1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 1993 by Theodore Ts'o.
4 */
5 #include <linux/module.h>
6 #include <linux/moduleparam.h>
7 #include <linux/sched.h>
8 #include <linux/fs.h>
9 #include <linux/pagemap.h>
10 #include <linux/file.h>
11 #include <linux/stat.h>
12 #include <linux/errno.h>
13 #include <linux/major.h>
14 #include <linux/wait.h>
15 #include <linux/blkpg.h>
16 #include <linux/init.h>
17 #include <linux/swap.h>
18 #include <linux/slab.h>
19 #include <linux/compat.h>
20 #include <linux/suspend.h>
21 #include <linux/freezer.h>
22 #include <linux/mutex.h>
23 #include <linux/writeback.h>
24 #include <linux/completion.h>
25 #include <linux/highmem.h>
26 #include <linux/splice.h>
27 #include <linux/sysfs.h>
28 #include <linux/miscdevice.h>
29 #include <linux/falloc.h>
30 #include <linux/uio.h>
31 #include <linux/ioprio.h>
32 #include <linux/blk-cgroup.h>
33 #include <linux/sched/mm.h>
34 #include <linux/statfs.h>
35 #include <linux/uaccess.h>
36 #include <linux/blk-mq.h>
37 #include <linux/spinlock.h>
38 #include <uapi/linux/loop.h>
39
40 /* Possible states of device */
41 enum {
42 Lo_unbound,
43 Lo_bound,
44 Lo_rundown,
45 Lo_deleting,
46 };
47
48 struct loop_func_table;
49
50 struct loop_device {
51 int lo_number;
52 loff_t lo_offset;
53 loff_t lo_sizelimit;
54 int lo_flags;
55 char lo_file_name[LO_NAME_SIZE];
56
57 struct file * lo_backing_file;
58 struct block_device *lo_device;
59
60 gfp_t old_gfp_mask;
61
62 spinlock_t lo_lock;
63 int lo_state;
64 spinlock_t lo_work_lock;
65 struct workqueue_struct *workqueue;
66 struct work_struct rootcg_work;
67 struct list_head rootcg_cmd_list;
68 struct list_head idle_worker_list;
69 struct rb_root worker_tree;
70 struct timer_list timer;
71 bool use_dio;
72 bool sysfs_inited;
73
74 struct request_queue *lo_queue;
75 struct blk_mq_tag_set tag_set;
76 struct gendisk *lo_disk;
77 struct mutex lo_mutex;
78 bool idr_visible;
79 };
80
81 struct loop_cmd {
82 struct list_head list_entry;
83 bool use_aio; /* use AIO interface to handle I/O */
84 atomic_t ref; /* only for aio */
85 long ret;
86 struct kiocb iocb;
87 struct bio_vec *bvec;
88 struct cgroup_subsys_state *blkcg_css;
89 struct cgroup_subsys_state *memcg_css;
90 };
91
92 #define LOOP_IDLE_WORKER_TIMEOUT (60 * HZ)
93 #define LOOP_DEFAULT_HW_Q_DEPTH 128
94
95 static DEFINE_IDR(loop_index_idr);
96 static DEFINE_MUTEX(loop_ctl_mutex);
97 static DEFINE_MUTEX(loop_validate_mutex);
98
99 /**
100 * loop_global_lock_killable() - take locks for safe loop_validate_file() test
101 *
102 * @lo: struct loop_device
103 * @global: true if @lo is about to bind another "struct loop_device", false otherwise
104 *
105 * Returns 0 on success, -EINTR otherwise.
106 *
107 * Since loop_validate_file() traverses on other "struct loop_device" if
108 * is_loop_device() is true, we need a global lock for serializing concurrent
109 * loop_configure()/loop_change_fd()/__loop_clr_fd() calls.
110 */
loop_global_lock_killable(struct loop_device * lo,bool global)111 static int loop_global_lock_killable(struct loop_device *lo, bool global)
112 {
113 int err;
114
115 if (global) {
116 err = mutex_lock_killable(&loop_validate_mutex);
117 if (err)
118 return err;
119 }
120 err = mutex_lock_killable(&lo->lo_mutex);
121 if (err && global)
122 mutex_unlock(&loop_validate_mutex);
123 return err;
124 }
125
126 /**
127 * loop_global_unlock() - release locks taken by loop_global_lock_killable()
128 *
129 * @lo: struct loop_device
130 * @global: true if @lo was about to bind another "struct loop_device", false otherwise
131 */
loop_global_unlock(struct loop_device * lo,bool global)132 static void loop_global_unlock(struct loop_device *lo, bool global)
133 {
134 mutex_unlock(&lo->lo_mutex);
135 if (global)
136 mutex_unlock(&loop_validate_mutex);
137 }
138
139 static int max_part;
140 static int part_shift;
141
get_size(loff_t offset,loff_t sizelimit,struct file * file)142 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
143 {
144 loff_t loopsize;
145
146 /* Compute loopsize in bytes */
147 loopsize = i_size_read(file->f_mapping->host);
148 if (offset > 0)
149 loopsize -= offset;
150 /* offset is beyond i_size, weird but possible */
151 if (loopsize < 0)
152 return 0;
153
154 if (sizelimit > 0 && sizelimit < loopsize)
155 loopsize = sizelimit;
156 /*
157 * Unfortunately, if we want to do I/O on the device,
158 * the number of 512-byte sectors has to fit into a sector_t.
159 */
160 return loopsize >> 9;
161 }
162
get_loop_size(struct loop_device * lo,struct file * file)163 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
164 {
165 return get_size(lo->lo_offset, lo->lo_sizelimit, file);
166 }
167
168 /*
169 * We support direct I/O only if lo_offset is aligned with the logical I/O size
170 * of backing device, and the logical block size of loop is bigger than that of
171 * the backing device.
172 */
lo_bdev_can_use_dio(struct loop_device * lo,struct block_device * backing_bdev)173 static bool lo_bdev_can_use_dio(struct loop_device *lo,
174 struct block_device *backing_bdev)
175 {
176 unsigned short sb_bsize = bdev_logical_block_size(backing_bdev);
177
178 if (queue_logical_block_size(lo->lo_queue) < sb_bsize)
179 return false;
180 if (lo->lo_offset & (sb_bsize - 1))
181 return false;
182 return true;
183 }
184
__loop_update_dio(struct loop_device * lo,bool dio)185 static void __loop_update_dio(struct loop_device *lo, bool dio)
186 {
187 struct file *file = lo->lo_backing_file;
188 struct inode *inode = file->f_mapping->host;
189 struct block_device *backing_bdev = NULL;
190 bool use_dio;
191
192 if (S_ISBLK(inode->i_mode))
193 backing_bdev = I_BDEV(inode);
194 else if (inode->i_sb->s_bdev)
195 backing_bdev = inode->i_sb->s_bdev;
196
197 use_dio = dio && (file->f_mode & FMODE_CAN_ODIRECT) &&
198 (!backing_bdev || lo_bdev_can_use_dio(lo, backing_bdev));
199
200 if (lo->use_dio == use_dio)
201 return;
202
203 /* flush dirty pages before changing direct IO */
204 vfs_fsync(file, 0);
205
206 /*
207 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
208 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
209 * will get updated by ioctl(LOOP_GET_STATUS)
210 */
211 if (lo->lo_state == Lo_bound)
212 blk_mq_freeze_queue(lo->lo_queue);
213 lo->use_dio = use_dio;
214 if (use_dio)
215 lo->lo_flags |= LO_FLAGS_DIRECT_IO;
216 else
217 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
218 if (lo->lo_state == Lo_bound)
219 blk_mq_unfreeze_queue(lo->lo_queue);
220 }
221
222 /**
223 * loop_set_size() - sets device size and notifies userspace
224 * @lo: struct loop_device to set the size for
225 * @size: new size of the loop device
226 *
227 * Callers must validate that the size passed into this function fits into
228 * a sector_t, eg using loop_validate_size()
229 */
loop_set_size(struct loop_device * lo,loff_t size)230 static void loop_set_size(struct loop_device *lo, loff_t size)
231 {
232 if (!set_capacity_and_notify(lo->lo_disk, size))
233 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
234 }
235
lo_write_bvec(struct file * file,struct bio_vec * bvec,loff_t * ppos)236 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
237 {
238 struct iov_iter i;
239 ssize_t bw;
240
241 iov_iter_bvec(&i, ITER_SOURCE, bvec, 1, bvec->bv_len);
242
243 file_start_write(file);
244 bw = vfs_iter_write(file, &i, ppos, 0);
245 file_end_write(file);
246
247 if (likely(bw == bvec->bv_len))
248 return 0;
249
250 printk_ratelimited(KERN_ERR
251 "loop: Write error at byte offset %llu, length %i.\n",
252 (unsigned long long)*ppos, bvec->bv_len);
253 if (bw >= 0)
254 bw = -EIO;
255 return bw;
256 }
257
lo_write_simple(struct loop_device * lo,struct request * rq,loff_t pos)258 static int lo_write_simple(struct loop_device *lo, struct request *rq,
259 loff_t pos)
260 {
261 struct bio_vec bvec;
262 struct req_iterator iter;
263 int ret = 0;
264
265 rq_for_each_segment(bvec, rq, iter) {
266 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
267 if (ret < 0)
268 break;
269 cond_resched();
270 }
271
272 return ret;
273 }
274
lo_read_simple(struct loop_device * lo,struct request * rq,loff_t pos)275 static int lo_read_simple(struct loop_device *lo, struct request *rq,
276 loff_t pos)
277 {
278 struct bio_vec bvec;
279 struct req_iterator iter;
280 struct iov_iter i;
281 ssize_t len;
282
283 rq_for_each_segment(bvec, rq, iter) {
284 iov_iter_bvec(&i, ITER_DEST, &bvec, 1, bvec.bv_len);
285 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
286 if (len < 0)
287 return len;
288
289 flush_dcache_page(bvec.bv_page);
290
291 if (len != bvec.bv_len) {
292 struct bio *bio;
293
294 __rq_for_each_bio(bio, rq)
295 zero_fill_bio(bio);
296 break;
297 }
298 cond_resched();
299 }
300
301 return 0;
302 }
303
lo_fallocate(struct loop_device * lo,struct request * rq,loff_t pos,int mode)304 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos,
305 int mode)
306 {
307 /*
308 * We use fallocate to manipulate the space mappings used by the image
309 * a.k.a. discard/zerorange.
