbalock, iflags);
14669 /* Handle MDS Loopback frames */
14670 if (!(phba->pport->load_flag & FC_UNLOADING))
14671 lpfc_sli4_handle_mds_loopback(phba->pport,
14672 dma_buf);
14673 else
14674 lpfc_in_buf_free(phba, &dma_buf->dbuf);
14675 break;
14676 }
14677
14678 /* save off the frame for the work thread to process */
14679 list_add_tail(&dma_buf->cq_event.list,
14680 &phba->sli4_hba.sp_queue_event);
14681 /* Frame received */
14682 phba->hba_flag |= HBA_SP_QUEUE_EVT;
14683 spin_unlock_irqrestore(&phba->hbalock, iflags);
14684 workposted = true;
14685 break;
14686 case FC_STATUS_INSUFF_BUF_FRM_DISC:
14687 if (phba->nvmet_support) {
14688 tgtp = phba->targetport->private;
14689 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14690 "6402 RQE Error x%x, posted %d err_cnt "
14691 "%d: %x %x %x\n",
14692 status, hrq->RQ_buf_posted,
14693 hrq->RQ_no_posted_buf,
14694 atomic_read(&tgtp->rcv_fcp_cmd_in),
14695 atomic_read(&tgtp->rcv_fcp_cmd_out),
14696 atomic_read(&tgtp->xmt_fcp_release));
14697 }
14698 fallthrough;
14699
14700 case FC_STATUS_INSUFF_BUF_NEED_BUF:
14701 hrq->RQ_no_posted_buf++;
14702 /* Post more buffers if possible */
14703 spin_lock_irqsave(&phba->hbalock, iflags);
14704 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER;
14705 spin_unlock_irqrestore(&phba->hbalock, iflags);
14706 workposted = true;
14707 break;
14708 case FC_STATUS_RQ_DMA_FAILURE:
14709 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14710 "2564 RQE DMA Error x%x, x%08x x%08x x%08x "
14711 "x%08x\n",
14712 status, rcqe->word0, rcqe->word1,
14713 rcqe->word2, rcqe->word3);
14714
14715 /* If IV set, no further recovery */
14716 if (bf_get(lpfc_rcqe_iv, rcqe))
14717 break;
14718
14719 /* recycle consumed resource */
14720 spin_lock_irqsave(&phba->hbalock, iflags);
14721 lpfc_sli4_rq_release(hrq, drq);
14722 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list);
14723 if (!dma_buf) {
14724 hrq->RQ_no_buf_found++;
14725 spin_unlock_irqrestore(&phba->hbalock, iflags);
14726 break;
14727 }
14728 hrq->RQ_rcv_buf++;
14729 hrq->RQ_buf_posted--;
14730 spin_unlock_irqrestore(&phba->hbalock, iflags);
14731 lpfc_in_buf_free(phba, &dma_buf->dbuf);
14732 break;
14733 default:
14734 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14735 "2565 Unexpected RQE Status x%x, w0-3 x%08x "
14736 "x%08x x%08x x%08x\n",
14737 status, rcqe->word0, rcqe->word1,
14738 rcqe->word2, rcqe->word3);
14739 break;
14740 }
14741 out:
14742 return workposted;
14743 }
14744
14745 /**
14746 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry
14747 * @phba: Pointer to HBA context object.
14748 * @cq: Pointer to the completion queue.
14749 * @cqe: Pointer to a completion queue entry.
14750 *
14751 * This routine process a slow-path work-queue or receive queue completion queue
14752 * entry.
14753 *
14754 * Return: true if work posted to worker thread, otherwise false.
14755 **/
14756 static bool
lpfc_sli4_sp_handle_cqe(struct lpfc_hba * phba,struct lpfc_queue * cq,struct lpfc_cqe * cqe)14757 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
14758 struct lpfc_cqe *cqe)
14759 {
14760 struct lpfc_cqe cqevt;
14761 bool workposted = false;
14762
14763 /* Copy the work queue CQE and convert endian order if needed */
14764 lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe));
14765
14766 /* Check and process for different type of WCQE and dispatch */
14767 switch (bf_get(lpfc_cqe_code, &cqevt)) {
14768 case CQE_CODE_COMPL_WQE:
14769 /* Process the WQ/RQ complete event */
14770 phba->last_completion_time = jiffies;
14771 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq,
14772 (struct lpfc_wcqe_complete *)&cqevt);
14773 break;
14774 case CQE_CODE_RELEASE_WQE:
14775 /* Process the WQ release event */
14776 lpfc_sli4_sp_handle_rel_wcqe(phba,
14777 (struct lpfc_wcqe_release *)&cqevt);
14778 break;
14779 case CQE_CODE_XRI_ABORTED:
14780 /* Process the WQ XRI abort event */
14781 phba->last_completion_time = jiffies;
14782 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
14783 (struct sli4_wcqe_xri_aborted *)&cqevt);
14784 break;
14785 case CQE_CODE_RECEIVE:
14786 case CQE_CODE_RECEIVE_V1:
14787 /* Process the RQ event */
14788 phba->last_completion_time = jiffies;
14789 workposted = lpfc_sli4_sp_handle_rcqe(phba,
14790 (struct lpfc_rcqe *)&cqevt);
14791 break;
14792 default:
14793 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14794 "0388 Not a valid WCQE code: x%x\n",
14795 bf_get(lpfc_cqe_code, &cqevt));
14796 break;
14797 }
14798 return workposted;
14799 }
14800
14801 /**
14802 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry
14803 * @phba: Pointer to HBA context object.
14804 * @eqe: Pointer to fast-path event queue entry.
14805 * @speq: Pointer to slow-path event queue.
14806 *
14807 * This routine process a event queue entry from the slow-path event queue.
14808 * It will check the MajorCode and MinorCode to determine this is for a
14809 * completion event on a completion queue, if not, an error shall be logged
14810 * and just return. Otherwise, it will get to the corresponding completion
14811 * queue and process all the entries on that completion queue, rearm the
14812 * completion queue, and then return.
14813 *
14814 **/
14815 static void
lpfc_sli4_sp_handle_eqe(struct lpfc_hba * phba,struct lpfc_eqe * eqe,struct lpfc_queue * speq)14816 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe,
14817 struct lpfc_queue *speq)
14818 {
14819 struct lpfc_queue *cq = NULL, *childq;
14820 uint16_t cqid;
14821 int ret = 0;
14822
14823 /* Get the reference to the corresponding CQ */
14824 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
14825
14826 list_for_each_entry(childq, &speq->child_list, list) {
14827 if (childq->queue_id == cqid) {
14828 cq = childq;
14829 break;
14830 }
14831 }
14832 if (unlikely(!cq)) {
14833 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE)
14834 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14835 "0365 Slow-path CQ identifier "
14836 "(%d) does not exist\n", cqid);
14837 return;
14838 }
14839
14840 /* Save EQ associated with this CQ */
14841 cq->assoc_qp = speq;
14842
14843 if (is_kdump_kernel())
14844 ret = queue_work(phba->wq, &cq->spwork);
14845 else
14846 ret = queue_work_on(cq->chann, phba->wq, &cq->spwork);
14847
14848 if (!ret)
14849 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14850 "0390 Cannot schedule queue work "
14851 "for CQ eqcqid=%d, cqid=%d on CPU %d\n",
14852 cqid, cq->queue_id, raw_smp_processor_id());
14853 }
14854
14855 /**
14856 * __lpfc_sli4_process_cq - Process elements of a CQ
14857 * @phba: Pointer to HBA context object.
14858 * @cq: Pointer to CQ to be processed
14859 * @handler: Routine to process each cqe
14860 * @delay: Pointer to usdelay to set in case of rescheduling of the handler
14861 *
14862 * This routine processes completion queue entries in a CQ. While a valid
14863 * queue element is found, the handler is called. During processing checks
14864 * are made for periodic doorbell writes to let the hardware know of
14865 * element consumption.
14866 *
14867 * If the max limit on cqes to process is hit, or there are no more valid
14868 * entries, the loop stops. If we processed a sufficient number of elements,
14869 * meaning there is sufficient load, rather than rearming and generating
14870 * another interrupt, a cq rescheduling delay will be set. A delay of 0
14871 * indicates no rescheduling.
14872 *
14873 * Returns True if work scheduled, False otherwise.
14874 **/
14875 static bool
__lpfc_sli4_process_cq(struct lpfc_hba * phba,struct lpfc_queue * cq,bool (* handler)(struct lpfc_hba *,struct lpfc_queue *,struct lpfc_cqe *),unsigned long * delay)14876 __lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq,
14877 bool (*handler)(struct lpfc_hba *, struct lpfc_queue *,
14878 struct lpfc_cqe *), unsigned long *delay)
14879 {
14880 struct lpfc_cqe *cqe;
14881 bool workposted = false;
14882 int count = 0, consumed = 0;
14883 bool arm = true;
14884
14885 /* default - no reschedule */
14886 *delay = 0;
14887
14888 if (cmpxchg(&cq->queue_claimed, 0, 1) != 0)
14889 goto rearm_and_exit;
14890
14891 /* Process all the entries to the CQ */
14892 cq->q_flag = 0;
14893 cqe = lpfc_sli4_cq_get(cq);
14894 while (cqe) {
14895 workposted |= handler(phba, cq, cqe);
14896 __lpfc_sli4_consume_cqe(phba, cq, cqe);
14897
14898 consumed++;
14899 if (!(++count % cq->max_proc_limit))
14900 break;
14901
14902 if (!(count % cq->notify_interval)) {
14903 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed,
14904 LPFC_QUEUE_NOARM);
14905 consumed = 0;
14906 cq->assoc_qp->q_flag |= HBA_EQ_DELAY_CHK;
14907 }
14908
14909 if (count == LPFC_NVMET_CQ_NOTIFY)
14910 cq->q_flag |= HBA_NVMET_CQ_NOTIFY;
14911
14912 cqe = lpfc_sli4_cq_get(cq);
14913 }
14914 if (count >= phba->cfg_cq_poll_threshold) {
14915 *delay = 1;
14916 arm = false;
14917 }
14918
14919 /* Track the max number of CQEs processed in 1 EQ */
14920 if (count > cq->CQ_max_cqe)
14921 cq->CQ_max_cqe = count;
14922
14923 cq->assoc_qp->EQ_cqe_cnt += count;
14924
14925 /* Catch the no cq entry condition */
14926 if (unlikely(count == 0))
14927 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
14928 "0369 No entry from completion queue "
14929 "qid=%d\n", cq->queue_id);
14930
14931 xchg(&cq->queue_claimed, 0);
14932
14933 rearm_and_exit:
14934 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed,
14935 arm ? LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM);
14936
14937 return workposted;
14938 }
14939
14940 /**
14941 * __lpfc_sli4_sp_process_cq - Process a slow-path event queue entry
14942 * @cq: pointer to CQ to process
14943 *
14944 * This routine calls the cq processing routine with a handler specific
14945 * to the type of queue bound to it.
14946 *
14947 * The CQ routine returns two values: the first is the calling status,
14948 * which indicates whether work was queued to the background discovery
14949 * thread. If true, the routine should wakeup the discovery thread;
14950 * the second is the delay parameter. If non-zero, rather than rearming
14951 * the CQ and yet another interrupt, the CQ handler should be queued so
14952 * that it is processed in a subsequent polling action. The value of
14953 * the delay indicates when to reschedule it.
14954 **/
14955 static void
__lpfc_sli4_sp_process_cq(struct lpfc_queue * cq)14956 __lpfc_sli4_sp_process_cq(struct lpfc_queue *cq)
14957 {
14958 struct lpfc_hba *phba = cq->phba;
14959 unsigned long delay;
14960 bool workposted = false;
14961 int ret = 0;
14962
14963 /* Process and rearm the CQ */
14964 switch (cq->type) {
14965 case LPFC_MCQ:
14966 workposted |= __lpfc_sli4_process_cq(phba, cq,
14967 lpfc_sli4_sp_handle_mcqe,
14968 &delay);
14969 break;
14970 case LPFC_WCQ:
14971 if (cq->subtype == LPFC_IO)
14972 workposted |= __lpfc_sli4_process_cq(phba, cq,
14973 lpfc_sli4_fp_handle_cqe,
14974 &delay);
14975 else
14976 workposted |= __lpfc_sli4_process_cq(phba, cq,
14977 lpfc_sli4_sp_handle_cqe,
14978 &delay);
14979 break;
14980 default:
14981 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14982 "0370 Invalid completion queue type (%d)\n",
14983 cq->type);
14984 return;
14985 }
14986
14987 if (delay) {
14988 if (is_kdump_kernel())
14989 ret = queue_delayed_work(phba->wq, &cq->sched_spwork,
14990 delay);
14991 else
14992 ret = queue_delayed_work_on(cq->chann, phba->wq,
14993 &cq->sched_spwork, delay);
14994 if (!ret)
14995 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14996 "0394 Cannot schedule queue work "
14997 "for cqid=%d on CPU %d\n",
14998 cq->queue_id, cq->chann);
14999 }
15000
15001 /* wake up worker thread if there are works to be done */
15002 if (workposted)
15003 lpfc_worker_wake_up(phba);
15004 }
15005
15006 /**
15007 * lpfc_sli4_sp_process_cq - slow-path work handler when started by
15008 * interrupt
15009 * @work: pointer to work element
15010 *
15011 * translates from the work handler and calls the slow-path handler.
15012 **/
15013 static void
lpfc_sli4_sp_process_cq(struct work_struct * work)15014 lpfc_sli4_sp_process_cq(struct work_struct *work)
15015 {
15016 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork);
15017
15018 __lpfc_sli4_sp_process_cq(cq);
15019 }
15020
15021 /**
15022 * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer
15023 * @work: pointer to work element
15024 *
15025 * translates from the work handler and calls the slow-path handler.
15026 **/
15027 static void
lpfc_sli4_dly_sp_process_cq(struct work_struct * work)15028 lpfc_sli4_dly_sp_process_cq(struct work_struct *work)
15029 {
15030 struct lpfc_queue *cq = container_of(to_delayed_work(work),
15031 struct lpfc_queue, sched_spwork);
15032
15033 __lpfc_sli4_sp_process_cq(cq);
15034 }
15035
15036 /**
15037 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry
15038 * @phba: Pointer to HBA context object.
15039 * @cq: Pointer to associated CQ
15040 * @wcqe: Pointer to work-queue completion queue entry.
15041 *
15042 * This routine process a fast-path work queue completion entry from fast-path
15043 * event queue for FCP command response completion.
15044 **/
15045 static void
lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba * phba,struct lpfc_queue * cq,struct lpfc_wcqe_complete * wcqe)15046 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
15047 struct lpfc_wcqe_complete *wcqe)
15048 {
15049 struct lpfc_sli_ring *pring = cq->pring;
15050 struct lpfc_iocbq *cmdiocbq;
15051 unsigned long iflags;
15052
15053 /* Check for response status */
15054 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) {
15055 /* If resource errors reported from HBA, reduce queue
15056 * depth of the SCSI device.
15057 */
15058 if (((bf_get(lpfc_wcqe_c_status, wcqe) ==
15059 IOSTAT_LOCAL_REJECT)) &&
15060 ((wcqe->parameter & IOERR_PARAM_MASK) ==
15061 IOERR_NO_RESOURCES))
15062 phba->lpfc_rampdown_queue_depth(phba);
15063
15064 /* Log the cmpl status */
15065 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
15066 "0373 FCP CQE cmpl: status=x%x: "
15067 "CQE: %08x %08x %08x %08x\n",
15068 bf_get(lpfc_wcqe_c_status, wcqe),
15069 wcqe->word0, wcqe->total_data_placed,
15070 wcqe->parameter, wcqe->word3);
15071 }
15072
15073 /* Look up the FCP command IOCB and create pseudo response IOCB */
15074 spin_lock_irqsave(&pring->ring_lock, iflags);
15075 pring->stats.iocb_event++;
15076 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
15077 bf_get(lpfc_wcqe_c_request_tag, wcqe));
15078 spin_unlock_irqrestore(&pring->ring_lock, iflags);
15079 if (unlikely(!cmdiocbq)) {
15080 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
15081 "0374 FCP complete with no corresponding "
15082 "cmdiocb: iotag (%d)\n",
15083 bf_get(lpfc_wcqe_c_request_tag, wcqe));
15084 return;
15085 }
15086 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
15087 cmdiocbq->isr_timestamp = cq->isr_timestamp;
15088 #endif
15089 if (bf_get(lpfc_wcqe_c_xb, wcqe)) {
15090 spin_lock_irqsave(&phba->hbalock, iflags);
15091 cmdiocbq->cmd_flag |= LPFC_EXCHANGE_BUSY;
15092 spin_unlock_irqrestore(&phba->hbalock, iflags);
15093 }
15094
15095 if (cmdiocbq->cmd_cmpl) {
15096 /* For FCP the flag is cleared in cmd_cmpl */
15097 if (!(cmdiocbq->cmd_flag & LPFC_IO_FCP) &&
15098 cmdiocbq->cmd_flag & LPFC_DRIVER_ABORTED) {
15099 spin_lock_irqsave(&phba->hbalock, iflags);
15100 cmdiocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED;
15101 spin_unlock_irqrestore(&phba->hbalock, iflags);
15102 }
15103
15104 /* Pass the cmd_iocb and the wcqe to the upper layer */
15105 memcpy(&cmdiocbq->wcqe_cmpl, wcqe,
15106 sizeof(struct lpfc_wcqe_complete));
15107 cmdiocbq->cmd_cmpl(phba, cmdiocbq, cmdiocbq);
15108 } else {
15109 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
15110 "0375 FCP cmdiocb not callback function "
15111 "iotag: (%d)\n",
15112 bf_get(lpfc_wcqe_c_request_tag, wcqe));
15113 }
15114 }
15115
15116 /**
15117 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event
15118 * @phba: Pointer to HBA context object.
15119 * @cq: Pointer to completion queue.
15120 * @wcqe: Pointer to work-queue completion queue entry.
15121 *
15122 * This routine handles an fast-path WQ entry consumed event by invoking the
15123 * proper WQ release routine to the slow-path WQ.
15124 **/
15125 static void
lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba * phba,struct lpfc_queue * cq,struct lpfc_wcqe_release * wcqe)15126 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
15127 struct lpfc_wcqe_release *wcqe)
15128 {
15129 struct lpfc_queue *childwq;
15130 bool wqid_matched = false;
15131 uint16_t hba_wqid;
15132
15133 /* Check for fast-path FCP work queue release */
15134 hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe);
15135 list_for_each_entry(childwq, &cq->child_list, list) {
15136 if (childwq->queue_id == hba_wqid) {
15137 lpfc_sli4_wq_release(childwq,
15138 bf_get(lpfc_wcqe_r_wqe_index, wcqe));
15139 if (childwq->q_flag & HBA_NVMET_WQFULL)
15140 lpfc_nvmet_wqfull_process(phba, childwq);
15141 wqid_matched = true;
15142 break;
15143 }
15144 }
15145 /* Report warning log message if no match found */
15146 if (wqid_matched != true)
15147 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
15148 "2580 Fast-path wqe consume event carries "
15149 "miss-matched qid: wcqe-qid=x%x\n", hba_wqid);
15150 }
15151
15152 /**
15153 * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry
15154 * @phba: Pointer to HBA context object.
15155 * @cq: Pointer to completion queue.
15156 * @rcqe: Pointer to receive-queue completion queue entry.
15157 *
15158 * This routine process a receive-queue completion queue entry.
15159 *
15160 * Return: true if work posted to worker thread, otherwise false.
15161 **/
15162 static bool
lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba * phba,struct lpfc_queue * cq,struct lpfc_rcqe * rcqe)15163 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
15164 struct lpfc_rcqe *rcqe)
15165 {
15166 bool workposted = false;
15167 struct lpfc_queue *hrq;
15168 struct lpfc_queue *drq;
15169 struct rqb_dmabuf *dma_buf;
15170 struct fc_frame_header *fc_hdr;
15171 struct lpfc_nvmet_tgtport *tgtp;
15172 uint32_t status, rq_id;
15173 unsigned long iflags;
15174 uint32_t fctl, idx;
15175
15176 if ((phba->nvmet_support == 0) ||
15177 (phba->sli4_hba.nvmet_cqset == NULL))
15178 return workposted;
15179
15180 idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id;
15181 hrq = phba->sli4_hba.nvmet_mrq_hdr[idx];
15182 drq = phba->sli4_hba.nvmet_mrq_data[idx];
15183
15184 /* sanity check on queue memory */
15185 if (unlikely(!hrq) || unlikely(!drq))
15186 return workposted;
15187
15188 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1)
15189 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe);
15190 else
15191 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe);
15192
15193 if ((phba->nvmet_support == 0) ||
15194 (rq_id != hrq->queue_id))
15195 return workposted;
15196
15197 status = bf_get(lpfc_rcqe_status, rcqe);
15198 switch (status) {
15199 case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
15200 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15201 "6126 Receive Frame Truncated!!\n");
15202 fallthrough;
15203 case FC_STATUS_RQ_SUCCESS:
15204 spin_lock_irqsave(&phba->hbalock, iflags);
15205 lpfc_sli4_rq_release(hrq, drq);
15206 dma_buf = lpfc_sli_rqbuf_get(phba, hrq);
15207 if (!dma_buf) {
15208 hrq->RQ_no_buf_found++;
15209 spin_unlock_irqrestore(&phba->hbalock, iflags);
15210 goto out;
15211 }
15212 spin_unlock_irqrestore(&phba->hbalock, iflags);
15213 hrq->RQ_rcv_buf++;
15214 hrq->RQ_buf_posted--;
15215 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt;
15216
15217 /* Just some basic sanity checks on FCP Command frame */
15218 fctl = (fc_hdr->fh_f_ctl[0] << 16 |
15219 fc_hdr->fh_f_ctl[1] << 8 |
15220 fc_hdr->fh_f_ctl[2]);
15221 if (((fctl &
15222 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) !=
15223 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) ||
15224 (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */
15225 goto drop;
15226
15227 if (fc_hdr->fh_type == FC_TYPE_FCP) {
15228 dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe);
15229 lpfc_nvmet_unsol_fcp_event(
15230 phba, idx, dma_buf, cq->isr_timestamp,
15231 cq->q_flag & HBA_NVMET_CQ_NOTIFY);
15232 return false;
15233 }
15234 drop:
15235 lpfc_rq_buf_free(phba, &dma_buf->hbuf);
15236 break;
15237 case FC_STATUS_INSUFF_BUF_FRM_DISC:
15238 if (phba->nvmet_support) {
15239 tgtp = phba->targetport->private;
15240 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15241 "6401 RQE Error x%x, posted %d err_cnt "
15242 "%d: %x %x %x\n",
15243 status, hrq->RQ_buf_posted,
15244 hrq->RQ_no_posted_buf,
15245 atomic_read(&tgtp->rcv_fcp_cmd_in),
15246 atomic_read(&tgtp->rcv_fcp_cmd_out),
15247 atomic_read(&tgtp->xmt_fcp_release));
15248 }
15249 fallthrough;
15250
15251 case FC_STATUS_INSUFF_BUF_NEED_BUF:
15252 hrq->RQ_no_posted_buf++;
15253 /* Post more buffers if possible */
15254 break;
15255 case FC_STATUS_RQ_DMA_FAILURE:
15256 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15257 "2575 RQE DMA Error x%x, x%08x x%08x x%08x "
15258 "x%08x\n",
15259 status, rcqe->word0, rcqe->word1,
15260 rcqe->word2, rcqe->word3);
15261
15262 /* If IV set, no further recovery */
15263 if (bf_get(lpfc_rcqe_iv, rcqe))
15264 break;
15265
15266 /* recycle consumed resource */
15267 spin_lock_irqsave(&phba->hbalock, iflags);
15268 lpfc_sli4_rq_release(hrq, drq);
15269 dma_buf = lpfc_sli_rqbuf_get(phba, hrq);
15270 if (!dma_buf) {
15271 hrq->RQ_no_buf_found++;
15272 spin_unlock_irqrestore(&phba->hbalock, iflags);
15273 break;
15274 }
15275 hrq->RQ_rcv_buf++;
15276 hrq->RQ_buf_posted--;
15277 spin_unlock_irqrestore(&phba->hbalock, iflags);
15278 lpfc_rq_buf_free(phba, &dma_buf->hbuf);
15279 break;
15280 default:
15281 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15282 "2576 Unexpected RQE Status x%x, w0-3 x%08x "
15283 "x%08x x%08x x%08x\n",
15284 status, rcqe->word0, rcqe->word1,
15285 rcqe->word2, rcqe->word3);
15286 break;
15287 }
15288 out:
15289 return workposted;
15290 }
15291
15292 /**
15293 * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry
15294 * @phba: adapter with cq
15295 * @cq: Pointer to the completion queue.
15296 * @cqe: Pointer to fast-path completion queue entry.
15297 *
15298 * This routine process a fast-path work queue completion entry from fast-path
15299 * event queue for FCP command response completion.
15300 *
15301 * Return: true if work posted to worker thread, otherwise false.
15302 **/
15303 static bool
lpfc_sli4_fp_handle_cqe(struct lpfc_hba * phba,struct lpfc_queue * cq,struct lpfc_cqe * cqe)15304 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
15305 struct lpfc_cqe *cqe)
15306 {
15307 struct lpfc_wcqe_release wcqe;
15308 bool workposted = false;
15309
15310 /* Copy the work queue CQE and convert endian order if needed */
15311 lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe));
15312
15313 /* Check and process for different type of WCQE and dispatch */
15314 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) {
15315 case CQE_CODE_COMPL_WQE:
15316 case CQE_CODE_NVME_ERSP:
15317 cq->CQ_wq++;
15318 /* Process the WQ complete event */
15319 phba->last_completion_time = jiffies;
15320 if (cq->subtype == LPFC_IO || cq->subtype == LPFC_NVME_LS)
15321 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq,
15322 (struct lpfc_wcqe_complete *)&wcqe);
15323 break;
15324 case CQE_CODE_RELEASE_WQE:
15325 cq->CQ_release_wqe++;
15326 /* Process the WQ release event */
15327 lpfc_sli4_fp_handle_rel_wcqe(phba, cq,
15328 (struct lpfc_wcqe_release *)&wcqe);
15329 break;
15330 case CQE_CODE_XRI_ABORTED:
15331 cq->CQ_xri_aborted++;
15332 /* Process the WQ XRI abort event */
15333 phba->last_completion_time = jiffies;
15334 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
15335 (struct sli4_wcqe_xri_aborted *)&wcqe);
15336 break;
15337 case CQE_CODE_RECEIVE_V1:
15338 case CQE_CODE_RECEIVE:
15339 phba->last_completion_time = jiffies;
15340 if (cq->subtype == LPFC_NVMET) {
15341 workposted = lpfc_sli4_nvmet_handle_rcqe(
15342 phba, cq, (struct lpfc_rcqe *)&wcqe);
15343 }
15344 break;
15345 default:
15346 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15347 "0144 Not a valid CQE code: x%x\n",
15348 bf_get(lpfc_wcqe_c_code, &wcqe));
15349 break;
15350 }
15351 return workposted;
15352 }
15353
15354 /**
15355 * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry
15356 * @cq: Pointer to CQ to be processed
15357 *
15358 * This routine calls the cq processing routine with the handler for
15359 * fast path CQEs.
15360 *
15361 * The CQ routine returns two values: the first is the calling status,
15362 * which indicates whether work was queued to the background discovery
15363 * thread. If true, the routine should wakeup the discovery thread;
15364 * the second is the delay parameter. If non-zero, rather than rearming
15365 * the CQ and yet another interrupt, the CQ handler should be queued so
15366 * that it is processed in a subsequent polling action. The value of
15367 * the delay indicates when to reschedule it.
15368 **/
15369 static void
__lpfc_sli4_hba_process_cq(struct lpfc_queue * cq)15370 __lpfc_sli4_hba_process_cq(struct lpfc_queue *cq)
15371 {
15372 struct lpfc_hba *phba = cq->phba;
15373 unsigned long delay;
15374 bool workposted = false;
15375 int ret;
15376
15377 /* process and rearm the CQ */
15378 workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe,
15379 &delay);
15380
15381 if (delay) {
15382 if (is_kdump_kernel())
15383 ret = queue_delayed_work(phba->wq, &cq->sched_irqwork,
15384 delay);
15385 else
15386 ret = queue_delayed_work_on(cq->chann, phba->wq,
15387 &cq->sched_irqwork, delay);
15388 if (!ret)
15389 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15390 "0367 Cannot schedule queue work "
15391 "for cqid=%d on CPU %d\n",
15392 cq->queue_id, cq->chann);
15393 }
15394
15395 /* wake up worker thread if there are works to be done */
15396 if (workposted)
15397 lpfc_worker_wake_up(phba);
15398 }
15399
15400 /**
15401 * lpfc_sli4_hba_process_cq - fast-path work handler when started by
15402 * interrupt
15403 * @work: pointer to work element
15404 *
15405 * translates from the work handler and calls the fast-path handler.
15406 **/
15407 static void
lpfc_sli4_hba_process_cq(struct work_struct * work)15408 lpfc_sli4_hba_process_cq(struct work_struct *work)
15409 {
15410 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork);
15411
15412 __lpfc_sli4_hba_process_cq(cq);
15413 }
15414
15415 /**
15416 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry
15417 * @phba: Pointer to HBA context object.
15418 * @eq: Pointer to the queue structure.
15419 * @eqe: Pointer to fast-path event queue entry.
15420 * @poll_mode: poll_mode to execute processing the cq.
15421 *
15422 * This routine process a event queue entry from the fast-path event queue.
15423 * It will check the MajorCode and MinorCode to determine this is for a
15424 * completion event on a completion queue, if not, an error shall be logged
15425 * and just return. Otherwise, it will get to the corresponding completion
15426 * queue and process all the entries on the completion queue, rearm the
15427 * completion queue, and then return.
15428 **/
15429 static void
lpfc_sli4_hba_handle_eqe(struct lpfc_hba * phba,struct lpfc_queue * eq,struct lpfc_eqe * eqe,enum lpfc_poll_mode poll_mode)15430 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq,
15431 struct lpfc_eqe *eqe, enum lpfc_poll_mode poll_mode)
15432 {
15433 struct lpfc_queue *cq = NULL;
15434 uint32_t qidx = eq->hdwq;
15435 uint16_t cqid, id;
15436 int ret;
15437
15438 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) {
15439 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15440 "0366 Not a valid completion "
15441 "event: majorcode=x%x, minorcode=x%x\n",
15442 bf_get_le32(lpfc_eqe_major_code, eqe),
15443 bf_get_le32(lpfc_eqe_minor_code, eqe));
15444 return;
15445 }
15446
15447 /* Get the reference to the corresponding CQ */
15448 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
15449
15450 /* Use the fast lookup method first */
15451 if (cqid <= phba->sli4_hba.cq_max) {
15452 cq = phba->sli4_hba.cq_lookup[cqid];
15453 if (cq)
15454 goto work_cq;
15455 }
15456
15457 /* Next check for NVMET completion */
15458 if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) {
15459 id = phba->sli4_hba.nvmet_cqset[0]->queue_id;
15460 if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) {
15461 /* Process NVMET unsol rcv */
15462 cq = phba->sli4_hba.nvmet_cqset[cqid - id];
15463 goto process_cq;
15464 }
15465 }
15466
15467 if (phba->sli4_hba.nvmels_cq &&
15468 (cqid == phba->sli4_hba.nvmels_cq->queue_id)) {
15469 /* Process NVME unsol rcv */
15470 cq = phba->sli4_hba.nvmels_cq;
15471 }
15472
15473 /* Otherwise this is a Slow path event */
15474 if (cq == NULL) {
15475 lpfc_sli4_sp_handle_eqe(phba, eqe,
15476 phba->sli4_hba.hdwq[qidx].hba_eq);
15477 return;
15478 }
15479
15480 process_cq:
15481 if (unlikely(cqid != cq->queue_id)) {
15482 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15483 "0368 Miss-matched fast-path completion "
15484 "queue identifier: eqcqid=%d, fcpcqid=%d\n",
15485 cqid, cq->queue_id);
15486 return;
15487 }
15488
15489 work_cq:
15490 #if defined(CONFIG_SCSI_LPFC_DEBUG_FS)
15491 if (phba->ktime_on)
15492 cq->isr_timestamp = ktime_get_ns();
15493 else
15494 cq->isr_timestamp = 0;
15495 #endif
15496
15497 switch (poll_mode) {
15498 case LPFC_THREADED_IRQ:
15499 __lpfc_sli4_hba_process_cq(cq);
15500 break;
15501 case LPFC_QUEUE_WORK:
15502 default:
15503 if (is_kdump_kernel())
15504 ret = queue_work(phba->wq, &cq->irqwork);
15505 else
15506 ret = queue_work_on(cq->chann, phba->wq, &cq->irqwork);
15507 if (!ret)
15508 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15509 "0383 Cannot schedule queue work "
15510 "for CQ eqcqid=%d, cqid=%d on CPU %d\n",
15511 cqid, cq->queue_id,
15512 raw_smp_processor_id());
15513 break;
15514 }
15515 }
15516
15517 /**
15518 * lpfc_sli4_dly_hba_process_cq - fast-path work handler when started by timer
15519 * @work: pointer to work element
15520 *
15521 * translates from the work handler and calls the fast-path handler.
15522 **/
15523 static void
lpfc_sli4_dly_hba_process_cq(struct work_struct * work)15524 lpfc_sli4_dly_hba_process_cq(struct work_struct *work)
15525 {
15526 struct lpfc_queue *cq = container_of(to_delayed_work(work),
15527 struct lpfc_queue, sched_irqwork);
15528
15529 __lpfc_sli4_hba_process_cq(cq);
15530 }
15531
15532 /**
15533 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device
15534 * @irq: Interrupt number.
15535 * @dev_id: The device context pointer.
15536 *
15537 * This function is directly called from the PCI layer as an interrupt
15538 * service routine when device with SLI-4 interface spec is enabled with
15539 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
15540 * ring event in the HBA. However, when the device is enabled with either
15541 * MSI or Pin-IRQ interrupt mode, this function is called as part of the
15542 * device-level interrupt handler. When the PCI slot is in error recovery
15543 * or the HBA is undergoing initialization, the interrupt handler will not
15544 * process the interrupt. The SCSI FCP fast-path ring event are handled in
15545 * the intrrupt context. This function is called without any lock held.
15546 * It gets the hbalock to access and update SLI data structures. Note that,
15547 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is
15548 * equal to that of FCP CQ index.
15549 *
15550 * The link attention and ELS ring attention events are handled
15551 * by the worker thread. The interrupt handler signals the worker thread
15552 * and returns for these events. This function is called without any lock
15553 * held. It gets the hbalock to access and update SLI data structures.
15554 *
15555 * This function returns IRQ_HANDLED when interrupt is handled, IRQ_WAKE_THREAD
15556 * when interrupt is scheduled to be handled from a threaded irq context, or
15557 * else returns IRQ_NONE.
15558 **/
15559 irqreturn_t
lpfc_sli4_hba_intr_handler(int irq,void * dev_id)15560 lpfc_sli4_hba_intr_handler(int irq, void *dev_id)
15561 {
15562 struct lpfc_hba *phba;
15563 struct lpfc_hba_eq_hdl *hba_eq_hdl;
15564 struct lpfc_queue *fpeq;
15565 unsigned long iflag;
15566 int hba_eqidx;
15567 int ecount = 0;
15568 struct lpfc_eq_intr_info *eqi;
15569
15570 /* Get the driver's phba structure from the dev_id */
15571 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id;
15572 phba = hba_eq_hdl->phba;
15573 hba_eqidx = hba_eq_hdl->idx;
15574
15575 if (unlikely(!phba))
15576 return IRQ_NONE;
15577 if (unlikely(!phba->sli4_hba.hdwq))
15578 return IRQ_NONE;
15579
15580 /* Get to the EQ struct associated with this vector */
15581 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq;
15582 if (unlikely(!fpeq))
15583 return IRQ_NONE;
15584
15585 /* Check device state for handling interrupt */
15586 if (unlikely(lpfc_intr_state_check(phba))) {
15587 /* Check again for link_state with lock held */
15588 spin_lock_irqsave(&phba->hbalock, iflag);
15589 if (phba->link_state < LPFC_LINK_DOWN)
15590 /* Flush, clear interrupt, and rearm the EQ */
15591 lpfc_sli4_eqcq_flush(phba, fpeq);
15592 spin_unlock_irqrestore(&phba->hbalock, iflag);
15593 return IRQ_NONE;
15594 }
15595
15596 switch (fpeq->poll_mode) {
15597 case LPFC_THREADED_IRQ:
15598 /* CGN mgmt is mutually exclusive from irq processing */
15599 if (phba->cmf_active_mode == LPFC_CFG_OFF)
15600 return IRQ_WAKE_THREAD;
15601 fallthrough;
15602 case LPFC_QUEUE_WORK:
15603 default:
15604 eqi = this_cpu_ptr(phba->sli4_hba.eq_info);
15605 eqi->icnt++;
15606
15607 fpeq->last_cpu = raw_smp_processor_id();
15608
15609 if (eqi->icnt > LPFC_EQD_ISR_TRIGGER &&
15610 fpeq->q_flag & HBA_EQ_DELAY_CHK &&
15611 phba->cfg_auto_imax &&
15612 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY &&
15613 phba->sli.sli_flag & LPFC_SLI_USE_EQDR)
15614 lpfc_sli4_mod_hba_eq_delay(phba, fpeq,
15615 LPFC_MAX_AUTO_EQ_DELAY);
15616
15617 /* process and rearm the EQ */
15618 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM,
15619 LPFC_QUEUE_WORK);
15620
15621 if (unlikely(ecount == 0)) {
15622 fpeq->EQ_no_entry++;
15623 if (phba->intr_type == MSIX)
15624 /* MSI-X treated interrupt served as no EQ share INT */
15625 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
15626 "0358 MSI-X interrupt with no EQE\n");
15627 else
15628 /* Non MSI-X treated on interrupt as EQ share INT */
15629 return IRQ_NONE;
15630 }
15631 }
15632
15633 return IRQ_HANDLED;
15634 } /* lpfc_sli4_hba_intr_handler */
15635
15636 /**
15637 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device
15638 * @irq: Interrupt number.
15639 * @dev_id: The device context pointer.
15640 *
15641 * This function is the device-level interrupt handler to device with SLI-4
15642 * interface spec, called from the PCI layer when either MSI or Pin-IRQ
15643 * interrupt mode is enabled and there is an event in the HBA which requires
15644 * driver attention. This function invokes the slow-path interrupt attention
15645 * handling function and fast-path interrupt attention handling function in
15646 * turn to process the relevant HBA attention events. This function is called
15647 * without any lock held. It gets the hbalock to access and update SLI data
15648 * structures.
