1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * PowerPC64 LPAR Configuration Information Driver
4 *
5 * Dave Engebretsen engebret@us.ibm.com
6 * Copyright (c) 2003 Dave Engebretsen
7 * Will Schmidt willschm@us.ibm.com
8 * SPLPAR updates, Copyright (c) 2003 Will Schmidt IBM Corporation.
9 * seq_file updates, Copyright (c) 2004 Will Schmidt IBM Corporation.
10 * Nathan Lynch nathanl@austin.ibm.com
11 * Added lparcfg_write, Copyright (C) 2004 Nathan Lynch IBM Corporation.
12 *
13 * This driver creates a proc file at /proc/ppc64/lparcfg which contains
14 * keyword - value pairs that specify the configuration of the partition.
15 */
16
17 #include <linux/module.h>
18 #include <linux/types.h>
19 #include <linux/errno.h>
20 #include <linux/proc_fs.h>
21 #include <linux/init.h>
22 #include <asm/papr-sysparm.h>
23 #include <linux/seq_file.h>
24 #include <linux/slab.h>
25 #include <linux/uaccess.h>
26 #include <linux/hugetlb.h>
27 #include <asm/lppaca.h>
28 #include <asm/hvcall.h>
29 #include <asm/firmware.h>
30 #include <asm/rtas.h>
31 #include <asm/time.h>
32 #include <asm/vdso_datapage.h>
33 #include <asm/vio.h>
34 #include <asm/mmu.h>
35 #include <asm/machdep.h>
36 #include <asm/drmem.h>
37
38 #include "pseries.h"
39 #include "vas.h" /* pseries_vas_dlpar_cpu() */
40
41 /*
42 * This isn't a module but we expose that to userspace
43 * via /proc so leave the definitions here
44 */
45 #define MODULE_VERS "1.9"
46 #define MODULE_NAME "lparcfg"
47
48 /* #define LPARCFG_DEBUG */
49
50 /*
51 * Track sum of all purrs across all processors. This is used to further
52 * calculate usage values by different applications
53 */
cpu_get_purr(void * arg)54 static void cpu_get_purr(void *arg)
55 {
56 atomic64_t *sum = arg;
57
58 atomic64_add(mfspr(SPRN_PURR), sum);
59 }
60
get_purr(void)61 static unsigned long get_purr(void)
62 {
63 atomic64_t purr = ATOMIC64_INIT(0);
64
65 on_each_cpu(cpu_get_purr, &purr, 1);
66
67 return atomic64_read(&purr);
68 }
69
70 /*
71 * Methods used to fetch LPAR data when running on a pSeries platform.
72 */
73
74 struct hvcall_ppp_data {
75 u64 entitlement;
76 u64 unallocated_entitlement;
77 u16 group_num;
78 u16 pool_num;
79 u8 capped;
80 u8 weight;
81 u8 unallocated_weight;
82 u16 active_procs_in_pool;
83 u16 active_system_procs;
84 u16 phys_platform_procs;
85 u32 max_proc_cap_avail;
86 u32 entitled_proc_cap_avail;
87 };
88
89 /*
90 * H_GET_PPP hcall returns info in 4 parms.
91 * entitled_capacity,unallocated_capacity,
92 * aggregation, resource_capability).
93 *
94 * R4 = Entitled Processor Capacity Percentage.
95 * R5 = Unallocated Processor Capacity Percentage.
96 * R6 (AABBCCDDEEFFGGHH).
97 * XXXX - reserved (0)
98 * XXXX - reserved (0)
99 * XXXX - Group Number
100 * XXXX - Pool Number.
101 * R7 (IIJJKKLLMMNNOOPP).
102 * XX - reserved. (0)
103 * XX - bit 0-6 reserved (0). bit 7 is Capped indicator.
104 * XX - variable processor Capacity Weight
105 * XX - Unallocated Variable Processor Capacity Weight.
