1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 1993 by Theodore Ts'o.
4 */
5 #include <linux/module.h>
6 #include <linux/moduleparam.h>
7 #include <linux/sched.h>
8 #include <linux/fs.h>
9 #include <linux/pagemap.h>
10 #include <linux/file.h>
11 #include <linux/stat.h>
12 #include <linux/errno.h>
13 #include <linux/major.h>
14 #include <linux/wait.h>
15 #include <linux/blkpg.h>
16 #include <linux/init.h>
17 #include <linux/swap.h>
18 #include <linux/slab.h>
19 #include <linux/compat.h>
20 #include <linux/suspend.h>
21 #include <linux/freezer.h>
22 #include <linux/mutex.h>
23 #include <linux/writeback.h>
24 #include <linux/completion.h>
25 #include <linux/highmem.h>
26 #include <linux/splice.h>
27 #include <linux/sysfs.h>
28 #include <linux/miscdevice.h>
29 #include <linux/falloc.h>
30 #include <linux/uio.h>
31 #include <linux/ioprio.h>
32 #include <linux/blk-cgroup.h>
33 #include <linux/sched/mm.h>
34 #include <linux/statfs.h>
35 #include <linux/uaccess.h>
36 #include <linux/blk-mq.h>
37 #include <linux/spinlock.h>
38 #include <uapi/linux/loop.h>
39
40 /* Possible states of device */
41 enum {
42 Lo_unbound,
43 Lo_bound,
44 Lo_rundown,
45 Lo_deleting,
46 };
47
48 struct loop_func_table;
49
50 struct loop_device {
51 int lo_number;
52 loff_t lo_offset;
53 loff_t lo_sizelimit;
54 int lo_flags;
55 char lo_file_name[LO_NAME_SIZE];
56
57 struct file * lo_backing_file;
58 struct block_device *lo_device;
59
60 gfp_t old_gfp_mask;
61
62 spinlock_t lo_lock;
63 int lo_state;
64 spinlock_t lo_work_lock;
65 struct workqueue_struct *workqueue;
66 struct work_struct rootcg_work;
67 struct list_head rootcg_cmd_list;
68 struct list_head idle_worker_list;
69 struct rb_root worker_tree;
70 struct timer_list timer;
71 bool use_dio;
72 bool sysfs_inited;
73
74 struct request_queue *lo_queue;
75 struct blk_mq_tag_set tag_set;
76 struct gendisk *lo_disk;
77 struct mutex lo_mutex;
78 bool idr_visible;
79 };
80
81 struct loop_cmd {
82 struct list_head list_entry;
83 bool use_aio; /* use AIO interface to handle I/O */
84 atomic_t ref; /* only for aio */
85 long ret;
86 struct kiocb iocb;
87 struct bio_vec *bvec;
88 struct cgroup_subsys_state *blkcg_css;
89 struct cgroup_subsys_state *memcg_css;
90 };
91
92 #define LOOP_IDLE_WORKER_TIMEOUT (60 * HZ)
93 #define LOOP_DEFAULT_HW_Q_DEPTH 128
94
95 static DEFINE_IDR(loop_index_idr);
96 static DEFINE_MUTEX(loop_ctl_mutex);
97 static DEFINE_MUTEX(loop_validate_mutex);
98
99 /**
100 * loop_global_lock_killable() - take locks for safe loop_validate_file() test
101 *
102 * @lo: struct loop_device
103 * @global: true if @lo is about to bind another "struct loop_device", false otherwise
104 *
105 * Returns 0 on success, -EINTR otherwise.
106 *
107 * Since loop_validate_file() traverses on other "struct loop_device" if
108 * is_loop_device() is true, we need a global lock for serializing concurrent
109 * loop_configure()/loop_change_fd()/__loop_clr_fd() calls.
110 */
loop_global_lock_killable(struct loop_device * lo,bool global)111 static int loop_global_lock_killable(struct loop_device *lo, bool global)
112 {
113 int err;
114
115 if (global) {
116 err = mutex_lock_killable(&loop_validate_mutex);
117 if (err)
118 return err;
119 }
120 err = mutex_lock_killable(&lo->lo_mutex);
121 if (err && global)
122 mutex_unlock(&loop_validate_mutex);
123 return err;
124 }
125
126 /**
127 * loop_global_unlock() - release locks taken by loop_global_lock_killable()
128 *
129 * @lo: struct loop_device
130 * @global: true if @lo was about to bind another "struct loop_device", false otherwise
131 */
loop_global_unlock(struct loop_device * lo,bool global)132 static void loop_global_unlock(struct loop_device *lo, bool global)
133 {
134 mutex_unlock(&lo->lo_mutex);
135 if (global)
136 mutex_unlock(&loop_validate_mutex);
137 }
138
139 static int max_part;
140 static int part_shift;
141
get_size(loff_t offset,loff_t sizelimit,struct file * file)142 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
143 {
144 loff_t loopsize;
145
146 /* Compute loopsize in bytes */
147 loopsize = i_size_read(file->f_mapping->host);
148 if (offset > 0)
149 loopsize -= offset;
150 /* offset is beyond i_size, weird but possible */
151 if (loopsize < 0)
152 return 0;
153
154 if (sizelimit > 0 && sizelimit < loopsize)
155 loopsize = sizelimit;
156 /*
157 * Unfortunately, if we want to do I/O on the device,
158 * the number of 512-byte sectors has to fit into a sector_t.
159 */
160 return loopsize >> 9;
161 }
162
get_loop_size(struct loop_device * lo,struct file * file)163 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
164 {
165 return get_size(lo->lo_offset, lo->lo_sizelimit, file);
166 }
167
168 /*
169 * We support direct I/O only if lo_offset is aligned with the logical I/O size
170 * of backing device, and the logical block size of loop is bigger than that of
171 * the backing device.
172 */
lo_bdev_can_use_dio(struct loop_device * lo,struct block_device * backing_bdev)173 static bool lo_bdev_can_use_dio(struct loop_device *lo,
174 struct block_device *backing_bdev)
175 {
176 unsigned short sb_bsize = bdev_logical_block_size(backing_bdev);
177
178 if (queue_logical_block_size(lo->lo_queue) < sb_bsize)
179 return false;
180 if (lo->lo_offset & (sb_bsize - 1))
181 return false;
182 return true;
183 }
184
__loop_update_dio(struct loop_device * lo,bool dio)185 static void __loop_update_dio(struct loop_device *lo, bool dio)
186 {
187 struct file *file = lo->lo_backing_file;
188 struct inode *inode = file->f_mapping->host;
189 struct block_device *backing_bdev = NULL;
190 bool use_dio;
191
192 if (S_ISBLK(inode->i_mode))
193 backing_bdev = I_BDEV(inode);
194 else if (inode->i_sb->s_bdev)
195 backing_bdev = inode->i_sb->s_bdev;
196
197 use_dio = dio && (file->f_mode & FMODE_CAN_ODIRECT) &&
198 (!backing_bdev || lo_bdev_can_use_dio(lo, backing_bdev));
199
200 if (lo->use_dio == use_dio)
201 return;
202
203 /* flush dirty pages before changing direct IO */
204 vfs_fsync(file, 0);
205
206 /*
207 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
208 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
209 * will get updated by ioctl(LOOP_GET_STATUS)
210 */
211 if (lo->lo_state == Lo_bound)
212 blk_mq_freeze_queue(lo->lo_queue);
213 lo->use_dio = use_dio;
214 if (use_dio)
215 lo->lo_flags |= LO_FLAGS_DIRECT_IO;
216 else
217 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
218 if (lo->lo_state == Lo_bound)
219 blk_mq_unfreeze_queue(lo->lo_queue);
220 }
221
222 /**
223 * loop_set_size() - sets device size and notifies userspace
224 * @lo: struct loop_device to set the size for
225 * @size: new size of the loop device
226 *
227 * Callers must validate that the size passed into this function fits into
228 * a sector_t, eg using loop_validate_size()
229 */
loop_set_size(struct loop_device * lo,loff_t size)230 static void loop_set_size(struct loop_device *lo, loff_t size)
231 {
232 if (!set_capacity_and_notify(lo->lo_disk, size))
233 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
234 }
235
lo_write_bvec(struct file * file,struct bio_vec * bvec,loff_t * ppos)236 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
237 {
238 struct iov_iter i;
239 ssize_t bw;
240
241 iov_iter_bvec(&i, ITER_SOURCE, bvec, 1, bvec->bv_len);
242
243 file_start_write(file);
244 bw = vfs_iter_write(file, &i, ppos, 0);
245 file_end_write(file);
246
247 if (likely(bw == bvec->bv_len))
248 return 0;
249
250 printk_ratelimited(KERN_ERR
251 "loop: Write error at byte offset %llu, length %i.\n",
252 (unsigned long long)*ppos, bvec->bv_len);
253 if (bw >= 0)
254 bw = -EIO;
255 return bw;
256 }
257
lo_write_simple(struct loop_device * lo,struct request * rq,loff_t pos)258 static int lo_write_simple(struct loop_device *lo, struct request *rq,
259 loff_t pos)
260 {
261 struct bio_vec bvec;
262 struct req_iterator iter;
263 int ret = 0;
264
265 rq_for_each_segment(bvec, rq, iter) {
266 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
267 if (ret < 0)
268 break;
269 cond_resched();
270 }
271
272 return ret;
273 }
274
lo_read_simple(struct loop_device * lo,struct request * rq,loff_t pos)275 static int lo_read_simple(struct loop_device *lo, struct request *rq,
276 loff_t pos)
277 {
278 struct bio_vec bvec;
279 struct req_iterator iter;
280 struct iov_iter i;
281 ssize_t len;
282
283 rq_for_each_segment(bvec, rq, iter) {
284 iov_iter_bvec(&i, ITER_DEST, &bvec, 1, bvec.bv_len);
285 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
286 if (len < 0)
287 return len;
288
289 flush_dcache_page(bvec.bv_page);
290
291 if (len != bvec.bv_len) {
292 struct bio *bio;
293
294 __rq_for_each_bio(bio, rq)
295 zero_fill_bio(bio);
296 break;
297 }
298 cond_resched();
299 }
300
301 return 0;
302 }
303
lo_fallocate(struct loop_device * lo,struct request * rq,loff_t pos,int mode)304 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos,
305 int mode)
306 {
307 /*
308 * We use fallocate to manipulate the space mappings used by the image
309 * a.k.a. discard/zerorange.
