1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Linux performance counter support for LoongArch.
4 *
5 * Copyright (C) 2022 Loongson Technology Corporation Limited
6 *
7 * Derived from MIPS:
8 * Copyright (C) 2010 MIPS Technologies, Inc.
9 * Copyright (C) 2011 Cavium Networks, Inc.
10 * Author: Deng-Cheng Zhu
11 */
12
13 #include <linux/cpumask.h>
14 #include <linux/interrupt.h>
15 #include <linux/smp.h>
16 #include <linux/kernel.h>
17 #include <linux/perf_event.h>
18 #include <linux/uaccess.h>
19 #include <linux/sched/task_stack.h>
20
21 #include <asm/irq.h>
22 #include <asm/irq_regs.h>
23 #include <asm/stacktrace.h>
24 #include <asm/unwind.h>
25
26 /*
27 * Get the return address for a single stackframe and return a pointer to the
28 * next frame tail.
29 */
30 static unsigned long
user_backtrace(struct perf_callchain_entry_ctx * entry,unsigned long fp)31 user_backtrace(struct perf_callchain_entry_ctx *entry, unsigned long fp)
32 {
33 unsigned long err;
34 unsigned long __user *user_frame_tail;
35 struct stack_frame buftail;
36
37 user_frame_tail = (unsigned long __user *)(fp - sizeof(struct stack_frame));
38
39 /* Also check accessibility of one struct frame_tail beyond */
40 if (!access_ok(user_frame_tail, sizeof(buftail)))
41 return 0;
42
43 pagefault_disable();
44 err = __copy_from_user_inatomic(&buftail, user_frame_tail, sizeof(buftail));
45 pagefault_enable();
46
47 if (err || (unsigned long)user_frame_tail >= buftail.fp)
48 return 0;
49
50 perf_callchain_store(entry, buftail.ra);
51
52 return buftail.fp;
53 }
54
perf_callchain_user(struct perf_callchain_entry_ctx * entry,struct pt_regs * regs)55 void perf_callchain_user(struct perf_callchain_entry_ctx *entry,
56 struct pt_regs *regs)
57 {
58 unsigned long fp;
59
60 if (perf_guest_state()) {
61 /* We don't support guest os callchain now */
62 return;
63 }
64
65 perf_callchain_store(entry, regs->csr_era);
66
67 fp = regs->regs[22];
68
69 while (entry->nr < entry->max_stack && fp && !((unsigned long)fp & 0xf))
70 fp = user_backtrace(entry, fp);
71 }
72
perf_callchain_kernel(struct perf_callchain_entry_ctx * entry,struct pt_regs * regs)73 void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry,
74 struct pt_regs *regs)
75 {
76 struct unwind_state state;
77 unsigned long addr;
78
79 for (unwind_start(&state, current, regs);
80 !unwind_done(&state); unwind_next_frame(&state)) {
81 addr = unwind_get_return_address(&state);
82 if (!addr || perf_callchain_store(entry, addr))
83 return;
84 }
85 }
86
87 #define LOONGARCH_MAX_HWEVENTS 32
88
89 struct cpu_hw_events {
90 /* Array of events on this cpu. */
91 struct perf_event *events[LOONGARCH_MAX_HWEVENTS];
92
93 /*
94 * Set the bit (indexed by the counter number) when the counter
95 * is used for an event.
96 */
97 unsigned long used_mask[BITS_TO_LONGS(LOONGARCH_MAX_HWEVENTS)];
98
99 /*
100 * Software copy of the control register for each performance counter.
