1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Common Ultravisor functions and initialization
4 *
5 * Copyright IBM Corp. 2019, 2020
6 */
7 #define KMSG_COMPONENT "prot_virt"
8 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
9
10 #include <linux/kernel.h>
11 #include <linux/types.h>
12 #include <linux/sizes.h>
13 #include <linux/bitmap.h>
14 #include <linux/memblock.h>
15 #include <linux/pagemap.h>
16 #include <linux/swap.h>
17 #include <asm/facility.h>
18 #include <asm/sections.h>
19 #include <asm/uv.h>
20
21 /* the bootdata_preserved fields come from ones in arch/s390/boot/uv.c */
22 #ifdef CONFIG_PROTECTED_VIRTUALIZATION_GUEST
23 int __bootdata_preserved(prot_virt_guest);
24 #endif
25
26 /*
27 * uv_info contains both host and guest information but it's currently only
28 * expected to be used within modules if it's the KVM module or for
29 * any PV guest module.
30 *
31 * The kernel itself will write these values once in uv_query_info()
32 * and then make some of them readable via a sysfs interface.
33 */
34 struct uv_info __bootdata_preserved(uv_info);
35 EXPORT_SYMBOL(uv_info);
36
37 #if IS_ENABLED(CONFIG_KVM)
38 int __bootdata_preserved(prot_virt_host);
39 EXPORT_SYMBOL(prot_virt_host);
40
uv_init(phys_addr_t stor_base,unsigned long stor_len)41 static int __init uv_init(phys_addr_t stor_base, unsigned long stor_len)
42 {
43 struct uv_cb_init uvcb = {
44 .header.cmd = UVC_CMD_INIT_UV,
45 .header.len = sizeof(uvcb),
46 .stor_origin = stor_base,
47 .stor_len = stor_len,
48 };
49
50 if (uv_call(0, (uint64_t)&uvcb)) {
51 pr_err("Ultravisor init failed with rc: 0x%x rrc: 0%x\n",
52 uvcb.header.rc, uvcb.header.rrc);
53 return -1;
54 }
55 return 0;
56 }
57
setup_uv(void)58 void __init setup_uv(void)
59 {
60 void *uv_stor_base;
61
62 if (!is_prot_virt_host())
63 return;
64
65 uv_stor_base = memblock_alloc_try_nid(
66 uv_info.uv_base_stor_len, SZ_1M, SZ_2G,
67 MEMBLOCK_ALLOC_ACCESSIBLE, NUMA_NO_NODE);
68 if (!uv_stor_base) {
69 pr_warn("Failed to reserve %lu bytes for ultravisor base storage\n",
70 uv_info.uv_base_stor_len);
71 goto fail;
72 }
73
74 if (uv_init(__pa(uv_stor_base), uv_info.uv_base_stor_len)) {
75 memblock_free(uv_stor_base, uv_info.uv_base_stor_len);
76 goto fail;
77 }
78
79 pr_info("Reserving %luMB as ultravisor base storage\n",
80 uv_info.uv_base_stor_len >> 20);
81 return;
82 fail:
83 pr_info("Disabling support for protected virtualization");
84 prot_virt_host = 0;
85 }
86
87 /*
88 * Requests the Ultravisor to pin the page in the shared state. This will
89 * cause an intercept when the guest attempts to unshare the pinned page.
90 */
uv_pin_shared(unsigned long paddr)91 int uv_pin_shared(unsigned long paddr)
92 {
93 struct uv_cb_cfs uvcb = {
94 .header.cmd = UVC_CMD_PIN_PAGE_SHARED,
95 .header.len = sizeof(uvcb),
96 .paddr = paddr,
97 };
98
99 if (uv_call(0, (u64)&uvcb))
100 return -EINVAL;
101 return 0;
102 }
103 EXPORT_SYMBOL_GPL(uv_pin_shared);
104
105 /*
106 * Requests the Ultravisor to destroy a guest page and make it
107 * accessible to the host. The destroy clears the page instead of
108 * exporting.
109 *
110 * @paddr: Absolute host address of page to be destroyed
111 */
uv_destroy_page(unsigned long paddr)112 static int uv_destroy_page(unsigned long paddr)
113 {
114 struct uv_cb_cfs uvcb = {
115 .header.cmd = UVC_CMD_DESTR_SEC_STOR,
116 .header.len = sizeof(uvcb),
117 .paddr = paddr
118 };
119
120 if (uv_call(0, (u64)&uvcb)) {
121 /*
122 * Older firmware uses 107/d as an indication of a non secure
123 * page. Let us emulate the newer variant (no-op).
