xref: /openbmc/qemu/target/hexagon/decode.c (revision 28188253dc26bc3038f30eed0d79798b51f81a94)
1  /*
2   *  Copyright(c) 2019-2023 Qualcomm Innovation Center, Inc. All Rights Reserved.
3   *
4   *  This program is free software; you can redistribute it and/or modify
5   *  it under the terms of the GNU General Public License as published by
6   *  the Free Software Foundation; either version 2 of the License, or
7   *  (at your option) any later version.
8   *
9   *  This program is distributed in the hope that it will be useful,
10   *  but WITHOUT ANY WARRANTY; without even the implied warranty of
11   *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12   *  GNU General Public License for more details.
13   *
14   *  You should have received a copy of the GNU General Public License
15   *  along with this program; if not, see <http://www.gnu.org/licenses/>.
16   */
17  
18  #include "qemu/osdep.h"
19  #include "iclass.h"
20  #include "attribs.h"
21  #include "genptr.h"
22  #include "decode.h"
23  #include "insn.h"
24  #include "printinsn.h"
25  #include "mmvec/decode_ext_mmvec.h"
26  
27  #define fZXTN(N, M, VAL) ((VAL) & ((1LL << (N)) - 1))
28  
29  enum {
30      EXT_IDX_noext = 0,
31      EXT_IDX_noext_AFTER = 4,
32      EXT_IDX_mmvec = 4,
33      EXT_IDX_mmvec_AFTER = 8,
34      XX_LAST_EXT_IDX
35  };
36  
37  /*
38   *  Certain operand types represent a non-contiguous set of values.
39   *  For example, the compound compare-and-jump instruction can only access
40   *  registers R0-R7 and R16-23.
41   *  This table represents the mapping from the encoding to the actual values.
42   */
43  
44  #define DEF_REGMAP(NAME, ELEMENTS, ...) \
45      static const unsigned int DECODE_REGISTER_##NAME[ELEMENTS] = \
46      { __VA_ARGS__ };
47          /* Name   Num Table */
48  DEF_REGMAP(R_16,  16, 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23)
49  DEF_REGMAP(R__8,  8,  0, 2, 4, 6, 16, 18, 20, 22)
50  DEF_REGMAP(R_8,   8,  0, 1, 2, 3, 4, 5, 6, 7)
51  
52  #define DECODE_MAPPED_REG(OPNUM, NAME) \
53      insn->regno[OPNUM] = DECODE_REGISTER_##NAME[insn->regno[OPNUM]];
54  
55  /* Helper functions for decode_*_generated.c.inc */
56  #define DECODE_MAPPED(NAME) \
57  static int decode_mapped_reg_##NAME(DisasContext *ctx, int x) \
58  { \
59      return DECODE_REGISTER_##NAME[x]; \
60  }
DECODE_MAPPED(R_16)61  DECODE_MAPPED(R_16)
62  DECODE_MAPPED(R_8)
63  DECODE_MAPPED(R__8)
64  
65  /* Helper function for decodetree_trans_funcs_generated.c.inc */
66  static int shift_left(DisasContext *ctx, int x, int n, int immno)
67  {
68      int ret = x;
69      Insn *insn = ctx->insn;
70      if (!insn->extension_valid ||
71          insn->which_extended != immno) {
72          ret <<= n;
73      }
74      return ret;
75  }
76  
77  /* Include the generated decoder for 32 bit insn */
78  #include "decode_normal_generated.c.inc"
79  #include "decode_hvx_generated.c.inc"
80  
81  /* Include the generated decoder for 16 bit insn */
82  #include "decode_subinsn_a_generated.c.inc"
83  #include "decode_subinsn_l1_generated.c.inc"
84  #include "decode_subinsn_l2_generated.c.inc"
85  #include "decode_subinsn_s1_generated.c.inc"
86  #include "decode_subinsn_s2_generated.c.inc"
87  
88  /* Include the generated helpers for the decoder */
89  #include "decodetree_trans_funcs_generated.c.inc"
90  
decode_send_insn_to(Packet * packet,int start,int newloc)91  void decode_send_insn_to(Packet *packet, int start, int newloc)
92  {
93      Insn tmpinsn;
94      int direction;
95      int i;
96      if (start == newloc) {
97          return;
98      }
99      if (start < newloc) {
100          /* Move towards end */
101          direction = 1;
102      } else {
103          /* move towards beginning */
104          direction = -1;
105      }
106      for (i = start; i != newloc; i += direction) {
107          tmpinsn = packet->insn[i];
108          packet->insn[i] = packet->insn[i + direction];
109          packet->insn[i + direction] = tmpinsn;
110      }
111  }
112  
113  /* Fill newvalue registers with the correct regno */
114  static void
decode_fill_newvalue_regno(Packet * packet)115  decode_fill_newvalue_regno(Packet *packet)
116  {
117      int i, use_regidx, offset, def_idx, dst_idx;
118  
119      for (i = 1; i < packet->num_insns; i++) {
120          if (GET_ATTRIB(packet->insn[i].opcode, A_DOTNEWVALUE) &&
121              !GET_ATTRIB(packet->insn[i].opcode, A_EXTENSION)) {
122  
123              g_assert(packet->insn[i].new_read_idx != -1);
124              use_regidx = packet->insn[i].new_read_idx;
125  
126              /*
127               * What's encoded at the N-field is the offset to who's producing
128               * the value.  Shift off the LSB which indicates odd/even register,
129               * then walk backwards and skip over the constant extenders.
