xref: /openbmc/linux/mm/mm_init.c (revision 7d7ae873b5e0f46d19e5dc818d1a7809e4b7cc81)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * mm_init.c - Memory initialisation verification and debugging
4   *
5   * Copyright 2008 IBM Corporation, 2008
6   * Author Mel Gorman <mel@csn.ul.ie>
7   *
8   */
9  #include <linux/kernel.h>
10  #include <linux/init.h>
11  #include <linux/kobject.h>
12  #include <linux/export.h>
13  #include <linux/memory.h>
14  #include <linux/notifier.h>
15  #include <linux/sched.h>
16  #include <linux/mman.h>
17  #include <linux/memblock.h>
18  #include <linux/page-isolation.h>
19  #include <linux/padata.h>
20  #include <linux/nmi.h>
21  #include <linux/buffer_head.h>
22  #include <linux/kmemleak.h>
23  #include <linux/kfence.h>
24  #include <linux/page_ext.h>
25  #include <linux/pti.h>
26  #include <linux/pgtable.h>
27  #include <linux/swap.h>
28  #include <linux/cma.h>
29  #include <linux/crash_dump.h>
30  #include "internal.h"
31  #include "slab.h"
32  #include "shuffle.h"
33  
34  #include <asm/setup.h>
35  
36  #ifdef CONFIG_DEBUG_MEMORY_INIT
37  int __meminitdata mminit_loglevel;
38  
39  /* The zonelists are simply reported, validation is manual. */
mminit_verify_zonelist(void)40  void __init mminit_verify_zonelist(void)
41  {
42  	int nid;
43  
44  	if (mminit_loglevel < MMINIT_VERIFY)
45  		return;
46  
47  	for_each_online_node(nid) {
48  		pg_data_t *pgdat = NODE_DATA(nid);
49  		struct zone *zone;
50  		struct zoneref *z;
51  		struct zonelist *zonelist;
52  		int i, listid, zoneid;
53  
54  		BUILD_BUG_ON(MAX_ZONELISTS > 2);
55  		for (i = 0; i < MAX_ZONELISTS * MAX_NR_ZONES; i++) {
56  
57  			/* Identify the zone and nodelist */
58  			zoneid = i % MAX_NR_ZONES;
59  			listid = i / MAX_NR_ZONES;
60  			zonelist = &pgdat->node_zonelists[listid];
61  			zone = &pgdat->node_zones[zoneid];
62  			if (!populated_zone(zone))
63  				continue;
64  
65  			/* Print information about the zonelist */
66  			printk(KERN_DEBUG "mminit::zonelist %s %d:%s = ",
67  				listid > 0 ? "thisnode" : "general", nid,
68  				zone->name);
69  
70  			/* Iterate the zonelist */
71  			for_each_zone_zonelist(zone, z, zonelist, zoneid)
72  				pr_cont("%d:%s ", zone_to_nid(zone), zone->name);
73  			pr_cont("\n");
74  		}
75  	}
76  }
77  
mminit_verify_pageflags_layout(void)78  void __init mminit_verify_pageflags_layout(void)
79  {
80  	int shift, width;
81  	unsigned long or_mask, add_mask;
82  
83  	shift = BITS_PER_LONG;
84  	width = shift - SECTIONS_WIDTH - NODES_WIDTH - ZONES_WIDTH
85  		- LAST_CPUPID_SHIFT - KASAN_TAG_WIDTH - LRU_GEN_WIDTH - LRU_REFS_WIDTH;
86  	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_widths",
87  		"Section %d Node %d Zone %d Lastcpupid %d Kasantag %d Gen %d Tier %d Flags %d\n",
88  		SECTIONS_WIDTH,
89  		NODES_WIDTH,
90  		ZONES_WIDTH,
91  		LAST_CPUPID_WIDTH,
92  		KASAN_TAG_WIDTH,
93  		LRU_GEN_WIDTH,
94  		LRU_REFS_WIDTH,
95  		NR_PAGEFLAGS);
96  	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_shifts",
97  		"Section %d Node %d Zone %d Lastcpupid %d Kasantag %d\n",
98  		SECTIONS_SHIFT,
99  		NODES_SHIFT,
100  		ZONES_SHIFT,
101  		LAST_CPUPID_SHIFT,
102  		KASAN_TAG_WIDTH);
103  	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_pgshifts",
104  		"Section %lu Node %lu Zone %lu Lastcpupid %lu Kasantag %lu\n",
105  		(unsigned long)SECTIONS_PGSHIFT,
106  		(unsigned long)NODES_PGSHIFT,
107  		(unsigned long)ZONES_PGSHIFT,
108  		(unsigned long)LAST_CPUPID_PGSHIFT,
109  		(unsigned long)KASAN_TAG_PGSHIFT);
110  	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodezoneid",
111  		"Node/Zone ID: %lu -> %lu\n",
112  		(unsigned long)(ZONEID_PGOFF + ZONEID_SHIFT),
113  		(unsigned long)ZONEID_PGOFF);
114  	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_usage",
115  		"location: %d -> %d layout %d -> %d unused %d -> %d page-flags\n",
116  		shift, width, width, NR_PAGEFLAGS, NR_PAGEFLAGS, 0);
117  #ifdef NODE_NOT_IN_PAGE_FLAGS
118  	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags",
119  		"Node not in page flags");
120  #endif
121  #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
122  	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags",
123  		"Last cpupid not in page flags");
124  #endif
125  
126  	if (SECTIONS_WIDTH) {
127  		shift -= SECTIONS_WIDTH;
128  		BUG_ON(shift != SECTIONS_PGSHIFT);
129  	}
130  	if (NODES_WIDTH) {
131  		shift -= NODES_WIDTH;
132  		BUG_ON(shift != NODES_PGSHIFT);
133  	}
134  	if (ZONES_WIDTH) {
135  		shift -= ZONES_WIDTH;
136  		BUG_ON(shift != ZONES_PGSHIFT);
137  	}
138  
139  	/* Check for bitmask overlaps */
140  	or_mask = (ZONES_MASK << ZONES_PGSHIFT) |
141  			(NODES_MASK << NODES_PGSHIFT) |
142  			(SECTIONS_MASK << SECTIONS_PGSHIFT);
143  	add_mask = (ZONES_MASK << ZONES_PGSHIFT) +
144  			(NODES_MASK << NODES_PGSHIFT) +
145  			(SECTIONS_MASK << SECTIONS_PGSHIFT);
146  	BUG_ON(or_mask != add_mask);
147  }
148  
set_mminit_loglevel(char * str)149  static __init int set_mminit_loglevel(char *str)
150  {
151  	get_option(&str, &mminit_loglevel);
152  	return 0;
153  }
154  early_param("mminit_loglevel", set_mminit_loglevel);
155  #endif /* CONFIG_DEBUG_MEMORY_INIT */
156  
157  struct kobject *mm_kobj;
158  
159  #ifdef CONFIG_SMP
160  s32 vm_committed_as_batch = 32;
161  
mm_compute_batch(int overcommit_policy)162  void mm_compute_batch(int overcommit_policy)
163  {
164  	u64 memsized_batch;
165  	s32 nr = num_present_cpus();
166  	s32 batch = max_t(s32, nr*2, 32);
167  	unsigned long ram_pages = totalram_pages();
168  
169  	/*
170  	 * For policy OVERCOMMIT_NEVER, set batch size to 0.4% of
171  	 * (total memory/#cpus), and lift it to 25% for other policies
172  	 * to easy the possible lock contention for percpu_counter
173  	 * vm_committed_as, while the max limit is INT_MAX
174  	 */
175  	if (overcommit_policy == OVERCOMMIT_NEVER)
176  		memsized_batch = min_t(u64, ram_pages/nr/256, INT_MAX);
177  	else
178  		memsized_batch = min_t(u64, ram_pages/nr/4, INT_MAX);
179  
180  	vm_committed_as_batch = max_t(s32, memsized_batch, batch);
181  }
182  
mm_compute_batch_notifier(struct notifier_block * self,unsigned long action,void * arg)183  static int __meminit mm_compute_batch_notifier(struct notifier_block *self,
184  					unsigned long action, void *arg)
185  {
186  	switch (action) {
187  	case MEM_ONLINE:
188  	case MEM_OFFLINE:
189  		mm_compute_batch(sysctl_overcommit_memory);
190  		break;
191  	default:
192  		break;
193  	}
194  	return NOTIFY_OK;
195  }
196  
mm_compute_batch_init(void)197  static int __init mm_compute_batch_init(void)
198  {
199  	mm_compute_batch(sysctl_overcommit_memory);
200  	hotplug_memory_notifier(mm_compute_batch_notifier, MM_COMPUTE_BATCH_PRI);
201  	return 0;
202  }
203  
204  __initcall(mm_compute_batch_init);
205  
206  #endif
207  
mm_sysfs_init(void)208  static int __init mm_sysfs_init(void)
209  {
210  	mm_kobj = kobject_create_and_add("mm", kernel_kobj);
211  	if (!mm_kobj)
212  		return -ENOMEM;
213  
214  	return 0;
215  }
216  postcore_initcall(mm_sysfs_init);
217  
218  static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
219  static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
220  static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
221  
222  static unsigned long required_kernelcore __initdata;
223  static unsigned long required_kernelcore_percent __initdata;
224  static unsigned long required_movablecore __initdata;
225  static unsigned long required_movablecore_percent __initdata;
226  
227  static unsigned long nr_kernel_pages __initdata;
228  static unsigned long nr_all_pages __initdata;
229  static unsigned long dma_reserve __initdata;
230  
231  static bool deferred_struct_pages __meminitdata;
232  
233  static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
234  
cmdline_parse_core(char * p,unsigned long * core,unsigned long * percent)235  static int __init cmdline_parse_core(char *p, unsigned long *core,
236  				     unsigned long *percent)
237  {
238  	unsigned long long coremem;
239  	char *endptr;
240  
241  	if (!p)
242  		return -EINVAL;
243  
244  	/* Value may be a percentage of total memory, otherwise bytes */
245  	coremem = simple_strtoull(p, &endptr, 0);
246  	if (*endptr == '%') {
247  		/* Paranoid check for percent values greater than 100 */
248  		WARN_ON(coremem > 100);
249  
250  		*percent = coremem;
251  	} else {
252  		coremem = memparse(p, &p);
253  		/* Paranoid check that UL is enough for the coremem value */
254  		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
255  
256  		*core = coremem >> PAGE_SHIFT;
257  		*percent = 0UL;
258  	}
259  	return 0;
260  }
261  
262  bool mirrored_kernelcore __initdata_memblock;
263  
264  /*
265   * kernelcore=size sets the amount of memory for use for allocations that
266   * cannot be reclaimed or migrated.
267   */
cmdline_parse_kernelcore(char * p)268  static int __init cmdline_parse_kernelcore(char *p)
269  {
270  	/* parse kernelcore=mirror */
271  	if (parse_option_str(p, "mirror")) {
272  		mirrored_kernelcore = true;
273  		return 0;
274  	}
275  
276  	return cmdline_parse_core(p, &required_kernelcore,
277  				  &required_kernelcore_percent);
278  }
279  early_param("kernelcore", cmdline_parse_kernelcore);
280  
281  /*
282   * movablecore=size sets the amount of memory for use for allocations that
283   * can be reclaimed or migrated.
284   */
cmdline_parse_movablecore(char * p)285  static int __init cmdline_parse_movablecore(char *p)
286  {
287  	return cmdline_parse_core(p, &required_movablecore,
288  				  &required_movablecore_percent);
289  }
290  early_param("movablecore", cmdline_parse_movablecore);
291  
292  /*
293   * early_calculate_totalpages()
294   * Sum pages in active regions for movable zone.
295   * Populate N_MEMORY for calculating usable_nodes.
296   */
early_calculate_totalpages(void)297  static unsigned long __init early_calculate_totalpages(void)
298  {
299  	unsigned long totalpages = 0;
300  	unsigned long start_pfn, end_pfn;
301  	int i, nid;
302  
303  	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
304  		unsigned long pages = end_pfn - start_pfn;
305  
306  		totalpages += pages;
307  		if (pages)
308  			node_set_state(nid, N_MEMORY);
309  	}
310  	return totalpages;
311  }
312  
313  /*
314   * This finds a zone that can be used for ZONE_MOVABLE pages. The
315   * assumption is made that zones within a node are ordered in monotonic
316   * increasing memory addresses so that the "highest" populated zone is used
317   */
find_usable_zone_for_movable(void)318  static void __init find_usable_zone_for_movable(void)
319  {
320  	int zone_index;
321  	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
322  		if (zone_index == ZONE_MOVABLE)
323  			continue;
324  
325  		if (arch_zone_highest_possible_pfn[zone_index] >
326  				arch_zone_lowest_possible_pfn[zone_index])
327  			break;
328  	}
329  
330  	VM_BUG_ON(zone_index == -1);
331  	movable_zone = zone_index;
332  }
333  
334  /*
335   * Find the PFN the Movable zone begins in each node. Kernel memory
336   * is spread evenly between nodes as long as the nodes have enough
337   * memory. When they don't, some nodes will have more kernelcore than
338   * others
339   */
find_zone_movable_pfns_for_nodes(void)340  static void __init find_zone_movable_pfns_for_nodes(void)
341  {
342  	int i, nid;
343  	unsigned long usable_startpfn;
344  	unsigned long kernelcore_node, kernelcore_remaining;
345  	/* save the state before borrow the nodemask */
346  	nodemask_t saved_node_state = node_states[N_MEMORY];
347  	unsigned long totalpages = early_calculate_totalpages();
348  	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
349  	struct memblock_region *r;
350  
351  	/* Need to find movable_zone earlier when movable_node is specified. */
352  	find_usable_zone_for_movable();
353  
354  	/*
355  	 * If movable_node is specified, ignore kernelcore and movablecore
356  	 * options.