124 */
125 if (uvcb.header.rc == 0x107 && uvcb.header.rrc == 0xd)
126 return 0;
127 return -EINVAL;
128 }
129 return 0;
130 }
131
132 /*
133 * The caller must already hold a reference to the page
134 */
uv_destroy_owned_page(unsigned long paddr)135 int uv_destroy_owned_page(unsigned long paddr)
136 {
137 struct page *page = phys_to_page(paddr);
138 int rc;
139
140 get_page(page);
141 rc = uv_destroy_page(paddr);
142 if (!rc)
143 clear_bit(PG_arch_1, &page->flags);
144 put_page(page);
145 return rc;
146 }
147
148 /*
149 * Requests the Ultravisor to encrypt a guest page and make it
150 * accessible to the host for paging (export).
151 *
152 * @paddr: Absolute host address of page to be exported
153 */
uv_convert_from_secure(unsigned long paddr)154 int uv_convert_from_secure(unsigned long paddr)
155 {
156 struct uv_cb_cfs uvcb = {
157 .header.cmd = UVC_CMD_CONV_FROM_SEC_STOR,
158 .header.len = sizeof(uvcb),
159 .paddr = paddr
160 };
161
162 if (uv_call(0, (u64)&uvcb))
163 return -EINVAL;
164 return 0;
165 }
166
167 /*
168 * The caller must already hold a reference to the page
169 */
uv_convert_owned_from_secure(unsigned long paddr)170 int uv_convert_owned_from_secure(unsigned long paddr)
171 {
172 struct page *page = phys_to_page(paddr);
173 int rc;
174
175 get_page(page);
176 rc = uv_convert_from_secure(paddr);
177 if (!rc)
178 clear_bit(PG_arch_1, &page->flags);
179 put_page(page);
180 return rc;
181 }
182
183 /*
184 * Calculate the expected ref_count for a folio that would otherwise have no
185 * further pins. This was cribbed from similar functions in other places in
186 * the kernel, but with some slight modifications. We know that a secure
187 * folio can not be a large folio, for example.
188 */
expected_folio_refs(struct folio * folio)189 static int expected_folio_refs(struct folio *folio)
190 {
191 int res;
192
193 res = folio_mapcount(folio);
194 if (folio_test_swapcache(folio)) {
195 res++;
196 } else if (folio_mapping(folio)) {
197 res++;
198 if (folio->private)
199 res++;
200 }
201 return res;
202 }
203
make_folio_secure(struct folio * folio,struct uv_cb_header * uvcb)204 static int make_folio_secure(struct folio *folio, struct uv_cb_header *uvcb)
205 {
206 int expected, cc = 0;
207
208 if (folio_test_writeback(folio))
209 return -EAGAIN;
210 expected = expected_folio_refs(folio);
211 if (!folio_ref_freeze(folio, expected))
212 return -EBUSY;
213 set_bit(PG_arch_1, &folio->flags);
214 /*
215 * If the UVC does not succeed or fail immediately, we don't want to
216 * loop for long, or we might get stall notifications.
217 * On the other hand, this is a complex scenario and we are holding a lot of
218 * locks, so we can't easily sleep and reschedule. We try only once,
219 * and if the UVC returned busy or partial completion, we return
220 * -EAGAIN and we let the callers deal with it.
221 */
222 cc = __uv_call(0, (u64)uvcb);
223 folio_ref_unfreeze(folio, expected);
224 /*
225 * Return -ENXIO if the folio was not mapped, -EINVAL for other errors.
226 * If busy or partially completed, return -EAGAIN.
227 */
228 if (cc == UVC_CC_OK)
229 return 0;
230 else if (cc == UVC_CC_BUSY || cc == UVC_CC_PARTIAL)
231 return -EAGAIN;
232 return uvcb->rc == 0x10a ? -ENXIO : -EINVAL;
233 }
234
235 /**
236 * should_export_before_import - Determine whether an export is needed
237 * before an import-like operation
238 * @uvcb: the Ultravisor control block of the UVC to be performed
239 * @mm: the mm of the process
240 *
241 * Returns whether an export is needed before every import-like operation.
242 * This is needed for shared pages, which don't trigger a secure storage
243 * exception when accessed from a different guest.