106 * XXXX - Active processors in Physical Processor Pool.
107 * XXXX - Processors active on platform.
108 * R8 (QQQQRRRRRRSSSSSS). if ibm,partition-performance-parameters-level >= 1
109 * XXXX - Physical platform procs allocated to virtualization.
110 * XXXXXX - Max procs capacity % available to the partitions pool.
111 * XXXXXX - Entitled procs capacity % available to the
112 * partitions pool.
113 */
h_get_ppp(struct hvcall_ppp_data * ppp_data)114 static unsigned int h_get_ppp(struct hvcall_ppp_data *ppp_data)
115 {
116 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
117 long rc;
118
119 rc = plpar_hcall9(H_GET_PPP, retbuf);
120
121 ppp_data->entitlement = retbuf[0];
122 ppp_data->unallocated_entitlement = retbuf[1];
123
124 ppp_data->group_num = (retbuf[2] >> 2 * 8) & 0xffff;
125 ppp_data->pool_num = retbuf[2] & 0xffff;
126
127 ppp_data->capped = (retbuf[3] >> 6 * 8) & 0x01;
128 ppp_data->weight = (retbuf[3] >> 5 * 8) & 0xff;
129 ppp_data->unallocated_weight = (retbuf[3] >> 4 * 8) & 0xff;
130 ppp_data->active_procs_in_pool = (retbuf[3] >> 2 * 8) & 0xffff;
131 ppp_data->active_system_procs = retbuf[3] & 0xffff;
132
133 ppp_data->phys_platform_procs = retbuf[4] >> 6 * 8;
134 ppp_data->max_proc_cap_avail = (retbuf[4] >> 3 * 8) & 0xffffff;
135 ppp_data->entitled_proc_cap_avail = retbuf[4] & 0xffffff;
136
137 return rc;
138 }
139
show_gpci_data(struct seq_file * m)140 static void show_gpci_data(struct seq_file *m)
141 {
142 struct hv_gpci_request_buffer *buf;
143 unsigned int affinity_score;
144 long ret;
145
146 buf = kmalloc(sizeof(*buf), GFP_KERNEL);
147 if (buf == NULL)
148 return;
149
150 /*
151 * Show the local LPAR's affinity score.
152 *
153 * 0xB1 selects the Affinity_Domain_Info_By_Partition subcall.
154 * The score is at byte 0xB in the output buffer.
155 */
156 memset(&buf->params, 0, sizeof(buf->params));
157 buf->params.counter_request = cpu_to_be32(0xB1);
158 buf->params.starting_index = cpu_to_be32(-1); /* local LPAR */
159 buf->params.counter_info_version_in = 0x5; /* v5+ for score */
160 ret = plpar_hcall_norets(H_GET_PERF_COUNTER_INFO, virt_to_phys(buf),
161 sizeof(*buf));
162 if (ret != H_SUCCESS) {
163 pr_debug("hcall failed: H_GET_PERF_COUNTER_INFO: %ld, %x\n",
164 ret, be32_to_cpu(buf->params.detail_rc));
165 goto out;
166 }
167 affinity_score = buf->bytes[0xB];
168 seq_printf(m, "partition_affinity_score=%u\n", affinity_score);
169 out:
170 kfree(buf);
171 }
172
h_pic(unsigned long * pool_idle_time,unsigned long * num_procs)173 static unsigned h_pic(unsigned long *pool_idle_time,
174 unsigned long *num_procs)
175 {
176 unsigned long rc;
177 unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
178
179 rc = plpar_hcall(H_PIC, retbuf);
180
181 *pool_idle_time = retbuf[0];
182 *num_procs = retbuf[1];
183
184 return rc;
185 }
186
187 /*
188 * parse_ppp_data