15649 *
15650 * This function returns IRQ_HANDLED when interrupt is handled, else it
15651 * returns IRQ_NONE.
15652 **/
15653 irqreturn_t
lpfc_sli4_intr_handler(int irq,void * dev_id)15654 lpfc_sli4_intr_handler(int irq, void *dev_id)
15655 {
15656 struct lpfc_hba *phba;
15657 irqreturn_t hba_irq_rc;
15658 bool hba_handled = false;
15659 int qidx;
15660
15661 /* Get the driver's phba structure from the dev_id */
15662 phba = (struct lpfc_hba *)dev_id;
15663
15664 if (unlikely(!phba))
15665 return IRQ_NONE;
15666
15667 /*
15668 * Invoke fast-path host attention interrupt handling as appropriate.
15669 */
15670 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
15671 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq,
15672 &phba->sli4_hba.hba_eq_hdl[qidx]);
15673 if (hba_irq_rc == IRQ_HANDLED)
15674 hba_handled |= true;
15675 }
15676
15677 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE;
15678 } /* lpfc_sli4_intr_handler */
15679
lpfc_sli4_poll_hbtimer(struct timer_list * t)15680 void lpfc_sli4_poll_hbtimer(struct timer_list *t)
15681 {
15682 struct lpfc_hba *phba = from_timer(phba, t, cpuhp_poll_timer);
15683 struct lpfc_queue *eq;
15684
15685 rcu_read_lock();
15686
15687 list_for_each_entry_rcu(eq, &phba->poll_list, _poll_list)
15688 lpfc_sli4_poll_eq(eq);
15689 if (!list_empty(&phba->poll_list))
15690 mod_timer(&phba->cpuhp_poll_timer,
15691 jiffies + msecs_to_jiffies(LPFC_POLL_HB));
15692
15693 rcu_read_unlock();
15694 }
15695
lpfc_sli4_add_to_poll_list(struct lpfc_queue * eq)15696 static inline void lpfc_sli4_add_to_poll_list(struct lpfc_queue *eq)
15697 {
15698 struct lpfc_hba *phba = eq->phba;
15699
15700 /* kickstart slowpath processing if needed */
15701 if (list_empty(&phba->poll_list))
15702 mod_timer(&phba->cpuhp_poll_timer,
15703 jiffies + msecs_to_jiffies(LPFC_POLL_HB));
15704
15705 list_add_rcu(&eq->_poll_list, &phba->poll_list);
15706 synchronize_rcu();
15707 }
15708
lpfc_sli4_remove_from_poll_list(struct lpfc_queue * eq)15709 static inline void lpfc_sli4_remove_from_poll_list(struct lpfc_queue *eq)
15710 {
15711 struct lpfc_hba *phba = eq->phba;
15712
15713 /* Disable slowpath processing for this eq. Kick start the eq
15714 * by RE-ARMING the eq's ASAP
15715 */
15716 list_del_rcu(&eq->_poll_list);
15717 synchronize_rcu();
15718
15719 if (list_empty(&phba->poll_list))
15720 del_timer_sync(&phba->cpuhp_poll_timer);
15721 }
15722
lpfc_sli4_cleanup_poll_list(struct lpfc_hba * phba)15723 void lpfc_sli4_cleanup_poll_list(struct lpfc_hba *phba)
15724 {
15725 struct lpfc_queue *eq, *next;
15726
15727 list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list)
15728 list_del(&eq->_poll_list);
15729
15730 INIT_LIST_HEAD(&phba->poll_list);
15731 synchronize_rcu();
15732 }
15733
15734 static inline void
__lpfc_sli4_switch_eqmode(struct lpfc_queue * eq,uint8_t mode)15735 __lpfc_sli4_switch_eqmode(struct lpfc_queue *eq, uint8_t mode)
15736 {
15737 if (mode == eq->mode)
15738 return;
15739 /*
15740 * currently this function is only called during a hotplug
15741 * event and the cpu on which this function is executing
15742 * is going offline. By now the hotplug has instructed
15743 * the scheduler to remove this cpu from cpu active mask.
15744 * So we don't need to work about being put aside by the
15745 * scheduler for a high priority process. Yes, the inte-
15746 * rrupts could come but they are known to retire ASAP.
15747 */
15748
15749 /* Disable polling in the fastpath */
15750 WRITE_ONCE(eq->mode, mode);
15751 /* flush out the store buffer */
15752 smp_wmb();
15753
15754 /*
15755 * Add this eq to the polling list and start polling. For
15756 * a grace period both interrupt handler and poller will
15757 * try to process the eq _but_ that's fine. We have a
15758 * synchronization mechanism in place (queue_claimed) to
15759 * deal with it. This is just a draining phase for int-
15760 * errupt handler (not eq's) as we have guranteed through
15761 * barrier that all the CPUs have seen the new CQ_POLLED
15762 * state. which will effectively disable the REARMING of
15763 * the EQ. The whole idea is eq's die off eventually as
15764 * we are not rearming EQ's anymore.
15765 */
15766 mode ? lpfc_sli4_add_to_poll_list(eq) :
15767 lpfc_sli4_remove_from_poll_list(eq);
15768 }
15769
lpfc_sli4_start_polling(struct lpfc_queue * eq)15770 void lpfc_sli4_start_polling(struct lpfc_queue *eq)
15771 {
15772 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_POLL);
15773 }
15774
lpfc_sli4_stop_polling(struct lpfc_queue * eq)15775 void lpfc_sli4_stop_polling(struct lpfc_queue *eq)
15776 {
15777 struct lpfc_hba *phba = eq->phba;
15778
15779 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_INTERRUPT);
15780
15781 /* Kick start for the pending io's in h/w.
15782 * Once we switch back to interrupt processing on a eq
15783 * the io path completion will only arm eq's when it
15784 * receives a completion. But since eq's are in disa-
15785 * rmed state it doesn't receive a completion. This
15786 * creates a deadlock scenaro.
15787 */
15788 phba->sli4_hba.sli4_write_eq_db(phba, eq, 0, LPFC_QUEUE_REARM);
15789 }
15790
15791 /**
15792 * lpfc_sli4_queue_free - free a queue structure and associated memory
15793 * @queue: The queue structure to free.
15794 *
15795 * This function frees a queue structure and the DMAable memory used for
15796 * the host resident queue. This function must be called after destroying the
15797 * queue on the HBA.
15798 **/
15799 void
lpfc_sli4_queue_free(struct lpfc_queue * queue)15800 lpfc_sli4_queue_free(struct lpfc_queue *queue)
15801 {
15802 struct lpfc_dmabuf *dmabuf;
15803
15804 if (!queue)
15805 return;
15806
15807 if (!list_empty(&queue->wq_list))
15808 list_del(&queue->wq_list);
15809
15810 while (!list_empty(&queue->page_list)) {
15811 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf,
15812 list);
15813 dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size,
15814 dmabuf->virt, dmabuf->phys);
15815 kfree(dmabuf);
15816 }
15817 if (queue->rqbp) {
15818 lpfc_free_rq_buffer(queue->phba, queue);
15819 kfree(queue->rqbp);
15820 }
15821
15822 if (!list_empty(&queue->cpu_list))
15823 list_del(&queue->cpu_list);
15824
15825 kfree(queue);
15826 return;
15827 }
15828
15829 /**
15830 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure
15831 * @phba: The HBA that this queue is being created on.
15832 * @page_size: The size of a queue page
15833 * @entry_size: The size of each queue entry for this queue.
15834 * @entry_count: The number of entries that this queue will handle.
15835 * @cpu: The cpu that will primarily utilize this queue.
15836 *
15837 * This function allocates a queue structure and the DMAable memory used for
15838 * the host resident queue. This function must be called before creating the
15839 * queue on the HBA.
15840 **/
15841 struct lpfc_queue *
lpfc_sli4_queue_alloc(struct lpfc_hba * phba,uint32_t page_size,uint32_t entry_size,uint32_t entry_count,int cpu)15842 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size,
15843 uint32_t entry_size, uint32_t entry_count, int cpu)
15844 {
15845 struct lpfc_queue *queue;
15846 struct lpfc_dmabuf *dmabuf;
15847 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15848 uint16_t x, pgcnt;
15849
15850 if (!phba->sli4_hba.pc_sli4_params.supported)
15851 hw_page_size = page_size;
15852
15853 pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size;
15854
15855 /* If needed, Adjust page count to match the max the adapter supports */
15856 if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt)
15857 pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt;
15858
15859 queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt),
15860 GFP_KERNEL, cpu_to_node(cpu));
15861 if (!queue)
15862 return NULL;
15863
15864 INIT_LIST_HEAD(&queue->list);
15865 INIT_LIST_HEAD(&queue->_poll_list);
15866 INIT_LIST_HEAD(&queue->wq_list);
15867 INIT_LIST_HEAD(&queue->wqfull_list);
15868 INIT_LIST_HEAD(&queue->page_list);
15869 INIT_LIST_HEAD(&queue->child_list);
15870 INIT_LIST_HEAD(&queue->cpu_list);
15871
15872 /* Set queue parameters now. If the system cannot provide memory
15873 * resources, the free routine needs to know what was allocated.
15874 */
15875 queue->page_count = pgcnt;
15876 queue->q_pgs = (void **)&queue[1];
15877 queue->entry_cnt_per_pg = hw_page_size / entry_size;
15878 queue->entry_size = entry_size;
15879 queue->entry_count = entry_count;
15880 queue->page_size = hw_page_size;
15881 queue->phba = phba;
15882
15883 for (x = 0; x < queue->page_count; x++) {
15884 dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL,
15885 dev_to_node(&phba->pcidev->dev));
15886 if (!dmabuf)
15887 goto out_fail;
15888 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
15889 hw_page_size, &dmabuf->phys,
15890 GFP_KERNEL);
15891 if (!dmabuf->virt) {
15892 kfree(dmabuf);
15893 goto out_fail;
15894 }
15895 dmabuf->buffer_tag = x;
15896 list_add_tail(&dmabuf->list, &queue->page_list);
15897 /* use lpfc_sli4_qe to index a paritcular entry in this page */
15898 queue->q_pgs[x] = dmabuf->virt;
15899 }
15900 INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq);
15901 INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq);
15902 INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq);
15903 INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq);
15904
15905 /* notify_interval will be set during q creation */
15906
15907 return queue;
15908 out_fail:
15909 lpfc_sli4_queue_free(queue);
15910 return NULL;
15911 }
15912
15913 /**
15914 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory
15915 * @phba: HBA structure that indicates port to create a queue on.
15916 * @pci_barset: PCI BAR set flag.
15917 *
15918 * This function shall perform iomap of the specified PCI BAR address to host
15919 * memory address if not already done so and return it. The returned host
15920 * memory address can be NULL.
15921 */
15922 static void __iomem *
lpfc_dual_chute_pci_bar_map(struct lpfc_hba * phba,uint16_t pci_barset)15923 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset)
15924 {
15925 if (!phba->pcidev)
15926 return NULL;
15927
15928 switch (pci_barset) {
15929 case WQ_PCI_BAR_0_AND_1:
15930 return phba->pci_bar0_memmap_p;
15931 case WQ_PCI_BAR_2_AND_3:
15932 return phba->pci_bar2_memmap_p;
15933 case WQ_PCI_BAR_4_AND_5:
15934 return phba->pci_bar4_memmap_p;
15935 default:
15936 break;
15937 }
15938 return NULL;
15939 }
15940
15941 /**
15942 * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs
15943 * @phba: HBA structure that EQs are on.
15944 * @startq: The starting EQ index to modify
15945 * @numq: The number of EQs (consecutive indexes) to modify
15946 * @usdelay: amount of delay
15947 *
15948 * This function revises the EQ delay on 1 or more EQs. The EQ delay
15949 * is set either by writing to a register (if supported by the SLI Port)
15950 * or by mailbox command. The mailbox command allows several EQs to be
15951 * updated at once.
15952 *
15953 * The @phba struct is used to send a mailbox command to HBA. The @startq
15954 * is used to get the starting EQ index to change. The @numq value is
15955 * used to specify how many consecutive EQ indexes, starting at EQ index,
15956 * are to be changed. This function is asynchronous and will wait for any
15957 * mailbox commands to finish before returning.
15958 *
15959 * On success this function will return a zero. If unable to allocate
15960 * enough memory this function will return -ENOMEM. If a mailbox command
15961 * fails this function will return -ENXIO. Note: on ENXIO, some EQs may
15962 * have had their delay multipler changed.
15963 **/
15964 void
lpfc_modify_hba_eq_delay(struct lpfc_hba * phba,uint32_t startq,uint32_t numq,uint32_t usdelay)15965 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq,
15966 uint32_t numq, uint32_t usdelay)
15967 {
15968 struct lpfc_mbx_modify_eq_delay *eq_delay;
15969 LPFC_MBOXQ_t *mbox;
15970 struct lpfc_queue *eq;
15971 int cnt = 0, rc, length;
15972 uint32_t shdr_status, shdr_add_status;
15973 uint32_t dmult;
15974 int qidx;
15975 union lpfc_sli4_cfg_shdr *shdr;
15976
15977 if (startq >= phba->cfg_irq_chann)
15978 return;
15979
15980 if (usdelay > 0xFFFF) {
15981 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME,
15982 "6429 usdelay %d too large. Scaled down to "
15983 "0xFFFF.\n", usdelay);
15984 usdelay = 0xFFFF;
15985 }
15986
15987 /* set values by EQ_DELAY register if supported */
15988 if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) {
15989 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) {
15990 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
15991 if (!eq)
15992 continue;
15993
15994 lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay);
15995
15996 if (++cnt >= numq)
15997 break;
15998 }
15999 return;
16000 }
16001
16002 /* Otherwise, set values by mailbox cmd */
16003
16004 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16005 if (!mbox) {
16006 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16007 "6428 Failed allocating mailbox cmd buffer."
16008 " EQ delay was not set.\n");
16009 return;
16010 }
16011 length = (sizeof(struct lpfc_mbx_modify_eq_delay) -
16012 sizeof(struct lpfc_sli4_cfg_mhdr));
16013 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16014 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY,
16015 length, LPFC_SLI4_MBX_EMBED);
16016 eq_delay = &mbox->u.mqe.un.eq_delay;
16017
16018 /* Calculate delay multiper from maximum interrupt per second */
16019 dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC;
16020 if (dmult)
16021 dmult--;
16022 if (dmult > LPFC_DMULT_MAX)
16023 dmult = LPFC_DMULT_MAX;
16024
16025 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) {
16026 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
16027 if (!eq)
16028 continue;
16029 eq->q_mode = usdelay;
16030 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id;
16031 eq_delay->u.request.eq[cnt].phase = 0;
16032 eq_delay->u.request.eq[cnt].delay_multi = dmult;
16033
16034 if (++cnt >= numq)
16035 break;
16036 }
16037 eq_delay->u.request.num_eq = cnt;
16038
16039 mbox->vport = phba->pport;
16040 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16041 mbox->ctx_ndlp = NULL;
16042 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16043 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr;
16044 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16045 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16046 if (shdr_status || shdr_add_status || rc) {
16047 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16048 "2512 MODIFY_EQ_DELAY mailbox failed with "
16049 "status x%x add_status x%x, mbx status x%x\n",
16050 shdr_status, shdr_add_status, rc);
16051 }
16052 mempool_free(mbox, phba->mbox_mem_pool);
16053 return;
16054 }
16055
16056 /**
16057 * lpfc_eq_create - Create an Event Queue on the HBA
16058 * @phba: HBA structure that indicates port to create a queue on.
16059 * @eq: The queue structure to use to create the event queue.
16060 * @imax: The maximum interrupt per second limit.
16061 *
16062 * This function creates an event queue, as detailed in @eq, on a port,
16063 * described by @phba by sending an EQ_CREATE mailbox command to the HBA.
16064 *
16065 * The @phba struct is used to send mailbox command to HBA. The @eq struct
16066 * is used to get the entry count and entry size that are necessary to
16067 * determine the number of pages to allocate and use for this queue. This
16068 * function will send the EQ_CREATE mailbox command to the HBA to setup the
16069 * event queue. This function is asynchronous and will wait for the mailbox
16070 * command to finish before continuing.
16071 *
16072 * On success this function will return a zero. If unable to allocate enough
16073 * memory this function will return -ENOMEM. If the queue create mailbox command
16074 * fails this function will return -ENXIO.
16075 **/
16076 int
lpfc_eq_create(struct lpfc_hba * phba,struct lpfc_queue * eq,uint32_t imax)16077 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax)
16078 {
16079 struct lpfc_mbx_eq_create *eq_create;
16080 LPFC_MBOXQ_t *mbox;
16081 int rc, length, status = 0;
16082 struct lpfc_dmabuf *dmabuf;
16083 uint32_t shdr_status, shdr_add_status;
16084 union lpfc_sli4_cfg_shdr *shdr;
16085 uint16_t dmult;
16086 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
16087
16088 /* sanity check on queue memory */
16089 if (!eq)
16090 return -ENODEV;
16091 if (!phba->sli4_hba.pc_sli4_params.supported)
16092 hw_page_size = SLI4_PAGE_SIZE;
16093
16094 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16095 if (!mbox)
16096 return -ENOMEM;
16097 length = (sizeof(struct lpfc_mbx_eq_create) -
16098 sizeof(struct lpfc_sli4_cfg_mhdr));
16099 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16100 LPFC_MBOX_OPCODE_EQ_CREATE,
16101 length, LPFC_SLI4_MBX_EMBED);
16102 eq_create = &mbox->u.mqe.un.eq_create;
16103 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr;
16104 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request,
16105 eq->page_count);
16106 bf_set(lpfc_eq_context_size, &eq_create->u.request.context,
16107 LPFC_EQE_SIZE);
16108 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1);
16109
16110 /* Use version 2 of CREATE_EQ if eqav is set */
16111 if (phba->sli4_hba.pc_sli4_params.eqav) {
16112 bf_set(lpfc_mbox_hdr_version, &shdr->request,
16113 LPFC_Q_CREATE_VERSION_2);
16114 bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context,
16115 phba->sli4_hba.pc_sli4_params.eqav);
16116 }
16117
16118 /* don't setup delay multiplier using EQ_CREATE */
16119 dmult = 0;
16120 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context,
16121 dmult);
16122 switch (eq->entry_count) {
16123 default:
16124 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16125 "0360 Unsupported EQ count. (%d)\n",
16126 eq->entry_count);
16127 if (eq->entry_count < 256) {
16128 status = -EINVAL;
16129 goto out;
16130 }
16131 fallthrough; /* otherwise default to smallest count */
16132 case 256:
16133 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
16134 LPFC_EQ_CNT_256);
16135 break;
16136 case 512:
16137 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
16138 LPFC_EQ_CNT_512);
16139 break;
16140 case 1024:
16141 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
16142 LPFC_EQ_CNT_1024);
16143 break;
16144 case 2048:
16145 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
16146 LPFC_EQ_CNT_2048);
16147 break;
16148 case 4096:
16149 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
16150 LPFC_EQ_CNT_4096);
16151 break;
16152 }
16153 list_for_each_entry(dmabuf, &eq->page_list, list) {
16154 memset(dmabuf->virt, 0, hw_page_size);
16155 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
16156 putPaddrLow(dmabuf->phys);
16157 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
16158 putPaddrHigh(dmabuf->phys);
16159 }
16160 mbox->vport = phba->pport;
16161 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16162 mbox->ctx_buf = NULL;
16163 mbox->ctx_ndlp = NULL;
16164 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16165 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16166 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16167 if (shdr_status || shdr_add_status || rc) {
16168 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16169 "2500 EQ_CREATE mailbox failed with "
16170 "status x%x add_status x%x, mbx status x%x\n",
16171 shdr_status, shdr_add_status, rc);
16172 status = -ENXIO;
16173 }
16174 eq->type = LPFC_EQ;
16175 eq->subtype = LPFC_NONE;
16176 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response);
16177 if (eq->queue_id == 0xFFFF)
16178 status = -ENXIO;
16179 eq->host_index = 0;
16180 eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL;
16181 eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT;
16182 out:
16183 mempool_free(mbox, phba->mbox_mem_pool);
16184 return status;
16185 }
16186
16187 /**
16188 * lpfc_sli4_hba_intr_handler_th - SLI4 HBA threaded interrupt handler
16189 * @irq: Interrupt number.
16190 * @dev_id: The device context pointer.
16191 *
16192 * This routine is a mirror of lpfc_sli4_hba_intr_handler, but executed within
16193 * threaded irq context.
16194 *
16195 * Returns
16196 * IRQ_HANDLED - interrupt is handled
16197 * IRQ_NONE - otherwise
16198 **/
lpfc_sli4_hba_intr_handler_th(int irq,void * dev_id)16199 irqreturn_t lpfc_sli4_hba_intr_handler_th(int irq, void *dev_id)
16200 {
16201 struct lpfc_hba *phba;
16202 struct lpfc_hba_eq_hdl *hba_eq_hdl;
16203 struct lpfc_queue *fpeq;
16204 int ecount = 0;
16205 int hba_eqidx;
16206 struct lpfc_eq_intr_info *eqi;
16207
16208 /* Get the driver's phba structure from the dev_id */
16209 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id;
16210 phba = hba_eq_hdl->phba;
16211 hba_eqidx = hba_eq_hdl->idx;
16212
16213 if (unlikely(!phba))
16214 return IRQ_NONE;
16215 if (unlikely(!phba->sli4_hba.hdwq))
16216 return IRQ_NONE;
16217
16218 /* Get to the EQ struct associated with this vector */
16219 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq;
16220 if (unlikely(!fpeq))
16221 return IRQ_NONE;
16222
16223 eqi = per_cpu_ptr(phba->sli4_hba.eq_info, raw_smp_processor_id());
16224 eqi->icnt++;
16225
16226 fpeq->last_cpu = raw_smp_processor_id();
16227
16228 if (eqi->icnt > LPFC_EQD_ISR_TRIGGER &&
16229 fpeq->q_flag & HBA_EQ_DELAY_CHK &&
16230 phba->cfg_auto_imax &&
16231 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY &&
16232 phba->sli.sli_flag & LPFC_SLI_USE_EQDR)
16233 lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY);
16234
16235 /* process and rearm the EQ */
16236 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM,
16237 LPFC_THREADED_IRQ);
16238
16239 if (unlikely(ecount == 0)) {
16240 fpeq->EQ_no_entry++;
16241 if (phba->intr_type == MSIX)
16242 /* MSI-X treated interrupt served as no EQ share INT */
16243 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
16244 "3358 MSI-X interrupt with no EQE\n");
16245 else
16246 /* Non MSI-X treated on interrupt as EQ share INT */
16247 return IRQ_NONE;
16248 }
16249 return IRQ_HANDLED;
16250 }
16251
16252 /**
16253 * lpfc_cq_create - Create a Completion Queue on the HBA
16254 * @phba: HBA structure that indicates port to create a queue on.
16255 * @cq: The queue structure to use to create the completion queue.
16256 * @eq: The event queue to bind this completion queue to.
16257 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc).
16258 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc).
16259 *
16260 * This function creates a completion queue, as detailed in @wq, on a port,
16261 * described by @phba by sending a CQ_CREATE mailbox command to the HBA.
16262 *
16263 * The @phba struct is used to send mailbox command to HBA. The @cq struct
16264 * is used to get the entry count and entry size that are necessary to
16265 * determine the number of pages to allocate and use for this queue. The @eq
16266 * is used to indicate which event queue to bind this completion queue to. This
16267 * function will send the CQ_CREATE mailbox command to the HBA to setup the
16268 * completion queue. This function is asynchronous and will wait for the mailbox
16269 * command to finish before continuing.
16270 *
16271 * On success this function will return a zero. If unable to allocate enough
16272 * memory this function will return -ENOMEM. If the queue create mailbox command
16273 * fails this function will return -ENXIO.
16274 **/
16275 int
lpfc_cq_create(struct lpfc_hba * phba,struct lpfc_queue * cq,struct lpfc_queue * eq,uint32_t type,uint32_t subtype)16276 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq,
16277 struct lpfc_queue *eq, uint32_t type, uint32_t subtype)
16278 {
16279 struct lpfc_mbx_cq_create *cq_create;
16280 struct lpfc_dmabuf *dmabuf;
16281 LPFC_MBOXQ_t *mbox;
16282 int rc, length, status = 0;
16283 uint32_t shdr_status, shdr_add_status;
16284 union lpfc_sli4_cfg_shdr *shdr;
16285
16286 /* sanity check on queue memory */
16287 if (!cq || !eq)
16288 return -ENODEV;
16289
16290 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16291 if (!mbox)
16292 return -ENOMEM;
16293 length = (sizeof(struct lpfc_mbx_cq_create) -
16294 sizeof(struct lpfc_sli4_cfg_mhdr));
16295 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16296 LPFC_MBOX_OPCODE_CQ_CREATE,
16297 length, LPFC_SLI4_MBX_EMBED);
16298 cq_create = &mbox->u.mqe.un.cq_create;
16299 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr;
16300 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request,
16301 cq->page_count);
16302 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1);
16303 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1);
16304 bf_set(lpfc_mbox_hdr_version, &shdr->request,
16305 phba->sli4_hba.pc_sli4_params.cqv);
16306 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) {
16307 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request,
16308 (cq->page_size / SLI4_PAGE_SIZE));
16309 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context,
16310 eq->queue_id);
16311 bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context,
16312 phba->sli4_hba.pc_sli4_params.cqav);
16313 } else {
16314 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context,
16315 eq->queue_id);
16316 }
16317 switch (cq->entry_count) {
16318 case 2048:
16319 case 4096:
16320 if (phba->sli4_hba.pc_sli4_params.cqv ==
16321 LPFC_Q_CREATE_VERSION_2) {
16322 cq_create->u.request.context.lpfc_cq_context_count =
16323 cq->entry_count;
16324 bf_set(lpfc_cq_context_count,
16325 &cq_create->u.request.context,
16326 LPFC_CQ_CNT_WORD7);
16327 break;
16328 }
16329 fallthrough;
16330 default:
16331 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16332 "0361 Unsupported CQ count: "
16333 "entry cnt %d sz %d pg cnt %d\n",
16334 cq->entry_count, cq->entry_size,
16335 cq->page_count);
16336 if (cq->entry_count < 256) {
16337 status = -EINVAL;
16338 goto out;
16339 }
16340 fallthrough; /* otherwise default to smallest count */
16341 case 256:
16342 bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
16343 LPFC_CQ_CNT_256);
16344 break;
16345 case 512:
16346 bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
16347 LPFC_CQ_CNT_512);
16348 break;
16349 case 1024:
16350 bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
16351 LPFC_CQ_CNT_1024);
16352 break;
16353 }
16354 list_for_each_entry(dmabuf, &cq->page_list, list) {
16355 memset(dmabuf->virt, 0, cq->page_size);
16356 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
16357 putPaddrLow(dmabuf->phys);
16358 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
16359 putPaddrHigh(dmabuf->phys);
16360 }
16361 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16362
16363 /* The IOCTL status is embedded in the mailbox subheader. */
16364 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16365 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16366 if (shdr_status || shdr_add_status || rc) {
16367 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16368 "2501 CQ_CREATE mailbox failed with "
16369 "status x%x add_status x%x, mbx status x%x\n",
16370 shdr_status, shdr_add_status, rc);
16371 status = -ENXIO;
16372 goto out;
16373 }
16374 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
16375 if (cq->queue_id == 0xFFFF) {
16376 status = -ENXIO;
16377 goto out;
16378 }
16379 /* link the cq onto the parent eq child list */
16380 list_add_tail(&cq->list, &eq->child_list);
16381 /* Set up completion queue's type and subtype */
16382 cq->type = type;
16383 cq->subtype = subtype;
16384 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
16385 cq->assoc_qid = eq->queue_id;
16386 cq->assoc_qp = eq;
16387 cq->host_index = 0;
16388 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL;
16389 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count);
16390
16391 if (cq->queue_id > phba->sli4_hba.cq_max)
16392 phba->sli4_hba.cq_max = cq->queue_id;
16393 out:
16394 mempool_free(mbox, phba->mbox_mem_pool);
16395 return status;
16396 }
16397
16398 /**
16399 * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ
16400 * @phba: HBA structure that indicates port to create a queue on.
16401 * @cqp: The queue structure array to use to create the completion queues.
16402 * @hdwq: The hardware queue array with the EQ to bind completion queues to.
16403 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc).
16404 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc).
16405 *
16406 * This function creates a set of completion queue, s to support MRQ
16407 * as detailed in @cqp, on a port,
16408 * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA.
16409 *
16410 * The @phba struct is used to send mailbox command to HBA. The @cq struct
16411 * is used to get the entry count and entry size that are necessary to
16412 * determine the number of pages to allocate and use for this queue. The @eq
16413 * is used to indicate which event queue to bind this completion queue to. This
16414 * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the
16415 * completion queue. This function is asynchronous and will wait for the mailbox
16416 * command to finish before continuing.
16417 *
16418 * On success this function will return a zero. If unable to allocate enough
16419 * memory this function will return -ENOMEM. If the queue create mailbox command
16420 * fails this function will return -ENXIO.
16421 **/
16422 int
lpfc_cq_create_set(struct lpfc_hba * phba,struct lpfc_queue ** cqp,struct lpfc_sli4_hdw_queue * hdwq,uint32_t type,uint32_t subtype)16423 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp,
16424 struct lpfc_sli4_hdw_queue *hdwq, uint32_t type,
16425 uint32_t subtype)
16426 {
16427 struct lpfc_queue *cq;
16428 struct lpfc_queue *eq;
16429 struct lpfc_mbx_cq_create_set *cq_set;
16430 struct lpfc_dmabuf *dmabuf;
16431 LPFC_MBOXQ_t *mbox;
16432 int rc, length, alloclen, status = 0;
16433 int cnt, idx, numcq, page_idx = 0;
16434 uint32_t shdr_status, shdr_add_status;
16435 union lpfc_sli4_cfg_shdr *shdr;
16436 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
16437
16438 /* sanity check on queue memory */
16439 numcq = phba->cfg_nvmet_mrq;
16440 if (!cqp || !hdwq || !numcq)
16441 return -ENODEV;
16442
16443 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16444 if (!mbox)
16445 return -ENOMEM;
16446
16447 length = sizeof(struct lpfc_mbx_cq_create_set);
16448 length += ((numcq * cqp[0]->page_count) *
16449 sizeof(struct dma_address));
16450 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16451 LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length,
16452 LPFC_SLI4_MBX_NEMBED);
16453 if (alloclen < length) {
16454 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16455 "3098 Allocated DMA memory size (%d) is "
16456 "less than the requested DMA memory size "
16457 "(%d)\n", alloclen, length);
16458 status = -ENOMEM;
16459 goto out;
16460 }
16461 cq_set = mbox->sge_array->addr[0];
16462 shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr;
16463 bf_set(lpfc_mbox_hdr_version, &shdr->request, 0);
16464
16465 for (idx = 0; idx < numcq; idx++) {
16466 cq = cqp[idx];
16467 eq = hdwq[idx].hba_eq;
16468 if (!cq || !eq) {
16469 status = -ENOMEM;
16470 goto out;
16471 }
16472 if (!phba->sli4_hba.pc_sli4_params.supported)
16473 hw_page_size = cq->page_size;
16474
16475 switch (idx) {
16476 case 0:
16477 bf_set(lpfc_mbx_cq_create_set_page_size,
16478 &cq_set->u.request,
16479 (hw_page_size / SLI4_PAGE_SIZE));
16480 bf_set(lpfc_mbx_cq_create_set_num_pages,
16481 &cq_set->u.request, cq->page_count);
16482 bf_set(lpfc_mbx_cq_create_set_evt,
16483 &cq_set->u.request, 1);
16484 bf_set(lpfc_mbx_cq_create_set_valid,
16485 &cq_set->u.request, 1);
16486 bf_set(lpfc_mbx_cq_create_set_cqe_size,
16487 &cq_set->u.request, 0);
16488 bf_set(lpfc_mbx_cq_create_set_num_cq,
16489 &cq_set->u.request, numcq);
16490 bf_set(lpfc_mbx_cq_create_set_autovalid,
16491 &cq_set->u.request,
16492 phba->sli4_hba.pc_sli4_params.cqav);
16493 switch (cq->entry_count) {
16494 case 2048:
16495 case 4096:
16496 if (phba->sli4_hba.pc_sli4_params.cqv ==
16497 LPFC_Q_CREATE_VERSION_2) {
16498 bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
16499 &cq_set->u.request,
16500 cq->entry_count);
16501 bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
16502 &cq_set->u.request,
16503 LPFC_CQ_CNT_WORD7);
16504 break;
16505 }
16506 fallthrough;
16507 default:
16508 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16509 "3118 Bad CQ count. (%d)\n",
16510 cq->entry_count);
16511 if (cq->entry_count < 256) {
16512 status = -EINVAL;
16513 goto out;
16514 }
16515 fallthrough; /* otherwise default to smallest */
16516 case 256:
16517 bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
16518 &cq_set->u.request, LPFC_CQ_CNT_256);
16519 break;
16520 case 512:
16521 bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
16522 &cq_set->u.request, LPFC_CQ_CNT_512);
16523 break;
16524 case 1024:
16525 bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
16526 &cq_set->u.request, LPFC_CQ_CNT_1024);
16527 break;
16528 }
16529 bf_set(lpfc_mbx_cq_create_set_eq_id0,
16530 &cq_set->u.request, eq->queue_id);
16531 break;
16532 case 1:
16533 bf_set(lpfc_mbx_cq_create_set_eq_id1,
16534 &cq_set->u.request, eq->queue_id);
16535 break;
16536 case 2:
16537 bf_set(lpfc_mbx_cq_create_set_eq_id2,
16538 &cq_set->u.request, eq->queue_id);
16539 break;
16540 case 3:
16541 bf_set(lpfc_mbx_cq_create_set_eq_id3,
16542 &cq_set->u.request, eq->queue_id);
16543 break;
16544 case 4:
16545 bf_set(lpfc_mbx_cq_create_set_eq_id4,
16546 &cq_set->u.request, eq->queue_id);
16547 break;
16548 case 5:
16549 bf_set(lpfc_mbx_cq_create_set_eq_id5,
16550 &cq_set->u.request, eq->queue_id);
16551 break;
16552 case 6:
16553 bf_set(lpfc_mbx_cq_create_set_eq_id6,
16554 &cq_set->u.request, eq->queue_id);
16555 break;
16556 case 7:
16557 bf_set(lpfc_mbx_cq_create_set_eq_id7,
16558 &cq_set->u.request, eq->queue_id);
16559 break;
16560 case 8:
16561 bf_set(lpfc_mbx_cq_create_set_eq_id8,
16562 &cq_set->u.request, eq->queue_id);
16563 break;
16564 case 9:
16565 bf_set(lpfc_mbx_cq_create_set_eq_id9,
16566 &cq_set->u.request, eq->queue_id);
16567 break;
16568 case 10:
16569 bf_set(lpfc_mbx_cq_create_set_eq_id10,
16570 &cq_set->u.request, eq->queue_id);
16571 break;
16572 case 11:
16573 bf_set(lpfc_mbx_cq_create_set_eq_id11,
16574 &cq_set->u.request, eq->queue_id);
16575 break;
16576 case 12:
16577 bf_set(lpfc_mbx_cq_create_set_eq_id12,
16578 &cq_set->u.request, eq->queue_id);
16579 break;
16580 case 13:
16581 bf_set(lpfc_mbx_cq_create_set_eq_id13,
16582 &cq_set->u.request, eq->queue_id);
16583 break;
16584 case 14:
16585 bf_set(lpfc_mbx_cq_create_set_eq_id14,
16586 &cq_set->u.request, eq->queue_id);
16587 break;
16588 case 15:
16589 bf_set(lpfc_mbx_cq_create_set_eq_id15,
16590 &cq_set->u.request, eq->queue_id);
16591 break;
16592 }
16593
16594 /* link the cq onto the parent eq child list */
16595 list_add_tail(&cq->list, &eq->child_list);
16596 /* Set up completion queue's type and subtype */
16597 cq->type = type;
16598 cq->subtype = subtype;
16599 cq->assoc_qid = eq->queue_id;
16600 cq->assoc_qp = eq;
16601 cq->host_index = 0;
16602 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL;
16603 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit,
16604 cq->entry_count);
16605 cq->chann = idx;
16606
16607 rc = 0;
16608 list_for_each_entry(dmabuf, &cq->page_list, list) {
16609 memset(dmabuf->virt, 0, hw_page_size);
16610 cnt = page_idx + dmabuf->buffer_tag;
16611 cq_set->u.request.page[cnt].addr_lo =
16612 putPaddrLow(dmabuf->phys);
16613 cq_set->u.request.page[cnt].addr_hi =
16614 putPaddrHigh(dmabuf->phys);
16615 rc++;
16616 }
16617 page_idx += rc;
16618 }
16619
16620 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16621
16622 /* The IOCTL status is embedded in the mailbox subheader. */
16623 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16624 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16625 if (shdr_status || shdr_add_status || rc) {
16626 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16627 "3119 CQ_CREATE_SET mailbox failed with "
16628 "status x%x add_status x%x, mbx status x%x\n",
16629 shdr_status, shdr_add_status, rc);
16630 status = -ENXIO;
16631 goto out;
16632 }
16633 rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response);
16634 if (rc == 0xFFFF) {
16635 status = -ENXIO;
16636 goto out;
16637 }
16638
16639 for (idx = 0; idx < numcq; idx++) {
16640 cq = cqp[idx];
16641 cq->queue_id = rc + idx;
16642 if (cq->queue_id > phba->sli4_hba.cq_max)
16643 phba->sli4_hba.cq_max = cq->queue_id;
16644 }
16645
16646 out:
16647 lpfc_sli4_mbox_cmd_free(phba, mbox);
16648 return status;
16649 }
16650
16651 /**
16652 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration
16653 * @phba: HBA structure that indicates port to create a queue on.
16654 * @mq: The queue structure to use to create the mailbox queue.
16655 * @mbox: An allocated pointer to type LPFC_MBOXQ_t
16656 * @cq: The completion queue to associate with this cq.
16657 *
16658 * This function provides failback (fb) functionality when the
16659 * mq_create_ext fails on older FW generations. It's purpose is identical
16660 * to mq_create_ext otherwise.
16661 *
16662 * This routine cannot fail as all attributes were previously accessed and
16663 * initialized in mq_create_ext.