357  	 */
358  	if (movable_node_is_enabled()) {
359  		for_each_mem_region(r) {
360  			if (!memblock_is_hotpluggable(r))
361  				continue;
362  
363  			nid = memblock_get_region_node(r);
364  
365  			usable_startpfn = PFN_DOWN(r->base);
366  			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
367  				min(usable_startpfn, zone_movable_pfn[nid]) :
368  				usable_startpfn;
369  		}
370  
371  		goto out2;
372  	}
373  
374  	/*
375  	 * If kernelcore=mirror is specified, ignore movablecore option
376  	 */
377  	if (mirrored_kernelcore) {
378  		bool mem_below_4gb_not_mirrored = false;
379  
380  		if (!memblock_has_mirror()) {
381  			pr_warn("The system has no mirror memory, ignore kernelcore=mirror.\n");
382  			goto out;
383  		}
384  
385  		if (is_kdump_kernel()) {
386  			pr_warn("The system is under kdump, ignore kernelcore=mirror.\n");
387  			goto out;
388  		}
389  
390  		for_each_mem_region(r) {
391  			if (memblock_is_mirror(r))
392  				continue;
393  
394  			nid = memblock_get_region_node(r);
395  
396  			usable_startpfn = memblock_region_memory_base_pfn(r);
397  
398  			if (usable_startpfn < PHYS_PFN(SZ_4G)) {
399  				mem_below_4gb_not_mirrored = true;
400  				continue;
401  			}
402  
403  			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
404  				min(usable_startpfn, zone_movable_pfn[nid]) :
405  				usable_startpfn;
406  		}
407  
408  		if (mem_below_4gb_not_mirrored)
409  			pr_warn("This configuration results in unmirrored kernel memory.\n");
410  
411  		goto out2;
412  	}
413  
414  	/*
415  	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
416  	 * amount of necessary memory.
417  	 */
418  	if (required_kernelcore_percent)
419  		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
420  				       10000UL;
421  	if (required_movablecore_percent)
422  		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
423  					10000UL;
424  
425  	/*
426  	 * If movablecore= was specified, calculate what size of
427  	 * kernelcore that corresponds so that memory usable for
428  	 * any allocation type is evenly spread. If both kernelcore
429  	 * and movablecore are specified, then the value of kernelcore
430  	 * will be used for required_kernelcore if it's greater than
431  	 * what movablecore would have allowed.
432  	 */
433  	if (required_movablecore) {
434  		unsigned long corepages;
435  
436  		/*
437  		 * Round-up so that ZONE_MOVABLE is at least as large as what
438  		 * was requested by the user
439  		 */
440  		required_movablecore =
441  			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
442  		required_movablecore = min(totalpages, required_movablecore);
443  		corepages = totalpages - required_movablecore;
444  
445  		required_kernelcore = max(required_kernelcore, corepages);
446  	}
447  
448  	/*
449  	 * If kernelcore was not specified or kernelcore size is larger
450  	 * than totalpages, there is no ZONE_MOVABLE.
451  	 */
452  	if (!required_kernelcore || required_kernelcore >= totalpages)
453  		goto out;
454  
455  	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
456  	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
457  
458  restart:
459  	/* Spread kernelcore memory as evenly as possible throughout nodes */
460  	kernelcore_node = required_kernelcore / usable_nodes;
461  	for_each_node_state(nid, N_MEMORY) {
462  		unsigned long start_pfn, end_pfn;
463  
464  		/*
465  		 * Recalculate kernelcore_node if the division per node
466  		 * now exceeds what is necessary to satisfy the requested
467  		 * amount of memory for the kernel
468  		 */
469  		if (required_kernelcore < kernelcore_node)
470  			kernelcore_node = required_kernelcore / usable_nodes;
471  
472  		/*
473  		 * As the map is walked, we track how much memory is usable
474  		 * by the kernel using kernelcore_remaining. When it is
475  		 * 0, the rest of the node is usable by ZONE_MOVABLE
476  		 */
477  		kernelcore_remaining = kernelcore_node;
478  
479  		/* Go through each range of PFNs within this node */
480  		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
481  			unsigned long size_pages;
482  
483  			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
484  			if (start_pfn >= end_pfn)
485  				continue;
486  
487  			/* Account for what is only usable for kernelcore */
488  			if (start_pfn < usable_startpfn) {
489  				unsigned long kernel_pages;
490  				kernel_pages = min(end_pfn, usable_startpfn)
491  								- start_pfn;
492  
493  				kernelcore_remaining -= min(kernel_pages,
494  							kernelcore_remaining);
495  				required_kernelcore -= min(kernel_pages,
496  							required_kernelcore);
497  
498  				/* Continue if range is now fully accounted */
499  				if (end_pfn <= usable_startpfn) {
500  
501  					/*
502  					 * Push zone_movable_pfn to the end so
503  					 * that if we have to rebalance
504  					 * kernelcore across nodes, we will
505  					 * not double account here
506  					 */
507  					zone_movable_pfn[nid] = end_pfn;
508  					continue;
509  				}
510  				start_pfn = usable_startpfn;
511  			}
512  
513  			/*
514  			 * The usable PFN range for ZONE_MOVABLE is from
515  			 * start_pfn->end_pfn. Calculate size_pages as the
516  			 * number of pages used as kernelcore
517  			 */
518  			size_pages = end_pfn - start_pfn;
519  			if (size_pages > kernelcore_remaining)
520  				size_pages = kernelcore_remaining;
521  			zone_movable_pfn[nid] = start_pfn + size_pages;
522  
523  			/*
524  			 * Some kernelcore has been met, update counts and
525  			 * break if the kernelcore for this node has been
526  			 * satisfied
527  			 */
528  			required_kernelcore -= min(required_kernelcore,
529  								size_pages);
530  			kernelcore_remaining -= size_pages;
531  			if (!kernelcore_remaining)
532  				break;
533  		}
534  	}
535  
536  	/*
537  	 * If there is still required_kernelcore, we do another pass with one
538  	 * less node in the count. This will push zone_movable_pfn[nid] further
539  	 * along on the nodes that still have memory until kernelcore is
540  	 * satisfied
541  	 */
542  	usable_nodes--;
543  	if (usable_nodes && required_kernelcore > usable_nodes)
544  		goto restart;
545  
546  out2:
547  	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
548  	for (nid = 0; nid < MAX_NUMNODES; nid++) {
549  		unsigned long start_pfn, end_pfn;
550  
551  		zone_movable_pfn[nid] =
552  			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
553  
554  		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
555  		if (zone_movable_pfn[nid] >= end_pfn)
556  			zone_movable_pfn[nid] = 0;
557  	}
558  
559  out:
560  	/* restore the node_state */
561  	node_states[N_MEMORY] = saved_node_state;
562  }
563  
__init_single_page(struct page * page,unsigned long pfn,unsigned long zone,int nid)564  static void __meminit __init_single_page(struct page *page, unsigned long pfn,
565  				unsigned long zone, int nid)
566  {
567  	mm_zero_struct_page(page);
568  	set_page_links(page, zone, nid, pfn);
569  	init_page_count(page);
570  	page_mapcount_reset(page);
571  	page_cpupid_reset_last(page);
572  	page_kasan_tag_reset(page);
573  
574  	INIT_LIST_HEAD(&page->lru);
575  #ifdef WANT_PAGE_VIRTUAL
576  	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
577  	if (!is_highmem_idx(zone))
578  		set_page_address(page, __va(pfn << PAGE_SHIFT));
579  #endif
580  }
581  
582  #ifdef CONFIG_NUMA
583  /*
584   * During memory init memblocks map pfns to nids. The search is expensive and
585   * this caches recent lookups. The implementation of __early_pfn_to_nid
586   * treats start/end as pfns.
587   */
588  struct mminit_pfnnid_cache {
589  	unsigned long last_start;
590  	unsigned long last_end;
591  	int last_nid;
592  };
593  
594  static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
595  
596  /*
597   * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
598   */
__early_pfn_to_nid(unsigned long pfn,struct mminit_pfnnid_cache * state)599  static int __meminit __early_pfn_to_nid(unsigned long pfn,
600  					struct mminit_pfnnid_cache *state)
601  {
602  	unsigned long start_pfn, end_pfn;
603  	int nid;
604  
605  	if (state->last_start <= pfn && pfn < state->last_end)
606  		return state->last_nid;
607  
608  	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
609  	if (nid != NUMA_NO_NODE) {
610  		state->last_start = start_pfn;
611  		state->last_end = end_pfn;
612  		state->last_nid = nid;
613  	}
614  
615  	return nid;
616  }
617  
early_pfn_to_nid(unsigned long pfn)618  int __meminit early_pfn_to_nid(unsigned long pfn)
619  {
620  	static DEFINE_SPINLOCK(early_pfn_lock);
621  	int nid;
622  
623  	spin_lock(&early_pfn_lock);
624  	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
625  	if (nid < 0)
626  		nid = first_online_node;
627  	spin_unlock(&early_pfn_lock);
628  
629  	return nid;
630  }
631  
632  int hashdist = HASHDIST_DEFAULT;
633  
set_hashdist(char * str)634  static int __init set_hashdist(char *str)
635  {
636  	if (!str)
637  		return 0;
638  	hashdist = simple_strtoul(str, &str, 0);
639  	return 1;
640  }
641  __setup("hashdist=", set_hashdist);
642  
fixup_hashdist(void)643  static inline void fixup_hashdist(void)
644  {
645  	if (num_node_state(N_MEMORY) == 1)
646  		hashdist = 0;
647  }
648  #else
fixup_hashdist(void)649  static inline void fixup_hashdist(void) {}
650  #endif /* CONFIG_NUMA */
651  
652  #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
pgdat_set_deferred_range(pg_data_t * pgdat)653  static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
654  {
655  	pgdat->first_deferred_pfn = ULONG_MAX;
656  }
657  
658  /* Returns true if the struct page for the pfn is initialised */
early_page_initialised(unsigned long pfn,int nid)659  static inline bool __meminit early_page_initialised(unsigned long pfn, int nid)
660  {
661  	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
662  		return false;
663  
664  	return true;
665  }
666  
667  /*
668   * Returns true when the remaining initialisation should be deferred until
669   * later in the boot cycle when it can be parallelised.
670   */
671  static bool __meminit
defer_init(int nid,unsigned long pfn,unsigned long end_pfn)672  defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
673  {
674  	static unsigned long prev_end_pfn, nr_initialised;
675  
676  	if (early_page_ext_enabled())
677  		return false;
678  	/*
679  	 * prev_end_pfn static that contains the end of previous zone
680  	 * No need to protect because called very early in boot before smp_init.
681  	 */
682  	if (prev_end_pfn != end_pfn) {
683  		prev_end_pfn = end_pfn;
684  		nr_initialised = 0;
685  	}
686  
687  	/* Always populate low zones for address-constrained allocations */
688  	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
689  		return false;
690  
691  	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
692  		return true;
693  	/*
694  	 * We start only with one section of pages, more pages are added as
695  	 * needed until the rest of deferred pages are initialized.
696  	 */
697  	nr_initialised++;
698  	if ((nr_initialised > PAGES_PER_SECTION) &&
699  	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
700  		NODE_DATA(nid)->first_deferred_pfn = pfn;
701  		return true;
702  	}
703  	return false;
704  }
705  
init_reserved_page(unsigned long pfn,int nid)706  static void __meminit init_reserved_page(unsigned long pfn, int nid)
707  {
708  	pg_data_t *pgdat;
709  	int zid;
710  
711  	if (early_page_initialised(pfn, nid))
712  		return;
713  
714  	pgdat = NODE_DATA(nid);
715  
716  	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
717  		struct zone *zone = &pgdat->node_zones[zid];
718  
719  		if (zone_spans_pfn(zone, pfn))
720  			break;
721  	}
722  	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
723  }
724  #else
pgdat_set_deferred_range(pg_data_t * pgdat)725  static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
726  
early_page_initialised(unsigned long pfn,int nid)727  static inline bool early_page_initialised(unsigned long pfn, int nid)
728  {
729  	return true;
730  }
731  
defer_init(int nid,unsigned long pfn,unsigned long end_pfn)732  static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
733  {
734  	return false;
735  }
736  
init_reserved_page(unsigned long pfn,int nid)737  static inline void init_reserved_page(unsigned long pfn, int nid)
738  {
739  }
740  #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
741  
742  /*
743   * Initialised pages do not have PageReserved set. This function is
744   * called for each range allocated by the bootmem allocator and
745   * marks the pages PageReserved. The remaining valid pages are later
746   * sent to the buddy page allocator.