101 */
102 unsigned int saved_ctrl[LOONGARCH_MAX_HWEVENTS];
103 };
104 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
105 .saved_ctrl = {0},
106 };
107
108 /* The description of LoongArch performance events. */
109 struct loongarch_perf_event {
110 unsigned int event_id;
111 };
112
113 static struct loongarch_perf_event raw_event;
114 static DEFINE_MUTEX(raw_event_mutex);
115
116 #define C(x) PERF_COUNT_HW_CACHE_##x
117 #define HW_OP_UNSUPPORTED 0xffffffff
118 #define CACHE_OP_UNSUPPORTED 0xffffffff
119
120 #define PERF_MAP_ALL_UNSUPPORTED \
121 [0 ... PERF_COUNT_HW_MAX - 1] = {HW_OP_UNSUPPORTED}
122
123 #define PERF_CACHE_MAP_ALL_UNSUPPORTED \
124 [0 ... C(MAX) - 1] = { \
125 [0 ... C(OP_MAX) - 1] = { \
126 [0 ... C(RESULT_MAX) - 1] = {CACHE_OP_UNSUPPORTED}, \
127 }, \
128 }
129
130 struct loongarch_pmu {
131 u64 max_period;
132 u64 valid_count;
133 u64 overflow;
134 const char *name;
135 unsigned int num_counters;
136 u64 (*read_counter)(unsigned int idx);
137 void (*write_counter)(unsigned int idx, u64 val);
138 const struct loongarch_perf_event *(*map_raw_event)(u64 config);
139 const struct loongarch_perf_event (*general_event_map)[PERF_COUNT_HW_MAX];
140 const struct loongarch_perf_event (*cache_event_map)
141 [PERF_COUNT_HW_CACHE_MAX]
142 [PERF_COUNT_HW_CACHE_OP_MAX]
143 [PERF_COUNT_HW_CACHE_RESULT_MAX];
144 };
145
146 static struct loongarch_pmu loongarch_pmu;
147
148 #define M_PERFCTL_EVENT(event) (event & CSR_PERFCTRL_EVENT)
149
150 #define M_PERFCTL_COUNT_EVENT_WHENEVER (CSR_PERFCTRL_PLV0 | \
151 CSR_PERFCTRL_PLV1 | \
152 CSR_PERFCTRL_PLV2 | \
153 CSR_PERFCTRL_PLV3 | \
154 CSR_PERFCTRL_IE)
155
156 #define M_PERFCTL_CONFIG_MASK 0x1f0000
157
158 static void pause_local_counters(void);
159 static void resume_local_counters(void);
160
loongarch_pmu_read_counter(unsigned int idx)161 static u64 loongarch_pmu_read_counter(unsigned int idx)
162 {
163 u64 val = -1;
164
165 switch (idx) {
166 case 0:
167 val = read_csr_perfcntr0();
168 break;
169 case 1:
170 val = read_csr_perfcntr1();
171 break;
172 case 2:
173 val = read_csr_perfcntr2();
174 break;
175 case 3:
176 val = read_csr_perfcntr3();
177 break;
178 default:
179 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
180 return 0;
181 }
182
183 return val;
184 }
185
loongarch_pmu_write_counter(unsigned int idx,u64 val)186 static void loongarch_pmu_write_counter(unsigned int idx, u64 val)
187 {
188 switch (idx) {
189 case 0:
190 write_csr_perfcntr0(val);
191 return;
192 case 1:
193 write_csr_perfcntr1(val);
194 return;
195 case 2:
196 write_csr_perfcntr2(val);
197 return;
198 case 3:
199 write_csr_perfcntr3(val);
200 return;
201 default:
202 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
203 return;
204 }
205 }
206
loongarch_pmu_read_control(unsigned int idx)207 static unsigned int loongarch_pmu_read_control(unsigned int idx)
208 {
209 unsigned int val = -1;
210
211 switch (idx) {
212 case 0:
213 val = read_csr_perfctrl0();
214 break;
215 case 1:
216 val = read_csr_perfctrl1();
217 break;
218 case 2:
219 val = read_csr_perfctrl2();
220 break;
221 case 3:
222 val = read_csr_perfctrl3();
223 break;
224 default:
225 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
226 return 0;
227 }
228
229 return val;
230 }
231
loongarch_pmu_write_control(unsigned int idx,unsigned int val)232 static void loongarch_pmu_write_control(unsigned int idx, unsigned int val)
233 {
234 switch (idx) {
235 case 0:
236 write_csr_perfctrl0(val);
237 return;
238 case 1:
239 write_csr_perfctrl1(val);
240 return;
241 case 2:
242 write_csr_perfctrl2(val);
243 return;
244 case 3:
245 write_csr_perfctrl3(val);
246 return;
247 default:
248 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
249 return;
250 }
251 }
252
loongarch_pmu_alloc_counter(struct cpu_hw_events * cpuc,struct hw_perf_event * hwc)253 static int loongarch_pmu_alloc_counter(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc)
254 {
255 int i;
256
257 for (i = 0; i < loongarch_pmu.num_counters; i++) {
258 if (!test_and_set_bit(i, cpuc->used_mask))
259 return i;
260 }
261
262 return -EAGAIN;
263 }
264
loongarch_pmu_enable_event(struct hw_perf_event * evt,int idx)265 static void loongarch_pmu_enable_event(struct hw_perf_event *evt, int idx)
266 {
267 unsigned int cpu;
268 struct perf_event *event = container_of(evt, struct perf_event, hw);
269 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
270
271 WARN_ON(idx < 0 || idx >= loongarch_pmu.num_counters);
272
273 /* Make sure interrupt enabled. */
274 cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base) |
275 (evt->config_base & M_PERFCTL_CONFIG_MASK) | CSR_PERFCTRL_IE;
276
277 cpu = (event->cpu >= 0) ? event->cpu : smp_processor_id();
278
279 /*
280 * We do not actually let the counter run. Leave it until start().
281 */
282 pr_debug("Enabling perf counter for CPU%d\n", cpu);
283 }
284
loongarch_pmu_disable_event(int idx)285 static void loongarch_pmu_disable_event(int idx)
286 {
287 unsigned long flags;
288 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
289
290 WARN_ON(idx < 0 || idx >= loongarch_pmu.num_counters);
291
292 local_irq_save(flags);
293 cpuc->saved_ctrl[idx] = loongarch_pmu_read_control(idx) &
294 ~M_PERFCTL_COUNT_EVENT_WHENEVER;
295 loongarch_pmu_write_control(idx, cpuc->saved_ctrl[idx]);
296 local_irq_restore(flags);
297 }
298
loongarch_pmu_event_set_period(struct perf_event * event,struct hw_perf_event * hwc,int idx)299 static int loongarch_pmu_event_set_period(struct perf_event *event,
300 struct hw_perf_event *hwc,
301 int idx)
302 {
303 int ret = 0;
304 u64 left = local64_read(&hwc->period_left);
305 u64 period = hwc->sample_period;
306
307 if (unlikely((left + period) & (1ULL << 63))) {
308 /* left underflowed by more than period. */
309 left = period;
310 local64_set(&hwc->period_left, left);
311 hwc->last_period = period;
312 ret = 1;
313 } else if (unlikely((left + period) <= period)) {
314 /* left underflowed by less than period. */
315 left += period;
316 local64_set(&hwc->period_left, left);
317 hwc->last_period = period;
318 ret = 1;
319 }
320
321 if (left > loongarch_pmu.max_period) {
322 left = loongarch_pmu.max_period;
323 local64_set(&hwc->period_left, left);
324 }
325
326 local64_set(&hwc->prev_count, loongarch_pmu.overflow - left);
327
328 loongarch_pmu.write_counter(idx, loongarch_pmu.overflow - left);
329
330 perf_event_update_userpage(event);
331
332 return ret;
333 }
334
loongarch_pmu_event_update(struct perf_event * event,struct hw_perf_event * hwc,int idx)335 static void loongarch_pmu_event_update(struct perf_event *event,
336 struct hw_perf_event *hwc,
337 int idx)
338 {
339 u64 delta;
340 u64 prev_raw_count, new_raw_count;
341
342 again:
343 prev_raw_count = local64_read(&hwc->prev_count);
344 new_raw_count = loongarch_pmu.read_counter(idx);
345
346 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
347 new_raw_count) != prev_raw_count)
348 goto again;
349
350 delta = new_raw_count - prev_raw_count;
351