16664 **/
16665 static void
lpfc_mq_create_fb_init(struct lpfc_hba * phba,struct lpfc_queue * mq,LPFC_MBOXQ_t * mbox,struct lpfc_queue * cq)16666 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq,
16667 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq)
16668 {
16669 struct lpfc_mbx_mq_create *mq_create;
16670 struct lpfc_dmabuf *dmabuf;
16671 int length;
16672
16673 length = (sizeof(struct lpfc_mbx_mq_create) -
16674 sizeof(struct lpfc_sli4_cfg_mhdr));
16675 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16676 LPFC_MBOX_OPCODE_MQ_CREATE,
16677 length, LPFC_SLI4_MBX_EMBED);
16678 mq_create = &mbox->u.mqe.un.mq_create;
16679 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request,
16680 mq->page_count);
16681 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context,
16682 cq->queue_id);
16683 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1);
16684 switch (mq->entry_count) {
16685 case 16:
16686 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
16687 LPFC_MQ_RING_SIZE_16);
16688 break;
16689 case 32:
16690 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
16691 LPFC_MQ_RING_SIZE_32);
16692 break;
16693 case 64:
16694 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
16695 LPFC_MQ_RING_SIZE_64);
16696 break;
16697 case 128:
16698 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
16699 LPFC_MQ_RING_SIZE_128);
16700 break;
16701 }
16702 list_for_each_entry(dmabuf, &mq->page_list, list) {
16703 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
16704 putPaddrLow(dmabuf->phys);
16705 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
16706 putPaddrHigh(dmabuf->phys);
16707 }
16708 }
16709
16710 /**
16711 * lpfc_mq_create - Create a mailbox Queue on the HBA
16712 * @phba: HBA structure that indicates port to create a queue on.
16713 * @mq: The queue structure to use to create the mailbox queue.
16714 * @cq: The completion queue to associate with this cq.
16715 * @subtype: The queue's subtype.
16716 *
16717 * This function creates a mailbox queue, as detailed in @mq, on a port,
16718 * described by @phba by sending a MQ_CREATE mailbox command to the HBA.
16719 *
16720 * The @phba struct is used to send mailbox command to HBA. The @cq struct
16721 * is used to get the entry count and entry size that are necessary to
16722 * determine the number of pages to allocate and use for this queue. This
16723 * function will send the MQ_CREATE mailbox command to the HBA to setup the
16724 * mailbox queue. This function is asynchronous and will wait for the mailbox
16725 * command to finish before continuing.
16726 *
16727 * On success this function will return a zero. If unable to allocate enough
16728 * memory this function will return -ENOMEM. If the queue create mailbox command
16729 * fails this function will return -ENXIO.
16730 **/
16731 int32_t
lpfc_mq_create(struct lpfc_hba * phba,struct lpfc_queue * mq,struct lpfc_queue * cq,uint32_t subtype)16732 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq,
16733 struct lpfc_queue *cq, uint32_t subtype)
16734 {
16735 struct lpfc_mbx_mq_create *mq_create;
16736 struct lpfc_mbx_mq_create_ext *mq_create_ext;
16737 struct lpfc_dmabuf *dmabuf;
16738 LPFC_MBOXQ_t *mbox;
16739 int rc, length, status = 0;
16740 uint32_t shdr_status, shdr_add_status;
16741 union lpfc_sli4_cfg_shdr *shdr;
16742 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
16743
16744 /* sanity check on queue memory */
16745 if (!mq || !cq)
16746 return -ENODEV;
16747 if (!phba->sli4_hba.pc_sli4_params.supported)
16748 hw_page_size = SLI4_PAGE_SIZE;
16749
16750 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16751 if (!mbox)
16752 return -ENOMEM;
16753 length = (sizeof(struct lpfc_mbx_mq_create_ext) -
16754 sizeof(struct lpfc_sli4_cfg_mhdr));
16755 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16756 LPFC_MBOX_OPCODE_MQ_CREATE_EXT,
16757 length, LPFC_SLI4_MBX_EMBED);
16758
16759 mq_create_ext = &mbox->u.mqe.un.mq_create_ext;
16760 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr;
16761 bf_set(lpfc_mbx_mq_create_ext_num_pages,
16762 &mq_create_ext->u.request, mq->page_count);
16763 bf_set(lpfc_mbx_mq_create_ext_async_evt_link,
16764 &mq_create_ext->u.request, 1);
16765 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip,
16766 &mq_create_ext->u.request, 1);
16767 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5,
16768 &mq_create_ext->u.request, 1);
16769 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc,
16770 &mq_create_ext->u.request, 1);
16771 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli,
16772 &mq_create_ext->u.request, 1);
16773 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1);
16774 bf_set(lpfc_mbox_hdr_version, &shdr->request,
16775 phba->sli4_hba.pc_sli4_params.mqv);
16776 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1)
16777 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request,
16778 cq->queue_id);
16779 else
16780 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context,
16781 cq->queue_id);
16782 switch (mq->entry_count) {
16783 default:
16784 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16785 "0362 Unsupported MQ count. (%d)\n",
16786 mq->entry_count);
16787 if (mq->entry_count < 16) {
16788 status = -EINVAL;
16789 goto out;
16790 }
16791 fallthrough; /* otherwise default to smallest count */
16792 case 16:
16793 bf_set(lpfc_mq_context_ring_size,
16794 &mq_create_ext->u.request.context,
16795 LPFC_MQ_RING_SIZE_16);
16796 break;
16797 case 32:
16798 bf_set(lpfc_mq_context_ring_size,
16799 &mq_create_ext->u.request.context,
16800 LPFC_MQ_RING_SIZE_32);
16801 break;
16802 case 64:
16803 bf_set(lpfc_mq_context_ring_size,
16804 &mq_create_ext->u.request.context,
16805 LPFC_MQ_RING_SIZE_64);
16806 break;
16807 case 128:
16808 bf_set(lpfc_mq_context_ring_size,
16809 &mq_create_ext->u.request.context,
16810 LPFC_MQ_RING_SIZE_128);
16811 break;
16812 }
16813 list_for_each_entry(dmabuf, &mq->page_list, list) {
16814 memset(dmabuf->virt, 0, hw_page_size);
16815 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo =
16816 putPaddrLow(dmabuf->phys);
16817 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi =
16818 putPaddrHigh(dmabuf->phys);
16819 }
16820 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16821 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
16822 &mq_create_ext->u.response);
16823 if (rc != MBX_SUCCESS) {
16824 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
16825 "2795 MQ_CREATE_EXT failed with "
16826 "status x%x. Failback to MQ_CREATE.\n",
16827 rc);
16828 lpfc_mq_create_fb_init(phba, mq, mbox, cq);
16829 mq_create = &mbox->u.mqe.un.mq_create;
16830 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16831 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr;
16832 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
16833 &mq_create->u.response);
16834 }
16835
16836 /* The IOCTL status is embedded in the mailbox subheader. */
16837 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16838 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16839 if (shdr_status || shdr_add_status || rc) {
16840 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16841 "2502 MQ_CREATE mailbox failed with "
16842 "status x%x add_status x%x, mbx status x%x\n",
16843 shdr_status, shdr_add_status, rc);
16844 status = -ENXIO;
16845 goto out;
16846 }
16847 if (mq->queue_id == 0xFFFF) {
16848 status = -ENXIO;
16849 goto out;
16850 }
16851 mq->type = LPFC_MQ;
16852 mq->assoc_qid = cq->queue_id;
16853 mq->subtype = subtype;
16854 mq->host_index = 0;
16855 mq->hba_index = 0;
16856
16857 /* link the mq onto the parent cq child list */
16858 list_add_tail(&mq->list, &cq->child_list);
16859 out:
16860 mempool_free(mbox, phba->mbox_mem_pool);
16861 return status;
16862 }
16863
16864 /**
16865 * lpfc_wq_create - Create a Work Queue on the HBA
16866 * @phba: HBA structure that indicates port to create a queue on.
16867 * @wq: The queue structure to use to create the work queue.
16868 * @cq: The completion queue to bind this work queue to.
16869 * @subtype: The subtype of the work queue indicating its functionality.
16870 *
16871 * This function creates a work queue, as detailed in @wq, on a port, described
16872 * by @phba by sending a WQ_CREATE mailbox command to the HBA.
16873 *
16874 * The @phba struct is used to send mailbox command to HBA. The @wq struct
16875 * is used to get the entry count and entry size that are necessary to
16876 * determine the number of pages to allocate and use for this queue. The @cq
16877 * is used to indicate which completion queue to bind this work queue to. This
16878 * function will send the WQ_CREATE mailbox command to the HBA to setup the
16879 * work queue. This function is asynchronous and will wait for the mailbox
16880 * command to finish before continuing.
16881 *
16882 * On success this function will return a zero. If unable to allocate enough
16883 * memory this function will return -ENOMEM. If the queue create mailbox command
16884 * fails this function will return -ENXIO.
16885 **/
16886 int
lpfc_wq_create(struct lpfc_hba * phba,struct lpfc_queue * wq,struct lpfc_queue * cq,uint32_t subtype)16887 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq,
16888 struct lpfc_queue *cq, uint32_t subtype)
16889 {
16890 struct lpfc_mbx_wq_create *wq_create;
16891 struct lpfc_dmabuf *dmabuf;
16892 LPFC_MBOXQ_t *mbox;
16893 int rc, length, status = 0;
16894 uint32_t shdr_status, shdr_add_status;
16895 union lpfc_sli4_cfg_shdr *shdr;
16896 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
16897 struct dma_address *page;
16898 void __iomem *bar_memmap_p;
16899 uint32_t db_offset;
16900 uint16_t pci_barset;
16901 uint8_t dpp_barset;
16902 uint32_t dpp_offset;
16903 uint8_t wq_create_version;
16904 #ifdef CONFIG_X86
16905 unsigned long pg_addr;
16906 #endif
16907
16908 /* sanity check on queue memory */
16909 if (!wq || !cq)
16910 return -ENODEV;
16911 if (!phba->sli4_hba.pc_sli4_params.supported)
16912 hw_page_size = wq->page_size;
16913
16914 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16915 if (!mbox)
16916 return -ENOMEM;
16917 length = (sizeof(struct lpfc_mbx_wq_create) -
16918 sizeof(struct lpfc_sli4_cfg_mhdr));
16919 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16920 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE,
16921 length, LPFC_SLI4_MBX_EMBED);
16922 wq_create = &mbox->u.mqe.un.wq_create;
16923 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr;
16924 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request,
16925 wq->page_count);
16926 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request,
16927 cq->queue_id);
16928
16929 /* wqv is the earliest version supported, NOT the latest */
16930 bf_set(lpfc_mbox_hdr_version, &shdr->request,
16931 phba->sli4_hba.pc_sli4_params.wqv);
16932
16933 if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) ||
16934 (wq->page_size > SLI4_PAGE_SIZE))
16935 wq_create_version = LPFC_Q_CREATE_VERSION_1;
16936 else
16937 wq_create_version = LPFC_Q_CREATE_VERSION_0;
16938
16939 switch (wq_create_version) {
16940 case LPFC_Q_CREATE_VERSION_1:
16941 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1,
16942 wq->entry_count);
16943 bf_set(lpfc_mbox_hdr_version, &shdr->request,
16944 LPFC_Q_CREATE_VERSION_1);
16945
16946 switch (wq->entry_size) {
16947 default:
16948 case 64:
16949 bf_set(lpfc_mbx_wq_create_wqe_size,
16950 &wq_create->u.request_1,
16951 LPFC_WQ_WQE_SIZE_64);
16952 break;
16953 case 128:
16954 bf_set(lpfc_mbx_wq_create_wqe_size,
16955 &wq_create->u.request_1,
16956 LPFC_WQ_WQE_SIZE_128);
16957 break;
16958 }
16959 /* Request DPP by default */
16960 bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1);
16961 bf_set(lpfc_mbx_wq_create_page_size,
16962 &wq_create->u.request_1,
16963 (wq->page_size / SLI4_PAGE_SIZE));
16964 page = wq_create->u.request_1.page;
16965 break;
16966 default:
16967 page = wq_create->u.request.page;
16968 break;
16969 }
16970
16971 list_for_each_entry(dmabuf, &wq->page_list, list) {
16972 memset(dmabuf->virt, 0, hw_page_size);
16973 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys);
16974 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys);
16975 }
16976
16977 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
16978 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1);
16979
16980 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16981 /* The IOCTL status is embedded in the mailbox subheader. */
16982 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16983 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16984 if (shdr_status || shdr_add_status || rc) {
16985 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16986 "2503 WQ_CREATE mailbox failed with "
16987 "status x%x add_status x%x, mbx status x%x\n",
16988 shdr_status, shdr_add_status, rc);
16989 status = -ENXIO;
16990 goto out;
16991 }
16992
16993 if (wq_create_version == LPFC_Q_CREATE_VERSION_0)
16994 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id,
16995 &wq_create->u.response);
16996 else
16997 wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id,
16998 &wq_create->u.response_1);
16999
17000 if (wq->queue_id == 0xFFFF) {
17001 status = -ENXIO;
17002 goto out;
17003 }
17004
17005 wq->db_format = LPFC_DB_LIST_FORMAT;
17006 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) {
17007 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
17008 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format,
17009 &wq_create->u.response);
17010 if ((wq->db_format != LPFC_DB_LIST_FORMAT) &&
17011 (wq->db_format != LPFC_DB_RING_FORMAT)) {
17012 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17013 "3265 WQ[%d] doorbell format "
17014 "not supported: x%x\n",
17015 wq->queue_id, wq->db_format);
17016 status = -EINVAL;
17017 goto out;
17018 }
17019 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set,
17020 &wq_create->u.response);
17021 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
17022 pci_barset);
17023 if (!bar_memmap_p) {
17024 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17025 "3263 WQ[%d] failed to memmap "
17026 "pci barset:x%x\n",
17027 wq->queue_id, pci_barset);
17028 status = -ENOMEM;
17029 goto out;
17030 }
17031 db_offset = wq_create->u.response.doorbell_offset;
17032 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) &&
17033 (db_offset != LPFC_ULP1_WQ_DOORBELL)) {
17034 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17035 "3252 WQ[%d] doorbell offset "
17036 "not supported: x%x\n",
17037 wq->queue_id, db_offset);
17038 status = -EINVAL;
17039 goto out;
17040 }
17041 wq->db_regaddr = bar_memmap_p + db_offset;
17042 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
17043 "3264 WQ[%d]: barset:x%x, offset:x%x, "
17044 "format:x%x\n", wq->queue_id,
17045 pci_barset, db_offset, wq->db_format);
17046 } else
17047 wq->db_regaddr = phba->sli4_hba.WQDBregaddr;
17048 } else {
17049 /* Check if DPP was honored by the firmware */
17050 wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp,
17051 &wq_create->u.response_1);
17052 if (wq->dpp_enable) {
17053 pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set,
17054 &wq_create->u.response_1);
17055 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
17056 pci_barset);
17057 if (!bar_memmap_p) {
17058 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17059 "3267 WQ[%d] failed to memmap "
17060 "pci barset:x%x\n",
17061 wq->queue_id, pci_barset);
17062 status = -ENOMEM;
17063 goto out;
17064 }
17065 db_offset = wq_create->u.response_1.doorbell_offset;
17066 wq->db_regaddr = bar_memmap_p + db_offset;
17067 wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id,
17068 &wq_create->u.response_1);
17069 dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar,
17070 &wq_create->u.response_1);
17071 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
17072 dpp_barset);
17073 if (!bar_memmap_p) {
17074 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17075 "3268 WQ[%d] failed to memmap "
17076 "pci barset:x%x\n",
17077 wq->queue_id, dpp_barset);
17078 status = -ENOMEM;
17079 goto out;
17080 }
17081 dpp_offset = wq_create->u.response_1.dpp_offset;
17082 wq->dpp_regaddr = bar_memmap_p + dpp_offset;
17083 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
17084 "3271 WQ[%d]: barset:x%x, offset:x%x, "
17085 "dpp_id:x%x dpp_barset:x%x "
17086 "dpp_offset:x%x\n",
17087 wq->queue_id, pci_barset, db_offset,
17088 wq->dpp_id, dpp_barset, dpp_offset);
17089
17090 #ifdef CONFIG_X86
17091 /* Enable combined writes for DPP aperture */
17092 pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK;
17093 rc = set_memory_wc(pg_addr, 1);
17094 if (rc) {
17095 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
17096 "3272 Cannot setup Combined "
17097 "Write on WQ[%d] - disable DPP\n",
17098 wq->queue_id);
17099 phba->cfg_enable_dpp = 0;
17100 }
17101 #else
17102 phba->cfg_enable_dpp = 0;
17103 #endif
17104 } else
17105 wq->db_regaddr = phba->sli4_hba.WQDBregaddr;
17106 }
17107 wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL);
17108 if (wq->pring == NULL) {
17109 status = -ENOMEM;
17110 goto out;
17111 }
17112 wq->type = LPFC_WQ;
17113 wq->assoc_qid = cq->queue_id;
17114 wq->subtype = subtype;
17115 wq->host_index = 0;
17116 wq->hba_index = 0;
17117 wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL;
17118
17119 /* link the wq onto the parent cq child list */
17120 list_add_tail(&wq->list, &cq->child_list);
17121 out:
17122 mempool_free(mbox, phba->mbox_mem_pool);
17123 return status;
17124 }
17125
17126 /**
17127 * lpfc_rq_create - Create a Receive Queue on the HBA
17128 * @phba: HBA structure that indicates port to create a queue on.
17129 * @hrq: The queue structure to use to create the header receive queue.
17130 * @drq: The queue structure to use to create the data receive queue.
17131 * @cq: The completion queue to bind this work queue to.
17132 * @subtype: The subtype of the work queue indicating its functionality.
17133 *
17134 * This function creates a receive buffer queue pair , as detailed in @hrq and
17135 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
17136 * to the HBA.
17137 *
17138 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
17139 * struct is used to get the entry count that is necessary to determine the
17140 * number of pages to use for this queue. The @cq is used to indicate which
17141 * completion queue to bind received buffers that are posted to these queues to.
17142 * This function will send the RQ_CREATE mailbox command to the HBA to setup the
17143 * receive queue pair. This function is asynchronous and will wait for the
17144 * mailbox command to finish before continuing.
17145 *
17146 * On success this function will return a zero. If unable to allocate enough
17147 * memory this function will return -ENOMEM. If the queue create mailbox command
17148 * fails this function will return -ENXIO.
17149 **/
17150 int
lpfc_rq_create(struct lpfc_hba * phba,struct lpfc_queue * hrq,struct lpfc_queue * drq,struct lpfc_queue * cq,uint32_t subtype)17151 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq,
17152 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype)
17153 {
17154 struct lpfc_mbx_rq_create *rq_create;
17155 struct lpfc_dmabuf *dmabuf;
17156 LPFC_MBOXQ_t *mbox;
17157 int rc, length, status = 0;
17158 uint32_t shdr_status, shdr_add_status;
17159 union lpfc_sli4_cfg_shdr *shdr;
17160 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
17161 void __iomem *bar_memmap_p;
17162 uint32_t db_offset;
17163 uint16_t pci_barset;
17164
17165 /* sanity check on queue memory */
17166 if (!hrq || !drq || !cq)
17167 return -ENODEV;
17168 if (!phba->sli4_hba.pc_sli4_params.supported)
17169 hw_page_size = SLI4_PAGE_SIZE;
17170
17171 if (hrq->entry_count != drq->entry_count)
17172 return -EINVAL;
17173 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
17174 if (!mbox)
17175 return -ENOMEM;
17176 length = (sizeof(struct lpfc_mbx_rq_create) -
17177 sizeof(struct lpfc_sli4_cfg_mhdr));
17178 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17179 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
17180 length, LPFC_SLI4_MBX_EMBED);
17181 rq_create = &mbox->u.mqe.un.rq_create;
17182 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
17183 bf_set(lpfc_mbox_hdr_version, &shdr->request,
17184 phba->sli4_hba.pc_sli4_params.rqv);
17185 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
17186 bf_set(lpfc_rq_context_rqe_count_1,
17187 &rq_create->u.request.context,
17188 hrq->entry_count);
17189 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE;
17190 bf_set(lpfc_rq_context_rqe_size,
17191 &rq_create->u.request.context,
17192 LPFC_RQE_SIZE_8);
17193 bf_set(lpfc_rq_context_page_size,
17194 &rq_create->u.request.context,
17195 LPFC_RQ_PAGE_SIZE_4096);
17196 } else {
17197 switch (hrq->entry_count) {
17198 default:
17199 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17200 "2535 Unsupported RQ count. (%d)\n",
17201 hrq->entry_count);
17202 if (hrq->entry_count < 512) {
17203 status = -EINVAL;
17204 goto out;
17205 }
17206 fallthrough; /* otherwise default to smallest count */
17207 case 512:
17208 bf_set(lpfc_rq_context_rqe_count,
17209 &rq_create->u.request.context,
17210 LPFC_RQ_RING_SIZE_512);
17211 break;
17212 case 1024:
17213 bf_set(lpfc_rq_context_rqe_count,
17214 &rq_create->u.request.context,
17215 LPFC_RQ_RING_SIZE_1024);
17216 break;
17217 case 2048:
17218 bf_set(lpfc_rq_context_rqe_count,
17219 &rq_create->u.request.context,
17220 LPFC_RQ_RING_SIZE_2048);
17221 break;
17222 case 4096:
17223 bf_set(lpfc_rq_context_rqe_count,
17224 &rq_create->u.request.context,
17225 LPFC_RQ_RING_SIZE_4096);
17226 break;
17227 }
17228 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context,
17229 LPFC_HDR_BUF_SIZE);
17230 }
17231 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
17232 cq->queue_id);
17233 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
17234 hrq->page_count);
17235 list_for_each_entry(dmabuf, &hrq->page_list, list) {
17236 memset(dmabuf->virt, 0, hw_page_size);
17237 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
17238 putPaddrLow(dmabuf->phys);
17239 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
17240 putPaddrHigh(dmabuf->phys);
17241 }
17242 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
17243 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
17244
17245 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
17246 /* The IOCTL status is embedded in the mailbox subheader. */
17247 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17248 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17249 if (shdr_status || shdr_add_status || rc) {
17250 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17251 "2504 RQ_CREATE mailbox failed with "
17252 "status x%x add_status x%x, mbx status x%x\n",
17253 shdr_status, shdr_add_status, rc);
17254 status = -ENXIO;
17255 goto out;
17256 }
17257 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
17258 if (hrq->queue_id == 0xFFFF) {
17259 status = -ENXIO;
17260 goto out;
17261 }
17262
17263 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
17264 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format,
17265 &rq_create->u.response);
17266 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) &&
17267 (hrq->db_format != LPFC_DB_RING_FORMAT)) {
17268 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17269 "3262 RQ [%d] doorbell format not "
17270 "supported: x%x\n", hrq->queue_id,
17271 hrq->db_format);
17272 status = -EINVAL;
17273 goto out;
17274 }
17275
17276 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set,
17277 &rq_create->u.response);
17278 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset);
17279 if (!bar_memmap_p) {
17280 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17281 "3269 RQ[%d] failed to memmap pci "
17282 "barset:x%x\n", hrq->queue_id,
17283 pci_barset);
17284 status = -ENOMEM;
17285 goto out;
17286 }
17287
17288 db_offset = rq_create->u.response.doorbell_offset;
17289 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) &&
17290 (db_offset != LPFC_ULP1_RQ_DOORBELL)) {
17291 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17292 "3270 RQ[%d] doorbell offset not "
17293 "supported: x%x\n", hrq->queue_id,
17294 db_offset);
17295 status = -EINVAL;
17296 goto out;
17297 }
17298 hrq->db_regaddr = bar_memmap_p + db_offset;
17299 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
17300 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, "
17301 "format:x%x\n", hrq->queue_id, pci_barset,
17302 db_offset, hrq->db_format);
17303 } else {
17304 hrq->db_format = LPFC_DB_RING_FORMAT;
17305 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr;
17306 }
17307 hrq->type = LPFC_HRQ;
17308 hrq->assoc_qid = cq->queue_id;
17309 hrq->subtype = subtype;
17310 hrq->host_index = 0;
17311 hrq->hba_index = 0;
17312 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
17313
17314 /* now create the data queue */
17315 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17316 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
17317 length, LPFC_SLI4_MBX_EMBED);
17318 bf_set(lpfc_mbox_hdr_version, &shdr->request,
17319 phba->sli4_hba.pc_sli4_params.rqv);
17320 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
17321 bf_set(lpfc_rq_context_rqe_count_1,
17322 &rq_create->u.request.context, hrq->entry_count);
17323 if (subtype == LPFC_NVMET)
17324 rq_create->u.request.context.buffer_size =
17325 LPFC_NVMET_DATA_BUF_SIZE;
17326 else
17327 rq_create->u.request.context.buffer_size =
17328 LPFC_DATA_BUF_SIZE;
17329 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context,
17330 LPFC_RQE_SIZE_8);
17331 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context,
17332 (PAGE_SIZE/SLI4_PAGE_SIZE));
17333 } else {
17334 switch (drq->entry_count) {
17335 default:
17336 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17337 "2536 Unsupported RQ count. (%d)\n",
17338 drq->entry_count);
17339 if (drq->entry_count < 512) {
17340 status = -EINVAL;
17341 goto out;
17342 }
17343 fallthrough; /* otherwise default to smallest count */
17344 case 512:
17345 bf_set(lpfc_rq_context_rqe_count,
17346 &rq_create->u.request.context,
17347 LPFC_RQ_RING_SIZE_512);
17348 break;
17349 case 1024:
17350 bf_set(lpfc_rq_context_rqe_count,
17351 &rq_create->u.request.context,
17352 LPFC_RQ_RING_SIZE_1024);
17353 break;
17354 case 2048:
17355 bf_set(lpfc_rq_context_rqe_count,
17356 &rq_create->u.request.context,
17357 LPFC_RQ_RING_SIZE_2048);
17358 break;
17359 case 4096:
17360 bf_set(lpfc_rq_context_rqe_count,
17361 &rq_create->u.request.context,
17362 LPFC_RQ_RING_SIZE_4096);
17363 break;
17364 }
17365 if (subtype == LPFC_NVMET)
17366 bf_set(lpfc_rq_context_buf_size,
17367 &rq_create->u.request.context,
17368 LPFC_NVMET_DATA_BUF_SIZE);
17369 else
17370 bf_set(lpfc_rq_context_buf_size,
17371 &rq_create->u.request.context,
17372 LPFC_DATA_BUF_SIZE);
17373 }
17374 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
17375 cq->queue_id);
17376 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
17377 drq->page_count);
17378 list_for_each_entry(dmabuf, &drq->page_list, list) {
17379 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
17380 putPaddrLow(dmabuf->phys);
17381 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
17382 putPaddrHigh(dmabuf->phys);
17383 }
17384 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
17385 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
17386 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
17387 /* The IOCTL status is embedded in the mailbox subheader. */
17388 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
17389 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17390 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17391 if (shdr_status || shdr_add_status || rc) {
17392 status = -ENXIO;
17393 goto out;
17394 }
17395 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
17396 if (drq->queue_id == 0xFFFF) {
17397 status = -ENXIO;
17398 goto out;
17399 }
17400 drq->type = LPFC_DRQ;
17401 drq->assoc_qid = cq->queue_id;
17402 drq->subtype = subtype;
17403 drq->host_index = 0;
17404 drq->hba_index = 0;
17405 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
17406
17407 /* link the header and data RQs onto the parent cq child list */
17408 list_add_tail(&hrq->list, &cq->child_list);
17409 list_add_tail(&drq->list, &cq->child_list);
17410
17411 out:
17412 mempool_free(mbox, phba->mbox_mem_pool);
17413 return status;
17414 }
17415
17416 /**
17417 * lpfc_mrq_create - Create MRQ Receive Queues on the HBA
17418 * @phba: HBA structure that indicates port to create a queue on.
17419 * @hrqp: The queue structure array to use to create the header receive queues.
17420 * @drqp: The queue structure array to use to create the data receive queues.
17421 * @cqp: The completion queue array to bind these receive queues to.
17422 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc).
17423 *
17424 * This function creates a receive buffer queue pair , as detailed in @hrq and
17425 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
17426 * to the HBA.
17427 *
17428 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
17429 * struct is used to get the entry count that is necessary to determine the
17430 * number of pages to use for this queue. The @cq is used to indicate which
17431 * completion queue to bind received buffers that are posted to these queues to.
17432 * This function will send the RQ_CREATE mailbox command to the HBA to setup the
17433 * receive queue pair. This function is asynchronous and will wait for the
17434 * mailbox command to finish before continuing.
17435 *
17436 * On success this function will return a zero. If unable to allocate enough
17437 * memory this function will return -ENOMEM. If the queue create mailbox command
17438 * fails this function will return -ENXIO.
17439 **/
17440 int
lpfc_mrq_create(struct lpfc_hba * phba,struct lpfc_queue ** hrqp,struct lpfc_queue ** drqp,struct lpfc_queue ** cqp,uint32_t subtype)17441 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp,
17442 struct lpfc_queue **drqp, struct lpfc_queue **cqp,
17443 uint32_t subtype)
17444 {
17445 struct lpfc_queue *hrq, *drq, *cq;
17446 struct lpfc_mbx_rq_create_v2 *rq_create;
17447 struct lpfc_dmabuf *dmabuf;
17448 LPFC_MBOXQ_t *mbox;
17449 int rc, length, alloclen, status = 0;
17450 int cnt, idx, numrq, page_idx = 0;
17451 uint32_t shdr_status, shdr_add_status;
17452 union lpfc_sli4_cfg_shdr *shdr;
17453 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
17454
17455 numrq = phba->cfg_nvmet_mrq;
17456 /* sanity check on array memory */
17457 if (!hrqp || !drqp || !cqp || !numrq)
17458 return -ENODEV;
17459 if (!phba->sli4_hba.pc_sli4_params.supported)
17460 hw_page_size = SLI4_PAGE_SIZE;
17461
17462 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
17463 if (!mbox)
17464 return -ENOMEM;
17465
17466 length = sizeof(struct lpfc_mbx_rq_create_v2);
17467 length += ((2 * numrq * hrqp[0]->page_count) *
17468 sizeof(struct dma_address));
17469
17470 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17471 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length,
17472 LPFC_SLI4_MBX_NEMBED);
17473 if (alloclen < length) {
17474 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17475 "3099 Allocated DMA memory size (%d) is "
17476 "less than the requested DMA memory size "
17477 "(%d)\n", alloclen, length);
17478 status = -ENOMEM;
17479 goto out;
17480 }
17481
17482
17483
17484 rq_create = mbox->sge_array->addr[0];
17485 shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr;
17486
17487 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2);
17488 cnt = 0;
17489
17490 for (idx = 0; idx < numrq; idx++) {
17491 hrq = hrqp[idx];
17492 drq = drqp[idx];
17493 cq = cqp[idx];
17494
17495 /* sanity check on queue memory */
17496 if (!hrq || !drq || !cq) {
17497 status = -ENODEV;
17498 goto out;
17499 }
17500
17501 if (hrq->entry_count != drq->entry_count) {
17502 status = -EINVAL;
17503 goto out;
17504 }
17505
17506 if (idx == 0) {
17507 bf_set(lpfc_mbx_rq_create_num_pages,
17508 &rq_create->u.request,
17509 hrq->page_count);
17510 bf_set(lpfc_mbx_rq_create_rq_cnt,
17511 &rq_create->u.request, (numrq * 2));
17512 bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request,
17513 1);
17514 bf_set(lpfc_rq_context_base_cq,
17515 &rq_create->u.request.context,
17516 cq->queue_id);
17517 bf_set(lpfc_rq_context_data_size,
17518 &rq_create->u.request.context,
17519 LPFC_NVMET_DATA_BUF_SIZE);
17520 bf_set(lpfc_rq_context_hdr_size,
17521 &rq_create->u.request.context,
17522 LPFC_HDR_BUF_SIZE);
17523 bf_set(lpfc_rq_context_rqe_count_1,
17524 &rq_create->u.request.context,
17525 hrq->entry_count);
17526 bf_set(lpfc_rq_context_rqe_size,
17527 &rq_create->u.request.context,
17528 LPFC_RQE_SIZE_8);
17529 bf_set(lpfc_rq_context_page_size,
17530 &rq_create->u.request.context,
17531 (PAGE_SIZE/SLI4_PAGE_SIZE));
17532 }
17533 rc = 0;
17534 list_for_each_entry(dmabuf, &hrq->page_list, list) {
17535 memset(dmabuf->virt, 0, hw_page_size);
17536 cnt = page_idx + dmabuf->buffer_tag;
17537 rq_create->u.request.page[cnt].addr_lo =
17538 putPaddrLow(dmabuf->phys);
17539 rq_create->u.request.page[cnt].addr_hi =
17540 putPaddrHigh(dmabuf->phys);
17541 rc++;
17542 }
17543 page_idx += rc;
17544
17545 rc = 0;
17546 list_for_each_entry(dmabuf, &drq->page_list, list) {
17547 memset(dmabuf->virt, 0, hw_page_size);
17548 cnt = page_idx + dmabuf->buffer_tag;
17549 rq_create->u.request.page[cnt].addr_lo =
17550 putPaddrLow(dmabuf->phys);
17551 rq_create->u.request.page[cnt].addr_hi =
17552 putPaddrHigh(dmabuf->phys);
17553 rc++;
17554 }
17555 page_idx += rc;
17556
17557 hrq->db_format = LPFC_DB_RING_FORMAT;
17558 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr;
17559 hrq->type = LPFC_HRQ;
17560 hrq->assoc_qid = cq->queue_id;
17561 hrq->subtype = subtype;
17562 hrq->host_index = 0;
17563 hrq->hba_index = 0;
17564 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
17565
17566 drq->db_format = LPFC_DB_RING_FORMAT;
17567 drq->db_regaddr = phba->sli4_hba.RQDBregaddr;
17568 drq->type = LPFC_DRQ;
17569 drq->assoc_qid = cq->queue_id;
17570 drq->subtype = subtype;
17571 drq->host_index = 0;
17572 drq->hba_index = 0;
17573 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
17574
17575 list_add_tail(&hrq->list, &cq->child_list);
17576 list_add_tail(&drq->list, &cq->child_list);
17577 }
17578
17579 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
17580 /* The IOCTL status is embedded in the mailbox subheader. */
17581 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17582 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17583 if (shdr_status || shdr_add_status || rc) {
17584 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17585 "3120 RQ_CREATE mailbox failed with "
17586 "status x%x add_status x%x, mbx status x%x\n",
17587 shdr_status, shdr_add_status, rc);
17588 status = -ENXIO;
17589 goto out;
17590 }
17591 rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
17592 if (rc == 0xFFFF) {
17593 status = -ENXIO;
17594 goto out;
17595 }
17596
17597 /* Initialize all RQs with associated queue id */
17598 for (idx = 0; idx < numrq; idx++) {
17599 hrq = hrqp[idx];
17600 hrq->queue_id = rc + (2 * idx);
17601 drq = drqp[idx];
17602 drq->queue_id = rc + (2 * idx) + 1;
17603 }
17604
17605 out:
17606 lpfc_sli4_mbox_cmd_free(phba, mbox);
17607 return status;
17608 }
17609
17610 /**
17611 * lpfc_eq_destroy - Destroy an event Queue on the HBA
17612 * @phba: HBA structure that indicates port to destroy a queue on.
17613 * @eq: The queue structure associated with the queue to destroy.
17614 *
17615 * This function destroys a queue, as detailed in @eq by sending an mailbox
17616 * command, specific to the type of queue, to the HBA.
17617 *
17618 * The @eq struct is used to get the queue ID of the queue to destroy.
17619 *
17620 * On success this function will return a zero. If the queue destroy mailbox
17621 * command fails this function will return -ENXIO.
17622 **/
17623 int
lpfc_eq_destroy(struct lpfc_hba * phba,struct lpfc_queue * eq)17624 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq)
17625 {
17626 LPFC_MBOXQ_t *mbox;
17627 int rc, length, status = 0;
17628 uint32_t shdr_status, shdr_add_status;
17629 union lpfc_sli4_cfg_shdr *shdr;
17630
17631 /* sanity check on queue memory */
17632 if (!eq)
17633 return -ENODEV;
17634
17635 if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE))
17636 goto list_remove;
17637
17638 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL);
17639 if (!mbox)
17640 return -ENOMEM;
17641 length = (sizeof(struct lpfc_mbx_eq_destroy) -
17642 sizeof(struct lpfc_sli4_cfg_mhdr));
17643 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
17644 LPFC_MBOX_OPCODE_EQ_DESTROY,
17645 length, LPFC_SLI4_MBX_EMBED);
17646 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request,
17647 eq->queue_id);
17648 mbox->vport = eq->phba->pport;
17649 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
17650
17651 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL);
17652 /* The IOCTL status is embedded in the mailbox subheader. */
17653 shdr = (union lpfc_sli4_cfg_shdr *)
17654 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr;
17655 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17656 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17657 if (shdr_status || shdr_add_status || rc) {
17658 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17659 "2505 EQ_DESTROY mailbox failed with "
17660 "status x%x add_status x%x, mbx status x%x\n",
17661 shdr_status, shdr_add_status, rc);
17662 status = -ENXIO;
17663 }
17664 mempool_free(mbox, eq->phba->mbox_mem_pool);
17665
17666 list_remove:
17667 /* Remove eq from any list */
17668 list_del_init(&eq->list);
17669
17670 return status;
17671 }
17672
17673 /**
17674 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA
17675 * @phba: HBA structure that indicates port to destroy a queue on.
17676 * @cq: The queue structure associated with the queue to destroy.
17677 *
17678 * This function destroys a queue, as detailed in @cq by sending an mailbox
17679 * command, specific to the type of queue, to the HBA.
17680 *
17681 * The @cq struct is used to get the queue ID of the queue to destroy.
17682 *
17683 * On success this function will return a zero. If the queue destroy mailbox
17684 * command fails this function will return -ENXIO.