130               */
131              offset = packet->insn[i].regno[use_regidx] >> 1;
132              def_idx = i - offset;
133              for (int j = 0; j < offset; j++) {
134                  if (GET_ATTRIB(packet->insn[i - j - 1].opcode, A_IT_EXTENDER)) {
135                      def_idx--;
136                  }
137              }
138  
139              /*
140               * Check for a badly encoded N-field which points to an instruction
141               * out-of-range
142               */
143              g_assert(!((def_idx < 0) || (def_idx > (packet->num_insns - 1))));
144  
145              /* Now patch up the consumer with the register number */
146              g_assert(packet->insn[def_idx].dest_idx != -1);
147              dst_idx = packet->insn[def_idx].dest_idx;
148              packet->insn[i].regno[use_regidx] =
149                  packet->insn[def_idx].regno[dst_idx];
150              /*
151               * We need to remember who produces this value to later
152               * check if it was dynamically cancelled
153               */
154              packet->insn[i].new_value_producer_slot =
155                  packet->insn[def_idx].slot;
156          }
157      }
158  }
159  
160  /* Split CJ into a compare and a jump */
decode_split_cmpjump(Packet * pkt)161  static void decode_split_cmpjump(Packet *pkt)
162  {
163      int last, i;
164      int numinsns = pkt->num_insns;
165  
166      /*
167       * First, split all compare-jumps.
168       * The compare is sent to the end as a new instruction.
169       * Do it this way so we don't reorder dual jumps. Those need to stay in
170       * original order.
171       */
172      for (i = 0; i < numinsns; i++) {
173          /* It's a cmp-jump */
174          if (GET_ATTRIB(pkt->insn[i].opcode, A_NEWCMPJUMP)) {
175              last = pkt->num_insns;
176              pkt->insn[last] = pkt->insn[i];    /* copy the instruction */
177              pkt->insn[last].part1 = true;      /* last insn does the CMP */
178              pkt->insn[i].part1 = false;        /* existing insn does the JUMP */
179              pkt->num_insns++;
180          }
181      }
182  
183      /* Now re-shuffle all the compares back to the beginning */
184      for (i = 0; i < pkt->num_insns; i++) {
185          if (pkt->insn[i].part1) {
186              decode_send_insn_to(pkt, i, 0);
187          }
188      }
189  }
190  
decode_opcode_can_jump(int opcode)191  static bool decode_opcode_can_jump(int opcode)
192  {
193      if ((GET_ATTRIB(opcode, A_JUMP)) ||
194          (GET_ATTRIB(opcode, A_CALL)) ||
195          (opcode == J2_trap0) ||
196          (opcode == J2_pause)) {
197          /* Exception to A_JUMP attribute */
198          if (opcode == J4_hintjumpr) {
199              return false;
200          }
201          return true;
202      }
203  
204      return false;
205  }
206  
decode_opcode_ends_loop(int opcode)207  static bool decode_opcode_ends_loop(int opcode)
208  {
209      return GET_ATTRIB(opcode, A_HWLOOP0_END) ||
210             GET_ATTRIB(opcode, A_HWLOOP1_END);
211  }
212  
213  /* Set the is_* fields in each instruction */
decode_set_insn_attr_fields(Packet * pkt)214  static void decode_set_insn_attr_fields(Packet *pkt)
215  {
216      int i;
217      int numinsns = pkt->num_insns;
218      uint16_t opcode;
219  
220      pkt->pkt_has_cof = false;
221      pkt->pkt_has_multi_cof = false;
222      pkt->pkt_has_endloop = false;
223      pkt->pkt_has_dczeroa = false;
224  
225      for (i = 0; i < numinsns; i++) {
226          opcode = pkt->insn[i].opcode;
227          if (pkt->insn[i].part1) {
228              continue;    /* Skip compare of cmp-jumps */
229          }
230  