310 */
311 struct file *file = lo->lo_backing_file;
312 int ret;
313
314 mode |= FALLOC_FL_KEEP_SIZE;
315
316 if (!bdev_max_discard_sectors(lo->lo_device))
317 return -EOPNOTSUPP;
318
319 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
320 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
321 return -EIO;
322 return ret;
323 }
324
lo_req_flush(struct loop_device * lo,struct request * rq)325 static int lo_req_flush(struct loop_device *lo, struct request *rq)
326 {
327 int ret = vfs_fsync(lo->lo_backing_file, 0);
328 if (unlikely(ret && ret != -EINVAL))
329 ret = -EIO;
330
331 return ret;
332 }
333
lo_complete_rq(struct request * rq)334 static void lo_complete_rq(struct request *rq)
335 {
336 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
337 blk_status_t ret = BLK_STS_OK;
338
339 if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) ||
340 req_op(rq) != REQ_OP_READ) {
341 if (cmd->ret < 0)
342 ret = errno_to_blk_status(cmd->ret);
343 goto end_io;
344 }
345
346 /*
347 * Short READ - if we got some data, advance our request and
348 * retry it. If we got no data, end the rest with EIO.
349 */
350 if (cmd->ret) {
351 blk_update_request(rq, BLK_STS_OK, cmd->ret);
352 cmd->ret = 0;
353 blk_mq_requeue_request(rq, true);
354 } else {
355 if (cmd->use_aio) {
356 struct bio *bio = rq->bio;
357
358 while (bio) {
359 zero_fill_bio(bio);
360 bio = bio->bi_next;
361 }
362 }
363 ret = BLK_STS_IOERR;
364 end_io:
365 blk_mq_end_request(rq, ret);
366 }
367 }
368
lo_rw_aio_do_completion(struct loop_cmd * cmd)369 static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
370 {
371 struct request *rq = blk_mq_rq_from_pdu(cmd);
372
373 if (!atomic_dec_and_test(&cmd->ref))
374 return;
375 kfree(cmd->bvec);
376 cmd->bvec = NULL;
377 if (likely(!blk_should_fake_timeout(rq->q)))
378 blk_mq_complete_request(rq);
379 }
380
lo_rw_aio_complete(struct kiocb * iocb,long ret)381 static void lo_rw_aio_complete(struct kiocb *iocb, long ret)
382 {
383 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
384
385 cmd->ret = ret;
386 lo_rw_aio_do_completion(cmd);
387 }
388
lo_rw_aio(struct loop_device * lo,struct loop_cmd * cmd,loff_t pos,int rw)389 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
390 loff_t pos, int rw)
391 {
392 struct iov_iter iter;
393 struct req_iterator rq_iter;
394 struct bio_vec *bvec;
395 struct request *rq = blk_mq_rq_from_pdu(cmd);
396 struct bio *bio = rq->bio;
397 struct file *file = lo->lo_backing_file;
398 struct bio_vec tmp;
399 unsigned int offset;
400 int nr_bvec = 0;
401 int ret;
402
403 rq_for_each_bvec(tmp, rq, rq_iter)
404 nr_bvec++;
405
406 if (rq->bio != rq->biotail) {
407
408 bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec),
409 GFP_NOIO);
410 if (!bvec)
411 return -EIO;
412 cmd->bvec = bvec;
413
414 /*
415 * The bios of the request may be started from the middle of
416 * the 'bvec' because of bio splitting, so we can't directly
417 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec
418 * API will take care of all details for us.
419 */
420 rq_for_each_bvec(tmp, rq, rq_iter) {
421 *bvec = tmp;
422 bvec++;
423 }
424 bvec = cmd->bvec;
425 offset = 0;
426 } else {
427 /*
428 * Same here, this bio may be started from the middle of the
429 * 'bvec' because of bio splitting, so offset from the bvec
430 * must be passed to iov iterator
431 */
432 offset = bio->bi_iter.bi_bvec_done;
433 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
434 }
435 atomic_set(&cmd->ref, 2);
436
437 iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq));
438 iter.iov_offset = offset;
439
440 cmd->iocb.ki_pos = pos;
441 cmd->iocb.ki_filp = file;
442 cmd->iocb.ki_complete = lo_rw_aio_complete;
443 cmd->iocb.ki_flags = IOCB_DIRECT;
444 cmd->iocb.ki_ioprio = req_get_ioprio(rq);
445
446 if (rw == ITER_SOURCE)
447 ret = call_write_iter(file, &cmd->iocb, &iter);
448 else
449 ret = call_read_iter(file, &cmd->iocb, &iter);
450
451 lo_rw_aio_do_completion(cmd);
452
453 if (ret != -EIOCBQUEUED)
454 lo_rw_aio_complete(&cmd->iocb, ret);
455 return 0;
456 }
457
do_req_filebacked(struct loop_device * lo,struct request * rq)458 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
459 {
460 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
461 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
462
463 /*
464 * lo_write_simple and lo_read_simple should have been covered
465 * by io submit style function like lo_rw_aio(), one blocker
466 * is that lo_read_simple() need to call flush_dcache_page after
467 * the page is written from kernel, and it isn't easy to handle
468 * this in io submit style function which submits all segments
469 * of the req at one time. And direct read IO doesn't need to
470 * run flush_dcache_page().
471 */
472 switch (req_op(rq)) {
473 case REQ_OP_FLUSH:
474 return lo_req_flush(lo, rq);
475 case REQ_OP_WRITE_ZEROES:
476 /*
477 * If the caller doesn't want deallocation, call zeroout to
478 * write zeroes the range. Otherwise, punch them out.
479 */
480 return lo_fallocate(lo, rq, pos,
481 (rq->cmd_flags & REQ_NOUNMAP) ?
482 FALLOC_FL_ZERO_RANGE :
483 FALLOC_FL_PUNCH_HOLE);
484 case REQ_OP_DISCARD:
485 return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE);
486 case REQ_OP_WRITE:
487 if (cmd->use_aio)
488 return lo_rw_aio(lo, cmd, pos, ITER_SOURCE);
489 else
490 return lo_write_simple(lo, rq, pos);
491 case REQ_OP_READ:
492 if (cmd->use_aio)
493 return lo_rw_aio(lo, cmd, pos, ITER_DEST);
494 else
495 return lo_read_simple(lo, rq, pos);
496 default:
497 WARN_ON_ONCE(1);
498 return -EIO;
499 }
500 }
501
loop_update_dio(struct loop_device * lo)502 static inline void loop_update_dio(struct loop_device *lo)
503 {
504 __loop_update_dio(lo, (lo->lo_backing_file->f_flags & O_DIRECT) |
505 lo->use_dio);
506 }
507
loop_reread_partitions(struct loop_device * lo)508 static void loop_reread_partitions(struct loop_device *lo)
509 {
510 int rc;
511
512 mutex_lock(&lo->lo_disk->open_mutex);
513 rc = bdev_disk_changed(lo->lo_disk, false);
514 mutex_unlock(&lo->lo_disk->open_mutex);
515 if (rc)
516 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
517 __func__, lo->lo_number, lo->lo_file_name, rc);
518 }
519
is_loop_device(struct file * file)520 static inline int is_loop_device(struct file *file)
521 {
522 struct inode *i = file->f_mapping->host;
523
524 return i && S_ISBLK(i->i_mode) && imajor(i) == LOOP_MAJOR;
525 }
526
loop_validate_file(struct file * file,struct block_device * bdev)527 static int loop_validate_file(struct file *file, struct block_device *bdev)
528 {
529 struct inode *inode = file->f_mapping->host;
530 struct file *f = file;
531
532 /* Avoid recursion */
533 while (is_loop_device(f)) {
534 struct loop_device *l;
535
536 lockdep_assert_held(&loop_validate_mutex);
537 if (f->f_mapping->host->i_rdev == bdev->bd_dev)
538 return -EBADF;
539
540 l = I_BDEV(f->f_mapping->host)->bd_disk->private_data;
541 if (l->lo_state != Lo_bound)
542 return -EINVAL;
543 /* Order wrt setting lo->lo_backing_file in loop_configure(). */
544 rmb();
545 f = l->lo_backing_file;
546 }
547 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
548 return -EINVAL;
549 return 0;
550 }
551
552 /*
553 * loop_change_fd switched the backing store of a loopback device to
554 * a new file. This is useful for operating system installers to free up
555 * the original file and in High Availability environments to switch to
556 * an alternative location for the content in case of server meltdown.
557 * This can only work if the loop device is used read-only, and if the
558 * new backing store is the same size and type as the old backing store.
559 */
loop_change_fd(struct loop_device * lo,struct block_device * bdev,unsigned int arg)560 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
561 unsigned int arg)
562 {
563 struct file *file = fget(arg);
564 struct file *old_file;
565 int error;
566 bool partscan;
567 bool is_loop;
568
569 if (!file)
570 return -EBADF;
571
572 /* suppress uevents while reconfiguring the device */
573 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1);
574
575 is_loop = is_loop_device(file);
576 error = loop_global_lock_killable(lo, is_loop);
577 if (error)
578 goto out_putf;
579 error = -ENXIO;
580 if (lo->lo_state != Lo_bound)
581 goto out_err;
582
583 /* the loop device has to be read-only */
584 error = -EINVAL;
585 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
586 goto out_err;
587
588 error = loop_validate_file(file, bdev);
589 if (error)
590 goto out_err;
591
592 old_file = lo->lo_backing_file;
593
594 error = -EINVAL;
595
596 /* size of the new backing store needs to be the same */
597 if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
598 goto out_err;
599
600 /* and ... switch */
601 disk_force_media_change(lo->lo_disk);
602 blk_mq_freeze_queue(lo->lo_queue);
603 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
604 lo->lo_backing_file = file;
605 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
606 mapping_set_gfp_mask(file->f_mapping,
607 lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
608 loop_update_dio(lo);
609 blk_mq_unfreeze_queue(lo->lo_queue);
610 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
611 loop_global_unlock(lo, is_loop);
612
613 /*
614 * Flush loop_validate_file() before fput(), for l->lo_backing_file
615 * might be pointing at old_file which might be the last reference.