747   */
reserve_bootmem_region(phys_addr_t start,phys_addr_t end,int nid)748  void __meminit reserve_bootmem_region(phys_addr_t start,
749  				      phys_addr_t end, int nid)
750  {
751  	unsigned long start_pfn = PFN_DOWN(start);
752  	unsigned long end_pfn = PFN_UP(end);
753  
754  	for (; start_pfn < end_pfn; start_pfn++) {
755  		if (pfn_valid(start_pfn)) {
756  			struct page *page = pfn_to_page(start_pfn);
757  
758  			init_reserved_page(start_pfn, nid);
759  
760  			/* Avoid false-positive PageTail() */
761  			INIT_LIST_HEAD(&page->lru);
762  
763  			/*
764  			 * no need for atomic set_bit because the struct
765  			 * page is not visible yet so nobody should
766  			 * access it yet.
767  			 */
768  			__SetPageReserved(page);
769  		}
770  	}
771  }
772  
773  /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
774  static bool __meminit
overlap_memmap_init(unsigned long zone,unsigned long * pfn)775  overlap_memmap_init(unsigned long zone, unsigned long *pfn)
776  {
777  	static struct memblock_region *r;
778  
779  	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
780  		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
781  			for_each_mem_region(r) {
782  				if (*pfn < memblock_region_memory_end_pfn(r))
783  					break;
784  			}
785  		}
786  		if (*pfn >= memblock_region_memory_base_pfn(r) &&
787  		    memblock_is_mirror(r)) {
788  			*pfn = memblock_region_memory_end_pfn(r);
789  			return true;
790  		}
791  	}
792  	return false;
793  }
794  
795  /*
796   * Only struct pages that correspond to ranges defined by memblock.memory
797   * are zeroed and initialized by going through __init_single_page() during
798   * memmap_init_zone_range().
799   *
800   * But, there could be struct pages that correspond to holes in
801   * memblock.memory. This can happen because of the following reasons:
802   * - physical memory bank size is not necessarily the exact multiple of the
803   *   arbitrary section size
804   * - early reserved memory may not be listed in memblock.memory
805   * - memory layouts defined with memmap= kernel parameter may not align
806   *   nicely with memmap sections
807   *
808   * Explicitly initialize those struct pages so that:
809   * - PG_Reserved is set
810   * - zone and node links point to zone and node that span the page if the
811   *   hole is in the middle of a zone
812   * - zone and node links point to adjacent zone/node if the hole falls on
813   *   the zone boundary; the pages in such holes will be prepended to the
814   *   zone/node above the hole except for the trailing pages in the last
815   *   section that will be appended to the zone/node below.
816   */
init_unavailable_range(unsigned long spfn,unsigned long epfn,int zone,int node)817  static void __init init_unavailable_range(unsigned long spfn,
818  					  unsigned long epfn,
819  					  int zone, int node)
820  {
821  	unsigned long pfn;
822  	u64 pgcnt = 0;
823  
824  	for (pfn = spfn; pfn < epfn; pfn++) {
825  		if (!pfn_valid(pageblock_start_pfn(pfn))) {
826  			pfn = pageblock_end_pfn(pfn) - 1;
827  			continue;
828  		}
829  		__init_single_page(pfn_to_page(pfn), pfn, zone, node);
830  		__SetPageReserved(pfn_to_page(pfn));
831  		pgcnt++;
832  	}
833  
834  	if (pgcnt)
835  		pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
836  			node, zone_names[zone], pgcnt);
837  }
838  
839  /*
840   * Initially all pages are reserved - free ones are freed
841   * up by memblock_free_all() once the early boot process is
842   * done. Non-atomic initialization, single-pass.
843   *
844   * All aligned pageblocks are initialized to the specified migratetype
845   * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
846   * zone stats (e.g., nr_isolate_pageblock) are touched.
847   */
memmap_init_range(unsigned long size,int nid,unsigned long zone,unsigned long start_pfn,unsigned long zone_end_pfn,enum meminit_context context,struct vmem_altmap * altmap,int migratetype)848  void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
849  		unsigned long start_pfn, unsigned long zone_end_pfn,
850  		enum meminit_context context,
851  		struct vmem_altmap *altmap, int migratetype)
852  {
853  	unsigned long pfn, end_pfn = start_pfn + size;
854  	struct page *page;
855  
856  	if (highest_memmap_pfn < end_pfn - 1)
857  		highest_memmap_pfn = end_pfn - 1;
858  
859  #ifdef CONFIG_ZONE_DEVICE
860  	/*
861  	 * Honor reservation requested by the driver for this ZONE_DEVICE
862  	 * memory. We limit the total number of pages to initialize to just
863  	 * those that might contain the memory mapping. We will defer the
864  	 * ZONE_DEVICE page initialization until after we have released
865  	 * the hotplug lock.
866  	 */
867  	if (zone == ZONE_DEVICE) {
868  		if (!altmap)
869  			return;
870  
871  		if (start_pfn == altmap->base_pfn)
872  			start_pfn += altmap->reserve;
873  		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
874  	}
875  #endif
876  
877  	for (pfn = start_pfn; pfn < end_pfn; ) {
878  		/*
879  		 * There can be holes in boot-time mem_map[]s handed to this
880  		 * function.  They do not exist on hotplugged memory.
881  		 */
882  		if (context == MEMINIT_EARLY) {
883  			if (overlap_memmap_init(zone, &pfn))
884  				continue;
885  			if (defer_init(nid, pfn, zone_end_pfn)) {
886  				deferred_struct_pages = true;
887  				break;
888  			}
889  		}
890  
891  		page = pfn_to_page(pfn);
892  		__init_single_page(page, pfn, zone, nid);
893  		if (context == MEMINIT_HOTPLUG)
894  			__SetPageReserved(page);
895  
896  		/*
897  		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
898  		 * such that unmovable allocations won't be scattered all
899  		 * over the place during system boot.
900  		 */
901  		if (pageblock_aligned(pfn)) {
902  			set_pageblock_migratetype(page, migratetype);
903  			cond_resched();
904  		}
905  		pfn++;
906  	}
907  }
908  
memmap_init_zone_range(struct zone * zone,unsigned long start_pfn,unsigned long end_pfn,unsigned long * hole_pfn)909  static void __init memmap_init_zone_range(struct zone *zone,
910  					  unsigned long start_pfn,
911  					  unsigned long end_pfn,
912  					  unsigned long *hole_pfn)
913  {
914  	unsigned long zone_start_pfn = zone->zone_start_pfn;
915  	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
916  	int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
917  
918  	start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
919  	end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
920  
921  	if (start_pfn >= end_pfn)
922  		return;
923  
924  	memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
925  			  zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
926  
927  	if (*hole_pfn < start_pfn)
928  		init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
929  
930  	*hole_pfn = end_pfn;
931  }
932  
memmap_init(void)933  static void __init memmap_init(void)
934  {
935  	unsigned long start_pfn, end_pfn;
936  	unsigned long hole_pfn = 0;
937  	int i, j, zone_id = 0, nid;
938  
939  	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
940  		struct pglist_data *node = NODE_DATA(nid);
941  
942  		for (j = 0; j < MAX_NR_ZONES; j++) {
943  			struct zone *zone = node->node_zones + j;
944  
945  			if (!populated_zone(zone))
946  				continue;
947  
948  			memmap_init_zone_range(zone, start_pfn, end_pfn,
949  					       &hole_pfn);
950  			zone_id = j;
951  		}
952  	}
953  
954  #ifdef CONFIG_SPARSEMEM
955  	/*
956  	 * Initialize the memory map for hole in the range [memory_end,
957  	 * section_end].
958  	 * Append the pages in this hole to the highest zone in the last
959  	 * node.
960  	 * The call to init_unavailable_range() is outside the ifdef to
961  	 * silence the compiler warining about zone_id set but not used;
962  	 * for FLATMEM it is a nop anyway
963  	 */
964  	end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
965  	if (hole_pfn < end_pfn)
966  #endif
967  		init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
968  }
969  
970  #ifdef CONFIG_ZONE_DEVICE
__init_zone_device_page(struct page * page,unsigned long pfn,unsigned long zone_idx,int nid,struct dev_pagemap * pgmap)971  static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
972  					  unsigned long zone_idx, int nid,
973  					  struct dev_pagemap *pgmap)
974  {
975  
976  	__init_single_page(page, pfn, zone_idx, nid);
977  
978  	/*
979  	 * Mark page reserved as it will need to wait for onlining
980  	 * phase for it to be fully associated with a zone.
981  	 *
982  	 * We can use the non-atomic __set_bit operation for setting
983  	 * the flag as we are still initializing the pages.
984  	 */
985  	__SetPageReserved(page);
986  
987  	/*
988  	 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
989  	 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
990  	 * ever freed or placed on a driver-private list.
991  	 */
992  	page->pgmap = pgmap;
993  	page->zone_device_data = NULL;
994  
995  	/*
996  	 * Mark the block movable so that blocks are reserved for
997  	 * movable at startup. This will force kernel allocations
998  	 * to reserve their blocks rather than leaking throughout
999  	 * the address space during boot when many long-lived
1000  	 * kernel allocations are made.
1001  	 *
1002  	 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
1003  	 * because this is done early in section_activate()
1004  	 */
1005  	if (pageblock_aligned(pfn)) {
1006  		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1007  		cond_resched();
1008  	}
1009  
1010  	/*
1011  	 * ZONE_DEVICE pages are released directly to the driver page allocator
1012  	 * which will set the page count to 1 when allocating the page.
1013  	 */
1014  	if (pgmap->type == MEMORY_DEVICE_PRIVATE ||
1015  	    pgmap->type == MEMORY_DEVICE_COHERENT)
1016  		set_page_count(page, 0);
1017  }
1018  
1019  /*
1020   * With compound page geometry and when struct pages are stored in ram most
1021   * tail pages are reused. Consequently, the amount of unique struct pages to
1022   * initialize is a lot smaller that the total amount of struct pages being
1023   * mapped. This is a paired / mild layering violation with explicit knowledge
1024   * of how the sparse_vmemmap internals handle compound pages in the lack
1025   * of an altmap. See vmemmap_populate_compound_pages().
1026   */
compound_nr_pages(struct vmem_altmap * altmap,struct dev_pagemap * pgmap)1027  static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
1028  					      struct dev_pagemap *pgmap)
1029  {
1030  	if (!vmemmap_can_optimize(altmap, pgmap))
1031  		return pgmap_vmemmap_nr(pgmap);
1032  
1033  	return VMEMMAP_RESERVE_NR * (PAGE_SIZE / sizeof(struct page));
1034  }
1035  
memmap_init_compound(struct page * head,unsigned long head_pfn,unsigned long zone_idx,int nid,struct dev_pagemap * pgmap,unsigned long nr_pages)1036  static void __ref memmap_init_compound(struct page *head,
1037  				       unsigned long head_pfn,
1038  				       unsigned long zone_idx, int nid,
1039  				       struct dev_pagemap *pgmap,
1040  				       unsigned long nr_pages)
1041  {
1042  	unsigned long pfn, end_pfn = head_pfn + nr_pages;
1043  	unsigned int order = pgmap->vmemmap_shift;
1044  
1045  	__SetPageHead(head);
1046  	for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
1047  		struct page *page = pfn_to_page(pfn);
1048  
1049  		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
1050  		prep_compound_tail(head, pfn - head_pfn);
1051  		set_page_count(page, 0);
1052  
1053  		/*
1054  		 * The first tail page stores important compound page info.
1055  		 * Call prep_compound_head() after the first tail page has
1056  		 * been initialized, to not have the data overwritten.
1057  		 */
1058  		if (pfn == head_pfn + 1)
1059  			prep_compound_head(head, order);
1060  	}
1061  }
1062  
memmap_init_zone_device(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages,struct dev_pagemap * pgmap)1063  void __ref memmap_init_zone_device(struct zone *zone,
1064  				   unsigned long start_pfn,
1065  				   unsigned long nr_pages,
1066  				   struct dev_pagemap *pgmap)
1067  {
1068  	unsigned long pfn, end_pfn = start_pfn + nr_pages;
1069  	struct pglist_data *pgdat = zone->zone_pgdat;
1070  	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
1071  	unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
1072  	unsigned long zone_idx = zone_idx(zone);
1073  	unsigned long start = jiffies;
1074  	int nid = pgdat->node_id;
1075  
1076  	if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE))
1077  		return;
1078  
1079  	/*
1080  	 * The call to memmap_init should have already taken care
1081  	 * of the pages reserved for the memmap, so we can just jump to
1082  	 * the end of that region and start processing the device pages.