352 local64_add(delta, &event->count);
353 local64_sub(delta, &hwc->period_left);
354 }
355
loongarch_pmu_start(struct perf_event * event,int flags)356 static void loongarch_pmu_start(struct perf_event *event, int flags)
357 {
358 struct hw_perf_event *hwc = &event->hw;
359
360 if (flags & PERF_EF_RELOAD)
361 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
362
363 hwc->state = 0;
364
365 /* Set the period for the event. */
366 loongarch_pmu_event_set_period(event, hwc, hwc->idx);
367
368 /* Enable the event. */
369 loongarch_pmu_enable_event(hwc, hwc->idx);
370 }
371
loongarch_pmu_stop(struct perf_event * event,int flags)372 static void loongarch_pmu_stop(struct perf_event *event, int flags)
373 {
374 struct hw_perf_event *hwc = &event->hw;
375
376 if (!(hwc->state & PERF_HES_STOPPED)) {
377 /* We are working on a local event. */
378 loongarch_pmu_disable_event(hwc->idx);
379 barrier();
380 loongarch_pmu_event_update(event, hwc, hwc->idx);
381 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
382 }
383 }
384
loongarch_pmu_add(struct perf_event * event,int flags)385 static int loongarch_pmu_add(struct perf_event *event, int flags)
386 {
387 int idx, err = 0;
388 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
389 struct hw_perf_event *hwc = &event->hw;
390
391 perf_pmu_disable(event->pmu);
392
393 /* To look for a free counter for this event. */
394 idx = loongarch_pmu_alloc_counter(cpuc, hwc);
395 if (idx < 0) {
396 err = idx;
397 goto out;
398 }
399
400 /*
401 * If there is an event in the counter we are going to use then
402 * make sure it is disabled.
403 */
404 event->hw.idx = idx;
405 loongarch_pmu_disable_event(idx);
406 cpuc->events[idx] = event;
407
408 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
409 if (flags & PERF_EF_START)
410 loongarch_pmu_start(event, PERF_EF_RELOAD);
411
412 /* Propagate our changes to the userspace mapping. */
413 perf_event_update_userpage(event);
414
415 out:
416 perf_pmu_enable(event->pmu);
417 return err;
418 }
419
loongarch_pmu_del(struct perf_event * event,int flags)420 static void loongarch_pmu_del(struct perf_event *event, int flags)
421 {
422 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
423 struct hw_perf_event *hwc = &event->hw;
424 int idx = hwc->idx;
425
426 WARN_ON(idx < 0 || idx >= loongarch_pmu.num_counters);
427
428 loongarch_pmu_stop(event, PERF_EF_UPDATE);
429 cpuc->events[idx] = NULL;
430 clear_bit(idx, cpuc->used_mask);
431
432 perf_event_update_userpage(event);
433 }
434
loongarch_pmu_read(struct perf_event * event)435 static void loongarch_pmu_read(struct perf_event *event)
436 {
437 struct hw_perf_event *hwc = &event->hw;
438
439 /* Don't read disabled counters! */
440 if (hwc->idx < 0)
441 return;
442
443 loongarch_pmu_event_update(event, hwc, hwc->idx);
444 }
445
loongarch_pmu_enable(struct pmu * pmu)446 static void loongarch_pmu_enable(struct pmu *pmu)
447 {
448 resume_local_counters();
449 }
450
loongarch_pmu_disable(struct pmu * pmu)451 static void loongarch_pmu_disable(struct pmu *pmu)
452 {
453 pause_local_counters();
454 }
455
456 static DEFINE_MUTEX(pmu_reserve_mutex);
457 static atomic_t active_events = ATOMIC_INIT(0);
458
get_pmc_irq(void)459 static int get_pmc_irq(void)
460 {
461 struct irq_domain *d = irq_find_matching_fwnode(cpuintc_handle, DOMAIN_BUS_ANY);
462
463 if (d)
464 return irq_create_mapping(d, INT_PCOV);
465
466 return -EINVAL;
467 }
468
469 static void reset_counters(void *arg);
470 static int __hw_perf_event_init(struct perf_event *event);
