xref: /openbmc/linux/lib/zstd/decompress/zstd_decompress_block.c (revision 7ae9fb1b7ecbb5d85d07857943f677fd1a559b18)
1  /*
2   * Copyright (c) Yann Collet, Facebook, Inc.
3   * All rights reserved.
4   *
5   * This source code is licensed under both the BSD-style license (found in the
6   * LICENSE file in the root directory of this source tree) and the GPLv2 (found
7   * in the COPYING file in the root directory of this source tree).
8   * You may select, at your option, one of the above-listed licenses.
9   */
10  
11  /* zstd_decompress_block :
12   * this module takes care of decompressing _compressed_ block */
13  
14  /*-*******************************************************
15  *  Dependencies
16  *********************************************************/
17  #include "../common/zstd_deps.h"   /* ZSTD_memcpy, ZSTD_memmove, ZSTD_memset */
18  #include "../common/compiler.h"    /* prefetch */
19  #include "../common/cpu.h"         /* bmi2 */
20  #include "../common/mem.h"         /* low level memory routines */
21  #define FSE_STATIC_LINKING_ONLY
22  #include "../common/fse.h"
23  #define HUF_STATIC_LINKING_ONLY
24  #include "../common/huf.h"
25  #include "../common/zstd_internal.h"
26  #include "zstd_decompress_internal.h"   /* ZSTD_DCtx */
27  #include "zstd_ddict.h"  /* ZSTD_DDictDictContent */
28  #include "zstd_decompress_block.h"
29  
30  /*_*******************************************************
31  *  Macros
32  **********************************************************/
33  
34  /* These two optional macros force the use one way or another of the two
35   * ZSTD_decompressSequences implementations. You can't force in both directions
36   * at the same time.
37   */
38  #if defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
39      defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
40  #error "Cannot force the use of the short and the long ZSTD_decompressSequences variants!"
41  #endif
42  
43  
44  /*_*******************************************************
45  *  Memory operations
46  **********************************************************/
ZSTD_copy4(void * dst,const void * src)47  static void ZSTD_copy4(void* dst, const void* src) { ZSTD_memcpy(dst, src, 4); }
48  
49  
50  /*-*************************************************************
51   *   Block decoding
52   ***************************************************************/
53  
54  /*! ZSTD_getcBlockSize() :
55   *  Provides the size of compressed block from block header `src` */
ZSTD_getcBlockSize(const void * src,size_t srcSize,blockProperties_t * bpPtr)56  size_t ZSTD_getcBlockSize(const void* src, size_t srcSize,
57                            blockProperties_t* bpPtr)
58  {
59      RETURN_ERROR_IF(srcSize < ZSTD_blockHeaderSize, srcSize_wrong, "");
60  
61      {   U32 const cBlockHeader = MEM_readLE24(src);
62          U32 const cSize = cBlockHeader >> 3;
63          bpPtr->lastBlock = cBlockHeader & 1;
64          bpPtr->blockType = (blockType_e)((cBlockHeader >> 1) & 3);
65          bpPtr->origSize = cSize;   /* only useful for RLE */
66          if (bpPtr->blockType == bt_rle) return 1;
67          RETURN_ERROR_IF(bpPtr->blockType == bt_reserved, corruption_detected, "");
68          return cSize;
69      }
70  }
71  
72  /* Allocate buffer for literals, either overlapping current dst, or split between dst and litExtraBuffer, or stored entirely within litExtraBuffer */
ZSTD_allocateLiteralsBuffer(ZSTD_DCtx * dctx,void * const dst,const size_t dstCapacity,const size_t litSize,const streaming_operation streaming,const size_t expectedWriteSize,const unsigned splitImmediately)73  static void ZSTD_allocateLiteralsBuffer(ZSTD_DCtx* dctx, void* const dst, const size_t dstCapacity, const size_t litSize,
74      const streaming_operation streaming, const size_t expectedWriteSize, const unsigned splitImmediately)
75  {
76      if (streaming == not_streaming && dstCapacity > ZSTD_BLOCKSIZE_MAX + WILDCOPY_OVERLENGTH + litSize + WILDCOPY_OVERLENGTH)
77      {
78          /* room for litbuffer to fit without read faulting */
79          dctx->litBuffer = (BYTE*)dst + ZSTD_BLOCKSIZE_MAX + WILDCOPY_OVERLENGTH;
80          dctx->litBufferEnd = dctx->litBuffer + litSize;
81          dctx->litBufferLocation = ZSTD_in_dst;
82      }
83      else if (litSize > ZSTD_LITBUFFEREXTRASIZE)
84      {
85          /* won't fit in litExtraBuffer, so it will be split between end of dst and extra buffer */
86          if (splitImmediately) {
87              /* won't fit in litExtraBuffer, so it will be split between end of dst and extra buffer */
88              dctx->litBuffer = (BYTE*)dst + expectedWriteSize - litSize + ZSTD_LITBUFFEREXTRASIZE - WILDCOPY_OVERLENGTH;
89              dctx->litBufferEnd = dctx->litBuffer + litSize - ZSTD_LITBUFFEREXTRASIZE;
90          }
91          else {
92              /* initially this will be stored entirely in dst during huffman decoding, it will partially shifted to litExtraBuffer after */
93              dctx->litBuffer = (BYTE*)dst + expectedWriteSize - litSize;
94              dctx->litBufferEnd = (BYTE*)dst + expectedWriteSize;
95          }
96          dctx->litBufferLocation = ZSTD_split;
97      }
98      else
99      {
100          /* fits entirely within litExtraBuffer, so no split is necessary */
101          dctx->litBuffer = dctx->litExtraBuffer;
102          dctx->litBufferEnd = dctx->litBuffer + litSize;
103          dctx->litBufferLocation = ZSTD_not_in_dst;
104      }
105  }
106  
107  /* Hidden declaration for fullbench */
108  size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx,
109                            const void* src, size_t srcSize,
110                            void* dst, size_t dstCapacity, const streaming_operation streaming);
111  /*! ZSTD_decodeLiteralsBlock() :
112   * Where it is possible to do so without being stomped by the output during decompression, the literals block will be stored
113   * in the dstBuffer.  If there is room to do so, it will be stored in full in the excess dst space after where the current
114   * block will be output.  Otherwise it will be stored at the end of the current dst blockspace, with a small portion being
115   * stored in dctx->litExtraBuffer to help keep it "ahead" of the current output write.
116   *
117   * @return : nb of bytes read from src (< srcSize )
118   *  note : symbol not declared but exposed for fullbench */
ZSTD_decodeLiteralsBlock(ZSTD_DCtx * dctx,const void * src,size_t srcSize,void * dst,size_t dstCapacity,const streaming_operation streaming)119  size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx,
120                            const void* src, size_t srcSize,   /* note : srcSize < BLOCKSIZE */
121                            void* dst, size_t dstCapacity, const streaming_operation streaming)
122  {
123      DEBUGLOG(5, "ZSTD_decodeLiteralsBlock");
124      RETURN_ERROR_IF(srcSize < MIN_CBLOCK_SIZE, corruption_detected, "");
125  
126      {   const BYTE* const istart = (const BYTE*) src;
127          symbolEncodingType_e const litEncType = (symbolEncodingType_e)(istart[0] & 3);
128  
129          switch(litEncType)
130          {
131          case set_repeat:
132              DEBUGLOG(5, "set_repeat flag : re-using stats from previous compressed literals block");
133              RETURN_ERROR_IF(dctx->litEntropy==0, dictionary_corrupted, "");
134              ZSTD_FALLTHROUGH;
135  
136          case set_compressed:
137              RETURN_ERROR_IF(srcSize < 5, corruption_detected, "srcSize >= MIN_CBLOCK_SIZE == 3; here we need up to 5 for case 3");
138              {   size_t lhSize, litSize, litCSize;
139                  U32 singleStream=0;
140                  U32 const lhlCode = (istart[0] >> 2) & 3;
141                  U32 const lhc = MEM_readLE32(istart);
142                  size_t hufSuccess;
143                  size_t expectedWriteSize = MIN(ZSTD_BLOCKSIZE_MAX, dstCapacity);
144                  switch(lhlCode)
145                  {
146                  case 0: case 1: default:   /* note : default is impossible, since lhlCode into [0..3] */
147                      /* 2 - 2 - 10 - 10 */
148                      singleStream = !lhlCode;
149                      lhSize = 3;
150                      litSize  = (lhc >> 4) & 0x3FF;
151                      litCSize = (lhc >> 14) & 0x3FF;
152                      break;
153                  case 2:
154                      /* 2 - 2 - 14 - 14 */
155                      lhSize = 4;
156                      litSize  = (lhc >> 4) & 0x3FFF;
157                      litCSize = lhc >> 18;
158                      break;
159                  case 3:
160                      /* 2 - 2 - 18 - 18 */
161                      lhSize = 5;
162                      litSize  = (lhc >> 4) & 0x3FFFF;
163                      litCSize = (lhc >> 22) + ((size_t)istart[4] << 10);
164                      break;
165                  }
166                  RETURN_ERROR_IF(litSize > 0 && dst == NULL, dstSize_tooSmall, "NULL not handled");
167                  RETURN_ERROR_IF(litSize > ZSTD_BLOCKSIZE_MAX, corruption_detected, "");
168                  RETURN_ERROR_IF(litCSize + lhSize > srcSize, corruption_detected, "");
169                  RETURN_ERROR_IF(expectedWriteSize < litSize , dstSize_tooSmall, "");
170                  ZSTD_allocateLiteralsBuffer(dctx, dst, dstCapacity, litSize, streaming, expectedWriteSize, 0);
171  
172                  /* prefetch huffman table if cold */
173                  if (dctx->ddictIsCold && (litSize > 768 /* heuristic */)) {
174                      PREFETCH_AREA(dctx->HUFptr, sizeof(dctx->entropy.hufTable));
175                  }
176  
177                  if (litEncType==set_repeat) {
178                      if (singleStream) {
179                          hufSuccess = HUF_decompress1X_usingDTable_bmi2(
180                              dctx->litBuffer, litSize, istart+lhSize, litCSize,
181                              dctx->HUFptr, ZSTD_DCtx_get_bmi2(dctx));
182                      } else {
183                          hufSuccess = HUF_decompress4X_usingDTable_bmi2(
184                              dctx->litBuffer, litSize, istart+lhSize, litCSize,
185                              dctx->HUFptr, ZSTD_DCtx_get_bmi2(dctx));
186                      }
187                  } else {
188                      if (singleStream) {
189  #if defined(HUF_FORCE_DECOMPRESS_X2)
190                          hufSuccess = HUF_decompress1X_DCtx_wksp(
191                              dctx->entropy.hufTable, dctx->litBuffer, litSize,
192                              istart+lhSize, litCSize, dctx->workspace,
193                              sizeof(dctx->workspace));
194  #else
195                          hufSuccess = HUF_decompress1X1_DCtx_wksp_bmi2(
196                              dctx->entropy.hufTable, dctx->litBuffer, litSize,
197                              istart+lhSize, litCSize, dctx->workspace,