310 */
311 struct file *file = lo->lo_backing_file;
312 int ret;
313
314 mode |= FALLOC_FL_KEEP_SIZE;
315
316 if (!bdev_max_discard_sectors(lo->lo_device))
317 return -EOPNOTSUPP;
318
319 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
320 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
321 return -EIO;
322 return ret;
323 }
324
lo_req_flush(struct loop_device * lo,struct request * rq)325 static int lo_req_flush(struct loop_device *lo, struct request *rq)
326 {
327 int ret = vfs_fsync(lo->lo_backing_file, 0);
328 if (unlikely(ret && ret != -EINVAL))
329 ret = -EIO;
330
331 return ret;
332 }
333
lo_complete_rq(struct request * rq)334 static void lo_complete_rq(struct request *rq)
335 {
336 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
337 blk_status_t ret = BLK_STS_OK;
338
339 if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) ||
340 req_op(rq) != REQ_OP_READ) {
341 if (cmd->ret < 0)
342 ret = errno_to_blk_status(cmd->ret);
343 goto end_io;
344 }
345
346 /*
347 * Short READ - if we got some data, advance our request and
348 * retry it. If we got no data, end the rest with EIO.
349 */
350 if (cmd->ret) {
351 blk_update_request(rq, BLK_STS_OK, cmd->ret);
352 cmd->ret = 0;
353 blk_mq_requeue_request(rq, true);
354 } else {
355 if (cmd->use_aio) {
356 struct bio *bio = rq->bio;
357
358 while (bio) {
359 zero_fill_bio(bio);
360 bio = bio->bi_next;
361 }
362 }
363 ret = BLK_STS_IOERR;
364 end_io:
365 blk_mq_end_request(rq, ret);
366 }
367 }
368
lo_rw_aio_do_completion(struct loop_cmd * cmd)369 static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
370 {
371 struct request *rq = blk_mq_rq_from_pdu(cmd);
372
373 if (!atomic_dec_and_test(&cmd->ref))
374 return;
375 kfree(cmd->bvec);
376 cmd->bvec = NULL;
377 if (likely(!blk_should_fake_timeout(rq->q)))
378 blk_mq_complete_request(rq);
379 }
380
lo_rw_aio_complete(struct kiocb * iocb,long ret)381 static void lo_rw_aio_complete(struct kiocb *iocb, long ret)
382 {
383 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
384
385 cmd->ret = ret;
386 lo_rw_aio_do_completion(cmd);
387 }
388
lo_rw_aio(struct loop_device * lo,struct loop_cmd * cmd,loff_t pos,int rw)389 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
390 loff_t pos, int rw)
391 {
392 struct iov_iter iter;
393 struct req_iterator rq_iter;
394 struct bio_vec *bvec;
395 struct request *rq = blk_mq_rq_from_pdu(cmd);
396 struct bio *bio = rq->bio;
397 struct file *file = lo->lo_backing_file;
398 struct bio_vec tmp;
399 unsigned int offset;
400 int nr_bvec = 0;
401 int ret;
402
403 rq_for_each_bvec(tmp, rq, rq_iter)
404 nr_bvec++;
405
406 if (rq->bio != rq->biotail) {
407
408 bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec),
409 GFP_NOIO);
410 if (!bvec)
411 return -EIO;
412 cmd->bvec = bvec;
413
414 /*
415 * The bios of the request may be started from the middle of
416 * the 'bvec' because of bio splitting, so we can't directly
417 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec
418 * API will take care of all details for us.
419 */
420 rq_for_each_bvec(tmp, rq, rq_iter) {
421 *bvec = tmp;
422 bvec++;
423 }
424 bvec = cmd->bvec;
425 offset = 0;
426 } else {
427 /*
428 * Same here, this bio may be started from the middle of the
429 * 'bvec' because of bio splitting, so offset from the bvec
430 * must be passed to iov iterator
431 */
432 offset = bio->bi_iter.bi_bvec_done;
433 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
434 }
435 atomic_set(&cmd->ref, 2);
436
437 iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq));
438 iter.iov_offset = offset;
439
440 cmd->iocb.ki_pos = pos;
441 cmd->iocb.ki_filp = file;
442 cmd->iocb.ki_complete = lo_rw_aio_complete;
443 cmd->iocb.ki_flags = IOCB_DIRECT;
444 cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
445
446 if (rw == ITER_SOURCE)
447 ret = call_write_iter(file, &cmd->iocb, &iter);
448 else
449 ret = call_read_iter(file, &cmd->iocb, &iter);
450
451 lo_rw_aio_do_completion(cmd);
452
453 if (ret != -EIOCBQUEUED)
454 lo_rw_aio_complete(&cmd->iocb, ret);
455 return 0;
456 }
457
do_req_filebacked(struct loop_device * lo,struct request * rq)458 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
459 {
460 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
461 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
462
463 /*
464 * lo_write_simple and lo_read_simple should have been covered
465 * by io submit style function like lo_rw_aio(), one blocker
466 * is that lo_read_simple() need to call flush_dcache_page after
467 * the page is written from kernel, and it isn't easy to handle
468 * this in io submit style function which submits all segments
469 * of the req at one time. And direct read IO doesn't need to
470 * run flush_dcache_page().
471 */
472 switch (req_op(rq)) {
473 case REQ_OP_FLUSH:
474 return lo_req_flush(lo, rq);
475 case REQ_OP_WRITE_ZEROES:
476 /*
477 * If the caller doesn't want deallocation, call zeroout to
478 * write zeroes the range. Otherwise, punch them out.
479 */
480 return lo_fallocate(lo, rq, pos,
481 (rq->cmd_flags & REQ_NOUNMAP) ?
482 FALLOC_FL_ZERO_RANGE :
483 FALLOC_FL_PUNCH_HOLE);
484 case REQ_OP_DISCARD:
485 return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE);
486 case REQ_OP_WRITE:
487 if (cmd->use_aio)
488 return lo_rw_aio(lo, cmd, pos, ITER_SOURCE);
489 else
490 return lo_write_simple(lo, rq, pos);
491 case REQ_OP_READ:
492 if (cmd->use_aio)
493 return lo_rw_aio(lo, cmd, pos, ITER_DEST);
494 else
495 return lo_read_simple(lo, rq, pos);
496 default:
497 WARN_ON_ONCE(1);
498 return -EIO;
499 }
500 }
501
loop_update_dio(struct loop_device * lo)502 static inline void loop_update_dio(struct loop_device *lo)
503 {
504 __loop_update_dio(lo, (lo->lo_backing_file->f_flags & O_DIRECT) |
505 lo->use_dio);
506 }
507
loop_reread_partitions(struct loop_device * lo)508 static void loop_reread_partitions(struct loop_device *lo)
509 {
510 int rc;
511
512 mutex_lock(&lo->lo_disk->open_mutex);
513 rc = bdev_disk_changed(lo->lo_disk, false);
514 mutex_unlock(&lo->lo_disk->open_mutex);
515 if (rc)
516 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
517 __func__, lo->lo_number, lo->lo_file_name, rc);
518 }
519
is_loop_device(struct file * file)520 static inline int is_loop_device(struct file *file)
521 {
522 struct inode *i = file->f_mapping->host;
523
524 return i && S_ISBLK(i->i_mode) && imajor(i) == LOOP_MAJOR;
525 }
526
loop_validate_file(struct file * file,struct block_device * bdev)527 static int loop_validate_file(struct file *file, struct block_device *bdev)
528 {
529 struct inode *inode = file->f_mapping->host;
530 struct file *f = file;
531
532 /* Avoid recursion */
533 while (is_loop_device(f)) {
534 struct loop_device *l;
535
536 lockdep_assert_held(&loop_validate_mutex);
537 if (f->f_mapping->host->i_rdev == bdev->bd_dev)
538 return -EBADF;
539
540 l = I_BDEV(f->f_mapping->host)->bd_disk->private_data;
541 if (l->lo_state != Lo_bound)
542 return -EINVAL;
543 /* Order wrt setting lo->lo_backing_file in loop_configure(). */
544 rmb();
545 f = l->lo_backing_file;
546 }
547 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
548 return -EINVAL;
549 return 0;
550 }
551
552 /*
553 * loop_change_fd switched the backing store of a loopback device to
554 * a new file. This is useful for operating system installers to free up
555 * the original file and in High Availability environments to switch to
556 * an alternative location for the content in case of server meltdown.
557 * This can only work if the loop device is used read-only, and if the
558 * new backing store is the same size and type as the old backing store.
559 */
loop_change_fd(struct loop_device * lo,struct block_device * bdev,unsigned int arg)560 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
561 unsigned int arg)
562 {
563 struct file *file = fget(arg);
564 struct file *old_file;
565 int error;
566 bool partscan;
567 bool is_loop;
568
569 if (!file)
570 return -EBADF;
571
572 /* suppress uevents while reconfiguring the device */
573 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1);
574
575 is_loop = is_loop_device(file);
576 error = loop_global_lock_killable(lo, is_loop);
577 if (error)
578 goto out_putf;
579 error = -ENXIO;
580 if (lo->lo_state != Lo_bound)
581 goto out_err;
582
583 /* the loop device has to be read-only */
584 error = -EINVAL;
585 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
586 goto out_err;
587
588 error = loop_validate_file(file, bdev);
589 if (error)
590 goto out_err;
591
592 old_file = lo->lo_backing_file;
593
594 error = -EINVAL;
595
596 /* size of the new backing store needs to be the same */
597 if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
598 goto out_err;
599
600 /* and ... switch */
601 disk_force_media_change(lo->lo_disk);
602 blk_mq_freeze_queue(lo->lo_queue);
603 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
604 lo->lo_backing_file = file;
605 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
606 mapping_set_gfp_mask(file->f_mapping,
607 lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
608 loop_update_dio(lo);
609 blk_mq_unfreeze_queue(lo->lo_queue);
610 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
611 loop_global_unlock(lo, is_loop);
612
613 /*
614 * Flush loop_validate_file() before fput(), for l->lo_backing_file
615 * might be pointing at old_file which might be the last reference.