17685 **/
17686 int
lpfc_cq_destroy(struct lpfc_hba * phba,struct lpfc_queue * cq)17687 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq)
17688 {
17689 LPFC_MBOXQ_t *mbox;
17690 int rc, length, status = 0;
17691 uint32_t shdr_status, shdr_add_status;
17692 union lpfc_sli4_cfg_shdr *shdr;
17693
17694 /* sanity check on queue memory */
17695 if (!cq)
17696 return -ENODEV;
17697
17698 if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE))
17699 goto list_remove;
17700
17701 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL);
17702 if (!mbox)
17703 return -ENOMEM;
17704 length = (sizeof(struct lpfc_mbx_cq_destroy) -
17705 sizeof(struct lpfc_sli4_cfg_mhdr));
17706 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
17707 LPFC_MBOX_OPCODE_CQ_DESTROY,
17708 length, LPFC_SLI4_MBX_EMBED);
17709 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request,
17710 cq->queue_id);
17711 mbox->vport = cq->phba->pport;
17712 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
17713 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL);
17714 /* The IOCTL status is embedded in the mailbox subheader. */
17715 shdr = (union lpfc_sli4_cfg_shdr *)
17716 &mbox->u.mqe.un.wq_create.header.cfg_shdr;
17717 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17718 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17719 if (shdr_status || shdr_add_status || rc) {
17720 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17721 "2506 CQ_DESTROY mailbox failed with "
17722 "status x%x add_status x%x, mbx status x%x\n",
17723 shdr_status, shdr_add_status, rc);
17724 status = -ENXIO;
17725 }
17726 mempool_free(mbox, cq->phba->mbox_mem_pool);
17727
17728 list_remove:
17729 /* Remove cq from any list */
17730 list_del_init(&cq->list);
17731 return status;
17732 }
17733
17734 /**
17735 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA
17736 * @phba: HBA structure that indicates port to destroy a queue on.
17737 * @mq: The queue structure associated with the queue to destroy.
17738 *
17739 * This function destroys a queue, as detailed in @mq by sending an mailbox
17740 * command, specific to the type of queue, to the HBA.
17741 *
17742 * The @mq struct is used to get the queue ID of the queue to destroy.
17743 *
17744 * On success this function will return a zero. If the queue destroy mailbox
17745 * command fails this function will return -ENXIO.
17746 **/
17747 int
lpfc_mq_destroy(struct lpfc_hba * phba,struct lpfc_queue * mq)17748 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq)
17749 {
17750 LPFC_MBOXQ_t *mbox;
17751 int rc, length, status = 0;
17752 uint32_t shdr_status, shdr_add_status;
17753 union lpfc_sli4_cfg_shdr *shdr;
17754
17755 /* sanity check on queue memory */
17756 if (!mq)
17757 return -ENODEV;
17758
17759 if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE))
17760 goto list_remove;
17761
17762 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL);
17763 if (!mbox)
17764 return -ENOMEM;
17765 length = (sizeof(struct lpfc_mbx_mq_destroy) -
17766 sizeof(struct lpfc_sli4_cfg_mhdr));
17767 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
17768 LPFC_MBOX_OPCODE_MQ_DESTROY,
17769 length, LPFC_SLI4_MBX_EMBED);
17770 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request,
17771 mq->queue_id);
17772 mbox->vport = mq->phba->pport;
17773 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
17774 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL);
17775 /* The IOCTL status is embedded in the mailbox subheader. */
17776 shdr = (union lpfc_sli4_cfg_shdr *)
17777 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr;
17778 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17779 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17780 if (shdr_status || shdr_add_status || rc) {
17781 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17782 "2507 MQ_DESTROY mailbox failed with "
17783 "status x%x add_status x%x, mbx status x%x\n",
17784 shdr_status, shdr_add_status, rc);
17785 status = -ENXIO;
17786 }
17787 mempool_free(mbox, mq->phba->mbox_mem_pool);
17788
17789 list_remove:
17790 /* Remove mq from any list */
17791 list_del_init(&mq->list);
17792 return status;
17793 }
17794
17795 /**
17796 * lpfc_wq_destroy - Destroy a Work Queue on the HBA
17797 * @phba: HBA structure that indicates port to destroy a queue on.
17798 * @wq: The queue structure associated with the queue to destroy.
17799 *
17800 * This function destroys a queue, as detailed in @wq by sending an mailbox
17801 * command, specific to the type of queue, to the HBA.
17802 *
17803 * The @wq struct is used to get the queue ID of the queue to destroy.
17804 *
17805 * On success this function will return a zero. If the queue destroy mailbox
17806 * command fails this function will return -ENXIO.
17807 **/
17808 int
lpfc_wq_destroy(struct lpfc_hba * phba,struct lpfc_queue * wq)17809 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq)
17810 {
17811 LPFC_MBOXQ_t *mbox;
17812 int rc, length, status = 0;
17813 uint32_t shdr_status, shdr_add_status;
17814 union lpfc_sli4_cfg_shdr *shdr;
17815
17816 /* sanity check on queue memory */
17817 if (!wq)
17818 return -ENODEV;
17819
17820 if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE))
17821 goto list_remove;
17822
17823 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL);
17824 if (!mbox)
17825 return -ENOMEM;
17826 length = (sizeof(struct lpfc_mbx_wq_destroy) -
17827 sizeof(struct lpfc_sli4_cfg_mhdr));
17828 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17829 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY,
17830 length, LPFC_SLI4_MBX_EMBED);
17831 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request,
17832 wq->queue_id);
17833 mbox->vport = wq->phba->pport;
17834 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
17835 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL);
17836 shdr = (union lpfc_sli4_cfg_shdr *)
17837 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr;
17838 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17839 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17840 if (shdr_status || shdr_add_status || rc) {
17841 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17842 "2508 WQ_DESTROY mailbox failed with "
17843 "status x%x add_status x%x, mbx status x%x\n",
17844 shdr_status, shdr_add_status, rc);
17845 status = -ENXIO;
17846 }
17847 mempool_free(mbox, wq->phba->mbox_mem_pool);
17848
17849 list_remove:
17850 /* Remove wq from any list */
17851 list_del_init(&wq->list);
17852 kfree(wq->pring);
17853 wq->pring = NULL;
17854 return status;
17855 }
17856
17857 /**
17858 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA
17859 * @phba: HBA structure that indicates port to destroy a queue on.
17860 * @hrq: The queue structure associated with the queue to destroy.
17861 * @drq: The queue structure associated with the queue to destroy.
17862 *
17863 * This function destroys a queue, as detailed in @rq by sending an mailbox
17864 * command, specific to the type of queue, to the HBA.
17865 *
17866 * The @rq struct is used to get the queue ID of the queue to destroy.
17867 *
17868 * On success this function will return a zero. If the queue destroy mailbox
17869 * command fails this function will return -ENXIO.
17870 **/
17871 int
lpfc_rq_destroy(struct lpfc_hba * phba,struct lpfc_queue * hrq,struct lpfc_queue * drq)17872 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq,
17873 struct lpfc_queue *drq)
17874 {
17875 LPFC_MBOXQ_t *mbox;
17876 int rc, length, status = 0;
17877 uint32_t shdr_status, shdr_add_status;
17878 union lpfc_sli4_cfg_shdr *shdr;
17879
17880 /* sanity check on queue memory */
17881 if (!hrq || !drq)
17882 return -ENODEV;
17883
17884 if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE))
17885 goto list_remove;
17886
17887 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL);
17888 if (!mbox)
17889 return -ENOMEM;
17890 length = (sizeof(struct lpfc_mbx_rq_destroy) -
17891 sizeof(struct lpfc_sli4_cfg_mhdr));
17892 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17893 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY,
17894 length, LPFC_SLI4_MBX_EMBED);
17895 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
17896 hrq->queue_id);
17897 mbox->vport = hrq->phba->pport;
17898 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
17899 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL);
17900 /* The IOCTL status is embedded in the mailbox subheader. */
17901 shdr = (union lpfc_sli4_cfg_shdr *)
17902 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
17903 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17904 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17905 if (shdr_status || shdr_add_status || rc) {
17906 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17907 "2509 RQ_DESTROY mailbox failed with "
17908 "status x%x add_status x%x, mbx status x%x\n",
17909 shdr_status, shdr_add_status, rc);
17910 mempool_free(mbox, hrq->phba->mbox_mem_pool);
17911 return -ENXIO;
17912 }
17913 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
17914 drq->queue_id);
17915 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL);
17916 shdr = (union lpfc_sli4_cfg_shdr *)
17917 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
17918 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17919 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17920 if (shdr_status || shdr_add_status || rc) {
17921 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17922 "2510 RQ_DESTROY mailbox failed with "
17923 "status x%x add_status x%x, mbx status x%x\n",
17924 shdr_status, shdr_add_status, rc);
17925 status = -ENXIO;
17926 }
17927 mempool_free(mbox, hrq->phba->mbox_mem_pool);
17928
17929 list_remove:
17930 list_del_init(&hrq->list);
17931 list_del_init(&drq->list);
17932 return status;
17933 }
17934
17935 /**
17936 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA
17937 * @phba: The virtual port for which this call being executed.
17938 * @pdma_phys_addr0: Physical address of the 1st SGL page.
17939 * @pdma_phys_addr1: Physical address of the 2nd SGL page.
17940 * @xritag: the xritag that ties this io to the SGL pages.
17941 *
17942 * This routine will post the sgl pages for the IO that has the xritag
17943 * that is in the iocbq structure. The xritag is assigned during iocbq
17944 * creation and persists for as long as the driver is loaded.
17945 * if the caller has fewer than 256 scatter gather segments to map then
17946 * pdma_phys_addr1 should be 0.
17947 * If the caller needs to map more than 256 scatter gather segment then
17948 * pdma_phys_addr1 should be a valid physical address.
17949 * physical address for SGLs must be 64 byte aligned.
17950 * If you are going to map 2 SGL's then the first one must have 256 entries
17951 * the second sgl can have between 1 and 256 entries.
17952 *
17953 * Return codes:
17954 * 0 - Success
17955 * -ENXIO, -ENOMEM - Failure
17956 **/
17957 int
lpfc_sli4_post_sgl(struct lpfc_hba * phba,dma_addr_t pdma_phys_addr0,dma_addr_t pdma_phys_addr1,uint16_t xritag)17958 lpfc_sli4_post_sgl(struct lpfc_hba *phba,
17959 dma_addr_t pdma_phys_addr0,
17960 dma_addr_t pdma_phys_addr1,
17961 uint16_t xritag)
17962 {
17963 struct lpfc_mbx_post_sgl_pages *post_sgl_pages;
17964 LPFC_MBOXQ_t *mbox;
17965 int rc;
17966 uint32_t shdr_status, shdr_add_status;
17967 uint32_t mbox_tmo;
17968 union lpfc_sli4_cfg_shdr *shdr;
17969
17970 if (xritag == NO_XRI) {
17971 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17972 "0364 Invalid param:\n");
17973 return -EINVAL;
17974 }
17975
17976 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
17977 if (!mbox)
17978 return -ENOMEM;
17979
17980 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17981 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES,
17982 sizeof(struct lpfc_mbx_post_sgl_pages) -
17983 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
17984
17985 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *)
17986 &mbox->u.mqe.un.post_sgl_pages;
17987 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag);
17988 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1);
17989
17990 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo =
17991 cpu_to_le32(putPaddrLow(pdma_phys_addr0));
17992 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi =
17993 cpu_to_le32(putPaddrHigh(pdma_phys_addr0));
17994
17995 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo =
17996 cpu_to_le32(putPaddrLow(pdma_phys_addr1));
17997 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi =
17998 cpu_to_le32(putPaddrHigh(pdma_phys_addr1));
17999 if (!phba->sli4_hba.intr_enable)
18000 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
18001 else {
18002 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
18003 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
18004 }
18005 /* The IOCTL status is embedded in the mailbox subheader. */
18006 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr;
18007 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
18008 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
18009 if (!phba->sli4_hba.intr_enable)
18010 mempool_free(mbox, phba->mbox_mem_pool);
18011 else if (rc != MBX_TIMEOUT)
18012 mempool_free(mbox, phba->mbox_mem_pool);
18013 if (shdr_status || shdr_add_status || rc) {
18014 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18015 "2511 POST_SGL mailbox failed with "
18016 "status x%x add_status x%x, mbx status x%x\n",
18017 shdr_status, shdr_add_status, rc);
18018 }
18019 return 0;
18020 }
18021
18022 /**
18023 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range
18024 * @phba: pointer to lpfc hba data structure.
18025 *
18026 * This routine is invoked to post rpi header templates to the
18027 * HBA consistent with the SLI-4 interface spec. This routine
18028 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
18029 * SLI4_PAGE_SIZE modulo 64 rpi context headers.
18030 *
18031 * Returns
18032 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
18033 * LPFC_RPI_ALLOC_ERROR if no rpis are available.
18034 **/
18035 static uint16_t
lpfc_sli4_alloc_xri(struct lpfc_hba * phba)18036 lpfc_sli4_alloc_xri(struct lpfc_hba *phba)
18037 {
18038 unsigned long xri;
18039
18040 /*
18041 * Fetch the next logical xri. Because this index is logical,
18042 * the driver starts at 0 each time.
18043 */
18044 spin_lock_irq(&phba->hbalock);
18045 xri = find_first_zero_bit(phba->sli4_hba.xri_bmask,
18046 phba->sli4_hba.max_cfg_param.max_xri);
18047 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) {
18048 spin_unlock_irq(&phba->hbalock);
18049 return NO_XRI;
18050 } else {
18051 set_bit(xri, phba->sli4_hba.xri_bmask);
18052 phba->sli4_hba.max_cfg_param.xri_used++;
18053 }
18054 spin_unlock_irq(&phba->hbalock);
18055 return xri;
18056 }
18057
18058 /**
18059 * __lpfc_sli4_free_xri - Release an xri for reuse.
18060 * @phba: pointer to lpfc hba data structure.
18061 * @xri: xri to release.
18062 *
18063 * This routine is invoked to release an xri to the pool of
18064 * available rpis maintained by the driver.
18065 **/
18066 static void
__lpfc_sli4_free_xri(struct lpfc_hba * phba,int xri)18067 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
18068 {
18069 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) {
18070 phba->sli4_hba.max_cfg_param.xri_used--;
18071 }
18072 }
18073
18074 /**
18075 * lpfc_sli4_free_xri - Release an xri for reuse.
18076 * @phba: pointer to lpfc hba data structure.
18077 * @xri: xri to release.
18078 *
18079 * This routine is invoked to release an xri to the pool of
18080 * available rpis maintained by the driver.
18081 **/
18082 void
lpfc_sli4_free_xri(struct lpfc_hba * phba,int xri)18083 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
18084 {
18085 spin_lock_irq(&phba->hbalock);
18086 __lpfc_sli4_free_xri(phba, xri);
18087 spin_unlock_irq(&phba->hbalock);
18088 }
18089
18090 /**
18091 * lpfc_sli4_next_xritag - Get an xritag for the io
18092 * @phba: Pointer to HBA context object.
18093 *
18094 * This function gets an xritag for the iocb. If there is no unused xritag
18095 * it will return 0xffff.
18096 * The function returns the allocated xritag if successful, else returns zero.
18097 * Zero is not a valid xritag.
18098 * The caller is not required to hold any lock.
18099 **/
18100 uint16_t
lpfc_sli4_next_xritag(struct lpfc_hba * phba)18101 lpfc_sli4_next_xritag(struct lpfc_hba *phba)
18102 {
18103 uint16_t xri_index;
18104
18105 xri_index = lpfc_sli4_alloc_xri(phba);
18106 if (xri_index == NO_XRI)
18107 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
18108 "2004 Failed to allocate XRI.last XRITAG is %d"
18109 " Max XRI is %d, Used XRI is %d\n",
18110 xri_index,
18111 phba->sli4_hba.max_cfg_param.max_xri,
18112 phba->sli4_hba.max_cfg_param.xri_used);
18113 return xri_index;
18114 }
18115
18116 /**
18117 * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port.
18118 * @phba: pointer to lpfc hba data structure.
18119 * @post_sgl_list: pointer to els sgl entry list.
18120 * @post_cnt: number of els sgl entries on the list.
18121 *
18122 * This routine is invoked to post a block of driver's sgl pages to the
18123 * HBA using non-embedded mailbox command. No Lock is held. This routine
18124 * is only called when the driver is loading and after all IO has been
18125 * stopped.
18126 **/
18127 static int
lpfc_sli4_post_sgl_list(struct lpfc_hba * phba,struct list_head * post_sgl_list,int post_cnt)18128 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba,
18129 struct list_head *post_sgl_list,
18130 int post_cnt)
18131 {
18132 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
18133 struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
18134 struct sgl_page_pairs *sgl_pg_pairs;
18135 void *viraddr;
18136 LPFC_MBOXQ_t *mbox;
18137 uint32_t reqlen, alloclen, pg_pairs;
18138 uint32_t mbox_tmo;
18139 uint16_t xritag_start = 0;
18140 int rc = 0;
18141 uint32_t shdr_status, shdr_add_status;
18142 union lpfc_sli4_cfg_shdr *shdr;
18143
18144 reqlen = post_cnt * sizeof(struct sgl_page_pairs) +
18145 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
18146 if (reqlen > SLI4_PAGE_SIZE) {
18147 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18148 "2559 Block sgl registration required DMA "
18149 "size (%d) great than a page\n", reqlen);
18150 return -ENOMEM;
18151 }
18152
18153 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18154 if (!mbox)
18155 return -ENOMEM;
18156
18157 /* Allocate DMA memory and set up the non-embedded mailbox command */
18158 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
18159 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen,
18160 LPFC_SLI4_MBX_NEMBED);
18161
18162 if (alloclen < reqlen) {
18163 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18164 "0285 Allocated DMA memory size (%d) is "
18165 "less than the requested DMA memory "
18166 "size (%d)\n", alloclen, reqlen);
18167 lpfc_sli4_mbox_cmd_free(phba, mbox);
18168 return -ENOMEM;
18169 }
18170 /* Set up the SGL pages in the non-embedded DMA pages */
18171 viraddr = mbox->sge_array->addr[0];
18172 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
18173 sgl_pg_pairs = &sgl->sgl_pg_pairs;
18174
18175 pg_pairs = 0;
18176 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) {
18177 /* Set up the sge entry */
18178 sgl_pg_pairs->sgl_pg0_addr_lo =
18179 cpu_to_le32(putPaddrLow(sglq_entry->phys));
18180 sgl_pg_pairs->sgl_pg0_addr_hi =
18181 cpu_to_le32(putPaddrHigh(sglq_entry->phys));
18182 sgl_pg_pairs->sgl_pg1_addr_lo =
18183 cpu_to_le32(putPaddrLow(0));
18184 sgl_pg_pairs->sgl_pg1_addr_hi =
18185 cpu_to_le32(putPaddrHigh(0));
18186
18187 /* Keep the first xritag on the list */
18188 if (pg_pairs == 0)
18189 xritag_start = sglq_entry->sli4_xritag;
18190 sgl_pg_pairs++;
18191 pg_pairs++;
18192 }
18193
18194 /* Complete initialization and perform endian conversion. */
18195 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
18196 bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt);
18197 sgl->word0 = cpu_to_le32(sgl->word0);
18198
18199 if (!phba->sli4_hba.intr_enable)
18200 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
18201 else {
18202 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
18203 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
18204 }
18205 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr;
18206 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
18207 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
18208 if (!phba->sli4_hba.intr_enable)
18209 lpfc_sli4_mbox_cmd_free(phba, mbox);
18210 else if (rc != MBX_TIMEOUT)
18211 lpfc_sli4_mbox_cmd_free(phba, mbox);
18212 if (shdr_status || shdr_add_status || rc) {
18213 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18214 "2513 POST_SGL_BLOCK mailbox command failed "
18215 "status x%x add_status x%x mbx status x%x\n",
18216 shdr_status, shdr_add_status, rc);
18217 rc = -ENXIO;
18218 }
18219 return rc;
18220 }
18221
18222 /**
18223 * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware
18224 * @phba: pointer to lpfc hba data structure.
18225 * @nblist: pointer to nvme buffer list.
18226 * @count: number of scsi buffers on the list.
18227 *
18228 * This routine is invoked to post a block of @count scsi sgl pages from a
18229 * SCSI buffer list @nblist to the HBA using non-embedded mailbox command.
18230 * No Lock is held.
18231 *
18232 **/
18233 static int
lpfc_sli4_post_io_sgl_block(struct lpfc_hba * phba,struct list_head * nblist,int count)18234 lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist,
18235 int count)
18236 {
18237 struct lpfc_io_buf *lpfc_ncmd;
18238 struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
18239 struct sgl_page_pairs *sgl_pg_pairs;
18240 void *viraddr;
18241 LPFC_MBOXQ_t *mbox;
18242 uint32_t reqlen, alloclen, pg_pairs;
18243 uint32_t mbox_tmo;
18244 uint16_t xritag_start = 0;
18245 int rc = 0;
18246 uint32_t shdr_status, shdr_add_status;
18247 dma_addr_t pdma_phys_bpl1;
18248 union lpfc_sli4_cfg_shdr *shdr;
18249
18250 /* Calculate the requested length of the dma memory */
18251 reqlen = count * sizeof(struct sgl_page_pairs) +
18252 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
18253 if (reqlen > SLI4_PAGE_SIZE) {
18254 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
18255 "6118 Block sgl registration required DMA "
18256 "size (%d) great than a page\n", reqlen);
18257 return -ENOMEM;
18258 }
18259 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18260 if (!mbox) {
18261 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18262 "6119 Failed to allocate mbox cmd memory\n");
18263 return -ENOMEM;
18264 }
18265
18266 /* Allocate DMA memory and set up the non-embedded mailbox command */
18267 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
18268 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES,
18269 reqlen, LPFC_SLI4_MBX_NEMBED);
18270
18271 if (alloclen < reqlen) {
18272 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18273 "6120 Allocated DMA memory size (%d) is "
18274 "less than the requested DMA memory "
18275 "size (%d)\n", alloclen, reqlen);
18276 lpfc_sli4_mbox_cmd_free(phba, mbox);
18277 return -ENOMEM;
18278 }
18279
18280 /* Get the first SGE entry from the non-embedded DMA memory */
18281 viraddr = mbox->sge_array->addr[0];
18282
18283 /* Set up the SGL pages in the non-embedded DMA pages */
18284 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
18285 sgl_pg_pairs = &sgl->sgl_pg_pairs;
18286
18287 pg_pairs = 0;
18288 list_for_each_entry(lpfc_ncmd, nblist, list) {
18289 /* Set up the sge entry */
18290 sgl_pg_pairs->sgl_pg0_addr_lo =
18291 cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl));
18292 sgl_pg_pairs->sgl_pg0_addr_hi =
18293 cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl));
18294 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE)
18295 pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl +
18296 SGL_PAGE_SIZE;
18297 else
18298 pdma_phys_bpl1 = 0;
18299 sgl_pg_pairs->sgl_pg1_addr_lo =
18300 cpu_to_le32(putPaddrLow(pdma_phys_bpl1));
18301 sgl_pg_pairs->sgl_pg1_addr_hi =
18302 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1));
18303 /* Keep the first xritag on the list */
18304 if (pg_pairs == 0)
18305 xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag;
18306 sgl_pg_pairs++;
18307 pg_pairs++;
18308 }
18309 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
18310 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs);
18311 /* Perform endian conversion if necessary */
18312 sgl->word0 = cpu_to_le32(sgl->word0);
18313
18314 if (!phba->sli4_hba.intr_enable) {
18315 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
18316 } else {
18317 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
18318 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
18319 }
18320 shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr;
18321 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
18322 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
18323 if (!phba->sli4_hba.intr_enable)
18324 lpfc_sli4_mbox_cmd_free(phba, mbox);
18325 else if (rc != MBX_TIMEOUT)
18326 lpfc_sli4_mbox_cmd_free(phba, mbox);
18327 if (shdr_status || shdr_add_status || rc) {
18328 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18329 "6125 POST_SGL_BLOCK mailbox command failed "
18330 "status x%x add_status x%x mbx status x%x\n",
18331 shdr_status, shdr_add_status, rc);
18332 rc = -ENXIO;
18333 }
18334 return rc;
18335 }
18336
18337 /**
18338 * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list
18339 * @phba: pointer to lpfc hba data structure.
18340 * @post_nblist: pointer to the nvme buffer list.
18341 * @sb_count: number of nvme buffers.
18342 *
18343 * This routine walks a list of nvme buffers that was passed in. It attempts
18344 * to construct blocks of nvme buffer sgls which contains contiguous xris and
18345 * uses the non-embedded SGL block post mailbox commands to post to the port.
18346 * For single NVME buffer sgl with non-contiguous xri, if any, it shall use
18347 * embedded SGL post mailbox command for posting. The @post_nblist passed in
18348 * must be local list, thus no lock is needed when manipulate the list.
18349 *
18350 * Returns: 0 = failure, non-zero number of successfully posted buffers.
18351 **/
18352 int
lpfc_sli4_post_io_sgl_list(struct lpfc_hba * phba,struct list_head * post_nblist,int sb_count)18353 lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba,
18354 struct list_head *post_nblist, int sb_count)
18355 {
18356 struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next;
18357 int status, sgl_size;
18358 int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0;
18359 dma_addr_t pdma_phys_sgl1;
18360 int last_xritag = NO_XRI;
18361 int cur_xritag;
18362 LIST_HEAD(prep_nblist);
18363 LIST_HEAD(blck_nblist);
18364 LIST_HEAD(nvme_nblist);
18365
18366 /* sanity check */
18367 if (sb_count <= 0)
18368 return -EINVAL;
18369
18370 sgl_size = phba->cfg_sg_dma_buf_size;
18371 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) {
18372 list_del_init(&lpfc_ncmd->list);
18373 block_cnt++;
18374 if ((last_xritag != NO_XRI) &&
18375 (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) {
18376 /* a hole in xri block, form a sgl posting block */
18377 list_splice_init(&prep_nblist, &blck_nblist);
18378 post_cnt = block_cnt - 1;
18379 /* prepare list for next posting block */
18380 list_add_tail(&lpfc_ncmd->list, &prep_nblist);
18381 block_cnt = 1;
18382 } else {
18383 /* prepare list for next posting block */
18384 list_add_tail(&lpfc_ncmd->list, &prep_nblist);
18385 /* enough sgls for non-embed sgl mbox command */
18386 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) {
18387 list_splice_init(&prep_nblist, &blck_nblist);
18388 post_cnt = block_cnt;
18389 block_cnt = 0;
18390 }
18391 }
18392 num_posting++;
18393 last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag;
18394
18395 /* end of repost sgl list condition for NVME buffers */
18396 if (num_posting == sb_count) {
18397 if (post_cnt == 0) {
18398 /* last sgl posting block */
18399 list_splice_init(&prep_nblist, &blck_nblist);
18400 post_cnt = block_cnt;
18401 } else if (block_cnt == 1) {
18402 /* last single sgl with non-contiguous xri */
18403 if (sgl_size > SGL_PAGE_SIZE)
18404 pdma_phys_sgl1 =
18405 lpfc_ncmd->dma_phys_sgl +
18406 SGL_PAGE_SIZE;
18407 else
18408 pdma_phys_sgl1 = 0;
18409 cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag;
18410 status = lpfc_sli4_post_sgl(
18411 phba, lpfc_ncmd->dma_phys_sgl,
18412 pdma_phys_sgl1, cur_xritag);
18413 if (status) {
18414 /* Post error. Buffer unavailable. */
18415 lpfc_ncmd->flags |=
18416 LPFC_SBUF_NOT_POSTED;
18417 } else {
18418 /* Post success. Bffer available. */
18419 lpfc_ncmd->flags &=
18420 ~LPFC_SBUF_NOT_POSTED;
18421 lpfc_ncmd->status = IOSTAT_SUCCESS;
18422 num_posted++;
18423 }
18424 /* success, put on NVME buffer sgl list */
18425 list_add_tail(&lpfc_ncmd->list, &nvme_nblist);
18426 }
18427 }
18428
18429 /* continue until a nembed page worth of sgls */
18430 if (post_cnt == 0)
18431 continue;
18432
18433 /* post block of NVME buffer list sgls */
18434 status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist,
18435 post_cnt);
18436
18437 /* don't reset xirtag due to hole in xri block */
18438 if (block_cnt == 0)
18439 last_xritag = NO_XRI;
18440
18441 /* reset NVME buffer post count for next round of posting */
18442 post_cnt = 0;
18443
18444 /* put posted NVME buffer-sgl posted on NVME buffer sgl list */
18445 while (!list_empty(&blck_nblist)) {
18446 list_remove_head(&blck_nblist, lpfc_ncmd,
18447 struct lpfc_io_buf, list);
18448 if (status) {
18449 /* Post error. Mark buffer unavailable. */
18450 lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED;
18451 } else {
18452 /* Post success, Mark buffer available. */
18453 lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED;
18454 lpfc_ncmd->status = IOSTAT_SUCCESS;
18455 num_posted++;
18456 }
18457 list_add_tail(&lpfc_ncmd->list, &nvme_nblist);
18458 }
18459 }
18460 /* Push NVME buffers with sgl posted to the available list */
18461 lpfc_io_buf_replenish(phba, &nvme_nblist);
18462
18463 return num_posted;
18464 }
18465
18466 /**
18467 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle
18468 * @phba: pointer to lpfc_hba struct that the frame was received on
18469 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
18470 *
18471 * This function checks the fields in the @fc_hdr to see if the FC frame is a
18472 * valid type of frame that the LPFC driver will handle. This function will
18473 * return a zero if the frame is a valid frame or a non zero value when the
18474 * frame does not pass the check.
18475 **/
18476 static int
lpfc_fc_frame_check(struct lpfc_hba * phba,struct fc_frame_header * fc_hdr)18477 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr)
18478 {
18479 /* make rctl_names static to save stack space */
18480 struct fc_vft_header *fc_vft_hdr;
18481 uint32_t *header = (uint32_t *) fc_hdr;
18482
18483 #define FC_RCTL_MDS_DIAGS 0xF4
18484
18485 switch (fc_hdr->fh_r_ctl) {
18486 case FC_RCTL_DD_UNCAT: /* uncategorized information */
18487 case FC_RCTL_DD_SOL_DATA: /* solicited data */
18488 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */
18489 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */
18490 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */
18491 case FC_RCTL_DD_DATA_DESC: /* data descriptor */
18492 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */
18493 case FC_RCTL_DD_CMD_STATUS: /* command status */
18494 case FC_RCTL_ELS_REQ: /* extended link services request */
18495 case FC_RCTL_ELS_REP: /* extended link services reply */
18496 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */
18497 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */
18498 case FC_RCTL_BA_ABTS: /* basic link service abort */
18499 case FC_RCTL_BA_RMC: /* remove connection */
18500 case FC_RCTL_BA_ACC: /* basic accept */
18501 case FC_RCTL_BA_RJT: /* basic reject */
18502 case FC_RCTL_BA_PRMT:
18503 case FC_RCTL_ACK_1: /* acknowledge_1 */
18504 case FC_RCTL_ACK_0: /* acknowledge_0 */
18505 case FC_RCTL_P_RJT: /* port reject */
18506 case FC_RCTL_F_RJT: /* fabric reject */
18507 case FC_RCTL_P_BSY: /* port busy */
18508 case FC_RCTL_F_BSY: /* fabric busy to data frame */
18509 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */
18510 case FC_RCTL_LCR: /* link credit reset */
18511 case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */
18512 case FC_RCTL_END: /* end */
18513 break;
18514 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */
18515 fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
18516 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1];
18517 return lpfc_fc_frame_check(phba, fc_hdr);
18518 case FC_RCTL_BA_NOP: /* basic link service NOP */
18519 default:
18520 goto drop;
18521 }
18522
18523 switch (fc_hdr->fh_type) {
18524 case FC_TYPE_BLS:
18525 case FC_TYPE_ELS:
18526 case FC_TYPE_FCP:
18527 case FC_TYPE_CT:
18528 case FC_TYPE_NVME:
18529 break;
18530 case FC_TYPE_IP:
18531 case FC_TYPE_ILS:
18532 default:
18533 goto drop;
18534 }
18535
18536 lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
18537 "2538 Received frame rctl:x%x, type:x%x, "
18538 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n",
18539 fc_hdr->fh_r_ctl, fc_hdr->fh_type,
18540 be32_to_cpu(header[0]), be32_to_cpu(header[1]),
18541 be32_to_cpu(header[2]), be32_to_cpu(header[3]),
18542 be32_to_cpu(header[4]), be32_to_cpu(header[5]),
18543 be32_to_cpu(header[6]));
18544 return 0;
18545 drop:
18546 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS,
18547 "2539 Dropped frame rctl:x%x type:x%x\n",
18548 fc_hdr->fh_r_ctl, fc_hdr->fh_type);
18549 return 1;
18550 }
18551
18552 /**
18553 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame
18554 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
18555 *
18556 * This function processes the FC header to retrieve the VFI from the VF
18557 * header, if one exists. This function will return the VFI if one exists
18558 * or 0 if no VSAN Header exists.
18559 **/
18560 static uint32_t
lpfc_fc_hdr_get_vfi(struct fc_frame_header * fc_hdr)18561 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr)
18562 {
18563 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
18564
18565 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH)
18566 return 0;
18567 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr);
18568 }
18569
18570 /**
18571 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to
18572 * @phba: Pointer to the HBA structure to search for the vport on
18573 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
18574 * @fcfi: The FC Fabric ID that the frame came from
18575 * @did: Destination ID to match against
18576 *
18577 * This function searches the @phba for a vport that matches the content of the
18578 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the
18579 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function
18580 * returns the matching vport pointer or NULL if unable to match frame to a
18581 * vport.
18582 **/
18583 static struct lpfc_vport *
lpfc_fc_frame_to_vport(struct lpfc_hba * phba,struct fc_frame_header * fc_hdr,uint16_t fcfi,uint32_t did)18584 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr,
18585 uint16_t fcfi, uint32_t did)
18586 {
18587 struct lpfc_vport **vports;
18588 struct lpfc_vport *vport = NULL;
18589 int i;
18590
18591 if (did == Fabric_DID)
18592 return phba->pport;
18593 if ((phba->pport->fc_flag & FC_PT2PT) &&
18594 !(phba->link_state == LPFC_HBA_READY))
18595 return phba->pport;
18596
18597 vports = lpfc_create_vport_work_array(phba);
18598 if (vports != NULL) {
18599 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) {
18600 if (phba->fcf.fcfi == fcfi &&
18601 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) &&
18602 vports[i]->fc_myDID == did) {
18603 vport = vports[i];
18604 break;
18605 }
18606 }
18607 }
18608 lpfc_destroy_vport_work_array(phba, vports);
18609 return vport;
18610 }
18611
18612 /**
18613 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp
18614 * @vport: The vport to work on.
18615 *
18616 * This function updates the receive sequence time stamp for this vport. The
18617 * receive sequence time stamp indicates the time that the last frame of the
18618 * the sequence that has been idle for the longest amount of time was received.
18619 * the driver uses this time stamp to indicate if any received sequences have
18620 * timed out.
18621 **/
18622 static void
lpfc_update_rcv_time_stamp(struct lpfc_vport * vport)18623 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport)
18624 {
18625 struct lpfc_dmabuf *h_buf;
18626 struct hbq_dmabuf *dmabuf = NULL;
18627
18628 /* get the oldest sequence on the rcv list */
18629 h_buf = list_get_first(&vport->rcv_buffer_list,
18630 struct lpfc_dmabuf, list);
18631 if (!h_buf)
18632 return;
18633 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
18634 vport->rcv_buffer_time_stamp = dmabuf->time_stamp;
18635 }
18636
18637 /**
18638 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences.
18639 * @vport: The vport that the received sequences were sent to.
18640 *
18641 * This function cleans up all outstanding received sequences. This is called
18642 * by the driver when a link event or user action invalidates all the received
18643 * sequences.
18644 **/
18645 void
lpfc_cleanup_rcv_buffers(struct lpfc_vport * vport)18646 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport)
18647 {
18648 struct lpfc_dmabuf *h_buf, *hnext;
18649 struct lpfc_dmabuf *d_buf, *dnext;
18650 struct hbq_dmabuf *dmabuf = NULL;
18651
18652 /* start with the oldest sequence on the rcv list */
18653 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
18654 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
18655 list_del_init(&dmabuf->hbuf.list);
18656 list_for_each_entry_safe(d_buf, dnext,
18657 &dmabuf->dbuf.list, list) {
18658 list_del_init(&d_buf->list);
18659 lpfc_in_buf_free(vport->phba, d_buf);
18660 }
18661 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
18662 }
18663 }
18664
18665 /**
18666 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences.
18667 * @vport: The vport that the received sequences were sent to.
18668 *
18669 * This function determines whether any received sequences have timed out by
18670 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp
18671 * indicates that there is at least one timed out sequence this routine will
18672 * go through the received sequences one at a time from most inactive to most
18673 * active to determine which ones need to be cleaned up. Once it has determined
18674 * that a sequence needs to be cleaned up it will simply free up the resources
18675 * without sending an abort.
18676 **/
18677 void
lpfc_rcv_seq_check_edtov(struct lpfc_vport * vport)18678 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport)
18679 {
18680 struct lpfc_dmabuf *h_buf, *hnext;
18681 struct lpfc_dmabuf *d_buf, *dnext;
18682 struct hbq_dmabuf *dmabuf = NULL;
18683 unsigned long timeout;
18684 int abort_count = 0;
18685
18686 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
18687 vport->rcv_buffer_time_stamp);
18688 if (list_empty(&vport->rcv_buffer_list) ||
18689 time_before(jiffies, timeout))
18690 return;
18691 /* start with the oldest sequence on the rcv list */
18692 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
18693 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
18694 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
18695 dmabuf->time_stamp);
18696 if (time_before(jiffies, timeout))
18697 break;
18698 abort_count++;
18699 list_del_init(&dmabuf->hbuf.list);
18700 list_for_each_entry_safe(d_buf, dnext,
18701 &dmabuf->dbuf.list, list) {
18702 list_del_init(&d_buf->list);
18703 lpfc_in_buf_free(vport->phba, d_buf);
18704 }
18705 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
18706 }
18707 if (abort_count)
18708 lpfc_update_rcv_time_stamp(vport);
18709 }
18710
18711 /**
18712 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences
18713 * @vport: pointer to a vitural port
18714 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame
18715 *
18716 * This function searches through the existing incomplete sequences that have
18717 * been sent to this @vport. If the frame matches one of the incomplete
18718 * sequences then the dbuf in the @dmabuf is added to the list of frames that
18719 * make up that sequence. If no sequence is found that matches this frame then
18720 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list
18721 * This function returns a pointer to the first dmabuf in the sequence list that
18722 * the frame was linked to.
18723 **/
18724 static struct hbq_dmabuf *
lpfc_fc_frame_add(struct lpfc_vport * vport,struct hbq_dmabuf * dmabuf)18725 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
18726 {
18727 struct fc_frame_header *new_hdr;
18728 struct fc_frame_header *temp_hdr;
18729 struct lpfc_dmabuf *d_buf;
18730 struct lpfc_dmabuf *h_buf;
18731 struct hbq_dmabuf *seq_dmabuf = NULL;
18732 struct hbq_dmabuf *temp_dmabuf = NULL;
18733 uint8_t found = 0;
18734
18735 INIT_LIST_HEAD(&dmabuf->dbuf.list);
18736 dmabuf->time_stamp = jiffies;
18737 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
18738
18739 /* Use the hdr_buf to find the sequence that this frame belongs to */
18740 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
18741 temp_hdr = (struct fc_frame_header *)h_buf->virt;
18742 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
18743 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
18744 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
18745 continue;
18746 /* found a pending sequence that matches this frame */
18747 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
18748 break;
18749 }
18750 if (!seq_dmabuf) {
18751 /*
18752 * This indicates first frame received for this sequence.