198                              sizeof(dctx->workspace), ZSTD_DCtx_get_bmi2(dctx));
199  #endif
200                      } else {
201                          hufSuccess = HUF_decompress4X_hufOnly_wksp_bmi2(
202                              dctx->entropy.hufTable, dctx->litBuffer, litSize,
203                              istart+lhSize, litCSize, dctx->workspace,
204                              sizeof(dctx->workspace), ZSTD_DCtx_get_bmi2(dctx));
205                      }
206                  }
207                  if (dctx->litBufferLocation == ZSTD_split)
208                  {
209                      ZSTD_memcpy(dctx->litExtraBuffer, dctx->litBufferEnd - ZSTD_LITBUFFEREXTRASIZE, ZSTD_LITBUFFEREXTRASIZE);
210                      ZSTD_memmove(dctx->litBuffer + ZSTD_LITBUFFEREXTRASIZE - WILDCOPY_OVERLENGTH, dctx->litBuffer, litSize - ZSTD_LITBUFFEREXTRASIZE);
211                      dctx->litBuffer += ZSTD_LITBUFFEREXTRASIZE - WILDCOPY_OVERLENGTH;
212                      dctx->litBufferEnd -= WILDCOPY_OVERLENGTH;
213                  }
214  
215                  RETURN_ERROR_IF(HUF_isError(hufSuccess), corruption_detected, "");
216  
217                  dctx->litPtr = dctx->litBuffer;
218                  dctx->litSize = litSize;
219                  dctx->litEntropy = 1;
220                  if (litEncType==set_compressed) dctx->HUFptr = dctx->entropy.hufTable;
221                  return litCSize + lhSize;
222              }
223  
224          case set_basic:
225              {   size_t litSize, lhSize;
226                  U32 const lhlCode = ((istart[0]) >> 2) & 3;
227                  size_t expectedWriteSize = MIN(ZSTD_BLOCKSIZE_MAX, dstCapacity);
228                  switch(lhlCode)
229                  {
230                  case 0: case 2: default:   /* note : default is impossible, since lhlCode into [0..3] */
231                      lhSize = 1;
232                      litSize = istart[0] >> 3;
233                      break;
234                  case 1:
235                      lhSize = 2;
236                      litSize = MEM_readLE16(istart) >> 4;
237                      break;
238                  case 3:
239                      lhSize = 3;
240                      litSize = MEM_readLE24(istart) >> 4;
241                      break;
242                  }
243  
244                  RETURN_ERROR_IF(litSize > 0 && dst == NULL, dstSize_tooSmall, "NULL not handled");
245                  RETURN_ERROR_IF(expectedWriteSize < litSize, dstSize_tooSmall, "");
246                  ZSTD_allocateLiteralsBuffer(dctx, dst, dstCapacity, litSize, streaming, expectedWriteSize, 1);
247                  if (lhSize+litSize+WILDCOPY_OVERLENGTH > srcSize) {  /* risk reading beyond src buffer with wildcopy */
248                      RETURN_ERROR_IF(litSize+lhSize > srcSize, corruption_detected, "");
249                      if (dctx->litBufferLocation == ZSTD_split)
250                      {
251                          ZSTD_memcpy(dctx->litBuffer, istart + lhSize, litSize - ZSTD_LITBUFFEREXTRASIZE);
252                          ZSTD_memcpy(dctx->litExtraBuffer, istart + lhSize + litSize - ZSTD_LITBUFFEREXTRASIZE, ZSTD_LITBUFFEREXTRASIZE);
253                      }
254                      else
255                      {
256                          ZSTD_memcpy(dctx->litBuffer, istart + lhSize, litSize);
257                      }
258                      dctx->litPtr = dctx->litBuffer;
259                      dctx->litSize = litSize;
260                      return lhSize+litSize;
261                  }
262                  /* direct reference into compressed stream */
263                  dctx->litPtr = istart+lhSize;
264                  dctx->litSize = litSize;
265                  dctx->litBufferEnd = dctx->litPtr + litSize;
266                  dctx->litBufferLocation = ZSTD_not_in_dst;
267                  return lhSize+litSize;
268              }
269  
270          case set_rle:
271              {   U32 const lhlCode = ((istart[0]) >> 2) & 3;
272                  size_t litSize, lhSize;
273                  size_t expectedWriteSize = MIN(ZSTD_BLOCKSIZE_MAX, dstCapacity);
274                  switch(lhlCode)
275                  {
276                  case 0: case 2: default:   /* note : default is impossible, since lhlCode into [0..3] */
277                      lhSize = 1;
278                      litSize = istart[0] >> 3;
279                      break;
280                  case 1:
281                      lhSize = 2;
282                      litSize = MEM_readLE16(istart) >> 4;
283                      break;
284                  case 3:
285                      lhSize = 3;
286                      litSize = MEM_readLE24(istart) >> 4;
287                      RETURN_ERROR_IF(srcSize<4, corruption_detected, "srcSize >= MIN_CBLOCK_SIZE == 3; here we need lhSize+1 = 4");
288                      break;
289                  }
290                  RETURN_ERROR_IF(litSize > 0 && dst == NULL, dstSize_tooSmall, "NULL not handled");
291                  RETURN_ERROR_IF(litSize > ZSTD_BLOCKSIZE_MAX, corruption_detected, "");
292                  RETURN_ERROR_IF(expectedWriteSize < litSize, dstSize_tooSmall, "");
293                  ZSTD_allocateLiteralsBuffer(dctx, dst, dstCapacity, litSize, streaming, expectedWriteSize, 1);
294                  if (dctx->litBufferLocation == ZSTD_split)
295                  {
296                      ZSTD_memset(dctx->litBuffer, istart[lhSize], litSize - ZSTD_LITBUFFEREXTRASIZE);
297                      ZSTD_memset(dctx->litExtraBuffer, istart[lhSize], ZSTD_LITBUFFEREXTRASIZE);
298                  }
299                  else
300                  {
301                      ZSTD_memset(dctx->litBuffer, istart[lhSize], litSize);
302                  }
303                  dctx->litPtr = dctx->litBuffer;
304                  dctx->litSize = litSize;
305                  return lhSize+1;
306              }
307          default:
308              RETURN_ERROR(corruption_detected, "impossible");
309          }
310      }
311  }
312  
313  /* Default FSE distribution tables.
314   * These are pre-calculated FSE decoding tables using default distributions as defined in specification :
315   * https://github.com/facebook/zstd/blob/release/doc/zstd_compression_format.md#default-distributions
316   * They were generated programmatically with following method :
317   * - start from default distributions, present in /lib/common/zstd_internal.h
318   * - generate tables normally, using ZSTD_buildFSETable()
319   * - printout the content of tables
320   * - pretify output, report below, test with fuzzer to ensure it's correct */
321  
322  /* Default FSE distribution table for Literal Lengths */
323  static const ZSTD_seqSymbol LL_defaultDTable[(1<<LL_DEFAULTNORMLOG)+1] = {
324       {  1,  1,  1, LL_DEFAULTNORMLOG},  /* header : fastMode, tableLog */
325       /* nextState, nbAddBits, nbBits, baseVal */
326       {  0,  0,  4,    0},  { 16,  0,  4,    0},
327       { 32,  0,  5,    1},  {  0,  0,  5,    3},
328       {  0,  0,  5,    4},  {  0,  0,  5,    6},
329       {  0,  0,  5,    7},  {  0,  0,  5,    9},
330       {  0,  0,  5,   10},  {  0,  0,  5,   12},
331       {  0,  0,  6,   14},  {  0,  1,  5,   16},
332       {  0,  1,  5,   20},  {  0,  1,  5,   22},
333       {  0,  2,  5,   28},  {  0,  3,  5,   32},
334       {  0,  4,  5,   48},  { 32,  6,  5,   64},
335       {  0,  7,  5,  128},  {  0,  8,  6,  256},
336       {  0, 10,  6, 1024},  {  0, 12,  6, 4096},
337       { 32,  0,  4,    0},  {  0,  0,  4,    1},
338       {  0,  0,  5,    2},  { 32,  0,  5,    4},
339       {  0,  0,  5,    5},  { 32,  0,  5,    7},
340       {  0,  0,  5,    8},  { 32,  0,  5,   10},
341       {  0,  0,  5,   11},  {  0,  0,  6,   13},
342       { 32,  1,  5,   16},  {  0,  1,  5,   18},
343       { 32,  1,  5,   22},  {  0,  2,  5,   24},
344       { 32,  3,  5,   32},  {  0,  3,  5,   40},
345       {  0,  6,  4,   64},  { 16,  6,  4,   64},
346       { 32,  7,  5,  128},  {  0,  9,  6,  512},
347       {  0, 11,  6, 2048},  { 48,  0,  4,    0},
348       { 16,  0,  4,    1},  { 32,  0,  5,    2},
349       { 32,  0,  5,    3},  { 32,  0,  5,    5},
350       { 32,  0,  5,    6},  { 32,  0,  5,    8},
351       { 32,  0,  5,    9},  { 32,  0,  5,   11},
352       { 32,  0,  5,   12},  {  0,  0,  6,   15},
353       { 32,  1,  5,   18},  { 32,  1,  5,   20},
354       { 32,  2,  5,   24},  { 32,  2,  5,   28},
355       { 32,  3,  5,   40},  { 32,  4,  5,   48},
356       {  0, 16,  6,65536},  {  0, 15,  6,32768},
357       {  0, 14,  6,16384},  {  0, 13,  6, 8192},
358  };   /* LL_defaultDTable */
359  
360  /* Default FSE distribution table for Offset Codes */
361  static const ZSTD_seqSymbol OF_defaultDTable[(1<<OF_DEFAULTNORMLOG)+1] = {
362      {  1,  1,  1, OF_DEFAULTNORMLOG},  /* header : fastMode, tableLog */
363      /* nextState, nbAddBits, nbBits, baseVal */
364      {  0,  0,  5,    0},     {  0,  6,  4,   61},
365      {  0,  9,  5,  509},     {  0, 15,  5,32765},
366      {  0, 21,  5,2097149},   {  0,  3,  5,    5},
367      {  0,  7,  4,  125},     {  0, 12,  5, 4093},
368      {  0, 18,  5,262141},    {  0, 23,  5,8388605},
369      {  0,  5,  5,   29},     {  0,  8,  4,  253},
370      {  0, 14,  5,16381},     {  0, 20,  5,1048573},
371      {  0,  2,  5,    1},     { 16,  7,  4,  125},
372      {  0, 11,  5, 2045},     {  0, 17,  5,131069},
373      {  0, 22,  5,4194301},   {  0,  4,  5,   13},
374      { 16,  8,  4,  253},     {  0, 13,  5, 8189},
375      {  0, 19,  5,524285},    {  0,  1,  5,    1},
376      { 16,  6,  4,   61},     {  0, 10,  5, 1021},
377      {  0, 16,  5,65533},     {  0, 28,  5,268435453},
378      {  0, 27,  5,134217725}, {  0, 26,  5,67108861},
379      {  0, 25,  5,33554429},  {  0, 24,  5,16777213},
380  };   /* OF_defaultDTable */
381  
382  
383  /* Default FSE distribution table for Match Lengths */
384  static const ZSTD_seqSymbol ML_defaultDTable[(1<<ML_DEFAULTNORMLOG)+1] = {
385      {  1,  1,  1, ML_DEFAULTNORMLOG},  /* header : fastMode, tableLog */
386      /* nextState, nbAddBits, nbBits, baseVal */
387      {  0,  0,  6,    3},  {  0,  0,  4,    4},
388      { 32,  0,  5,    5},  {  0,  0,  5,    6},
389      {  0,  0,  5,    8},  {  0,  0,  5,    9},
390      {  0,  0,  5,   11},  {  0,  0,  6,   13},
391      {  0,  0,  6,   16},  {  0,  0,  6,   19},
392      {  0,  0,  6,   22},  {  0,  0,  6,   25},
393      {  0,  0,  6,   28},  {  0,  0,  6,   31},
394      {  0,  0,  6,   34},  {  0,  1,  6,   37},
395      {  0,  1,  6,   41},  {  0,  2,  6,   47},
396      {  0,  3,  6,   59},  {  0,  4,  6,   83},
397      {  0,  7,  6,  131},  {  0,  9,  6,  515},
398      { 16,  0,  4,    4},  {  0,  0,  4,    5},
399      { 32,  0,  5,    6},  {  0,  0,  5,    7},
400      { 32,  0,  5,    9},  {  0,  0,  5,   10},
401      {  0,  0,  6,   12},  {  0,  0,  6,   15},