616 */
617 if (!is_loop) {
618 mutex_lock(&loop_validate_mutex);
619 mutex_unlock(&loop_validate_mutex);
620 }
621 /*
622 * We must drop file reference outside of lo_mutex as dropping
623 * the file ref can take open_mutex which creates circular locking
624 * dependency.
625 */
626 fput(old_file);
627 if (partscan)
628 loop_reread_partitions(lo);
629
630 error = 0;
631 done:
632 /* enable and uncork uevent now that we are done */
633 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0);
634 return error;
635
636 out_err:
637 loop_global_unlock(lo, is_loop);
638 out_putf:
639 fput(file);
640 goto done;
641 }
642
643 /* loop sysfs attributes */
644
loop_attr_show(struct device * dev,char * page,ssize_t (* callback)(struct loop_device *,char *))645 static ssize_t loop_attr_show(struct device *dev, char *page,
646 ssize_t (*callback)(struct loop_device *, char *))
647 {
648 struct gendisk *disk = dev_to_disk(dev);
649 struct loop_device *lo = disk->private_data;
650
651 return callback(lo, page);
652 }
653
654 #define LOOP_ATTR_RO(_name) \
655 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
656 static ssize_t loop_attr_do_show_##_name(struct device *d, \
657 struct device_attribute *attr, char *b) \
658 { \
659 return loop_attr_show(d, b, loop_attr_##_name##_show); \
660 } \
661 static struct device_attribute loop_attr_##_name = \
662 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
663
loop_attr_backing_file_show(struct loop_device * lo,char * buf)664 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
665 {
666 ssize_t ret;
667 char *p = NULL;
668
669 spin_lock_irq(&lo->lo_lock);
670 if (lo->lo_backing_file)
671 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
672 spin_unlock_irq(&lo->lo_lock);
673
674 if (IS_ERR_OR_NULL(p))
675 ret = PTR_ERR(p);
676 else {
677 ret = strlen(p);
678 memmove(buf, p, ret);
679 buf[ret++] = '\n';
680 buf[ret] = 0;
681 }
682
683 return ret;
684 }
685
loop_attr_offset_show(struct loop_device * lo,char * buf)686 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
687 {
688 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_offset);
689 }
690
loop_attr_sizelimit_show(struct loop_device * lo,char * buf)691 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
692 {
693 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
694 }
695
loop_attr_autoclear_show(struct loop_device * lo,char * buf)696 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
697 {
698 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
699
700 return sysfs_emit(buf, "%s\n", autoclear ? "1" : "0");
701 }
702
loop_attr_partscan_show(struct loop_device * lo,char * buf)703 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
704 {
705 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
706
707 return sysfs_emit(buf, "%s\n", partscan ? "1" : "0");
708 }
709
loop_attr_dio_show(struct loop_device * lo,char * buf)710 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
711 {
712 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
713
714 return sysfs_emit(buf, "%s\n", dio ? "1" : "0");
715 }
716
717 LOOP_ATTR_RO(backing_file);
718 LOOP_ATTR_RO(offset);
719 LOOP_ATTR_RO(sizelimit);
720 LOOP_ATTR_RO(autoclear);
721 LOOP_ATTR_RO(partscan);
722 LOOP_ATTR_RO(dio);
723
724 static struct attribute *loop_attrs[] = {
725 &loop_attr_backing_file.attr,
726 &loop_attr_offset.attr,
727 &loop_attr_sizelimit.attr,
728 &loop_attr_autoclear.attr,
729 &loop_attr_partscan.attr,
730 &loop_attr_dio.attr,
731 NULL,
732 };
733
734 static struct attribute_group loop_attribute_group = {
735 .name = "loop",
736 .attrs= loop_attrs,
737 };
738
loop_sysfs_init(struct loop_device * lo)739 static void loop_sysfs_init(struct loop_device *lo)
740 {
741 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
742 &loop_attribute_group);
743 }
744
loop_sysfs_exit(struct loop_device * lo)745 static void loop_sysfs_exit(struct loop_device *lo)
746 {
747 if (lo->sysfs_inited)
748 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
749 &loop_attribute_group);
750 }
751
loop_config_discard(struct loop_device * lo)752 static void loop_config_discard(struct loop_device *lo)
753 {
754 struct file *file = lo->lo_backing_file;
755 struct inode *inode = file->f_mapping->host;
756 struct request_queue *q = lo->lo_queue;
757 u32 granularity, max_discard_sectors;
758
759 /*
760 * If the backing device is a block device, mirror its zeroing
761 * capability. Set the discard sectors to the block device's zeroing
762 * capabilities because loop discards result in blkdev_issue_zeroout(),
763 * not blkdev_issue_discard(). This maintains consistent behavior with
764 * file-backed loop devices: discarded regions read back as zero.
765 */
766 if (S_ISBLK(inode->i_mode)) {
767 struct request_queue *backingq = bdev_get_queue(I_BDEV(inode));
768
769 max_discard_sectors = backingq->limits.max_write_zeroes_sectors;
770 granularity = bdev_discard_granularity(I_BDEV(inode)) ?:
771 queue_physical_block_size(backingq);
772
773 /*
774 * We use punch hole to reclaim the free space used by the
775 * image a.k.a. discard.
776 */
777 } else if (!file->f_op->fallocate) {
778 max_discard_sectors = 0;
779 granularity = 0;
780
781 } else {
782 struct kstatfs sbuf;
783
784 max_discard_sectors = UINT_MAX >> 9;
785 if (!vfs_statfs(&file->f_path, &sbuf))
786 granularity = sbuf.f_bsize;
787 else
788 max_discard_sectors = 0;
789 }
790
791 if (max_discard_sectors) {
792 q->limits.discard_granularity = granularity;
793 blk_queue_max_discard_sectors(q, max_discard_sectors);
794 blk_queue_max_write_zeroes_sectors(q, max_discard_sectors);
795 } else {
796 q->limits.discard_granularity = 0;
797 blk_queue_max_discard_sectors(q, 0);
798 blk_queue_max_write_zeroes_sectors(q, 0);
799 }
800 }
801
802 struct loop_worker {
803 struct rb_node rb_node;
804 struct work_struct work;
805 struct list_head cmd_list;
806 struct list_head idle_list;
807 struct loop_device *lo;
808 struct cgroup_subsys_state *blkcg_css;
809 unsigned long last_ran_at;
810 };
811
812 static void loop_workfn(struct work_struct *work);
813
814 #ifdef CONFIG_BLK_CGROUP
queue_on_root_worker(struct cgroup_subsys_state * css)815 static inline int queue_on_root_worker(struct cgroup_subsys_state *css)
816 {
817 return !css || css == blkcg_root_css;
818 }
819 #else
queue_on_root_worker(struct cgroup_subsys_state * css)820 static inline int queue_on_root_worker(struct cgroup_subsys_state *css)
821 {
822 return !css;
823 }
824 #endif
825
loop_queue_work(struct loop_device * lo,struct loop_cmd * cmd)826 static void loop_queue_work(struct loop_device *lo, struct loop_cmd *cmd)
827 {
828 struct rb_node **node, *parent = NULL;
829 struct loop_worker *cur_worker, *worker = NULL;
830 struct work_struct *work;
831 struct list_head *cmd_list;
832
833 spin_lock_irq(&lo->lo_work_lock);
834
835 if (queue_on_root_worker(cmd->blkcg_css))
836 goto queue_work;
837
838 node = &lo->worker_tree.rb_node;
839
840 while (*node) {
841 parent = *node;
842 cur_worker = container_of(*node, struct loop_worker, rb_node);
843 if (cur_worker->blkcg_css == cmd->blkcg_css) {
844 worker = cur_worker;
845 break;
846 } else if ((long)cur_worker->blkcg_css < (long)cmd->blkcg_css) {
847 node = &(*node)->rb_left;
848 } else {
849 node = &(*node)->rb_right;
850 }
851 }
852 if (worker)
853 goto queue_work;
854
855 worker = kzalloc(sizeof(struct loop_worker), GFP_NOWAIT | __GFP_NOWARN);
856 /*
857 * In the event we cannot allocate a worker, just queue on the
858 * rootcg worker and issue the I/O as the rootcg
859 */
860 if (!worker) {
861 cmd->blkcg_css = NULL;
862 if (cmd->memcg_css)
863 css_put(cmd->memcg_css);
864 cmd->memcg_css = NULL;
865 goto queue_work;
866 }
867
868 worker->blkcg_css = cmd->blkcg_css;
869 css_get(worker->blkcg_css);
870 INIT_WORK(&worker->work, loop_workfn);
871 INIT_LIST_HEAD(&worker->cmd_list);
872 INIT_LIST_HEAD(&worker->idle_list);
873 worker->lo = lo;
874 rb_link_node(&worker->rb_node, parent, node);
875 rb_insert_color(&worker->rb_node, &lo->worker_tree);
876 queue_work:
877 if (worker) {
878 /*
879 * We need to remove from the idle list here while
880 * holding the lock so that the idle timer doesn't
881 * free the worker
882 */
883 if (!list_empty(&worker->idle_list))
884 list_del_init(&worker->idle_list);
885 work = &worker->work;
886 cmd_list = &worker->cmd_list;
887 } else {
888 work = &lo->rootcg_work;
889 cmd_list = &lo->rootcg_cmd_list;
890 }
891 list_add_tail(&cmd->list_entry, cmd_list);
892 queue_work(lo->workqueue, work);
893 spin_unlock_irq(&lo->lo_work_lock);
894 }
895
loop_set_timer(struct loop_device * lo)896 static void loop_set_timer(struct loop_device *lo)
897 {
898 timer_reduce(&lo->timer, jiffies + LOOP_IDLE_WORKER_TIMEOUT);
899 }
900
loop_free_idle_workers(struct loop_device * lo,bool delete_all)901 static void loop_free_idle_workers(struct loop_device *lo, bool delete_all)
902 {
903 struct loop_worker *pos, *worker;
904
905 spin_lock_irq(&lo->lo_work_lock);
906 list_for_each_entry_safe(worker, pos, &lo->idle_worker_list,
907 idle_list) {
908 if (!delete_all &&
909 time_is_after_jiffies(worker->last_ran_at +
910 LOOP_IDLE_WORKER_TIMEOUT))
911 break;
912 list_del(&worker->idle_list);
913 rb_erase(&worker->rb_node, &lo->worker_tree);
914 css_put(worker->blkcg_css);
915 kfree(worker);
916 }
917 if (!list_empty(&lo->idle_worker_list))
918 loop_set_timer(lo);
919 spin_unlock_irq(&lo->lo_work_lock);
920 }
921
loop_free_idle_workers_timer(struct timer_list * timer)922 static void loop_free_idle_workers_timer(struct timer_list *timer)
923 {
924 struct loop_device *lo = container_of(timer, struct loop_device, timer);
925
926 return loop_free_idle_workers(lo, false);
927 }
928
loop_update_rotational(struct loop_device * lo)929 static void loop_update_rotational(struct loop_device *lo)
930 {
931 struct file *file = lo->lo_backing_file;
932 struct inode *file_inode = file->f_mapping->host;
933 struct block_device *file_bdev = file_inode->i_sb->s_bdev;
934 struct request_queue *q = lo->lo_queue;
935 bool nonrot = true;
936
937 /* not all filesystems (e.g. tmpfs) have a sb->s_bdev */
938 if (file_bdev)
939 nonrot = bdev_nonrot(file_bdev);
940
941 if (nonrot)
942 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
943 else
944 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
945 }
946
947 /**
948 * loop_set_status_from_info - configure device from loop_info
949 * @lo: struct loop_device to configure
950 * @info: struct loop_info64 to configure the device with
951 *
952 * Configures the loop device parameters according to the passed
953 * in loop_info64 configuration.