471
hw_perf_event_destroy(struct perf_event * event)472 static void hw_perf_event_destroy(struct perf_event *event)
473 {
474 if (atomic_dec_and_mutex_lock(&active_events, &pmu_reserve_mutex)) {
475 on_each_cpu(reset_counters, NULL, 1);
476 free_irq(get_pmc_irq(), &loongarch_pmu);
477 mutex_unlock(&pmu_reserve_mutex);
478 }
479 }
480
handle_associated_event(struct cpu_hw_events * cpuc,int idx,struct perf_sample_data * data,struct pt_regs * regs)481 static void handle_associated_event(struct cpu_hw_events *cpuc, int idx,
482 struct perf_sample_data *data, struct pt_regs *regs)
483 {
484 struct perf_event *event = cpuc->events[idx];
485 struct hw_perf_event *hwc = &event->hw;
486
487 loongarch_pmu_event_update(event, hwc, idx);
488 data->period = event->hw.last_period;
489 if (!loongarch_pmu_event_set_period(event, hwc, idx))
490 return;
491
492 if (perf_event_overflow(event, data, regs))
493 loongarch_pmu_disable_event(idx);
494 }
495
pmu_handle_irq(int irq,void * dev)496 static irqreturn_t pmu_handle_irq(int irq, void *dev)
497 {
498 int n;
499 int handled = IRQ_NONE;
500 uint64_t counter;
501 struct pt_regs *regs;
502 struct perf_sample_data data;
503 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
504
505 /*
506 * First we pause the local counters, so that when we are locked
507 * here, the counters are all paused. When it gets locked due to
508 * perf_disable(), the timer interrupt handler will be delayed.
509 *
510 * See also loongarch_pmu_start().
511 */
512 pause_local_counters();
513
514 regs = get_irq_regs();
515
516 perf_sample_data_init(&data, 0, 0);
517
518 for (n = 0; n < loongarch_pmu.num_counters; n++) {
519 if (test_bit(n, cpuc->used_mask)) {
520 counter = loongarch_pmu.read_counter(n);
521 if (counter & loongarch_pmu.overflow) {
522 handle_associated_event(cpuc, n, &data, regs);
523 handled = IRQ_HANDLED;
524 }
525 }
526 }
527
528 resume_local_counters();
529
530 /*
531 * Do all the work for the pending perf events. We can do this
532 * in here because the performance counter interrupt is a regular
533 * interrupt, not NMI.
534 */
535 if (handled == IRQ_HANDLED)
536 irq_work_run();
537
538 return handled;
539 }
540
loongarch_pmu_event_init(struct perf_event * event)541 static int loongarch_pmu_event_init(struct perf_event *event)
542 {
543 int r, irq;
544 unsigned long flags;
545
546 /* does not support taken branch sampling */
547 if (has_branch_stack(event))
548 return -EOPNOTSUPP;
549
550 switch (event->attr.type) {
551 case PERF_TYPE_RAW:
552 case PERF_TYPE_HARDWARE:
553 case PERF_TYPE_HW_CACHE:
554 break;
555
556 default:
557 /* Init it to avoid false validate_group */
558 event->hw.event_base = 0xffffffff;
559 return -ENOENT;
560 }
561
562 if (event->cpu >= 0 && !cpu_online(event->cpu))
563 return -ENODEV;
564
565 irq = get_pmc_irq();
566 flags = IRQF_PERCPU | IRQF_NOBALANCING | IRQF_NO_THREAD | IRQF_NO_SUSPEND | IRQF_SHARED;
567 if (!atomic_inc_not_zero(&active_events)) {
568 mutex_lock(&pmu_reserve_mutex);
569 if (atomic_read(&active_events) == 0) {
570 r = request_irq(irq, pmu_handle_irq, flags, "Perf_PMU", &loongarch_pmu);
571 if (r < 0) {
572 mutex_unlock(&pmu_reserve_mutex);
573 pr_warn("PMU IRQ request failed\n");
574 return -ENODEV;
575 }
576 }
577 atomic_inc(&active_events);
578 mutex_unlock(&pmu_reserve_mutex);
579 }
580
581 return __hw_perf_event_init(event);
582 }
583
584 static struct pmu pmu = {
585 .pmu_enable = loongarch_pmu_enable,