189 * Parse out the data returned from h_get_ppp and h_pic
190 */
parse_ppp_data(struct seq_file * m)191 static void parse_ppp_data(struct seq_file *m)
192 {
193 struct hvcall_ppp_data ppp_data;
194 struct device_node *root;
195 const __be32 *perf_level;
196 long rc;
197
198 rc = h_get_ppp(&ppp_data);
199 if (rc)
200 return;
201
202 seq_printf(m, "partition_entitled_capacity=%lld\n",
203 ppp_data.entitlement);
204 seq_printf(m, "group=%d\n", ppp_data.group_num);
205 seq_printf(m, "system_active_processors=%d\n",
206 ppp_data.active_system_procs);
207
208 /* pool related entries are appropriate for shared configs */
209 if (lppaca_shared_proc()) {
210 unsigned long pool_idle_time, pool_procs;
211
212 seq_printf(m, "pool=%d\n", ppp_data.pool_num);
213
214 /* report pool_capacity in percentage */
215 seq_printf(m, "pool_capacity=%d\n",
216 ppp_data.active_procs_in_pool * 100);
217
218 h_pic(&pool_idle_time, &pool_procs);
219 seq_printf(m, "pool_idle_time=%ld\n", pool_idle_time);
220 seq_printf(m, "pool_num_procs=%ld\n", pool_procs);
221 }
222
223 seq_printf(m, "unallocated_capacity_weight=%d\n",
224 ppp_data.unallocated_weight);
225 seq_printf(m, "capacity_weight=%d\n", ppp_data.weight);
226 seq_printf(m, "capped=%d\n", ppp_data.capped);
227 seq_printf(m, "unallocated_capacity=%lld\n",
228 ppp_data.unallocated_entitlement);
229
230 /* The last bits of information returned from h_get_ppp are only
231 * valid if the ibm,partition-performance-parameters-level
232 * property is >= 1.
233 */
234 root = of_find_node_by_path("/");
235 if (root) {
236 perf_level = of_get_property(root,
237 "ibm,partition-performance-parameters-level",
238 NULL);
239 if (perf_level && (be32_to_cpup(perf_level) >= 1)) {
240 seq_printf(m,
241 "physical_procs_allocated_to_virtualization=%d\n",
242 ppp_data.phys_platform_procs);
243 seq_printf(m, "max_proc_capacity_available=%d\n",
244 ppp_data.max_proc_cap_avail);
245 seq_printf(m, "entitled_proc_capacity_available=%d\n",
246 ppp_data.entitled_proc_cap_avail);
247 }
248
249 of_node_put(root);
250 }
251 }
252
253 /**
254 * parse_mpp_data
255 * Parse out data returned from h_get_mpp
256 */
parse_mpp_data(struct seq_file * m)257 static void parse_mpp_data(struct seq_file *m)
258 {
259 struct hvcall_mpp_data mpp_data;
260 int rc;
261
262 rc = h_get_mpp(&mpp_data);
263 if (rc)
264 return;
265
266 seq_printf(m, "entitled_memory=%ld\n", mpp_data.entitled_mem);
267
268 if (mpp_data.mapped_mem != -1)
269 seq_printf(m, "mapped_entitled_memory=%ld\n",
270 mpp_data.mapped_mem);
271
272 seq_printf(m, "entitled_memory_group_number=%d\n", mpp_data.group_num);
273 seq_printf(m, "entitled_memory_pool_number=%d\n", mpp_data.pool_num);
274
275 seq_printf(m, "entitled_memory_weight=%d\n", mpp_data.mem_weight);
276 seq_printf(m, "unallocated_entitled_memory_weight=%d\n",