954 */
955 static int
loop_set_status_from_info(struct loop_device * lo,const struct loop_info64 * info)956 loop_set_status_from_info(struct loop_device *lo,
957 const struct loop_info64 *info)
958 {
959 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
960 return -EINVAL;
961
962 switch (info->lo_encrypt_type) {
963 case LO_CRYPT_NONE:
964 break;
965 case LO_CRYPT_XOR:
966 pr_warn("support for the xor transformation has been removed.\n");
967 return -EINVAL;
968 case LO_CRYPT_CRYPTOAPI:
969 pr_warn("support for cryptoloop has been removed. Use dm-crypt instead.\n");
970 return -EINVAL;
971 default:
972 return -EINVAL;
973 }
974
975 /* Avoid assigning overflow values */
976 if (info->lo_offset > LLONG_MAX || info->lo_sizelimit > LLONG_MAX)
977 return -EOVERFLOW;
978
979 lo->lo_offset = info->lo_offset;
980 lo->lo_sizelimit = info->lo_sizelimit;
981
982 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
983 lo->lo_file_name[LO_NAME_SIZE-1] = 0;
984 lo->lo_flags = info->lo_flags;
985 return 0;
986 }
987
loop_configure(struct loop_device * lo,blk_mode_t mode,struct block_device * bdev,const struct loop_config * config)988 static int loop_configure(struct loop_device *lo, blk_mode_t mode,
989 struct block_device *bdev,
990 const struct loop_config *config)
991 {
992 struct file *file = fget(config->fd);
993 struct inode *inode;
994 struct address_space *mapping;
995 int error;
996 loff_t size;
997 bool partscan;
998 unsigned short bsize;
999 bool is_loop;
1000
1001 if (!file)
1002 return -EBADF;
1003 is_loop = is_loop_device(file);
1004
1005 /* This is safe, since we have a reference from open(). */
1006 __module_get(THIS_MODULE);
1007
1008 /*
1009 * If we don't hold exclusive handle for the device, upgrade to it
1010 * here to avoid changing device under exclusive owner.
1011 */
1012 if (!(mode & BLK_OPEN_EXCL)) {
1013 error = bd_prepare_to_claim(bdev, loop_configure, NULL);
1014 if (error)
1015 goto out_putf;
1016 }
1017
1018 error = loop_global_lock_killable(lo, is_loop);
1019 if (error)
1020 goto out_bdev;
1021
1022 error = -EBUSY;
1023 if (lo->lo_state != Lo_unbound)
1024 goto out_unlock;
1025
1026 error = loop_validate_file(file, bdev);
1027 if (error)
1028 goto out_unlock;
1029
1030 mapping = file->f_mapping;
1031 inode = mapping->host;
1032
1033 if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) {
1034 error = -EINVAL;
1035 goto out_unlock;
1036 }
1037
1038 if (config->block_size) {
1039 error = blk_validate_block_size(config->block_size);
1040 if (error)
1041 goto out_unlock;
1042 }
1043
1044 error = loop_set_status_from_info(lo, &config->info);
1045 if (error)
1046 goto out_unlock;
1047
1048 if (!(file->f_mode & FMODE_WRITE) || !(mode & BLK_OPEN_WRITE) ||
1049 !file->f_op->write_iter)
1050 lo->lo_flags |= LO_FLAGS_READ_ONLY;
1051
1052 if (!lo->workqueue) {
1053 lo->workqueue = alloc_workqueue("loop%d",
1054 WQ_UNBOUND | WQ_FREEZABLE,
1055 0, lo->lo_number);
1056 if (!lo->workqueue) {
1057 error = -ENOMEM;
1058 goto out_unlock;
1059 }
1060 }
1061
1062 /* suppress uevents while reconfiguring the device */
1063 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1);
1064
1065 disk_force_media_change(lo->lo_disk);
1066 set_disk_ro(lo->lo_disk, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0);
1067
1068 lo->use_dio = lo->lo_flags & LO_FLAGS_DIRECT_IO;
1069 lo->lo_device = bdev;
1070 lo->lo_backing_file = file;
1071 lo->old_gfp_mask = mapping_gfp_mask(mapping);
1072 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
1073
1074 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
1075 blk_queue_write_cache(lo->lo_queue, true, false);
1076
1077 if (config->block_size)
1078 bsize = config->block_size;
1079 else if ((lo->lo_backing_file->f_flags & O_DIRECT) && inode->i_sb->s_bdev)
1080 /* In case of direct I/O, match underlying block size */
1081 bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
1082 else
1083 bsize = 512;
1084
1085 blk_queue_logical_block_size(lo->lo_queue, bsize);
1086 blk_queue_physical_block_size(lo->lo_queue, bsize);
1087 blk_queue_io_min(lo->lo_queue, bsize);
1088
1089 loop_config_discard(lo);
1090 loop_update_rotational(lo);
1091 loop_update_dio(lo);
1092 loop_sysfs_init(lo);
1093
1094 size = get_loop_size(lo, file);
1095 loop_set_size(lo, size);
1096
1097 /* Order wrt reading lo_state in loop_validate_file(). */
1098 wmb();
1099
1100 lo->lo_state = Lo_bound;
1101 if (part_shift)
1102 lo->lo_flags |= LO_FLAGS_PARTSCAN;
1103 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
1104 if (partscan)
1105 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state);
1106
1107 /* enable and uncork uevent now that we are done */
1108 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0);
1109
1110 loop_global_unlock(lo, is_loop);
1111 if (partscan)
1112 loop_reread_partitions(lo);
1113
1114 if (!(mode & BLK_OPEN_EXCL))
1115 bd_abort_claiming(bdev, loop_configure);
1116
1117 return 0;
1118
1119 out_unlock:
1120 loop_global_unlock(lo, is_loop);
1121 out_bdev:
1122 if (!(mode & BLK_OPEN_EXCL))
1123 bd_abort_claiming(bdev, loop_configure);
1124 out_putf:
1125 fput(file);
1126 /* This is safe: open() is still holding a reference. */
1127 module_put(THIS_MODULE);
1128 return error;
1129 }
1130
__loop_clr_fd(struct loop_device * lo,bool release)1131 static void __loop_clr_fd(struct loop_device *lo, bool release)
1132 {
1133 struct file *filp;
1134 gfp_t gfp = lo->old_gfp_mask;
1135
1136 if (test_bit(QUEUE_FLAG_WC, &lo->lo_queue->queue_flags))
1137 blk_queue_write_cache(lo->lo_queue, false, false);
1138
1139 /*
1140 * Freeze the request queue when unbinding on a live file descriptor and
1141 * thus an open device. When called from ->release we are guaranteed
1142 * that there is no I/O in progress already.
1143 */
1144 if (!release)
1145 blk_mq_freeze_queue(lo->lo_queue);
1146
1147 spin_lock_irq(&lo->lo_lock);
1148 filp = lo->lo_backing_file;
1149 lo->lo_backing_file = NULL;
1150 spin_unlock_irq(&lo->lo_lock);
1151
1152 lo->lo_device = NULL;
1153 lo->lo_offset = 0;
1154 lo->lo_sizelimit = 0;
1155 memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1156 blk_queue_logical_block_size(lo->lo_queue, 512);
1157 blk_queue_physical_block_size(lo->lo_queue, 512);
1158 blk_queue_io_min(lo->lo_queue, 512);
1159 invalidate_disk(lo->lo_disk);
1160 loop_sysfs_exit(lo);
1161 /* let user-space know about this change */
1162 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
1163 mapping_set_gfp_mask(filp->f_mapping, gfp);
1164 /* This is safe: open() is still holding a reference. */
1165 module_put(THIS_MODULE);
1166 if (!release)
1167 blk_mq_unfreeze_queue(lo->lo_queue);
1168
1169 disk_force_media_change(lo->lo_disk);
1170
1171 if (lo->lo_flags & LO_FLAGS_PARTSCAN) {
1172 int err;
1173
1174 /*
1175 * open_mutex has been held already in release path, so don't
1176 * acquire it if this function is called in such case.
1177 *
1178 * If the reread partition isn't from release path, lo_refcnt
1179 * must be at least one and it can only become zero when the
1180 * current holder is released.