244 *
245 * Although considered as one, the Unpin Page UVC is not an actual import,
246 * so it is not affected.
247 *
248 * No export is needed also when there is only one protected VM, because the
249 * page cannot belong to the wrong VM in that case (there is no "other VM"
250 * it can belong to).
251 *
252 * Return: true if an export is needed before every import, otherwise false.
253 */
should_export_before_import(struct uv_cb_header * uvcb,struct mm_struct * mm)254 static bool should_export_before_import(struct uv_cb_header *uvcb, struct mm_struct *mm)
255 {
256 /*
257 * The misc feature indicates, among other things, that importing a
258 * shared page from a different protected VM will automatically also
259 * transfer its ownership.
260 */
261 if (uv_has_feature(BIT_UV_FEAT_MISC))
262 return false;
263 if (uvcb->cmd == UVC_CMD_UNPIN_PAGE_SHARED)
264 return false;
265 return atomic_read(&mm->context.protected_count) > 1;
266 }
267
268 /*
269 * Requests the Ultravisor to make a page accessible to a guest.
270 * If it's brought in the first time, it will be cleared. If
271 * it has been exported before, it will be decrypted and integrity
272 * checked.
273 */
gmap_make_secure(struct gmap * gmap,unsigned long gaddr,void * uvcb)274 int gmap_make_secure(struct gmap *gmap, unsigned long gaddr, void *uvcb)
275 {
276 struct vm_area_struct *vma;
277 bool local_drain = false;
278 spinlock_t *ptelock;
279 unsigned long uaddr;
280 struct folio *folio;
281 pte_t *ptep;
282 int rc;
283
284 again:
285 rc = -EFAULT;
286 mmap_read_lock(gmap->mm);
287
288 uaddr = __gmap_translate(gmap, gaddr);
289 if (IS_ERR_VALUE(uaddr))
290 goto out;
291 vma = vma_lookup(gmap->mm, uaddr);
292 if (!vma)
293 goto out;
294 /*
295 * Secure pages cannot be huge and userspace should not combine both.
296 * In case userspace does it anyway this will result in an -EFAULT for
297 * the unpack. The guest is thus never reaching secure mode. If
298 * userspace is playing dirty tricky with mapping huge pages later
299 * on this will result in a segmentation fault.
300 */
301 if (is_vm_hugetlb_page(vma))
302 goto out;
303
304 rc = -ENXIO;
305 ptep = get_locked_pte(gmap->mm, uaddr, &ptelock);
306 if (!ptep)
307 goto out;
308 if (pte_present(*ptep) && !(pte_val(*ptep) & _PAGE_INVALID) && pte_write(*ptep)) {
309 folio = page_folio(pte_page(*ptep));
310 rc = -EINVAL;
311 if (folio_test_large(folio))
312 goto unlock;
313 rc = -EAGAIN;
314 if (folio_trylock(folio)) {
315 if (should_export_before_import(uvcb, gmap->mm))
316 uv_convert_from_secure(PFN_PHYS(folio_pfn(folio)));
317 rc = make_folio_secure(folio, uvcb);
318 folio_unlock(folio);
319 }
320
321 /*
322 * Once we drop the PTL, the folio may get unmapped and
323 * freed immediately. We need a temporary reference.
324 */
325 if (rc == -EAGAIN)
326 folio_get(folio);
327 }
328 unlock:
329 pte_unmap_unlock(ptep, ptelock);
330 out:
331 mmap_read_unlock(gmap->mm);
332
333 if (rc == -EAGAIN) {
334 /*
335 * If we are here because the UVC returned busy or partial
336 * completion, this is just a useless check, but it is safe.
337 */
338 folio_wait_writeback(folio);
339 folio_put(folio);
340 } else if (rc == -EBUSY) {
341 /*
342 * If we have tried a local drain and the folio refcount
343 * still does not match our expected safe value, try with a
344 * system wide drain. This is needed if the pagevecs holding
345 * the page are on a different CPU.
346 */
347 if (local_drain) {
348 lru_add_drain_all();
349 /* We give up here, and let the caller try again */
350 return -EAGAIN;
351 }
352 /*
353 * We are here if the folio refcount does not match the
354 * expected safe value. The main culprits are usually
355 * pagevecs. With lru_add_drain() we drain the pagevecs
356 * on the local CPU so that hopefully the refcount will
357 * reach the expected safe value.