402      {  0,  0,  6,   18},  {  0,  0,  6,   21},
403      {  0,  0,  6,   24},  {  0,  0,  6,   27},
404      {  0,  0,  6,   30},  {  0,  0,  6,   33},
405      {  0,  1,  6,   35},  {  0,  1,  6,   39},
406      {  0,  2,  6,   43},  {  0,  3,  6,   51},
407      {  0,  4,  6,   67},  {  0,  5,  6,   99},
408      {  0,  8,  6,  259},  { 32,  0,  4,    4},
409      { 48,  0,  4,    4},  { 16,  0,  4,    5},
410      { 32,  0,  5,    7},  { 32,  0,  5,    8},
411      { 32,  0,  5,   10},  { 32,  0,  5,   11},
412      {  0,  0,  6,   14},  {  0,  0,  6,   17},
413      {  0,  0,  6,   20},  {  0,  0,  6,   23},
414      {  0,  0,  6,   26},  {  0,  0,  6,   29},
415      {  0,  0,  6,   32},  {  0, 16,  6,65539},
416      {  0, 15,  6,32771},  {  0, 14,  6,16387},
417      {  0, 13,  6, 8195},  {  0, 12,  6, 4099},
418      {  0, 11,  6, 2051},  {  0, 10,  6, 1027},
419  };   /* ML_defaultDTable */
420  
421  
ZSTD_buildSeqTable_rle(ZSTD_seqSymbol * dt,U32 baseValue,U8 nbAddBits)422  static void ZSTD_buildSeqTable_rle(ZSTD_seqSymbol* dt, U32 baseValue, U8 nbAddBits)
423  {
424      void* ptr = dt;
425      ZSTD_seqSymbol_header* const DTableH = (ZSTD_seqSymbol_header*)ptr;
426      ZSTD_seqSymbol* const cell = dt + 1;
427  
428      DTableH->tableLog = 0;
429      DTableH->fastMode = 0;
430  
431      cell->nbBits = 0;
432      cell->nextState = 0;
433      assert(nbAddBits < 255);
434      cell->nbAdditionalBits = nbAddBits;
435      cell->baseValue = baseValue;
436  }
437  
438  
439  /* ZSTD_buildFSETable() :
440   * generate FSE decoding table for one symbol (ll, ml or off)
441   * cannot fail if input is valid =>
442   * all inputs are presumed validated at this stage */
443  FORCE_INLINE_TEMPLATE
ZSTD_buildFSETable_body(ZSTD_seqSymbol * dt,const short * normalizedCounter,unsigned maxSymbolValue,const U32 * baseValue,const U8 * nbAdditionalBits,unsigned tableLog,void * wksp,size_t wkspSize)444  void ZSTD_buildFSETable_body(ZSTD_seqSymbol* dt,
445              const short* normalizedCounter, unsigned maxSymbolValue,
446              const U32* baseValue, const U8* nbAdditionalBits,
447              unsigned tableLog, void* wksp, size_t wkspSize)
448  {
449      ZSTD_seqSymbol* const tableDecode = dt+1;
450      U32 const maxSV1 = maxSymbolValue + 1;
451      U32 const tableSize = 1 << tableLog;
452  
453      U16* symbolNext = (U16*)wksp;
454      BYTE* spread = (BYTE*)(symbolNext + MaxSeq + 1);
455      U32 highThreshold = tableSize - 1;
456  
457  
458      /* Sanity Checks */
459      assert(maxSymbolValue <= MaxSeq);
460      assert(tableLog <= MaxFSELog);
461      assert(wkspSize >= ZSTD_BUILD_FSE_TABLE_WKSP_SIZE);
462      (void)wkspSize;
463      /* Init, lay down lowprob symbols */
464      {   ZSTD_seqSymbol_header DTableH;
465          DTableH.tableLog = tableLog;
466          DTableH.fastMode = 1;
467          {   S16 const largeLimit= (S16)(1 << (tableLog-1));
468              U32 s;
469              for (s=0; s<maxSV1; s++) {
470                  if (normalizedCounter[s]==-1) {
471                      tableDecode[highThreshold--].baseValue = s;
472                      symbolNext[s] = 1;
473                  } else {
474                      if (normalizedCounter[s] >= largeLimit) DTableH.fastMode=0;
475                      assert(normalizedCounter[s]>=0);
476                      symbolNext[s] = (U16)normalizedCounter[s];
477          }   }   }
478          ZSTD_memcpy(dt, &DTableH, sizeof(DTableH));
479      }
480  
481      /* Spread symbols */
482      assert(tableSize <= 512);
483      /* Specialized symbol spreading for the case when there are
484       * no low probability (-1 count) symbols. When compressing
485       * small blocks we avoid low probability symbols to hit this
486       * case, since header decoding speed matters more.
487       */
488      if (highThreshold == tableSize - 1) {
489          size_t const tableMask = tableSize-1;
490          size_t const step = FSE_TABLESTEP(tableSize);
491          /* First lay down the symbols in order.
492           * We use a uint64_t to lay down 8 bytes at a time. This reduces branch
493           * misses since small blocks generally have small table logs, so nearly
494           * all symbols have counts <= 8. We ensure we have 8 bytes at the end of
495           * our buffer to handle the over-write.
496           */
497          {
498              U64 const add = 0x0101010101010101ull;
499              size_t pos = 0;
500              U64 sv = 0;
501              U32 s;
502              for (s=0; s<maxSV1; ++s, sv += add) {
503                  int i;
504                  int const n = normalizedCounter[s];
505                  MEM_write64(spread + pos, sv);
506                  for (i = 8; i < n; i += 8) {
507                      MEM_write64(spread + pos + i, sv);
508                  }
509                  pos += n;
510              }
511          }
512          /* Now we spread those positions across the table.
513           * The benefit of doing it in two stages is that we avoid the the
514           * variable size inner loop, which caused lots of branch misses.
515           * Now we can run through all the positions without any branch misses.
516           * We unroll the loop twice, since that is what emperically worked best.
517           */
518          {
519              size_t position = 0;
520              size_t s;
521              size_t const unroll = 2;
522              assert(tableSize % unroll == 0); /* FSE_MIN_TABLELOG is 5 */
523              for (s = 0; s < (size_t)tableSize; s += unroll) {
524                  size_t u;
525                  for (u = 0; u < unroll; ++u) {
526                      size_t const uPosition = (position + (u * step)) & tableMask;
527                      tableDecode[uPosition].baseValue = spread[s + u];
528                  }
529                  position = (position + (unroll * step)) & tableMask;
530              }
531              assert(position == 0);
532          }
533      } else {
534          U32 const tableMask = tableSize-1;
535          U32 const step = FSE_TABLESTEP(tableSize);
536          U32 s, position = 0;
537          for (s=0; s<maxSV1; s++) {
538              int i;
539              int const n = normalizedCounter[s];
540              for (i=0; i<n; i++) {
541                  tableDecode[position].baseValue = s;
542                  position = (position + step) & tableMask;
543                  while (position > highThreshold) position = (position + step) & tableMask;   /* lowprob area */
544          }   }
545          assert(position == 0); /* position must reach all cells once, otherwise normalizedCounter is incorrect */
546      }
547  
548      /* Build Decoding table */
549      {
550          U32 u;
551          for (u=0; u<tableSize; u++) {
552              U32 const symbol = tableDecode[u].baseValue;
553              U32 const nextState = symbolNext[symbol]++;
554              tableDecode[u].nbBits = (BYTE) (tableLog - BIT_highbit32(nextState) );
555              tableDecode[u].nextState = (U16) ( (nextState << tableDecode[u].nbBits) - tableSize);
556              assert(nbAdditionalBits[symbol] < 255);
557              tableDecode[u].nbAdditionalBits = nbAdditionalBits[symbol];
558              tableDecode[u].baseValue = baseValue[symbol];
559          }
560      }
561  }
562  
563  /* Avoids the FORCE_INLINE of the _body() function. */
ZSTD_buildFSETable_body_default(ZSTD_seqSymbol * dt,const short * normalizedCounter,unsigned maxSymbolValue,const U32 * baseValue,const U8 * nbAdditionalBits,unsigned tableLog,void * wksp,size_t wkspSize)564  static void ZSTD_buildFSETable_body_default(ZSTD_seqSymbol* dt,
565              const short* normalizedCounter, unsigned maxSymbolValue,
566              const U32* baseValue, const U8* nbAdditionalBits,
567              unsigned tableLog, void* wksp, size_t wkspSize)
568  {
569      ZSTD_buildFSETable_body(dt, normalizedCounter, maxSymbolValue,
570              baseValue, nbAdditionalBits, tableLog, wksp, wkspSize);
571  }
572  
573  #if DYNAMIC_BMI2
ZSTD_buildFSETable_body_bmi2(ZSTD_seqSymbol * dt,const short * normalizedCounter,unsigned maxSymbolValue,const U32 * baseValue,const U8 * nbAdditionalBits,unsigned tableLog,void * wksp,size_t wkspSize)574  BMI2_TARGET_ATTRIBUTE static void ZSTD_buildFSETable_body_bmi2(ZSTD_seqSymbol* dt,
575              const short* normalizedCounter, unsigned maxSymbolValue,
576              const U32* baseValue, const U8* nbAdditionalBits,
577              unsigned tableLog, void* wksp, size_t wkspSize)
578  {
579      ZSTD_buildFSETable_body(dt, normalizedCounter, maxSymbolValue,
580              baseValue, nbAdditionalBits, tableLog, wksp, wkspSize);
581  }
582  #endif
583  
ZSTD_buildFSETable(ZSTD_seqSymbol * dt,const short * normalizedCounter,unsigned maxSymbolValue,const U32 * baseValue,const U8 * nbAdditionalBits,unsigned tableLog,void * wksp,size_t wkspSize,int bmi2)584  void ZSTD_buildFSETable(ZSTD_seqSymbol* dt,
585              const short* normalizedCounter, unsigned maxSymbolValue,
586              const U32* baseValue, const U8* nbAdditionalBits,
587              unsigned tableLog, void* wksp, size_t wkspSize, int bmi2)
588  {
589  #if DYNAMIC_BMI2
590      if (bmi2) {
591          ZSTD_buildFSETable_body_bmi2(dt, normalizedCounter, maxSymbolValue,
592                  baseValue, nbAdditionalBits, tableLog, wksp, wkspSize);
593          return;
594      }
595  #endif
596      (void)bmi2;
597      ZSTD_buildFSETable_body_default(dt, normalizedCounter, maxSymbolValue,
598              baseValue, nbAdditionalBits, tableLog, wksp, wkspSize);
599  }
600  
601  
602  /*! ZSTD_buildSeqTable() :
603   * @return : nb bytes read from src,
604   *           or an error code if it fails */
ZSTD_buildSeqTable(ZSTD_seqSymbol * DTableSpace,const ZSTD_seqSymbol ** DTablePtr,symbolEncodingType_e type,unsigned max,U32 maxLog,const void * src,size_t srcSize,const U32 * baseValue,const U8 * nbAdditionalBits,const ZSTD_seqSymbol * defaultTable,U32 flagRepeatTable,int ddictIsCold,int nbSeq,U32 * wksp,size_t wkspSize,int bmi2)605  static size_t ZSTD_buildSeqTable(ZSTD_seqSymbol* DTableSpace, const ZSTD_seqSymbol** DTablePtr,
606                                   symbolEncodingType_e type, unsigned max, U32 maxLog,
607                                   const void* src, size_t srcSize,
608                                   const U32* baseValue, const U8* nbAdditionalBits,
609                                   const ZSTD_seqSymbol* defaultTable, U32 flagRepeatTable,
610                                   int ddictIsCold, int nbSeq, U32* wksp, size_t wkspSize,
611                                   int bmi2)
612  {
613      switch(type)
614      {
615      case set_rle :
616          RETURN_ERROR_IF(!srcSize, srcSize_wrong, "");
617          RETURN_ERROR_IF((*(const BYTE*)src) > max, corruption_detected, "");
618          {   U32 const symbol = *(const BYTE*)src;