18753 * Queue the buffer on the vport's rcv_buffer_list.
18754 */
18755 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
18756 lpfc_update_rcv_time_stamp(vport);
18757 return dmabuf;
18758 }
18759 temp_hdr = seq_dmabuf->hbuf.virt;
18760 if (be16_to_cpu(new_hdr->fh_seq_cnt) <
18761 be16_to_cpu(temp_hdr->fh_seq_cnt)) {
18762 list_del_init(&seq_dmabuf->hbuf.list);
18763 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
18764 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
18765 lpfc_update_rcv_time_stamp(vport);
18766 return dmabuf;
18767 }
18768 /* move this sequence to the tail to indicate a young sequence */
18769 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list);
18770 seq_dmabuf->time_stamp = jiffies;
18771 lpfc_update_rcv_time_stamp(vport);
18772 if (list_empty(&seq_dmabuf->dbuf.list)) {
18773 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
18774 return seq_dmabuf;
18775 }
18776 /* find the correct place in the sequence to insert this frame */
18777 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list);
18778 while (!found) {
18779 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
18780 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt;
18781 /*
18782 * If the frame's sequence count is greater than the frame on
18783 * the list then insert the frame right after this frame
18784 */
18785 if (be16_to_cpu(new_hdr->fh_seq_cnt) >
18786 be16_to_cpu(temp_hdr->fh_seq_cnt)) {
18787 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list);
18788 found = 1;
18789 break;
18790 }
18791
18792 if (&d_buf->list == &seq_dmabuf->dbuf.list)
18793 break;
18794 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list);
18795 }
18796
18797 if (found)
18798 return seq_dmabuf;
18799 return NULL;
18800 }
18801
18802 /**
18803 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence
18804 * @vport: pointer to a vitural port
18805 * @dmabuf: pointer to a dmabuf that describes the FC sequence
18806 *
18807 * This function tries to abort from the partially assembed sequence, described
18808 * by the information from basic abbort @dmabuf. It checks to see whether such
18809 * partially assembled sequence held by the driver. If so, it shall free up all
18810 * the frames from the partially assembled sequence.
18811 *
18812 * Return
18813 * true -- if there is matching partially assembled sequence present and all
18814 * the frames freed with the sequence;
18815 * false -- if there is no matching partially assembled sequence present so
18816 * nothing got aborted in the lower layer driver
18817 **/
18818 static bool
lpfc_sli4_abort_partial_seq(struct lpfc_vport * vport,struct hbq_dmabuf * dmabuf)18819 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport,
18820 struct hbq_dmabuf *dmabuf)
18821 {
18822 struct fc_frame_header *new_hdr;
18823 struct fc_frame_header *temp_hdr;
18824 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf;
18825 struct hbq_dmabuf *seq_dmabuf = NULL;
18826
18827 /* Use the hdr_buf to find the sequence that matches this frame */
18828 INIT_LIST_HEAD(&dmabuf->dbuf.list);
18829 INIT_LIST_HEAD(&dmabuf->hbuf.list);
18830 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
18831 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
18832 temp_hdr = (struct fc_frame_header *)h_buf->virt;
18833 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
18834 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
18835 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
18836 continue;
18837 /* found a pending sequence that matches this frame */
18838 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
18839 break;
18840 }
18841
18842 /* Free up all the frames from the partially assembled sequence */
18843 if (seq_dmabuf) {
18844 list_for_each_entry_safe(d_buf, n_buf,
18845 &seq_dmabuf->dbuf.list, list) {
18846 list_del_init(&d_buf->list);
18847 lpfc_in_buf_free(vport->phba, d_buf);
18848 }
18849 return true;
18850 }
18851 return false;
18852 }
18853
18854 /**
18855 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp
18856 * @vport: pointer to a vitural port
18857 * @dmabuf: pointer to a dmabuf that describes the FC sequence
18858 *
18859 * This function tries to abort from the assembed sequence from upper level
18860 * protocol, described by the information from basic abbort @dmabuf. It
18861 * checks to see whether such pending context exists at upper level protocol.
18862 * If so, it shall clean up the pending context.
18863 *
18864 * Return
18865 * true -- if there is matching pending context of the sequence cleaned
18866 * at ulp;
18867 * false -- if there is no matching pending context of the sequence present
18868 * at ulp.
18869 **/
18870 static bool
lpfc_sli4_abort_ulp_seq(struct lpfc_vport * vport,struct hbq_dmabuf * dmabuf)18871 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
18872 {
18873 struct lpfc_hba *phba = vport->phba;
18874 int handled;
18875
18876 /* Accepting abort at ulp with SLI4 only */
18877 if (phba->sli_rev < LPFC_SLI_REV4)
18878 return false;
18879
18880 /* Register all caring upper level protocols to attend abort */
18881 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf);
18882 if (handled)
18883 return true;
18884
18885 return false;
18886 }
18887
18888 /**
18889 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler
18890 * @phba: Pointer to HBA context object.
18891 * @cmd_iocbq: pointer to the command iocbq structure.
18892 * @rsp_iocbq: pointer to the response iocbq structure.
18893 *
18894 * This function handles the sequence abort response iocb command complete
18895 * event. It properly releases the memory allocated to the sequence abort
18896 * accept iocb.
18897 **/
18898 static void
lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba * phba,struct lpfc_iocbq * cmd_iocbq,struct lpfc_iocbq * rsp_iocbq)18899 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba,
18900 struct lpfc_iocbq *cmd_iocbq,
18901 struct lpfc_iocbq *rsp_iocbq)
18902 {
18903 if (cmd_iocbq) {
18904 lpfc_nlp_put(cmd_iocbq->ndlp);
18905 lpfc_sli_release_iocbq(phba, cmd_iocbq);
18906 }
18907
18908 /* Failure means BLS ABORT RSP did not get delivered to remote node*/
18909 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus)
18910 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18911 "3154 BLS ABORT RSP failed, data: x%x/x%x\n",
18912 get_job_ulpstatus(phba, rsp_iocbq),
18913 get_job_word4(phba, rsp_iocbq));
18914 }
18915
18916 /**
18917 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver.
18918 * @phba: Pointer to HBA context object.
18919 * @xri: xri id in transaction.
18920 *
18921 * This function validates the xri maps to the known range of XRIs allocated an
18922 * used by the driver.
18923 **/
18924 uint16_t
lpfc_sli4_xri_inrange(struct lpfc_hba * phba,uint16_t xri)18925 lpfc_sli4_xri_inrange(struct lpfc_hba *phba,
18926 uint16_t xri)
18927 {
18928 uint16_t i;
18929
18930 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) {
18931 if (xri == phba->sli4_hba.xri_ids[i])
18932 return i;
18933 }
18934 return NO_XRI;
18935 }
18936
18937 /**
18938 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort
18939 * @vport: pointer to a virtual port.
18940 * @fc_hdr: pointer to a FC frame header.
18941 * @aborted: was the partially assembled receive sequence successfully aborted
18942 *
18943 * This function sends a basic response to a previous unsol sequence abort
18944 * event after aborting the sequence handling.
18945 **/
18946 void
lpfc_sli4_seq_abort_rsp(struct lpfc_vport * vport,struct fc_frame_header * fc_hdr,bool aborted)18947 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport,
18948 struct fc_frame_header *fc_hdr, bool aborted)
18949 {
18950 struct lpfc_hba *phba = vport->phba;
18951 struct lpfc_iocbq *ctiocb = NULL;
18952 struct lpfc_nodelist *ndlp;
18953 uint16_t oxid, rxid, xri, lxri;
18954 uint32_t sid, fctl;
18955 union lpfc_wqe128 *icmd;
18956 int rc;
18957
18958 if (!lpfc_is_link_up(phba))
18959 return;
18960
18961 sid = sli4_sid_from_fc_hdr(fc_hdr);
18962 oxid = be16_to_cpu(fc_hdr->fh_ox_id);
18963 rxid = be16_to_cpu(fc_hdr->fh_rx_id);
18964
18965 ndlp = lpfc_findnode_did(vport, sid);
18966 if (!ndlp) {
18967 ndlp = lpfc_nlp_init(vport, sid);
18968 if (!ndlp) {
18969 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS,
18970 "1268 Failed to allocate ndlp for "
18971 "oxid:x%x SID:x%x\n", oxid, sid);
18972 return;
18973 }
18974 /* Put ndlp onto pport node list */
18975 lpfc_enqueue_node(vport, ndlp);
18976 }
18977
18978 /* Allocate buffer for rsp iocb */
18979 ctiocb = lpfc_sli_get_iocbq(phba);
18980 if (!ctiocb)
18981 return;
18982
18983 icmd = &ctiocb->wqe;
18984
18985 /* Extract the F_CTL field from FC_HDR */
18986 fctl = sli4_fctl_from_fc_hdr(fc_hdr);
18987
18988 ctiocb->ndlp = lpfc_nlp_get(ndlp);
18989 if (!ctiocb->ndlp) {
18990 lpfc_sli_release_iocbq(phba, ctiocb);
18991 return;
18992 }
18993
18994 ctiocb->vport = phba->pport;
18995 ctiocb->cmd_cmpl = lpfc_sli4_seq_abort_rsp_cmpl;
18996 ctiocb->sli4_lxritag = NO_XRI;
18997 ctiocb->sli4_xritag = NO_XRI;
18998 ctiocb->abort_rctl = FC_RCTL_BA_ACC;
18999
19000 if (fctl & FC_FC_EX_CTX)
19001 /* Exchange responder sent the abort so we
19002 * own the oxid.
19003 */
19004 xri = oxid;
19005 else
19006 xri = rxid;
19007 lxri = lpfc_sli4_xri_inrange(phba, xri);
19008 if (lxri != NO_XRI)
19009 lpfc_set_rrq_active(phba, ndlp, lxri,
19010 (xri == oxid) ? rxid : oxid, 0);
19011 /* For BA_ABTS from exchange responder, if the logical xri with
19012 * the oxid maps to the FCP XRI range, the port no longer has
19013 * that exchange context, send a BLS_RJT. Override the IOCB for
19014 * a BA_RJT.
19015 */
19016 if ((fctl & FC_FC_EX_CTX) &&
19017 (lxri > lpfc_sli4_get_iocb_cnt(phba))) {
19018 ctiocb->abort_rctl = FC_RCTL_BA_RJT;
19019 bf_set(xmit_bls_rsp64_rjt_vspec, &icmd->xmit_bls_rsp, 0);
19020 bf_set(xmit_bls_rsp64_rjt_expc, &icmd->xmit_bls_rsp,
19021 FC_BA_RJT_INV_XID);
19022 bf_set(xmit_bls_rsp64_rjt_rsnc, &icmd->xmit_bls_rsp,
19023 FC_BA_RJT_UNABLE);
19024 }
19025
19026 /* If BA_ABTS failed to abort a partially assembled receive sequence,
19027 * the driver no longer has that exchange, send a BLS_RJT. Override
19028 * the IOCB for a BA_RJT.
19029 */
19030 if (aborted == false) {
19031 ctiocb->abort_rctl = FC_RCTL_BA_RJT;
19032 bf_set(xmit_bls_rsp64_rjt_vspec, &icmd->xmit_bls_rsp, 0);
19033 bf_set(xmit_bls_rsp64_rjt_expc, &icmd->xmit_bls_rsp,
19034 FC_BA_RJT_INV_XID);
19035 bf_set(xmit_bls_rsp64_rjt_rsnc, &icmd->xmit_bls_rsp,
19036 FC_BA_RJT_UNABLE);
19037 }
19038
19039 if (fctl & FC_FC_EX_CTX) {
19040 /* ABTS sent by responder to CT exchange, construction
19041 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG
19042 * field and RX_ID from ABTS for RX_ID field.
19043 */
19044 ctiocb->abort_bls = LPFC_ABTS_UNSOL_RSP;
19045 bf_set(xmit_bls_rsp64_rxid, &icmd->xmit_bls_rsp, rxid);
19046 } else {
19047 /* ABTS sent by initiator to CT exchange, construction
19048 * of BA_ACC will need to allocate a new XRI as for the
19049 * XRI_TAG field.
19050 */
19051 ctiocb->abort_bls = LPFC_ABTS_UNSOL_INT;
19052 }
19053
19054 /* OX_ID is invariable to who sent ABTS to CT exchange */
19055 bf_set(xmit_bls_rsp64_oxid, &icmd->xmit_bls_rsp, oxid);
19056 bf_set(xmit_bls_rsp64_oxid, &icmd->xmit_bls_rsp, rxid);
19057
19058 /* Use CT=VPI */
19059 bf_set(wqe_els_did, &icmd->xmit_bls_rsp.wqe_dest,
19060 ndlp->nlp_DID);
19061 bf_set(xmit_bls_rsp64_temprpi, &icmd->xmit_bls_rsp,
19062 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
19063 bf_set(wqe_cmnd, &icmd->generic.wqe_com, CMD_XMIT_BLS_RSP64_CX);
19064
19065 /* Xmit CT abts response on exchange <xid> */
19066 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS,
19067 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n",
19068 ctiocb->abort_rctl, oxid, phba->link_state);
19069
19070 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0);
19071 if (rc == IOCB_ERROR) {
19072 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
19073 "2925 Failed to issue CT ABTS RSP x%x on "
19074 "xri x%x, Data x%x\n",
19075 ctiocb->abort_rctl, oxid,
19076 phba->link_state);
19077 lpfc_nlp_put(ndlp);
19078 ctiocb->ndlp = NULL;
19079 lpfc_sli_release_iocbq(phba, ctiocb);
19080 }
19081 }
19082
19083 /**
19084 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event
19085 * @vport: Pointer to the vport on which this sequence was received
19086 * @dmabuf: pointer to a dmabuf that describes the FC sequence
19087 *
19088 * This function handles an SLI-4 unsolicited abort event. If the unsolicited
19089 * receive sequence is only partially assembed by the driver, it shall abort
19090 * the partially assembled frames for the sequence. Otherwise, if the
19091 * unsolicited receive sequence has been completely assembled and passed to
19092 * the Upper Layer Protocol (ULP), it then mark the per oxid status for the
19093 * unsolicited sequence has been aborted. After that, it will issue a basic
19094 * accept to accept the abort.
19095 **/
19096 static void
lpfc_sli4_handle_unsol_abort(struct lpfc_vport * vport,struct hbq_dmabuf * dmabuf)19097 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport,
19098 struct hbq_dmabuf *dmabuf)
19099 {
19100 struct lpfc_hba *phba = vport->phba;
19101 struct fc_frame_header fc_hdr;
19102 uint32_t fctl;
19103 bool aborted;
19104
19105 /* Make a copy of fc_hdr before the dmabuf being released */
19106 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header));
19107 fctl = sli4_fctl_from_fc_hdr(&fc_hdr);
19108
19109 if (fctl & FC_FC_EX_CTX) {
19110 /* ABTS by responder to exchange, no cleanup needed */
19111 aborted = true;
19112 } else {
19113 /* ABTS by initiator to exchange, need to do cleanup */
19114 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf);
19115 if (aborted == false)
19116 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf);
19117 }
19118 lpfc_in_buf_free(phba, &dmabuf->dbuf);
19119
19120 if (phba->nvmet_support) {
19121 lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr);
19122 return;
19123 }
19124
19125 /* Respond with BA_ACC or BA_RJT accordingly */
19126 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted);
19127 }
19128
19129 /**
19130 * lpfc_seq_complete - Indicates if a sequence is complete
19131 * @dmabuf: pointer to a dmabuf that describes the FC sequence
19132 *
19133 * This function checks the sequence, starting with the frame described by
19134 * @dmabuf, to see if all the frames associated with this sequence are present.
19135 * the frames associated with this sequence are linked to the @dmabuf using the
19136 * dbuf list. This function looks for two major things. 1) That the first frame
19137 * has a sequence count of zero. 2) There is a frame with last frame of sequence
19138 * set. 3) That there are no holes in the sequence count. The function will
19139 * return 1 when the sequence is complete, otherwise it will return 0.
19140 **/
19141 static int
lpfc_seq_complete(struct hbq_dmabuf * dmabuf)19142 lpfc_seq_complete(struct hbq_dmabuf *dmabuf)
19143 {
19144 struct fc_frame_header *hdr;
19145 struct lpfc_dmabuf *d_buf;
19146 struct hbq_dmabuf *seq_dmabuf;
19147 uint32_t fctl;
19148 int seq_count = 0;
19149
19150 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
19151 /* make sure first fame of sequence has a sequence count of zero */
19152 if (hdr->fh_seq_cnt != seq_count)
19153 return 0;
19154 fctl = (hdr->fh_f_ctl[0] << 16 |
19155 hdr->fh_f_ctl[1] << 8 |
19156 hdr->fh_f_ctl[2]);
19157 /* If last frame of sequence we can return success. */
19158 if (fctl & FC_FC_END_SEQ)
19159 return 1;
19160 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) {
19161 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
19162 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
19163 /* If there is a hole in the sequence count then fail. */
19164 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt))
19165 return 0;
19166 fctl = (hdr->fh_f_ctl[0] << 16 |
19167 hdr->fh_f_ctl[1] << 8 |
19168 hdr->fh_f_ctl[2]);
19169 /* If last frame of sequence we can return success. */
19170 if (fctl & FC_FC_END_SEQ)
19171 return 1;
19172 }
19173 return 0;
19174 }
19175
19176 /**
19177 * lpfc_prep_seq - Prep sequence for ULP processing
19178 * @vport: Pointer to the vport on which this sequence was received
19179 * @seq_dmabuf: pointer to a dmabuf that describes the FC sequence
19180 *
19181 * This function takes a sequence, described by a list of frames, and creates
19182 * a list of iocbq structures to describe the sequence. This iocbq list will be
19183 * used to issue to the generic unsolicited sequence handler. This routine
19184 * returns a pointer to the first iocbq in the list. If the function is unable
19185 * to allocate an iocbq then it throw out the received frames that were not
19186 * able to be described and return a pointer to the first iocbq. If unable to
19187 * allocate any iocbqs (including the first) this function will return NULL.
19188 **/
19189 static struct lpfc_iocbq *
lpfc_prep_seq(struct lpfc_vport * vport,struct hbq_dmabuf * seq_dmabuf)19190 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf)
19191 {
19192 struct hbq_dmabuf *hbq_buf;
19193 struct lpfc_dmabuf *d_buf, *n_buf;
19194 struct lpfc_iocbq *first_iocbq, *iocbq;
19195 struct fc_frame_header *fc_hdr;
19196 uint32_t sid;
19197 uint32_t len, tot_len;
19198
19199 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
19200 /* remove from receive buffer list */
19201 list_del_init(&seq_dmabuf->hbuf.list);
19202 lpfc_update_rcv_time_stamp(vport);
19203 /* get the Remote Port's SID */
19204 sid = sli4_sid_from_fc_hdr(fc_hdr);
19205 tot_len = 0;
19206 /* Get an iocbq struct to fill in. */
19207 first_iocbq = lpfc_sli_get_iocbq(vport->phba);
19208 if (first_iocbq) {
19209 /* Initialize the first IOCB. */
19210 first_iocbq->wcqe_cmpl.total_data_placed = 0;
19211 bf_set(lpfc_wcqe_c_status, &first_iocbq->wcqe_cmpl,
19212 IOSTAT_SUCCESS);
19213 first_iocbq->vport = vport;
19214
19215 /* Check FC Header to see what TYPE of frame we are rcv'ing */
19216 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) {
19217 bf_set(els_rsp64_sid, &first_iocbq->wqe.xmit_els_rsp,
19218 sli4_did_from_fc_hdr(fc_hdr));
19219 }
19220
19221 bf_set(wqe_ctxt_tag, &first_iocbq->wqe.xmit_els_rsp.wqe_com,
19222 NO_XRI);
19223 bf_set(wqe_rcvoxid, &first_iocbq->wqe.xmit_els_rsp.wqe_com,
19224 be16_to_cpu(fc_hdr->fh_ox_id));
19225
19226 /* put the first buffer into the first iocb */
19227 tot_len = bf_get(lpfc_rcqe_length,
19228 &seq_dmabuf->cq_event.cqe.rcqe_cmpl);
19229
19230 first_iocbq->cmd_dmabuf = &seq_dmabuf->dbuf;
19231 first_iocbq->bpl_dmabuf = NULL;
19232 /* Keep track of the BDE count */
19233 first_iocbq->wcqe_cmpl.word3 = 1;
19234
19235 if (tot_len > LPFC_DATA_BUF_SIZE)
19236 first_iocbq->wqe.gen_req.bde.tus.f.bdeSize =
19237 LPFC_DATA_BUF_SIZE;
19238 else
19239 first_iocbq->wqe.gen_req.bde.tus.f.bdeSize = tot_len;
19240
19241 first_iocbq->wcqe_cmpl.total_data_placed = tot_len;
19242 bf_set(wqe_els_did, &first_iocbq->wqe.xmit_els_rsp.wqe_dest,
19243 sid);
19244 }
19245 iocbq = first_iocbq;
19246 /*
19247 * Each IOCBq can have two Buffers assigned, so go through the list
19248 * of buffers for this sequence and save two buffers in each IOCBq
19249 */
19250 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) {
19251 if (!iocbq) {
19252 lpfc_in_buf_free(vport->phba, d_buf);
19253 continue;
19254 }
19255 if (!iocbq->bpl_dmabuf) {
19256 iocbq->bpl_dmabuf = d_buf;
19257 iocbq->wcqe_cmpl.word3++;
19258 /* We need to get the size out of the right CQE */
19259 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
19260 len = bf_get(lpfc_rcqe_length,
19261 &hbq_buf->cq_event.cqe.rcqe_cmpl);
19262 iocbq->unsol_rcv_len = len;
19263 iocbq->wcqe_cmpl.total_data_placed += len;
19264 tot_len += len;
19265 } else {
19266 iocbq = lpfc_sli_get_iocbq(vport->phba);
19267 if (!iocbq) {
19268 if (first_iocbq) {
19269 bf_set(lpfc_wcqe_c_status,
19270 &first_iocbq->wcqe_cmpl,
19271 IOSTAT_SUCCESS);
19272 first_iocbq->wcqe_cmpl.parameter =
19273 IOERR_NO_RESOURCES;
19274 }
19275 lpfc_in_buf_free(vport->phba, d_buf);
19276 continue;
19277 }
19278 /* We need to get the size out of the right CQE */
19279 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
19280 len = bf_get(lpfc_rcqe_length,
19281 &hbq_buf->cq_event.cqe.rcqe_cmpl);
19282 iocbq->cmd_dmabuf = d_buf;
19283 iocbq->bpl_dmabuf = NULL;
19284 iocbq->wcqe_cmpl.word3 = 1;
19285
19286 if (len > LPFC_DATA_BUF_SIZE)
19287 iocbq->wqe.xmit_els_rsp.bde.tus.f.bdeSize =
19288 LPFC_DATA_BUF_SIZE;
19289 else
19290 iocbq->wqe.xmit_els_rsp.bde.tus.f.bdeSize =
19291 len;
19292
19293 tot_len += len;
19294 iocbq->wcqe_cmpl.total_data_placed = tot_len;
19295 bf_set(wqe_els_did, &iocbq->wqe.xmit_els_rsp.wqe_dest,
19296 sid);
19297 list_add_tail(&iocbq->list, &first_iocbq->list);
19298 }
19299 }
19300 /* Free the sequence's header buffer */
19301 if (!first_iocbq)
19302 lpfc_in_buf_free(vport->phba, &seq_dmabuf->dbuf);
19303
19304 return first_iocbq;
19305 }
19306
19307 static void
lpfc_sli4_send_seq_to_ulp(struct lpfc_vport * vport,struct hbq_dmabuf * seq_dmabuf)19308 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport,
19309 struct hbq_dmabuf *seq_dmabuf)
19310 {
19311 struct fc_frame_header *fc_hdr;
19312 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb;
19313 struct lpfc_hba *phba = vport->phba;
19314
19315 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
19316 iocbq = lpfc_prep_seq(vport, seq_dmabuf);
19317 if (!iocbq) {
19318 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19319 "2707 Ring %d handler: Failed to allocate "
19320 "iocb Rctl x%x Type x%x received\n",
19321 LPFC_ELS_RING,
19322 fc_hdr->fh_r_ctl, fc_hdr->fh_type);
19323 return;
19324 }
19325 if (!lpfc_complete_unsol_iocb(phba,
19326 phba->sli4_hba.els_wq->pring,
19327 iocbq, fc_hdr->fh_r_ctl,
19328 fc_hdr->fh_type)) {
19329 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19330 "2540 Ring %d handler: unexpected Rctl "
19331 "x%x Type x%x received\n",
19332 LPFC_ELS_RING,
19333 fc_hdr->fh_r_ctl, fc_hdr->fh_type);
19334 lpfc_in_buf_free(phba, &seq_dmabuf->dbuf);
19335 }
19336
19337 /* Free iocb created in lpfc_prep_seq */
19338 list_for_each_entry_safe(curr_iocb, next_iocb,
19339 &iocbq->list, list) {
19340 list_del_init(&curr_iocb->list);
19341 lpfc_sli_release_iocbq(phba, curr_iocb);
19342 }
19343 lpfc_sli_release_iocbq(phba, iocbq);
19344 }
19345
19346 static void
lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba * phba,struct lpfc_iocbq * cmdiocb,struct lpfc_iocbq * rspiocb)19347 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
19348 struct lpfc_iocbq *rspiocb)
19349 {
19350 struct lpfc_dmabuf *pcmd = cmdiocb->cmd_dmabuf;
19351
19352 if (pcmd && pcmd->virt)
19353 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys);
19354 kfree(pcmd);
19355 lpfc_sli_release_iocbq(phba, cmdiocb);
19356 lpfc_drain_txq(phba);
19357 }
19358
19359 static void
lpfc_sli4_handle_mds_loopback(struct lpfc_vport * vport,struct hbq_dmabuf * dmabuf)19360 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport,
19361 struct hbq_dmabuf *dmabuf)
19362 {
19363 struct fc_frame_header *fc_hdr;
19364 struct lpfc_hba *phba = vport->phba;
19365 struct lpfc_iocbq *iocbq = NULL;
19366 union lpfc_wqe128 *pwqe;
19367 struct lpfc_dmabuf *pcmd = NULL;
19368 uint32_t frame_len;
19369 int rc;
19370 unsigned long iflags;
19371
19372 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
19373 frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl);
19374
19375 /* Send the received frame back */
19376 iocbq = lpfc_sli_get_iocbq(phba);
19377 if (!iocbq) {
19378 /* Queue cq event and wakeup worker thread to process it */
19379 spin_lock_irqsave(&phba->hbalock, iflags);
19380 list_add_tail(&dmabuf->cq_event.list,
19381 &phba->sli4_hba.sp_queue_event);
19382 phba->hba_flag |= HBA_SP_QUEUE_EVT;
19383 spin_unlock_irqrestore(&phba->hbalock, iflags);
19384 lpfc_worker_wake_up(phba);
19385 return;
19386 }
19387
19388 /* Allocate buffer for command payload */
19389 pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
19390 if (pcmd)
19391 pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL,
19392 &pcmd->phys);
19393 if (!pcmd || !pcmd->virt)
19394 goto exit;
19395
19396 INIT_LIST_HEAD(&pcmd->list);
19397
19398 /* copyin the payload */
19399 memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len);
19400
19401 iocbq->cmd_dmabuf = pcmd;
19402 iocbq->vport = vport;
19403 iocbq->cmd_flag &= ~LPFC_FIP_ELS_ID_MASK;
19404 iocbq->cmd_flag |= LPFC_USE_FCPWQIDX;
19405 iocbq->num_bdes = 0;
19406
19407 pwqe = &iocbq->wqe;
19408 /* fill in BDE's for command */
19409 pwqe->gen_req.bde.addrHigh = putPaddrHigh(pcmd->phys);
19410 pwqe->gen_req.bde.addrLow = putPaddrLow(pcmd->phys);
19411 pwqe->gen_req.bde.tus.f.bdeSize = frame_len;
19412 pwqe->gen_req.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64;
19413
19414 pwqe->send_frame.frame_len = frame_len;
19415 pwqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((__be32 *)fc_hdr));
19416 pwqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((__be32 *)fc_hdr + 1));
19417 pwqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((__be32 *)fc_hdr + 2));
19418 pwqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((__be32 *)fc_hdr + 3));
19419 pwqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((__be32 *)fc_hdr + 4));
19420 pwqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((__be32 *)fc_hdr + 5));
19421
19422 pwqe->generic.wqe_com.word7 = 0;
19423 pwqe->generic.wqe_com.word10 = 0;
19424
19425 bf_set(wqe_cmnd, &pwqe->generic.wqe_com, CMD_SEND_FRAME);
19426 bf_set(wqe_sof, &pwqe->generic.wqe_com, 0x2E); /* SOF byte */
19427 bf_set(wqe_eof, &pwqe->generic.wqe_com, 0x41); /* EOF byte */
19428 bf_set(wqe_lenloc, &pwqe->generic.wqe_com, 1);
19429 bf_set(wqe_xbl, &pwqe->generic.wqe_com, 1);
19430 bf_set(wqe_dbde, &pwqe->generic.wqe_com, 1);
19431 bf_set(wqe_xc, &pwqe->generic.wqe_com, 1);
19432 bf_set(wqe_cmd_type, &pwqe->generic.wqe_com, 0xA);
19433 bf_set(wqe_cqid, &pwqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
19434 bf_set(wqe_xri_tag, &pwqe->generic.wqe_com, iocbq->sli4_xritag);
19435 bf_set(wqe_reqtag, &pwqe->generic.wqe_com, iocbq->iotag);
19436 bf_set(wqe_class, &pwqe->generic.wqe_com, CLASS3);
19437 pwqe->generic.wqe_com.abort_tag = iocbq->iotag;
19438
19439 iocbq->cmd_cmpl = lpfc_sli4_mds_loopback_cmpl;
19440
19441 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0);
19442 if (rc == IOCB_ERROR)
19443 goto exit;
19444
19445 lpfc_in_buf_free(phba, &dmabuf->dbuf);
19446 return;
19447
19448 exit:
19449 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
19450 "2023 Unable to process MDS loopback frame\n");
19451 if (pcmd && pcmd->virt)
19452 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys);
19453 kfree(pcmd);
19454 if (iocbq)
19455 lpfc_sli_release_iocbq(phba, iocbq);
19456 lpfc_in_buf_free(phba, &dmabuf->dbuf);
19457 }
19458
19459 /**
19460 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware
19461 * @phba: Pointer to HBA context object.
19462 * @dmabuf: Pointer to a dmabuf that describes the FC sequence.
19463 *
19464 * This function is called with no lock held. This function processes all
19465 * the received buffers and gives it to upper layers when a received buffer
19466 * indicates that it is the final frame in the sequence. The interrupt
19467 * service routine processes received buffers at interrupt contexts.
19468 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the
19469 * appropriate receive function when the final frame in a sequence is received.
19470 **/
19471 void
lpfc_sli4_handle_received_buffer(struct lpfc_hba * phba,struct hbq_dmabuf * dmabuf)19472 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba,
19473 struct hbq_dmabuf *dmabuf)
19474 {
19475 struct hbq_dmabuf *seq_dmabuf;
19476 struct fc_frame_header *fc_hdr;
19477 struct lpfc_vport *vport;
19478 uint32_t fcfi;
19479 uint32_t did;
19480
19481 /* Process each received buffer */
19482 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
19483
19484 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS ||
19485 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) {
19486 vport = phba->pport;
19487 /* Handle MDS Loopback frames */
19488 if (!(phba->pport->load_flag & FC_UNLOADING))
19489 lpfc_sli4_handle_mds_loopback(vport, dmabuf);
19490 else
19491 lpfc_in_buf_free(phba, &dmabuf->dbuf);
19492 return;
19493 }
19494
19495 /* check to see if this a valid type of frame */
19496 if (lpfc_fc_frame_check(phba, fc_hdr)) {
19497 lpfc_in_buf_free(phba, &dmabuf->dbuf);
19498 return;
19499 }
19500
19501 if ((bf_get(lpfc_cqe_code,
19502 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1))
19503 fcfi = bf_get(lpfc_rcqe_fcf_id_v1,
19504 &dmabuf->cq_event.cqe.rcqe_cmpl);
19505 else
19506 fcfi = bf_get(lpfc_rcqe_fcf_id,
19507 &dmabuf->cq_event.cqe.rcqe_cmpl);
19508
19509 if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) {
19510 vport = phba->pport;
19511 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
19512 "2023 MDS Loopback %d bytes\n",
19513 bf_get(lpfc_rcqe_length,
19514 &dmabuf->cq_event.cqe.rcqe_cmpl));
19515 /* Handle MDS Loopback frames */
19516 lpfc_sli4_handle_mds_loopback(vport, dmabuf);
19517 return;
19518 }
19519
19520 /* d_id this frame is directed to */
19521 did = sli4_did_from_fc_hdr(fc_hdr);
19522
19523 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did);
19524 if (!vport) {
19525 /* throw out the frame */
19526 lpfc_in_buf_free(phba, &dmabuf->dbuf);
19527 return;
19528 }
19529
19530 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */
19531 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) &&
19532 (did != Fabric_DID)) {
19533 /*
19534 * Throw out the frame if we are not pt2pt.
19535 * The pt2pt protocol allows for discovery frames
19536 * to be received without a registered VPI.
19537 */
19538 if (!(vport->fc_flag & FC_PT2PT) ||
19539 (phba->link_state == LPFC_HBA_READY)) {
19540 lpfc_in_buf_free(phba, &dmabuf->dbuf);
19541 return;
19542 }
19543 }
19544
19545 /* Handle the basic abort sequence (BA_ABTS) event */
19546 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) {
19547 lpfc_sli4_handle_unsol_abort(vport, dmabuf);
19548 return;
19549 }
19550
19551 /* Link this frame */
19552 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf);
19553 if (!seq_dmabuf) {
19554 /* unable to add frame to vport - throw it out */
19555 lpfc_in_buf_free(phba, &dmabuf->dbuf);
19556 return;
19557 }
19558 /* If not last frame in sequence continue processing frames. */
19559 if (!lpfc_seq_complete(seq_dmabuf))
19560 return;
19561
19562 /* Send the complete sequence to the upper layer protocol */
19563 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf);
19564 }
19565
19566 /**
19567 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port
19568 * @phba: pointer to lpfc hba data structure.
19569 *
19570 * This routine is invoked to post rpi header templates to the
19571 * HBA consistent with the SLI-4 interface spec. This routine
19572 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
19573 * SLI4_PAGE_SIZE modulo 64 rpi context headers.
19574 *
19575 * This routine does not require any locks. It's usage is expected
19576 * to be driver load or reset recovery when the driver is
19577 * sequential.
19578 *
19579 * Return codes
19580 * 0 - successful
19581 * -EIO - The mailbox failed to complete successfully.
19582 * When this error occurs, the driver is not guaranteed
19583 * to have any rpi regions posted to the device and
19584 * must either attempt to repost the regions or take a
19585 * fatal error.
19586 **/
19587 int
lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba * phba)19588 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba)
19589 {
19590 struct lpfc_rpi_hdr *rpi_page;
19591 uint32_t rc = 0;
19592 uint16_t lrpi = 0;
19593
19594 /* SLI4 ports that support extents do not require RPI headers. */
19595 if (!phba->sli4_hba.rpi_hdrs_in_use)
19596 goto exit;
19597 if (phba->sli4_hba.extents_in_use)
19598 return -EIO;
19599
19600 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) {
19601 /*
19602 * Assign the rpi headers a physical rpi only if the driver
19603 * has not initialized those resources. A port reset only
19604 * needs the headers posted.
19605 */
19606 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) !=
19607 LPFC_RPI_RSRC_RDY)
19608 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
19609
19610 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page);
19611 if (rc != MBX_SUCCESS) {
19612 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19613 "2008 Error %d posting all rpi "
19614 "headers\n", rc);
19615 rc = -EIO;
19616 break;
19617 }
19618 }
19619
19620 exit:
19621 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags,
19622 LPFC_RPI_RSRC_RDY);
19623 return rc;
19624 }
19625
19626 /**
19627 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port
19628 * @phba: pointer to lpfc hba data structure.
19629 * @rpi_page: pointer to the rpi memory region.
19630 *
19631 * This routine is invoked to post a single rpi header to the
19632 * HBA consistent with the SLI-4 interface spec. This memory region
19633 * maps up to 64 rpi context regions.
19634 *
19635 * Return codes
19636 * 0 - successful
19637 * -ENOMEM - No available memory
19638 * -EIO - The mailbox failed to complete successfully.
19639 **/
19640 int
lpfc_sli4_post_rpi_hdr(struct lpfc_hba * phba,struct lpfc_rpi_hdr * rpi_page)19641 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page)
19642 {
19643 LPFC_MBOXQ_t *mboxq;
19644 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl;
19645 uint32_t rc = 0;
19646 uint32_t shdr_status, shdr_add_status;
19647 union lpfc_sli4_cfg_shdr *shdr;
19648
19649 /* SLI4 ports that support extents do not require RPI headers. */
19650 if (!phba->sli4_hba.rpi_hdrs_in_use)
19651 return rc;
19652 if (phba->sli4_hba.extents_in_use)
19653 return -EIO;
19654
19655 /* The port is notified of the header region via a mailbox command. */
19656 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19657 if (!mboxq) {
19658 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19659 "2001 Unable to allocate memory for issuing "
19660 "SLI_CONFIG_SPECIAL mailbox command\n");
19661 return -ENOMEM;
19662 }
19663
19664 /* Post all rpi memory regions to the port. */
19665 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl;
19666 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
19667 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE,
19668 sizeof(struct lpfc_mbx_post_hdr_tmpl) -
19669 sizeof(struct lpfc_sli4_cfg_mhdr),
19670 LPFC_SLI4_MBX_EMBED);
19671
19672
19673 /* Post the physical rpi to the port for this rpi header. */
19674 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl,
19675 rpi_page->start_rpi);
19676 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt,
19677 hdr_tmpl, rpi_page->page_count);
19678
19679 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys);
19680 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys);
19681 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
19682 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr;
19683 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
19684 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
19685 mempool_free(mboxq, phba->mbox_mem_pool);
19686 if (shdr_status || shdr_add_status || rc) {
19687 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19688 "2514 POST_RPI_HDR mailbox failed with "
19689 "status x%x add_status x%x, mbx status x%x\n",
19690 shdr_status, shdr_add_status, rc);
19691 rc = -ENXIO;
19692 } else {
19693 /*
19694 * The next_rpi stores the next logical module-64 rpi value used
19695 * to post physical rpis in subsequent rpi postings.