277 mpp_data.unallocated_mem_weight);
278 seq_printf(m, "unallocated_io_mapping_entitlement=%ld\n",
279 mpp_data.unallocated_entitlement);
280
281 if (mpp_data.pool_size != -1)
282 seq_printf(m, "entitled_memory_pool_size=%ld bytes\n",
283 mpp_data.pool_size);
284
285 seq_printf(m, "entitled_memory_loan_request=%ld\n",
286 mpp_data.loan_request);
287
288 seq_printf(m, "backing_memory=%ld bytes\n", mpp_data.backing_mem);
289 }
290
291 /**
292 * parse_mpp_x_data
293 * Parse out data returned from h_get_mpp_x
294 */
parse_mpp_x_data(struct seq_file * m)295 static void parse_mpp_x_data(struct seq_file *m)
296 {
297 struct hvcall_mpp_x_data mpp_x_data;
298
299 if (!firmware_has_feature(FW_FEATURE_XCMO))
300 return;
301 if (h_get_mpp_x(&mpp_x_data))
302 return;
303
304 seq_printf(m, "coalesced_bytes=%ld\n", mpp_x_data.coalesced_bytes);
305
306 if (mpp_x_data.pool_coalesced_bytes)
307 seq_printf(m, "pool_coalesced_bytes=%ld\n",
308 mpp_x_data.pool_coalesced_bytes);
309 if (mpp_x_data.pool_purr_cycles)
310 seq_printf(m, "coalesce_pool_purr=%ld\n", mpp_x_data.pool_purr_cycles);
311 if (mpp_x_data.pool_spurr_cycles)
312 seq_printf(m, "coalesce_pool_spurr=%ld\n", mpp_x_data.pool_spurr_cycles);
313 }
314
315 /*
316 * Read the lpar name using the RTAS ibm,get-system-parameter call.
317 *
318 * The name read through this call is updated if changes are made by the end
319 * user on the hypervisor side.
320 *
321 * Some hypervisor (like Qemu) may not provide this value. In that case, a non
322 * null value is returned.
323 */
read_rtas_lpar_name(struct seq_file * m)324 static int read_rtas_lpar_name(struct seq_file *m)
325 {
326 struct papr_sysparm_buf *buf;
327 int err;
328
329 buf = papr_sysparm_buf_alloc();
330 if (!buf)
331 return -ENOMEM;
332
333 err = papr_sysparm_get(PAPR_SYSPARM_LPAR_NAME, buf);
334 if (!err)
335 seq_printf(m, "partition_name=%s\n", buf->val);
336
337 papr_sysparm_buf_free(buf);
338 return err;
339 }
340
341 /*
342 * Read the LPAR name from the Device Tree.
343 *
344 * The value read in the DT is not updated if the end-user is touching the LPAR
345 * name on the hypervisor side.
346 */
read_dt_lpar_name(struct seq_file * m)347 static int read_dt_lpar_name(struct seq_file *m)
348 {
349 const char *name;
350
351 if (of_property_read_string(of_root, "ibm,partition-name", &name))
352 return -ENOENT;
353
354 seq_printf(m, "partition_name=%s\n", name);
355 return 0;
356 }
357
read_lpar_name(struct seq_file * m)358 static void read_lpar_name(struct seq_file *m)
359 {
360 if (read_rtas_lpar_name(m))
361 read_dt_lpar_name(m);
362 }
363
364 #define SPLPAR_MAXLENGTH 1026*(sizeof(char))
365
366 /*
367 * parse_system_parameter_string()
368 * Retrieve the potential_processors, max_entitled_capacity and friends
369 * through the get-system-parameter rtas call. Replace keyword strings as
370 * necessary.