616 */
617 if (!is_loop) {
618 mutex_lock(&loop_validate_mutex);
619 mutex_unlock(&loop_validate_mutex);
620 }
621 /*
622 * We must drop file reference outside of lo_mutex as dropping
623 * the file ref can take open_mutex which creates circular locking
624 * dependency.
625 */
626 fput(old_file);
627 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0);
628 if (partscan)
629 loop_reread_partitions(lo);
630
631 error = 0;
632 done:
633 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
634 return error;
635
636 out_err:
637 loop_global_unlock(lo, is_loop);
638 out_putf:
639 fput(file);
640 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0);
641 goto done;
642 }
643
644 /* loop sysfs attributes */
645
loop_attr_show(struct device * dev,char * page,ssize_t (* callback)(struct loop_device *,char *))646 static ssize_t loop_attr_show(struct device *dev, char *page,
647 ssize_t (*callback)(struct loop_device *, char *))
648 {
649 struct gendisk *disk = dev_to_disk(dev);
650 struct loop_device *lo = disk->private_data;
651
652 return callback(lo, page);
653 }
654
655 #define LOOP_ATTR_RO(_name) \
656 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
657 static ssize_t loop_attr_do_show_##_name(struct device *d, \
658 struct device_attribute *attr, char *b) \
659 { \
660 return loop_attr_show(d, b, loop_attr_##_name##_show); \
661 } \
662 static struct device_attribute loop_attr_##_name = \
663 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
664
loop_attr_backing_file_show(struct loop_device * lo,char * buf)665 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
666 {
667 ssize_t ret;
668 char *p = NULL;
669
670 spin_lock_irq(&lo->lo_lock);
671 if (lo->lo_backing_file)
672 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
673 spin_unlock_irq(&lo->lo_lock);
674
675 if (IS_ERR_OR_NULL(p))
676 ret = PTR_ERR(p);
677 else {
678 ret = strlen(p);
679 memmove(buf, p, ret);
680 buf[ret++] = '\n';
681 buf[ret] = 0;
682 }
683
684 return ret;
685 }
686
loop_attr_offset_show(struct loop_device * lo,char * buf)687 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
688 {
689 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_offset);
690 }
691
loop_attr_sizelimit_show(struct loop_device * lo,char * buf)692 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
693 {
694 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
695 }
696
loop_attr_autoclear_show(struct loop_device * lo,char * buf)697 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
698 {
699 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
700
701 return sysfs_emit(buf, "%s\n", autoclear ? "1" : "0");
702 }
703
loop_attr_partscan_show(struct loop_device * lo,char * buf)704 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
705 {
706 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
707
708 return sysfs_emit(buf, "%s\n", partscan ? "1" : "0");
709 }
710
loop_attr_dio_show(struct loop_device * lo,char * buf)711 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
712 {
713 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
714
715 return sysfs_emit(buf, "%s\n", dio ? "1" : "0");
716 }
717
718 LOOP_ATTR_RO(backing_file);
719 LOOP_ATTR_RO(offset);
720 LOOP_ATTR_RO(sizelimit);
721 LOOP_ATTR_RO(autoclear);
722 LOOP_ATTR_RO(partscan);
723 LOOP_ATTR_RO(dio);
724
725 static struct attribute *loop_attrs[] = {
726 &loop_attr_backing_file.attr,
727 &loop_attr_offset.attr,
728 &loop_attr_sizelimit.attr,
729 &loop_attr_autoclear.attr,
730 &loop_attr_partscan.attr,
731 &loop_attr_dio.attr,
732 NULL,
733 };
734
735 static struct attribute_group loop_attribute_group = {
736 .name = "loop",
737 .attrs= loop_attrs,
738 };
739
loop_sysfs_init(struct loop_device * lo)740 static void loop_sysfs_init(struct loop_device *lo)
741 {
742 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
743 &loop_attribute_group);
744 }
745
loop_sysfs_exit(struct loop_device * lo)746 static void loop_sysfs_exit(struct loop_device *lo)
747 {
748 if (lo->sysfs_inited)
749 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
750 &loop_attribute_group);
751 }
752
loop_config_discard(struct loop_device * lo)753 static void loop_config_discard(struct loop_device *lo)
754 {
755 struct file *file = lo->lo_backing_file;
756 struct inode *inode = file->f_mapping->host;
757 struct request_queue *q = lo->lo_queue;
758 u32 granularity, max_discard_sectors;
759
760 /*
761 * If the backing device is a block device, mirror its zeroing
762 * capability. Set the discard sectors to the block device's zeroing
763 * capabilities because loop discards result in blkdev_issue_zeroout(),
764 * not blkdev_issue_discard(). This maintains consistent behavior with
765 * file-backed loop devices: discarded regions read back as zero.
766 */
767 if (S_ISBLK(inode->i_mode)) {
768 struct request_queue *backingq = bdev_get_queue(I_BDEV(inode));
769
770 max_discard_sectors = backingq->limits.max_write_zeroes_sectors;
771 granularity = bdev_discard_granularity(I_BDEV(inode)) ?:
772 queue_physical_block_size(backingq);
773
774 /*
775 * We use punch hole to reclaim the free space used by the
776 * image a.k.a. discard.
777 */
778 } else if (!file->f_op->fallocate) {
779 max_discard_sectors = 0;
780 granularity = 0;
781
782 } else {
783 struct kstatfs sbuf;
784
785 max_discard_sectors = UINT_MAX >> 9;
786 if (!vfs_statfs(&file->f_path, &sbuf))
787 granularity = sbuf.f_bsize;
788 else
789 max_discard_sectors = 0;
790 }
791
792 if (max_discard_sectors) {
793 q->limits.discard_granularity = granularity;
794 blk_queue_max_discard_sectors(q, max_discard_sectors);
795 blk_queue_max_write_zeroes_sectors(q, max_discard_sectors);
796 } else {
797 q->limits.discard_granularity = 0;
798 blk_queue_max_discard_sectors(q, 0);
799 blk_queue_max_write_zeroes_sectors(q, 0);
800 }
801 }
802
803 struct loop_worker {
804 struct rb_node rb_node;
805 struct work_struct work;
806 struct list_head cmd_list;
807 struct list_head idle_list;
808 struct loop_device *lo;
809 struct cgroup_subsys_state *blkcg_css;
810 unsigned long last_ran_at;
811 };
812
813 static void loop_workfn(struct work_struct *work);
814
815 #ifdef CONFIG_BLK_CGROUP
queue_on_root_worker(struct cgroup_subsys_state * css)816 static inline int queue_on_root_worker(struct cgroup_subsys_state *css)
817 {
818 return !css || css == blkcg_root_css;
819 }
820 #else
queue_on_root_worker(struct cgroup_subsys_state * css)821 static inline int queue_on_root_worker(struct cgroup_subsys_state *css)
822 {
823 return !css;
824 }
825 #endif
826
loop_queue_work(struct loop_device * lo,struct loop_cmd * cmd)827 static void loop_queue_work(struct loop_device *lo, struct loop_cmd *cmd)
828 {
829 struct rb_node **node, *parent = NULL;
830 struct loop_worker *cur_worker, *worker = NULL;
831 struct work_struct *work;
832 struct list_head *cmd_list;
833
834 spin_lock_irq(&lo->lo_work_lock);
835
836 if (queue_on_root_worker(cmd->blkcg_css))
837 goto queue_work;
838
839 node = &lo->worker_tree.rb_node;
840
841 while (*node) {
842 parent = *node;
843 cur_worker = container_of(*node, struct loop_worker, rb_node);
844 if (cur_worker->blkcg_css == cmd->blkcg_css) {
845 worker = cur_worker;
846 break;
847 } else if ((long)cur_worker->blkcg_css < (long)cmd->blkcg_css) {
848 node = &(*node)->rb_left;
849 } else {
850 node = &(*node)->rb_right;
851 }
852 }
853 if (worker)
854 goto queue_work;
855
856 worker = kzalloc(sizeof(struct loop_worker), GFP_NOWAIT | __GFP_NOWARN);
857 /*
858 * In the event we cannot allocate a worker, just queue on the
859 * rootcg worker and issue the I/O as the rootcg
860 */
861 if (!worker) {
862 cmd->blkcg_css = NULL;
863 if (cmd->memcg_css)
864 css_put(cmd->memcg_css);
865 cmd->memcg_css = NULL;
866 goto queue_work;
867 }
868
869 worker->blkcg_css = cmd->blkcg_css;
870 css_get(worker->blkcg_css);
871 INIT_WORK(&worker->work, loop_workfn);
872 INIT_LIST_HEAD(&worker->cmd_list);
873 INIT_LIST_HEAD(&worker->idle_list);
874 worker->lo = lo;
875 rb_link_node(&worker->rb_node, parent, node);
876 rb_insert_color(&worker->rb_node, &lo->worker_tree);
877 queue_work:
878 if (worker) {
879 /*
880 * We need to remove from the idle list here while
881 * holding the lock so that the idle timer doesn't
882 * free the worker
883 */
884 if (!list_empty(&worker->idle_list))
885 list_del_init(&worker->idle_list);
886 work = &worker->work;
887 cmd_list = &worker->cmd_list;
888 } else {
889 work = &lo->rootcg_work;
890 cmd_list = &lo->rootcg_cmd_list;
891 }
892 list_add_tail(&cmd->list_entry, cmd_list);
893 queue_work(lo->workqueue, work);
894 spin_unlock_irq(&lo->lo_work_lock);
895 }
896
loop_set_timer(struct loop_device * lo)897 static void loop_set_timer(struct loop_device *lo)
898 {
899 timer_reduce(&lo->timer, jiffies + LOOP_IDLE_WORKER_TIMEOUT);
900 }
901
loop_free_idle_workers(struct loop_device * lo,bool delete_all)902 static void loop_free_idle_workers(struct loop_device *lo, bool delete_all)
903 {
904 struct loop_worker *pos, *worker;
905
906 spin_lock_irq(&lo->lo_work_lock);
907 list_for_each_entry_safe(worker, pos, &lo->idle_worker_list,
908 idle_list) {
909 if (!delete_all &&
910 time_is_after_jiffies(worker->last_ran_at +
911 LOOP_IDLE_WORKER_TIMEOUT))
912 break;
913 list_del(&worker->idle_list);
914 rb_erase(&worker->rb_node, &lo->worker_tree);
915 css_put(worker->blkcg_css);
916 kfree(worker);
917 }
918 if (!list_empty(&lo->idle_worker_list))
919 loop_set_timer(lo);
920 spin_unlock_irq(&lo->lo_work_lock);
921 }
922
loop_free_idle_workers_timer(struct timer_list * timer)923 static void loop_free_idle_workers_timer(struct timer_list *timer)
924 {
925 struct loop_device *lo = container_of(timer, struct loop_device, timer);
926
927 return loop_free_idle_workers(lo, false);
928 }
929
loop_update_rotational(struct loop_device * lo)930 static void loop_update_rotational(struct loop_device *lo)
931 {
932 struct file *file = lo->lo_backing_file;
933 struct inode *file_inode = file->f_mapping->host;
934 struct block_device *file_bdev = file_inode->i_sb->s_bdev;
935 struct request_queue *q = lo->lo_queue;
936 bool nonrot = true;
937
938 /* not all filesystems (e.g. tmpfs) have a sb->s_bdev */
939 if (file_bdev)
940 nonrot = bdev_nonrot(file_bdev);
941
942 if (nonrot)
943 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
944 else
945 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
946 }
947
948 /**
949 * loop_set_status_from_info - configure device from loop_info
950 * @lo: struct loop_device to configure
951 * @info: struct loop_info64 to configure the device with
952 *
953 * Configures the loop device parameters according to the passed
954 * in loop_info64 configuration.