1083  	 */
1084  	if (altmap) {
1085  		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
1086  		nr_pages = end_pfn - start_pfn;
1087  	}
1088  
1089  	for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
1090  		struct page *page = pfn_to_page(pfn);
1091  
1092  		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
1093  
1094  		if (pfns_per_compound == 1)
1095  			continue;
1096  
1097  		memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
1098  				     compound_nr_pages(altmap, pgmap));
1099  	}
1100  
1101  	pr_debug("%s initialised %lu pages in %ums\n", __func__,
1102  		nr_pages, jiffies_to_msecs(jiffies - start));
1103  }
1104  #endif
1105  
1106  /*
1107   * The zone ranges provided by the architecture do not include ZONE_MOVABLE
1108   * because it is sized independent of architecture. Unlike the other zones,
1109   * the starting point for ZONE_MOVABLE is not fixed. It may be different
1110   * in each node depending on the size of each node and how evenly kernelcore
1111   * is distributed. This helper function adjusts the zone ranges
1112   * provided by the architecture for a given node by using the end of the
1113   * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
1114   * zones within a node are in order of monotonic increases memory addresses
1115   */
adjust_zone_range_for_zone_movable(int nid,unsigned long zone_type,unsigned long node_end_pfn,unsigned long * zone_start_pfn,unsigned long * zone_end_pfn)1116  static void __init adjust_zone_range_for_zone_movable(int nid,
1117  					unsigned long zone_type,
1118  					unsigned long node_end_pfn,
1119  					unsigned long *zone_start_pfn,
1120  					unsigned long *zone_end_pfn)
1121  {
1122  	/* Only adjust if ZONE_MOVABLE is on this node */
1123  	if (zone_movable_pfn[nid]) {
1124  		/* Size ZONE_MOVABLE */
1125  		if (zone_type == ZONE_MOVABLE) {
1126  			*zone_start_pfn = zone_movable_pfn[nid];
1127  			*zone_end_pfn = min(node_end_pfn,
1128  				arch_zone_highest_possible_pfn[movable_zone]);
1129  
1130  		/* Adjust for ZONE_MOVABLE starting within this range */
1131  		} else if (!mirrored_kernelcore &&
1132  			*zone_start_pfn < zone_movable_pfn[nid] &&
1133  			*zone_end_pfn > zone_movable_pfn[nid]) {
1134  			*zone_end_pfn = zone_movable_pfn[nid];
1135  
1136  		/* Check if this whole range is within ZONE_MOVABLE */
1137  		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
1138  			*zone_start_pfn = *zone_end_pfn;
1139  	}
1140  }
1141  
1142  /*
1143   * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
1144   * then all holes in the requested range will be accounted for.
1145   */
__absent_pages_in_range(int nid,unsigned long range_start_pfn,unsigned long range_end_pfn)1146  unsigned long __init __absent_pages_in_range(int nid,
1147  				unsigned long range_start_pfn,
1148  				unsigned long range_end_pfn)
1149  {
1150  	unsigned long nr_absent = range_end_pfn - range_start_pfn;
1151  	unsigned long start_pfn, end_pfn;
1152  	int i;
1153  
1154  	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
1155  		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
1156  		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
1157  		nr_absent -= end_pfn - start_pfn;
1158  	}
1159  	return nr_absent;
1160  }
1161  
1162  /**
1163   * absent_pages_in_range - Return number of page frames in holes within a range
1164   * @start_pfn: The start PFN to start searching for holes
1165   * @end_pfn: The end PFN to stop searching for holes
1166   *
1167   * Return: the number of pages frames in memory holes within a range.
1168   */
absent_pages_in_range(unsigned long start_pfn,unsigned long end_pfn)1169  unsigned long __init absent_pages_in_range(unsigned long start_pfn,
1170  							unsigned long end_pfn)
1171  {
1172  	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
1173  }
1174  
1175  /* Return the number of page frames in holes in a zone on a node */
zone_absent_pages_in_node(int nid,unsigned long zone_type,unsigned long zone_start_pfn,unsigned long zone_end_pfn)1176  static unsigned long __init zone_absent_pages_in_node(int nid,
1177  					unsigned long zone_type,
1178  					unsigned long zone_start_pfn,
1179  					unsigned long zone_end_pfn)
1180  {
1181  	unsigned long nr_absent;
1182  
1183  	/* zone is empty, we don't have any absent pages */
1184  	if (zone_start_pfn == zone_end_pfn)
1185  		return 0;
1186  
1187  	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
1188  
1189  	/*
1190  	 * ZONE_MOVABLE handling.
1191  	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
1192  	 * and vice versa.
1193  	 */
1194  	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
1195  		unsigned long start_pfn, end_pfn;
1196  		struct memblock_region *r;
1197  
1198  		for_each_mem_region(r) {
1199  			start_pfn = clamp(memblock_region_memory_base_pfn(r),
1200  					  zone_start_pfn, zone_end_pfn);
1201  			end_pfn = clamp(memblock_region_memory_end_pfn(r),
1202  					zone_start_pfn, zone_end_pfn);
1203  
1204  			if (zone_type == ZONE_MOVABLE &&
1205  			    memblock_is_mirror(r))
1206  				nr_absent += end_pfn - start_pfn;
1207  
1208  			if (zone_type == ZONE_NORMAL &&
1209  			    !memblock_is_mirror(r))
1210  				nr_absent += end_pfn - start_pfn;
1211  		}
1212  	}
1213  
1214  	return nr_absent;
1215  }
1216  
1217  /*
1218   * Return the number of pages a zone spans in a node, including holes
1219   * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
1220   */
zone_spanned_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zone_start_pfn,unsigned long * zone_end_pfn)1221  static unsigned long __init zone_spanned_pages_in_node(int nid,
1222  					unsigned long zone_type,
1223  					unsigned long node_start_pfn,
1224  					unsigned long node_end_pfn,
1225  					unsigned long *zone_start_pfn,
1226  					unsigned long *zone_end_pfn)
1227  {
1228  	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
1229  	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
1230  
1231  	/* Get the start and end of the zone */
1232  	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
1233  	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
1234  	adjust_zone_range_for_zone_movable(nid, zone_type, node_end_pfn,
1235  					   zone_start_pfn, zone_end_pfn);
1236  
1237  	/* Check that this node has pages within the zone's required range */
1238  	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
1239  		return 0;
1240  
1241  	/* Move the zone boundaries inside the node if necessary */
1242  	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
1243  	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
1244  
1245  	/* Return the spanned pages */
1246  	return *zone_end_pfn - *zone_start_pfn;
1247  }
1248  
reset_memoryless_node_totalpages(struct pglist_data * pgdat)1249  static void __init reset_memoryless_node_totalpages(struct pglist_data *pgdat)
1250  {
1251  	struct zone *z;
1252  
1253  	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) {
1254  		z->zone_start_pfn = 0;
1255  		z->spanned_pages = 0;
1256  		z->present_pages = 0;
1257  #if defined(CONFIG_MEMORY_HOTPLUG)
1258  		z->present_early_pages = 0;
1259  #endif
1260  	}
1261  
1262  	pgdat->node_spanned_pages = 0;
1263  	pgdat->node_present_pages = 0;
1264  	pr_debug("On node %d totalpages: 0\n", pgdat->node_id);
1265  }
1266  
calculate_node_totalpages(struct pglist_data * pgdat,unsigned long node_start_pfn,unsigned long node_end_pfn)1267  static void __init calculate_node_totalpages(struct pglist_data *pgdat,
1268  						unsigned long node_start_pfn,
1269  						unsigned long node_end_pfn)
1270  {
1271  	unsigned long realtotalpages = 0, totalpages = 0;
1272  	enum zone_type i;
1273  
1274  	for (i = 0; i < MAX_NR_ZONES; i++) {
1275  		struct zone *zone = pgdat->node_zones + i;
1276  		unsigned long zone_start_pfn, zone_end_pfn;
1277  		unsigned long spanned, absent;
1278  		unsigned long real_size;
1279  
1280  		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
1281  						     node_start_pfn,
1282  						     node_end_pfn,
1283  						     &zone_start_pfn,
1284  						     &zone_end_pfn);
1285  		absent = zone_absent_pages_in_node(pgdat->node_id, i,
1286  						   zone_start_pfn,
1287  						   zone_end_pfn);
1288  
1289  		real_size = spanned - absent;
1290  
1291  		if (spanned)
1292  			zone->zone_start_pfn = zone_start_pfn;
1293  		else
1294  			zone->zone_start_pfn = 0;
1295  		zone->spanned_pages = spanned;
1296  		zone->present_pages = real_size;
1297  #if defined(CONFIG_MEMORY_HOTPLUG)
1298  		zone->present_early_pages = real_size;
1299  #endif
1300  
1301  		totalpages += spanned;
1302  		realtotalpages += real_size;
1303  	}
1304  
1305  	pgdat->node_spanned_pages = totalpages;
1306  	pgdat->node_present_pages = realtotalpages;
1307  	pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1308  }
1309  
calc_memmap_size(unsigned long spanned_pages,unsigned long present_pages)1310  static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
1311  						unsigned long present_pages)
1312  {
1313  	unsigned long pages = spanned_pages;
1314  
1315  	/*
1316  	 * Provide a more accurate estimation if there are holes within
1317  	 * the zone and SPARSEMEM is in use. If there are holes within the
1318  	 * zone, each populated memory region may cost us one or two extra
1319  	 * memmap pages due to alignment because memmap pages for each
1320  	 * populated regions may not be naturally aligned on page boundary.
1321  	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
1322  	 */
1323  	if (spanned_pages > present_pages + (present_pages >> 4) &&
1324  	    IS_ENABLED(CONFIG_SPARSEMEM))
1325  		pages = present_pages;
1326  
1327  	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
1328  }
1329  
1330  #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pgdat_init_split_queue(struct pglist_data * pgdat)1331  static void pgdat_init_split_queue(struct pglist_data *pgdat)
1332  {
1333  	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
1334  
1335  	spin_lock_init(&ds_queue->split_queue_lock);
1336  	INIT_LIST_HEAD(&ds_queue->split_queue);
1337  	ds_queue->split_queue_len = 0;
1338  }
1339  #else
pgdat_init_split_queue(struct pglist_data * pgdat)1340  static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
1341  #endif
1342  
1343  #ifdef CONFIG_COMPACTION
pgdat_init_kcompactd(struct pglist_data * pgdat)1344  static void pgdat_init_kcompactd(struct pglist_data *pgdat)
1345  {
1346  	init_waitqueue_head(&pgdat->kcompactd_wait);
1347  }
1348  #else
pgdat_init_kcompactd(struct pglist_data * pgdat)1349  static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
1350  #endif
1351  
pgdat_init_internals(struct pglist_data * pgdat)1352  static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1353  {
1354  	int i;
1355  
1356  	pgdat_resize_init(pgdat);
1357  	pgdat_kswapd_lock_init(pgdat);
1358  
1359  	pgdat_init_split_queue(pgdat);
1360  	pgdat_init_kcompactd(pgdat);
1361  
1362  	init_waitqueue_head(&pgdat->kswapd_wait);
1363  	init_waitqueue_head(&pgdat->pfmemalloc_wait);
1364  
1365  	for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
1366  		init_waitqueue_head(&pgdat->reclaim_wait[i]);
1367  
1368  	pgdat_page_ext_init(pgdat);
1369  	lruvec_init(&pgdat->__lruvec);
1370  }
1371  
zone_init_internals(struct zone * zone,enum zone_type idx,int nid,unsigned long remaining_pages)1372  static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
1373  							unsigned long remaining_pages)
1374  {
1375  	atomic_long_set(&zone->managed_pages, remaining_pages);
1376  	zone_set_nid(zone, nid);
1377  	zone->name = zone_names[idx];
1378  	zone->zone_pgdat = NODE_DATA(nid);
1379  	spin_lock_init(&zone->lock);
1380  	zone_seqlock_init(zone);
1381  	zone_pcp_init(zone);
1382  }
1383  
zone_init_free_lists(struct zone * zone)1384  static void __meminit zone_init_free_lists(struct zone *zone)
1385  {
1386  	unsigned int order, t;
1387  	for_each_migratetype_order(order, t) {
1388  		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1389  		zone->free_area[order].nr_free = 0;
1390  	}
1391  
1392  #ifdef CONFIG_UNACCEPTED_MEMORY
1393  	INIT_LIST_HEAD(&zone->unaccepted_pages);
1394  #endif
1395  }
1396  
init_currently_empty_zone(struct zone * zone,unsigned long zone_start_pfn,unsigned long size)1397  void __meminit init_currently_empty_zone(struct zone *zone,
1398  					unsigned long zone_start_pfn,
1399  					unsigned long size)
1400  {
1401  	struct pglist_data *pgdat = zone->zone_pgdat;
1402  	int zone_idx = zone_idx(zone) + 1;
1403  
1404  	if (zone_idx > pgdat->nr_zones)
1405  		pgdat->nr_zones = zone_idx;
1406  
1407  	zone->zone_start_pfn = zone_start_pfn;
1408  
1409  	mminit_dprintk(MMINIT_TRACE, "memmap_init",
1410  			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
1411  			pgdat->node_id,
1412  			(unsigned long)zone_idx(zone),
1413  			zone_start_pfn, (zone_start_pfn + size));
1414  
1415  	zone_init_free_lists(zone);
1416  	zone->initialized = 1;
1417  }
1418  
1419  #ifndef CONFIG_SPARSEMEM
1420  /*
1421   * Calculate the size of the zone->blockflags rounded to an unsigned long
1422   * Start by making sure zonesize is a multiple of pageblock_order by rounding
1423   * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
1424   * round what is now in bits to nearest long in bits, then return it in
1425   * bytes.