358 */
359 lru_add_drain();
360 local_drain = true;
361 /* And now we try again immediately after draining */
362 goto again;
363 } else if (rc == -ENXIO) {
364 if (gmap_fault(gmap, gaddr, FAULT_FLAG_WRITE))
365 return -EFAULT;
366 return -EAGAIN;
367 }
368 return rc;
369 }
370 EXPORT_SYMBOL_GPL(gmap_make_secure);
371
gmap_convert_to_secure(struct gmap * gmap,unsigned long gaddr)372 int gmap_convert_to_secure(struct gmap *gmap, unsigned long gaddr)
373 {
374 struct uv_cb_cts uvcb = {
375 .header.cmd = UVC_CMD_CONV_TO_SEC_STOR,
376 .header.len = sizeof(uvcb),
377 .guest_handle = gmap->guest_handle,
378 .gaddr = gaddr,
379 };
380
381 return gmap_make_secure(gmap, gaddr, &uvcb);
382 }
383 EXPORT_SYMBOL_GPL(gmap_convert_to_secure);
384
385 /**
386 * gmap_destroy_page - Destroy a guest page.
387 * @gmap: the gmap of the guest
388 * @gaddr: the guest address to destroy
389 *
390 * An attempt will be made to destroy the given guest page. If the attempt
391 * fails, an attempt is made to export the page. If both attempts fail, an
392 * appropriate error is returned.
393 */
gmap_destroy_page(struct gmap * gmap,unsigned long gaddr)394 int gmap_destroy_page(struct gmap *gmap, unsigned long gaddr)
395 {
396 struct vm_area_struct *vma;
397 unsigned long uaddr;
398 struct page *page;
399 int rc;
400
401 rc = -EFAULT;
402 mmap_read_lock(gmap->mm);
403
404 uaddr = __gmap_translate(gmap, gaddr);
405 if (IS_ERR_VALUE(uaddr))
406 goto out;
407 vma = vma_lookup(gmap->mm, uaddr);
408 if (!vma)
409 goto out;
410 /*
411 * Huge pages should not be able to become secure
412 */
413 if (is_vm_hugetlb_page(vma))
414 goto out;
415
416 rc = 0;
417 /* we take an extra reference here */
418 page = follow_page(vma, uaddr, FOLL_WRITE | FOLL_GET);
419 if (IS_ERR_OR_NULL(page))
420 goto out;
421 rc = uv_destroy_owned_page(page_to_phys(page));
422 /*
423 * Fault handlers can race; it is possible that two CPUs will fault
424 * on the same secure page. One CPU can destroy the page, reboot,
425 * re-enter secure mode and import it, while the second CPU was
426 * stuck at the beginning of the handler. At some point the second
427 * CPU will be able to progress, and it will not be able to destroy
428 * the page. In that case we do not want to terminate the process,
429 * we instead try to export the page.
430 */
431 if (rc)
432 rc = uv_convert_owned_from_secure(page_to_phys(page));
433 put_page(page);
434 out:
435 mmap_read_unlock(gmap->mm);
436 return rc;
437 }
438 EXPORT_SYMBOL_GPL(gmap_destroy_page);
439
440 /*
441 * To be called with the page locked or with an extra reference! This will
442 * prevent gmap_make_secure from touching the page concurrently. Having 2
443 * parallel make_page_accessible is fine, as the UV calls will become a
444 * no-op if the page is already exported.
445 */
arch_make_page_accessible(struct page * page)446 int arch_make_page_accessible(struct page *page)
447 {
448 int rc = 0;
449
450 /* Hugepage cannot be protected, so nothing to do */
451 if (PageHuge(page))
452 return 0;
453
454 /*
455 * PG_arch_1 is used in 3 places:
456 * 1. for kernel page tables during early boot
457 * 2. for storage keys of huge pages and KVM
458 * 3. As an indication that this page might be secure. This can
459 * overindicate, e.g. we set the bit before calling
460 * convert_to_secure.
461 * As secure pages are never huge, all 3 variants can co-exists.