1181 */
1182 if (!release)
1183 mutex_lock(&lo->lo_disk->open_mutex);
1184 err = bdev_disk_changed(lo->lo_disk, false);
1185 if (!release)
1186 mutex_unlock(&lo->lo_disk->open_mutex);
1187 if (err)
1188 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n",
1189 __func__, lo->lo_number, err);
1190 /* Device is gone, no point in returning error */
1191 }
1192
1193 /*
1194 * lo->lo_state is set to Lo_unbound here after above partscan has
1195 * finished. There cannot be anybody else entering __loop_clr_fd() as
1196 * Lo_rundown state protects us from all the other places trying to
1197 * change the 'lo' device.
1198 */
1199 lo->lo_flags = 0;
1200 if (!part_shift)
1201 set_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state);
1202 mutex_lock(&lo->lo_mutex);
1203 lo->lo_state = Lo_unbound;
1204 mutex_unlock(&lo->lo_mutex);
1205
1206 /*
1207 * Need not hold lo_mutex to fput backing file. Calling fput holding
1208 * lo_mutex triggers a circular lock dependency possibility warning as
1209 * fput can take open_mutex which is usually taken before lo_mutex.
1210 */
1211 fput(filp);
1212 }
1213
loop_clr_fd(struct loop_device * lo)1214 static int loop_clr_fd(struct loop_device *lo)
1215 {
1216 int err;
1217
1218 /*
1219 * Since lo_ioctl() is called without locks held, it is possible that
1220 * loop_configure()/loop_change_fd() and loop_clr_fd() run in parallel.
1221 *
1222 * Therefore, use global lock when setting Lo_rundown state in order to
1223 * make sure that loop_validate_file() will fail if the "struct file"
1224 * which loop_configure()/loop_change_fd() found via fget() was this
1225 * loop device.
1226 */
1227 err = loop_global_lock_killable(lo, true);
1228 if (err)
1229 return err;
1230 if (lo->lo_state != Lo_bound) {
1231 loop_global_unlock(lo, true);
1232 return -ENXIO;
1233 }
1234 /*
1235 * If we've explicitly asked to tear down the loop device,
1236 * and it has an elevated reference count, set it for auto-teardown when
1237 * the last reference goes away. This stops $!~#$@ udev from
1238 * preventing teardown because it decided that it needs to run blkid on
1239 * the loopback device whenever they appear. xfstests is notorious for
1240 * failing tests because blkid via udev races with a losetup
1241 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1242 * command to fail with EBUSY.
1243 */
1244 if (disk_openers(lo->lo_disk) > 1) {
1245 lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1246 loop_global_unlock(lo, true);
1247 return 0;
1248 }
1249 lo->lo_state = Lo_rundown;
1250 loop_global_unlock(lo, true);
1251
1252 __loop_clr_fd(lo, false);
1253 return 0;
1254 }
1255
1256 static int
loop_set_status(struct loop_device * lo,const struct loop_info64 * info)1257 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1258 {
1259 int err;
1260 int prev_lo_flags;
1261 bool partscan = false;
1262 bool size_changed = false;
1263
1264 err = mutex_lock_killable(&lo->lo_mutex);
1265 if (err)
1266 return err;
1267 if (lo->lo_state != Lo_bound) {
1268 err = -ENXIO;
1269 goto out_unlock;
1270 }
1271
1272 if (lo->lo_offset != info->lo_offset ||
1273 lo->lo_sizelimit != info->lo_sizelimit) {
1274 size_changed = true;
1275 sync_blockdev(lo->lo_device);
1276 invalidate_bdev(lo->lo_device);
1277 }
1278
1279 /* I/O need to be drained during transfer transition */
1280 blk_mq_freeze_queue(lo->lo_queue);
1281
1282 prev_lo_flags = lo->lo_flags;
1283
1284 err = loop_set_status_from_info(lo, info);
1285 if (err)
1286 goto out_unfreeze;
1287
1288 /* Mask out flags that can't be set using LOOP_SET_STATUS. */
1289 lo->lo_flags &= LOOP_SET_STATUS_SETTABLE_FLAGS;
1290 /* For those flags, use the previous values instead */
1291 lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_SETTABLE_FLAGS;
1292 /* For flags that can't be cleared, use previous values too */
1293 lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_CLEARABLE_FLAGS;
1294
1295 if (size_changed) {
1296 loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit,
1297 lo->lo_backing_file);
1298 loop_set_size(lo, new_size);
1299 }
1300
1301 loop_config_discard(lo);
1302
1303 /* update dio if lo_offset or transfer is changed */
1304 __loop_update_dio(lo, lo->use_dio);
1305
1306 out_unfreeze:
1307 blk_mq_unfreeze_queue(lo->lo_queue);
1308
1309 if (!err && (lo->lo_flags & LO_FLAGS_PARTSCAN) &&
1310 !(prev_lo_flags & LO_FLAGS_PARTSCAN)) {
1311 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state);
1312 partscan = true;
1313 }
1314 out_unlock:
1315 mutex_unlock(&lo->lo_mutex);
1316 if (partscan)
1317 loop_reread_partitions(lo);
1318
1319 return err;
1320 }
1321
1322 static int
loop_get_status(struct loop_device * lo,struct loop_info64 * info)1323 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1324 {
1325 struct path path;
1326 struct kstat stat;
1327 int ret;
1328
1329 ret = mutex_lock_killable(&lo->lo_mutex);
1330 if (ret)
1331 return ret;
1332 if (lo->lo_state != Lo_bound) {
1333 mutex_unlock(&lo->lo_mutex);
1334 return -ENXIO;
1335 }
1336
1337 memset(info, 0, sizeof(*info));
1338 info->lo_number = lo->lo_number;
1339 info->lo_offset = lo->lo_offset;
1340 info->lo_sizelimit = lo->lo_sizelimit;
1341 info->lo_flags = lo->lo_flags;
1342 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1343
1344 /* Drop lo_mutex while we call into the filesystem. */
1345 path = lo->lo_backing_file->f_path;
1346 path_get(&path);
1347 mutex_unlock(&lo->lo_mutex);
1348 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT);
1349 if (!ret) {
1350 info->lo_device = huge_encode_dev(stat.dev);
1351 info->lo_inode = stat.ino;
1352 info->lo_rdevice = huge_encode_dev(stat.rdev);
1353 }
1354 path_put(&path);
1355 return ret;
1356 }
1357
1358 static void
loop_info64_from_old(const struct loop_info * info,struct loop_info64 * info64)1359 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1360 {
1361 memset(info64, 0, sizeof(*info64));
1362 info64->lo_number = info->lo_number;
1363 info64->lo_device = info->lo_device;
1364 info64->lo_inode = info->lo_inode;
1365 info64->lo_rdevice = info->lo_rdevice;
1366 info64->lo_offset = info->lo_offset;
1367 info64->lo_sizelimit = 0;
1368 info64->lo_flags = info->lo_flags;
1369 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1370 }
1371
1372 static int
loop_info64_to_old(const struct loop_info64 * info64,struct loop_info * info)1373 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1374 {
1375 memset(info, 0, sizeof(*info));
1376 info->lo_number = info64->lo_number;
1377 info->lo_device = info64->lo_device;
1378 info->lo_inode = info64->lo_inode;
1379 info->lo_rdevice = info64->lo_rdevice;
1380 info->lo_offset = info64->lo_offset;
1381 info->lo_flags = info64->lo_flags;
1382 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1383
1384 /* error in case values were truncated */
1385 if (info->lo_device != info64->lo_device ||
1386 info->lo_rdevice != info64->lo_rdevice ||
1387 info->lo_inode != info64->lo_inode ||
1388 info->lo_offset != info64->lo_offset)
1389 return -EOVERFLOW;
1390
1391 return 0;
1392 }
1393
1394 static int
loop_set_status_old(struct loop_device * lo,const struct loop_info __user * arg)1395 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1396 {
1397 struct loop_info info;
1398 struct loop_info64 info64;
1399
1400 if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1401 return -EFAULT;
1402 loop_info64_from_old(&info, &info64);
1403 return loop_set_status(lo, &info64);
1404 }
1405
1406 static int
loop_set_status64(struct loop_device * lo,const struct loop_info64 __user * arg)1407 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1408 {
1409 struct loop_info64 info64;
1410
1411 if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1412 return -EFAULT;
1413 return loop_set_status(lo, &info64);
1414 }
1415
1416 static int
loop_get_status_old(struct loop_device * lo,struct loop_info __user * arg)1417 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1418 struct loop_info info;
1419 struct loop_info64 info64;
1420 int err;
1421
1422 if (!arg)
1423 return -EINVAL;
1424 err = loop_get_status(lo, &info64);
1425 if (!err)
1426 err = loop_info64_to_old(&info64, &info);
1427 if (!err && copy_to_user(arg, &info, sizeof(info)))
1428 err = -EFAULT;
1429
1430 return err;
1431 }
1432
1433 static int
loop_get_status64(struct loop_device * lo,struct loop_info64 __user * arg)1434 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1435 struct loop_info64 info64;
1436 int err;
1437
1438 if (!arg)
1439 return -EINVAL;
1440 err = loop_get_status(lo, &info64);
1441 if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1442 err = -EFAULT;
1443
1444 return err;
1445 }
1446
loop_set_capacity(struct loop_device * lo)1447 static int loop_set_capacity(struct loop_device *lo)
1448 {
1449 loff_t size;
1450
1451 if (unlikely(lo->lo_state != Lo_bound))
1452 return -ENXIO;
1453
1454 size = get_loop_size(lo, lo->lo_backing_file);
1455 loop_set_size(lo, size);
1456
1457 return 0;
1458 }
1459
loop_set_dio(struct loop_device * lo,unsigned long arg)1460 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1461 {
1462 int error = -ENXIO;
1463 if (lo->lo_state != Lo_bound)
1464 goto out;
1465
1466 __loop_update_dio(lo, !!arg);
1467 if (lo->use_dio == !!arg)
1468 return 0;
1469 error = -EINVAL;
1470 out:
1471 return error;
1472 }
1473
loop_set_block_size(struct loop_device * lo,unsigned long arg)1474 static int loop_set_block_size(struct loop_device *lo, unsigned long arg)
1475 {
1476 int err = 0;
1477
1478 if (lo->lo_state != Lo_bound)
1479 return -ENXIO;
1480
1481 err = blk_validate_block_size(arg);
1482 if (err)
1483 return err;
1484
1485 if (lo->lo_queue->limits.logical_block_size == arg)
1486 return 0;
1487
1488 sync_blockdev(lo->lo_device);
1489 invalidate_bdev(lo->lo_device);
1490
1491 blk_mq_freeze_queue(lo->lo_queue);
1492 blk_queue_logical_block_size(lo->lo_queue, arg);
1493 blk_queue_physical_block_size(lo->lo_queue, arg);
1494 blk_queue_io_min(lo->lo_queue, arg);
1495 loop_update_dio(lo);
1496 blk_mq_unfreeze_queue(lo->lo_queue);
1497
1498 return err;
1499 }
1500
lo_simple_ioctl(struct loop_device * lo,unsigned int cmd,unsigned long arg)1501 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd,
1502 unsigned long arg)
1503 {
1504 int err;
1505
1506 err = mutex_lock_killable(&lo->lo_mutex);
1507 if (err)
1508 return err;
1509 switch (cmd) {
1510 case LOOP_SET_CAPACITY:
1511 err = loop_set_capacity(lo);
1512 break;
1513 case LOOP_SET_DIRECT_IO:
1514 err = loop_set_dio(lo, arg);
1515 break;
1516 case LOOP_SET_BLOCK_SIZE:
1517 err = loop_set_block_size(lo, arg);
1518 break;
1519 default:
1520 err = -EINVAL;
1521 }
1522 mutex_unlock(&lo->lo_mutex);
1523 return err;
1524 }
1525
lo_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)1526 static int lo_ioctl(struct block_device *bdev, blk_mode_t mode,
1527 unsigned int cmd, unsigned long arg)
1528 {
1529 struct loop_device *lo = bdev->bd_disk->private_data;
1530 void __user *argp = (void __user *) arg;
1531 int err;
1532
1533 switch (cmd) {
1534 case LOOP_SET_FD: {
1535 /*
1536 * Legacy case - pass in a zeroed out struct loop_config with
1537 * only the file descriptor set , which corresponds with the
1538 * default parameters we'd have used otherwise.