371 */
parse_system_parameter_string(struct seq_file * m)372 static void parse_system_parameter_string(struct seq_file *m)
373 {
374 struct papr_sysparm_buf *buf;
375
376 buf = papr_sysparm_buf_alloc();
377 if (!buf)
378 return;
379
380 if (papr_sysparm_get(PAPR_SYSPARM_SHARED_PROC_LPAR_ATTRS, buf)) {
381 goto out_free;
382 } else {
383 const char *local_buffer;
384 int splpar_strlen;
385 int idx, w_idx;
386 char *workbuffer = kzalloc(SPLPAR_MAXLENGTH, GFP_KERNEL);
387
388 if (!workbuffer)
389 goto out_free;
390
391 splpar_strlen = be16_to_cpu(buf->len);
392 local_buffer = buf->val;
393
394 w_idx = 0;
395 idx = 0;
396 while ((*local_buffer) && (idx < splpar_strlen)) {
397 workbuffer[w_idx++] = local_buffer[idx++];
398 if ((local_buffer[idx] == ',')
399 || (local_buffer[idx] == '\0')) {
400 workbuffer[w_idx] = '\0';
401 if (w_idx) {
402 /* avoid the empty string */
403 seq_printf(m, "%s\n", workbuffer);
404 }
405 memset(workbuffer, 0, SPLPAR_MAXLENGTH);
406 idx++; /* skip the comma */
407 w_idx = 0;
408 } else if (local_buffer[idx] == '=') {
409 /* code here to replace workbuffer contents
410 with different keyword strings */
411 if (0 == strcmp(workbuffer, "MaxEntCap")) {
412 strcpy(workbuffer,
413 "partition_max_entitled_capacity");
414 w_idx = strlen(workbuffer);
415 }
416 if (0 == strcmp(workbuffer, "MaxPlatProcs")) {
417 strcpy(workbuffer,
418 "system_potential_processors");
419 w_idx = strlen(workbuffer);
420 }
421 }
422 }
423 kfree(workbuffer);
424 local_buffer -= 2; /* back up over strlen value */
425 }
426 out_free:
427 papr_sysparm_buf_free(buf);
428 }
429
430 /* Return the number of processors in the system.
431 * This function reads through the device tree and counts
432 * the virtual processors, this does not include threads.
433 */
lparcfg_count_active_processors(void)434 static int lparcfg_count_active_processors(void)
435 {
436 struct device_node *cpus_dn;
437 int count = 0;
438
439 for_each_node_by_type(cpus_dn, "cpu") {
440 #ifdef LPARCFG_DEBUG
441 printk(KERN_ERR "cpus_dn %p\n", cpus_dn);
442 #endif
443 count++;
444 }
445 return count;
446 }
447
pseries_cmo_data(struct seq_file * m)448 static void pseries_cmo_data(struct seq_file *m)
449 {
450 int cpu;
451 unsigned long cmo_faults = 0;
452 unsigned long cmo_fault_time = 0;
453
454 seq_printf(m, "cmo_enabled=%d\n", firmware_has_feature(FW_FEATURE_CMO));
455
456 if (!firmware_has_feature(FW_FEATURE_CMO))
457 return;
458
459 for_each_possible_cpu(cpu) {
460 cmo_faults += be64_to_cpu(lppaca_of(cpu).cmo_faults);
461 cmo_fault_time += be64_to_cpu(lppaca_of(cpu).cmo_fault_time);
462 }
463
464 seq_printf(m, "cmo_faults=%lu\n", cmo_faults);
465 seq_printf(m, "cmo_fault_time_usec=%lu\n",
466 cmo_fault_time / tb_ticks_per_usec);
467 seq_printf(m, "cmo_primary_psp=%d\n", cmo_get_primary_psp());
468 seq_printf(m, "cmo_secondary_psp=%d\n", cmo_get_secondary_psp());
469 seq_printf(m, "cmo_page_size=%lu\n", cmo_get_page_size());
470 }
471
splpar_dispatch_data(struct seq_file * m)472 static void splpar_dispatch_data(struct seq_file *m)
473 {
474 int cpu;
475 unsigned long dispatches = 0;
476 unsigned long dispatch_dispersions = 0;
477
478 for_each_possible_cpu(cpu) {
479 dispatches += be32_to_cpu(lppaca_of(cpu).yield_count);
480 dispatch_dispersions +=
481 be32_to_cpu(lppaca_of(cpu).dispersion_count);
482 }
483
484 seq_printf(m, "dispatches=%lu\n", dispatches);
485 seq_printf(m, "dispatch_dispersions=%lu\n", dispatch_dispersions);
486 }
487
parse_em_data(struct seq_file * m)488 static void parse_em_data(struct seq_file *m)
489 {
490 unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
491
492 if (firmware_has_feature(FW_FEATURE_LPAR) &&