619              U32 const baseline = baseValue[symbol];
620              U8 const nbBits = nbAdditionalBits[symbol];
621              ZSTD_buildSeqTable_rle(DTableSpace, baseline, nbBits);
622          }
623          *DTablePtr = DTableSpace;
624          return 1;
625      case set_basic :
626          *DTablePtr = defaultTable;
627          return 0;
628      case set_repeat:
629          RETURN_ERROR_IF(!flagRepeatTable, corruption_detected, "");
630          /* prefetch FSE table if used */
631          if (ddictIsCold && (nbSeq > 24 /* heuristic */)) {
632              const void* const pStart = *DTablePtr;
633              size_t const pSize = sizeof(ZSTD_seqSymbol) * (SEQSYMBOL_TABLE_SIZE(maxLog));
634              PREFETCH_AREA(pStart, pSize);
635          }
636          return 0;
637      case set_compressed :
638          {   unsigned tableLog;
639              S16 norm[MaxSeq+1];
640              size_t const headerSize = FSE_readNCount(norm, &max, &tableLog, src, srcSize);
641              RETURN_ERROR_IF(FSE_isError(headerSize), corruption_detected, "");
642              RETURN_ERROR_IF(tableLog > maxLog, corruption_detected, "");
643              ZSTD_buildFSETable(DTableSpace, norm, max, baseValue, nbAdditionalBits, tableLog, wksp, wkspSize, bmi2);
644              *DTablePtr = DTableSpace;
645              return headerSize;
646          }
647      default :
648          assert(0);
649          RETURN_ERROR(GENERIC, "impossible");
650      }
651  }
652  
ZSTD_decodeSeqHeaders(ZSTD_DCtx * dctx,int * nbSeqPtr,const void * src,size_t srcSize)653  size_t ZSTD_decodeSeqHeaders(ZSTD_DCtx* dctx, int* nbSeqPtr,
654                               const void* src, size_t srcSize)
655  {
656      const BYTE* const istart = (const BYTE*)src;
657      const BYTE* const iend = istart + srcSize;
658      const BYTE* ip = istart;
659      int nbSeq;
660      DEBUGLOG(5, "ZSTD_decodeSeqHeaders");
661  
662      /* check */
663      RETURN_ERROR_IF(srcSize < MIN_SEQUENCES_SIZE, srcSize_wrong, "");
664  
665      /* SeqHead */
666      nbSeq = *ip++;
667      if (!nbSeq) {
668          *nbSeqPtr=0;
669          RETURN_ERROR_IF(srcSize != 1, srcSize_wrong, "");
670          return 1;
671      }
672      if (nbSeq > 0x7F) {
673          if (nbSeq == 0xFF) {
674              RETURN_ERROR_IF(ip+2 > iend, srcSize_wrong, "");
675              nbSeq = MEM_readLE16(ip) + LONGNBSEQ;
676              ip+=2;
677          } else {
678              RETURN_ERROR_IF(ip >= iend, srcSize_wrong, "");
679              nbSeq = ((nbSeq-0x80)<<8) + *ip++;
680          }
681      }
682      *nbSeqPtr = nbSeq;
683  
684      /* FSE table descriptors */
685      RETURN_ERROR_IF(ip+1 > iend, srcSize_wrong, ""); /* minimum possible size: 1 byte for symbol encoding types */
686      {   symbolEncodingType_e const LLtype = (symbolEncodingType_e)(*ip >> 6);
687          symbolEncodingType_e const OFtype = (symbolEncodingType_e)((*ip >> 4) & 3);
688          symbolEncodingType_e const MLtype = (symbolEncodingType_e)((*ip >> 2) & 3);
689          ip++;
690  
691          /* Build DTables */
692          {   size_t const llhSize = ZSTD_buildSeqTable(dctx->entropy.LLTable, &dctx->LLTptr,
693                                                        LLtype, MaxLL, LLFSELog,
694                                                        ip, iend-ip,
695                                                        LL_base, LL_bits,
696                                                        LL_defaultDTable, dctx->fseEntropy,
697                                                        dctx->ddictIsCold, nbSeq,
698                                                        dctx->workspace, sizeof(dctx->workspace),
699                                                        ZSTD_DCtx_get_bmi2(dctx));
700              RETURN_ERROR_IF(ZSTD_isError(llhSize), corruption_detected, "ZSTD_buildSeqTable failed");
701              ip += llhSize;
702          }
703  
704          {   size_t const ofhSize = ZSTD_buildSeqTable(dctx->entropy.OFTable, &dctx->OFTptr,
705                                                        OFtype, MaxOff, OffFSELog,
706                                                        ip, iend-ip,
707                                                        OF_base, OF_bits,
708                                                        OF_defaultDTable, dctx->fseEntropy,
709                                                        dctx->ddictIsCold, nbSeq,
710                                                        dctx->workspace, sizeof(dctx->workspace),
711                                                        ZSTD_DCtx_get_bmi2(dctx));
712              RETURN_ERROR_IF(ZSTD_isError(ofhSize), corruption_detected, "ZSTD_buildSeqTable failed");
713              ip += ofhSize;
714          }
715  
716          {   size_t const mlhSize = ZSTD_buildSeqTable(dctx->entropy.MLTable, &dctx->MLTptr,
717                                                        MLtype, MaxML, MLFSELog,
718                                                        ip, iend-ip,
719                                                        ML_base, ML_bits,
720                                                        ML_defaultDTable, dctx->fseEntropy,
721                                                        dctx->ddictIsCold, nbSeq,
722                                                        dctx->workspace, sizeof(dctx->workspace),
723                                                        ZSTD_DCtx_get_bmi2(dctx));
724              RETURN_ERROR_IF(ZSTD_isError(mlhSize), corruption_detected, "ZSTD_buildSeqTable failed");
725              ip += mlhSize;
726          }
727      }
728  
729      return ip-istart;
730  }
731  
732  
733  typedef struct {
734      size_t litLength;
735      size_t matchLength;
736      size_t offset;
737  } seq_t;
738  
739  typedef struct {
740      size_t state;
741      const ZSTD_seqSymbol* table;
742  } ZSTD_fseState;
743  
744  typedef struct {
745      BIT_DStream_t DStream;
746      ZSTD_fseState stateLL;
747      ZSTD_fseState stateOffb;
748      ZSTD_fseState stateML;
749      size_t prevOffset[ZSTD_REP_NUM];
750  } seqState_t;
751  
752  /*! ZSTD_overlapCopy8() :
753   *  Copies 8 bytes from ip to op and updates op and ip where ip <= op.
754   *  If the offset is < 8 then the offset is spread to at least 8 bytes.
755   *
756   *  Precondition: *ip <= *op
757   *  Postcondition: *op - *op >= 8
758   */
ZSTD_overlapCopy8(BYTE ** op,BYTE const ** ip,size_t offset)759  HINT_INLINE void ZSTD_overlapCopy8(BYTE** op, BYTE const** ip, size_t offset) {
760      assert(*ip <= *op);
761      if (offset < 8) {
762          /* close range match, overlap */
763          static const U32 dec32table[] = { 0, 1, 2, 1, 4, 4, 4, 4 };   /* added */
764          static const int dec64table[] = { 8, 8, 8, 7, 8, 9,10,11 };   /* subtracted */
765          int const sub2 = dec64table[offset];
766          (*op)[0] = (*ip)[0];
767          (*op)[1] = (*ip)[1];
768          (*op)[2] = (*ip)[2];
769          (*op)[3] = (*ip)[3];
770          *ip += dec32table[offset];
771          ZSTD_copy4(*op+4, *ip);
772          *ip -= sub2;
773      } else {
774          ZSTD_copy8(*op, *ip);
775      }
776      *ip += 8;
777      *op += 8;
778      assert(*op - *ip >= 8);
779  }
780  
781  /*! ZSTD_safecopy() :
782   *  Specialized version of memcpy() that is allowed to READ up to WILDCOPY_OVERLENGTH past the input buffer
783   *  and write up to 16 bytes past oend_w (op >= oend_w is allowed).
784   *  This function is only called in the uncommon case where the sequence is near the end of the block. It
785   *  should be fast for a single long sequence, but can be slow for several short sequences.
786   *
787   *  @param ovtype controls the overlap detection
788   *         - ZSTD_no_overlap: The source and destination are guaranteed to be at least WILDCOPY_VECLEN bytes apart.
789   *         - ZSTD_overlap_src_before_dst: The src and dst may overlap and may be any distance apart.
790   *           The src buffer must be before the dst buffer.
791   */
ZSTD_safecopy(BYTE * op,const BYTE * const oend_w,BYTE const * ip,ptrdiff_t length,ZSTD_overlap_e ovtype)792  static void ZSTD_safecopy(BYTE* op, const BYTE* const oend_w, BYTE const* ip, ptrdiff_t length, ZSTD_overlap_e ovtype) {
793      ptrdiff_t const diff = op - ip;
794      BYTE* const oend = op + length;
795  
796      assert((ovtype == ZSTD_no_overlap && (diff <= -8 || diff >= 8 || op >= oend_w)) ||
797             (ovtype == ZSTD_overlap_src_before_dst && diff >= 0));
798  
799      if (length < 8) {
800          /* Handle short lengths. */
801          while (op < oend) *op++ = *ip++;
802          return;
803      }
804      if (ovtype == ZSTD_overlap_src_before_dst) {
805          /* Copy 8 bytes and ensure the offset >= 8 when there can be overlap. */
806          assert(length >= 8);
807          ZSTD_overlapCopy8(&op, &ip, diff);
808          length -= 8;
809          assert(op - ip >= 8);
810          assert(op <= oend);
811      }
812  
813      if (oend <= oend_w) {
814          /* No risk of overwrite. */
815          ZSTD_wildcopy(op, ip, length, ovtype);
816          return;
817      }
818      if (op <= oend_w) {
819          /* Wildcopy until we get close to the end. */
820          assert(oend > oend_w);
821          ZSTD_wildcopy(op, ip, oend_w - op, ovtype);
822          ip += oend_w - op;
823          op += oend_w - op;
824      }
825      /* Handle the leftovers. */
826      while (op < oend) *op++ = *ip++;
827  }
828  
829  /* ZSTD_safecopyDstBeforeSrc():
830   * This version allows overlap with dst before src, or handles the non-overlap case with dst after src
831   * Kept separate from more common ZSTD_safecopy case to avoid performance impact to the safecopy common case */
ZSTD_safecopyDstBeforeSrc(BYTE * op,BYTE const * ip,ptrdiff_t length)832  static void ZSTD_safecopyDstBeforeSrc(BYTE* op, BYTE const* ip, ptrdiff_t length) {
833      ptrdiff_t const diff = op - ip;
834      BYTE* const oend = op + length;
835  
836      if (length < 8 || diff > -8) {
837          /* Handle short lengths, close overlaps, and dst not before src. */
838          while (op < oend) *op++ = *ip++;
839          return;
840      }
841  
842      if (op <= oend - WILDCOPY_OVERLENGTH && diff < -WILDCOPY_VECLEN) {
843          ZSTD_wildcopy(op, ip, oend - WILDCOPY_OVERLENGTH - op, ZSTD_no_overlap);
844          ip += oend - WILDCOPY_OVERLENGTH - op;
845          op += oend - WILDCOPY_OVERLENGTH - op;
846      }
847  
848      /* Handle the leftovers. */
849      while (op < oend) *op++ = *ip++;
850  }
851  
852  /* ZSTD_execSequenceEnd():
853   * This version handles cases that are near the end of the output buffer. It requires
854   * more careful checks to make sure there is no overflow. By separating out these hard
855   * and unlikely cases, we can speed up the common cases.