955 */
956 static int
loop_set_status_from_info(struct loop_device * lo,const struct loop_info64 * info)957 loop_set_status_from_info(struct loop_device *lo,
958 const struct loop_info64 *info)
959 {
960 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
961 return -EINVAL;
962
963 switch (info->lo_encrypt_type) {
964 case LO_CRYPT_NONE:
965 break;
966 case LO_CRYPT_XOR:
967 pr_warn("support for the xor transformation has been removed.\n");
968 return -EINVAL;
969 case LO_CRYPT_CRYPTOAPI:
970 pr_warn("support for cryptoloop has been removed. Use dm-crypt instead.\n");
971 return -EINVAL;
972 default:
973 return -EINVAL;
974 }
975
976 /* Avoid assigning overflow values */
977 if (info->lo_offset > LLONG_MAX || info->lo_sizelimit > LLONG_MAX)
978 return -EOVERFLOW;
979
980 lo->lo_offset = info->lo_offset;
981 lo->lo_sizelimit = info->lo_sizelimit;
982
983 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
984 lo->lo_file_name[LO_NAME_SIZE-1] = 0;
985 lo->lo_flags = info->lo_flags;
986 return 0;
987 }
988
loop_configure(struct loop_device * lo,blk_mode_t mode,struct block_device * bdev,const struct loop_config * config)989 static int loop_configure(struct loop_device *lo, blk_mode_t mode,
990 struct block_device *bdev,
991 const struct loop_config *config)
992 {
993 struct file *file = fget(config->fd);
994 struct inode *inode;
995 struct address_space *mapping;
996 int error;
997 loff_t size;
998 bool partscan;
999 unsigned short bsize;
1000 bool is_loop;
1001
1002 if (!file)
1003 return -EBADF;
1004 is_loop = is_loop_device(file);
1005
1006 /* This is safe, since we have a reference from open(). */
1007 __module_get(THIS_MODULE);
1008
1009 /*
1010 * If we don't hold exclusive handle for the device, upgrade to it
1011 * here to avoid changing device under exclusive owner.
1012 */
1013 if (!(mode & BLK_OPEN_EXCL)) {
1014 error = bd_prepare_to_claim(bdev, loop_configure, NULL);
1015 if (error)
1016 goto out_putf;
1017 }
1018
1019 error = loop_global_lock_killable(lo, is_loop);
1020 if (error)
1021 goto out_bdev;
1022
1023 error = -EBUSY;
1024 if (lo->lo_state != Lo_unbound)
1025 goto out_unlock;
1026
1027 error = loop_validate_file(file, bdev);
1028 if (error)
1029 goto out_unlock;
1030
1031 mapping = file->f_mapping;
1032 inode = mapping->host;
1033
1034 if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) {
1035 error = -EINVAL;
1036 goto out_unlock;
1037 }
1038
1039 if (config->block_size) {
1040 error = blk_validate_block_size(config->block_size);
1041 if (error)
1042 goto out_unlock;
1043 }
1044
1045 error = loop_set_status_from_info(lo, &config->info);
1046 if (error)
1047 goto out_unlock;
1048
1049 if (!(file->f_mode & FMODE_WRITE) || !(mode & BLK_OPEN_WRITE) ||
1050 !file->f_op->write_iter)
1051 lo->lo_flags |= LO_FLAGS_READ_ONLY;
1052
1053 if (!lo->workqueue) {
1054 lo->workqueue = alloc_workqueue("loop%d",
1055 WQ_UNBOUND | WQ_FREEZABLE,
1056 0, lo->lo_number);
1057 if (!lo->workqueue) {
1058 error = -ENOMEM;
1059 goto out_unlock;
1060 }
1061 }
1062
1063 /* suppress uevents while reconfiguring the device */
1064 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1);
1065
1066 disk_force_media_change(lo->lo_disk);
1067 set_disk_ro(lo->lo_disk, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0);
1068
1069 lo->use_dio = lo->lo_flags & LO_FLAGS_DIRECT_IO;
1070 lo->lo_device = bdev;
1071 lo->lo_backing_file = file;
1072 lo->old_gfp_mask = mapping_gfp_mask(mapping);
1073 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
1074
1075 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
1076 blk_queue_write_cache(lo->lo_queue, true, false);
1077
1078 if (config->block_size)
1079 bsize = config->block_size;
1080 else if ((lo->lo_backing_file->f_flags & O_DIRECT) && inode->i_sb->s_bdev)
1081 /* In case of direct I/O, match underlying block size */
1082 bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
1083 else
1084 bsize = 512;
1085
1086 blk_queue_logical_block_size(lo->lo_queue, bsize);
1087 blk_queue_physical_block_size(lo->lo_queue, bsize);
1088 blk_queue_io_min(lo->lo_queue, bsize);
1089
1090 loop_config_discard(lo);
1091 loop_update_rotational(lo);
1092 loop_update_dio(lo);
1093 loop_sysfs_init(lo);
1094
1095 size = get_loop_size(lo, file);
1096 loop_set_size(lo, size);
1097
1098 /* Order wrt reading lo_state in loop_validate_file(). */
1099 wmb();
1100
1101 lo->lo_state = Lo_bound;
1102 if (part_shift)
1103 lo->lo_flags |= LO_FLAGS_PARTSCAN;
1104 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
1105 if (partscan)
1106 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state);
1107
1108 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0);
1109 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
1110
1111 loop_global_unlock(lo, is_loop);
1112 if (partscan)
1113 loop_reread_partitions(lo);
1114
1115 if (!(mode & BLK_OPEN_EXCL))
1116 bd_abort_claiming(bdev, loop_configure);
1117
1118 return 0;
1119
1120 out_unlock:
1121 loop_global_unlock(lo, is_loop);
1122 out_bdev:
1123 if (!(mode & BLK_OPEN_EXCL))
1124 bd_abort_claiming(bdev, loop_configure);
1125 out_putf:
1126 fput(file);
1127 /* This is safe: open() is still holding a reference. */
1128 module_put(THIS_MODULE);
1129 return error;
1130 }
1131
__loop_clr_fd(struct loop_device * lo,bool release)1132 static void __loop_clr_fd(struct loop_device *lo, bool release)
1133 {
1134 struct file *filp;
1135 gfp_t gfp = lo->old_gfp_mask;
1136
1137 if (test_bit(QUEUE_FLAG_WC, &lo->lo_queue->queue_flags))
1138 blk_queue_write_cache(lo->lo_queue, false, false);
1139
1140 /*
1141 * Freeze the request queue when unbinding on a live file descriptor and
1142 * thus an open device. When called from ->release we are guaranteed
1143 * that there is no I/O in progress already.
1144 */
1145 if (!release)
1146 blk_mq_freeze_queue(lo->lo_queue);
1147
1148 spin_lock_irq(&lo->lo_lock);
1149 filp = lo->lo_backing_file;
1150 lo->lo_backing_file = NULL;
1151 spin_unlock_irq(&lo->lo_lock);
1152
1153 lo->lo_device = NULL;
1154 lo->lo_offset = 0;
1155 lo->lo_sizelimit = 0;
1156 memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1157 blk_queue_logical_block_size(lo->lo_queue, 512);
1158 blk_queue_physical_block_size(lo->lo_queue, 512);
1159 blk_queue_io_min(lo->lo_queue, 512);
1160 invalidate_disk(lo->lo_disk);
1161 loop_sysfs_exit(lo);
1162 /* let user-space know about this change */
1163 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
1164 mapping_set_gfp_mask(filp->f_mapping, gfp);
1165 /* This is safe: open() is still holding a reference. */
1166 module_put(THIS_MODULE);
1167 if (!release)
1168 blk_mq_unfreeze_queue(lo->lo_queue);
1169
1170 disk_force_media_change(lo->lo_disk);
1171
1172 if (lo->lo_flags & LO_FLAGS_PARTSCAN) {
1173 int err;
1174
1175 /*
1176 * open_mutex has been held already in release path, so don't
1177 * acquire it if this function is called in such case.
1178 *
1179 * If the reread partition isn't from release path, lo_refcnt
1180 * must be at least one and it can only become zero when the
1181 * current holder is released.