1539 */
1540 struct loop_config config;
1541
1542 memset(&config, 0, sizeof(config));
1543 config.fd = arg;
1544
1545 return loop_configure(lo, mode, bdev, &config);
1546 }
1547 case LOOP_CONFIGURE: {
1548 struct loop_config config;
1549
1550 if (copy_from_user(&config, argp, sizeof(config)))
1551 return -EFAULT;
1552
1553 return loop_configure(lo, mode, bdev, &config);
1554 }
1555 case LOOP_CHANGE_FD:
1556 return loop_change_fd(lo, bdev, arg);
1557 case LOOP_CLR_FD:
1558 return loop_clr_fd(lo);
1559 case LOOP_SET_STATUS:
1560 err = -EPERM;
1561 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN))
1562 err = loop_set_status_old(lo, argp);
1563 break;
1564 case LOOP_GET_STATUS:
1565 return loop_get_status_old(lo, argp);
1566 case LOOP_SET_STATUS64:
1567 err = -EPERM;
1568 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN))
1569 err = loop_set_status64(lo, argp);
1570 break;
1571 case LOOP_GET_STATUS64:
1572 return loop_get_status64(lo, argp);
1573 case LOOP_SET_CAPACITY:
1574 case LOOP_SET_DIRECT_IO:
1575 case LOOP_SET_BLOCK_SIZE:
1576 if (!(mode & BLK_OPEN_WRITE) && !capable(CAP_SYS_ADMIN))
1577 return -EPERM;
1578 fallthrough;
1579 default:
1580 err = lo_simple_ioctl(lo, cmd, arg);
1581 break;
1582 }
1583
1584 return err;
1585 }
1586
1587 #ifdef CONFIG_COMPAT
1588 struct compat_loop_info {
1589 compat_int_t lo_number; /* ioctl r/o */
1590 compat_dev_t lo_device; /* ioctl r/o */
1591 compat_ulong_t lo_inode; /* ioctl r/o */
1592 compat_dev_t lo_rdevice; /* ioctl r/o */
1593 compat_int_t lo_offset;
1594 compat_int_t lo_encrypt_type; /* obsolete, ignored */
1595 compat_int_t lo_encrypt_key_size; /* ioctl w/o */
1596 compat_int_t lo_flags; /* ioctl r/o */
1597 char lo_name[LO_NAME_SIZE];
1598 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1599 compat_ulong_t lo_init[2];
1600 char reserved[4];
1601 };
1602
1603 /*
1604 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1605 * - noinlined to reduce stack space usage in main part of driver
1606 */
1607 static noinline int
loop_info64_from_compat(const struct compat_loop_info __user * arg,struct loop_info64 * info64)1608 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1609 struct loop_info64 *info64)
1610 {
1611 struct compat_loop_info info;
1612
1613 if (copy_from_user(&info, arg, sizeof(info)))
1614 return -EFAULT;
1615
1616 memset(info64, 0, sizeof(*info64));
1617 info64->lo_number = info.lo_number;
1618 info64->lo_device = info.lo_device;
1619 info64->lo_inode = info.lo_inode;
1620 info64->lo_rdevice = info.lo_rdevice;
1621 info64->lo_offset = info.lo_offset;
1622 info64->lo_sizelimit = 0;
1623 info64->lo_flags = info.lo_flags;
1624 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1625 return 0;
1626 }
1627
1628 /*
1629 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1630 * - noinlined to reduce stack space usage in main part of driver
1631 */
1632 static noinline int
loop_info64_to_compat(const struct loop_info64 * info64,struct compat_loop_info __user * arg)1633 loop_info64_to_compat(const struct loop_info64 *info64,
1634 struct compat_loop_info __user *arg)
1635 {
1636 struct compat_loop_info info;
1637
1638 memset(&info, 0, sizeof(info));
1639 info.lo_number = info64->lo_number;
1640 info.lo_device = info64->lo_device;
1641 info.lo_inode = info64->lo_inode;
1642 info.lo_rdevice = info64->lo_rdevice;
1643 info.lo_offset = info64->lo_offset;
1644 info.lo_flags = info64->lo_flags;
1645 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1646
1647 /* error in case values were truncated */
1648 if (info.lo_device != info64->lo_device ||
1649 info.lo_rdevice != info64->lo_rdevice ||
1650 info.lo_inode != info64->lo_inode ||
1651 info.lo_offset != info64->lo_offset)
1652 return -EOVERFLOW;
1653
1654 if (copy_to_user(arg, &info, sizeof(info)))
1655 return -EFAULT;
1656 return 0;
1657 }
1658
1659 static int
loop_set_status_compat(struct loop_device * lo,const struct compat_loop_info __user * arg)1660 loop_set_status_compat(struct loop_device *lo,
1661 const struct compat_loop_info __user *arg)
1662 {
1663 struct loop_info64 info64;
1664 int ret;
1665
1666 ret = loop_info64_from_compat(arg, &info64);
1667 if (ret < 0)
1668 return ret;
1669 return loop_set_status(lo, &info64);
1670 }
1671
1672 static int
loop_get_status_compat(struct loop_device * lo,struct compat_loop_info __user * arg)1673 loop_get_status_compat(struct loop_device *lo,
1674 struct compat_loop_info __user *arg)
1675 {
1676 struct loop_info64 info64;
1677 int err;
1678
1679 if (!arg)
1680 return -EINVAL;
1681 err = loop_get_status(lo, &info64);
1682 if (!err)
1683 err = loop_info64_to_compat(&info64, arg);
1684 return err;
1685 }
1686
lo_compat_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)1687 static int lo_compat_ioctl(struct block_device *bdev, blk_mode_t mode,
1688 unsigned int cmd, unsigned long arg)
1689 {
1690 struct loop_device *lo = bdev->bd_disk->private_data;
1691 int err;
1692
1693 switch(cmd) {
1694 case LOOP_SET_STATUS:
1695 err = loop_set_status_compat(lo,
1696 (const struct compat_loop_info __user *)arg);
1697 break;
1698 case LOOP_GET_STATUS:
1699 err = loop_get_status_compat(lo,
1700 (struct compat_loop_info __user *)arg);
1701 break;
1702 case LOOP_SET_CAPACITY:
1703 case LOOP_CLR_FD:
1704 case LOOP_GET_STATUS64:
1705 case LOOP_SET_STATUS64:
1706 case LOOP_CONFIGURE:
1707 arg = (unsigned long) compat_ptr(arg);
1708 fallthrough;
1709 case LOOP_SET_FD:
1710 case LOOP_CHANGE_FD:
1711 case LOOP_SET_BLOCK_SIZE:
1712 case LOOP_SET_DIRECT_IO:
1713 err = lo_ioctl(bdev, mode, cmd, arg);
1714 break;
1715 default:
1716 err = -ENOIOCTLCMD;
1717 break;
1718 }
1719 return err;
1720 }
1721 #endif
1722
lo_release(struct gendisk * disk)1723 static void lo_release(struct gendisk *disk)
1724 {
1725 struct loop_device *lo = disk->private_data;
1726
1727 if (disk_openers(disk) > 0)
1728 return;
1729
1730 mutex_lock(&lo->lo_mutex);
1731 if (lo->lo_state == Lo_bound && (lo->lo_flags & LO_FLAGS_AUTOCLEAR)) {
1732 lo->lo_state = Lo_rundown;
1733 mutex_unlock(&lo->lo_mutex);
1734 /*
1735 * In autoclear mode, stop the loop thread
1736 * and remove configuration after last close.
1737 */
1738 __loop_clr_fd(lo, true);
1739 return;
1740 }
1741 mutex_unlock(&lo->lo_mutex);
1742 }
1743
lo_free_disk(struct gendisk * disk)1744 static void lo_free_disk(struct gendisk *disk)
1745 {
1746 struct loop_device *lo = disk->private_data;
1747
1748 if (lo->workqueue)
1749 destroy_workqueue(lo->workqueue);
1750 loop_free_idle_workers(lo, true);
1751 timer_shutdown_sync(&lo->timer);
1752 mutex_destroy(&lo->lo_mutex);
1753 kfree(lo);
1754 }
1755
1756 static const struct block_device_operations lo_fops = {
1757 .owner = THIS_MODULE,
1758 .release = lo_release,
1759 .ioctl = lo_ioctl,
1760 #ifdef CONFIG_COMPAT
1761 .compat_ioctl = lo_compat_ioctl,
1762 #endif
1763 .free_disk = lo_free_disk,
1764 };
1765
1766 /*
1767 * And now the modules code and kernel interface.