1426   */
usemap_size(unsigned long zone_start_pfn,unsigned long zonesize)1427  static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
1428  {
1429  	unsigned long usemapsize;
1430  
1431  	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
1432  	usemapsize = roundup(zonesize, pageblock_nr_pages);
1433  	usemapsize = usemapsize >> pageblock_order;
1434  	usemapsize *= NR_PAGEBLOCK_BITS;
1435  	usemapsize = roundup(usemapsize, BITS_PER_LONG);
1436  
1437  	return usemapsize / BITS_PER_BYTE;
1438  }
1439  
setup_usemap(struct zone * zone)1440  static void __ref setup_usemap(struct zone *zone)
1441  {
1442  	unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
1443  					       zone->spanned_pages);
1444  	zone->pageblock_flags = NULL;
1445  	if (usemapsize) {
1446  		zone->pageblock_flags =
1447  			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
1448  					    zone_to_nid(zone));
1449  		if (!zone->pageblock_flags)
1450  			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
1451  			      usemapsize, zone->name, zone_to_nid(zone));
1452  	}
1453  }
1454  #else
setup_usemap(struct zone * zone)1455  static inline void setup_usemap(struct zone *zone) {}
1456  #endif /* CONFIG_SPARSEMEM */
1457  
1458  #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
1459  
1460  /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
set_pageblock_order(void)1461  void __init set_pageblock_order(void)
1462  {
1463  	unsigned int order = MAX_ORDER;
1464  
1465  	/* Check that pageblock_nr_pages has not already been setup */
1466  	if (pageblock_order)
1467  		return;
1468  
1469  	/* Don't let pageblocks exceed the maximum allocation granularity. */
1470  	if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
1471  		order = HUGETLB_PAGE_ORDER;
1472  
1473  	/*
1474  	 * Assume the largest contiguous order of interest is a huge page.
1475  	 * This value may be variable depending on boot parameters on IA64 and
1476  	 * powerpc.
1477  	 */
1478  	pageblock_order = order;
1479  }
1480  #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
1481  
1482  /*
1483   * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
1484   * is unused as pageblock_order is set at compile-time. See
1485   * include/linux/pageblock-flags.h for the values of pageblock_order based on
1486   * the kernel config
1487   */
set_pageblock_order(void)1488  void __init set_pageblock_order(void)
1489  {
1490  }
1491  
1492  #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
1493  
1494  /*
1495   * Set up the zone data structures
1496   * - init pgdat internals
1497   * - init all zones belonging to this node
1498   *
1499   * NOTE: this function is only called during memory hotplug
1500   */
1501  #ifdef CONFIG_MEMORY_HOTPLUG
free_area_init_core_hotplug(struct pglist_data * pgdat)1502  void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
1503  {
1504  	int nid = pgdat->node_id;
1505  	enum zone_type z;
1506  	int cpu;
1507  
1508  	pgdat_init_internals(pgdat);
1509  
1510  	if (pgdat->per_cpu_nodestats == &boot_nodestats)
1511  		pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
1512  
1513  	/*
1514  	 * Reset the nr_zones, order and highest_zoneidx before reuse.
1515  	 * Note that kswapd will init kswapd_highest_zoneidx properly
1516  	 * when it starts in the near future.
1517  	 */
1518  	pgdat->nr_zones = 0;
1519  	pgdat->kswapd_order = 0;
1520  	pgdat->kswapd_highest_zoneidx = 0;
1521  	pgdat->node_start_pfn = 0;
1522  	pgdat->node_present_pages = 0;
1523  
1524  	for_each_online_cpu(cpu) {
1525  		struct per_cpu_nodestat *p;
1526  
1527  		p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
1528  		memset(p, 0, sizeof(*p));
1529  	}
1530  
1531  	/*
1532  	 * When memory is hot-added, all the memory is in offline state. So
1533  	 * clear all zones' present_pages and managed_pages because they will
1534  	 * be updated in online_pages() and offline_pages().
1535  	 */
1536  	for (z = 0; z < MAX_NR_ZONES; z++) {
1537  		struct zone *zone = pgdat->node_zones + z;
1538  
1539  		zone->present_pages = 0;
1540  		zone_init_internals(zone, z, nid, 0);
1541  	}
1542  }
1543  #endif
1544  
1545  /*
1546   * Set up the zone data structures:
1547   *   - mark all pages reserved
1548   *   - mark all memory queues empty
1549   *   - clear the memory bitmaps
1550   *
1551   * NOTE: pgdat should get zeroed by caller.
1552   * NOTE: this function is only called during early init.
1553   */
free_area_init_core(struct pglist_data * pgdat)1554  static void __init free_area_init_core(struct pglist_data *pgdat)
1555  {
1556  	enum zone_type j;
1557  	int nid = pgdat->node_id;
1558  
1559  	pgdat_init_internals(pgdat);
1560  	pgdat->per_cpu_nodestats = &boot_nodestats;
1561  
1562  	for (j = 0; j < MAX_NR_ZONES; j++) {
1563  		struct zone *zone = pgdat->node_zones + j;
1564  		unsigned long size, freesize, memmap_pages;
1565  
1566  		size = zone->spanned_pages;
1567  		freesize = zone->present_pages;
1568  
1569  		/*
1570  		 * Adjust freesize so that it accounts for how much memory
1571  		 * is used by this zone for memmap. This affects the watermark
1572  		 * and per-cpu initialisations
1573  		 */
1574  		memmap_pages = calc_memmap_size(size, freesize);
1575  		if (!is_highmem_idx(j)) {
1576  			if (freesize >= memmap_pages) {
1577  				freesize -= memmap_pages;
1578  				if (memmap_pages)
1579  					pr_debug("  %s zone: %lu pages used for memmap\n",
1580  						 zone_names[j], memmap_pages);
1581  			} else
1582  				pr_warn("  %s zone: %lu memmap pages exceeds freesize %lu\n",
1583  					zone_names[j], memmap_pages, freesize);
1584  		}
1585  
1586  		/* Account for reserved pages */
1587  		if (j == 0 && freesize > dma_reserve) {
1588  			freesize -= dma_reserve;
1589  			pr_debug("  %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
1590  		}
1591  
1592  		if (!is_highmem_idx(j))
1593  			nr_kernel_pages += freesize;
1594  		/* Charge for highmem memmap if there are enough kernel pages */
1595  		else if (nr_kernel_pages > memmap_pages * 2)
1596  			nr_kernel_pages -= memmap_pages;
1597  		nr_all_pages += freesize;
1598  
1599  		/*
1600  		 * Set an approximate value for lowmem here, it will be adjusted
1601  		 * when the bootmem allocator frees pages into the buddy system.
1602  		 * And all highmem pages will be managed by the buddy system.
1603  		 */
1604  		zone_init_internals(zone, j, nid, freesize);
1605  
1606  		if (!size)
1607  			continue;
1608  
1609  		setup_usemap(zone);
1610  		init_currently_empty_zone(zone, zone->zone_start_pfn, size);
1611  	}
1612  }
1613  
memmap_alloc(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,int nid,bool exact_nid)1614  void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
1615  			  phys_addr_t min_addr, int nid, bool exact_nid)
1616  {
1617  	void *ptr;
1618  
1619  	if (exact_nid)
1620  		ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
1621  						   MEMBLOCK_ALLOC_ACCESSIBLE,
1622  						   nid);
1623  	else
1624  		ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
1625  						 MEMBLOCK_ALLOC_ACCESSIBLE,
1626  						 nid);
1627  
1628  	if (ptr && size > 0)
1629  		page_init_poison(ptr, size);
1630  
1631  	return ptr;
1632  }
1633  
1634  #ifdef CONFIG_FLATMEM
alloc_node_mem_map(struct pglist_data * pgdat)1635  static void __init alloc_node_mem_map(struct pglist_data *pgdat)
1636  {
1637  	unsigned long __maybe_unused start = 0;
1638  	unsigned long __maybe_unused offset = 0;
1639  
1640  	/* Skip empty nodes */
1641  	if (!pgdat->node_spanned_pages)
1642  		return;
1643  
1644  	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
1645  	offset = pgdat->node_start_pfn - start;
1646  	/* ia64 gets its own node_mem_map, before this, without bootmem */
1647  	if (!pgdat->node_mem_map) {
1648  		unsigned long size, end;
1649  		struct page *map;
1650  
1651  		/*
1652  		 * The zone's endpoints aren't required to be MAX_ORDER
1653  		 * aligned but the node_mem_map endpoints must be in order
1654  		 * for the buddy allocator to function correctly.
1655  		 */
1656  		end = pgdat_end_pfn(pgdat);
1657  		end = ALIGN(end, MAX_ORDER_NR_PAGES);
1658  		size =  (end - start) * sizeof(struct page);
1659  		map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
1660  				   pgdat->node_id, false);
1661  		if (!map)
1662  			panic("Failed to allocate %ld bytes for node %d memory map\n",
1663  			      size, pgdat->node_id);
1664  		pgdat->node_mem_map = map + offset;
1665  	}
1666  	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
1667  				__func__, pgdat->node_id, (unsigned long)pgdat,
1668  				(unsigned long)pgdat->node_mem_map);
1669  #ifndef CONFIG_NUMA
1670  	/*
1671  	 * With no DISCONTIG, the global mem_map is just set as node 0's
1672  	 */
1673  	if (pgdat == NODE_DATA(0)) {
1674  		mem_map = NODE_DATA(0)->node_mem_map;
1675  		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
1676  			mem_map -= offset;
1677  	}
1678  #endif
1679  }
1680  #else
alloc_node_mem_map(struct pglist_data * pgdat)1681  static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
1682  #endif /* CONFIG_FLATMEM */
1683  
1684  /**
1685   * get_pfn_range_for_nid - Return the start and end page frames for a node
1686   * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
1687   * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
1688   * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
1689   *
1690   * It returns the start and end page frame of a node based on information
1691   * provided by memblock_set_node(). If called for a node
1692   * with no available memory, the start and end PFNs will be 0.
1693   */
get_pfn_range_for_nid(unsigned int nid,unsigned long * start_pfn,unsigned long * end_pfn)1694  void __init get_pfn_range_for_nid(unsigned int nid,
1695  			unsigned long *start_pfn, unsigned long *end_pfn)
1696  {
1697  	unsigned long this_start_pfn, this_end_pfn;
1698  	int i;
1699  
1700  	*start_pfn = -1UL;
1701  	*end_pfn = 0;
1702  
1703  	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
1704  		*start_pfn = min(*start_pfn, this_start_pfn);
1705  		*end_pfn = max(*end_pfn, this_end_pfn);
1706  	}
1707  
1708  	if (*start_pfn == -1UL)
1709  		*start_pfn = 0;
1710  }
1711  
free_area_init_node(int nid)1712  static void __init free_area_init_node(int nid)
1713  {
1714  	pg_data_t *pgdat = NODE_DATA(nid);
1715  	unsigned long start_pfn = 0;
1716  	unsigned long end_pfn = 0;
1717  
1718  	/* pg_data_t should be reset to zero when it's allocated */
1719  	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
1720  
1721  	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1722  
1723  	pgdat->node_id = nid;
1724  	pgdat->node_start_pfn = start_pfn;
1725  	pgdat->per_cpu_nodestats = NULL;
1726  
1727  	if (start_pfn != end_pfn) {
1728  		pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
1729  			(u64)start_pfn << PAGE_SHIFT,
1730  			end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
1731  
1732  		calculate_node_totalpages(pgdat, start_pfn, end_pfn);
1733  	} else {
1734  		pr_info("Initmem setup node %d as memoryless\n", nid);
1735  
1736  		reset_memoryless_node_totalpages(pgdat);
1737  	}
1738  
1739  	alloc_node_mem_map(pgdat);
1740  	pgdat_set_deferred_range(pgdat);
1741  
1742  	free_area_init_core(pgdat);
1743  	lru_gen_init_pgdat(pgdat);
1744  }
1745  
1746  /* Any regular or high memory on that node ? */
check_for_memory(pg_data_t * pgdat)1747  static void __init check_for_memory(pg_data_t *pgdat)
1748  {
1749  	enum zone_type zone_type;
1750  
1751  	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
1752  		struct zone *zone = &pgdat->node_zones[zone_type];
1753  		if (populated_zone(zone)) {
1754  			if (IS_ENABLED(CONFIG_HIGHMEM))
1755  				node_set_state(pgdat->node_id, N_HIGH_MEMORY);
1756  			if (zone_type <= ZONE_NORMAL)
1757  				node_set_state(pgdat->node_id, N_NORMAL_MEMORY);
1758  			break;
1759  		}
1760  	}
1761  }
1762  
1763  #if MAX_NUMNODES > 1
1764  /*
1765   * Figure out the number of possible node ids.