231          if (GET_ATTRIB(opcode, A_DCZEROA)) {
232              pkt->pkt_has_dczeroa = true;
233          }
234  
235          if (GET_ATTRIB(opcode, A_STORE)) {
236              if (GET_ATTRIB(opcode, A_SCALAR_STORE) &&
237                  !GET_ATTRIB(opcode, A_MEMSIZE_0B)) {
238                  if (pkt->insn[i].slot == 0) {
239                      pkt->pkt_has_store_s0 = true;
240                  } else {
241                      pkt->pkt_has_store_s1 = true;
242                  }
243              }
244          }
245  
246          if (decode_opcode_can_jump(opcode)) {
247              if (pkt->pkt_has_cof) {
248                  pkt->pkt_has_multi_cof = true;
249              }
250              pkt->pkt_has_cof = true;
251          }
252  
253          pkt->insn[i].is_endloop = decode_opcode_ends_loop(opcode);
254  
255          pkt->pkt_has_endloop |= pkt->insn[i].is_endloop;
256  
257          if (pkt->pkt_has_endloop) {
258              if (pkt->pkt_has_cof) {
259                  pkt->pkt_has_multi_cof = true;
260              }
261              pkt->pkt_has_cof = true;
262          }
263      }
264  }
265  
266  /*
267   * Shuffle for execution
268   * Move stores to end (in same order as encoding)
269   * Move compares to beginning (for use by .new insns)
270   */
decode_shuffle_for_execution(Packet * packet)271  static void decode_shuffle_for_execution(Packet *packet)
272  {
273      bool changed = false;
274      int i;
275      bool flag;    /* flag means we've seen a non-memory instruction */
276      int n_mems;
277      int last_insn = packet->num_insns - 1;
278  
279      /*
280       * Skip end loops, somehow an end loop is getting in and messing
281       * up the order
282       */
283      if (decode_opcode_ends_loop(packet->insn[last_insn].opcode)) {
284          last_insn--;
285      }
286  
287      do {
288          changed = false;
289          /*
290           * Stores go last, must not reorder.
291           * Cannot shuffle stores past loads, either.
292           * Iterate backwards.  If we see a non-memory instruction,
293           * then a store, shuffle the store to the front.  Don't shuffle
294           * stores wrt each other or a load.
295           */
296          for (flag = false, n_mems = 0, i = last_insn; i >= 0; i--) {
297              int opcode = packet->insn[i].opcode;
298  
299              if (flag && GET_ATTRIB(opcode, A_STORE)) {
300                  decode_send_insn_to(packet, i, last_insn - n_mems);
301                  n_mems++;
302                  changed = true;
303              } else if (GET_ATTRIB(opcode, A_STORE)) {
304                  n_mems++;
305              } else if (GET_ATTRIB(opcode, A_LOAD)) {
306                  /*
307                   * Don't set flag, since we don't want to shuffle a
308                   * store past a load
309                   */
310                  n_mems++;
311              } else if (GET_ATTRIB(opcode, A_DOTNEWVALUE)) {
312                  /*
313                   * Don't set flag, since we don't want to shuffle past
314                   * a .new value
315                   */
316              } else {
317                  flag = true;
318              }
319          }
320  
321          if (changed) {
322              continue;
323          }
324          /* Compares go first, may be reordered wrt each other */
325          for (flag = false, i = 0; i < last_insn + 1; i++) {
326              int opcode = packet->insn[i].opcode;
327  
328              if (packet->insn[i].has_pred_dest &&
329                  GET_ATTRIB(opcode, A_STORE) == 0) {
330                  /* This should be a compare (not a store conditional) */
331                  if (flag) {
332                      decode_send_insn_to(packet, i, 0);