493 plpar_hcall(H_GET_EM_PARMS, retbuf) == H_SUCCESS)
494 seq_printf(m, "power_mode_data=%016lx\n", retbuf[0]);
495 }
496
maxmem_data(struct seq_file * m)497 static void maxmem_data(struct seq_file *m)
498 {
499 unsigned long maxmem = 0;
500
501 maxmem += (unsigned long)drmem_info->n_lmbs * drmem_info->lmb_size;
502 maxmem += hugetlb_total_pages() * PAGE_SIZE;
503
504 seq_printf(m, "MaxMem=%lu\n", maxmem);
505 }
506
pseries_lparcfg_data(struct seq_file * m,void * v)507 static int pseries_lparcfg_data(struct seq_file *m, void *v)
508 {
509 int partition_potential_processors;
510 int partition_active_processors;
511 struct device_node *rtas_node;
512 const __be32 *lrdrp = NULL;
513
514 rtas_node = of_find_node_by_path("/rtas");
515 if (rtas_node)
516 lrdrp = of_get_property(rtas_node, "ibm,lrdr-capacity", NULL);
517
518 if (lrdrp == NULL) {
519 partition_potential_processors = vdso_data->processorCount;
520 } else {
521 partition_potential_processors = be32_to_cpup(lrdrp + 4);
522 }
523 of_node_put(rtas_node);
524
525 partition_active_processors = lparcfg_count_active_processors();
526
527 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
528 /* this call handles the ibm,get-system-parameter contents */
529 read_lpar_name(m);
530 parse_system_parameter_string(m);
531 parse_ppp_data(m);
532 parse_mpp_data(m);
533 parse_mpp_x_data(m);
534 pseries_cmo_data(m);
535 splpar_dispatch_data(m);
536
537 seq_printf(m, "purr=%ld\n", get_purr());
538 seq_printf(m, "tbr=%ld\n", mftb());
539 } else { /* non SPLPAR case */
540
541 seq_printf(m, "system_active_processors=%d\n",
542 partition_potential_processors);
543
544 seq_printf(m, "system_potential_processors=%d\n",
545 partition_potential_processors);
546
547 seq_printf(m, "partition_max_entitled_capacity=%d\n",
548 partition_potential_processors * 100);
549
550 seq_printf(m, "partition_entitled_capacity=%d\n",
551 partition_active_processors * 100);
552 }
553
554 show_gpci_data(m);
555
556 seq_printf(m, "partition_active_processors=%d\n",
557 partition_active_processors);
558
559 seq_printf(m, "partition_potential_processors=%d\n",
560 partition_potential_processors);
561
562 seq_printf(m, "shared_processor_mode=%d\n",
563 lppaca_shared_proc());
564
565 #ifdef CONFIG_PPC_64S_HASH_MMU
566 if (!radix_enabled())
567 seq_printf(m, "slb_size=%d\n", mmu_slb_size);
568 #endif
569 parse_em_data(m);
570 maxmem_data(m);
571
572 seq_printf(m, "security_flavor=%u\n", pseries_security_flavor);
573
574 return 0;
575 }
576
update_ppp(u64 * entitlement,u8 * weight)577 static ssize_t update_ppp(u64 *entitlement, u8 *weight)
578 {
579 struct hvcall_ppp_data ppp_data;
580 u8 new_weight;
581 u64 new_entitled;
582 ssize_t retval;
583
584 /* Get our current parameters */
585 retval = h_get_ppp(&ppp_data);
586 if (retval)
587 return retval;
588
589 if (entitlement) {
590 new_weight = ppp_data.weight;
591 new_entitled = *entitlement;
592 } else if (weight) {
593 new_weight = *weight;
594 new_entitled = ppp_data.entitlement;
595 } else
596 return -EINVAL;
597
598 pr_debug("%s: current_entitled = %llu, current_weight = %u\n",
599 __func__, ppp_data.entitlement, ppp_data.weight);
600
601 pr_debug("%s: new_entitled = %llu, new_weight = %u\n",
602 __func__, new_entitled, new_weight);
603
604 retval = plpar_hcall_norets(H_SET_PPP, new_entitled, new_weight);
605 return retval;
606 }
607
608 /**
609 * update_mpp
610 *
611 * Update the memory entitlement and weight for the partition. Caller must
612 * specify either a new entitlement or weight, not both, to be updated
613 * since the h_set_mpp call takes both entitlement and weight as parameters.