586 .pmu_disable = loongarch_pmu_disable,
587 .event_init = loongarch_pmu_event_init,
588 .add = loongarch_pmu_add,
589 .del = loongarch_pmu_del,
590 .start = loongarch_pmu_start,
591 .stop = loongarch_pmu_stop,
592 .read = loongarch_pmu_read,
593 };
594
loongarch_pmu_perf_event_encode(const struct loongarch_perf_event * pev)595 static unsigned int loongarch_pmu_perf_event_encode(const struct loongarch_perf_event *pev)
596 {
597 return M_PERFCTL_EVENT(pev->event_id);
598 }
599
loongarch_pmu_map_general_event(int idx)600 static const struct loongarch_perf_event *loongarch_pmu_map_general_event(int idx)
601 {
602 const struct loongarch_perf_event *pev;
603
604 pev = &(*loongarch_pmu.general_event_map)[idx];
605
606 if (pev->event_id == HW_OP_UNSUPPORTED)
607 return ERR_PTR(-ENOENT);
608
609 return pev;
610 }
611
loongarch_pmu_map_cache_event(u64 config)612 static const struct loongarch_perf_event *loongarch_pmu_map_cache_event(u64 config)
613 {
614 unsigned int cache_type, cache_op, cache_result;
615 const struct loongarch_perf_event *pev;
616
617 cache_type = (config >> 0) & 0xff;
618 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
619 return ERR_PTR(-EINVAL);
620
621 cache_op = (config >> 8) & 0xff;
622 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
623 return ERR_PTR(-EINVAL);
624
625 cache_result = (config >> 16) & 0xff;
626 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
627 return ERR_PTR(-EINVAL);
628
629 pev = &((*loongarch_pmu.cache_event_map)
630 [cache_type]
631 [cache_op]
632 [cache_result]);
633
634 if (pev->event_id == CACHE_OP_UNSUPPORTED)
635 return ERR_PTR(-ENOENT);
636
637 return pev;
638 }
639
validate_group(struct perf_event * event)640 static int validate_group(struct perf_event *event)
641 {
642 struct cpu_hw_events fake_cpuc;
643 struct perf_event *sibling, *leader = event->group_leader;
644
645 memset(&fake_cpuc, 0, sizeof(fake_cpuc));
646
647 if (loongarch_pmu_alloc_counter(&fake_cpuc, &leader->hw) < 0)
648 return -EINVAL;
649
650 for_each_sibling_event(sibling, leader) {
651 if (loongarch_pmu_alloc_counter(&fake_cpuc, &sibling->hw) < 0)
652 return -EINVAL;
653 }
654
655 if (loongarch_pmu_alloc_counter(&fake_cpuc, &event->hw) < 0)
656 return -EINVAL;
657
658 return 0;
659 }
660
reset_counters(void * arg)661 static void reset_counters(void *arg)
662 {
663 int n;
664 int counters = loongarch_pmu.num_counters;
665
666 for (n = 0; n < counters; n++) {
667 loongarch_pmu_write_control(n, 0);
668 loongarch_pmu.write_counter(n, 0);
669 }
670 }
671
672 static const struct loongarch_perf_event loongson_event_map[PERF_COUNT_HW_MAX] = {
673 PERF_MAP_ALL_UNSUPPORTED,
674 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00 },
675 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01 },
676 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x08 },
677 [PERF_COUNT_HW_CACHE_MISSES] = { 0x09 },
678 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02 },
679 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x03 },
680 };
681
682 static const struct loongarch_perf_event loongson_cache_map
683 [PERF_COUNT_HW_CACHE_MAX]
684 [PERF_COUNT_HW_CACHE_OP_MAX]
685 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
686 PERF_CACHE_MAP_ALL_UNSUPPORTED,
687 [C(L1D)] = {
688 /*
689 * Like some other architectures (e.g. ARM), the performance
690 * counters don't differentiate between read and write
691 * accesses/misses, so this isn't strictly correct, but it's the
692 * best we can do. Writes and reads get combined.