333                      changed = true;
334                      continue;
335                  }
336              } else if (GET_ATTRIB(opcode, A_IMPLICIT_WRITES_P3) &&
337                         !decode_opcode_ends_loop(packet->insn[i].opcode)) {
338                  /*
339                   * spNloop instruction
340                   * Don't reorder endloops; they are not valid for .new uses,
341                   * and we want to match HW
342                   */
343                  if (flag) {
344                      decode_send_insn_to(packet, i, 0);
345                      changed = true;
346                      continue;
347                  }
348              } else if (GET_ATTRIB(opcode, A_IMPLICIT_WRITES_P0) &&
349                         !GET_ATTRIB(opcode, A_NEWCMPJUMP)) {
350                  if (flag) {
351                      decode_send_insn_to(packet, i, 0);
352                      changed = true;
353                      continue;
354                  }
355              } else {
356                  flag = true;
357              }
358          }
359          if (changed) {
360              continue;
361          }
362      } while (changed);
363  
364      /*
365       * If we have a .new register compare/branch, move that to the very
366       * very end, past stores
367       */
368      for (i = 0; i < last_insn; i++) {
369          if (GET_ATTRIB(packet->insn[i].opcode, A_DOTNEWVALUE)) {
370              decode_send_insn_to(packet, i, last_insn);
371              break;
372          }
373      }
374  }
375  
376  static void
apply_extender(Packet * pkt,int i,uint32_t extender)377  apply_extender(Packet *pkt, int i, uint32_t extender)
378  {
379      int immed_num;
380      uint32_t base_immed;
381  
382      immed_num = pkt->insn[i].which_extended;
383      base_immed = pkt->insn[i].immed[immed_num];
384  
385      pkt->insn[i].immed[immed_num] = extender | fZXTN(6, 32, base_immed);
386  }
387  
decode_apply_extenders(Packet * packet)388  static void decode_apply_extenders(Packet *packet)
389  {
390      int i;
391      for (i = 0; i < packet->num_insns; i++) {
392          if (GET_ATTRIB(packet->insn[i].opcode, A_IT_EXTENDER)) {
393              packet->insn[i + 1].extension_valid = true;
394              apply_extender(packet, i + 1, packet->insn[i].immed[0]);
395          }
396      }
397  }
398  
decode_remove_extenders(Packet * packet)399  static void decode_remove_extenders(Packet *packet)
400  {
401      int i, j;
402      for (i = 0; i < packet->num_insns; i++) {
403          if (GET_ATTRIB(packet->insn[i].opcode, A_IT_EXTENDER)) {
404              /* Remove this one by moving the remaining instructions down */
405              for (j = i;
406                  (j < packet->num_insns - 1) && (j < INSTRUCTIONS_MAX - 1);
407                  j++) {
408                  packet->insn[j] = packet->insn[j + 1];
409              }
410              packet->num_insns--;
411          }
412      }
413  }
414  
get_valid_slots(const Packet * pkt,unsigned int slot)415  static SlotMask get_valid_slots(const Packet *pkt, unsigned int slot)
416  {
417      if (GET_ATTRIB(pkt->insn[slot].opcode, A_EXTENSION)) {
418          return mmvec_ext_decode_find_iclass_slots(pkt->insn[slot].opcode);
419      } else {
420          return find_iclass_slots(pkt->insn[slot].opcode,
421                                   pkt->insn[slot].iclass);
422      }
423  }
424  
425  /*
426   * Section 10.3 of the Hexagon V73 Programmer's Reference Manual
427   *
428   * A duplex is encoded as a 32-bit instruction with bits [15:14] set to 00.
429   * The sub-instructions that comprise a duplex are encoded as 13-bit fields
430   * in the duplex.