19696 */
19697 spin_lock_irq(&phba->hbalock);
19698 phba->sli4_hba.next_rpi = rpi_page->next_rpi;
19699 spin_unlock_irq(&phba->hbalock);
19700 }
19701 return rc;
19702 }
19703
19704 /**
19705 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range
19706 * @phba: pointer to lpfc hba data structure.
19707 *
19708 * This routine is invoked to post rpi header templates to the
19709 * HBA consistent with the SLI-4 interface spec. This routine
19710 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
19711 * SLI4_PAGE_SIZE modulo 64 rpi context headers.
19712 *
19713 * Returns
19714 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
19715 * LPFC_RPI_ALLOC_ERROR if no rpis are available.
19716 **/
19717 int
lpfc_sli4_alloc_rpi(struct lpfc_hba * phba)19718 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba)
19719 {
19720 unsigned long rpi;
19721 uint16_t max_rpi, rpi_limit;
19722 uint16_t rpi_remaining, lrpi = 0;
19723 struct lpfc_rpi_hdr *rpi_hdr;
19724 unsigned long iflag;
19725
19726 /*
19727 * Fetch the next logical rpi. Because this index is logical,
19728 * the driver starts at 0 each time.
19729 */
19730 spin_lock_irqsave(&phba->hbalock, iflag);
19731 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
19732 rpi_limit = phba->sli4_hba.next_rpi;
19733
19734 rpi = find_first_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit);
19735 if (rpi >= rpi_limit)
19736 rpi = LPFC_RPI_ALLOC_ERROR;
19737 else {
19738 set_bit(rpi, phba->sli4_hba.rpi_bmask);
19739 phba->sli4_hba.max_cfg_param.rpi_used++;
19740 phba->sli4_hba.rpi_count++;
19741 }
19742 lpfc_printf_log(phba, KERN_INFO,
19743 LOG_NODE | LOG_DISCOVERY,
19744 "0001 Allocated rpi:x%x max:x%x lim:x%x\n",
19745 (int) rpi, max_rpi, rpi_limit);
19746
19747 /*
19748 * Don't try to allocate more rpi header regions if the device limit
19749 * has been exhausted.
19750 */
19751 if ((rpi == LPFC_RPI_ALLOC_ERROR) &&
19752 (phba->sli4_hba.rpi_count >= max_rpi)) {
19753 spin_unlock_irqrestore(&phba->hbalock, iflag);
19754 return rpi;
19755 }
19756
19757 /*
19758 * RPI header postings are not required for SLI4 ports capable of
19759 * extents.
19760 */
19761 if (!phba->sli4_hba.rpi_hdrs_in_use) {
19762 spin_unlock_irqrestore(&phba->hbalock, iflag);
19763 return rpi;
19764 }
19765
19766 /*
19767 * If the driver is running low on rpi resources, allocate another
19768 * page now. Note that the next_rpi value is used because
19769 * it represents how many are actually in use whereas max_rpi notes
19770 * how many are supported max by the device.
19771 */
19772 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count;
19773 spin_unlock_irqrestore(&phba->hbalock, iflag);
19774 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) {
19775 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba);
19776 if (!rpi_hdr) {
19777 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19778 "2002 Error Could not grow rpi "
19779 "count\n");
19780 } else {
19781 lrpi = rpi_hdr->start_rpi;
19782 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
19783 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr);
19784 }
19785 }
19786
19787 return rpi;
19788 }
19789
19790 /**
19791 * __lpfc_sli4_free_rpi - Release an rpi for reuse.
19792 * @phba: pointer to lpfc hba data structure.
19793 * @rpi: rpi to free
19794 *
19795 * This routine is invoked to release an rpi to the pool of
19796 * available rpis maintained by the driver.
19797 **/
19798 static void
__lpfc_sli4_free_rpi(struct lpfc_hba * phba,int rpi)19799 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
19800 {
19801 /*
19802 * if the rpi value indicates a prior unreg has already
19803 * been done, skip the unreg.
19804 */
19805 if (rpi == LPFC_RPI_ALLOC_ERROR)
19806 return;
19807
19808 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) {
19809 phba->sli4_hba.rpi_count--;
19810 phba->sli4_hba.max_cfg_param.rpi_used--;
19811 } else {
19812 lpfc_printf_log(phba, KERN_INFO,
19813 LOG_NODE | LOG_DISCOVERY,
19814 "2016 rpi %x not inuse\n",
19815 rpi);
19816 }
19817 }
19818
19819 /**
19820 * lpfc_sli4_free_rpi - Release an rpi for reuse.
19821 * @phba: pointer to lpfc hba data structure.
19822 * @rpi: rpi to free
19823 *
19824 * This routine is invoked to release an rpi to the pool of
19825 * available rpis maintained by the driver.
19826 **/
19827 void
lpfc_sli4_free_rpi(struct lpfc_hba * phba,int rpi)19828 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
19829 {
19830 spin_lock_irq(&phba->hbalock);
19831 __lpfc_sli4_free_rpi(phba, rpi);
19832 spin_unlock_irq(&phba->hbalock);
19833 }
19834
19835 /**
19836 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region
19837 * @phba: pointer to lpfc hba data structure.
19838 *
19839 * This routine is invoked to remove the memory region that
19840 * provided rpi via a bitmask.
19841 **/
19842 void
lpfc_sli4_remove_rpis(struct lpfc_hba * phba)19843 lpfc_sli4_remove_rpis(struct lpfc_hba *phba)
19844 {
19845 kfree(phba->sli4_hba.rpi_bmask);
19846 kfree(phba->sli4_hba.rpi_ids);
19847 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
19848 }
19849
19850 /**
19851 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region
19852 * @ndlp: pointer to lpfc nodelist data structure.
19853 * @cmpl: completion call-back.
19854 * @arg: data to load as MBox 'caller buffer information'
19855 *
19856 * This routine is invoked to remove the memory region that
19857 * provided rpi via a bitmask.
19858 **/
19859 int
lpfc_sli4_resume_rpi(struct lpfc_nodelist * ndlp,void (* cmpl)(struct lpfc_hba *,LPFC_MBOXQ_t *),void * arg)19860 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp,
19861 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg)
19862 {
19863 LPFC_MBOXQ_t *mboxq;
19864 struct lpfc_hba *phba = ndlp->phba;
19865 int rc;
19866
19867 /* The port is notified of the header region via a mailbox command. */
19868 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19869 if (!mboxq)
19870 return -ENOMEM;
19871
19872 /* If cmpl assigned, then this nlp_get pairs with
19873 * lpfc_mbx_cmpl_resume_rpi.
19874 *
19875 * Else cmpl is NULL, then this nlp_get pairs with
19876 * lpfc_sli_def_mbox_cmpl.
19877 */
19878 if (!lpfc_nlp_get(ndlp)) {
19879 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19880 "2122 %s: Failed to get nlp ref\n",
19881 __func__);
19882 mempool_free(mboxq, phba->mbox_mem_pool);
19883 return -EIO;
19884 }
19885
19886 /* Post all rpi memory regions to the port. */
19887 lpfc_resume_rpi(mboxq, ndlp);
19888 if (cmpl) {
19889 mboxq->mbox_cmpl = cmpl;
19890 mboxq->ctx_buf = arg;
19891 } else
19892 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
19893 mboxq->ctx_ndlp = ndlp;
19894 mboxq->vport = ndlp->vport;
19895 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
19896 if (rc == MBX_NOT_FINISHED) {
19897 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19898 "2010 Resume RPI Mailbox failed "
19899 "status %d, mbxStatus x%x\n", rc,
19900 bf_get(lpfc_mqe_status, &mboxq->u.mqe));
19901 lpfc_nlp_put(ndlp);
19902 mempool_free(mboxq, phba->mbox_mem_pool);
19903 return -EIO;
19904 }
19905 return 0;
19906 }
19907
19908 /**
19909 * lpfc_sli4_init_vpi - Initialize a vpi with the port
19910 * @vport: Pointer to the vport for which the vpi is being initialized
19911 *
19912 * This routine is invoked to activate a vpi with the port.
19913 *
19914 * Returns:
19915 * 0 success
19916 * -Evalue otherwise
19917 **/
19918 int
lpfc_sli4_init_vpi(struct lpfc_vport * vport)19919 lpfc_sli4_init_vpi(struct lpfc_vport *vport)
19920 {
19921 LPFC_MBOXQ_t *mboxq;
19922 int rc = 0;
19923 int retval = MBX_SUCCESS;
19924 uint32_t mbox_tmo;
19925 struct lpfc_hba *phba = vport->phba;
19926 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19927 if (!mboxq)
19928 return -ENOMEM;
19929 lpfc_init_vpi(phba, mboxq, vport->vpi);
19930 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq);
19931 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo);
19932 if (rc != MBX_SUCCESS) {
19933 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
19934 "2022 INIT VPI Mailbox failed "
19935 "status %d, mbxStatus x%x\n", rc,
19936 bf_get(lpfc_mqe_status, &mboxq->u.mqe));
19937 retval = -EIO;
19938 }
19939 if (rc != MBX_TIMEOUT)
19940 mempool_free(mboxq, vport->phba->mbox_mem_pool);
19941
19942 return retval;
19943 }
19944
19945 /**
19946 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler.
19947 * @phba: pointer to lpfc hba data structure.
19948 * @mboxq: Pointer to mailbox object.
19949 *
19950 * This routine is invoked to manually add a single FCF record. The caller
19951 * must pass a completely initialized FCF_Record. This routine takes
19952 * care of the nonembedded mailbox operations.
19953 **/
19954 static void
lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba * phba,LPFC_MBOXQ_t * mboxq)19955 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
19956 {
19957 void *virt_addr;
19958 union lpfc_sli4_cfg_shdr *shdr;
19959 uint32_t shdr_status, shdr_add_status;
19960
19961 virt_addr = mboxq->sge_array->addr[0];
19962 /* The IOCTL status is embedded in the mailbox subheader. */
19963 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr;
19964 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
19965 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
19966
19967 if ((shdr_status || shdr_add_status) &&
19968 (shdr_status != STATUS_FCF_IN_USE))
19969 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19970 "2558 ADD_FCF_RECORD mailbox failed with "
19971 "status x%x add_status x%x\n",
19972 shdr_status, shdr_add_status);
19973
19974 lpfc_sli4_mbox_cmd_free(phba, mboxq);
19975 }
19976
19977 /**
19978 * lpfc_sli4_add_fcf_record - Manually add an FCF Record.
19979 * @phba: pointer to lpfc hba data structure.
19980 * @fcf_record: pointer to the initialized fcf record to add.
19981 *
19982 * This routine is invoked to manually add a single FCF record. The caller
19983 * must pass a completely initialized FCF_Record. This routine takes
19984 * care of the nonembedded mailbox operations.
19985 **/
19986 int
lpfc_sli4_add_fcf_record(struct lpfc_hba * phba,struct fcf_record * fcf_record)19987 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record)
19988 {
19989 int rc = 0;
19990 LPFC_MBOXQ_t *mboxq;
19991 uint8_t *bytep;
19992 void *virt_addr;
19993 struct lpfc_mbx_sge sge;
19994 uint32_t alloc_len, req_len;
19995 uint32_t fcfindex;
19996
19997 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19998 if (!mboxq) {
19999 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20000 "2009 Failed to allocate mbox for ADD_FCF cmd\n");
20001 return -ENOMEM;
20002 }
20003
20004 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) +
20005 sizeof(uint32_t);
20006
20007 /* Allocate DMA memory and set up the non-embedded mailbox command */
20008 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
20009 LPFC_MBOX_OPCODE_FCOE_ADD_FCF,
20010 req_len, LPFC_SLI4_MBX_NEMBED);
20011 if (alloc_len < req_len) {
20012 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20013 "2523 Allocated DMA memory size (x%x) is "
20014 "less than the requested DMA memory "
20015 "size (x%x)\n", alloc_len, req_len);
20016 lpfc_sli4_mbox_cmd_free(phba, mboxq);
20017 return -ENOMEM;
20018 }
20019
20020 /*
20021 * Get the first SGE entry from the non-embedded DMA memory. This
20022 * routine only uses a single SGE.
20023 */
20024 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge);
20025 virt_addr = mboxq->sge_array->addr[0];
20026 /*
20027 * Configure the FCF record for FCFI 0. This is the driver's
20028 * hardcoded default and gets used in nonFIP mode.
20029 */
20030 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record);
20031 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr);
20032 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t));
20033
20034 /*
20035 * Copy the fcf_index and the FCF Record Data. The data starts after
20036 * the FCoE header plus word10. The data copy needs to be endian
20037 * correct.
20038 */
20039 bytep += sizeof(uint32_t);
20040 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record));
20041 mboxq->vport = phba->pport;
20042 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record;
20043 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
20044 if (rc == MBX_NOT_FINISHED) {
20045 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20046 "2515 ADD_FCF_RECORD mailbox failed with "
20047 "status 0x%x\n", rc);
20048 lpfc_sli4_mbox_cmd_free(phba, mboxq);
20049 rc = -EIO;
20050 } else
20051 rc = 0;
20052
20053 return rc;
20054 }
20055
20056 /**
20057 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record.
20058 * @phba: pointer to lpfc hba data structure.
20059 * @fcf_record: pointer to the fcf record to write the default data.
20060 * @fcf_index: FCF table entry index.
20061 *
20062 * This routine is invoked to build the driver's default FCF record. The
20063 * values used are hardcoded. This routine handles memory initialization.
20064 *
20065 **/
20066 void
lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba * phba,struct fcf_record * fcf_record,uint16_t fcf_index)20067 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba,
20068 struct fcf_record *fcf_record,
20069 uint16_t fcf_index)
20070 {
20071 memset(fcf_record, 0, sizeof(struct fcf_record));
20072 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE;
20073 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER;
20074 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY;
20075 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]);
20076 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]);
20077 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]);
20078 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3);
20079 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4);
20080 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5);
20081 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]);
20082 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]);
20083 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]);
20084 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1);
20085 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1);
20086 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index);
20087 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record,
20088 LPFC_FCF_FPMA | LPFC_FCF_SPMA);
20089 /* Set the VLAN bit map */
20090 if (phba->valid_vlan) {
20091 fcf_record->vlan_bitmap[phba->vlan_id / 8]
20092 = 1 << (phba->vlan_id % 8);
20093 }
20094 }
20095
20096 /**
20097 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan.
20098 * @phba: pointer to lpfc hba data structure.
20099 * @fcf_index: FCF table entry offset.
20100 *
20101 * This routine is invoked to scan the entire FCF table by reading FCF
20102 * record and processing it one at a time starting from the @fcf_index
20103 * for initial FCF discovery or fast FCF failover rediscovery.
20104 *
20105 * Return 0 if the mailbox command is submitted successfully, none 0
20106 * otherwise.
20107 **/
20108 int
lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba * phba,uint16_t fcf_index)20109 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
20110 {
20111 int rc = 0, error;
20112 LPFC_MBOXQ_t *mboxq;
20113
20114 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag;
20115 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag;
20116 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
20117 if (!mboxq) {
20118 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20119 "2000 Failed to allocate mbox for "
20120 "READ_FCF cmd\n");
20121 error = -ENOMEM;
20122 goto fail_fcf_scan;
20123 }
20124 /* Construct the read FCF record mailbox command */
20125 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
20126 if (rc) {
20127 error = -EINVAL;
20128 goto fail_fcf_scan;
20129 }
20130 /* Issue the mailbox command asynchronously */
20131 mboxq->vport = phba->pport;
20132 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec;
20133
20134 spin_lock_irq(&phba->hbalock);
20135 phba->hba_flag |= FCF_TS_INPROG;
20136 spin_unlock_irq(&phba->hbalock);
20137
20138 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
20139 if (rc == MBX_NOT_FINISHED)
20140 error = -EIO;
20141 else {
20142 /* Reset eligible FCF count for new scan */
20143 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST)
20144 phba->fcf.eligible_fcf_cnt = 0;
20145 error = 0;
20146 }
20147 fail_fcf_scan:
20148 if (error) {
20149 if (mboxq)
20150 lpfc_sli4_mbox_cmd_free(phba, mboxq);
20151 /* FCF scan failed, clear FCF_TS_INPROG flag */
20152 spin_lock_irq(&phba->hbalock);
20153 phba->hba_flag &= ~FCF_TS_INPROG;
20154 spin_unlock_irq(&phba->hbalock);
20155 }
20156 return error;
20157 }
20158
20159 /**
20160 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf.
20161 * @phba: pointer to lpfc hba data structure.
20162 * @fcf_index: FCF table entry offset.
20163 *
20164 * This routine is invoked to read an FCF record indicated by @fcf_index
20165 * and to use it for FLOGI roundrobin FCF failover.
20166 *
20167 * Return 0 if the mailbox command is submitted successfully, none 0
20168 * otherwise.
20169 **/
20170 int
lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba * phba,uint16_t fcf_index)20171 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
20172 {
20173 int rc = 0, error;
20174 LPFC_MBOXQ_t *mboxq;
20175
20176 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
20177 if (!mboxq) {
20178 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
20179 "2763 Failed to allocate mbox for "
20180 "READ_FCF cmd\n");
20181 error = -ENOMEM;
20182 goto fail_fcf_read;
20183 }
20184 /* Construct the read FCF record mailbox command */
20185 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
20186 if (rc) {
20187 error = -EINVAL;
20188 goto fail_fcf_read;
20189 }
20190 /* Issue the mailbox command asynchronously */
20191 mboxq->vport = phba->pport;
20192 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec;
20193 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
20194 if (rc == MBX_NOT_FINISHED)
20195 error = -EIO;
20196 else
20197 error = 0;
20198
20199 fail_fcf_read:
20200 if (error && mboxq)
20201 lpfc_sli4_mbox_cmd_free(phba, mboxq);
20202 return error;
20203 }
20204
20205 /**
20206 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask.
20207 * @phba: pointer to lpfc hba data structure.
20208 * @fcf_index: FCF table entry offset.
20209 *
20210 * This routine is invoked to read an FCF record indicated by @fcf_index to
20211 * determine whether it's eligible for FLOGI roundrobin failover list.
20212 *
20213 * Return 0 if the mailbox command is submitted successfully, none 0
20214 * otherwise.
20215 **/
20216 int
lpfc_sli4_read_fcf_rec(struct lpfc_hba * phba,uint16_t fcf_index)20217 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
20218 {
20219 int rc = 0, error;
20220 LPFC_MBOXQ_t *mboxq;
20221
20222 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
20223 if (!mboxq) {
20224 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
20225 "2758 Failed to allocate mbox for "
20226 "READ_FCF cmd\n");
20227 error = -ENOMEM;
20228 goto fail_fcf_read;
20229 }
20230 /* Construct the read FCF record mailbox command */
20231 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
20232 if (rc) {
20233 error = -EINVAL;
20234 goto fail_fcf_read;
20235 }
20236 /* Issue the mailbox command asynchronously */
20237 mboxq->vport = phba->pport;
20238 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec;
20239 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
20240 if (rc == MBX_NOT_FINISHED)
20241 error = -EIO;
20242 else
20243 error = 0;
20244
20245 fail_fcf_read:
20246 if (error && mboxq)
20247 lpfc_sli4_mbox_cmd_free(phba, mboxq);
20248 return error;
20249 }
20250
20251 /**
20252 * lpfc_check_next_fcf_pri_level
20253 * @phba: pointer to the lpfc_hba struct for this port.
20254 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get
20255 * routine when the rr_bmask is empty. The FCF indecies are put into the
20256 * rr_bmask based on their priority level. Starting from the highest priority
20257 * to the lowest. The most likely FCF candidate will be in the highest
20258 * priority group. When this routine is called it searches the fcf_pri list for
20259 * next lowest priority group and repopulates the rr_bmask with only those
20260 * fcf_indexes.
20261 * returns:
20262 * 1=success 0=failure
20263 **/
20264 static int
lpfc_check_next_fcf_pri_level(struct lpfc_hba * phba)20265 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba)
20266 {
20267 uint16_t next_fcf_pri;
20268 uint16_t last_index;
20269 struct lpfc_fcf_pri *fcf_pri;
20270 int rc;
20271 int ret = 0;
20272
20273 last_index = find_first_bit(phba->fcf.fcf_rr_bmask,
20274 LPFC_SLI4_FCF_TBL_INDX_MAX);
20275 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
20276 "3060 Last IDX %d\n", last_index);
20277
20278 /* Verify the priority list has 2 or more entries */
20279 spin_lock_irq(&phba->hbalock);
20280 if (list_empty(&phba->fcf.fcf_pri_list) ||
20281 list_is_singular(&phba->fcf.fcf_pri_list)) {
20282 spin_unlock_irq(&phba->hbalock);
20283 lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
20284 "3061 Last IDX %d\n", last_index);
20285 return 0; /* Empty rr list */
20286 }
20287 spin_unlock_irq(&phba->hbalock);
20288
20289 next_fcf_pri = 0;
20290 /*
20291 * Clear the rr_bmask and set all of the bits that are at this
20292 * priority.
20293 */
20294 memset(phba->fcf.fcf_rr_bmask, 0,
20295 sizeof(*phba->fcf.fcf_rr_bmask));
20296 spin_lock_irq(&phba->hbalock);
20297 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
20298 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED)
20299 continue;
20300 /*
20301 * the 1st priority that has not FLOGI failed
20302 * will be the highest.
20303 */
20304 if (!next_fcf_pri)
20305 next_fcf_pri = fcf_pri->fcf_rec.priority;
20306 spin_unlock_irq(&phba->hbalock);
20307 if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
20308 rc = lpfc_sli4_fcf_rr_index_set(phba,
20309 fcf_pri->fcf_rec.fcf_index);
20310 if (rc)
20311 return 0;
20312 }
20313 spin_lock_irq(&phba->hbalock);
20314 }
20315 /*
20316 * if next_fcf_pri was not set above and the list is not empty then
20317 * we have failed flogis on all of them. So reset flogi failed
20318 * and start at the beginning.
20319 */
20320 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) {
20321 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
20322 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED;
20323 /*
20324 * the 1st priority that has not FLOGI failed
20325 * will be the highest.
20326 */
20327 if (!next_fcf_pri)
20328 next_fcf_pri = fcf_pri->fcf_rec.priority;
20329 spin_unlock_irq(&phba->hbalock);
20330 if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
20331 rc = lpfc_sli4_fcf_rr_index_set(phba,
20332 fcf_pri->fcf_rec.fcf_index);
20333 if (rc)
20334 return 0;
20335 }
20336 spin_lock_irq(&phba->hbalock);
20337 }
20338 } else
20339 ret = 1;
20340 spin_unlock_irq(&phba->hbalock);
20341
20342 return ret;
20343 }
20344 /**
20345 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index
20346 * @phba: pointer to lpfc hba data structure.
20347 *
20348 * This routine is to get the next eligible FCF record index in a round
20349 * robin fashion. If the next eligible FCF record index equals to the
20350 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF)
20351 * shall be returned, otherwise, the next eligible FCF record's index
20352 * shall be returned.
20353 **/
20354 uint16_t
lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba * phba)20355 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba)
20356 {
20357 uint16_t next_fcf_index;
20358
20359 initial_priority:
20360 /* Search start from next bit of currently registered FCF index */
20361 next_fcf_index = phba->fcf.current_rec.fcf_indx;
20362
20363 next_priority:
20364 /* Determine the next fcf index to check */
20365 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX;
20366 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask,
20367 LPFC_SLI4_FCF_TBL_INDX_MAX,
20368 next_fcf_index);
20369
20370 /* Wrap around condition on phba->fcf.fcf_rr_bmask */
20371 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
20372 /*
20373 * If we have wrapped then we need to clear the bits that
20374 * have been tested so that we can detect when we should
20375 * change the priority level.
20376 */
20377 next_fcf_index = find_first_bit(phba->fcf.fcf_rr_bmask,
20378 LPFC_SLI4_FCF_TBL_INDX_MAX);
20379 }
20380
20381
20382 /* Check roundrobin failover list empty condition */
20383 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX ||
20384 next_fcf_index == phba->fcf.current_rec.fcf_indx) {
20385 /*
20386 * If next fcf index is not found check if there are lower
20387 * Priority level fcf's in the fcf_priority list.
20388 * Set up the rr_bmask with all of the avaiable fcf bits
20389 * at that level and continue the selection process.
20390 */
20391 if (lpfc_check_next_fcf_pri_level(phba))
20392 goto initial_priority;
20393 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP,
20394 "2844 No roundrobin failover FCF available\n");
20395
20396 return LPFC_FCOE_FCF_NEXT_NONE;
20397 }
20398
20399 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX &&
20400 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag &
20401 LPFC_FCF_FLOGI_FAILED) {
20402 if (list_is_singular(&phba->fcf.fcf_pri_list))
20403 return LPFC_FCOE_FCF_NEXT_NONE;
20404
20405 goto next_priority;
20406 }
20407
20408 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
20409 "2845 Get next roundrobin failover FCF (x%x)\n",
20410 next_fcf_index);
20411
20412 return next_fcf_index;
20413 }
20414
20415 /**
20416 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index
20417 * @phba: pointer to lpfc hba data structure.
20418 * @fcf_index: index into the FCF table to 'set'
20419 *
20420 * This routine sets the FCF record index in to the eligible bmask for
20421 * roundrobin failover search. It checks to make sure that the index
20422 * does not go beyond the range of the driver allocated bmask dimension
20423 * before setting the bit.
20424 *
20425 * Returns 0 if the index bit successfully set, otherwise, it returns
20426 * -EINVAL.
20427 **/
20428 int
lpfc_sli4_fcf_rr_index_set(struct lpfc_hba * phba,uint16_t fcf_index)20429 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index)
20430 {
20431 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
20432 lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
20433 "2610 FCF (x%x) reached driver's book "
20434 "keeping dimension:x%x\n",
20435 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
20436 return -EINVAL;
20437 }
20438 /* Set the eligible FCF record index bmask */
20439 set_bit(fcf_index, phba->fcf.fcf_rr_bmask);
20440
20441 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
20442 "2790 Set FCF (x%x) to roundrobin FCF failover "
20443 "bmask\n", fcf_index);
20444
20445 return 0;
20446 }
20447
20448 /**
20449 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index
20450 * @phba: pointer to lpfc hba data structure.
20451 * @fcf_index: index into the FCF table to 'clear'
20452 *
20453 * This routine clears the FCF record index from the eligible bmask for
20454 * roundrobin failover search. It checks to make sure that the index
20455 * does not go beyond the range of the driver allocated bmask dimension
20456 * before clearing the bit.
20457 **/
20458 void
lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba * phba,uint16_t fcf_index)20459 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index)
20460 {
20461 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next;
20462 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
20463 lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
20464 "2762 FCF (x%x) reached driver's book "
20465 "keeping dimension:x%x\n",
20466 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
20467 return;
20468 }
20469 /* Clear the eligible FCF record index bmask */
20470 spin_lock_irq(&phba->hbalock);
20471 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list,
20472 list) {
20473 if (fcf_pri->fcf_rec.fcf_index == fcf_index) {
20474 list_del_init(&fcf_pri->list);
20475 break;
20476 }
20477 }
20478 spin_unlock_irq(&phba->hbalock);
20479 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask);
20480
20481 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
20482 "2791 Clear FCF (x%x) from roundrobin failover "
20483 "bmask\n", fcf_index);
20484 }
20485
20486 /**
20487 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table
20488 * @phba: pointer to lpfc hba data structure.
20489 * @mbox: An allocated pointer to type LPFC_MBOXQ_t
20490 *
20491 * This routine is the completion routine for the rediscover FCF table mailbox
20492 * command. If the mailbox command returned failure, it will try to stop the
20493 * FCF rediscover wait timer.
20494 **/
20495 static void
lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba * phba,LPFC_MBOXQ_t * mbox)20496 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
20497 {
20498 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
20499 uint32_t shdr_status, shdr_add_status;
20500
20501 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
20502
20503 shdr_status = bf_get(lpfc_mbox_hdr_status,
20504 &redisc_fcf->header.cfg_shdr.response);
20505 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
20506 &redisc_fcf->header.cfg_shdr.response);
20507 if (shdr_status || shdr_add_status) {
20508 lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
20509 "2746 Requesting for FCF rediscovery failed "
20510 "status x%x add_status x%x\n",
20511 shdr_status, shdr_add_status);
20512 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) {
20513 spin_lock_irq(&phba->hbalock);
20514 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC;
20515 spin_unlock_irq(&phba->hbalock);
20516 /*
20517 * CVL event triggered FCF rediscover request failed,
20518 * last resort to re-try current registered FCF entry.
20519 */
20520 lpfc_retry_pport_discovery(phba);
20521 } else {
20522 spin_lock_irq(&phba->hbalock);
20523 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC;
20524 spin_unlock_irq(&phba->hbalock);
20525 /*
20526 * DEAD FCF event triggered FCF rediscover request
20527 * failed, last resort to fail over as a link down
20528 * to FCF registration.
20529 */
20530 lpfc_sli4_fcf_dead_failthrough(phba);
20531 }
20532 } else {
20533 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
20534 "2775 Start FCF rediscover quiescent timer\n");
20535 /*
20536 * Start FCF rediscovery wait timer for pending FCF
20537 * before rescan FCF record table.
20538 */
20539 lpfc_fcf_redisc_wait_start_timer(phba);
20540 }
20541
20542 mempool_free(mbox, phba->mbox_mem_pool);
20543 }
20544
20545 /**
20546 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port.
20547 * @phba: pointer to lpfc hba data structure.
20548 *
20549 * This routine is invoked to request for rediscovery of the entire FCF table
20550 * by the port.
20551 **/
20552 int
lpfc_sli4_redisc_fcf_table(struct lpfc_hba * phba)20553 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba)
20554 {
20555 LPFC_MBOXQ_t *mbox;
20556 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
20557 int rc, length;
20558
20559 /* Cancel retry delay timers to all vports before FCF rediscover */
20560 lpfc_cancel_all_vport_retry_delay_timer(phba);
20561
20562 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
20563 if (!mbox) {
20564 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20565 "2745 Failed to allocate mbox for "
20566 "requesting FCF rediscover.\n");
20567 return -ENOMEM;
20568 }
20569
20570 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) -
20571 sizeof(struct lpfc_sli4_cfg_mhdr));
20572 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
20573 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF,
20574 length, LPFC_SLI4_MBX_EMBED);
20575
20576 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
20577 /* Set count to 0 for invalidating the entire FCF database */
20578 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0);
20579
20580 /* Issue the mailbox command asynchronously */
20581 mbox->vport = phba->pport;
20582 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table;
20583 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
20584
20585 if (rc == MBX_NOT_FINISHED) {
20586 mempool_free(mbox, phba->mbox_mem_pool);
20587 return -EIO;
20588 }
20589 return 0;
20590 }
20591
20592 /**
20593 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event
20594 * @phba: pointer to lpfc hba data structure.
20595 *
20596 * This function is the failover routine as a last resort to the FCF DEAD
20597 * event when driver failed to perform fast FCF failover.
20598 **/
20599 void
lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba * phba)20600 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba)
20601 {
20602 uint32_t link_state;
20603
20604 /*
20605 * Last resort as FCF DEAD event failover will treat this as
20606 * a link down, but save the link state because we don't want
20607 * it to be changed to Link Down unless it is already down.
20608 */
20609 link_state = phba->link_state;
20610 lpfc_linkdown(phba);
20611 phba->link_state = link_state;
20612
20613 /* Unregister FCF if no devices connected to it */
20614 lpfc_unregister_unused_fcf(phba);
20615 }
20616
20617 /**
20618 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data.
20619 * @phba: pointer to lpfc hba data structure.
20620 * @rgn23_data: pointer to configure region 23 data.
20621 *
20622 * This function gets SLI3 port configure region 23 data through memory dump
20623 * mailbox command. When it successfully retrieves data, the size of the data
20624 * will be returned, otherwise, 0 will be returned.
20625 **/
20626 static uint32_t
lpfc_sli_get_config_region23(struct lpfc_hba * phba,char * rgn23_data)20627 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
20628 {
20629 LPFC_MBOXQ_t *pmb = NULL;
20630 MAILBOX_t *mb;
20631 uint32_t offset = 0;
20632 int rc;
20633
20634 if (!rgn23_data)
20635 return 0;
20636
20637 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
20638 if (!pmb) {
20639 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20640 "2600 failed to allocate mailbox memory\n");
20641 return 0;
20642 }
20643 mb = &pmb->u.mb;
20644
20645 do {
20646 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23);
20647 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
20648
20649 if (rc != MBX_SUCCESS) {
20650 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
20651 "2601 failed to read config "
20652 "region 23, rc 0x%x Status 0x%x\n",
20653 rc, mb->mbxStatus);
20654 mb->un.varDmp.word_cnt = 0;
20655 }
20656 /*
20657 * dump mem may return a zero when finished or we got a
20658 * mailbox error, either way we are done.
20659 */
20660 if (mb->un.varDmp.word_cnt == 0)
20661 break;
20662
20663 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset)
20664 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset;
20665
20666 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET,
20667 rgn23_data + offset,
20668 mb->un.varDmp.word_cnt);
20669 offset += mb->un.varDmp.word_cnt;
20670 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE);
20671
20672 mempool_free(pmb, phba->mbox_mem_pool);
20673 return offset;
20674 }
20675
20676 /**
20677 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data.
20678 * @phba: pointer to lpfc hba data structure.
20679 * @rgn23_data: pointer to configure region 23 data.
20680 *
20681 * This function gets SLI4 port configure region 23 data through memory dump
20682 * mailbox command. When it successfully retrieves data, the size of the data
20683 * will be returned, otherwise, 0 will be returned.
20684 **/
20685 static uint32_t
lpfc_sli4_get_config_region23(struct lpfc_hba * phba,char * rgn23_data)20686 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
20687 {
20688 LPFC_MBOXQ_t *mboxq = NULL;
20689 struct lpfc_dmabuf *mp = NULL;
20690 struct lpfc_mqe *mqe;
20691 uint32_t data_length = 0;
20692 int rc;
20693
20694 if (!rgn23_data)
20695 return 0;
20696
20697 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
20698 if (!mboxq) {
20699 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20700 "3105 failed to allocate mailbox memory\n");
20701 return 0;
20702 }
20703
20704 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq))
20705 goto out;
20706 mqe = &mboxq->u.mqe;
20707 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
20708 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
20709 if (rc)
20710 goto out;
20711 data_length = mqe->un.mb_words[5];
20712 if (data_length == 0)
20713 goto out;
20714 if (data_length > DMP_RGN23_SIZE) {
20715 data_length = 0;
20716 goto out;
20717 }
20718 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length);
20719 out:
20720 lpfc_mbox_rsrc_cleanup(phba, mboxq, MBOX_THD_UNLOCKED);
20721 return data_length;
20722 }
20723
20724 /**
20725 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled.
20726 * @phba: pointer to lpfc hba data structure.
20727 *
20728 * This function read region 23 and parse TLV for port status to
20729 * decide if the user disaled the port. If the TLV indicates the
20730 * port is disabled, the hba_flag is set accordingly.
20731 **/
20732 void
lpfc_sli_read_link_ste(struct lpfc_hba * phba)20733 lpfc_sli_read_link_ste(struct lpfc_hba *phba)
20734 {
20735 uint8_t *rgn23_data = NULL;
20736 uint32_t if_type, data_size, sub_tlv_len, tlv_offset;
20737 uint32_t offset = 0;
20738
20739 /* Get adapter Region 23 data */
20740 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL);
20741 if (!rgn23_data)
20742 goto out;
20743
20744 if (phba->sli_rev < LPFC_SLI_REV4)
20745 data_size = lpfc_sli_get_config_region23(phba, rgn23_data);
20746 else {
20747 if_type = bf_get(lpfc_sli_intf_if_type,
20748 &phba->sli4_hba.sli_intf);
20749 if (if_type == LPFC_SLI_INTF_IF_TYPE_0)
20750 goto out;
20751 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data);
20752 }
20753
20754 if (!data_size)
20755 goto out;
20756
20757 /* Check the region signature first */
20758 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) {
20759 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20760 "2619 Config region 23 has bad signature\n");
20761 goto out;
20762 }
20763 offset += 4;
20764
20765 /* Check the data structure version */
20766 if (rgn23_data[offset] != LPFC_REGION23_VERSION) {
20767 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20768 "2620 Config region 23 has bad version\n");
20769 goto out;
20770 }
20771 offset += 4;
20772
20773 /* Parse TLV entries in the region */
20774 while (offset < data_size) {
20775 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC)
20776 break;
20777 /*
20778 * If the TLV is not driver specific TLV or driver id is
20779 * not linux driver id, skip the record.
20780 */
20781 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) ||
20782 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) ||
20783 (rgn23_data[offset + 3] != 0)) {
20784 offset += rgn23_data[offset + 1] * 4 + 4;
20785 continue;
20786 }
20787
20788 /* Driver found a driver specific TLV in the config region */
20789 sub_tlv_len = rgn23_data[offset + 1] * 4;
20790 offset += 4;
20791 tlv_offset = 0;
20792
20793 /*
20794 * Search for configured port state sub-TLV.
20795 */
20796 while ((offset < data_size) &&
20797 (tlv_offset < sub_tlv_len)) {
20798 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) {
20799 offset += 4;
20800 tlv_offset += 4;
20801 break;
20802 }
20803 if (rgn23_data[offset] != PORT_STE_TYPE) {
20804 offset += rgn23_data[offset + 1] * 4 + 4;
20805 tlv_offset += rgn23_data[offset + 1] * 4 + 4;
20806 continue;
20807 }
20808
20809 /* This HBA contains PORT_STE configured */
20810 if (!rgn23_data[offset + 2])
20811 phba->hba_flag |= LINK_DISABLED;
20812
20813 goto out;
20814 }
20815 }
20816
20817 out:
20818 kfree(rgn23_data);
20819 return;
20820 }
20821
20822 /**
20823 * lpfc_log_fw_write_cmpl - logs firmware write completion status
20824 * @phba: pointer to lpfc hba data structure
20825 * @shdr_status: wr_object rsp's status field
20826 * @shdr_add_status: wr_object rsp's add_status field
20827 * @shdr_add_status_2: wr_object rsp's add_status_2 field
20828 * @shdr_change_status: wr_object rsp's change_status field
20829 * @shdr_csf: wr_object rsp's csf bit
20830 *
20831 * This routine is intended to be called after a firmware write completes.