1766   */
setup_nr_node_ids(void)1767  void __init setup_nr_node_ids(void)
1768  {
1769  	unsigned int highest;
1770  
1771  	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
1772  	nr_node_ids = highest + 1;
1773  }
1774  #endif
1775  
1776  /*
1777   * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
1778   * such cases we allow max_zone_pfn sorted in the descending order
1779   */
arch_has_descending_max_zone_pfns(void)1780  static bool arch_has_descending_max_zone_pfns(void)
1781  {
1782  	return IS_ENABLED(CONFIG_ARC) && !IS_ENABLED(CONFIG_ARC_HAS_PAE40);
1783  }
1784  
1785  /**
1786   * free_area_init - Initialise all pg_data_t and zone data
1787   * @max_zone_pfn: an array of max PFNs for each zone
1788   *
1789   * This will call free_area_init_node() for each active node in the system.
1790   * Using the page ranges provided by memblock_set_node(), the size of each
1791   * zone in each node and their holes is calculated. If the maximum PFN
1792   * between two adjacent zones match, it is assumed that the zone is empty.
1793   * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
1794   * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
1795   * starts where the previous one ended. For example, ZONE_DMA32 starts
1796   * at arch_max_dma_pfn.
1797   */
free_area_init(unsigned long * max_zone_pfn)1798  void __init free_area_init(unsigned long *max_zone_pfn)
1799  {
1800  	unsigned long start_pfn, end_pfn;
1801  	int i, nid, zone;
1802  	bool descending;
1803  
1804  	/* Record where the zone boundaries are */
1805  	memset(arch_zone_lowest_possible_pfn, 0,
1806  				sizeof(arch_zone_lowest_possible_pfn));
1807  	memset(arch_zone_highest_possible_pfn, 0,
1808  				sizeof(arch_zone_highest_possible_pfn));
1809  
1810  	start_pfn = PHYS_PFN(memblock_start_of_DRAM());
1811  	descending = arch_has_descending_max_zone_pfns();
1812  
1813  	for (i = 0; i < MAX_NR_ZONES; i++) {
1814  		if (descending)
1815  			zone = MAX_NR_ZONES - i - 1;
1816  		else
1817  			zone = i;
1818  
1819  		if (zone == ZONE_MOVABLE)
1820  			continue;
1821  
1822  		end_pfn = max(max_zone_pfn[zone], start_pfn);
1823  		arch_zone_lowest_possible_pfn[zone] = start_pfn;
1824  		arch_zone_highest_possible_pfn[zone] = end_pfn;
1825  
1826  		start_pfn = end_pfn;
1827  	}
1828  
1829  	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
1830  	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
1831  	find_zone_movable_pfns_for_nodes();
1832  
1833  	/* Print out the zone ranges */
1834  	pr_info("Zone ranges:\n");
1835  	for (i = 0; i < MAX_NR_ZONES; i++) {
1836  		if (i == ZONE_MOVABLE)
1837  			continue;
1838  		pr_info("  %-8s ", zone_names[i]);
1839  		if (arch_zone_lowest_possible_pfn[i] ==
1840  				arch_zone_highest_possible_pfn[i])
1841  			pr_cont("empty\n");
1842  		else
1843  			pr_cont("[mem %#018Lx-%#018Lx]\n",
1844  				(u64)arch_zone_lowest_possible_pfn[i]
1845  					<< PAGE_SHIFT,
1846  				((u64)arch_zone_highest_possible_pfn[i]
1847  					<< PAGE_SHIFT) - 1);
1848  	}
1849  
1850  	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
1851  	pr_info("Movable zone start for each node\n");
1852  	for (i = 0; i < MAX_NUMNODES; i++) {
1853  		if (zone_movable_pfn[i])
1854  			pr_info("  Node %d: %#018Lx\n", i,
1855  			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
1856  	}
1857  
1858  	/*
1859  	 * Print out the early node map, and initialize the
1860  	 * subsection-map relative to active online memory ranges to
1861  	 * enable future "sub-section" extensions of the memory map.
1862  	 */
1863  	pr_info("Early memory node ranges\n");
1864  	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
1865  		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
1866  			(u64)start_pfn << PAGE_SHIFT,
1867  			((u64)end_pfn << PAGE_SHIFT) - 1);
1868  		subsection_map_init(start_pfn, end_pfn - start_pfn);
1869  	}
1870  
1871  	/* Initialise every node */
1872  	mminit_verify_pageflags_layout();
1873  	setup_nr_node_ids();
1874  	set_pageblock_order();
1875  
1876  	for_each_node(nid) {
1877  		pg_data_t *pgdat;
1878  
1879  		if (!node_online(nid)) {
1880  			pr_info("Initializing node %d as memoryless\n", nid);
1881  
1882  			/* Allocator not initialized yet */
1883  			pgdat = arch_alloc_nodedata(nid);
1884  			if (!pgdat)
1885  				panic("Cannot allocate %zuB for node %d.\n",
1886  				       sizeof(*pgdat), nid);
1887  			arch_refresh_nodedata(nid, pgdat);
1888  			free_area_init_node(nid);
1889  
1890  			/*
1891  			 * We do not want to confuse userspace by sysfs
1892  			 * files/directories for node without any memory
1893  			 * attached to it, so this node is not marked as
1894  			 * N_MEMORY and not marked online so that no sysfs
1895  			 * hierarchy will be created via register_one_node for
1896  			 * it. The pgdat will get fully initialized by
1897  			 * hotadd_init_pgdat() when memory is hotplugged into
1898  			 * this node.
1899  			 */
1900  			continue;
1901  		}
1902  
1903  		pgdat = NODE_DATA(nid);
1904  		free_area_init_node(nid);
1905  
1906  		/* Any memory on that node */
1907  		if (pgdat->node_present_pages)
1908  			node_set_state(nid, N_MEMORY);
1909  		check_for_memory(pgdat);
1910  	}
1911  
1912  	memmap_init();
1913  
1914  	/* disable hash distribution for systems with a single node */
1915  	fixup_hashdist();
1916  }
1917  
1918  /**
1919   * node_map_pfn_alignment - determine the maximum internode alignment
1920   *
1921   * This function should be called after node map is populated and sorted.
1922   * It calculates the maximum power of two alignment which can distinguish
1923   * all the nodes.
1924   *
1925   * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
1926   * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
1927   * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
1928   * shifted, 1GiB is enough and this function will indicate so.
1929   *
1930   * This is used to test whether pfn -> nid mapping of the chosen memory
1931   * model has fine enough granularity to avoid incorrect mapping for the
1932   * populated node map.
1933   *
1934   * Return: the determined alignment in pfn's.  0 if there is no alignment
1935   * requirement (single node).
1936   */
node_map_pfn_alignment(void)1937  unsigned long __init node_map_pfn_alignment(void)
1938  {
1939  	unsigned long accl_mask = 0, last_end = 0;
1940  	unsigned long start, end, mask;
1941  	int last_nid = NUMA_NO_NODE;
1942  	int i, nid;
1943  
1944  	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1945  		if (!start || last_nid < 0 || last_nid == nid) {
1946  			last_nid = nid;
1947  			last_end = end;
1948  			continue;
1949  		}
1950  
1951  		/*
1952  		 * Start with a mask granular enough to pin-point to the
1953  		 * start pfn and tick off bits one-by-one until it becomes
1954  		 * too coarse to separate the current node from the last.
1955  		 */
1956  		mask = ~((1 << __ffs(start)) - 1);
1957  		while (mask && last_end <= (start & (mask << 1)))
1958  			mask <<= 1;
1959  
1960  		/* accumulate all internode masks */
1961  		accl_mask |= mask;
1962  	}
1963  
1964  	/* convert mask to number of pages */
1965  	return ~accl_mask + 1;
1966  }
1967  
1968  #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
deferred_free_range(unsigned long pfn,unsigned long nr_pages)1969  static void __init deferred_free_range(unsigned long pfn,
1970  				       unsigned long nr_pages)
1971  {
1972  	struct page *page;
1973  	unsigned long i;
1974  
1975  	if (!nr_pages)
1976  		return;
1977  
1978  	page = pfn_to_page(pfn);
1979  
1980  	/* Free a large naturally-aligned chunk if possible */
1981  	if (nr_pages == MAX_ORDER_NR_PAGES && IS_MAX_ORDER_ALIGNED(pfn)) {
1982  		for (i = 0; i < nr_pages; i += pageblock_nr_pages)
1983  			set_pageblock_migratetype(page + i, MIGRATE_MOVABLE);
1984  		__free_pages_core(page, MAX_ORDER);
1985  		return;
1986  	}
1987  
1988  	/* Accept chunks smaller than MAX_ORDER upfront */
1989  	accept_memory(PFN_PHYS(pfn), PFN_PHYS(pfn + nr_pages));
1990  
1991  	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1992  		if (pageblock_aligned(pfn))
1993  			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1994  		__free_pages_core(page, 0);
1995  	}
1996  }
1997  
1998  /* Completion tracking for deferred_init_memmap() threads */
1999  static atomic_t pgdat_init_n_undone __initdata;
2000  static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
2001  
pgdat_init_report_one_done(void)2002  static inline void __init pgdat_init_report_one_done(void)
2003  {
2004  	if (atomic_dec_and_test(&pgdat_init_n_undone))
2005  		complete(&pgdat_init_all_done_comp);
2006  }
2007  
2008  /*
2009   * Returns true if page needs to be initialized or freed to buddy allocator.
2010   *
2011   * We check if a current MAX_ORDER block is valid by only checking the validity
2012   * of the head pfn.
2013   */
deferred_pfn_valid(unsigned long pfn)2014  static inline bool __init deferred_pfn_valid(unsigned long pfn)
2015  {
2016  	if (IS_MAX_ORDER_ALIGNED(pfn) && !pfn_valid(pfn))
2017  		return false;
2018  	return true;
2019  }
2020  
2021  /*
2022   * Free pages to buddy allocator. Try to free aligned pages in
2023   * MAX_ORDER_NR_PAGES sizes.
2024   */
deferred_free_pages(unsigned long pfn,unsigned long end_pfn)2025  static void __init deferred_free_pages(unsigned long pfn,
2026  				       unsigned long end_pfn)
2027  {
2028  	unsigned long nr_free = 0;
2029  
2030  	for (; pfn < end_pfn; pfn++) {
2031  		if (!deferred_pfn_valid(pfn)) {
2032  			deferred_free_range(pfn - nr_free, nr_free);
2033  			nr_free = 0;
2034  		} else if (IS_MAX_ORDER_ALIGNED(pfn)) {
2035  			deferred_free_range(pfn - nr_free, nr_free);
2036  			nr_free = 1;
2037  		} else {
2038  			nr_free++;
2039  		}
2040  	}
2041  	/* Free the last block of pages to allocator */
2042  	deferred_free_range(pfn - nr_free, nr_free);
2043  }
2044  
2045  /*
2046   * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
2047   * by performing it only once every MAX_ORDER_NR_PAGES.
2048   * Return number of pages initialized.
2049   */
deferred_init_pages(struct zone * zone,unsigned long pfn,unsigned long end_pfn)2050  static unsigned long  __init deferred_init_pages(struct zone *zone,
2051  						 unsigned long pfn,
2052  						 unsigned long end_pfn)
2053  {
2054  	int nid = zone_to_nid(zone);
2055  	unsigned long nr_pages = 0;
2056  	int zid = zone_idx(zone);
2057  	struct page *page = NULL;
2058  
2059  	for (; pfn < end_pfn; pfn++) {
2060  		if (!deferred_pfn_valid(pfn)) {
2061  			page = NULL;
2062  			continue;
2063  		} else if (!page || IS_MAX_ORDER_ALIGNED(pfn)) {
2064  			page = pfn_to_page(pfn);
2065  		} else {
2066  			page++;
2067  		}
2068  		__init_single_page(page, pfn, zid, nid);
2069  		nr_pages++;
2070  	}
2071  	return (nr_pages);
2072  }
2073  
2074  /*
2075   * This function is meant to pre-load the iterator for the zone init.
2076   * Specifically it walks through the ranges until we are caught up to the
2077   * first_init_pfn value and exits there. If we never encounter the value we
2078   * return false indicating there are no valid ranges left.
2079   */
2080  static bool __init
deferred_init_mem_pfn_range_in_zone(u64 * i,struct zone * zone,unsigned long * spfn,unsigned long * epfn,unsigned long first_init_pfn)2081  deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
2082  				    unsigned long *spfn, unsigned long *epfn,
2083  				    unsigned long first_init_pfn)
2084  {
2085  	u64 j;
2086  
2087  	/*
2088  	 * Start out by walking through the ranges in this zone that have
2089  	 * already been initialized. We don't need to do anything with them
2090  	 * so we just need to flush them out of the system.