856   *
857   * NOTE: This function needs to be fast for a single long sequence, but doesn't need
858   * to be optimized for many small sequences, since those fall into ZSTD_execSequence().
859   */
860  FORCE_NOINLINE
ZSTD_execSequenceEnd(BYTE * op,BYTE * const oend,seq_t sequence,const BYTE ** litPtr,const BYTE * const litLimit,const BYTE * const prefixStart,const BYTE * const virtualStart,const BYTE * const dictEnd)861  size_t ZSTD_execSequenceEnd(BYTE* op,
862      BYTE* const oend, seq_t sequence,
863      const BYTE** litPtr, const BYTE* const litLimit,
864      const BYTE* const prefixStart, const BYTE* const virtualStart, const BYTE* const dictEnd)
865  {
866      BYTE* const oLitEnd = op + sequence.litLength;
867      size_t const sequenceLength = sequence.litLength + sequence.matchLength;
868      const BYTE* const iLitEnd = *litPtr + sequence.litLength;
869      const BYTE* match = oLitEnd - sequence.offset;
870      BYTE* const oend_w = oend - WILDCOPY_OVERLENGTH;
871  
872      /* bounds checks : careful of address space overflow in 32-bit mode */
873      RETURN_ERROR_IF(sequenceLength > (size_t)(oend - op), dstSize_tooSmall, "last match must fit within dstBuffer");
874      RETURN_ERROR_IF(sequence.litLength > (size_t)(litLimit - *litPtr), corruption_detected, "try to read beyond literal buffer");
875      assert(op < op + sequenceLength);
876      assert(oLitEnd < op + sequenceLength);
877  
878      /* copy literals */
879      ZSTD_safecopy(op, oend_w, *litPtr, sequence.litLength, ZSTD_no_overlap);
880      op = oLitEnd;
881      *litPtr = iLitEnd;
882  
883      /* copy Match */
884      if (sequence.offset > (size_t)(oLitEnd - prefixStart)) {
885          /* offset beyond prefix */
886          RETURN_ERROR_IF(sequence.offset > (size_t)(oLitEnd - virtualStart), corruption_detected, "");
887          match = dictEnd - (prefixStart - match);
888          if (match + sequence.matchLength <= dictEnd) {
889              ZSTD_memmove(oLitEnd, match, sequence.matchLength);
890              return sequenceLength;
891          }
892          /* span extDict & currentPrefixSegment */
893          {   size_t const length1 = dictEnd - match;
894          ZSTD_memmove(oLitEnd, match, length1);
895          op = oLitEnd + length1;
896          sequence.matchLength -= length1;
897          match = prefixStart;
898          }
899      }
900      ZSTD_safecopy(op, oend_w, match, sequence.matchLength, ZSTD_overlap_src_before_dst);
901      return sequenceLength;
902  }
903  
904  /* ZSTD_execSequenceEndSplitLitBuffer():
905   * This version is intended to be used during instances where the litBuffer is still split.  It is kept separate to avoid performance impact for the good case.
906   */
907  FORCE_NOINLINE
ZSTD_execSequenceEndSplitLitBuffer(BYTE * op,BYTE * const oend,const BYTE * const oend_w,seq_t sequence,const BYTE ** litPtr,const BYTE * const litLimit,const BYTE * const prefixStart,const BYTE * const virtualStart,const BYTE * const dictEnd)908  size_t ZSTD_execSequenceEndSplitLitBuffer(BYTE* op,
909      BYTE* const oend, const BYTE* const oend_w, seq_t sequence,
910      const BYTE** litPtr, const BYTE* const litLimit,
911      const BYTE* const prefixStart, const BYTE* const virtualStart, const BYTE* const dictEnd)
912  {
913      BYTE* const oLitEnd = op + sequence.litLength;
914      size_t const sequenceLength = sequence.litLength + sequence.matchLength;
915      const BYTE* const iLitEnd = *litPtr + sequence.litLength;
916      const BYTE* match = oLitEnd - sequence.offset;
917  
918  
919      /* bounds checks : careful of address space overflow in 32-bit mode */
920      RETURN_ERROR_IF(sequenceLength > (size_t)(oend - op), dstSize_tooSmall, "last match must fit within dstBuffer");
921      RETURN_ERROR_IF(sequence.litLength > (size_t)(litLimit - *litPtr), corruption_detected, "try to read beyond literal buffer");
922      assert(op < op + sequenceLength);
923      assert(oLitEnd < op + sequenceLength);
924  
925      /* copy literals */
926      RETURN_ERROR_IF(op > *litPtr && op < *litPtr + sequence.litLength, dstSize_tooSmall, "output should not catch up to and overwrite literal buffer");
927      ZSTD_safecopyDstBeforeSrc(op, *litPtr, sequence.litLength);
928      op = oLitEnd;
929      *litPtr = iLitEnd;
930  
931      /* copy Match */
932      if (sequence.offset > (size_t)(oLitEnd - prefixStart)) {
933          /* offset beyond prefix */
934          RETURN_ERROR_IF(sequence.offset > (size_t)(oLitEnd - virtualStart), corruption_detected, "");
935          match = dictEnd - (prefixStart - match);
936          if (match + sequence.matchLength <= dictEnd) {
937              ZSTD_memmove(oLitEnd, match, sequence.matchLength);
938              return sequenceLength;
939          }
940          /* span extDict & currentPrefixSegment */
941          {   size_t const length1 = dictEnd - match;
942          ZSTD_memmove(oLitEnd, match, length1);
943          op = oLitEnd + length1;
944          sequence.matchLength -= length1;
945          match = prefixStart;
946          }
947      }
948      ZSTD_safecopy(op, oend_w, match, sequence.matchLength, ZSTD_overlap_src_before_dst);
949      return sequenceLength;
950  }
951  
952  HINT_INLINE
ZSTD_execSequence(BYTE * op,BYTE * const oend,seq_t sequence,const BYTE ** litPtr,const BYTE * const litLimit,const BYTE * const prefixStart,const BYTE * const virtualStart,const BYTE * const dictEnd)953  size_t ZSTD_execSequence(BYTE* op,
954      BYTE* const oend, seq_t sequence,
955      const BYTE** litPtr, const BYTE* const litLimit,
956      const BYTE* const prefixStart, const BYTE* const virtualStart, const BYTE* const dictEnd)
957  {
958      BYTE* const oLitEnd = op + sequence.litLength;
959      size_t const sequenceLength = sequence.litLength + sequence.matchLength;
960      BYTE* const oMatchEnd = op + sequenceLength;   /* risk : address space overflow (32-bits) */
961      BYTE* const oend_w = oend - WILDCOPY_OVERLENGTH;   /* risk : address space underflow on oend=NULL */
962      const BYTE* const iLitEnd = *litPtr + sequence.litLength;
963      const BYTE* match = oLitEnd - sequence.offset;
964  
965      assert(op != NULL /* Precondition */);
966      assert(oend_w < oend /* No underflow */);
967      /* Handle edge cases in a slow path:
968       *   - Read beyond end of literals
969       *   - Match end is within WILDCOPY_OVERLIMIT of oend
970       *   - 32-bit mode and the match length overflows
971       */
972      if (UNLIKELY(
973          iLitEnd > litLimit ||
974          oMatchEnd > oend_w ||
975          (MEM_32bits() && (size_t)(oend - op) < sequenceLength + WILDCOPY_OVERLENGTH)))
976          return ZSTD_execSequenceEnd(op, oend, sequence, litPtr, litLimit, prefixStart, virtualStart, dictEnd);
977  
978      /* Assumptions (everything else goes into ZSTD_execSequenceEnd()) */
979      assert(op <= oLitEnd /* No overflow */);
980      assert(oLitEnd < oMatchEnd /* Non-zero match & no overflow */);
981      assert(oMatchEnd <= oend /* No underflow */);
982      assert(iLitEnd <= litLimit /* Literal length is in bounds */);
983      assert(oLitEnd <= oend_w /* Can wildcopy literals */);
984      assert(oMatchEnd <= oend_w /* Can wildcopy matches */);
985  
986      /* Copy Literals:
987       * Split out litLength <= 16 since it is nearly always true. +1.6% on gcc-9.
988       * We likely don't need the full 32-byte wildcopy.
989       */
990      assert(WILDCOPY_OVERLENGTH >= 16);
991      ZSTD_copy16(op, (*litPtr));
992      if (UNLIKELY(sequence.litLength > 16)) {
993          ZSTD_wildcopy(op + 16, (*litPtr) + 16, sequence.litLength - 16, ZSTD_no_overlap);
994      }
995      op = oLitEnd;
996      *litPtr = iLitEnd;   /* update for next sequence */
997  
998      /* Copy Match */
999      if (sequence.offset > (size_t)(oLitEnd - prefixStart)) {
1000          /* offset beyond prefix -> go into extDict */
1001          RETURN_ERROR_IF(UNLIKELY(sequence.offset > (size_t)(oLitEnd - virtualStart)), corruption_detected, "");
1002          match = dictEnd + (match - prefixStart);
1003          if (match + sequence.matchLength <= dictEnd) {
1004              ZSTD_memmove(oLitEnd, match, sequence.matchLength);
1005              return sequenceLength;
1006          }
1007          /* span extDict & currentPrefixSegment */
1008          {   size_t const length1 = dictEnd - match;
1009          ZSTD_memmove(oLitEnd, match, length1);
1010          op = oLitEnd + length1;
1011          sequence.matchLength -= length1;
1012          match = prefixStart;
1013          }
1014      }
1015      /* Match within prefix of 1 or more bytes */
1016      assert(op <= oMatchEnd);
1017      assert(oMatchEnd <= oend_w);
1018      assert(match >= prefixStart);
1019      assert(sequence.matchLength >= 1);
1020  
1021      /* Nearly all offsets are >= WILDCOPY_VECLEN bytes, which means we can use wildcopy
1022       * without overlap checking.
1023       */
1024      if (LIKELY(sequence.offset >= WILDCOPY_VECLEN)) {
1025          /* We bet on a full wildcopy for matches, since we expect matches to be
1026           * longer than literals (in general). In silesia, ~10% of matches are longer
1027           * than 16 bytes.