431   *
432   * Per table 10-4, the 4-bit duplex iclass is encoded in bits 31:29, 13
433   */
get_duplex_iclass(uint32_t encoding)434  static uint32_t get_duplex_iclass(uint32_t encoding)
435  {
436      uint32_t iclass = extract32(encoding, 13, 1);
437      iclass = deposit32(iclass, 1, 3, extract32(encoding, 29, 3));
438      return iclass;
439  }
440  
441  /*
442   * Per table 10-5, the duplex ICLASS field values that specify the group of
443   * each sub-instruction in a duplex
444   *
445   * This table points to the decode instruction for each entry in the table
446   */
447  typedef bool (*subinsn_decode_func)(DisasContext *ctx, uint16_t insn);
448  typedef struct {
449      subinsn_decode_func decode_slot0_subinsn;
450      subinsn_decode_func decode_slot1_subinsn;
451  } subinsn_decode_groups;
452  
453  static const subinsn_decode_groups decode_groups[16] = {
454      [0x0] = { decode_subinsn_l1, decode_subinsn_l1 },
455      [0x1] = { decode_subinsn_l2, decode_subinsn_l1 },
456      [0x2] = { decode_subinsn_l2, decode_subinsn_l2 },
457      [0x3] = { decode_subinsn_a,  decode_subinsn_a },
458      [0x4] = { decode_subinsn_l1, decode_subinsn_a },
459      [0x5] = { decode_subinsn_l2, decode_subinsn_a },
460      [0x6] = { decode_subinsn_s1, decode_subinsn_a },
461      [0x7] = { decode_subinsn_s2, decode_subinsn_a },
462      [0x8] = { decode_subinsn_s1, decode_subinsn_l1 },
463      [0x9] = { decode_subinsn_s1, decode_subinsn_l2 },
464      [0xa] = { decode_subinsn_s1, decode_subinsn_s1 },
465      [0xb] = { decode_subinsn_s2, decode_subinsn_s1 },
466      [0xc] = { decode_subinsn_s2, decode_subinsn_l1 },
467      [0xd] = { decode_subinsn_s2, decode_subinsn_l2 },
468      [0xe] = { decode_subinsn_s2, decode_subinsn_s2 },
469      [0xf] = { NULL,              NULL },              /* Reserved */
470  };
471  
get_slot0_subinsn(uint32_t encoding)472  static uint16_t get_slot0_subinsn(uint32_t encoding)
473  {
474      return extract32(encoding, 0, 13);
475  }
476  
get_slot1_subinsn(uint32_t encoding)477  static uint16_t get_slot1_subinsn(uint32_t encoding)
478  {
479      return extract32(encoding, 16, 13);
480  }
481  
482  static unsigned int
decode_insns(DisasContext * ctx,Insn * insn,uint32_t encoding)483  decode_insns(DisasContext *ctx, Insn *insn, uint32_t encoding)
484  {
485      if (parse_bits(encoding) != 0) {
486          if (decode_normal(ctx, encoding) ||
487              decode_hvx(ctx, encoding)) {
488              insn->generate = opcode_genptr[insn->opcode];
489              insn->iclass = iclass_bits(encoding);
490              return 1;
491          }
492          g_assert_not_reached();
493      } else {
494          uint32_t iclass = get_duplex_iclass(encoding);
495          unsigned int slot0_subinsn = get_slot0_subinsn(encoding);
496          unsigned int slot1_subinsn = get_slot1_subinsn(encoding);
497          subinsn_decode_func decode_slot0_subinsn =
498              decode_groups[iclass].decode_slot0_subinsn;
499          subinsn_decode_func decode_slot1_subinsn =
500              decode_groups[iclass].decode_slot1_subinsn;
501  
502          /* The slot1 subinsn needs to be in the packet first */
503          if (decode_slot1_subinsn(ctx, slot1_subinsn)) {
504              insn->generate = opcode_genptr[insn->opcode];
505              insn->iclass = iclass_bits(encoding);
506              ctx->insn = ++insn;
507              if (decode_slot0_subinsn(ctx, slot0_subinsn)) {
508                  insn->generate = opcode_genptr[insn->opcode];
509                  insn->iclass = iclass_bits(encoding);
510                  return 2;
511              }
512          }
513          g_assert_not_reached();
514      }
515  }
516  
decode_add_endloop_insn(Insn * insn,int loopnum)517  static void decode_add_endloop_insn(Insn *insn, int loopnum)
518  {
519      if (loopnum == 10) {
520          insn->opcode = J2_endloop01;
521          insn->generate = opcode_genptr[J2_endloop01];
522      } else if (loopnum == 1) {
523          insn->opcode = J2_endloop1;
524          insn->generate = opcode_genptr[J2_endloop1];
525      } else if (loopnum == 0) {
526          insn->opcode = J2_endloop0;