2091  	 */
2092  	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
2093  		if (*epfn <= first_init_pfn)
2094  			continue;
2095  		if (*spfn < first_init_pfn)
2096  			*spfn = first_init_pfn;
2097  		*i = j;
2098  		return true;
2099  	}
2100  
2101  	return false;
2102  }
2103  
2104  /*
2105   * Initialize and free pages. We do it in two loops: first we initialize
2106   * struct page, then free to buddy allocator, because while we are
2107   * freeing pages we can access pages that are ahead (computing buddy
2108   * page in __free_one_page()).
2109   *
2110   * In order to try and keep some memory in the cache we have the loop
2111   * broken along max page order boundaries. This way we will not cause
2112   * any issues with the buddy page computation.
2113   */
2114  static unsigned long __init
deferred_init_maxorder(u64 * i,struct zone * zone,unsigned long * start_pfn,unsigned long * end_pfn)2115  deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
2116  		       unsigned long *end_pfn)
2117  {
2118  	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
2119  	unsigned long spfn = *start_pfn, epfn = *end_pfn;
2120  	unsigned long nr_pages = 0;
2121  	u64 j = *i;
2122  
2123  	/* First we loop through and initialize the page values */
2124  	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
2125  		unsigned long t;
2126  
2127  		if (mo_pfn <= *start_pfn)
2128  			break;
2129  
2130  		t = min(mo_pfn, *end_pfn);
2131  		nr_pages += deferred_init_pages(zone, *start_pfn, t);
2132  
2133  		if (mo_pfn < *end_pfn) {
2134  			*start_pfn = mo_pfn;
2135  			break;
2136  		}
2137  	}
2138  
2139  	/* Reset values and now loop through freeing pages as needed */
2140  	swap(j, *i);
2141  
2142  	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2143  		unsigned long t;
2144  
2145  		if (mo_pfn <= spfn)
2146  			break;
2147  
2148  		t = min(mo_pfn, epfn);
2149  		deferred_free_pages(spfn, t);
2150  
2151  		if (mo_pfn <= epfn)
2152  			break;
2153  	}
2154  
2155  	return nr_pages;
2156  }
2157  
2158  static void __init
deferred_init_memmap_chunk(unsigned long start_pfn,unsigned long end_pfn,void * arg)2159  deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2160  			   void *arg)
2161  {
2162  	unsigned long spfn, epfn;
2163  	struct zone *zone = arg;
2164  	u64 i;
2165  
2166  	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2167  
2168  	/*
2169  	 * Initialize and free pages in MAX_ORDER sized increments so that we
2170  	 * can avoid introducing any issues with the buddy allocator.
2171  	 */
2172  	while (spfn < end_pfn) {
2173  		deferred_init_maxorder(&i, zone, &spfn, &epfn);
2174  		cond_resched();
2175  	}
2176  }
2177  
2178  /* An arch may override for more concurrency. */
2179  __weak int __init
deferred_page_init_max_threads(const struct cpumask * node_cpumask)2180  deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2181  {
2182  	return 1;
2183  }
2184  
2185  /* Initialise remaining memory on a node */
deferred_init_memmap(void * data)2186  static int __init deferred_init_memmap(void *data)
2187  {
2188  	pg_data_t *pgdat = data;
2189  	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2190  	unsigned long spfn = 0, epfn = 0;
2191  	unsigned long first_init_pfn, flags;
2192  	unsigned long start = jiffies;
2193  	struct zone *zone;
2194  	int zid, max_threads;
2195  	u64 i;
2196  
2197  	/* Bind memory initialisation thread to a local node if possible */
2198  	if (!cpumask_empty(cpumask))
2199  		set_cpus_allowed_ptr(current, cpumask);
2200  
2201  	pgdat_resize_lock(pgdat, &flags);
2202  	first_init_pfn = pgdat->first_deferred_pfn;
2203  	if (first_init_pfn == ULONG_MAX) {
2204  		pgdat_resize_unlock(pgdat, &flags);
2205  		pgdat_init_report_one_done();
2206  		return 0;
2207  	}
2208  
2209  	/* Sanity check boundaries */
2210  	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2211  	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2212  	pgdat->first_deferred_pfn = ULONG_MAX;
2213  
2214  	/*
2215  	 * Once we unlock here, the zone cannot be grown anymore, thus if an
2216  	 * interrupt thread must allocate this early in boot, zone must be
2217  	 * pre-grown prior to start of deferred page initialization.
2218  	 */
2219  	pgdat_resize_unlock(pgdat, &flags);
2220  
2221  	/* Only the highest zone is deferred so find it */
2222  	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2223  		zone = pgdat->node_zones + zid;
2224  		if (first_init_pfn < zone_end_pfn(zone))
2225  			break;
2226  	}
2227  
2228  	/* If the zone is empty somebody else may have cleared out the zone */
2229  	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2230  						 first_init_pfn))
2231  		goto zone_empty;
2232  
2233  	max_threads = deferred_page_init_max_threads(cpumask);
2234  
2235  	while (spfn < epfn) {
2236  		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2237  		struct padata_mt_job job = {
2238  			.thread_fn   = deferred_init_memmap_chunk,
2239  			.fn_arg      = zone,
2240  			.start       = spfn,
2241  			.size        = epfn_align - spfn,
2242  			.align       = PAGES_PER_SECTION,
2243  			.min_chunk   = PAGES_PER_SECTION,
2244  			.max_threads = max_threads,
2245  		};
2246  
2247  		padata_do_multithreaded(&job);
2248  		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2249  						    epfn_align);
2250  	}
2251  zone_empty:
2252  	/* Sanity check that the next zone really is unpopulated */
2253  	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2254  
2255  	pr_info("node %d deferred pages initialised in %ums\n",
2256  		pgdat->node_id, jiffies_to_msecs(jiffies - start));
2257  
2258  	pgdat_init_report_one_done();
2259  	return 0;
2260  }
2261  
2262  /*
2263   * If this zone has deferred pages, try to grow it by initializing enough
2264   * deferred pages to satisfy the allocation specified by order, rounded up to
2265   * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
2266   * of SECTION_SIZE bytes by initializing struct pages in increments of
2267   * PAGES_PER_SECTION * sizeof(struct page) bytes.
2268   *
2269   * Return true when zone was grown, otherwise return false. We return true even
2270   * when we grow less than requested, to let the caller decide if there are
2271   * enough pages to satisfy the allocation.
2272   *
2273   * Note: We use noinline because this function is needed only during boot, and
2274   * it is called from a __ref function _deferred_grow_zone. This way we are
2275   * making sure that it is not inlined into permanent text section.
2276   */
deferred_grow_zone(struct zone * zone,unsigned int order)2277  bool __init deferred_grow_zone(struct zone *zone, unsigned int order)
2278  {
2279  	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2280  	pg_data_t *pgdat = zone->zone_pgdat;
2281  	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2282  	unsigned long spfn, epfn, flags;
2283  	unsigned long nr_pages = 0;
2284  	u64 i;
2285  
2286  	/* Only the last zone may have deferred pages */
2287  	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2288  		return false;
2289  
2290  	pgdat_resize_lock(pgdat, &flags);
2291  
2292  	/*
2293  	 * If someone grew this zone while we were waiting for spinlock, return
2294  	 * true, as there might be enough pages already.
2295  	 */
2296  	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2297  		pgdat_resize_unlock(pgdat, &flags);
2298  		return true;
2299  	}
2300  
2301  	/* If the zone is empty somebody else may have cleared out the zone */
2302  	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2303  						 first_deferred_pfn)) {
2304  		pgdat->first_deferred_pfn = ULONG_MAX;
2305  		pgdat_resize_unlock(pgdat, &flags);
2306  		/* Retry only once. */
2307  		return first_deferred_pfn != ULONG_MAX;
2308  	}
2309  
2310  	/*
2311  	 * Initialize and free pages in MAX_ORDER sized increments so
2312  	 * that we can avoid introducing any issues with the buddy
2313  	 * allocator.
2314  	 */
2315  	while (spfn < epfn) {
2316  		/* update our first deferred PFN for this section */
2317  		first_deferred_pfn = spfn;
2318  
2319  		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2320  		touch_nmi_watchdog();
2321  
2322  		/* We should only stop along section boundaries */
2323  		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2324  			continue;
2325  
2326  		/* If our quota has been met we can stop here */
2327  		if (nr_pages >= nr_pages_needed)
2328  			break;
2329  	}
2330  
2331  	pgdat->first_deferred_pfn = spfn;
2332  	pgdat_resize_unlock(pgdat, &flags);
2333  
2334  	return nr_pages > 0;
2335  }
2336  
2337  #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2338  
2339  #ifdef CONFIG_CMA
init_cma_reserved_pageblock(struct page * page)2340  void __init init_cma_reserved_pageblock(struct page *page)
2341  {
2342  	unsigned i = pageblock_nr_pages;
2343  	struct page *p = page;
2344  
2345  	do {
2346  		__ClearPageReserved(p);
2347  		set_page_count(p, 0);
2348  	} while (++p, --i);
2349  
2350  	set_pageblock_migratetype(page, MIGRATE_CMA);
2351  	set_page_refcounted(page);
2352  	__free_pages(page, pageblock_order);
2353  
2354  	adjust_managed_page_count(page, pageblock_nr_pages);
2355  	page_zone(page)->cma_pages += pageblock_nr_pages;
2356  }
2357  #endif
2358  
set_zone_contiguous(struct zone * zone)2359  void set_zone_contiguous(struct zone *zone)
2360  {
2361  	unsigned long block_start_pfn = zone->zone_start_pfn;
2362  	unsigned long block_end_pfn;
2363  
2364  	block_end_pfn = pageblock_end_pfn(block_start_pfn);
2365  	for (; block_start_pfn < zone_end_pfn(zone);
2366  			block_start_pfn = block_end_pfn,
2367  			 block_end_pfn += pageblock_nr_pages) {
2368  
2369  		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
2370  
2371  		if (!__pageblock_pfn_to_page(block_start_pfn,
2372  					     block_end_pfn, zone))
2373  			return;
2374  		cond_resched();
2375  	}
2376  
2377  	/* We confirm that there is no hole */
2378  	zone->contiguous = true;
2379  }
2380  
page_alloc_init_late(void)2381  void __init page_alloc_init_late(void)
2382  {
2383  	struct zone *zone;
2384  	int nid;
2385  
2386  #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2387  
2388  	/* There will be num_node_state(N_MEMORY) threads */
2389  	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2390  	for_each_node_state(nid, N_MEMORY) {
2391  		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2392  	}
2393  
2394  	/* Block until all are initialised */
2395  	wait_for_completion(&pgdat_init_all_done_comp);
2396  
2397  	/*
2398  	 * We initialized the rest of the deferred pages.  Permanently disable
2399  	 * on-demand struct page initialization.
2400  	 */
2401  	static_branch_disable(&deferred_pages);
2402  
2403  	/* Reinit limits that are based on free pages after the kernel is up */
2404  	files_maxfiles_init();
2405  #endif
2406  
2407  	buffer_init();
2408  
2409  	/* Discard memblock private memory */
2410  	memblock_discard();
2411  
2412  	for_each_node_state(nid, N_MEMORY)
2413  		shuffle_free_memory(NODE_DATA(nid));
2414  
2415  	for_each_populated_zone(zone)
2416  		set_zone_contiguous(zone);
2417  
2418  	/* Initialize page ext after all struct pages are initialized. */
2419  	if (deferred_struct_pages)
2420  		page_ext_init();
2421  
2422  	page_alloc_sysctl_init();
2423  }
2424  
2425  #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2426  /*
2427   * Returns the number of pages that arch has reserved but
2428   * is not known to alloc_large_system_hash().
2429   */
arch_reserved_kernel_pages(void)2430  static unsigned long __init arch_reserved_kernel_pages(void)
2431  {
2432  	return 0;
2433  }
2434  #endif
2435  
2436  /*
2437   * Adaptive scale is meant to reduce sizes of hash tables on large memory
2438   * machines. As memory size is increased the scale is also increased but at
2439   * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
2440   * quadruples the scale is increased by one, which means the size of hash table
2441   * only doubles, instead of quadrupling as well.
2442   * Because 32-bit systems cannot have large physical memory, where this scaling
2443   * makes sense, it is disabled on such platforms.