614 */
update_mpp(u64 * entitlement,u8 * weight)615 static ssize_t update_mpp(u64 *entitlement, u8 *weight)
616 {
617 struct hvcall_mpp_data mpp_data;
618 u64 new_entitled;
619 u8 new_weight;
620 ssize_t rc;
621
622 if (entitlement) {
623 /* Check with vio to ensure the new memory entitlement
624 * can be handled.
625 */
626 rc = vio_cmo_entitlement_update(*entitlement);
627 if (rc)
628 return rc;
629 }
630
631 rc = h_get_mpp(&mpp_data);
632 if (rc)
633 return rc;
634
635 if (entitlement) {
636 new_weight = mpp_data.mem_weight;
637 new_entitled = *entitlement;
638 } else if (weight) {
639 new_weight = *weight;
640 new_entitled = mpp_data.entitled_mem;
641 } else
642 return -EINVAL;
643
644 pr_debug("%s: current_entitled = %lu, current_weight = %u\n",
645 __func__, mpp_data.entitled_mem, mpp_data.mem_weight);
646
647 pr_debug("%s: new_entitled = %llu, new_weight = %u\n",
648 __func__, new_entitled, new_weight);
649
650 rc = plpar_hcall_norets(H_SET_MPP, new_entitled, new_weight);
651 return rc;
652 }
653
654 /*
655 * Interface for changing system parameters (variable capacity weight
656 * and entitled capacity). Format of input is "param_name=value";
657 * anything after value is ignored. Valid parameters at this time are
658 * "partition_entitled_capacity" and "capacity_weight". We use
659 * H_SET_PPP to alter parameters.
660 *
661 * This function should be invoked only on systems with
662 * FW_FEATURE_SPLPAR.
663 */
lparcfg_write(struct file * file,const char __user * buf,size_t count,loff_t * off)664 static ssize_t lparcfg_write(struct file *file, const char __user * buf,
665 size_t count, loff_t * off)
666 {
667 char kbuf[64];
668 char *tmp;
669 u64 new_entitled, *new_entitled_ptr = &new_entitled;
670 u8 new_weight, *new_weight_ptr = &new_weight;
671 ssize_t retval;
672
673 if (!firmware_has_feature(FW_FEATURE_SPLPAR))
674 return -EINVAL;
675
676 if (count > sizeof(kbuf))
677 return -EINVAL;
678
679 if (copy_from_user(kbuf, buf, count))
680 return -EFAULT;
681
682 kbuf[count - 1] = '\0';
683 tmp = strchr(kbuf, '=');
684 if (!tmp)
685 return -EINVAL;
686
687 *tmp++ = '\0';
688
689 if (!strcmp(kbuf, "partition_entitled_capacity")) {
690 char *endp;
691 *new_entitled_ptr = (u64) simple_strtoul(tmp, &endp, 10);
692 if (endp == tmp)
693 return -EINVAL;
694
695 retval = update_ppp(new_entitled_ptr, NULL);
696
697 if (retval == H_SUCCESS || retval == H_CONSTRAINED) {
698 /*
699 * The hypervisor assigns VAS resources based
700 * on entitled capacity for shared mode.