462 */
463 if (!test_bit(PG_arch_1, &page->flags))
464 return 0;
465
466 rc = uv_pin_shared(page_to_phys(page));
467 if (!rc) {
468 clear_bit(PG_arch_1, &page->flags);
469 return 0;
470 }
471
472 rc = uv_convert_from_secure(page_to_phys(page));
473 if (!rc) {
474 clear_bit(PG_arch_1, &page->flags);
475 return 0;
476 }
477
478 return rc;
479 }
480 EXPORT_SYMBOL_GPL(arch_make_page_accessible);
481
482 #endif
483
484 #if defined(CONFIG_PROTECTED_VIRTUALIZATION_GUEST) || IS_ENABLED(CONFIG_KVM)
uv_query_facilities(struct kobject * kobj,struct kobj_attribute * attr,char * buf)485 static ssize_t uv_query_facilities(struct kobject *kobj,
486 struct kobj_attribute *attr, char *buf)
487 {
488 return sysfs_emit(buf, "%lx\n%lx\n%lx\n%lx\n",
489 uv_info.inst_calls_list[0],
490 uv_info.inst_calls_list[1],
491 uv_info.inst_calls_list[2],
492 uv_info.inst_calls_list[3]);
493 }
494
495 static struct kobj_attribute uv_query_facilities_attr =
496 __ATTR(facilities, 0444, uv_query_facilities, NULL);
497
uv_query_supp_se_hdr_ver(struct kobject * kobj,struct kobj_attribute * attr,char * buf)498 static ssize_t uv_query_supp_se_hdr_ver(struct kobject *kobj,
499 struct kobj_attribute *attr, char *buf)
500 {
501 return sysfs_emit(buf, "%lx\n", uv_info.supp_se_hdr_ver);
502 }
503
504 static struct kobj_attribute uv_query_supp_se_hdr_ver_attr =
505 __ATTR(supp_se_hdr_ver, 0444, uv_query_supp_se_hdr_ver, NULL);
506
uv_query_supp_se_hdr_pcf(struct kobject * kobj,struct kobj_attribute * attr,char * buf)507 static ssize_t uv_query_supp_se_hdr_pcf(struct kobject *kobj,
508 struct kobj_attribute *attr, char *buf)
509 {
510 return sysfs_emit(buf, "%lx\n", uv_info.supp_se_hdr_pcf);
511 }
512
513 static struct kobj_attribute uv_query_supp_se_hdr_pcf_attr =
514 __ATTR(supp_se_hdr_pcf, 0444, uv_query_supp_se_hdr_pcf, NULL);
515
uv_query_dump_cpu_len(struct kobject * kobj,struct kobj_attribute * attr,char * buf)516 static ssize_t uv_query_dump_cpu_len(struct kobject *kobj,
517 struct kobj_attribute *attr, char *buf)
518 {
519 return sysfs_emit(buf, "%lx\n", uv_info.guest_cpu_stor_len);
520 }
521
522 static struct kobj_attribute uv_query_dump_cpu_len_attr =
523 __ATTR(uv_query_dump_cpu_len, 0444, uv_query_dump_cpu_len, NULL);
524
uv_query_dump_storage_state_len(struct kobject * kobj,struct kobj_attribute * attr,char * buf)525 static ssize_t uv_query_dump_storage_state_len(struct kobject *kobj,
526 struct kobj_attribute *attr, char *buf)
527 {
528 return sysfs_emit(buf, "%lx\n", uv_info.conf_dump_storage_state_len);
529 }
530
531 static struct kobj_attribute uv_query_dump_storage_state_len_attr =
532 __ATTR(dump_storage_state_len, 0444, uv_query_dump_storage_state_len, NULL);
533
uv_query_dump_finalize_len(struct kobject * kobj,struct kobj_attribute * attr,char * buf)534 static ssize_t uv_query_dump_finalize_len(struct kobject *kobj,
535 struct kobj_attribute *attr, char *buf)
536 {
537 return sysfs_emit(buf, "%lx\n", uv_info.conf_dump_finalize_len);
538 }
539
540 static struct kobj_attribute uv_query_dump_finalize_len_attr =
541 __ATTR(dump_finalize_len, 0444, uv_query_dump_finalize_len, NULL);
542
uv_query_feature_indications(struct kobject * kobj,struct kobj_attribute * attr,char * buf)543 static ssize_t uv_query_feature_indications(struct kobject *kobj,
544 struct kobj_attribute *attr, char *buf)
545 {
546 return sysfs_emit(buf, "%lx\n", uv_info.uv_feature_indications);