1028           */
1029          ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength, ZSTD_no_overlap);
1030          return sequenceLength;
1031      }
1032      assert(sequence.offset < WILDCOPY_VECLEN);
1033  
1034      /* Copy 8 bytes and spread the offset to be >= 8. */
1035      ZSTD_overlapCopy8(&op, &match, sequence.offset);
1036  
1037      /* If the match length is > 8 bytes, then continue with the wildcopy. */
1038      if (sequence.matchLength > 8) {
1039          assert(op < oMatchEnd);
1040          ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength - 8, ZSTD_overlap_src_before_dst);
1041      }
1042      return sequenceLength;
1043  }
1044  
1045  HINT_INLINE
ZSTD_execSequenceSplitLitBuffer(BYTE * op,BYTE * const oend,const BYTE * const oend_w,seq_t sequence,const BYTE ** litPtr,const BYTE * const litLimit,const BYTE * const prefixStart,const BYTE * const virtualStart,const BYTE * const dictEnd)1046  size_t ZSTD_execSequenceSplitLitBuffer(BYTE* op,
1047      BYTE* const oend, const BYTE* const oend_w, seq_t sequence,
1048      const BYTE** litPtr, const BYTE* const litLimit,
1049      const BYTE* const prefixStart, const BYTE* const virtualStart, const BYTE* const dictEnd)
1050  {
1051      BYTE* const oLitEnd = op + sequence.litLength;
1052      size_t const sequenceLength = sequence.litLength + sequence.matchLength;
1053      BYTE* const oMatchEnd = op + sequenceLength;   /* risk : address space overflow (32-bits) */
1054      const BYTE* const iLitEnd = *litPtr + sequence.litLength;
1055      const BYTE* match = oLitEnd - sequence.offset;
1056  
1057      assert(op != NULL /* Precondition */);
1058      assert(oend_w < oend /* No underflow */);
1059      /* Handle edge cases in a slow path:
1060       *   - Read beyond end of literals
1061       *   - Match end is within WILDCOPY_OVERLIMIT of oend
1062       *   - 32-bit mode and the match length overflows
1063       */
1064      if (UNLIKELY(
1065              iLitEnd > litLimit ||
1066              oMatchEnd > oend_w ||
1067              (MEM_32bits() && (size_t)(oend - op) < sequenceLength + WILDCOPY_OVERLENGTH)))
1068          return ZSTD_execSequenceEndSplitLitBuffer(op, oend, oend_w, sequence, litPtr, litLimit, prefixStart, virtualStart, dictEnd);
1069  
1070      /* Assumptions (everything else goes into ZSTD_execSequenceEnd()) */
1071      assert(op <= oLitEnd /* No overflow */);
1072      assert(oLitEnd < oMatchEnd /* Non-zero match & no overflow */);
1073      assert(oMatchEnd <= oend /* No underflow */);
1074      assert(iLitEnd <= litLimit /* Literal length is in bounds */);
1075      assert(oLitEnd <= oend_w /* Can wildcopy literals */);
1076      assert(oMatchEnd <= oend_w /* Can wildcopy matches */);
1077  
1078      /* Copy Literals:
1079       * Split out litLength <= 16 since it is nearly always true. +1.6% on gcc-9.
1080       * We likely don't need the full 32-byte wildcopy.
1081       */
1082      assert(WILDCOPY_OVERLENGTH >= 16);
1083      ZSTD_copy16(op, (*litPtr));
1084      if (UNLIKELY(sequence.litLength > 16)) {
1085          ZSTD_wildcopy(op+16, (*litPtr)+16, sequence.litLength-16, ZSTD_no_overlap);
1086      }
1087      op = oLitEnd;
1088      *litPtr = iLitEnd;   /* update for next sequence */
1089  
1090      /* Copy Match */
1091      if (sequence.offset > (size_t)(oLitEnd - prefixStart)) {
1092          /* offset beyond prefix -> go into extDict */
1093          RETURN_ERROR_IF(UNLIKELY(sequence.offset > (size_t)(oLitEnd - virtualStart)), corruption_detected, "");
1094          match = dictEnd + (match - prefixStart);
1095          if (match + sequence.matchLength <= dictEnd) {
1096              ZSTD_memmove(oLitEnd, match, sequence.matchLength);
1097              return sequenceLength;
1098          }
1099          /* span extDict & currentPrefixSegment */
1100          {   size_t const length1 = dictEnd - match;
1101              ZSTD_memmove(oLitEnd, match, length1);
1102              op = oLitEnd + length1;
1103              sequence.matchLength -= length1;
1104              match = prefixStart;
1105      }   }
1106      /* Match within prefix of 1 or more bytes */
1107      assert(op <= oMatchEnd);
1108      assert(oMatchEnd <= oend_w);
1109      assert(match >= prefixStart);
1110      assert(sequence.matchLength >= 1);
1111  
1112      /* Nearly all offsets are >= WILDCOPY_VECLEN bytes, which means we can use wildcopy
1113       * without overlap checking.
1114       */
1115      if (LIKELY(sequence.offset >= WILDCOPY_VECLEN)) {
1116          /* We bet on a full wildcopy for matches, since we expect matches to be
1117           * longer than literals (in general). In silesia, ~10% of matches are longer
1118           * than 16 bytes.
1119           */
1120          ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength, ZSTD_no_overlap);
1121          return sequenceLength;
1122      }
1123      assert(sequence.offset < WILDCOPY_VECLEN);
1124  
1125      /* Copy 8 bytes and spread the offset to be >= 8. */
1126      ZSTD_overlapCopy8(&op, &match, sequence.offset);
1127  
1128      /* If the match length is > 8 bytes, then continue with the wildcopy. */
1129      if (sequence.matchLength > 8) {
1130          assert(op < oMatchEnd);
1131          ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength-8, ZSTD_overlap_src_before_dst);
1132      }
1133      return sequenceLength;
1134  }
1135  
1136  
1137  static void
ZSTD_initFseState(ZSTD_fseState * DStatePtr,BIT_DStream_t * bitD,const ZSTD_seqSymbol * dt)1138  ZSTD_initFseState(ZSTD_fseState* DStatePtr, BIT_DStream_t* bitD, const ZSTD_seqSymbol* dt)
1139  {
1140      const void* ptr = dt;
1141      const ZSTD_seqSymbol_header* const DTableH = (const ZSTD_seqSymbol_header*)ptr;
1142      DStatePtr->state = BIT_readBits(bitD, DTableH->tableLog);
1143      DEBUGLOG(6, "ZSTD_initFseState : val=%u using %u bits",
1144                  (U32)DStatePtr->state, DTableH->tableLog);
1145      BIT_reloadDStream(bitD);
1146      DStatePtr->table = dt + 1;
1147  }
1148  
1149  FORCE_INLINE_TEMPLATE void
ZSTD_updateFseStateWithDInfo(ZSTD_fseState * DStatePtr,BIT_DStream_t * bitD,U16 nextState,U32 nbBits)1150  ZSTD_updateFseStateWithDInfo(ZSTD_fseState* DStatePtr, BIT_DStream_t* bitD, U16 nextState, U32 nbBits)
1151  {
1152      size_t const lowBits = BIT_readBits(bitD, nbBits);
1153      DStatePtr->state = nextState + lowBits;
1154  }
1155  
1156  /* We need to add at most (ZSTD_WINDOWLOG_MAX_32 - 1) bits to read the maximum
1157   * offset bits. But we can only read at most (STREAM_ACCUMULATOR_MIN_32 - 1)
1158   * bits before reloading. This value is the maximum number of bytes we read
1159   * after reloading when we are decoding long offsets.
1160   */
1161  #define LONG_OFFSETS_MAX_EXTRA_BITS_32                       \
1162      (ZSTD_WINDOWLOG_MAX_32 > STREAM_ACCUMULATOR_MIN_32       \
1163          ? ZSTD_WINDOWLOG_MAX_32 - STREAM_ACCUMULATOR_MIN_32  \
1164          : 0)
1165  
1166  typedef enum { ZSTD_lo_isRegularOffset, ZSTD_lo_isLongOffset=1 } ZSTD_longOffset_e;
1167  
1168  FORCE_INLINE_TEMPLATE seq_t
ZSTD_decodeSequence(seqState_t * seqState,const ZSTD_longOffset_e longOffsets)1169  ZSTD_decodeSequence(seqState_t* seqState, const ZSTD_longOffset_e longOffsets)
1170  {
1171      seq_t seq;
1172      const ZSTD_seqSymbol* const llDInfo = seqState->stateLL.table + seqState->stateLL.state;
1173      const ZSTD_seqSymbol* const mlDInfo = seqState->stateML.table + seqState->stateML.state;
1174      const ZSTD_seqSymbol* const ofDInfo = seqState->stateOffb.table + seqState->stateOffb.state;
1175      seq.matchLength = mlDInfo->baseValue;
1176      seq.litLength = llDInfo->baseValue;
1177      {   U32 const ofBase = ofDInfo->baseValue;
1178          BYTE const llBits = llDInfo->nbAdditionalBits;
1179          BYTE const mlBits = mlDInfo->nbAdditionalBits;
1180          BYTE const ofBits = ofDInfo->nbAdditionalBits;
1181          BYTE const totalBits = llBits+mlBits+ofBits;
1182  
1183          U16 const llNext = llDInfo->nextState;
1184          U16 const mlNext = mlDInfo->nextState;
1185          U16 const ofNext = ofDInfo->nextState;
1186          U32 const llnbBits = llDInfo->nbBits;
1187          U32 const mlnbBits = mlDInfo->nbBits;
1188          U32 const ofnbBits = ofDInfo->nbBits;
1189          /*
1190           * As gcc has better branch and block analyzers, sometimes it is only
1191           * valuable to mark likelyness for clang, it gives around 3-4% of
1192           * performance.