693 */
694 [C(OP_READ)] = {
695 [C(RESULT_ACCESS)] = { 0x8 },
696 [C(RESULT_MISS)] = { 0x9 },
697 },
698 [C(OP_WRITE)] = {
699 [C(RESULT_ACCESS)] = { 0x8 },
700 [C(RESULT_MISS)] = { 0x9 },
701 },
702 [C(OP_PREFETCH)] = {
703 [C(RESULT_ACCESS)] = { 0xaa },
704 [C(RESULT_MISS)] = { 0xa9 },
705 },
706 },
707 [C(L1I)] = {
708 [C(OP_READ)] = {
709 [C(RESULT_ACCESS)] = { 0x6 },
710 [C(RESULT_MISS)] = { 0x7 },
711 },
712 },
713 [C(LL)] = {
714 [C(OP_READ)] = {
715 [C(RESULT_ACCESS)] = { 0xc },
716 [C(RESULT_MISS)] = { 0xd },
717 },
718 [C(OP_WRITE)] = {
719 [C(RESULT_ACCESS)] = { 0xc },
720 [C(RESULT_MISS)] = { 0xd },
721 },
722 },
723 [C(ITLB)] = {
724 [C(OP_READ)] = {
725 [C(RESULT_MISS)] = { 0x3b },
726 },
727 },
728 [C(DTLB)] = {
729 [C(OP_READ)] = {
730 [C(RESULT_ACCESS)] = { 0x4 },
731 [C(RESULT_MISS)] = { 0x3c },
732 },
733 [C(OP_WRITE)] = {
734 [C(RESULT_ACCESS)] = { 0x4 },
735 [C(RESULT_MISS)] = { 0x3c },
736 },
737 },
738 [C(BPU)] = {
739 /* Using the same code for *HW_BRANCH* */
740 [C(OP_READ)] = {
741 [C(RESULT_ACCESS)] = { 0x02 },
742 [C(RESULT_MISS)] = { 0x03 },
743 },
744 },
745 };
746
__hw_perf_event_init(struct perf_event * event)747 static int __hw_perf_event_init(struct perf_event *event)
748 {
749 int err;
750 struct hw_perf_event *hwc = &event->hw;
751 struct perf_event_attr *attr = &event->attr;
752 const struct loongarch_perf_event *pev;
753
754 /* Returning LoongArch event descriptor for generic perf event. */
755 if (PERF_TYPE_HARDWARE == event->attr.type) {
756 if (event->attr.config >= PERF_COUNT_HW_MAX)
757 return -EINVAL;
758 pev = loongarch_pmu_map_general_event(event->attr.config);
759 } else if (PERF_TYPE_HW_CACHE == event->attr.type) {
760 pev = loongarch_pmu_map_cache_event(event->attr.config);
761 } else if (PERF_TYPE_RAW == event->attr.type) {
762 /* We are working on the global raw event. */
763 mutex_lock(&raw_event_mutex);
764 pev = loongarch_pmu.map_raw_event(event->attr.config);
765 } else {
766 /* The event type is not (yet) supported. */
767 return -EOPNOTSUPP;
768 }
769
770 if (IS_ERR(pev)) {
771 if (PERF_TYPE_RAW == event->attr.type)
772 mutex_unlock(&raw_event_mutex);
773 return PTR_ERR(pev);
774 }
775
776 /*
777 * We allow max flexibility on how each individual counter shared
778 * by the single CPU operates (the mode exclusion and the range).