547 }
548
549 static struct kobj_attribute uv_query_feature_indications_attr =
550 __ATTR(feature_indications, 0444, uv_query_feature_indications, NULL);
551
uv_query_max_guest_cpus(struct kobject * kobj,struct kobj_attribute * attr,char * buf)552 static ssize_t uv_query_max_guest_cpus(struct kobject *kobj,
553 struct kobj_attribute *attr, char *buf)
554 {
555 return sysfs_emit(buf, "%d\n", uv_info.max_guest_cpu_id + 1);
556 }
557
558 static struct kobj_attribute uv_query_max_guest_cpus_attr =
559 __ATTR(max_cpus, 0444, uv_query_max_guest_cpus, NULL);
560
uv_query_max_guest_vms(struct kobject * kobj,struct kobj_attribute * attr,char * buf)561 static ssize_t uv_query_max_guest_vms(struct kobject *kobj,
562 struct kobj_attribute *attr, char *buf)
563 {
564 return sysfs_emit(buf, "%d\n", uv_info.max_num_sec_conf);
565 }
566
567 static struct kobj_attribute uv_query_max_guest_vms_attr =
568 __ATTR(max_guests, 0444, uv_query_max_guest_vms, NULL);
569
uv_query_max_guest_addr(struct kobject * kobj,struct kobj_attribute * attr,char * buf)570 static ssize_t uv_query_max_guest_addr(struct kobject *kobj,
571 struct kobj_attribute *attr, char *buf)
572 {
573 return sysfs_emit(buf, "%lx\n", uv_info.max_sec_stor_addr);
574 }
575
576 static struct kobj_attribute uv_query_max_guest_addr_attr =
577 __ATTR(max_address, 0444, uv_query_max_guest_addr, NULL);
578
uv_query_supp_att_req_hdr_ver(struct kobject * kobj,struct kobj_attribute * attr,char * buf)579 static ssize_t uv_query_supp_att_req_hdr_ver(struct kobject *kobj,
580 struct kobj_attribute *attr, char *buf)
581 {
582 return sysfs_emit(buf, "%lx\n", uv_info.supp_att_req_hdr_ver);
583 }
584
585 static struct kobj_attribute uv_query_supp_att_req_hdr_ver_attr =
586 __ATTR(supp_att_req_hdr_ver, 0444, uv_query_supp_att_req_hdr_ver, NULL);
587
uv_query_supp_att_pflags(struct kobject * kobj,struct kobj_attribute * attr,char * buf)588 static ssize_t uv_query_supp_att_pflags(struct kobject *kobj,
589 struct kobj_attribute *attr, char *buf)
590 {
591 return sysfs_emit(buf, "%lx\n", uv_info.supp_att_pflags);
592 }
593
594 static struct kobj_attribute uv_query_supp_att_pflags_attr =
595 __ATTR(supp_att_pflags, 0444, uv_query_supp_att_pflags, NULL);
596
uv_query_supp_add_secret_req_ver(struct kobject * kobj,struct kobj_attribute * attr,char * buf)597 static ssize_t uv_query_supp_add_secret_req_ver(struct kobject *kobj,
598 struct kobj_attribute *attr, char *buf)
599 {
600 return sysfs_emit(buf, "%lx\n", uv_info.supp_add_secret_req_ver);
601 }
602
603 static struct kobj_attribute uv_query_supp_add_secret_req_ver_attr =
604 __ATTR(supp_add_secret_req_ver, 0444, uv_query_supp_add_secret_req_ver, NULL);
605
uv_query_supp_add_secret_pcf(struct kobject * kobj,struct kobj_attribute * attr,char * buf)606 static ssize_t uv_query_supp_add_secret_pcf(struct kobject *kobj,
607 struct kobj_attribute *attr, char *buf)
608 {
609 return sysfs_emit(buf, "%lx\n", uv_info.supp_add_secret_pcf);
610 }
611
612 static struct kobj_attribute uv_query_supp_add_secret_pcf_attr =
613 __ATTR(supp_add_secret_pcf, 0444, uv_query_supp_add_secret_pcf, NULL);
614
uv_query_supp_secret_types(struct kobject * kobj,struct kobj_attribute * attr,char * buf)615 static ssize_t uv_query_supp_secret_types(struct kobject *kobj,
616 struct kobj_attribute *attr, char *buf)
617 {
618 return sysfs_emit(buf, "%lx\n", uv_info.supp_secret_types);