1193           */
1194  
1195          /* sequence */
1196          {   size_t offset;
1197      #if defined(__clang__)
1198              if (LIKELY(ofBits > 1)) {
1199      #else
1200              if (ofBits > 1) {
1201      #endif
1202                  ZSTD_STATIC_ASSERT(ZSTD_lo_isLongOffset == 1);
1203                  ZSTD_STATIC_ASSERT(LONG_OFFSETS_MAX_EXTRA_BITS_32 == 5);
1204                  assert(ofBits <= MaxOff);
1205                  if (MEM_32bits() && longOffsets && (ofBits >= STREAM_ACCUMULATOR_MIN_32)) {
1206                      U32 const extraBits = ofBits - MIN(ofBits, 32 - seqState->DStream.bitsConsumed);
1207                      offset = ofBase + (BIT_readBitsFast(&seqState->DStream, ofBits - extraBits) << extraBits);
1208                      BIT_reloadDStream(&seqState->DStream);
1209                      if (extraBits) offset += BIT_readBitsFast(&seqState->DStream, extraBits);
1210                      assert(extraBits <= LONG_OFFSETS_MAX_EXTRA_BITS_32);   /* to avoid another reload */
1211                  } else {
1212                      offset = ofBase + BIT_readBitsFast(&seqState->DStream, ofBits/*>0*/);   /* <=  (ZSTD_WINDOWLOG_MAX-1) bits */
1213                      if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream);
1214                  }
1215                  seqState->prevOffset[2] = seqState->prevOffset[1];
1216                  seqState->prevOffset[1] = seqState->prevOffset[0];
1217                  seqState->prevOffset[0] = offset;
1218              } else {
1219                  U32 const ll0 = (llDInfo->baseValue == 0);
1220                  if (LIKELY((ofBits == 0))) {
1221                      offset = seqState->prevOffset[ll0];
1222                      seqState->prevOffset[1] = seqState->prevOffset[!ll0];
1223                      seqState->prevOffset[0] = offset;
1224                  } else {
1225                      offset = ofBase + ll0 + BIT_readBitsFast(&seqState->DStream, 1);
1226                      {   size_t temp = (offset==3) ? seqState->prevOffset[0] - 1 : seqState->prevOffset[offset];
1227                          temp += !temp;   /* 0 is not valid; input is corrupted; force offset to 1 */
1228                          if (offset != 1) seqState->prevOffset[2] = seqState->prevOffset[1];
1229                          seqState->prevOffset[1] = seqState->prevOffset[0];
1230                          seqState->prevOffset[0] = offset = temp;
1231              }   }   }
1232              seq.offset = offset;
1233          }
1234  
1235      #if defined(__clang__)
1236          if (UNLIKELY(mlBits > 0))
1237      #else
1238          if (mlBits > 0)
1239      #endif
1240              seq.matchLength += BIT_readBitsFast(&seqState->DStream, mlBits/*>0*/);
1241  
1242          if (MEM_32bits() && (mlBits+llBits >= STREAM_ACCUMULATOR_MIN_32-LONG_OFFSETS_MAX_EXTRA_BITS_32))
1243              BIT_reloadDStream(&seqState->DStream);
1244          if (MEM_64bits() && UNLIKELY(totalBits >= STREAM_ACCUMULATOR_MIN_64-(LLFSELog+MLFSELog+OffFSELog)))
1245              BIT_reloadDStream(&seqState->DStream);
1246          /* Ensure there are enough bits to read the rest of data in 64-bit mode. */
1247          ZSTD_STATIC_ASSERT(16+LLFSELog+MLFSELog+OffFSELog < STREAM_ACCUMULATOR_MIN_64);
1248  
1249      #if defined(__clang__)
1250          if (UNLIKELY(llBits > 0))
1251      #else
1252          if (llBits > 0)
1253      #endif
1254              seq.litLength += BIT_readBitsFast(&seqState->DStream, llBits/*>0*/);
1255  
1256          if (MEM_32bits())
1257              BIT_reloadDStream(&seqState->DStream);
1258  
1259          DEBUGLOG(6, "seq: litL=%u, matchL=%u, offset=%u",
1260                      (U32)seq.litLength, (U32)seq.matchLength, (U32)seq.offset);
1261  
1262          ZSTD_updateFseStateWithDInfo(&seqState->stateLL, &seqState->DStream, llNext, llnbBits);    /* <=  9 bits */
1263          ZSTD_updateFseStateWithDInfo(&seqState->stateML, &seqState->DStream, mlNext, mlnbBits);    /* <=  9 bits */
1264          if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream);    /* <= 18 bits */
1265          ZSTD_updateFseStateWithDInfo(&seqState->stateOffb, &seqState->DStream, ofNext, ofnbBits);  /* <=  8 bits */
1266      }
1267  
1268      return seq;
1269  }
1270  
1271  #ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
1272  MEM_STATIC int ZSTD_dictionaryIsActive(ZSTD_DCtx const* dctx, BYTE const* prefixStart, BYTE const* oLitEnd)
1273  {
1274      size_t const windowSize = dctx->fParams.windowSize;
1275      /* No dictionary used. */
1276      if (dctx->dictContentEndForFuzzing == NULL) return 0;
1277      /* Dictionary is our prefix. */
1278      if (prefixStart == dctx->dictContentBeginForFuzzing) return 1;
1279      /* Dictionary is not our ext-dict. */
1280      if (dctx->dictEnd != dctx->dictContentEndForFuzzing) return 0;
1281      /* Dictionary is not within our window size. */
1282      if ((size_t)(oLitEnd - prefixStart) >= windowSize) return 0;
1283      /* Dictionary is active. */
1284      return 1;
1285  }
1286  
1287  MEM_STATIC void ZSTD_assertValidSequence(
1288          ZSTD_DCtx const* dctx,
1289          BYTE const* op, BYTE const* oend,
1290          seq_t const seq,
1291          BYTE const* prefixStart, BYTE const* virtualStart)
1292  {
1293  #if DEBUGLEVEL >= 1
1294      size_t const windowSize = dctx->fParams.windowSize;
1295      size_t const sequenceSize = seq.litLength + seq.matchLength;
1296      BYTE const* const oLitEnd = op + seq.litLength;
1297      DEBUGLOG(6, "Checking sequence: litL=%u matchL=%u offset=%u",
1298              (U32)seq.litLength, (U32)seq.matchLength, (U32)seq.offset);
1299      assert(op <= oend);
1300      assert((size_t)(oend - op) >= sequenceSize);
1301      assert(sequenceSize <= ZSTD_BLOCKSIZE_MAX);
1302      if (ZSTD_dictionaryIsActive(dctx, prefixStart, oLitEnd)) {
1303          size_t const dictSize = (size_t)((char const*)dctx->dictContentEndForFuzzing - (char const*)dctx->dictContentBeginForFuzzing);
1304          /* Offset must be within the dictionary. */
1305          assert(seq.offset <= (size_t)(oLitEnd - virtualStart));
1306          assert(seq.offset <= windowSize + dictSize);
1307      } else {
1308          /* Offset must be within our window. */
1309          assert(seq.offset <= windowSize);
1310      }
1311  #else
1312      (void)dctx, (void)op, (void)oend, (void)seq, (void)prefixStart, (void)virtualStart;
1313  #endif
1314  }
1315  #endif
1316  
1317  #ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG
1318  
1319  
1320  FORCE_INLINE_TEMPLATE size_t
1321  DONT_VECTORIZE
1322  ZSTD_decompressSequences_bodySplitLitBuffer( ZSTD_DCtx* dctx,
1323                                 void* dst, size_t maxDstSize,
1324                           const void* seqStart, size_t seqSize, int nbSeq,
1325                           const ZSTD_longOffset_e isLongOffset,
1326                           const int frame)
1327  {
1328      const BYTE* ip = (const BYTE*)seqStart;
1329      const BYTE* const iend = ip + seqSize;
1330      BYTE* const ostart = (BYTE*)dst;
1331      BYTE* const oend = ostart + maxDstSize;
1332      BYTE* op = ostart;
1333      const BYTE* litPtr = dctx->litPtr;
1334      const BYTE* litBufferEnd = dctx->litBufferEnd;
1335      const BYTE* const prefixStart = (const BYTE*) (dctx->prefixStart);
1336      const BYTE* const vBase = (const BYTE*) (dctx->virtualStart);
1337      const BYTE* const dictEnd = (const BYTE*) (dctx->dictEnd);
1338      DEBUGLOG(5, "ZSTD_decompressSequences_bodySplitLitBuffer");
1339      (void)frame;
1340  
1341      /* Regen sequences */
1342      if (nbSeq) {
1343          seqState_t seqState;
1344          dctx->fseEntropy = 1;
1345          { U32 i; for (i=0; i<ZSTD_REP_NUM; i++) seqState.prevOffset[i] = dctx->entropy.rep[i]; }
1346          RETURN_ERROR_IF(
1347              ERR_isError(BIT_initDStream(&seqState.DStream, ip, iend-ip)),
1348              corruption_detected, "");
1349          ZSTD_initFseState(&seqState.stateLL, &seqState.DStream, dctx->LLTptr);
1350          ZSTD_initFseState(&seqState.stateOffb, &seqState.DStream, dctx->OFTptr);
1351          ZSTD_initFseState(&seqState.stateML, &seqState.DStream, dctx->MLTptr);
1352          assert(dst != NULL);
1353  
1354          ZSTD_STATIC_ASSERT(
1355                  BIT_DStream_unfinished < BIT_DStream_completed &&
1356                  BIT_DStream_endOfBuffer < BIT_DStream_completed &&
1357                  BIT_DStream_completed < BIT_DStream_overflow);
1358  
1359          /* decompress without overrunning litPtr begins */
1360          {
1361              seq_t sequence = ZSTD_decodeSequence(&seqState, isLongOffset);
1362              /* Align the decompression loop to 32 + 16 bytes.
1363                  *
1364                  * zstd compiled with gcc-9 on an Intel i9-9900k shows 10% decompression
1365                  * speed swings based on the alignment of the decompression loop. This
1366                  * performance swing is caused by parts of the decompression loop falling
1367                  * out of the DSB. The entire decompression loop should fit in the DSB,
1368                  * when it can't we get much worse performance. You can measure if you've
1369                  * hit the good case or the bad case with this perf command for some
1370                  * compressed file test.zst:
1371                  *
1372                  *   perf stat -e cycles -e instructions -e idq.all_dsb_cycles_any_uops \
1373                  *             -e idq.all_mite_cycles_any_uops -- ./zstd -tq test.zst
1374                  *
1375                  * If you see most cycles served out of the MITE you've hit the bad case.
1376                  * If you see most cycles served out of the DSB you've hit the good case.
1377                  * If it is pretty even then you may be in an okay case.
1378                  *
1379                  * This issue has been reproduced on the following CPUs:
1380                  *   - Kabylake: Macbook Pro (15-inch, 2019) 2.4 GHz Intel Core i9
1381                  *               Use Instruments->Counters to get DSB/MITE cycles.
1382                  *               I never got performance swings, but I was able to
1383                  *               go from the good case of mostly DSB to half of the
1384                  *               cycles served from MITE.
1385                  *   - Coffeelake: Intel i9-9900k
1386                  *   - Coffeelake: Intel i7-9700k
1387                  *
1388                  * I haven't been able to reproduce the instability or DSB misses on any
1389                  * of the following CPUS:
1390                  *   - Haswell
1391                  *   - Broadwell: Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GH
1392                  *   - Skylake
1393                  *
1394                  * Alignment is done for each of the three major decompression loops:
1395                  *   - ZSTD_decompressSequences_bodySplitLitBuffer - presplit section of the literal buffer
1396                  *   - ZSTD_decompressSequences_bodySplitLitBuffer - postsplit section of the literal buffer
1397                  *   - ZSTD_decompressSequences_body
1398                  * Alignment choices are made to minimize large swings on bad cases and influence on performance
1399                  * from changes external to this code, rather than to overoptimize on the current commit.
1400                  *
1401                  * If you are seeing performance stability this script can help test.
1402                  * It tests on 4 commits in zstd where I saw performance change.