1182 */
1183 if (!release)
1184 mutex_lock(&lo->lo_disk->open_mutex);
1185 err = bdev_disk_changed(lo->lo_disk, false);
1186 if (!release)
1187 mutex_unlock(&lo->lo_disk->open_mutex);
1188 if (err)
1189 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n",
1190 __func__, lo->lo_number, err);
1191 /* Device is gone, no point in returning error */
1192 }
1193
1194 /*
1195 * lo->lo_state is set to Lo_unbound here after above partscan has
1196 * finished. There cannot be anybody else entering __loop_clr_fd() as
1197 * Lo_rundown state protects us from all the other places trying to
1198 * change the 'lo' device.
1199 */
1200 lo->lo_flags = 0;
1201 if (!part_shift)
1202 set_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state);
1203 mutex_lock(&lo->lo_mutex);
1204 lo->lo_state = Lo_unbound;
1205 mutex_unlock(&lo->lo_mutex);
1206
1207 /*
1208 * Need not hold lo_mutex to fput backing file. Calling fput holding
1209 * lo_mutex triggers a circular lock dependency possibility warning as
1210 * fput can take open_mutex which is usually taken before lo_mutex.
1211 */
1212 fput(filp);
1213 }
1214
loop_clr_fd(struct loop_device * lo)1215 static int loop_clr_fd(struct loop_device *lo)
1216 {
1217 int err;
1218
1219 /*
1220 * Since lo_ioctl() is called without locks held, it is possible that
1221 * loop_configure()/loop_change_fd() and loop_clr_fd() run in parallel.
1222 *
1223 * Therefore, use global lock when setting Lo_rundown state in order to
1224 * make sure that loop_validate_file() will fail if the "struct file"
1225 * which loop_configure()/loop_change_fd() found via fget() was this
1226 * loop device.
1227 */
1228 err = loop_global_lock_killable(lo, true);
1229 if (err)
1230 return err;
1231 if (lo->lo_state != Lo_bound) {
1232 loop_global_unlock(lo, true);
1233 return -ENXIO;
1234 }
1235 /*
1236 * If we've explicitly asked to tear down the loop device,
1237 * and it has an elevated reference count, set it for auto-teardown when
1238 * the last reference goes away. This stops $!~#$@ udev from
1239 * preventing teardown because it decided that it needs to run blkid on
1240 * the loopback device whenever they appear. xfstests is notorious for
1241 * failing tests because blkid via udev races with a losetup
1242 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1243 * command to fail with EBUSY.
1244 */
1245 if (disk_openers(lo->lo_disk) > 1) {
1246 lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1247 loop_global_unlock(lo, true);
1248 return 0;
1249 }
1250 lo->lo_state = Lo_rundown;
1251 loop_global_unlock(lo, true);
1252
1253 __loop_clr_fd(lo, false);
1254 return 0;
1255 }
1256
1257 static int
loop_set_status(struct loop_device * lo,const struct loop_info64 * info)1258 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1259 {
1260 int err;
1261 int prev_lo_flags;
1262 bool partscan = false;
1263 bool size_changed = false;
1264
1265 err = mutex_lock_killable(&lo->lo_mutex);
1266 if (err)
1267 return err;
1268 if (lo->lo_state != Lo_bound) {
1269 err = -ENXIO;
1270 goto out_unlock;
1271 }
1272
1273 if (lo->lo_offset != info->lo_offset ||
1274 lo->lo_sizelimit != info->lo_sizelimit) {
1275 size_changed = true;
1276 sync_blockdev(lo->lo_device);
1277 invalidate_bdev(lo->lo_device);
1278 }
1279
1280 /* I/O need to be drained during transfer transition */
1281 blk_mq_freeze_queue(lo->lo_queue);
1282
1283 prev_lo_flags = lo->lo_flags;
1284
1285 err = loop_set_status_from_info(lo, info);
1286 if (err)
1287 goto out_unfreeze;
1288
1289 /* Mask out flags that can't be set using LOOP_SET_STATUS. */
1290 lo->lo_flags &= LOOP_SET_STATUS_SETTABLE_FLAGS;
1291 /* For those flags, use the previous values instead */
1292 lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_SETTABLE_FLAGS;
1293 /* For flags that can't be cleared, use previous values too */
1294 lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_CLEARABLE_FLAGS;
1295
1296 if (size_changed) {
1297 loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit,
1298 lo->lo_backing_file);
1299 loop_set_size(lo, new_size);
1300 }
1301
1302 loop_config_discard(lo);
1303
1304 /* update dio if lo_offset or transfer is changed */
1305 __loop_update_dio(lo, lo->use_dio);
1306
1307 out_unfreeze:
1308 blk_mq_unfreeze_queue(lo->lo_queue);
1309
1310 if (!err && (lo->lo_flags & LO_FLAGS_PARTSCAN) &&
1311 !(prev_lo_flags & LO_FLAGS_PARTSCAN)) {
1312 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state);
1313 partscan = true;
1314 }
1315 out_unlock:
1316 mutex_unlock(&lo->lo_mutex);
1317 if (partscan)
1318 loop_reread_partitions(lo);
1319
1320 return err;
1321 }
1322
1323 static int
loop_get_status(struct loop_device * lo,struct loop_info64 * info)1324 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1325 {
1326 struct path path;
1327 struct kstat stat;
1328 int ret;
1329
1330 ret = mutex_lock_killable(&lo->lo_mutex);
1331 if (ret)
1332 return ret;
1333 if (lo->lo_state != Lo_bound) {
1334 mutex_unlock(&lo->lo_mutex);
1335 return -ENXIO;
1336 }
1337
1338 memset(info, 0, sizeof(*info));
1339 info->lo_number = lo->lo_number;
1340 info->lo_offset = lo->lo_offset;
1341 info->lo_sizelimit = lo->lo_sizelimit;
1342 info->lo_flags = lo->lo_flags;
1343 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1344
1345 /* Drop lo_mutex while we call into the filesystem. */
1346 path = lo->lo_backing_file->f_path;
1347 path_get(&path);
1348 mutex_unlock(&lo->lo_mutex);
1349 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT);
1350 if (!ret) {
1351 info->lo_device = huge_encode_dev(stat.dev);
1352 info->lo_inode = stat.ino;
1353 info->lo_rdevice = huge_encode_dev(stat.rdev);
1354 }
1355 path_put(&path);
1356 return ret;
1357 }
1358
1359 static void
loop_info64_from_old(const struct loop_info * info,struct loop_info64 * info64)1360 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1361 {
1362 memset(info64, 0, sizeof(*info64));
1363 info64->lo_number = info->lo_number;
1364 info64->lo_device = info->lo_device;
1365 info64->lo_inode = info->lo_inode;
1366 info64->lo_rdevice = info->lo_rdevice;
1367 info64->lo_offset = info->lo_offset;
1368 info64->lo_sizelimit = 0;
1369 info64->lo_flags = info->lo_flags;
1370 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1371 }
1372
1373 static int
loop_info64_to_old(const struct loop_info64 * info64,struct loop_info * info)1374 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1375 {
1376 memset(info, 0, sizeof(*info));
1377 info->lo_number = info64->lo_number;
1378 info->lo_device = info64->lo_device;
1379 info->lo_inode = info64->lo_inode;
1380 info->lo_rdevice = info64->lo_rdevice;
1381 info->lo_offset = info64->lo_offset;
1382 info->lo_flags = info64->lo_flags;
1383 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1384
1385 /* error in case values were truncated */
1386 if (info->lo_device != info64->lo_device ||
1387 info->lo_rdevice != info64->lo_rdevice ||
1388 info->lo_inode != info64->lo_inode ||
1389 info->lo_offset != info64->lo_offset)
1390 return -EOVERFLOW;
1391
1392 return 0;
1393 }
1394
1395 static int
loop_set_status_old(struct loop_device * lo,const struct loop_info __user * arg)1396 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1397 {
1398 struct loop_info info;
1399 struct loop_info64 info64;
1400
1401 if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1402 return -EFAULT;
1403 loop_info64_from_old(&info, &info64);
1404 return loop_set_status(lo, &info64);
1405 }
1406
1407 static int
loop_set_status64(struct loop_device * lo,const struct loop_info64 __user * arg)1408 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1409 {
1410 struct loop_info64 info64;
1411
1412 if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1413 return -EFAULT;
1414 return loop_set_status(lo, &info64);
1415 }
1416
1417 static int
loop_get_status_old(struct loop_device * lo,struct loop_info __user * arg)1418 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1419 struct loop_info info;
1420 struct loop_info64 info64;
1421 int err;
1422
1423 if (!arg)
1424 return -EINVAL;
1425 err = loop_get_status(lo, &info64);
1426 if (!err)
1427 err = loop_info64_to_old(&info64, &info);
1428 if (!err && copy_to_user(arg, &info, sizeof(info)))
1429 err = -EFAULT;
1430
1431 return err;
1432 }
1433
1434 static int
loop_get_status64(struct loop_device * lo,struct loop_info64 __user * arg)1435 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1436 struct loop_info64 info64;
1437 int err;
1438
1439 if (!arg)
1440 return -EINVAL;
1441 err = loop_get_status(lo, &info64);
1442 if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1443 err = -EFAULT;
1444
1445 return err;
1446 }
1447
loop_set_capacity(struct loop_device * lo)1448 static int loop_set_capacity(struct loop_device *lo)
1449 {
1450 loff_t size;
1451
1452 if (unlikely(lo->lo_state != Lo_bound))
1453 return -ENXIO;
1454
1455 size = get_loop_size(lo, lo->lo_backing_file);
1456 loop_set_size(lo, size);
1457
1458 return 0;
1459 }
1460
loop_set_dio(struct loop_device * lo,unsigned long arg)1461 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1462 {
1463 int error = -ENXIO;
1464 if (lo->lo_state != Lo_bound)
1465 goto out;
1466
1467 __loop_update_dio(lo, !!arg);
1468 if (lo->use_dio == !!arg)
1469 return 0;
1470 error = -EINVAL;
1471 out:
1472 return error;
1473 }
1474
loop_set_block_size(struct loop_device * lo,unsigned long arg)1475 static int loop_set_block_size(struct loop_device *lo, unsigned long arg)
1476 {
1477 int err = 0;
1478
1479 if (lo->lo_state != Lo_bound)
1480 return -ENXIO;
1481
1482 err = blk_validate_block_size(arg);
1483 if (err)
1484 return err;
1485
1486 if (lo->lo_queue->limits.logical_block_size == arg)
1487 return 0;
1488
1489 sync_blockdev(lo->lo_device);
1490 invalidate_bdev(lo->lo_device);
1491
1492 blk_mq_freeze_queue(lo->lo_queue);
1493 blk_queue_logical_block_size(lo->lo_queue, arg);
1494 blk_queue_physical_block_size(lo->lo_queue, arg);
1495 blk_queue_io_min(lo->lo_queue, arg);
1496 loop_update_dio(lo);
1497 blk_mq_unfreeze_queue(lo->lo_queue);
1498
1499 return err;
1500 }
1501
lo_simple_ioctl(struct loop_device * lo,unsigned int cmd,unsigned long arg)1502 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd,
1503 unsigned long arg)
1504 {
1505 int err;
1506
1507 err = mutex_lock_killable(&lo->lo_mutex);
1508 if (err)
1509 return err;
1510 switch (cmd) {
1511 case LOOP_SET_CAPACITY:
1512 err = loop_set_capacity(lo);
1513 break;
1514 case LOOP_SET_DIRECT_IO:
1515 err = loop_set_dio(lo, arg);
1516 break;
1517 case LOOP_SET_BLOCK_SIZE:
1518 err = loop_set_block_size(lo, arg);
1519 break;
1520 default:
1521 err = -EINVAL;
1522 }
1523 mutex_unlock(&lo->lo_mutex);
1524 return err;
1525 }
1526
lo_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)1527 static int lo_ioctl(struct block_device *bdev, blk_mode_t mode,
1528 unsigned int cmd, unsigned long arg)
1529 {
1530 struct loop_device *lo = bdev->bd_disk->private_data;
1531 void __user *argp = (void __user *) arg;
1532 int err;
1533
1534 switch (cmd) {
1535 case LOOP_SET_FD: {
1536 /*
1537 * Legacy case - pass in a zeroed out struct loop_config with
1538 * only the file descriptor set , which corresponds with the
1539 * default parameters we'd have used otherwise.