619 }
620
621 static struct kobj_attribute uv_query_supp_secret_types_attr =
622 __ATTR(supp_secret_types, 0444, uv_query_supp_secret_types, NULL);
623
uv_query_max_secrets(struct kobject * kobj,struct kobj_attribute * attr,char * buf)624 static ssize_t uv_query_max_secrets(struct kobject *kobj,
625 struct kobj_attribute *attr, char *buf)
626 {
627 return sysfs_emit(buf, "%d\n", uv_info.max_secrets);
628 }
629
630 static struct kobj_attribute uv_query_max_secrets_attr =
631 __ATTR(max_secrets, 0444, uv_query_max_secrets, NULL);
632
633 static struct attribute *uv_query_attrs[] = {
634 &uv_query_facilities_attr.attr,
635 &uv_query_feature_indications_attr.attr,
636 &uv_query_max_guest_cpus_attr.attr,
637 &uv_query_max_guest_vms_attr.attr,
638 &uv_query_max_guest_addr_attr.attr,
639 &uv_query_supp_se_hdr_ver_attr.attr,
640 &uv_query_supp_se_hdr_pcf_attr.attr,
641 &uv_query_dump_storage_state_len_attr.attr,
642 &uv_query_dump_finalize_len_attr.attr,
643 &uv_query_dump_cpu_len_attr.attr,
644 &uv_query_supp_att_req_hdr_ver_attr.attr,
645 &uv_query_supp_att_pflags_attr.attr,
646 &uv_query_supp_add_secret_req_ver_attr.attr,
647 &uv_query_supp_add_secret_pcf_attr.attr,
648 &uv_query_supp_secret_types_attr.attr,
649 &uv_query_max_secrets_attr.attr,
650 NULL,
651 };
652
653 static struct attribute_group uv_query_attr_group = {
654 .attrs = uv_query_attrs,
655 };
656
uv_is_prot_virt_guest(struct kobject * kobj,struct kobj_attribute * attr,char * buf)657 static ssize_t uv_is_prot_virt_guest(struct kobject *kobj,
658 struct kobj_attribute *attr, char *buf)
659 {
660 int val = 0;
661
662 #ifdef CONFIG_PROTECTED_VIRTUALIZATION_GUEST
663 val = prot_virt_guest;
664 #endif
665 return sysfs_emit(buf, "%d\n", val);
666 }
667
uv_is_prot_virt_host(struct kobject * kobj,struct kobj_attribute * attr,char * buf)668 static ssize_t uv_is_prot_virt_host(struct kobject *kobj,
669 struct kobj_attribute *attr, char *buf)
670 {
671 int val = 0;
672
673 #if IS_ENABLED(CONFIG_KVM)
674 val = prot_virt_host;
675 #endif
676
677 return sysfs_emit(buf, "%d\n", val);
678 }
679
680 static struct kobj_attribute uv_prot_virt_guest =
681 __ATTR(prot_virt_guest, 0444, uv_is_prot_virt_guest, NULL);
682
683 static struct kobj_attribute uv_prot_virt_host =
684 __ATTR(prot_virt_host, 0444, uv_is_prot_virt_host, NULL);
685
686 static const struct attribute *uv_prot_virt_attrs[] = {
687 &uv_prot_virt_guest.attr,
688 &uv_prot_virt_host.attr,
689 NULL,
690 };
691
692 static struct kset *uv_query_kset;
693 static struct kobject *uv_kobj;
694
uv_info_init(void)695 static int __init uv_info_init(void)
696 {
697 int rc = -ENOMEM;
698
699 if (!test_facility(158))
700 return 0;
701
702 uv_kobj = kobject_create_and_add("uv", firmware_kobj);
703 if (!uv_kobj)
704 return -ENOMEM;
705
706 rc = sysfs_create_files(uv_kobj, uv_prot_virt_attrs);
707 if (rc)
708 goto out_kobj;
709
710 uv_query_kset = kset_create_and_add("query", NULL, uv_kobj);
711 if (!uv_query_kset) {
712 rc = -ENOMEM;
713 goto out_ind_files;
714 }
715
716 rc = sysfs_create_group(&uv_query_kset->kobj, &uv_query_attr_group);
717 if (!rc)
718 return 0;
719
720 kset_unregister(uv_query_kset);
721 out_ind_files:
722 sysfs_remove_files(uv_kobj, uv_prot_virt_attrs);
723 out_kobj:
724 kobject_del(uv_kobj);
725 kobject_put(uv_kobj);
726 return rc;
727 }
728 device_initcall(uv_info_init);
729 #endif
730