1768 */
1769
1770 /*
1771 * If max_loop is specified, create that many devices upfront.
1772 * This also becomes a hard limit. If max_loop is not specified,
1773 * the default isn't a hard limit (as before commit 85c50197716c
1774 * changed the default value from 0 for max_loop=0 reasons), just
1775 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1776 * init time. Loop devices can be requested on-demand with the
1777 * /dev/loop-control interface, or be instantiated by accessing
1778 * a 'dead' device node.
1779 */
1780 static int max_loop = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
1781
1782 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD
1783 static bool max_loop_specified;
1784
max_loop_param_set_int(const char * val,const struct kernel_param * kp)1785 static int max_loop_param_set_int(const char *val,
1786 const struct kernel_param *kp)
1787 {
1788 int ret;
1789
1790 ret = param_set_int(val, kp);
1791 if (ret < 0)
1792 return ret;
1793
1794 max_loop_specified = true;
1795 return 0;
1796 }
1797
1798 static const struct kernel_param_ops max_loop_param_ops = {
1799 .set = max_loop_param_set_int,
1800 .get = param_get_int,
1801 };
1802
1803 module_param_cb(max_loop, &max_loop_param_ops, &max_loop, 0444);
1804 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1805 #else
1806 module_param(max_loop, int, 0444);
1807 MODULE_PARM_DESC(max_loop, "Initial number of loop devices");
1808 #endif
1809
1810 module_param(max_part, int, 0444);
1811 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1812
1813 static int hw_queue_depth = LOOP_DEFAULT_HW_Q_DEPTH;
1814
loop_set_hw_queue_depth(const char * s,const struct kernel_param * p)1815 static int loop_set_hw_queue_depth(const char *s, const struct kernel_param *p)
1816 {
1817 int qd, ret;
1818
1819 ret = kstrtoint(s, 0, &qd);
1820 if (ret < 0)
1821 return ret;
1822 if (qd < 1)
1823 return -EINVAL;
1824 hw_queue_depth = qd;
1825 return 0;
1826 }
1827
1828 static const struct kernel_param_ops loop_hw_qdepth_param_ops = {
1829 .set = loop_set_hw_queue_depth,
1830 .get = param_get_int,
1831 };
1832
1833 device_param_cb(hw_queue_depth, &loop_hw_qdepth_param_ops, &hw_queue_depth, 0444);
1834 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: " __stringify(LOOP_DEFAULT_HW_Q_DEPTH));
1835
1836 MODULE_LICENSE("GPL");
1837 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1838
loop_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1839 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1840 const struct blk_mq_queue_data *bd)
1841 {
1842 struct request *rq = bd->rq;
1843 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1844 struct loop_device *lo = rq->q->queuedata;
1845
1846 blk_mq_start_request(rq);
1847
1848 if (lo->lo_state != Lo_bound)
1849 return BLK_STS_IOERR;
1850
1851 switch (req_op(rq)) {
1852 case REQ_OP_FLUSH:
1853 case REQ_OP_DISCARD:
1854 case REQ_OP_WRITE_ZEROES:
1855 cmd->use_aio = false;
1856 break;
1857 default:
1858 cmd->use_aio = lo->use_dio;
1859 break;
1860 }
1861
1862 /* always use the first bio's css */
1863 cmd->blkcg_css = NULL;
1864 cmd->memcg_css = NULL;
1865 #ifdef CONFIG_BLK_CGROUP
1866 if (rq->bio) {
1867 cmd->blkcg_css = bio_blkcg_css(rq->bio);
1868 #ifdef CONFIG_MEMCG
1869 if (cmd->blkcg_css) {
1870 cmd->memcg_css =
1871 cgroup_get_e_css(cmd->blkcg_css->cgroup,
1872 &memory_cgrp_subsys);
1873 }
1874 #endif
1875 }
1876 #endif
1877 loop_queue_work(lo, cmd);
1878
1879 return BLK_STS_OK;
1880 }
1881
loop_handle_cmd(struct loop_cmd * cmd)1882 static void loop_handle_cmd(struct loop_cmd *cmd)
1883 {
1884 struct cgroup_subsys_state *cmd_blkcg_css = cmd->blkcg_css;
1885 struct cgroup_subsys_state *cmd_memcg_css = cmd->memcg_css;
1886 struct request *rq = blk_mq_rq_from_pdu(cmd);
1887 const bool write = op_is_write(req_op(rq));
1888 struct loop_device *lo = rq->q->queuedata;
1889 int ret = 0;
1890 struct mem_cgroup *old_memcg = NULL;
1891 const bool use_aio = cmd->use_aio;
1892
1893 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
1894 ret = -EIO;
1895 goto failed;
1896 }
1897
1898 if (cmd_blkcg_css)
1899 kthread_associate_blkcg(cmd_blkcg_css);
1900 if (cmd_memcg_css)
1901 old_memcg = set_active_memcg(
1902 mem_cgroup_from_css(cmd_memcg_css));
1903
1904 /*
1905 * do_req_filebacked() may call blk_mq_complete_request() synchronously
1906 * or asynchronously if using aio. Hence, do not touch 'cmd' after
1907 * do_req_filebacked() has returned unless we are sure that 'cmd' has
1908 * not yet been completed.
1909 */
1910 ret = do_req_filebacked(lo, rq);
1911
1912 if (cmd_blkcg_css)
1913 kthread_associate_blkcg(NULL);
1914
1915 if (cmd_memcg_css) {
1916 set_active_memcg(old_memcg);
1917 css_put(cmd_memcg_css);
1918 }
1919 failed:
1920 /* complete non-aio request */
1921 if (!use_aio || ret) {
1922 if (ret == -EOPNOTSUPP)
1923 cmd->ret = ret;
1924 else
1925 cmd->ret = ret ? -EIO : 0;
1926 if (likely(!blk_should_fake_timeout(rq->q)))
1927 blk_mq_complete_request(rq);
1928 }
1929 }
1930
loop_process_work(struct loop_worker * worker,struct list_head * cmd_list,struct loop_device * lo)1931 static void loop_process_work(struct loop_worker *worker,
1932 struct list_head *cmd_list, struct loop_device *lo)
1933 {
1934 int orig_flags = current->flags;
1935 struct loop_cmd *cmd;
1936
1937 current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO;
1938 spin_lock_irq(&lo->lo_work_lock);
1939 while (!list_empty(cmd_list)) {
1940 cmd = container_of(
1941 cmd_list->next, struct loop_cmd, list_entry);
1942 list_del(cmd_list->next);
1943 spin_unlock_irq(&lo->lo_work_lock);
1944
1945 loop_handle_cmd(cmd);
1946 cond_resched();
1947
1948 spin_lock_irq(&lo->lo_work_lock);
1949 }
1950
1951 /*
1952 * We only add to the idle list if there are no pending cmds
1953 * *and* the worker will not run again which ensures that it
1954 * is safe to free any worker on the idle list
1955 */
1956 if (worker && !work_pending(&worker->work)) {
1957 worker->last_ran_at = jiffies;
1958 list_add_tail(&worker->idle_list, &lo->idle_worker_list);
1959 loop_set_timer(lo);
1960 }
1961 spin_unlock_irq(&lo->lo_work_lock);
1962 current->flags = orig_flags;
1963 }
1964
loop_workfn(struct work_struct * work)1965 static void loop_workfn(struct work_struct *work)
1966 {
1967 struct loop_worker *worker =
1968 container_of(work, struct loop_worker, work);
1969 loop_process_work(worker, &worker->cmd_list, worker->lo);
1970 }
1971
loop_rootcg_workfn(struct work_struct * work)1972 static void loop_rootcg_workfn(struct work_struct *work)
1973 {
1974 struct loop_device *lo =
1975 container_of(work, struct loop_device, rootcg_work);
1976 loop_process_work(NULL, &lo->rootcg_cmd_list, lo);
1977 }
1978
1979 static const struct blk_mq_ops loop_mq_ops = {
1980 .queue_rq = loop_queue_rq,
1981 .complete = lo_complete_rq,
1982 };
1983
loop_add(int i)1984 static int loop_add(int i)
1985 {
1986 struct loop_device *lo;
1987 struct gendisk *disk;
1988 int err;
1989
1990 err = -ENOMEM;
1991 lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1992 if (!lo)
1993 goto out;
1994 lo->worker_tree = RB_ROOT;
1995 INIT_LIST_HEAD(&lo->idle_worker_list);
1996 timer_setup(&lo->timer, loop_free_idle_workers_timer, TIMER_DEFERRABLE);
1997 lo->lo_state = Lo_unbound;
1998
1999 err = mutex_lock_killable(&loop_ctl_mutex);
2000 if (err)
2001 goto out_free_dev;
2002
2003 /* allocate id, if @id >= 0, we're requesting that specific id */
2004 if (i >= 0) {
2005 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
2006 if (err == -ENOSPC)
2007 err = -EEXIST;
2008 } else {
2009 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
2010 }
2011 mutex_unlock(&loop_ctl_mutex);
2012 if (err < 0)
2013 goto out_free_dev;
2014 i = err;
2015
2016 lo->tag_set.ops = &loop_mq_ops;
2017 lo->tag_set.nr_hw_queues = 1;
2018 lo->tag_set.queue_depth = hw_queue_depth;
2019 lo->tag_set.numa_node = NUMA_NO_NODE;
2020 lo->tag_set.cmd_size = sizeof(struct loop_cmd);
2021 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_STACKING |
2022 BLK_MQ_F_NO_SCHED_BY_DEFAULT;
2023 lo->tag_set.driver_data = lo;
2024
2025 err = blk_mq_alloc_tag_set(&lo->tag_set);
2026 if (err)
2027 goto out_free_idr;
2028
2029 disk = lo->lo_disk = blk_mq_alloc_disk(&lo->tag_set, lo);
2030 if (IS_ERR(disk)) {
2031 err = PTR_ERR(disk);
2032 goto out_cleanup_tags;
2033 }
2034 lo->lo_queue = lo->lo_disk->queue;
2035
2036 blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS);
2037
2038 /*
2039 * Disable partition scanning by default. The in-kernel partition
2040 * scanning can be requested individually per-device during its
2041 * setup. Userspace can always add and remove partitions from all
2042 * devices. The needed partition minors are allocated from the
2043 * extended minor space, the main loop device numbers will continue
2044 * to match the loop minors, regardless of the number of partitions
2045 * used.