1540 */
1541 struct loop_config config;
1542
1543 memset(&config, 0, sizeof(config));
1544 config.fd = arg;
1545
1546 return loop_configure(lo, mode, bdev, &config);
1547 }
1548 case LOOP_CONFIGURE: {
1549 struct loop_config config;
1550
1551 if (copy_from_user(&config, argp, sizeof(config)))
1552 return -EFAULT;
1553
1554 return loop_configure(lo, mode, bdev, &config);
1555 }
1556 case LOOP_CHANGE_FD:
1557 return loop_change_fd(lo, bdev, arg);
1558 case LOOP_CLR_FD:
1559 return loop_clr_fd(lo);
1560 case LOOP_SET_STATUS:
1561 err = -EPERM;
1562 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN))
1563 err = loop_set_status_old(lo, argp);
1564 break;
1565 case LOOP_GET_STATUS:
1566 return loop_get_status_old(lo, argp);
1567 case LOOP_SET_STATUS64:
1568 err = -EPERM;
1569 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN))
1570 err = loop_set_status64(lo, argp);
1571 break;
1572 case LOOP_GET_STATUS64:
1573 return loop_get_status64(lo, argp);
1574 case LOOP_SET_CAPACITY:
1575 case LOOP_SET_DIRECT_IO:
1576 case LOOP_SET_BLOCK_SIZE:
1577 if (!(mode & BLK_OPEN_WRITE) && !capable(CAP_SYS_ADMIN))
1578 return -EPERM;
1579 fallthrough;
1580 default:
1581 err = lo_simple_ioctl(lo, cmd, arg);
1582 break;
1583 }
1584
1585 return err;
1586 }
1587
1588 #ifdef CONFIG_COMPAT
1589 struct compat_loop_info {
1590 compat_int_t lo_number; /* ioctl r/o */
1591 compat_dev_t lo_device; /* ioctl r/o */
1592 compat_ulong_t lo_inode; /* ioctl r/o */
1593 compat_dev_t lo_rdevice; /* ioctl r/o */
1594 compat_int_t lo_offset;
1595 compat_int_t lo_encrypt_type; /* obsolete, ignored */
1596 compat_int_t lo_encrypt_key_size; /* ioctl w/o */
1597 compat_int_t lo_flags; /* ioctl r/o */
1598 char lo_name[LO_NAME_SIZE];
1599 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1600 compat_ulong_t lo_init[2];
1601 char reserved[4];
1602 };
1603
1604 /*
1605 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1606 * - noinlined to reduce stack space usage in main part of driver
1607 */
1608 static noinline int
loop_info64_from_compat(const struct compat_loop_info __user * arg,struct loop_info64 * info64)1609 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1610 struct loop_info64 *info64)
1611 {
1612 struct compat_loop_info info;
1613
1614 if (copy_from_user(&info, arg, sizeof(info)))
1615 return -EFAULT;
1616
1617 memset(info64, 0, sizeof(*info64));
1618 info64->lo_number = info.lo_number;
1619 info64->lo_device = info.lo_device;
1620 info64->lo_inode = info.lo_inode;
1621 info64->lo_rdevice = info.lo_rdevice;
1622 info64->lo_offset = info.lo_offset;
1623 info64->lo_sizelimit = 0;
1624 info64->lo_flags = info.lo_flags;
1625 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1626 return 0;
1627 }
1628
1629 /*
1630 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1631 * - noinlined to reduce stack space usage in main part of driver
1632 */
1633 static noinline int
loop_info64_to_compat(const struct loop_info64 * info64,struct compat_loop_info __user * arg)1634 loop_info64_to_compat(const struct loop_info64 *info64,
1635 struct compat_loop_info __user *arg)
1636 {
1637 struct compat_loop_info info;
1638
1639 memset(&info, 0, sizeof(info));
1640 info.lo_number = info64->lo_number;
1641 info.lo_device = info64->lo_device;
1642 info.lo_inode = info64->lo_inode;
1643 info.lo_rdevice = info64->lo_rdevice;
1644 info.lo_offset = info64->lo_offset;
1645 info.lo_flags = info64->lo_flags;
1646 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1647
1648 /* error in case values were truncated */
1649 if (info.lo_device != info64->lo_device ||
1650 info.lo_rdevice != info64->lo_rdevice ||
1651 info.lo_inode != info64->lo_inode ||
1652 info.lo_offset != info64->lo_offset)
1653 return -EOVERFLOW;
1654
1655 if (copy_to_user(arg, &info, sizeof(info)))
1656 return -EFAULT;
1657 return 0;
1658 }
1659
1660 static int
loop_set_status_compat(struct loop_device * lo,const struct compat_loop_info __user * arg)1661 loop_set_status_compat(struct loop_device *lo,
1662 const struct compat_loop_info __user *arg)
1663 {
1664 struct loop_info64 info64;
1665 int ret;
1666
1667 ret = loop_info64_from_compat(arg, &info64);
1668 if (ret < 0)
1669 return ret;
1670 return loop_set_status(lo, &info64);
1671 }
1672
1673 static int
loop_get_status_compat(struct loop_device * lo,struct compat_loop_info __user * arg)1674 loop_get_status_compat(struct loop_device *lo,
1675 struct compat_loop_info __user *arg)
1676 {
1677 struct loop_info64 info64;
1678 int err;
1679
1680 if (!arg)
1681 return -EINVAL;
1682 err = loop_get_status(lo, &info64);
1683 if (!err)
1684 err = loop_info64_to_compat(&info64, arg);
1685 return err;
1686 }
1687
lo_compat_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)1688 static int lo_compat_ioctl(struct block_device *bdev, blk_mode_t mode,
1689 unsigned int cmd, unsigned long arg)
1690 {
1691 struct loop_device *lo = bdev->bd_disk->private_data;
1692 int err;
1693
1694 switch(cmd) {
1695 case LOOP_SET_STATUS:
1696 err = loop_set_status_compat(lo,
1697 (const struct compat_loop_info __user *)arg);
1698 break;
1699 case LOOP_GET_STATUS:
1700 err = loop_get_status_compat(lo,
1701 (struct compat_loop_info __user *)arg);
1702 break;
1703 case LOOP_SET_CAPACITY:
1704 case LOOP_CLR_FD:
1705 case LOOP_GET_STATUS64:
1706 case LOOP_SET_STATUS64:
1707 case LOOP_CONFIGURE:
1708 arg = (unsigned long) compat_ptr(arg);
1709 fallthrough;
1710 case LOOP_SET_FD:
1711 case LOOP_CHANGE_FD:
1712 case LOOP_SET_BLOCK_SIZE:
1713 case LOOP_SET_DIRECT_IO:
1714 err = lo_ioctl(bdev, mode, cmd, arg);
1715 break;
1716 default:
1717 err = -ENOIOCTLCMD;
1718 break;
1719 }
1720 return err;
1721 }
1722 #endif
1723
lo_release(struct gendisk * disk)1724 static void lo_release(struct gendisk *disk)
1725 {
1726 struct loop_device *lo = disk->private_data;
1727
1728 if (disk_openers(disk) > 0)
1729 return;
1730
1731 mutex_lock(&lo->lo_mutex);
1732 if (lo->lo_state == Lo_bound && (lo->lo_flags & LO_FLAGS_AUTOCLEAR)) {
1733 lo->lo_state = Lo_rundown;
1734 mutex_unlock(&lo->lo_mutex);
1735 /*
1736 * In autoclear mode, stop the loop thread
1737 * and remove configuration after last close.
1738 */
1739 __loop_clr_fd(lo, true);
1740 return;
1741 }
1742 mutex_unlock(&lo->lo_mutex);
1743 }
1744
lo_free_disk(struct gendisk * disk)1745 static void lo_free_disk(struct gendisk *disk)
1746 {
1747 struct loop_device *lo = disk->private_data;
1748
1749 if (lo->workqueue)
1750 destroy_workqueue(lo->workqueue);
1751 loop_free_idle_workers(lo, true);
1752 timer_shutdown_sync(&lo->timer);
1753 mutex_destroy(&lo->lo_mutex);
1754 kfree(lo);
1755 }
1756
1757 static const struct block_device_operations lo_fops = {
1758 .owner = THIS_MODULE,
1759 .release = lo_release,
1760 .ioctl = lo_ioctl,
1761 #ifdef CONFIG_COMPAT
1762 .compat_ioctl = lo_compat_ioctl,
1763 #endif
1764 .free_disk = lo_free_disk,
1765 };
1766
1767 /*
1768 * And now the modules code and kernel interface.