527          insn->generate = opcode_genptr[J2_endloop0];
528      } else {
529          g_assert_not_reached();
530      }
531  }
532  
decode_parsebits_is_loopend(uint32_t encoding32)533  static bool decode_parsebits_is_loopend(uint32_t encoding32)
534  {
535      uint32_t bits = parse_bits(encoding32);
536      return bits == 0x2;
537  }
538  
has_valid_slot_assignment(Packet * pkt)539  static bool has_valid_slot_assignment(Packet *pkt)
540  {
541      int used_slots = 0;
542      for (int i = 0; i < pkt->num_insns; i++) {
543          int slot_mask;
544          Insn *insn = &pkt->insn[i];
545          if (decode_opcode_ends_loop(insn->opcode)) {
546              /* We overload slot 0 for endloop. */
547              continue;
548          }
549          slot_mask = 1 << insn->slot;
550          if (used_slots & slot_mask) {
551              return false;
552          }
553          used_slots |= slot_mask;
554      }
555      return true;
556  }
557  
558  static bool
decode_set_slot_number(Packet * pkt)559  decode_set_slot_number(Packet *pkt)
560  {
561      int slot;
562      int i;
563      bool hit_mem_insn = false;
564      bool hit_duplex = false;
565      bool slot0_found = false;
566      bool slot1_found = false;
567      int slot1_iidx = 0;
568  
569      /*
570       * The slots are encoded in reverse order
571       * For each instruction, count down until you find a suitable slot
572       */
573      for (i = 0, slot = 3; i < pkt->num_insns; i++) {
574          SlotMask valid_slots = get_valid_slots(pkt, i);
575  
576          while (!(valid_slots & (1 << slot))) {
577              slot--;
578          }
579          pkt->insn[i].slot = slot;
580          if (slot) {
581              /* I've assigned the slot, now decrement it for the next insn */
582              slot--;
583          }
584      }
585  
586      /* Fix the exceptions - mem insns to slot 0,1 */
587      for (i = pkt->num_insns - 1; i >= 0; i--) {
588          /* First memory instruction always goes to slot 0 */
589          if ((GET_ATTRIB(pkt->insn[i].opcode, A_MEMLIKE) ||
590               GET_ATTRIB(pkt->insn[i].opcode, A_MEMLIKE_PACKET_RULES)) &&
591              !hit_mem_insn) {
592              hit_mem_insn = true;
593              pkt->insn[i].slot = 0;
594              continue;
595          }
596  
597          /* Next memory instruction always goes to slot 1 */
598          if ((GET_ATTRIB(pkt->insn[i].opcode, A_MEMLIKE) ||
599               GET_ATTRIB(pkt->insn[i].opcode, A_MEMLIKE_PACKET_RULES)) &&
600              hit_mem_insn) {
601              pkt->insn[i].slot = 1;
602          }
603      }
604  
605      /* Fix the exceptions - duplex always slot 0,1 */
606      for (i = pkt->num_insns - 1; i >= 0; i--) {
607          /* First subinsn always goes to slot 0 */
608          if (GET_ATTRIB(pkt->insn[i].opcode, A_SUBINSN) && !hit_duplex) {
609              hit_duplex = true;
610              pkt->insn[i].slot = 0;
611              continue;
612          }
613  
614          /* Next subinsn always goes to slot 1 */
615          if (GET_ATTRIB(pkt->insn[i].opcode, A_SUBINSN) && hit_duplex) {
616              pkt->insn[i].slot = 1;
617          }
618      }
619  
620      /* Fix the exceptions - slot 1 is never empty, always aligns to slot 0 */
621      for (i = pkt->num_insns - 1; i >= 0; i--) {
622          /* Is slot0 used? */
623          if (pkt->insn[i].slot == 0) {
624              bool is_endloop = (pkt->insn[i].opcode == J2_endloop01);
625              is_endloop |= (pkt->insn[i].opcode == J2_endloop0);
626              is_endloop |= (pkt->insn[i].opcode == J2_endloop1);
627  
628              /*
629               * Make sure it's not endloop since, we're overloading
630               * slot0 for endloop
631               */
632              if (!is_endloop) {
633                  slot0_found = true;
634              }
635          }
636          /* Is slot1 used? */
637          if (pkt->insn[i].slot == 1) {
638              slot1_found = true;
639              slot1_iidx = i;
640          }
641      }
642      /* Is slot0 empty and slot1 used? */
643      if ((!slot0_found) && slot1_found) {