701 * Reconfig VAS windows based on DLPAR CPU events.
702 */
703 if (pseries_vas_dlpar_cpu() != 0)
704 retval = H_HARDWARE;
705 }
706 } else if (!strcmp(kbuf, "capacity_weight")) {
707 char *endp;
708 *new_weight_ptr = (u8) simple_strtoul(tmp, &endp, 10);
709 if (endp == tmp)
710 return -EINVAL;
711
712 retval = update_ppp(NULL, new_weight_ptr);
713 } else if (!strcmp(kbuf, "entitled_memory")) {
714 char *endp;
715 *new_entitled_ptr = (u64) simple_strtoul(tmp, &endp, 10);
716 if (endp == tmp)
717 return -EINVAL;
718
719 retval = update_mpp(new_entitled_ptr, NULL);
720 } else if (!strcmp(kbuf, "entitled_memory_weight")) {
721 char *endp;
722 *new_weight_ptr = (u8) simple_strtoul(tmp, &endp, 10);
723 if (endp == tmp)
724 return -EINVAL;
725
726 retval = update_mpp(NULL, new_weight_ptr);
727 } else
728 return -EINVAL;
729
730 if (retval == H_SUCCESS || retval == H_CONSTRAINED) {
731 retval = count;
732 } else if (retval == H_BUSY) {
733 retval = -EBUSY;
734 } else if (retval == H_HARDWARE) {
735 retval = -EIO;
736 } else if (retval == H_PARAMETER) {
737 retval = -EINVAL;
738 }
739
740 return retval;
741 }
742
lparcfg_data(struct seq_file * m,void * v)743 static int lparcfg_data(struct seq_file *m, void *v)
744 {
745 struct device_node *rootdn;
746 const char *model = "";
747 const char *system_id = "";
748 const char *tmp;
749 const __be32 *lp_index_ptr;
750 unsigned int lp_index = 0;
751
752 seq_printf(m, "%s %s\n", MODULE_NAME, MODULE_VERS);
753
754 rootdn = of_find_node_by_path("/");
755 if (rootdn) {
756 tmp = of_get_property(rootdn, "model", NULL);
757 if (tmp)
758 model = tmp;
759 tmp = of_get_property(rootdn, "system-id", NULL);
760 if (tmp)
761 system_id = tmp;
762 lp_index_ptr = of_get_property(rootdn, "ibm,partition-no",
763 NULL);
764 if (lp_index_ptr)
765 lp_index = be32_to_cpup(lp_index_ptr);
766 of_node_put(rootdn);
767 }
768 seq_printf(m, "serial_number=%s\n", system_id);
769 seq_printf(m, "system_type=%s\n", model);
770 seq_printf(m, "partition_id=%d\n", (int)lp_index);
771
772 return pseries_lparcfg_data(m, v);
773 }
774
lparcfg_open(struct inode * inode,struct file * file)775 static int lparcfg_open(struct inode *inode, struct file *file)
776 {
777 return single_open(file, lparcfg_data, NULL);
778 }
779
780 static const struct proc_ops lparcfg_proc_ops = {
781 .proc_read = seq_read,
782 .proc_write = lparcfg_write,
783 .proc_open = lparcfg_open,
784 .proc_release = single_release,
785 .proc_lseek = seq_lseek,
786 };
787
lparcfg_init(void)788 static int __init lparcfg_init(void)
789 {
790 umode_t mode = 0444;
791
792 /* Allow writing if we have FW_FEATURE_SPLPAR */
793 if (firmware_has_feature(FW_FEATURE_SPLPAR))
794 mode |= 0200;
795
796 if (!proc_create("powerpc/lparcfg", mode, NULL, &lparcfg_proc_ops)) {
797 printk(KERN_ERR "Failed to create powerpc/lparcfg\n");
798 return -EIO;
799 }
800 return 0;
801 }
802 machine_device_initcall(pseries, lparcfg_init);
803