2046 *
2047 * If max_part is given, partition scanning is globally enabled for
2048 * all loop devices. The minors for the main loop devices will be
2049 * multiples of max_part.
2050 *
2051 * Note: Global-for-all-devices, set-only-at-init, read-only module
2052 * parameteters like 'max_loop' and 'max_part' make things needlessly
2053 * complicated, are too static, inflexible and may surprise
2054 * userspace tools. Parameters like this in general should be avoided.
2055 */
2056 if (!part_shift)
2057 set_bit(GD_SUPPRESS_PART_SCAN, &disk->state);
2058 mutex_init(&lo->lo_mutex);
2059 lo->lo_number = i;
2060 spin_lock_init(&lo->lo_lock);
2061 spin_lock_init(&lo->lo_work_lock);
2062 INIT_WORK(&lo->rootcg_work, loop_rootcg_workfn);
2063 INIT_LIST_HEAD(&lo->rootcg_cmd_list);
2064 disk->major = LOOP_MAJOR;
2065 disk->first_minor = i << part_shift;
2066 disk->minors = 1 << part_shift;
2067 disk->fops = &lo_fops;
2068 disk->private_data = lo;
2069 disk->queue = lo->lo_queue;
2070 disk->events = DISK_EVENT_MEDIA_CHANGE;
2071 disk->event_flags = DISK_EVENT_FLAG_UEVENT;
2072 sprintf(disk->disk_name, "loop%d", i);
2073 /* Make this loop device reachable from pathname. */
2074 err = add_disk(disk);
2075 if (err)
2076 goto out_cleanup_disk;
2077
2078 /* Show this loop device. */
2079 mutex_lock(&loop_ctl_mutex);
2080 lo->idr_visible = true;
2081 mutex_unlock(&loop_ctl_mutex);
2082
2083 return i;
2084
2085 out_cleanup_disk:
2086 put_disk(disk);
2087 out_cleanup_tags:
2088 blk_mq_free_tag_set(&lo->tag_set);
2089 out_free_idr:
2090 mutex_lock(&loop_ctl_mutex);
2091 idr_remove(&loop_index_idr, i);
2092 mutex_unlock(&loop_ctl_mutex);
2093 out_free_dev:
2094 kfree(lo);
2095 out:
2096 return err;
2097 }
2098
loop_remove(struct loop_device * lo)2099 static void loop_remove(struct loop_device *lo)
2100 {
2101 /* Make this loop device unreachable from pathname. */
2102 del_gendisk(lo->lo_disk);
2103 blk_mq_free_tag_set(&lo->tag_set);
2104
2105 mutex_lock(&loop_ctl_mutex);
2106 idr_remove(&loop_index_idr, lo->lo_number);
2107 mutex_unlock(&loop_ctl_mutex);
2108
2109 put_disk(lo->lo_disk);
2110 }
2111
2112 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD
loop_probe(dev_t dev)2113 static void loop_probe(dev_t dev)
2114 {
2115 int idx = MINOR(dev) >> part_shift;
2116
2117 if (max_loop_specified && max_loop && idx >= max_loop)
2118 return;
2119 loop_add(idx);
2120 }
2121 #else
2122 #define loop_probe NULL
2123 #endif /* !CONFIG_BLOCK_LEGACY_AUTOLOAD */
2124
loop_control_remove(int idx)2125 static int loop_control_remove(int idx)
2126 {
2127 struct loop_device *lo;
2128 int ret;
2129
2130 if (idx < 0) {
2131 pr_warn_once("deleting an unspecified loop device is not supported.\n");
2132 return -EINVAL;
2133 }
2134
2135 /* Hide this loop device for serialization. */
2136 ret = mutex_lock_killable(&loop_ctl_mutex);
2137 if (ret)
2138 return ret;
2139 lo = idr_find(&loop_index_idr, idx);
2140 if (!lo || !lo->idr_visible)
2141 ret = -ENODEV;
2142 else
2143 lo->idr_visible = false;
2144 mutex_unlock(&loop_ctl_mutex);
2145 if (ret)
2146 return ret;
2147
2148 /* Check whether this loop device can be removed. */
2149 ret = mutex_lock_killable(&lo->lo_mutex);
2150 if (ret)
2151 goto mark_visible;
2152 if (lo->lo_state != Lo_unbound || disk_openers(lo->lo_disk) > 0) {
2153 mutex_unlock(&lo->lo_mutex);
2154 ret = -EBUSY;
2155 goto mark_visible;
2156 }
2157 /* Mark this loop device as no more bound, but not quite unbound yet */
2158 lo->lo_state = Lo_deleting;
2159 mutex_unlock(&lo->lo_mutex);
2160
2161 loop_remove(lo);
2162 return 0;
2163
2164 mark_visible:
2165 /* Show this loop device again. */
2166 mutex_lock(&loop_ctl_mutex);
2167 lo->idr_visible = true;
2168 mutex_unlock(&loop_ctl_mutex);
2169 return ret;
2170 }
2171
loop_control_get_free(int idx)2172 static int loop_control_get_free(int idx)
2173 {
2174 struct loop_device *lo;
2175 int id, ret;
2176
2177 ret = mutex_lock_killable(&loop_ctl_mutex);
2178 if (ret)
2179 return ret;
2180 idr_for_each_entry(&loop_index_idr, lo, id) {
2181 /* Hitting a race results in creating a new loop device which is harmless. */
2182 if (lo->idr_visible && data_race(lo->lo_state) == Lo_unbound)
2183 goto found;
2184 }
2185 mutex_unlock(&loop_ctl_mutex);
2186 return loop_add(-1);
2187 found:
2188 mutex_unlock(&loop_ctl_mutex);
2189 return id;
2190 }
2191
loop_control_ioctl(struct file * file,unsigned int cmd,unsigned long parm)2192 static long loop_control_ioctl(struct file *file, unsigned int cmd,
2193 unsigned long parm)
2194 {
2195 switch (cmd) {
2196 case LOOP_CTL_ADD:
2197 return loop_add(parm);
2198 case LOOP_CTL_REMOVE:
2199 return loop_control_remove(parm);
2200 case LOOP_CTL_GET_FREE:
2201 return loop_control_get_free(parm);
2202 default:
2203 return -ENOSYS;
2204 }
2205 }
2206
2207 static const struct file_operations loop_ctl_fops = {
2208 .open = nonseekable_open,
2209 .unlocked_ioctl = loop_control_ioctl,
2210 .compat_ioctl = loop_control_ioctl,
2211 .owner = THIS_MODULE,
2212 .llseek = noop_llseek,
2213 };
2214
2215 static struct miscdevice loop_misc = {
2216 .minor = LOOP_CTRL_MINOR,
2217 .name = "loop-control",
2218 .fops = &loop_ctl_fops,
2219 };
2220
2221 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2222 MODULE_ALIAS("devname:loop-control");
2223
loop_init(void)2224 static int __init loop_init(void)
2225 {
2226 int i;
2227 int err;
2228
2229 part_shift = 0;
2230 if (max_part > 0) {
2231 part_shift = fls(max_part);
2232
2233 /*
2234 * Adjust max_part according to part_shift as it is exported
2235 * to user space so that user can decide correct minor number
2236 * if [s]he want to create more devices.
2237 *
2238 * Note that -1 is required because partition 0 is reserved
2239 * for the whole disk.
2240 */
2241 max_part = (1UL << part_shift) - 1;
2242 }
2243
2244 if ((1UL << part_shift) > DISK_MAX_PARTS) {
2245 err = -EINVAL;
2246 goto err_out;
2247 }
2248
2249 if (max_loop > 1UL << (MINORBITS - part_shift)) {
2250 err = -EINVAL;
2251 goto err_out;
2252 }
2253
2254 err = misc_register(&loop_misc);
2255 if (err < 0)
2256 goto err_out;
2257
2258
2259 if (__register_blkdev(LOOP_MAJOR, "loop", loop_probe)) {
2260 err = -EIO;
2261 goto misc_out;
2262 }
2263
2264 /* pre-create number of devices given by config or max_loop */
2265 for (i = 0; i < max_loop; i++)
2266 loop_add(i);
2267
2268 printk(KERN_INFO "loop: module loaded\n");
2269 return 0;
2270
2271 misc_out:
2272 misc_deregister(&loop_misc);
2273 err_out:
2274 return err;
2275 }
2276
loop_exit(void)2277 static void __exit loop_exit(void)
2278 {
2279 struct loop_device *lo;
2280 int id;
2281
2282 unregister_blkdev(LOOP_MAJOR, "loop");
2283 misc_deregister(&loop_misc);
2284
2285 /*
2286 * There is no need to use loop_ctl_mutex here, for nobody else can
2287 * access loop_index_idr when this module is unloading (unless forced
2288 * module unloading is requested). If this is not a clean unloading,
2289 * we have no means to avoid kernel crash.
2290 */
2291 idr_for_each_entry(&loop_index_idr, lo, id)
2292 loop_remove(lo);
2293
2294 idr_destroy(&loop_index_idr);
2295 }
2296
2297 module_init(loop_init);
2298 module_exit(loop_exit);
2299
2300 #ifndef MODULE
max_loop_setup(char * str)2301 static int __init max_loop_setup(char *str)
2302 {
2303 max_loop = simple_strtol(str, NULL, 0);
2304 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD
2305 max_loop_specified = true;
2306 #endif
2307 return 1;
2308 }
2309
2310 __setup("max_loop=", max_loop_setup);
2311 #endif
2312