779 */
780 hwc->config_base = CSR_PERFCTRL_IE;
781
782 hwc->event_base = loongarch_pmu_perf_event_encode(pev);
783 if (PERF_TYPE_RAW == event->attr.type)
784 mutex_unlock(&raw_event_mutex);
785
786 if (!attr->exclude_user) {
787 hwc->config_base |= CSR_PERFCTRL_PLV3;
788 hwc->config_base |= CSR_PERFCTRL_PLV2;
789 }
790 if (!attr->exclude_kernel) {
791 hwc->config_base |= CSR_PERFCTRL_PLV0;
792 }
793 if (!attr->exclude_hv) {
794 hwc->config_base |= CSR_PERFCTRL_PLV1;
795 }
796
797 hwc->config_base &= M_PERFCTL_CONFIG_MASK;
798 /*
799 * The event can belong to another cpu. We do not assign a local
800 * counter for it for now.
801 */
802 hwc->idx = -1;
803 hwc->config = 0;
804
805 if (!hwc->sample_period) {
806 hwc->sample_period = loongarch_pmu.max_period;
807 hwc->last_period = hwc->sample_period;
808 local64_set(&hwc->period_left, hwc->sample_period);
809 }
810
811 err = 0;
812 if (event->group_leader != event)
813 err = validate_group(event);
814
815 event->destroy = hw_perf_event_destroy;
816
817 if (err)
818 event->destroy(event);
819
820 return err;
821 }
822
pause_local_counters(void)823 static void pause_local_counters(void)
824 {
825 unsigned long flags;
826 int ctr = loongarch_pmu.num_counters;
827 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
828
829 local_irq_save(flags);
830 do {
831 ctr--;
832 cpuc->saved_ctrl[ctr] = loongarch_pmu_read_control(ctr);
833 loongarch_pmu_write_control(ctr, cpuc->saved_ctrl[ctr] &
834 ~M_PERFCTL_COUNT_EVENT_WHENEVER);
835 } while (ctr > 0);
836 local_irq_restore(flags);
837 }
838
resume_local_counters(void)839 static void resume_local_counters(void)
840 {
841 int ctr = loongarch_pmu.num_counters;
842 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
843
844 do {
845 ctr--;
846 loongarch_pmu_write_control(ctr, cpuc->saved_ctrl[ctr]);
847 } while (ctr > 0);
848 }
849
loongarch_pmu_map_raw_event(u64 config)850 static const struct loongarch_perf_event *loongarch_pmu_map_raw_event(u64 config)
851 {
852 raw_event.event_id = M_PERFCTL_EVENT(config);
853
854 return &raw_event;
855 }
856
init_hw_perf_events(void)857 static int __init init_hw_perf_events(void)
858 {
859 int counters;
860
861 if (!cpu_has_pmp)
862 return -ENODEV;
863
864 pr_info("Performance counters: ");
865 counters = ((read_cpucfg(LOONGARCH_CPUCFG6) & CPUCFG6_PMNUM) >> 4) + 1;
866
867 loongarch_pmu.num_counters = counters;
868 loongarch_pmu.max_period = (1ULL << 63) - 1;
869 loongarch_pmu.valid_count = (1ULL << 63) - 1;
870 loongarch_pmu.overflow = 1ULL << 63;
871 loongarch_pmu.name = "loongarch/loongson64";
872 loongarch_pmu.read_counter = loongarch_pmu_read_counter;
873 loongarch_pmu.write_counter = loongarch_pmu_write_counter;
874 loongarch_pmu.map_raw_event = loongarch_pmu_map_raw_event;
875 loongarch_pmu.general_event_map = &loongson_event_map;
876 loongarch_pmu.cache_event_map = &loongson_cache_map;
877
878 on_each_cpu(reset_counters, NULL, 1);
879
880 pr_cont("%s PMU enabled, %d %d-bit counters available to each CPU.\n",
881 loongarch_pmu.name, counters, 64);
882
883 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
884
885 return 0;
886 }
887 pure_initcall(init_hw_perf_events);
888