644          /* Then push it to slot0 */
645          pkt->insn[slot1_iidx].slot = 0;
646      }
647  
648      return has_valid_slot_assignment(pkt);
649  }
650  
651  /*
652   * decode_packet
653   * Decodes packet with given words
654   * Returns 0 on insufficient words,
655   * or number of words used on success
656   */
657  
decode_packet(DisasContext * ctx,int max_words,const uint32_t * words,Packet * pkt,bool disas_only)658  int decode_packet(DisasContext *ctx, int max_words, const uint32_t *words,
659                    Packet *pkt, bool disas_only)
660  {
661      int num_insns = 0;
662      int words_read = 0;
663      bool end_of_packet = false;
664      int new_insns = 0;
665      int i;
666      uint32_t encoding32;
667  
668      /* Initialize */
669      memset(pkt, 0, sizeof(*pkt));
670      /* Try to build packet */
671      while (!end_of_packet && (words_read < max_words)) {
672          Insn *insn = &pkt->insn[num_insns];
673          ctx->insn = insn;
674          encoding32 = words[words_read];
675          end_of_packet = is_packet_end(encoding32);
676          new_insns = decode_insns(ctx, insn, encoding32);
677          g_assert(new_insns > 0);
678          /*
679           * If we saw an extender, mark next word extended so immediate
680           * decode works
681           */
682          if (pkt->insn[num_insns].opcode == A4_ext) {
683              pkt->insn[num_insns + 1].extension_valid = true;
684          }
685          num_insns += new_insns;
686          words_read++;
687      }
688  
689      pkt->num_insns = num_insns;
690      if (!end_of_packet) {
691          /* Ran out of words! */
692          return 0;
693      }
694      pkt->encod_pkt_size_in_bytes = words_read * 4;
695      pkt->pkt_has_hvx = false;
696      for (i = 0; i < num_insns; i++) {
697          pkt->pkt_has_hvx |=
698              GET_ATTRIB(pkt->insn[i].opcode, A_CVI);
699      }
700  
701      /*
702       * Check for :endloop in the parse bits
703       * Section 10.6 of the Programmer's Reference describes the encoding
704       *     The end of hardware loop 0 can be encoded with 2 words
705       *     The end of hardware loop 1 needs 3 words
706       */
707      if ((words_read == 2) && (decode_parsebits_is_loopend(words[0]))) {
708          decode_add_endloop_insn(&pkt->insn[pkt->num_insns++], 0);
709      }
710      if (words_read >= 3) {
711          bool has_loop0, has_loop1;
712          has_loop0 = decode_parsebits_is_loopend(words[0]);
713          has_loop1 = decode_parsebits_is_loopend(words[1]);
714          if (has_loop0 && has_loop1) {
715              decode_add_endloop_insn(&pkt->insn[pkt->num_insns++], 10);
716          } else if (has_loop1) {
717              decode_add_endloop_insn(&pkt->insn[pkt->num_insns++], 1);
718          } else if (has_loop0) {
719              decode_add_endloop_insn(&pkt->insn[pkt->num_insns++], 0);
720          }
721      }
722  
723      decode_apply_extenders(pkt);
724      if (!disas_only) {
725          decode_remove_extenders(pkt);
726          if (!decode_set_slot_number(pkt)) {
727              /* Invalid packet */
728              return 0;
729          }
730      }
731      decode_fill_newvalue_regno(pkt);
732  
733      if (pkt->pkt_has_hvx) {
734          mmvec_ext_decode_checks(pkt, disas_only);
735      }
736  
737      if (!disas_only) {
738          decode_shuffle_for_execution(pkt);
739          decode_split_cmpjump(pkt);
740          decode_set_insn_attr_fields(pkt);
741      }
742  
743      return words_read;
744  }
745  
746  /* Used for "-d in_asm" logging */
disassemble_hexagon(uint32_t * words,int nwords,bfd_vma pc,GString * buf)747  int disassemble_hexagon(uint32_t *words, int nwords, bfd_vma pc,
748                          GString *buf)
749  {
750      DisasContext ctx;
751      Packet pkt;
752  
753      memset(&ctx, 0, sizeof(DisasContext));
754      ctx.pkt = &pkt;
755  
756      if (decode_packet(&ctx, nwords, words, &pkt, true) > 0) {
757          snprint_a_pkt_disas(buf, &pkt, words, pc);
758          return pkt.encod_pkt_size_in_bytes;
759      } else {
760          g_string_assign(buf, "<invalid>");
761          return 0;
762      }
763  }
764