20832 * It will log next action items to be performed by the user to instantiate
20833 * the newly downloaded firmware or reason for incompatibility.
20834 **/
20835 static void
lpfc_log_fw_write_cmpl(struct lpfc_hba * phba,u32 shdr_status,u32 shdr_add_status,u32 shdr_add_status_2,u32 shdr_change_status,u32 shdr_csf)20836 lpfc_log_fw_write_cmpl(struct lpfc_hba *phba, u32 shdr_status,
20837 u32 shdr_add_status, u32 shdr_add_status_2,
20838 u32 shdr_change_status, u32 shdr_csf)
20839 {
20840 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
20841 "4198 %s: flash_id x%02x, asic_rev x%02x, "
20842 "status x%02x, add_status x%02x, add_status_2 x%02x, "
20843 "change_status x%02x, csf %01x\n", __func__,
20844 phba->sli4_hba.flash_id, phba->sli4_hba.asic_rev,
20845 shdr_status, shdr_add_status, shdr_add_status_2,
20846 shdr_change_status, shdr_csf);
20847
20848 if (shdr_add_status == LPFC_ADD_STATUS_INCOMPAT_OBJ) {
20849 switch (shdr_add_status_2) {
20850 case LPFC_ADD_STATUS_2_INCOMPAT_FLASH:
20851 lpfc_log_msg(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
20852 "4199 Firmware write failed: "
20853 "image incompatible with flash x%02x\n",
20854 phba->sli4_hba.flash_id);
20855 break;
20856 case LPFC_ADD_STATUS_2_INCORRECT_ASIC:
20857 lpfc_log_msg(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
20858 "4200 Firmware write failed: "
20859 "image incompatible with ASIC "
20860 "architecture x%02x\n",
20861 phba->sli4_hba.asic_rev);
20862 break;
20863 default:
20864 lpfc_log_msg(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
20865 "4210 Firmware write failed: "
20866 "add_status_2 x%02x\n",
20867 shdr_add_status_2);
20868 break;
20869 }
20870 } else if (!shdr_status && !shdr_add_status) {
20871 if (shdr_change_status == LPFC_CHANGE_STATUS_FW_RESET ||
20872 shdr_change_status == LPFC_CHANGE_STATUS_PORT_MIGRATION) {
20873 if (shdr_csf)
20874 shdr_change_status =
20875 LPFC_CHANGE_STATUS_PCI_RESET;
20876 }
20877
20878 switch (shdr_change_status) {
20879 case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET):
20880 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI,
20881 "3198 Firmware write complete: System "
20882 "reboot required to instantiate\n");
20883 break;
20884 case (LPFC_CHANGE_STATUS_FW_RESET):
20885 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI,
20886 "3199 Firmware write complete: "
20887 "Firmware reset required to "
20888 "instantiate\n");
20889 break;
20890 case (LPFC_CHANGE_STATUS_PORT_MIGRATION):
20891 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI,
20892 "3200 Firmware write complete: Port "
20893 "Migration or PCI Reset required to "
20894 "instantiate\n");
20895 break;
20896 case (LPFC_CHANGE_STATUS_PCI_RESET):
20897 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI,
20898 "3201 Firmware write complete: PCI "
20899 "Reset required to instantiate\n");
20900 break;
20901 default:
20902 break;
20903 }
20904 }
20905 }
20906
20907 /**
20908 * lpfc_wr_object - write an object to the firmware
20909 * @phba: HBA structure that indicates port to create a queue on.
20910 * @dmabuf_list: list of dmabufs to write to the port.
20911 * @size: the total byte value of the objects to write to the port.
20912 * @offset: the current offset to be used to start the transfer.
20913 *
20914 * This routine will create a wr_object mailbox command to send to the port.
20915 * the mailbox command will be constructed using the dma buffers described in
20916 * @dmabuf_list to create a list of BDEs. This routine will fill in as many
20917 * BDEs that the imbedded mailbox can support. The @offset variable will be
20918 * used to indicate the starting offset of the transfer and will also return
20919 * the offset after the write object mailbox has completed. @size is used to
20920 * determine the end of the object and whether the eof bit should be set.
20921 *
20922 * Return 0 is successful and offset will contain the new offset to use
20923 * for the next write.
20924 * Return negative value for error cases.
20925 **/
20926 int
lpfc_wr_object(struct lpfc_hba * phba,struct list_head * dmabuf_list,uint32_t size,uint32_t * offset)20927 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list,
20928 uint32_t size, uint32_t *offset)
20929 {
20930 struct lpfc_mbx_wr_object *wr_object;
20931 LPFC_MBOXQ_t *mbox;
20932 int rc = 0, i = 0;
20933 int mbox_status = 0;
20934 uint32_t shdr_status, shdr_add_status, shdr_add_status_2;
20935 uint32_t shdr_change_status = 0, shdr_csf = 0;
20936 uint32_t mbox_tmo;
20937 struct lpfc_dmabuf *dmabuf;
20938 uint32_t written = 0;
20939 bool check_change_status = false;
20940
20941 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
20942 if (!mbox)
20943 return -ENOMEM;
20944
20945 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
20946 LPFC_MBOX_OPCODE_WRITE_OBJECT,
20947 sizeof(struct lpfc_mbx_wr_object) -
20948 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
20949
20950 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object;
20951 wr_object->u.request.write_offset = *offset;
20952 sprintf((uint8_t *)wr_object->u.request.object_name, "/");
20953 wr_object->u.request.object_name[0] =
20954 cpu_to_le32(wr_object->u.request.object_name[0]);
20955 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0);
20956 list_for_each_entry(dmabuf, dmabuf_list, list) {
20957 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size)
20958 break;
20959 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys);
20960 wr_object->u.request.bde[i].addrHigh =
20961 putPaddrHigh(dmabuf->phys);
20962 if (written + SLI4_PAGE_SIZE >= size) {
20963 wr_object->u.request.bde[i].tus.f.bdeSize =
20964 (size - written);
20965 written += (size - written);
20966 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1);
20967 bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1);
20968 check_change_status = true;
20969 } else {
20970 wr_object->u.request.bde[i].tus.f.bdeSize =
20971 SLI4_PAGE_SIZE;
20972 written += SLI4_PAGE_SIZE;
20973 }
20974 i++;
20975 }
20976 wr_object->u.request.bde_count = i;
20977 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written);
20978 if (!phba->sli4_hba.intr_enable)
20979 mbox_status = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
20980 else {
20981 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
20982 mbox_status = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
20983 }
20984
20985 /* The mbox status needs to be maintained to detect MBOX_TIMEOUT. */
20986 rc = mbox_status;
20987
20988 /* The IOCTL status is embedded in the mailbox subheader. */
20989 shdr_status = bf_get(lpfc_mbox_hdr_status,
20990 &wr_object->header.cfg_shdr.response);
20991 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
20992 &wr_object->header.cfg_shdr.response);
20993 shdr_add_status_2 = bf_get(lpfc_mbox_hdr_add_status_2,
20994 &wr_object->header.cfg_shdr.response);
20995 if (check_change_status) {
20996 shdr_change_status = bf_get(lpfc_wr_object_change_status,
20997 &wr_object->u.response);
20998 shdr_csf = bf_get(lpfc_wr_object_csf,
20999 &wr_object->u.response);
21000 }
21001
21002 if (shdr_status || shdr_add_status || shdr_add_status_2 || rc) {
21003 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
21004 "3025 Write Object mailbox failed with "
21005 "status x%x add_status x%x, add_status_2 x%x, "
21006 "mbx status x%x\n",
21007 shdr_status, shdr_add_status, shdr_add_status_2,
21008 rc);
21009 rc = -ENXIO;
21010 *offset = shdr_add_status;
21011 } else {
21012 *offset += wr_object->u.response.actual_write_length;
21013 }
21014
21015 if (rc || check_change_status)
21016 lpfc_log_fw_write_cmpl(phba, shdr_status, shdr_add_status,
21017 shdr_add_status_2, shdr_change_status,
21018 shdr_csf);
21019
21020 if (!phba->sli4_hba.intr_enable)
21021 mempool_free(mbox, phba->mbox_mem_pool);
21022 else if (mbox_status != MBX_TIMEOUT)
21023 mempool_free(mbox, phba->mbox_mem_pool);
21024
21025 return rc;
21026 }
21027
21028 /**
21029 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands.
21030 * @vport: pointer to vport data structure.
21031 *
21032 * This function iterate through the mailboxq and clean up all REG_LOGIN
21033 * and REG_VPI mailbox commands associated with the vport. This function
21034 * is called when driver want to restart discovery of the vport due to
21035 * a Clear Virtual Link event.
21036 **/
21037 void
lpfc_cleanup_pending_mbox(struct lpfc_vport * vport)21038 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport)
21039 {
21040 struct lpfc_hba *phba = vport->phba;
21041 LPFC_MBOXQ_t *mb, *nextmb;
21042 struct lpfc_nodelist *ndlp;
21043 struct lpfc_nodelist *act_mbx_ndlp = NULL;
21044 LIST_HEAD(mbox_cmd_list);
21045 uint8_t restart_loop;
21046
21047 /* Clean up internally queued mailbox commands with the vport */
21048 spin_lock_irq(&phba->hbalock);
21049 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) {
21050 if (mb->vport != vport)
21051 continue;
21052
21053 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
21054 (mb->u.mb.mbxCommand != MBX_REG_VPI))
21055 continue;
21056
21057 list_move_tail(&mb->list, &mbox_cmd_list);
21058 }
21059 /* Clean up active mailbox command with the vport */
21060 mb = phba->sli.mbox_active;
21061 if (mb && (mb->vport == vport)) {
21062 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) ||
21063 (mb->u.mb.mbxCommand == MBX_REG_VPI))
21064 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
21065 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
21066 act_mbx_ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
21067
21068 /* This reference is local to this routine. The
21069 * reference is removed at routine exit.
21070 */
21071 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp);
21072
21073 /* Unregister the RPI when mailbox complete */
21074 mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
21075 }
21076 }
21077 /* Cleanup any mailbox completions which are not yet processed */
21078 do {
21079 restart_loop = 0;
21080 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) {
21081 /*
21082 * If this mailox is already processed or it is
21083 * for another vport ignore it.
21084 */
21085 if ((mb->vport != vport) ||
21086 (mb->mbox_flag & LPFC_MBX_IMED_UNREG))
21087 continue;
21088
21089 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
21090 (mb->u.mb.mbxCommand != MBX_REG_VPI))
21091 continue;
21092
21093 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
21094 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
21095 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
21096 /* Unregister the RPI when mailbox complete */
21097 mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
21098 restart_loop = 1;
21099 spin_unlock_irq(&phba->hbalock);
21100 spin_lock(&ndlp->lock);
21101 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
21102 spin_unlock(&ndlp->lock);
21103 spin_lock_irq(&phba->hbalock);
21104 break;
21105 }
21106 }
21107 } while (restart_loop);
21108
21109 spin_unlock_irq(&phba->hbalock);
21110
21111 /* Release the cleaned-up mailbox commands */
21112 while (!list_empty(&mbox_cmd_list)) {
21113 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list);
21114 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
21115 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
21116 mb->ctx_ndlp = NULL;
21117 if (ndlp) {
21118 spin_lock(&ndlp->lock);
21119 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
21120 spin_unlock(&ndlp->lock);
21121 lpfc_nlp_put(ndlp);
21122 }
21123 }
21124 lpfc_mbox_rsrc_cleanup(phba, mb, MBOX_THD_UNLOCKED);
21125 }
21126
21127 /* Release the ndlp with the cleaned-up active mailbox command */
21128 if (act_mbx_ndlp) {
21129 spin_lock(&act_mbx_ndlp->lock);
21130 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
21131 spin_unlock(&act_mbx_ndlp->lock);
21132 lpfc_nlp_put(act_mbx_ndlp);
21133 }
21134 }
21135
21136 /**
21137 * lpfc_drain_txq - Drain the txq
21138 * @phba: Pointer to HBA context object.
21139 *
21140 * This function attempt to submit IOCBs on the txq
21141 * to the adapter. For SLI4 adapters, the txq contains
21142 * ELS IOCBs that have been deferred because the there
21143 * are no SGLs. This congestion can occur with large
21144 * vport counts during node discovery.
21145 **/
21146
21147 uint32_t
lpfc_drain_txq(struct lpfc_hba * phba)21148 lpfc_drain_txq(struct lpfc_hba *phba)
21149 {
21150 LIST_HEAD(completions);
21151 struct lpfc_sli_ring *pring;
21152 struct lpfc_iocbq *piocbq = NULL;
21153 unsigned long iflags = 0;
21154 char *fail_msg = NULL;
21155 uint32_t txq_cnt = 0;
21156 struct lpfc_queue *wq;
21157 int ret = 0;
21158
21159 if (phba->link_flag & LS_MDS_LOOPBACK) {
21160 /* MDS WQE are posted only to first WQ*/
21161 wq = phba->sli4_hba.hdwq[0].io_wq;
21162 if (unlikely(!wq))
21163 return 0;
21164 pring = wq->pring;
21165 } else {
21166 wq = phba->sli4_hba.els_wq;
21167 if (unlikely(!wq))
21168 return 0;
21169 pring = lpfc_phba_elsring(phba);
21170 }
21171
21172 if (unlikely(!pring) || list_empty(&pring->txq))
21173 return 0;
21174
21175 spin_lock_irqsave(&pring->ring_lock, iflags);
21176 list_for_each_entry(piocbq, &pring->txq, list) {
21177 txq_cnt++;
21178 }
21179
21180 if (txq_cnt > pring->txq_max)
21181 pring->txq_max = txq_cnt;
21182
21183 spin_unlock_irqrestore(&pring->ring_lock, iflags);
21184
21185 while (!list_empty(&pring->txq)) {
21186 spin_lock_irqsave(&pring->ring_lock, iflags);
21187
21188 piocbq = lpfc_sli_ringtx_get(phba, pring);
21189 if (!piocbq) {
21190 spin_unlock_irqrestore(&pring->ring_lock, iflags);
21191 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
21192 "2823 txq empty and txq_cnt is %d\n ",
21193 txq_cnt);
21194 break;
21195 }
21196 txq_cnt--;
21197
21198 ret = __lpfc_sli_issue_iocb(phba, pring->ringno, piocbq, 0);
21199
21200 if (ret && ret != IOCB_BUSY) {
21201 fail_msg = " - Cannot send IO ";
21202 piocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED;
21203 }
21204 if (fail_msg) {
21205 piocbq->cmd_flag |= LPFC_DRIVER_ABORTED;
21206 /* Failed means we can't issue and need to cancel */
21207 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
21208 "2822 IOCB failed %s iotag 0x%x "
21209 "xri 0x%x %d flg x%x\n",
21210 fail_msg, piocbq->iotag,
21211 piocbq->sli4_xritag, ret,
21212 piocbq->cmd_flag);
21213 list_add_tail(&piocbq->list, &completions);
21214 fail_msg = NULL;
21215 }
21216 spin_unlock_irqrestore(&pring->ring_lock, iflags);
21217 if (txq_cnt == 0 || ret == IOCB_BUSY)
21218 break;
21219 }
21220 /* Cancel all the IOCBs that cannot be issued */
21221 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
21222 IOERR_SLI_ABORTED);
21223
21224 return txq_cnt;
21225 }
21226
21227 /**
21228 * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl.
21229 * @phba: Pointer to HBA context object.
21230 * @pwqeq: Pointer to command WQE.
21231 * @sglq: Pointer to the scatter gather queue object.
21232 *
21233 * This routine converts the bpl or bde that is in the WQE
21234 * to a sgl list for the sli4 hardware. The physical address
21235 * of the bpl/bde is converted back to a virtual address.
21236 * If the WQE contains a BPL then the list of BDE's is
21237 * converted to sli4_sge's. If the WQE contains a single
21238 * BDE then it is converted to a single sli_sge.
21239 * The WQE is still in cpu endianness so the contents of
21240 * the bpl can be used without byte swapping.
21241 *
21242 * Returns valid XRI = Success, NO_XRI = Failure.
21243 */
21244 static uint16_t
lpfc_wqe_bpl2sgl(struct lpfc_hba * phba,struct lpfc_iocbq * pwqeq,struct lpfc_sglq * sglq)21245 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq,
21246 struct lpfc_sglq *sglq)
21247 {
21248 uint16_t xritag = NO_XRI;
21249 struct ulp_bde64 *bpl = NULL;
21250 struct ulp_bde64 bde;
21251 struct sli4_sge *sgl = NULL;
21252 struct lpfc_dmabuf *dmabuf;
21253 union lpfc_wqe128 *wqe;
21254 int numBdes = 0;
21255 int i = 0;
21256 uint32_t offset = 0; /* accumulated offset in the sg request list */
21257 int inbound = 0; /* number of sg reply entries inbound from firmware */
21258 uint32_t cmd;
21259
21260 if (!pwqeq || !sglq)
21261 return xritag;
21262
21263 sgl = (struct sli4_sge *)sglq->sgl;
21264 wqe = &pwqeq->wqe;
21265 pwqeq->iocb.ulpIoTag = pwqeq->iotag;
21266
21267 cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com);
21268 if (cmd == CMD_XMIT_BLS_RSP64_WQE)
21269 return sglq->sli4_xritag;
21270 numBdes = pwqeq->num_bdes;
21271 if (numBdes) {
21272 /* The addrHigh and addrLow fields within the WQE
21273 * have not been byteswapped yet so there is no
21274 * need to swap them back.
21275 */
21276 if (pwqeq->bpl_dmabuf)
21277 dmabuf = pwqeq->bpl_dmabuf;
21278 else
21279 return xritag;
21280
21281 bpl = (struct ulp_bde64 *)dmabuf->virt;
21282 if (!bpl)
21283 return xritag;
21284
21285 for (i = 0; i < numBdes; i++) {
21286 /* Should already be byte swapped. */
21287 sgl->addr_hi = bpl->addrHigh;
21288 sgl->addr_lo = bpl->addrLow;
21289
21290 sgl->word2 = le32_to_cpu(sgl->word2);
21291 if ((i+1) == numBdes)
21292 bf_set(lpfc_sli4_sge_last, sgl, 1);
21293 else
21294 bf_set(lpfc_sli4_sge_last, sgl, 0);
21295 /* swap the size field back to the cpu so we
21296 * can assign it to the sgl.
21297 */
21298 bde.tus.w = le32_to_cpu(bpl->tus.w);
21299 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize);
21300 /* The offsets in the sgl need to be accumulated
21301 * separately for the request and reply lists.
21302 * The request is always first, the reply follows.
21303 */
21304 switch (cmd) {
21305 case CMD_GEN_REQUEST64_WQE:
21306 /* add up the reply sg entries */
21307 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I)
21308 inbound++;
21309 /* first inbound? reset the offset */
21310 if (inbound == 1)
21311 offset = 0;
21312 bf_set(lpfc_sli4_sge_offset, sgl, offset);
21313 bf_set(lpfc_sli4_sge_type, sgl,
21314 LPFC_SGE_TYPE_DATA);
21315 offset += bde.tus.f.bdeSize;
21316 break;
21317 case CMD_FCP_TRSP64_WQE:
21318 bf_set(lpfc_sli4_sge_offset, sgl, 0);
21319 bf_set(lpfc_sli4_sge_type, sgl,
21320 LPFC_SGE_TYPE_DATA);
21321 break;
21322 case CMD_FCP_TSEND64_WQE:
21323 case CMD_FCP_TRECEIVE64_WQE:
21324 bf_set(lpfc_sli4_sge_type, sgl,
21325 bpl->tus.f.bdeFlags);
21326 if (i < 3)
21327 offset = 0;
21328 else
21329 offset += bde.tus.f.bdeSize;
21330 bf_set(lpfc_sli4_sge_offset, sgl, offset);
21331 break;
21332 }
21333 sgl->word2 = cpu_to_le32(sgl->word2);
21334 bpl++;
21335 sgl++;
21336 }
21337 } else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) {
21338 /* The addrHigh and addrLow fields of the BDE have not
21339 * been byteswapped yet so they need to be swapped
21340 * before putting them in the sgl.
21341 */
21342 sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh);
21343 sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow);
21344 sgl->word2 = le32_to_cpu(sgl->word2);
21345 bf_set(lpfc_sli4_sge_last, sgl, 1);
21346 sgl->word2 = cpu_to_le32(sgl->word2);
21347 sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize);
21348 }
21349 return sglq->sli4_xritag;
21350 }
21351
21352 /**
21353 * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE)
21354 * @phba: Pointer to HBA context object.
21355 * @qp: Pointer to HDW queue.
21356 * @pwqe: Pointer to command WQE.
21357 **/
21358 int
lpfc_sli4_issue_wqe(struct lpfc_hba * phba,struct lpfc_sli4_hdw_queue * qp,struct lpfc_iocbq * pwqe)21359 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp,
21360 struct lpfc_iocbq *pwqe)
21361 {
21362 union lpfc_wqe128 *wqe = &pwqe->wqe;
21363 struct lpfc_async_xchg_ctx *ctxp;
21364 struct lpfc_queue *wq;
21365 struct lpfc_sglq *sglq;
21366 struct lpfc_sli_ring *pring;
21367 unsigned long iflags;
21368 uint32_t ret = 0;
21369
21370 /* NVME_LS and NVME_LS ABTS requests. */
21371 if (pwqe->cmd_flag & LPFC_IO_NVME_LS) {
21372 pring = phba->sli4_hba.nvmels_wq->pring;
21373 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
21374 qp, wq_access);
21375 sglq = __lpfc_sli_get_els_sglq(phba, pwqe);
21376 if (!sglq) {
21377 spin_unlock_irqrestore(&pring->ring_lock, iflags);
21378 return WQE_BUSY;
21379 }
21380 pwqe->sli4_lxritag = sglq->sli4_lxritag;
21381 pwqe->sli4_xritag = sglq->sli4_xritag;
21382 if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) {
21383 spin_unlock_irqrestore(&pring->ring_lock, iflags);
21384 return WQE_ERROR;
21385 }
21386 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com,
21387 pwqe->sli4_xritag);
21388 ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe);
21389 if (ret) {
21390 spin_unlock_irqrestore(&pring->ring_lock, iflags);
21391 return ret;
21392 }
21393
21394 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
21395 spin_unlock_irqrestore(&pring->ring_lock, iflags);
21396
21397 lpfc_sli4_poll_eq(qp->hba_eq);
21398 return 0;
21399 }
21400
21401 /* NVME_FCREQ and NVME_ABTS requests */
21402 if (pwqe->cmd_flag & (LPFC_IO_NVME | LPFC_IO_FCP | LPFC_IO_CMF)) {
21403 /* Get the IO distribution (hba_wqidx) for WQ assignment. */
21404 wq = qp->io_wq;
21405 pring = wq->pring;
21406
21407 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map);
21408
21409 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
21410 qp, wq_access);
21411 ret = lpfc_sli4_wq_put(wq, wqe);
21412 if (ret) {
21413 spin_unlock_irqrestore(&pring->ring_lock, iflags);
21414 return ret;
21415 }
21416 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
21417 spin_unlock_irqrestore(&pring->ring_lock, iflags);
21418
21419 lpfc_sli4_poll_eq(qp->hba_eq);
21420 return 0;
21421 }
21422
21423 /* NVMET requests */
21424 if (pwqe->cmd_flag & LPFC_IO_NVMET) {
21425 /* Get the IO distribution (hba_wqidx) for WQ assignment. */
21426 wq = qp->io_wq;
21427 pring = wq->pring;
21428
21429 ctxp = pwqe->context_un.axchg;
21430 sglq = ctxp->ctxbuf->sglq;
21431 if (pwqe->sli4_xritag == NO_XRI) {
21432 pwqe->sli4_lxritag = sglq->sli4_lxritag;
21433 pwqe->sli4_xritag = sglq->sli4_xritag;
21434 }
21435 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com,
21436 pwqe->sli4_xritag);
21437 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map);
21438
21439 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
21440 qp, wq_access);
21441 ret = lpfc_sli4_wq_put(wq, wqe);
21442 if (ret) {
21443 spin_unlock_irqrestore(&pring->ring_lock, iflags);
21444 return ret;
21445 }
21446 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
21447 spin_unlock_irqrestore(&pring->ring_lock, iflags);
21448
21449 lpfc_sli4_poll_eq(qp->hba_eq);
21450 return 0;
21451 }
21452 return WQE_ERROR;
21453 }
21454
21455 /**
21456 * lpfc_sli4_issue_abort_iotag - SLI-4 WQE init & issue for the Abort
21457 * @phba: Pointer to HBA context object.
21458 * @cmdiocb: Pointer to driver command iocb object.
21459 * @cmpl: completion function.
21460 *
21461 * Fill the appropriate fields for the abort WQE and call
21462 * internal routine lpfc_sli4_issue_wqe to send the WQE
21463 * This function is called with hbalock held and no ring_lock held.
21464 *
21465 * RETURNS 0 - SUCCESS
21466 **/
21467
21468 int
lpfc_sli4_issue_abort_iotag(struct lpfc_hba * phba,struct lpfc_iocbq * cmdiocb,void * cmpl)21469 lpfc_sli4_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
21470 void *cmpl)
21471 {
21472 struct lpfc_vport *vport = cmdiocb->vport;
21473 struct lpfc_iocbq *abtsiocb = NULL;
21474 union lpfc_wqe128 *abtswqe;
21475 struct lpfc_io_buf *lpfc_cmd;
21476 int retval = IOCB_ERROR;
21477 u16 xritag = cmdiocb->sli4_xritag;
21478
21479 /*
21480 * The scsi command can not be in txq and it is in flight because the
21481 * pCmd is still pointing at the SCSI command we have to abort. There
21482 * is no need to search the txcmplq. Just send an abort to the FW.
21483 */
21484
21485 abtsiocb = __lpfc_sli_get_iocbq(phba);
21486 if (!abtsiocb)
21487 return WQE_NORESOURCE;
21488
21489 /* Indicate the IO is being aborted by the driver. */
21490 cmdiocb->cmd_flag |= LPFC_DRIVER_ABORTED;
21491
21492 abtswqe = &abtsiocb->wqe;
21493 memset(abtswqe, 0, sizeof(*abtswqe));
21494
21495 if (!lpfc_is_link_up(phba) || (phba->link_flag & LS_EXTERNAL_LOOPBACK))
21496 bf_set(abort_cmd_ia, &abtswqe->abort_cmd, 1);
21497 bf_set(abort_cmd_criteria, &abtswqe->abort_cmd, T_XRI_TAG);
21498 abtswqe->abort_cmd.rsrvd5 = 0;
21499 abtswqe->abort_cmd.wqe_com.abort_tag = xritag;
21500 bf_set(wqe_reqtag, &abtswqe->abort_cmd.wqe_com, abtsiocb->iotag);
21501 bf_set(wqe_cmnd, &abtswqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX);
21502 bf_set(wqe_xri_tag, &abtswqe->generic.wqe_com, 0);
21503 bf_set(wqe_qosd, &abtswqe->abort_cmd.wqe_com, 1);
21504 bf_set(wqe_lenloc, &abtswqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE);
21505 bf_set(wqe_cmd_type, &abtswqe->abort_cmd.wqe_com, OTHER_COMMAND);
21506
21507 /* ABTS WQE must go to the same WQ as the WQE to be aborted */
21508 abtsiocb->hba_wqidx = cmdiocb->hba_wqidx;
21509 abtsiocb->cmd_flag |= LPFC_USE_FCPWQIDX;
21510 if (cmdiocb->cmd_flag & LPFC_IO_FCP)
21511 abtsiocb->cmd_flag |= LPFC_IO_FCP;
21512 if (cmdiocb->cmd_flag & LPFC_IO_NVME)
21513 abtsiocb->cmd_flag |= LPFC_IO_NVME;
21514 if (cmdiocb->cmd_flag & LPFC_IO_FOF)
21515 abtsiocb->cmd_flag |= LPFC_IO_FOF;
21516 abtsiocb->vport = vport;
21517 abtsiocb->cmd_cmpl = cmpl;
21518
21519 lpfc_cmd = container_of(cmdiocb, struct lpfc_io_buf, cur_iocbq);
21520 retval = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, abtsiocb);
21521
21522 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI | LOG_NVME_ABTS | LOG_FCP,
21523 "0359 Abort xri x%x, original iotag x%x, "
21524 "abort cmd iotag x%x retval x%x\n",
21525 xritag, cmdiocb->iotag, abtsiocb->iotag, retval);
21526
21527 if (retval) {
21528 cmdiocb->cmd_flag &= ~LPFC_DRIVER_ABORTED;
21529 __lpfc_sli_release_iocbq(phba, abtsiocb);
21530 }
21531
21532 return retval;
21533 }
21534
21535 #ifdef LPFC_MXP_STAT
21536 /**
21537 * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count
21538 * @phba: pointer to lpfc hba data structure.
21539 * @hwqid: belong to which HWQ.
21540 *
21541 * The purpose of this routine is to take a snapshot of pbl, pvt and busy count
21542 * 15 seconds after a test case is running.
21543 *
21544 * The user should call lpfc_debugfs_multixripools_write before running a test
21545 * case to clear stat_snapshot_taken. Then the user starts a test case. During
21546 * test case is running, stat_snapshot_taken is incremented by 1 every time when
21547 * this routine is called from heartbeat timer. When stat_snapshot_taken is
21548 * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken.
21549 **/
lpfc_snapshot_mxp(struct lpfc_hba * phba,u32 hwqid)21550 void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid)
21551 {
21552 struct lpfc_sli4_hdw_queue *qp;
21553 struct lpfc_multixri_pool *multixri_pool;
21554 struct lpfc_pvt_pool *pvt_pool;
21555 struct lpfc_pbl_pool *pbl_pool;
21556 u32 txcmplq_cnt;
21557
21558 qp = &phba->sli4_hba.hdwq[hwqid];
21559 multixri_pool = qp->p_multixri_pool;
21560 if (!multixri_pool)
21561 return;
21562
21563 if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) {
21564 pvt_pool = &qp->p_multixri_pool->pvt_pool;
21565 pbl_pool = &qp->p_multixri_pool->pbl_pool;
21566 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt;
21567
21568 multixri_pool->stat_pbl_count = pbl_pool->count;
21569 multixri_pool->stat_pvt_count = pvt_pool->count;
21570 multixri_pool->stat_busy_count = txcmplq_cnt;
21571 }
21572
21573 multixri_pool->stat_snapshot_taken++;
21574 }
21575 #endif
21576
21577 /**
21578 * lpfc_adjust_pvt_pool_count - Adjust private pool count
21579 * @phba: pointer to lpfc hba data structure.
21580 * @hwqid: belong to which HWQ.
21581 *
21582 * This routine moves some XRIs from private to public pool when private pool
21583 * is not busy.
21584 **/
lpfc_adjust_pvt_pool_count(struct lpfc_hba * phba,u32 hwqid)21585 void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid)
21586 {
21587 struct lpfc_multixri_pool *multixri_pool;
21588 u32 io_req_count;
21589 u32 prev_io_req_count;
21590
21591 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool;
21592 if (!multixri_pool)
21593 return;
21594 io_req_count = multixri_pool->io_req_count;
21595 prev_io_req_count = multixri_pool->prev_io_req_count;
21596
21597 if (prev_io_req_count != io_req_count) {
21598 /* Private pool is busy */
21599 multixri_pool->prev_io_req_count = io_req_count;
21600 } else {
21601 /* Private pool is not busy.
21602 * Move XRIs from private to public pool.
21603 */
21604 lpfc_move_xri_pvt_to_pbl(phba, hwqid);
21605 }
21606 }
21607
21608 /**
21609 * lpfc_adjust_high_watermark - Adjust high watermark
21610 * @phba: pointer to lpfc hba data structure.
21611 * @hwqid: belong to which HWQ.
21612 *
21613 * This routine sets high watermark as number of outstanding XRIs,
21614 * but make sure the new value is between xri_limit/2 and xri_limit.
21615 **/
lpfc_adjust_high_watermark(struct lpfc_hba * phba,u32 hwqid)21616 void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid)
21617 {
21618 u32 new_watermark;
21619 u32 watermark_max;
21620 u32 watermark_min;
21621 u32 xri_limit;
21622 u32 txcmplq_cnt;
21623 u32 abts_io_bufs;
21624 struct lpfc_multixri_pool *multixri_pool;
21625 struct lpfc_sli4_hdw_queue *qp;
21626
21627 qp = &phba->sli4_hba.hdwq[hwqid];
21628 multixri_pool = qp->p_multixri_pool;
21629 if (!multixri_pool)
21630 return;
21631 xri_limit = multixri_pool->xri_limit;
21632
21633 watermark_max = xri_limit;
21634 watermark_min = xri_limit / 2;
21635
21636 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt;
21637 abts_io_bufs = qp->abts_scsi_io_bufs;
21638 abts_io_bufs += qp->abts_nvme_io_bufs;
21639
21640 new_watermark = txcmplq_cnt + abts_io_bufs;
21641 new_watermark = min(watermark_max, new_watermark);
21642 new_watermark = max(watermark_min, new_watermark);
21643 multixri_pool->pvt_pool.high_watermark = new_watermark;
21644
21645 #ifdef LPFC_MXP_STAT
21646 multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm,
21647 new_watermark);
21648 #endif
21649 }
21650
21651 /**
21652 * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool
21653 * @phba: pointer to lpfc hba data structure.
21654 * @hwqid: belong to which HWQ.
21655 *
21656 * This routine is called from hearbeat timer when pvt_pool is idle.
21657 * All free XRIs are moved from private to public pool on hwqid with 2 steps.
21658 * The first step moves (all - low_watermark) amount of XRIs.
21659 * The second step moves the rest of XRIs.
21660 **/
lpfc_move_xri_pvt_to_pbl(struct lpfc_hba * phba,u32 hwqid)21661 void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid)
21662 {
21663 struct lpfc_pbl_pool *pbl_pool;
21664 struct lpfc_pvt_pool *pvt_pool;
21665 struct lpfc_sli4_hdw_queue *qp;
21666 struct lpfc_io_buf *lpfc_ncmd;
21667 struct lpfc_io_buf *lpfc_ncmd_next;
21668 unsigned long iflag;
21669 struct list_head tmp_list;
21670 u32 tmp_count;
21671
21672 qp = &phba->sli4_hba.hdwq[hwqid];
21673 pbl_pool = &qp->p_multixri_pool->pbl_pool;
21674 pvt_pool = &qp->p_multixri_pool->pvt_pool;
21675 tmp_count = 0;
21676
21677 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool);
21678 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool);
21679
21680 if (pvt_pool->count > pvt_pool->low_watermark) {
21681 /* Step 1: move (all - low_watermark) from pvt_pool
21682 * to pbl_pool
21683 */
21684
21685 /* Move low watermark of bufs from pvt_pool to tmp_list */
21686 INIT_LIST_HEAD(&tmp_list);
21687 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
21688 &pvt_pool->list, list) {
21689 list_move_tail(&lpfc_ncmd->list, &tmp_list);
21690 tmp_count++;
21691 if (tmp_count >= pvt_pool->low_watermark)
21692 break;
21693 }
21694
21695 /* Move all bufs from pvt_pool to pbl_pool */
21696 list_splice_init(&pvt_pool->list, &pbl_pool->list);
21697
21698 /* Move all bufs from tmp_list to pvt_pool */
21699 list_splice(&tmp_list, &pvt_pool->list);
21700
21701 pbl_pool->count += (pvt_pool->count - tmp_count);
21702 pvt_pool->count = tmp_count;
21703 } else {
21704 /* Step 2: move the rest from pvt_pool to pbl_pool */
21705 list_splice_init(&pvt_pool->list, &pbl_pool->list);
21706 pbl_pool->count += pvt_pool->count;
21707 pvt_pool->count = 0;
21708 }
21709
21710 spin_unlock(&pvt_pool->lock);
21711 spin_unlock_irqrestore(&pbl_pool->lock, iflag);
21712 }
21713
21714 /**
21715 * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool
21716 * @phba: pointer to lpfc hba data structure
21717 * @qp: pointer to HDW queue
21718 * @pbl_pool: specified public free XRI pool
21719 * @pvt_pool: specified private free XRI pool
21720 * @count: number of XRIs to move
21721 *
21722 * This routine tries to move some free common bufs from the specified pbl_pool
21723 * to the specified pvt_pool. It might move less than count XRIs if there's not
21724 * enough in public pool.
21725 *
21726 * Return:
21727 * true - if XRIs are successfully moved from the specified pbl_pool to the
21728 * specified pvt_pool
21729 * false - if the specified pbl_pool is empty or locked by someone else
21730 **/
21731 static bool
_lpfc_move_xri_pbl_to_pvt(struct lpfc_hba * phba,struct lpfc_sli4_hdw_queue * qp,struct lpfc_pbl_pool * pbl_pool,struct lpfc_pvt_pool * pvt_pool,u32 count)21732 _lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp,
21733 struct lpfc_pbl_pool *pbl_pool,
21734 struct lpfc_pvt_pool *pvt_pool, u32 count)
21735 {
21736 struct lpfc_io_buf *lpfc_ncmd;
21737 struct lpfc_io_buf *lpfc_ncmd_next;
21738 unsigned long iflag;
21739 int ret;
21740
21741 ret = spin_trylock_irqsave(&pbl_pool->lock, iflag);
21742 if (ret) {
21743 if (pbl_pool->count) {
21744 /* Move a batch of XRIs from public to private pool */
21745 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool);
21746 list_for_each_entry_safe(lpfc_ncmd,
21747 lpfc_ncmd_next,
21748 &pbl_pool->list,
21749 list) {
21750 list_move_tail(&lpfc_ncmd->list,
21751 &pvt_pool->list);
21752 pvt_pool->count++;
21753 pbl_pool->count--;
21754 count--;
21755 if (count == 0)
21756 break;
21757 }
21758
21759 spin_unlock(&pvt_pool->lock);
21760 spin_unlock_irqrestore(&pbl_pool->lock, iflag);
21761 return true;
21762 }
21763 spin_unlock_irqrestore(&pbl_pool->lock, iflag);
21764 }
21765
21766 return false;
21767 }
21768
21769 /**
21770 * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool
21771 * @phba: pointer to lpfc hba data structure.
21772 * @hwqid: belong to which HWQ.
21773 * @count: number of XRIs to move
21774 *
21775 * This routine tries to find some free common bufs in one of public pools with
21776 * Round Robin method. The search always starts from local hwqid, then the next
21777 * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found,
21778 * a batch of free common bufs are moved to private pool on hwqid.
21779 * It might move less than count XRIs if there's not enough in public pool.