1769 */
1770
1771 /*
1772 * If max_loop is specified, create that many devices upfront.
1773 * This also becomes a hard limit. If max_loop is not specified,
1774 * the default isn't a hard limit (as before commit 85c50197716c
1775 * changed the default value from 0 for max_loop=0 reasons), just
1776 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1777 * init time. Loop devices can be requested on-demand with the
1778 * /dev/loop-control interface, or be instantiated by accessing
1779 * a 'dead' device node.
1780 */
1781 static int max_loop = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
1782
1783 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD
1784 static bool max_loop_specified;
1785
max_loop_param_set_int(const char * val,const struct kernel_param * kp)1786 static int max_loop_param_set_int(const char *val,
1787 const struct kernel_param *kp)
1788 {
1789 int ret;
1790
1791 ret = param_set_int(val, kp);
1792 if (ret < 0)
1793 return ret;
1794
1795 max_loop_specified = true;
1796 return 0;
1797 }
1798
1799 static const struct kernel_param_ops max_loop_param_ops = {
1800 .set = max_loop_param_set_int,
1801 .get = param_get_int,
1802 };
1803
1804 module_param_cb(max_loop, &max_loop_param_ops, &max_loop, 0444);
1805 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1806 #else
1807 module_param(max_loop, int, 0444);
1808 MODULE_PARM_DESC(max_loop, "Initial number of loop devices");
1809 #endif
1810
1811 module_param(max_part, int, 0444);
1812 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1813
1814 static int hw_queue_depth = LOOP_DEFAULT_HW_Q_DEPTH;
1815
loop_set_hw_queue_depth(const char * s,const struct kernel_param * p)1816 static int loop_set_hw_queue_depth(const char *s, const struct kernel_param *p)
1817 {
1818 int qd, ret;
1819
1820 ret = kstrtoint(s, 0, &qd);
1821 if (ret < 0)
1822 return ret;
1823 if (qd < 1)
1824 return -EINVAL;
1825 hw_queue_depth = qd;
1826 return 0;
1827 }
1828
1829 static const struct kernel_param_ops loop_hw_qdepth_param_ops = {
1830 .set = loop_set_hw_queue_depth,
1831 .get = param_get_int,
1832 };
1833
1834 device_param_cb(hw_queue_depth, &loop_hw_qdepth_param_ops, &hw_queue_depth, 0444);
1835 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: " __stringify(LOOP_DEFAULT_HW_Q_DEPTH));
1836
1837 MODULE_LICENSE("GPL");
1838 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1839
loop_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1840 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1841 const struct blk_mq_queue_data *bd)
1842 {
1843 struct request *rq = bd->rq;
1844 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1845 struct loop_device *lo = rq->q->queuedata;
1846
1847 blk_mq_start_request(rq);
1848
1849 if (lo->lo_state != Lo_bound)
1850 return BLK_STS_IOERR;
1851
1852 switch (req_op(rq)) {
1853 case REQ_OP_FLUSH:
1854 case REQ_OP_DISCARD:
1855 case REQ_OP_WRITE_ZEROES:
1856 cmd->use_aio = false;
1857 break;
1858 default:
1859 cmd->use_aio = lo->use_dio;
1860 break;
1861 }
1862
1863 /* always use the first bio's css */
1864 cmd->blkcg_css = NULL;
1865 cmd->memcg_css = NULL;
1866 #ifdef CONFIG_BLK_CGROUP
1867 if (rq->bio) {
1868 cmd->blkcg_css = bio_blkcg_css(rq->bio);
1869 #ifdef CONFIG_MEMCG
1870 if (cmd->blkcg_css) {
1871 cmd->memcg_css =
1872 cgroup_get_e_css(cmd->blkcg_css->cgroup,
1873 &memory_cgrp_subsys);
1874 }
1875 #endif
1876 }
1877 #endif
1878 loop_queue_work(lo, cmd);
1879
1880 return BLK_STS_OK;
1881 }
1882
loop_handle_cmd(struct loop_cmd * cmd)1883 static void loop_handle_cmd(struct loop_cmd *cmd)
1884 {
1885 struct cgroup_subsys_state *cmd_blkcg_css = cmd->blkcg_css;
1886 struct cgroup_subsys_state *cmd_memcg_css = cmd->memcg_css;
1887 struct request *rq = blk_mq_rq_from_pdu(cmd);
1888 const bool write = op_is_write(req_op(rq));
1889 struct loop_device *lo = rq->q->queuedata;
1890 int ret = 0;
1891 struct mem_cgroup *old_memcg = NULL;
1892 const bool use_aio = cmd->use_aio;
1893
1894 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
1895 ret = -EIO;
1896 goto failed;
1897 }
1898
1899 if (cmd_blkcg_css)
1900 kthread_associate_blkcg(cmd_blkcg_css);
1901 if (cmd_memcg_css)
1902 old_memcg = set_active_memcg(
1903 mem_cgroup_from_css(cmd_memcg_css));
1904
1905 /*
1906 * do_req_filebacked() may call blk_mq_complete_request() synchronously
1907 * or asynchronously if using aio. Hence, do not touch 'cmd' after
1908 * do_req_filebacked() has returned unless we are sure that 'cmd' has
1909 * not yet been completed.
1910 */
1911 ret = do_req_filebacked(lo, rq);
1912
1913 if (cmd_blkcg_css)
1914 kthread_associate_blkcg(NULL);
1915
1916 if (cmd_memcg_css) {
1917 set_active_memcg(old_memcg);
1918 css_put(cmd_memcg_css);
1919 }
1920 failed:
1921 /* complete non-aio request */
1922 if (!use_aio || ret) {
1923 if (ret == -EOPNOTSUPP)
1924 cmd->ret = ret;
1925 else
1926 cmd->ret = ret ? -EIO : 0;
1927 if (likely(!blk_should_fake_timeout(rq->q)))
1928 blk_mq_complete_request(rq);
1929 }
1930 }
1931
loop_process_work(struct loop_worker * worker,struct list_head * cmd_list,struct loop_device * lo)1932 static void loop_process_work(struct loop_worker *worker,
1933 struct list_head *cmd_list, struct loop_device *lo)
1934 {
1935 int orig_flags = current->flags;
1936 struct loop_cmd *cmd;
1937
1938 current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO;
1939 spin_lock_irq(&lo->lo_work_lock);
1940 while (!list_empty(cmd_list)) {
1941 cmd = container_of(
1942 cmd_list->next, struct loop_cmd, list_entry);
1943 list_del(cmd_list->next);
1944 spin_unlock_irq(&lo->lo_work_lock);
1945
1946 loop_handle_cmd(cmd);
1947 cond_resched();
1948
1949 spin_lock_irq(&lo->lo_work_lock);
1950 }
1951
1952 /*
1953 * We only add to the idle list if there are no pending cmds
1954 * *and* the worker will not run again which ensures that it
1955 * is safe to free any worker on the idle list
1956 */
1957 if (worker && !work_pending(&worker->work)) {
1958 worker->last_ran_at = jiffies;
1959 list_add_tail(&worker->idle_list, &lo->idle_worker_list);
1960 loop_set_timer(lo);
1961 }
1962 spin_unlock_irq(&lo->lo_work_lock);
1963 current->flags = orig_flags;
1964 }
1965
loop_workfn(struct work_struct * work)1966 static void loop_workfn(struct work_struct *work)
1967 {
1968 struct loop_worker *worker =
1969 container_of(work, struct loop_worker, work);
1970 loop_process_work(worker, &worker->cmd_list, worker->lo);
1971 }
1972
loop_rootcg_workfn(struct work_struct * work)1973 static void loop_rootcg_workfn(struct work_struct *work)
1974 {
1975 struct loop_device *lo =
1976 container_of(work, struct loop_device, rootcg_work);
1977 loop_process_work(NULL, &lo->rootcg_cmd_list, lo);
1978 }
1979
1980 static const struct blk_mq_ops loop_mq_ops = {
1981 .queue_rq = loop_queue_rq,
1982 .complete = lo_complete_rq,
1983 };
1984
loop_add(int i)1985 static int loop_add(int i)
1986 {
1987 struct loop_device *lo;
1988 struct gendisk *disk;
1989 int err;
1990
1991 err = -ENOMEM;
1992 lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1993 if (!lo)
1994 goto out;
1995 lo->worker_tree = RB_ROOT;
1996 INIT_LIST_HEAD(&lo->idle_worker_list);
1997 timer_setup(&lo->timer, loop_free_idle_workers_timer, TIMER_DEFERRABLE);
1998 lo->lo_state = Lo_unbound;
1999
2000 err = mutex_lock_killable(&loop_ctl_mutex);
2001 if (err)
2002 goto out_free_dev;
2003
2004 /* allocate id, if @id >= 0, we're requesting that specific id */
2005 if (i >= 0) {
2006 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
2007 if (err == -ENOSPC)
2008 err = -EEXIST;
2009 } else {
2010 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
2011 }
2012 mutex_unlock(&loop_ctl_mutex);
2013 if (err < 0)
2014 goto out_free_dev;
2015 i = err;
2016
2017 lo->tag_set.ops = &loop_mq_ops;
2018 lo->tag_set.nr_hw_queues = 1;
2019 lo->tag_set.queue_depth = hw_queue_depth;
2020 lo->tag_set.numa_node = NUMA_NO_NODE;
2021 lo->tag_set.cmd_size = sizeof(struct loop_cmd);
2022 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_STACKING |
2023 BLK_MQ_F_NO_SCHED_BY_DEFAULT;
2024 lo->tag_set.driver_data = lo;
2025
2026 err = blk_mq_alloc_tag_set(&lo->tag_set);
2027 if (err)
2028 goto out_free_idr;
2029
2030 disk = lo->lo_disk = blk_mq_alloc_disk(&lo->tag_set, lo);
2031 if (IS_ERR(disk)) {
2032 err = PTR_ERR(disk);
2033 goto out_cleanup_tags;
2034 }
2035 lo->lo_queue = lo->lo_disk->queue;
2036
2037 blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS);
2038
2039 /*
2040 * Disable partition scanning by default. The in-kernel partition
2041 * scanning can be requested individually per-device during its
2042 * setup. Userspace can always add and remove partitions from all
2043 * devices. The needed partition minors are allocated from the
2044 * extended minor space, the main loop device numbers will continue
2045 * to match the loop minors, regardless of the number of partitions
2046 * used.