2444   */
2445  #if __BITS_PER_LONG > 32
2446  #define ADAPT_SCALE_BASE	(64ul << 30)
2447  #define ADAPT_SCALE_SHIFT	2
2448  #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
2449  #endif
2450  
2451  /*
2452   * allocate a large system hash table from bootmem
2453   * - it is assumed that the hash table must contain an exact power-of-2
2454   *   quantity of entries
2455   * - limit is the number of hash buckets, not the total allocation size
2456   */
alloc_large_system_hash(const char * tablename,unsigned long bucketsize,unsigned long numentries,int scale,int flags,unsigned int * _hash_shift,unsigned int * _hash_mask,unsigned long low_limit,unsigned long high_limit)2457  void *__init alloc_large_system_hash(const char *tablename,
2458  				     unsigned long bucketsize,
2459  				     unsigned long numentries,
2460  				     int scale,
2461  				     int flags,
2462  				     unsigned int *_hash_shift,
2463  				     unsigned int *_hash_mask,
2464  				     unsigned long low_limit,
2465  				     unsigned long high_limit)
2466  {
2467  	unsigned long long max = high_limit;
2468  	unsigned long log2qty, size;
2469  	void *table;
2470  	gfp_t gfp_flags;
2471  	bool virt;
2472  	bool huge;
2473  
2474  	/* allow the kernel cmdline to have a say */
2475  	if (!numentries) {
2476  		/* round applicable memory size up to nearest megabyte */
2477  		numentries = nr_kernel_pages;
2478  		numentries -= arch_reserved_kernel_pages();
2479  
2480  		/* It isn't necessary when PAGE_SIZE >= 1MB */
2481  		if (PAGE_SIZE < SZ_1M)
2482  			numentries = round_up(numentries, SZ_1M / PAGE_SIZE);
2483  
2484  #if __BITS_PER_LONG > 32
2485  		if (!high_limit) {
2486  			unsigned long adapt;
2487  
2488  			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
2489  			     adapt <<= ADAPT_SCALE_SHIFT)
2490  				scale++;
2491  		}
2492  #endif
2493  
2494  		/* limit to 1 bucket per 2^scale bytes of low memory */
2495  		if (scale > PAGE_SHIFT)
2496  			numentries >>= (scale - PAGE_SHIFT);
2497  		else
2498  			numentries <<= (PAGE_SHIFT - scale);
2499  
2500  		if (unlikely((numentries * bucketsize) < PAGE_SIZE))
2501  			numentries = PAGE_SIZE / bucketsize;
2502  	}
2503  	numentries = roundup_pow_of_two(numentries);
2504  
2505  	/* limit allocation size to 1/16 total memory by default */
2506  	if (max == 0) {
2507  		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2508  		do_div(max, bucketsize);
2509  	}
2510  	max = min(max, 0x80000000ULL);
2511  
2512  	if (numentries < low_limit)
2513  		numentries = low_limit;
2514  	if (numentries > max)
2515  		numentries = max;
2516  
2517  	log2qty = ilog2(numentries);
2518  
2519  	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
2520  	do {
2521  		virt = false;
2522  		size = bucketsize << log2qty;
2523  		if (flags & HASH_EARLY) {
2524  			if (flags & HASH_ZERO)
2525  				table = memblock_alloc(size, SMP_CACHE_BYTES);
2526  			else
2527  				table = memblock_alloc_raw(size,
2528  							   SMP_CACHE_BYTES);
2529  		} else if (get_order(size) > MAX_ORDER || hashdist) {
2530  			table = vmalloc_huge(size, gfp_flags);
2531  			virt = true;
2532  			if (table)
2533  				huge = is_vm_area_hugepages(table);
2534  		} else {
2535  			/*
2536  			 * If bucketsize is not a power-of-two, we may free
2537  			 * some pages at the end of hash table which
2538  			 * alloc_pages_exact() automatically does
2539  			 */
2540  			table = alloc_pages_exact(size, gfp_flags);
2541  			kmemleak_alloc(table, size, 1, gfp_flags);
2542  		}
2543  	} while (!table && size > PAGE_SIZE && --log2qty);
2544  
2545  	if (!table)
2546  		panic("Failed to allocate %s hash table\n", tablename);
2547  
2548  	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
2549  		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
2550  		virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
2551  
2552  	if (_hash_shift)
2553  		*_hash_shift = log2qty;
2554  	if (_hash_mask)
2555  		*_hash_mask = (1 << log2qty) - 1;
2556  
2557  	return table;
2558  }
2559  
2560  /**
2561   * set_dma_reserve - set the specified number of pages reserved in the first zone
2562   * @new_dma_reserve: The number of pages to mark reserved
2563   *
2564   * The per-cpu batchsize and zone watermarks are determined by managed_pages.
2565   * In the DMA zone, a significant percentage may be consumed by kernel image
2566   * and other unfreeable allocations which can skew the watermarks badly. This
2567   * function may optionally be used to account for unfreeable pages in the
2568   * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
2569   * smaller per-cpu batchsize.
2570   */
set_dma_reserve(unsigned long new_dma_reserve)2571  void __init set_dma_reserve(unsigned long new_dma_reserve)
2572  {
2573  	dma_reserve = new_dma_reserve;
2574  }
2575  
memblock_free_pages(struct page * page,unsigned long pfn,unsigned int order)2576  void __init memblock_free_pages(struct page *page, unsigned long pfn,
2577  							unsigned int order)
2578  {
2579  
2580  	if (IS_ENABLED(CONFIG_DEFERRED_STRUCT_PAGE_INIT)) {
2581  		int nid = early_pfn_to_nid(pfn);
2582  
2583  		if (!early_page_initialised(pfn, nid))
2584  			return;
2585  	}
2586  
2587  	if (!kmsan_memblock_free_pages(page, order)) {
2588  		/* KMSAN will take care of these pages. */
2589  		return;
2590  	}
2591  	__free_pages_core(page, order);
2592  }
2593  
2594  DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
2595  EXPORT_SYMBOL(init_on_alloc);
2596  
2597  DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
2598  EXPORT_SYMBOL(init_on_free);
2599  
2600  static bool _init_on_alloc_enabled_early __read_mostly
2601  				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
early_init_on_alloc(char * buf)2602  static int __init early_init_on_alloc(char *buf)
2603  {
2604  
2605  	return kstrtobool(buf, &_init_on_alloc_enabled_early);
2606  }
2607  early_param("init_on_alloc", early_init_on_alloc);
2608  
2609  static bool _init_on_free_enabled_early __read_mostly
2610  				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
early_init_on_free(char * buf)2611  static int __init early_init_on_free(char *buf)
2612  {
2613  	return kstrtobool(buf, &_init_on_free_enabled_early);
2614  }
2615  early_param("init_on_free", early_init_on_free);
2616  
2617  DEFINE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled);
2618  
2619  /*
2620   * Enable static keys related to various memory debugging and hardening options.
2621   * Some override others, and depend on early params that are evaluated in the
2622   * order of appearance. So we need to first gather the full picture of what was
2623   * enabled, and then make decisions.
2624   */
mem_debugging_and_hardening_init(void)2625  static void __init mem_debugging_and_hardening_init(void)
2626  {
2627  	bool page_poisoning_requested = false;
2628  	bool want_check_pages = false;
2629  
2630  #ifdef CONFIG_PAGE_POISONING
2631  	/*
2632  	 * Page poisoning is debug page alloc for some arches. If
2633  	 * either of those options are enabled, enable poisoning.
2634  	 */
2635  	if (page_poisoning_enabled() ||
2636  	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
2637  	      debug_pagealloc_enabled())) {
2638  		static_branch_enable(&_page_poisoning_enabled);
2639  		page_poisoning_requested = true;
2640  		want_check_pages = true;
2641  	}
2642  #endif
2643  
2644  	if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
2645  	    page_poisoning_requested) {
2646  		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
2647  			"will take precedence over init_on_alloc and init_on_free\n");
2648  		_init_on_alloc_enabled_early = false;
2649  		_init_on_free_enabled_early = false;
2650  	}
2651  
2652  	if (_init_on_alloc_enabled_early) {
2653  		want_check_pages = true;
2654  		static_branch_enable(&init_on_alloc);
2655  	} else {
2656  		static_branch_disable(&init_on_alloc);
2657  	}
2658  
2659  	if (_init_on_free_enabled_early) {
2660  		want_check_pages = true;
2661  		static_branch_enable(&init_on_free);
2662  	} else {
2663  		static_branch_disable(&init_on_free);
2664  	}
2665  
2666  	if (IS_ENABLED(CONFIG_KMSAN) &&
2667  	    (_init_on_alloc_enabled_early || _init_on_free_enabled_early))
2668  		pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n");
2669  
2670  #ifdef CONFIG_DEBUG_PAGEALLOC
2671  	if (debug_pagealloc_enabled()) {
2672  		want_check_pages = true;
2673  		static_branch_enable(&_debug_pagealloc_enabled);
2674  
2675  		if (debug_guardpage_minorder())
2676  			static_branch_enable(&_debug_guardpage_enabled);
2677  	}
2678  #endif
2679  
2680  	/*
2681  	 * Any page debugging or hardening option also enables sanity checking
2682  	 * of struct pages being allocated or freed. With CONFIG_DEBUG_VM it's
2683  	 * enabled already.
2684  	 */
2685  	if (!IS_ENABLED(CONFIG_DEBUG_VM) && want_check_pages)
2686  		static_branch_enable(&check_pages_enabled);
2687  }
2688  
2689  /* Report memory auto-initialization states for this boot. */
report_meminit(void)2690  static void __init report_meminit(void)
2691  {
2692  	const char *stack;
2693  
2694  	if (IS_ENABLED(CONFIG_INIT_STACK_ALL_PATTERN))
2695  		stack = "all(pattern)";
2696  	else if (IS_ENABLED(CONFIG_INIT_STACK_ALL_ZERO))
2697  		stack = "all(zero)";
2698  	else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF_ALL))
2699  		stack = "byref_all(zero)";
2700  	else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF))
2701  		stack = "byref(zero)";
2702  	else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_USER))
2703  		stack = "__user(zero)";
2704  	else
2705  		stack = "off";
2706  
2707  	pr_info("mem auto-init: stack:%s, heap alloc:%s, heap free:%s\n",
2708  		stack, want_init_on_alloc(GFP_KERNEL) ? "on" : "off",
2709  		want_init_on_free() ? "on" : "off");
2710  	if (want_init_on_free())
2711  		pr_info("mem auto-init: clearing system memory may take some time...\n");
2712  }
2713  
mem_init_print_info(void)2714  static void __init mem_init_print_info(void)
2715  {
2716  	unsigned long physpages, codesize, datasize, rosize, bss_size;
2717  	unsigned long init_code_size, init_data_size;
2718  
2719  	physpages = get_num_physpages();
2720  	codesize = _etext - _stext;
2721  	datasize = _edata - _sdata;
2722  	rosize = __end_rodata - __start_rodata;
2723  	bss_size = __bss_stop - __bss_start;
2724  	init_data_size = __init_end - __init_begin;
2725  	init_code_size = _einittext - _sinittext;
2726  
2727  	/*
2728  	 * Detect special cases and adjust section sizes accordingly:
2729  	 * 1) .init.* may be embedded into .data sections
2730  	 * 2) .init.text.* may be out of [__init_begin, __init_end],
2731  	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
2732  	 * 3) .rodata.* may be embedded into .text or .data sections.
2733  	 */
2734  #define adj_init_size(start, end, size, pos, adj) \
2735  	do { \
2736  		if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
2737  			size -= adj; \
2738  	} while (0)
2739  
2740  	adj_init_size(__init_begin, __init_end, init_data_size,
2741  		     _sinittext, init_code_size);
2742  	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
2743  	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
2744  	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
2745  	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
2746  
2747  #undef	adj_init_size
2748  
2749  	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
2750  #ifdef	CONFIG_HIGHMEM
2751  		", %luK highmem"
2752  #endif
2753  		")\n",
2754  		K(nr_free_pages()), K(physpages),
2755  		codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K,
2756  		(init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K,
2757  		K(physpages - totalram_pages() - totalcma_pages),
2758  		K(totalcma_pages)
2759  #ifdef	CONFIG_HIGHMEM
2760  		, K(totalhigh_pages())
2761  #endif
2762  		);
2763  }
2764  
2765  /*
2766   * Set up kernel memory allocators
2767   */
mm_core_init(void)2768  void __init mm_core_init(void)
2769  {
2770  	/* Initializations relying on SMP setup */
2771  	build_all_zonelists(NULL);
2772  	page_alloc_init_cpuhp();
2773  
2774  	/*
2775  	 * page_ext requires contiguous pages,
2776  	 * bigger than MAX_ORDER unless SPARSEMEM.
2777  	 */
2778  	page_ext_init_flatmem();
2779  	mem_debugging_and_hardening_init();
2780  	kfence_alloc_pool_and_metadata();
2781  	report_meminit();
2782  	kmsan_init_shadow();
2783  	stack_depot_early_init();
2784  	mem_init();
2785  	mem_init_print_info();
2786  	kmem_cache_init();
2787  	/*
2788  	 * page_owner must be initialized after buddy is ready, and also after
2789  	 * slab is ready so that stack_depot_init() works properly
2790  	 */
2791  	page_ext_init_flatmem_late();
2792  	kmemleak_init();
2793  	ptlock_cache_init();
2794  	pgtable_cache_init();
2795  	debug_objects_mem_init();
2796  	vmalloc_init();
2797  	/* If no deferred init page_ext now, as vmap is fully initialized */
2798  	if (!deferred_struct_pages)
2799  		page_ext_init();
2800  	/* Should be run before the first non-init thread is created */
2801  	init_espfix_bsp();
2802  	/* Should be run after espfix64 is set up. */
2803  	pti_init();
2804  	kmsan_init_runtime();
2805  	mm_cache_init();
2806  }
2807