21780 **/
lpfc_move_xri_pbl_to_pvt(struct lpfc_hba * phba,u32 hwqid,u32 count)21781 void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count)
21782 {
21783 struct lpfc_multixri_pool *multixri_pool;
21784 struct lpfc_multixri_pool *next_multixri_pool;
21785 struct lpfc_pvt_pool *pvt_pool;
21786 struct lpfc_pbl_pool *pbl_pool;
21787 struct lpfc_sli4_hdw_queue *qp;
21788 u32 next_hwqid;
21789 u32 hwq_count;
21790 int ret;
21791
21792 qp = &phba->sli4_hba.hdwq[hwqid];
21793 multixri_pool = qp->p_multixri_pool;
21794 pvt_pool = &multixri_pool->pvt_pool;
21795 pbl_pool = &multixri_pool->pbl_pool;
21796
21797 /* Check if local pbl_pool is available */
21798 ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count);
21799 if (ret) {
21800 #ifdef LPFC_MXP_STAT
21801 multixri_pool->local_pbl_hit_count++;
21802 #endif
21803 return;
21804 }
21805
21806 hwq_count = phba->cfg_hdw_queue;
21807
21808 /* Get the next hwqid which was found last time */
21809 next_hwqid = multixri_pool->rrb_next_hwqid;
21810
21811 do {
21812 /* Go to next hwq */
21813 next_hwqid = (next_hwqid + 1) % hwq_count;
21814
21815 next_multixri_pool =
21816 phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool;
21817 pbl_pool = &next_multixri_pool->pbl_pool;
21818
21819 /* Check if the public free xri pool is available */
21820 ret = _lpfc_move_xri_pbl_to_pvt(
21821 phba, qp, pbl_pool, pvt_pool, count);
21822
21823 /* Exit while-loop if success or all hwqid are checked */
21824 } while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid);
21825
21826 /* Starting point for the next time */
21827 multixri_pool->rrb_next_hwqid = next_hwqid;
21828
21829 if (!ret) {
21830 /* stats: all public pools are empty*/
21831 multixri_pool->pbl_empty_count++;
21832 }
21833
21834 #ifdef LPFC_MXP_STAT
21835 if (ret) {
21836 if (next_hwqid == hwqid)
21837 multixri_pool->local_pbl_hit_count++;
21838 else
21839 multixri_pool->other_pbl_hit_count++;
21840 }
21841 #endif
21842 }
21843
21844 /**
21845 * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark
21846 * @phba: pointer to lpfc hba data structure.
21847 * @hwqid: belong to which HWQ.
21848 *
21849 * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than
21850 * low watermark.
21851 **/
lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba * phba,u32 hwqid)21852 void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid)
21853 {
21854 struct lpfc_multixri_pool *multixri_pool;
21855 struct lpfc_pvt_pool *pvt_pool;
21856
21857 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool;
21858 pvt_pool = &multixri_pool->pvt_pool;
21859
21860 if (pvt_pool->count < pvt_pool->low_watermark)
21861 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH);
21862 }
21863
21864 /**
21865 * lpfc_release_io_buf - Return one IO buf back to free pool
21866 * @phba: pointer to lpfc hba data structure.
21867 * @lpfc_ncmd: IO buf to be returned.
21868 * @qp: belong to which HWQ.
21869 *
21870 * This routine returns one IO buf back to free pool. If this is an urgent IO,
21871 * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1,
21872 * the IO buf is returned to pbl_pool or pvt_pool based on watermark and
21873 * xri_limit. If cfg_xri_rebalancing==0, the IO buf is returned to
21874 * lpfc_io_buf_list_put.
21875 **/
lpfc_release_io_buf(struct lpfc_hba * phba,struct lpfc_io_buf * lpfc_ncmd,struct lpfc_sli4_hdw_queue * qp)21876 void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd,
21877 struct lpfc_sli4_hdw_queue *qp)
21878 {
21879 unsigned long iflag;
21880 struct lpfc_pbl_pool *pbl_pool;
21881 struct lpfc_pvt_pool *pvt_pool;
21882 struct lpfc_epd_pool *epd_pool;
21883 u32 txcmplq_cnt;
21884 u32 xri_owned;
21885 u32 xri_limit;
21886 u32 abts_io_bufs;
21887
21888 /* MUST zero fields if buffer is reused by another protocol */
21889 lpfc_ncmd->nvmeCmd = NULL;
21890 lpfc_ncmd->cur_iocbq.cmd_cmpl = NULL;
21891
21892 if (phba->cfg_xpsgl && !phba->nvmet_support &&
21893 !list_empty(&lpfc_ncmd->dma_sgl_xtra_list))
21894 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd);
21895
21896 if (!list_empty(&lpfc_ncmd->dma_cmd_rsp_list))
21897 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd);
21898
21899 if (phba->cfg_xri_rebalancing) {
21900 if (lpfc_ncmd->expedite) {
21901 /* Return to expedite pool */
21902 epd_pool = &phba->epd_pool;
21903 spin_lock_irqsave(&epd_pool->lock, iflag);
21904 list_add_tail(&lpfc_ncmd->list, &epd_pool->list);
21905 epd_pool->count++;
21906 spin_unlock_irqrestore(&epd_pool->lock, iflag);
21907 return;
21908 }
21909
21910 /* Avoid invalid access if an IO sneaks in and is being rejected
21911 * just _after_ xri pools are destroyed in lpfc_offline.
21912 * Nothing much can be done at this point.
21913 */
21914 if (!qp->p_multixri_pool)
21915 return;
21916
21917 pbl_pool = &qp->p_multixri_pool->pbl_pool;
21918 pvt_pool = &qp->p_multixri_pool->pvt_pool;
21919
21920 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt;
21921 abts_io_bufs = qp->abts_scsi_io_bufs;
21922 abts_io_bufs += qp->abts_nvme_io_bufs;
21923
21924 xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs;
21925 xri_limit = qp->p_multixri_pool->xri_limit;
21926
21927 #ifdef LPFC_MXP_STAT
21928 if (xri_owned <= xri_limit)
21929 qp->p_multixri_pool->below_limit_count++;
21930 else
21931 qp->p_multixri_pool->above_limit_count++;
21932 #endif
21933
21934 /* XRI goes to either public or private free xri pool
21935 * based on watermark and xri_limit
21936 */
21937 if ((pvt_pool->count < pvt_pool->low_watermark) ||
21938 (xri_owned < xri_limit &&
21939 pvt_pool->count < pvt_pool->high_watermark)) {
21940 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag,
21941 qp, free_pvt_pool);
21942 list_add_tail(&lpfc_ncmd->list,
21943 &pvt_pool->list);
21944 pvt_pool->count++;
21945 spin_unlock_irqrestore(&pvt_pool->lock, iflag);
21946 } else {
21947 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag,
21948 qp, free_pub_pool);
21949 list_add_tail(&lpfc_ncmd->list,
21950 &pbl_pool->list);
21951 pbl_pool->count++;
21952 spin_unlock_irqrestore(&pbl_pool->lock, iflag);
21953 }
21954 } else {
21955 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag,
21956 qp, free_xri);
21957 list_add_tail(&lpfc_ncmd->list,
21958 &qp->lpfc_io_buf_list_put);
21959 qp->put_io_bufs++;
21960 spin_unlock_irqrestore(&qp->io_buf_list_put_lock,
21961 iflag);
21962 }
21963 }
21964
21965 /**
21966 * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool
21967 * @phba: pointer to lpfc hba data structure.
21968 * @qp: pointer to HDW queue
21969 * @pvt_pool: pointer to private pool data structure.
21970 * @ndlp: pointer to lpfc nodelist data structure.
21971 *
21972 * This routine tries to get one free IO buf from private pool.
21973 *
21974 * Return:
21975 * pointer to one free IO buf - if private pool is not empty
21976 * NULL - if private pool is empty
21977 **/
21978 static struct lpfc_io_buf *
lpfc_get_io_buf_from_private_pool(struct lpfc_hba * phba,struct lpfc_sli4_hdw_queue * qp,struct lpfc_pvt_pool * pvt_pool,struct lpfc_nodelist * ndlp)21979 lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba,
21980 struct lpfc_sli4_hdw_queue *qp,
21981 struct lpfc_pvt_pool *pvt_pool,
21982 struct lpfc_nodelist *ndlp)
21983 {
21984 struct lpfc_io_buf *lpfc_ncmd;
21985 struct lpfc_io_buf *lpfc_ncmd_next;
21986 unsigned long iflag;
21987
21988 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool);
21989 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
21990 &pvt_pool->list, list) {
21991 if (lpfc_test_rrq_active(
21992 phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag))
21993 continue;
21994 list_del(&lpfc_ncmd->list);
21995 pvt_pool->count--;
21996 spin_unlock_irqrestore(&pvt_pool->lock, iflag);
21997 return lpfc_ncmd;
21998 }
21999 spin_unlock_irqrestore(&pvt_pool->lock, iflag);
22000
22001 return NULL;
22002 }
22003
22004 /**
22005 * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool
22006 * @phba: pointer to lpfc hba data structure.
22007 *
22008 * This routine tries to get one free IO buf from expedite pool.
22009 *
22010 * Return:
22011 * pointer to one free IO buf - if expedite pool is not empty
22012 * NULL - if expedite pool is empty
22013 **/
22014 static struct lpfc_io_buf *
lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba * phba)22015 lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba)
22016 {
22017 struct lpfc_io_buf *lpfc_ncmd = NULL, *iter;
22018 struct lpfc_io_buf *lpfc_ncmd_next;
22019 unsigned long iflag;
22020 struct lpfc_epd_pool *epd_pool;
22021
22022 epd_pool = &phba->epd_pool;
22023
22024 spin_lock_irqsave(&epd_pool->lock, iflag);
22025 if (epd_pool->count > 0) {
22026 list_for_each_entry_safe(iter, lpfc_ncmd_next,
22027 &epd_pool->list, list) {
22028 list_del(&iter->list);
22029 epd_pool->count--;
22030 lpfc_ncmd = iter;
22031 break;
22032 }
22033 }
22034 spin_unlock_irqrestore(&epd_pool->lock, iflag);
22035
22036 return lpfc_ncmd;
22037 }
22038
22039 /**
22040 * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs
22041 * @phba: pointer to lpfc hba data structure.
22042 * @ndlp: pointer to lpfc nodelist data structure.
22043 * @hwqid: belong to which HWQ
22044 * @expedite: 1 means this request is urgent.
22045 *
22046 * This routine will do the following actions and then return a pointer to
22047 * one free IO buf.
22048 *
22049 * 1. If private free xri count is empty, move some XRIs from public to
22050 * private pool.
22051 * 2. Get one XRI from private free xri pool.
22052 * 3. If we fail to get one from pvt_pool and this is an expedite request,
22053 * get one free xri from expedite pool.
22054 *
22055 * Note: ndlp is only used on SCSI side for RRQ testing.
22056 * The caller should pass NULL for ndlp on NVME side.
22057 *
22058 * Return:
22059 * pointer to one free IO buf - if private pool is not empty
22060 * NULL - if private pool is empty
22061 **/
22062 static struct lpfc_io_buf *
lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba * phba,struct lpfc_nodelist * ndlp,int hwqid,int expedite)22063 lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba,
22064 struct lpfc_nodelist *ndlp,
22065 int hwqid, int expedite)
22066 {
22067 struct lpfc_sli4_hdw_queue *qp;
22068 struct lpfc_multixri_pool *multixri_pool;
22069 struct lpfc_pvt_pool *pvt_pool;
22070 struct lpfc_io_buf *lpfc_ncmd;
22071
22072 qp = &phba->sli4_hba.hdwq[hwqid];
22073 lpfc_ncmd = NULL;
22074 if (!qp) {
22075 lpfc_printf_log(phba, KERN_INFO,
22076 LOG_SLI | LOG_NVME_ABTS | LOG_FCP,
22077 "5556 NULL qp for hwqid x%x\n", hwqid);
22078 return lpfc_ncmd;
22079 }
22080 multixri_pool = qp->p_multixri_pool;
22081 if (!multixri_pool) {
22082 lpfc_printf_log(phba, KERN_INFO,
22083 LOG_SLI | LOG_NVME_ABTS | LOG_FCP,
22084 "5557 NULL multixri for hwqid x%x\n", hwqid);
22085 return lpfc_ncmd;
22086 }
22087 pvt_pool = &multixri_pool->pvt_pool;
22088 if (!pvt_pool) {
22089 lpfc_printf_log(phba, KERN_INFO,
22090 LOG_SLI | LOG_NVME_ABTS | LOG_FCP,
22091 "5558 NULL pvt_pool for hwqid x%x\n", hwqid);
22092 return lpfc_ncmd;
22093 }
22094 multixri_pool->io_req_count++;
22095
22096 /* If pvt_pool is empty, move some XRIs from public to private pool */
22097 if (pvt_pool->count == 0)
22098 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH);
22099
22100 /* Get one XRI from private free xri pool */
22101 lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp);
22102
22103 if (lpfc_ncmd) {
22104 lpfc_ncmd->hdwq = qp;
22105 lpfc_ncmd->hdwq_no = hwqid;
22106 } else if (expedite) {
22107 /* If we fail to get one from pvt_pool and this is an expedite
22108 * request, get one free xri from expedite pool.
22109 */
22110 lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba);
22111 }
22112
22113 return lpfc_ncmd;
22114 }
22115
22116 static inline struct lpfc_io_buf *
lpfc_io_buf(struct lpfc_hba * phba,struct lpfc_nodelist * ndlp,int idx)22117 lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx)
22118 {
22119 struct lpfc_sli4_hdw_queue *qp;
22120 struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next;
22121
22122 qp = &phba->sli4_hba.hdwq[idx];
22123 list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next,
22124 &qp->lpfc_io_buf_list_get, list) {
22125 if (lpfc_test_rrq_active(phba, ndlp,
22126 lpfc_cmd->cur_iocbq.sli4_lxritag))
22127 continue;
22128
22129 if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED)
22130 continue;
22131
22132 list_del_init(&lpfc_cmd->list);
22133 qp->get_io_bufs--;
22134 lpfc_cmd->hdwq = qp;
22135 lpfc_cmd->hdwq_no = idx;
22136 return lpfc_cmd;
22137 }
22138 return NULL;
22139 }
22140
22141 /**
22142 * lpfc_get_io_buf - Get one IO buffer from free pool
22143 * @phba: The HBA for which this call is being executed.
22144 * @ndlp: pointer to lpfc nodelist data structure.
22145 * @hwqid: belong to which HWQ
22146 * @expedite: 1 means this request is urgent.
22147 *
22148 * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1,
22149 * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes
22150 * a IO buffer from head of @hdwq io_buf_list and returns to caller.
22151 *
22152 * Note: ndlp is only used on SCSI side for RRQ testing.
22153 * The caller should pass NULL for ndlp on NVME side.
22154 *
22155 * Return codes:
22156 * NULL - Error
22157 * Pointer to lpfc_io_buf - Success
22158 **/
lpfc_get_io_buf(struct lpfc_hba * phba,struct lpfc_nodelist * ndlp,u32 hwqid,int expedite)22159 struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba,
22160 struct lpfc_nodelist *ndlp,
22161 u32 hwqid, int expedite)
22162 {
22163 struct lpfc_sli4_hdw_queue *qp;
22164 unsigned long iflag;
22165 struct lpfc_io_buf *lpfc_cmd;
22166
22167 qp = &phba->sli4_hba.hdwq[hwqid];
22168 lpfc_cmd = NULL;
22169 if (!qp) {
22170 lpfc_printf_log(phba, KERN_WARNING,
22171 LOG_SLI | LOG_NVME_ABTS | LOG_FCP,
22172 "5555 NULL qp for hwqid x%x\n", hwqid);
22173 return lpfc_cmd;
22174 }
22175
22176 if (phba->cfg_xri_rebalancing)
22177 lpfc_cmd = lpfc_get_io_buf_from_multixri_pools(
22178 phba, ndlp, hwqid, expedite);
22179 else {
22180 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag,
22181 qp, alloc_xri_get);
22182 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite)
22183 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid);
22184 if (!lpfc_cmd) {
22185 lpfc_qp_spin_lock(&qp->io_buf_list_put_lock,
22186 qp, alloc_xri_put);
22187 list_splice(&qp->lpfc_io_buf_list_put,
22188 &qp->lpfc_io_buf_list_get);
22189 qp->get_io_bufs += qp->put_io_bufs;
22190 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
22191 qp->put_io_bufs = 0;
22192 spin_unlock(&qp->io_buf_list_put_lock);
22193 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT ||
22194 expedite)
22195 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid);
22196 }
22197 spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag);
22198 }
22199
22200 return lpfc_cmd;
22201 }
22202
22203 /**
22204 * lpfc_read_object - Retrieve object data from HBA
22205 * @phba: The HBA for which this call is being executed.
22206 * @rdobject: Pathname of object data we want to read.
22207 * @datap: Pointer to where data will be copied to.
22208 * @datasz: size of data area
22209 *
22210 * This routine is limited to object sizes of LPFC_BPL_SIZE (1024) or less.
22211 * The data will be truncated if datasz is not large enough.
22212 * Version 1 is not supported with Embedded mbox cmd, so we must use version 0.
22213 * Returns the actual bytes read from the object.
22214 */
22215 int
lpfc_read_object(struct lpfc_hba * phba,char * rdobject,uint32_t * datap,uint32_t datasz)22216 lpfc_read_object(struct lpfc_hba *phba, char *rdobject, uint32_t *datap,
22217 uint32_t datasz)
22218 {
22219 struct lpfc_mbx_read_object *read_object;
22220 LPFC_MBOXQ_t *mbox;
22221 int rc, length, eof, j, byte_cnt = 0;
22222 uint32_t shdr_status, shdr_add_status;
22223 union lpfc_sli4_cfg_shdr *shdr;
22224 struct lpfc_dmabuf *pcmd;
22225 u32 rd_object_name[LPFC_MBX_OBJECT_NAME_LEN_DW] = {0};
22226
22227 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
22228 if (!mbox)
22229 return -ENOMEM;
22230 length = (sizeof(struct lpfc_mbx_read_object) -
22231 sizeof(struct lpfc_sli4_cfg_mhdr));
22232 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
22233 LPFC_MBOX_OPCODE_READ_OBJECT,
22234 length, LPFC_SLI4_MBX_EMBED);
22235 read_object = &mbox->u.mqe.un.read_object;
22236 shdr = (union lpfc_sli4_cfg_shdr *)&read_object->header.cfg_shdr;
22237
22238 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_0);
22239 bf_set(lpfc_mbx_rd_object_rlen, &read_object->u.request, datasz);
22240 read_object->u.request.rd_object_offset = 0;
22241 read_object->u.request.rd_object_cnt = 1;
22242
22243 memset((void *)read_object->u.request.rd_object_name, 0,
22244 LPFC_OBJ_NAME_SZ);
22245 scnprintf((char *)rd_object_name, sizeof(rd_object_name), rdobject);
22246 for (j = 0; j < strlen(rdobject); j++)
22247 read_object->u.request.rd_object_name[j] =
22248 cpu_to_le32(rd_object_name[j]);
22249
22250 pcmd = kmalloc(sizeof(*pcmd), GFP_KERNEL);
22251 if (pcmd)
22252 pcmd->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &pcmd->phys);
22253 if (!pcmd || !pcmd->virt) {
22254 kfree(pcmd);
22255 mempool_free(mbox, phba->mbox_mem_pool);
22256 return -ENOMEM;
22257 }
22258 memset((void *)pcmd->virt, 0, LPFC_BPL_SIZE);
22259 read_object->u.request.rd_object_hbuf[0].pa_lo =
22260 putPaddrLow(pcmd->phys);
22261 read_object->u.request.rd_object_hbuf[0].pa_hi =
22262 putPaddrHigh(pcmd->phys);
22263 read_object->u.request.rd_object_hbuf[0].length = LPFC_BPL_SIZE;
22264
22265 mbox->vport = phba->pport;
22266 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
22267 mbox->ctx_ndlp = NULL;
22268
22269 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
22270 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
22271 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
22272
22273 if (shdr_status == STATUS_FAILED &&
22274 shdr_add_status == ADD_STATUS_INVALID_OBJECT_NAME) {
22275 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT,
22276 "4674 No port cfg file in FW.\n");
22277 byte_cnt = -ENOENT;
22278 } else if (shdr_status || shdr_add_status || rc) {
22279 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT,
22280 "2625 READ_OBJECT mailbox failed with "
22281 "status x%x add_status x%x, mbx status x%x\n",
22282 shdr_status, shdr_add_status, rc);
22283 byte_cnt = -ENXIO;
22284 } else {
22285 /* Success */
22286 length = read_object->u.response.rd_object_actual_rlen;
22287 eof = bf_get(lpfc_mbx_rd_object_eof, &read_object->u.response);
22288 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_CGN_MGMT,
22289 "2626 READ_OBJECT Success len %d:%d, EOF %d\n",
22290 length, datasz, eof);
22291
22292 /* Detect the port config file exists but is empty */
22293 if (!length && eof) {
22294 byte_cnt = 0;
22295 goto exit;
22296 }
22297
22298 byte_cnt = length;
22299 lpfc_sli_pcimem_bcopy(pcmd->virt, datap, byte_cnt);
22300 }
22301
22302 exit:
22303 /* This is an embedded SLI4 mailbox with an external buffer allocated.
22304 * Free the pcmd and then cleanup with the correct routine.
22305 */
22306 lpfc_mbuf_free(phba, pcmd->virt, pcmd->phys);
22307 kfree(pcmd);
22308 lpfc_sli4_mbox_cmd_free(phba, mbox);
22309 return byte_cnt;
22310 }
22311
22312 /**
22313 * lpfc_get_sgl_per_hdwq - Get one SGL chunk from hdwq's pool
22314 * @phba: The HBA for which this call is being executed.
22315 * @lpfc_buf: IO buf structure to append the SGL chunk
22316 *
22317 * This routine gets one SGL chunk buffer from hdwq's SGL chunk pool,
22318 * and will allocate an SGL chunk if the pool is empty.
22319 *
22320 * Return codes:
22321 * NULL - Error
22322 * Pointer to sli4_hybrid_sgl - Success
22323 **/
22324 struct sli4_hybrid_sgl *
lpfc_get_sgl_per_hdwq(struct lpfc_hba * phba,struct lpfc_io_buf * lpfc_buf)22325 lpfc_get_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf)
22326 {
22327 struct sli4_hybrid_sgl *list_entry = NULL;
22328 struct sli4_hybrid_sgl *tmp = NULL;
22329 struct sli4_hybrid_sgl *allocated_sgl = NULL;
22330 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
22331 struct list_head *buf_list = &hdwq->sgl_list;
22332 unsigned long iflags;
22333
22334 spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
22335
22336 if (likely(!list_empty(buf_list))) {
22337 /* break off 1 chunk from the sgl_list */
22338 list_for_each_entry_safe(list_entry, tmp,
22339 buf_list, list_node) {
22340 list_move_tail(&list_entry->list_node,
22341 &lpfc_buf->dma_sgl_xtra_list);
22342 break;
22343 }
22344 } else {
22345 /* allocate more */
22346 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
22347 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC,
22348 cpu_to_node(hdwq->io_wq->chann));
22349 if (!tmp) {
22350 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
22351 "8353 error kmalloc memory for HDWQ "
22352 "%d %s\n",
22353 lpfc_buf->hdwq_no, __func__);
22354 return NULL;
22355 }
22356
22357 tmp->dma_sgl = dma_pool_alloc(phba->lpfc_sg_dma_buf_pool,
22358 GFP_ATOMIC, &tmp->dma_phys_sgl);
22359 if (!tmp->dma_sgl) {
22360 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
22361 "8354 error pool_alloc memory for HDWQ "
22362 "%d %s\n",
22363 lpfc_buf->hdwq_no, __func__);
22364 kfree(tmp);
22365 return NULL;
22366 }
22367
22368 spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
22369 list_add_tail(&tmp->list_node, &lpfc_buf->dma_sgl_xtra_list);
22370 }
22371
22372 allocated_sgl = list_last_entry(&lpfc_buf->dma_sgl_xtra_list,
22373 struct sli4_hybrid_sgl,
22374 list_node);
22375
22376 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
22377
22378 return allocated_sgl;
22379 }
22380
22381 /**
22382 * lpfc_put_sgl_per_hdwq - Put one SGL chunk into hdwq pool
22383 * @phba: The HBA for which this call is being executed.
22384 * @lpfc_buf: IO buf structure with the SGL chunk
22385 *
22386 * This routine puts one SGL chunk buffer into hdwq's SGL chunk pool.
22387 *
22388 * Return codes:
22389 * 0 - Success
22390 * -EINVAL - Error
22391 **/
22392 int
lpfc_put_sgl_per_hdwq(struct lpfc_hba * phba,struct lpfc_io_buf * lpfc_buf)22393 lpfc_put_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf)
22394 {
22395 int rc = 0;
22396 struct sli4_hybrid_sgl *list_entry = NULL;
22397 struct sli4_hybrid_sgl *tmp = NULL;
22398 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
22399 struct list_head *buf_list = &hdwq->sgl_list;
22400 unsigned long iflags;
22401
22402 spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
22403
22404 if (likely(!list_empty(&lpfc_buf->dma_sgl_xtra_list))) {
22405 list_for_each_entry_safe(list_entry, tmp,
22406 &lpfc_buf->dma_sgl_xtra_list,
22407 list_node) {
22408 list_move_tail(&list_entry->list_node,
22409 buf_list);
22410 }
22411 } else {
22412 rc = -EINVAL;
22413 }
22414
22415 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
22416 return rc;
22417 }
22418
22419 /**
22420 * lpfc_free_sgl_per_hdwq - Free all SGL chunks of hdwq pool
22421 * @phba: phba object
22422 * @hdwq: hdwq to cleanup sgl buff resources on
22423 *
22424 * This routine frees all SGL chunks of hdwq SGL chunk pool.
22425 *
22426 * Return codes:
22427 * None
22428 **/
22429 void
lpfc_free_sgl_per_hdwq(struct lpfc_hba * phba,struct lpfc_sli4_hdw_queue * hdwq)22430 lpfc_free_sgl_per_hdwq(struct lpfc_hba *phba,
22431 struct lpfc_sli4_hdw_queue *hdwq)
22432 {
22433 struct list_head *buf_list = &hdwq->sgl_list;
22434 struct sli4_hybrid_sgl *list_entry = NULL;
22435 struct sli4_hybrid_sgl *tmp = NULL;
22436 unsigned long iflags;
22437
22438 spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
22439
22440 /* Free sgl pool */
22441 list_for_each_entry_safe(list_entry, tmp,
22442 buf_list, list_node) {
22443 list_del(&list_entry->list_node);
22444 dma_pool_free(phba->lpfc_sg_dma_buf_pool,
22445 list_entry->dma_sgl,
22446 list_entry->dma_phys_sgl);
22447 kfree(list_entry);
22448 }
22449
22450 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
22451 }
22452
22453 /**
22454 * lpfc_get_cmd_rsp_buf_per_hdwq - Get one CMD/RSP buffer from hdwq
22455 * @phba: The HBA for which this call is being executed.
22456 * @lpfc_buf: IO buf structure to attach the CMD/RSP buffer
22457 *
22458 * This routine gets one CMD/RSP buffer from hdwq's CMD/RSP pool,
22459 * and will allocate an CMD/RSP buffer if the pool is empty.
22460 *
22461 * Return codes:
22462 * NULL - Error
22463 * Pointer to fcp_cmd_rsp_buf - Success
22464 **/
22465 struct fcp_cmd_rsp_buf *
lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba * phba,struct lpfc_io_buf * lpfc_buf)22466 lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba,
22467 struct lpfc_io_buf *lpfc_buf)
22468 {
22469 struct fcp_cmd_rsp_buf *list_entry = NULL;
22470 struct fcp_cmd_rsp_buf *tmp = NULL;
22471 struct fcp_cmd_rsp_buf *allocated_buf = NULL;
22472 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
22473 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list;
22474 unsigned long iflags;
22475
22476 spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
22477
22478 if (likely(!list_empty(buf_list))) {
22479 /* break off 1 chunk from the list */
22480 list_for_each_entry_safe(list_entry, tmp,
22481 buf_list,
22482 list_node) {
22483 list_move_tail(&list_entry->list_node,
22484 &lpfc_buf->dma_cmd_rsp_list);
22485 break;
22486 }
22487 } else {
22488 /* allocate more */
22489 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
22490 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC,
22491 cpu_to_node(hdwq->io_wq->chann));
22492 if (!tmp) {
22493 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
22494 "8355 error kmalloc memory for HDWQ "
22495 "%d %s\n",
22496 lpfc_buf->hdwq_no, __func__);
22497 return NULL;
22498 }
22499
22500 tmp->fcp_cmnd = dma_pool_zalloc(phba->lpfc_cmd_rsp_buf_pool,
22501 GFP_ATOMIC,
22502 &tmp->fcp_cmd_rsp_dma_handle);
22503
22504 if (!tmp->fcp_cmnd) {
22505 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
22506 "8356 error pool_alloc memory for HDWQ "
22507 "%d %s\n",
22508 lpfc_buf->hdwq_no, __func__);
22509 kfree(tmp);
22510 return NULL;
22511 }
22512
22513 tmp->fcp_rsp = (struct fcp_rsp *)((uint8_t *)tmp->fcp_cmnd +
22514 sizeof(struct fcp_cmnd));
22515
22516 spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
22517 list_add_tail(&tmp->list_node, &lpfc_buf->dma_cmd_rsp_list);
22518 }
22519
22520 allocated_buf = list_last_entry(&lpfc_buf->dma_cmd_rsp_list,
22521 struct fcp_cmd_rsp_buf,
22522 list_node);
22523
22524 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
22525
22526 return allocated_buf;
22527 }
22528
22529 /**
22530 * lpfc_put_cmd_rsp_buf_per_hdwq - Put one CMD/RSP buffer into hdwq pool
22531 * @phba: The HBA for which this call is being executed.
22532 * @lpfc_buf: IO buf structure with the CMD/RSP buf
22533 *
22534 * This routine puts one CMD/RSP buffer into executing CPU's CMD/RSP pool.
22535 *
22536 * Return codes:
22537 * 0 - Success
22538 * -EINVAL - Error
22539 **/
22540 int
lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba * phba,struct lpfc_io_buf * lpfc_buf)22541 lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba,
22542 struct lpfc_io_buf *lpfc_buf)
22543 {
22544 int rc = 0;
22545 struct fcp_cmd_rsp_buf *list_entry = NULL;
22546 struct fcp_cmd_rsp_buf *tmp = NULL;
22547 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
22548 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list;
22549 unsigned long iflags;
22550
22551 spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
22552
22553 if (likely(!list_empty(&lpfc_buf->dma_cmd_rsp_list))) {
22554 list_for_each_entry_safe(list_entry, tmp,
22555 &lpfc_buf->dma_cmd_rsp_list,
22556 list_node) {
22557 list_move_tail(&list_entry->list_node,
22558 buf_list);
22559 }
22560 } else {
22561 rc = -EINVAL;
22562 }
22563
22564 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
22565 return rc;
22566 }
22567
22568 /**
22569 * lpfc_free_cmd_rsp_buf_per_hdwq - Free all CMD/RSP chunks of hdwq pool
22570 * @phba: phba object
22571 * @hdwq: hdwq to cleanup cmd rsp buff resources on
22572 *
22573 * This routine frees all CMD/RSP buffers of hdwq's CMD/RSP buf pool.
22574 *
22575 * Return codes:
22576 * None
22577 **/
22578 void
lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba * phba,struct lpfc_sli4_hdw_queue * hdwq)22579 lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba,
22580 struct lpfc_sli4_hdw_queue *hdwq)
22581 {
22582 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list;
22583 struct fcp_cmd_rsp_buf *list_entry = NULL;
22584 struct fcp_cmd_rsp_buf *tmp = NULL;
22585 unsigned long iflags;
22586
22587 spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
22588
22589 /* Free cmd_rsp buf pool */
22590 list_for_each_entry_safe(list_entry, tmp,
22591 buf_list,
22592 list_node) {
22593 list_del(&list_entry->list_node);
22594 dma_pool_free(phba->lpfc_cmd_rsp_buf_pool,
22595 list_entry->fcp_cmnd,
22596 list_entry->fcp_cmd_rsp_dma_handle);
22597 kfree(list_entry);
22598 }
22599
22600 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
22601 }
22602
22603 /**
22604 * lpfc_sli_prep_wqe - Prepare WQE for the command to be posted
22605 * @phba: phba object
22606 * @job: job entry of the command to be posted.
22607 *
22608 * Fill the common fields of the wqe for each of the command.
22609 *
22610 * Return codes:
22611 * None
22612 **/
22613 void
lpfc_sli_prep_wqe(struct lpfc_hba * phba,struct lpfc_iocbq * job)22614 lpfc_sli_prep_wqe(struct lpfc_hba *phba, struct lpfc_iocbq *job)
22615 {
22616 u8 cmnd;
22617 u32 *pcmd;
22618 u32 if_type = 0;
22619 u32 fip, abort_tag;
22620 struct lpfc_nodelist *ndlp = NULL;
22621 union lpfc_wqe128 *wqe = &job->wqe;
22622 u8 command_type = ELS_COMMAND_NON_FIP;
22623
22624 fip = phba->hba_flag & HBA_FIP_SUPPORT;
22625 /* The fcp commands will set command type */
22626 if (job->cmd_flag & LPFC_IO_FCP)
22627 command_type = FCP_COMMAND;
22628 else if (fip && (job->cmd_flag & LPFC_FIP_ELS_ID_MASK))
22629 command_type = ELS_COMMAND_FIP;
22630 else
22631 command_type = ELS_COMMAND_NON_FIP;
22632
22633 abort_tag = job->iotag;
22634 cmnd = bf_get(wqe_cmnd, &wqe->els_req.wqe_com);
22635
22636 switch (cmnd) {
22637 case CMD_ELS_REQUEST64_WQE:
22638 ndlp = job->ndlp;
22639
22640 if_type = bf_get(lpfc_sli_intf_if_type,
22641 &phba->sli4_hba.sli_intf);
22642 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
22643 pcmd = (u32 *)job->cmd_dmabuf->virt;
22644 if (pcmd && (*pcmd == ELS_CMD_FLOGI ||
22645 *pcmd == ELS_CMD_SCR ||
22646 *pcmd == ELS_CMD_RDF ||
22647 *pcmd == ELS_CMD_EDC ||
22648 *pcmd == ELS_CMD_RSCN_XMT ||
22649 *pcmd == ELS_CMD_FDISC ||
22650 *pcmd == ELS_CMD_LOGO ||
22651 *pcmd == ELS_CMD_QFPA ||
22652 *pcmd == ELS_CMD_UVEM ||
22653 *pcmd == ELS_CMD_PLOGI)) {
22654 bf_set(els_req64_sp, &wqe->els_req, 1);
22655 bf_set(els_req64_sid, &wqe->els_req,
22656 job->vport->fc_myDID);
22657
22658 if ((*pcmd == ELS_CMD_FLOGI) &&
22659 !(phba->fc_topology ==
22660 LPFC_TOPOLOGY_LOOP))
22661 bf_set(els_req64_sid, &wqe->els_req, 0);
22662
22663 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1);
22664 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
22665 phba->vpi_ids[job->vport->vpi]);
22666 } else if (pcmd) {
22667 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0);
22668 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
22669 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
22670 }
22671 }
22672
22673 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com,
22674 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
22675
22676 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1);
22677 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ);
22678 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1);
22679 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE);
22680 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0);
22681 break;
22682 case CMD_XMIT_ELS_RSP64_WQE:
22683 ndlp = job->ndlp;
22684
22685 /* word4 */
22686 wqe->xmit_els_rsp.word4 = 0;
22687
22688 if_type = bf_get(lpfc_sli_intf_if_type,
22689 &phba->sli4_hba.sli_intf);
22690 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
22691 if (job->vport->fc_flag & FC_PT2PT) {
22692 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
22693 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
22694 job->vport->fc_myDID);
22695 if (job->vport->fc_myDID == Fabric_DID) {
22696 bf_set(wqe_els_did,
22697 &wqe->xmit_els_rsp.wqe_dest, 0);
22698 }
22699 }
22700 }
22701
22702 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1);
22703 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE);
22704 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1);
22705 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com,
22706 LPFC_WQE_LENLOC_WORD3);
22707 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0);
22708
22709 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) {
22710 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
22711 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
22712 job->vport->fc_myDID);
22713 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1);
22714 }
22715
22716 if (phba->sli_rev == LPFC_SLI_REV4) {
22717 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp,
22718 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
22719
22720 if (bf_get(wqe_ct, &wqe->xmit_els_rsp.wqe_com))
22721 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com,
22722 phba->vpi_ids[job->vport->vpi]);
22723 }
22724 command_type = OTHER_COMMAND;
22725 break;
22726 case CMD_GEN_REQUEST64_WQE:
22727 /* Word 10 */
22728 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1);
22729 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ);
22730 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1);
22731 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE);
22732 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0);
22733 command_type = OTHER_COMMAND;
22734 break;
22735 case CMD_XMIT_SEQUENCE64_WQE:
22736 if (phba->link_flag & LS_LOOPBACK_MODE)
22737 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1);
22738
22739 wqe->xmit_sequence.rsvd3 = 0;
22740 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0);
22741 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1);
22742 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com,
22743 LPFC_WQE_IOD_WRITE);
22744 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com,
22745 LPFC_WQE_LENLOC_WORD12);
22746 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0);
22747 command_type = OTHER_COMMAND;
22748 break;
22749 case CMD_XMIT_BLS_RSP64_WQE:
22750 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff);
22751 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1);
22752 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1);
22753 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com,
22754 phba->vpi_ids[phba->pport->vpi]);
22755 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1);
22756 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com,
22757 LPFC_WQE_LENLOC_NONE);
22758 /* Overwrite the pre-set comnd type with OTHER_COMMAND */
22759 command_type = OTHER_COMMAND;
22760 break;
22761 case CMD_FCP_ICMND64_WQE: /* task mgmt commands */
22762 case CMD_ABORT_XRI_WQE: /* abort iotag */
22763 case CMD_SEND_FRAME: /* mds loopback */
22764 /* cases already formatted for sli4 wqe - no chgs necessary */
22765 return;
22766 default:
22767 dump_stack();
22768 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
22769 "6207 Invalid command 0x%x\n",
22770 cmnd);
22771 break;
22772 }
22773
22774 wqe->generic.wqe_com.abort_tag = abort_tag;
22775 bf_set(wqe_reqtag, &wqe->generic.wqe_com, job->iotag);
22776 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type);
22777 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
22778 }
22779