2047 *
2048 * If max_part is given, partition scanning is globally enabled for
2049 * all loop devices. The minors for the main loop devices will be
2050 * multiples of max_part.
2051 *
2052 * Note: Global-for-all-devices, set-only-at-init, read-only module
2053 * parameteters like 'max_loop' and 'max_part' make things needlessly
2054 * complicated, are too static, inflexible and may surprise
2055 * userspace tools. Parameters like this in general should be avoided.
2056 */
2057 if (!part_shift)
2058 set_bit(GD_SUPPRESS_PART_SCAN, &disk->state);
2059 mutex_init(&lo->lo_mutex);
2060 lo->lo_number = i;
2061 spin_lock_init(&lo->lo_lock);
2062 spin_lock_init(&lo->lo_work_lock);
2063 INIT_WORK(&lo->rootcg_work, loop_rootcg_workfn);
2064 INIT_LIST_HEAD(&lo->rootcg_cmd_list);
2065 disk->major = LOOP_MAJOR;
2066 disk->first_minor = i << part_shift;
2067 disk->minors = 1 << part_shift;
2068 disk->fops = &lo_fops;
2069 disk->private_data = lo;
2070 disk->queue = lo->lo_queue;
2071 disk->events = DISK_EVENT_MEDIA_CHANGE;
2072 disk->event_flags = DISK_EVENT_FLAG_UEVENT;
2073 sprintf(disk->disk_name, "loop%d", i);
2074 /* Make this loop device reachable from pathname. */
2075 err = add_disk(disk);
2076 if (err)
2077 goto out_cleanup_disk;
2078
2079 /* Show this loop device. */
2080 mutex_lock(&loop_ctl_mutex);
2081 lo->idr_visible = true;
2082 mutex_unlock(&loop_ctl_mutex);
2083
2084 return i;
2085
2086 out_cleanup_disk:
2087 put_disk(disk);
2088 out_cleanup_tags:
2089 blk_mq_free_tag_set(&lo->tag_set);
2090 out_free_idr:
2091 mutex_lock(&loop_ctl_mutex);
2092 idr_remove(&loop_index_idr, i);
2093 mutex_unlock(&loop_ctl_mutex);
2094 out_free_dev:
2095 kfree(lo);
2096 out:
2097 return err;
2098 }
2099
loop_remove(struct loop_device * lo)2100 static void loop_remove(struct loop_device *lo)
2101 {
2102 /* Make this loop device unreachable from pathname. */
2103 del_gendisk(lo->lo_disk);
2104 blk_mq_free_tag_set(&lo->tag_set);
2105
2106 mutex_lock(&loop_ctl_mutex);
2107 idr_remove(&loop_index_idr, lo->lo_number);
2108 mutex_unlock(&loop_ctl_mutex);
2109
2110 put_disk(lo->lo_disk);
2111 }
2112
2113 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD
loop_probe(dev_t dev)2114 static void loop_probe(dev_t dev)
2115 {
2116 int idx = MINOR(dev) >> part_shift;
2117
2118 if (max_loop_specified && max_loop && idx >= max_loop)
2119 return;
2120 loop_add(idx);
2121 }
2122 #else
2123 #define loop_probe NULL
2124 #endif /* !CONFIG_BLOCK_LEGACY_AUTOLOAD */
2125
loop_control_remove(int idx)2126 static int loop_control_remove(int idx)
2127 {
2128 struct loop_device *lo;
2129 int ret;
2130
2131 if (idx < 0) {
2132 pr_warn_once("deleting an unspecified loop device is not supported.\n");
2133 return -EINVAL;
2134 }
2135
2136 /* Hide this loop device for serialization. */
2137 ret = mutex_lock_killable(&loop_ctl_mutex);
2138 if (ret)
2139 return ret;
2140 lo = idr_find(&loop_index_idr, idx);
2141 if (!lo || !lo->idr_visible)
2142 ret = -ENODEV;
2143 else
2144 lo->idr_visible = false;
2145 mutex_unlock(&loop_ctl_mutex);
2146 if (ret)
2147 return ret;
2148
2149 /* Check whether this loop device can be removed. */
2150 ret = mutex_lock_killable(&lo->lo_mutex);
2151 if (ret)
2152 goto mark_visible;
2153 if (lo->lo_state != Lo_unbound || disk_openers(lo->lo_disk) > 0) {
2154 mutex_unlock(&lo->lo_mutex);
2155 ret = -EBUSY;
2156 goto mark_visible;
2157 }
2158 /* Mark this loop device as no more bound, but not quite unbound yet */
2159 lo->lo_state = Lo_deleting;
2160 mutex_unlock(&lo->lo_mutex);
2161
2162 loop_remove(lo);
2163 return 0;
2164
2165 mark_visible:
2166 /* Show this loop device again. */
2167 mutex_lock(&loop_ctl_mutex);
2168 lo->idr_visible = true;
2169 mutex_unlock(&loop_ctl_mutex);
2170 return ret;
2171 }
2172
loop_control_get_free(int idx)2173 static int loop_control_get_free(int idx)
2174 {
2175 struct loop_device *lo;
2176 int id, ret;
2177
2178 ret = mutex_lock_killable(&loop_ctl_mutex);
2179 if (ret)
2180 return ret;
2181 idr_for_each_entry(&loop_index_idr, lo, id) {
2182 /* Hitting a race results in creating a new loop device which is harmless. */
2183 if (lo->idr_visible && data_race(lo->lo_state) == Lo_unbound)
2184 goto found;
2185 }
2186 mutex_unlock(&loop_ctl_mutex);
2187 return loop_add(-1);
2188 found:
2189 mutex_unlock(&loop_ctl_mutex);
2190 return id;
2191 }
2192
loop_control_ioctl(struct file * file,unsigned int cmd,unsigned long parm)2193 static long loop_control_ioctl(struct file *file, unsigned int cmd,
2194 unsigned long parm)
2195 {
2196 switch (cmd) {
2197 case LOOP_CTL_ADD:
2198 return loop_add(parm);
2199 case LOOP_CTL_REMOVE:
2200 return loop_control_remove(parm);
2201 case LOOP_CTL_GET_FREE:
2202 return loop_control_get_free(parm);
2203 default:
2204 return -ENOSYS;
2205 }
2206 }
2207
2208 static const struct file_operations loop_ctl_fops = {
2209 .open = nonseekable_open,
2210 .unlocked_ioctl = loop_control_ioctl,
2211 .compat_ioctl = loop_control_ioctl,
2212 .owner = THIS_MODULE,
2213 .llseek = noop_llseek,
2214 };
2215
2216 static struct miscdevice loop_misc = {
2217 .minor = LOOP_CTRL_MINOR,
2218 .name = "loop-control",
2219 .fops = &loop_ctl_fops,
2220 };
2221
2222 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2223 MODULE_ALIAS("devname:loop-control");
2224
loop_init(void)2225 static int __init loop_init(void)
2226 {
2227 int i;
2228 int err;
2229
2230 part_shift = 0;
2231 if (max_part > 0) {
2232 part_shift = fls(max_part);
2233
2234 /*
2235 * Adjust max_part according to part_shift as it is exported
2236 * to user space so that user can decide correct minor number
2237 * if [s]he want to create more devices.
2238 *
2239 * Note that -1 is required because partition 0 is reserved
2240 * for the whole disk.
2241 */
2242 max_part = (1UL << part_shift) - 1;
2243 }
2244
2245 if ((1UL << part_shift) > DISK_MAX_PARTS) {
2246 err = -EINVAL;
2247 goto err_out;
2248 }
2249
2250 if (max_loop > 1UL << (MINORBITS - part_shift)) {
2251 err = -EINVAL;
2252 goto err_out;
2253 }
2254
2255 err = misc_register(&loop_misc);
2256 if (err < 0)
2257 goto err_out;
2258
2259
2260 if (__register_blkdev(LOOP_MAJOR, "loop", loop_probe)) {
2261 err = -EIO;
2262 goto misc_out;
2263 }
2264
2265 /* pre-create number of devices given by config or max_loop */
2266 for (i = 0; i < max_loop; i++)
2267 loop_add(i);
2268
2269 printk(KERN_INFO "loop: module loaded\n");
2270 return 0;
2271
2272 misc_out:
2273 misc_deregister(&loop_misc);
2274 err_out:
2275 return err;
2276 }
2277
loop_exit(void)2278 static void __exit loop_exit(void)
2279 {
2280 struct loop_device *lo;
2281 int id;
2282
2283 unregister_blkdev(LOOP_MAJOR, "loop");
2284 misc_deregister(&loop_misc);
2285
2286 /*
2287 * There is no need to use loop_ctl_mutex here, for nobody else can
2288 * access loop_index_idr when this module is unloading (unless forced
2289 * module unloading is requested). If this is not a clean unloading,
2290 * we have no means to avoid kernel crash.
2291 */
2292 idr_for_each_entry(&loop_index_idr, lo, id)
2293 loop_remove(lo);
2294
2295 idr_destroy(&loop_index_idr);
2296 }
2297
2298 module_init(loop_init);
2299 module_exit(loop_exit);
2300
2301 #ifndef MODULE
max_loop_setup(char * str)2302 static int __init max_loop_setup(char *str)
2303 {
2304 max_loop = simple_strtol(str, NULL, 0);
2305 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD
2306 max_loop_specified = true;
2307 #endif
2308 return 1;
2309 }
2310
2311 __setup("max_loop=", max_loop_setup);
2312 #endif
2313