1403                  *
1404                  *   https://gist.github.com/terrelln/9889fc06a423fd5ca6e99351564473f4
1405                  */
1406  #if defined(__x86_64__)
1407              __asm__(".p2align 6");
1408  #  if __GNUC__ >= 7
1409  	    /* good for gcc-7, gcc-9, and gcc-11 */
1410              __asm__("nop");
1411              __asm__(".p2align 5");
1412              __asm__("nop");
1413              __asm__(".p2align 4");
1414  #    if __GNUC__ == 8 || __GNUC__ == 10
1415  	    /* good for gcc-8 and gcc-10 */
1416              __asm__("nop");
1417              __asm__(".p2align 3");
1418  #    endif
1419  #  endif
1420  #endif
1421  
1422              /* Handle the initial state where litBuffer is currently split between dst and litExtraBuffer */
1423              for (; litPtr + sequence.litLength <= dctx->litBufferEnd; ) {
1424                  size_t const oneSeqSize = ZSTD_execSequenceSplitLitBuffer(op, oend, litPtr + sequence.litLength - WILDCOPY_OVERLENGTH, sequence, &litPtr, litBufferEnd, prefixStart, vBase, dictEnd);
1425  #if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
1426                  assert(!ZSTD_isError(oneSeqSize));
1427                  if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequence, prefixStart, vBase);
1428  #endif
1429                  if (UNLIKELY(ZSTD_isError(oneSeqSize)))
1430                      return oneSeqSize;
1431                  DEBUGLOG(6, "regenerated sequence size : %u", (U32)oneSeqSize);
1432                  op += oneSeqSize;
1433                  if (UNLIKELY(!--nbSeq))
1434                      break;
1435                  BIT_reloadDStream(&(seqState.DStream));
1436                  sequence = ZSTD_decodeSequence(&seqState, isLongOffset);
1437              }
1438  
1439              /* If there are more sequences, they will need to read literals from litExtraBuffer; copy over the remainder from dst and update litPtr and litEnd */
1440              if (nbSeq > 0) {
1441                  const size_t leftoverLit = dctx->litBufferEnd - litPtr;
1442                  if (leftoverLit)
1443                  {
1444                      RETURN_ERROR_IF(leftoverLit > (size_t)(oend - op), dstSize_tooSmall, "remaining lit must fit within dstBuffer");
1445                      ZSTD_safecopyDstBeforeSrc(op, litPtr, leftoverLit);
1446                      sequence.litLength -= leftoverLit;
1447                      op += leftoverLit;
1448                  }
1449                  litPtr = dctx->litExtraBuffer;
1450                  litBufferEnd = dctx->litExtraBuffer + ZSTD_LITBUFFEREXTRASIZE;
1451                  dctx->litBufferLocation = ZSTD_not_in_dst;
1452                  {
1453                      size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequence, &litPtr, litBufferEnd, prefixStart, vBase, dictEnd);
1454  #if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
1455                      assert(!ZSTD_isError(oneSeqSize));
1456                      if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequence, prefixStart, vBase);
1457  #endif
1458                      if (UNLIKELY(ZSTD_isError(oneSeqSize)))
1459                          return oneSeqSize;
1460                      DEBUGLOG(6, "regenerated sequence size : %u", (U32)oneSeqSize);
1461                      op += oneSeqSize;
1462                      if (--nbSeq)
1463                          BIT_reloadDStream(&(seqState.DStream));
1464                  }
1465              }
1466          }
1467  
1468          if (nbSeq > 0) /* there is remaining lit from extra buffer */
1469          {
1470  
1471  #if defined(__x86_64__)
1472              __asm__(".p2align 6");
1473              __asm__("nop");
1474  #  if __GNUC__ != 7
1475              /* worse for gcc-7 better for gcc-8, gcc-9, and gcc-10 and clang */
1476              __asm__(".p2align 4");
1477              __asm__("nop");
1478              __asm__(".p2align 3");
1479  #  elif __GNUC__ >= 11
1480              __asm__(".p2align 3");
1481  #  else
1482              __asm__(".p2align 5");
1483              __asm__("nop");
1484              __asm__(".p2align 3");
1485  #  endif
1486  #endif
1487  
1488              for (; ; ) {
1489                  seq_t const sequence = ZSTD_decodeSequence(&seqState, isLongOffset);
1490                  size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequence, &litPtr, litBufferEnd, prefixStart, vBase, dictEnd);
1491  #if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
1492                  assert(!ZSTD_isError(oneSeqSize));
1493                  if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequence, prefixStart, vBase);
1494  #endif
1495                  if (UNLIKELY(ZSTD_isError(oneSeqSize)))
1496                      return oneSeqSize;
1497                  DEBUGLOG(6, "regenerated sequence size : %u", (U32)oneSeqSize);
1498                  op += oneSeqSize;
1499                  if (UNLIKELY(!--nbSeq))
1500                      break;
1501                  BIT_reloadDStream(&(seqState.DStream));
1502              }
1503          }
1504  
1505          /* check if reached exact end */
1506          DEBUGLOG(5, "ZSTD_decompressSequences_bodySplitLitBuffer: after decode loop, remaining nbSeq : %i", nbSeq);
1507          RETURN_ERROR_IF(nbSeq, corruption_detected, "");
1508          RETURN_ERROR_IF(BIT_reloadDStream(&seqState.DStream) < BIT_DStream_completed, corruption_detected, "");
1509          /* save reps for next block */
1510          { U32 i; for (i=0; i<ZSTD_REP_NUM; i++) dctx->entropy.rep[i] = (U32)(seqState.prevOffset[i]); }
1511      }
1512  
1513      /* last literal segment */
1514      if (dctx->litBufferLocation == ZSTD_split)  /* split hasn't been reached yet, first get dst then copy litExtraBuffer */
1515      {
1516          size_t const lastLLSize = litBufferEnd - litPtr;
1517          RETURN_ERROR_IF(lastLLSize > (size_t)(oend - op), dstSize_tooSmall, "");
1518          if (op != NULL) {
1519              ZSTD_memmove(op, litPtr, lastLLSize);
1520              op += lastLLSize;
1521          }
1522          litPtr = dctx->litExtraBuffer;
1523          litBufferEnd = dctx->litExtraBuffer + ZSTD_LITBUFFEREXTRASIZE;
1524          dctx->litBufferLocation = ZSTD_not_in_dst;
1525      }
1526      {   size_t const lastLLSize = litBufferEnd - litPtr;
1527          RETURN_ERROR_IF(lastLLSize > (size_t)(oend-op), dstSize_tooSmall, "");
1528          if (op != NULL) {
1529              ZSTD_memcpy(op, litPtr, lastLLSize);
1530              op += lastLLSize;
1531          }
1532      }
1533  
1534      return op-ostart;
1535  }
1536  
1537  FORCE_INLINE_TEMPLATE size_t
1538  DONT_VECTORIZE
1539  ZSTD_decompressSequences_body(ZSTD_DCtx* dctx,
1540      void* dst, size_t maxDstSize,
1541      const void* seqStart, size_t seqSize, int nbSeq,
1542      const ZSTD_longOffset_e isLongOffset,
1543      const int frame)
1544  {
1545      const BYTE* ip = (const BYTE*)seqStart;
1546      const BYTE* const iend = ip + seqSize;
1547      BYTE* const ostart = (BYTE*)dst;
1548      BYTE* const oend = dctx->litBufferLocation == ZSTD_not_in_dst ? ostart + maxDstSize : dctx->litBuffer;
1549      BYTE* op = ostart;
1550      const BYTE* litPtr = dctx->litPtr;
1551      const BYTE* const litEnd = litPtr + dctx->litSize;
1552      const BYTE* const prefixStart = (const BYTE*)(dctx->prefixStart);
1553      const BYTE* const vBase = (const BYTE*)(dctx->virtualStart);
1554      const BYTE* const dictEnd = (const BYTE*)(dctx->dictEnd);
1555      DEBUGLOG(5, "ZSTD_decompressSequences_body");
1556      (void)frame;
1557  
1558      /* Regen sequences */
1559      if (nbSeq) {
1560          seqState_t seqState;
1561          dctx->fseEntropy = 1;
1562          { U32 i; for (i = 0; i < ZSTD_REP_NUM; i++) seqState.prevOffset[i] = dctx->entropy.rep[i]; }
1563          RETURN_ERROR_IF(
1564              ERR_isError(BIT_initDStream(&seqState.DStream, ip, iend - ip)),
1565              corruption_detected, "");
1566          ZSTD_initFseState(&seqState.stateLL, &seqState.DStream, dctx->LLTptr);
1567          ZSTD_initFseState(&seqState.stateOffb, &seqState.DStream, dctx->OFTptr);
1568          ZSTD_initFseState(&seqState.stateML, &seqState.DStream, dctx->MLTptr);
1569          assert(dst != NULL);
1570  
1571          ZSTD_STATIC_ASSERT(
1572              BIT_DStream_unfinished < BIT_DStream_completed &&
1573              BIT_DStream_endOfBuffer < BIT_DStream_completed &&
1574              BIT_DStream_completed < BIT_DStream_overflow);
1575  
1576  #if defined(__x86_64__)
1577              __asm__(".p2align 6");
1578              __asm__("nop");
1579  #  if __GNUC__ >= 7
1580              __asm__(".p2align 5");
1581              __asm__("nop");
1582              __asm__(".p2align 3");
1583  #  else
1584              __asm__(".p2align 4");
1585              __asm__("nop");
1586              __asm__(".p2align 3");
1587  #  endif
1588  #endif
1589  
1590          for ( ; ; ) {
1591              seq_t const sequence = ZSTD_decodeSequence(&seqState, isLongOffset);
1592              size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequence, &litPtr, litEnd, prefixStart, vBase, dictEnd);
1593  #if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
1594              assert(!ZSTD_isError(oneSeqSize));
1595              if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequence, prefixStart, vBase);
1596  #endif
1597              if (UNLIKELY(ZSTD_isError(oneSeqSize)))
1598                  return oneSeqSize;
1599              DEBUGLOG(6, "regenerated sequence size : %u", (U32)oneSeqSize);
1600              op += oneSeqSize;
1601              if (UNLIKELY(!--nbSeq))
1602                  break;
1603              BIT_reloadDStream(&(seqState.DStream));
1604          }
1605  
1606          /* check if reached exact end */
1607          DEBUGLOG(5, "ZSTD_decompressSequences_body: after decode loop, remaining nbSeq : %i", nbSeq);
1608          RETURN_ERROR_IF(nbSeq, corruption_detected, "");
1609          RETURN_ERROR_IF(BIT_reloadDStream(&seqState.DStream) < BIT_DStream_completed, corruption_detected, "");
1610          /* save reps for next block */
1611          { U32 i; for (i=0; i<ZSTD_REP_NUM; i++) dctx->entropy.rep[i] = (U32)(seqState.prevOffset[i]); }
1612      }
1613  
1614      /* last literal segment */
1615      {   size_t const lastLLSize = litEnd - litPtr;
1616          RETURN_ERROR_IF(lastLLSize > (size_t)(oend-op), dstSize_tooSmall, "");
1617          if (op != NULL) {
1618              ZSTD_memcpy(op, litPtr, lastLLSize);
1619              op += lastLLSize;
1620          }
1621      }
1622  
1623      return op-ostart;
1624  }
1625  
1626  static size_t
1627  ZSTD_decompressSequences_default(ZSTD_DCtx* dctx,
1628                                   void* dst, size_t maxDstSize,
1629                             const void* seqStart, size_t seqSize, int nbSeq,
1630                             const ZSTD_longOffset_e isLongOffset,
1631                             const int frame)
1632  {
1633      return ZSTD_decompressSequences_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
1634  }
1635  
1636  static size_t
1637  ZSTD_decompressSequencesSplitLitBuffer_default(ZSTD_DCtx* dctx,
1638                                                 void* dst, size_t maxDstSize,
1639                                           const void* seqStart, size_t seqSize, int nbSeq,
1640                                           const ZSTD_longOffset_e isLongOffset,
1641                                           const int frame)
1642  {
1643      return ZSTD_decompressSequences_bodySplitLitBuffer(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
1644  }
1645  #endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG */
1646  
1647  #ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT
1648  
1649  FORCE_INLINE_TEMPLATE size_t
1650  ZSTD_prefetchMatch(size_t prefetchPos, seq_t const sequence,
1651                     const BYTE* const prefixStart, const BYTE* const dictEnd)
1652  {
1653      prefetchPos += sequence.litLength;
1654      {   const BYTE* const matchBase = (sequence.offset > prefetchPos) ? dictEnd : prefixStart;
1655          const BYTE* const match = matchBase + prefetchPos - sequence.offset; /* note : this operation can overflow when seq.offset is really too large, which can only happen when input is corrupted.
1656                                                                                * No consequence though : memory address is only used for prefetching, not for dereferencing */
1657          PREFETCH_L1(match); PREFETCH_L1(match+CACHELINE_SIZE);   /* note : it's safe to invoke PREFETCH() on any memory address, including invalid ones */
1658      }
1659      return prefetchPos + sequence.matchLength;
1660  }
1661  
1662  /* This decoding function employs prefetching
1663   * to reduce latency impact of cache misses.
1664   * It's generally employed when block contains a significant portion of long-distance matches
1665   * or when coupled with a "cold" dictionary */
1666  FORCE_INLINE_TEMPLATE size_t
1667  ZSTD_decompressSequencesLong_body(
1668                                 ZSTD_DCtx* dctx,
1669                                 void* dst, size_t maxDstSize,
1670                           const void* seqStart, size_t seqSize, int nbSeq,
1671                           const ZSTD_longOffset_e isLongOffset,
1672                           const int frame)
1673  {
1674      const BYTE* ip = (const BYTE*)seqStart;
1675      const BYTE* const iend = ip + seqSize;
1676      BYTE* const ostart = (BYTE*)dst;
1677      BYTE* const oend = dctx->litBufferLocation == ZSTD_in_dst ? dctx->litBuffer : ostart + maxDstSize;
1678      BYTE* op = ostart;
1679      const BYTE* litPtr = dctx->litPtr;
1680      const BYTE* litBufferEnd = dctx->litBufferEnd;
1681      const BYTE* const prefixStart = (const BYTE*) (dctx->prefixStart);
1682      const BYTE* const dictStart = (const BYTE*) (dctx->virtualStart);
1683      const BYTE* const dictEnd = (const BYTE*) (dctx->dictEnd);
1684      (void)frame;
1685  
1686      /* Regen sequences */
1687      if (nbSeq) {
1688  #define STORED_SEQS 8
1689  #define STORED_SEQS_MASK (STORED_SEQS-1)
1690  #define ADVANCED_SEQS STORED_SEQS
1691          seq_t sequences[STORED_SEQS];
1692          int const seqAdvance = MIN(nbSeq, ADVANCED_SEQS);
1693          seqState_t seqState;
1694          int seqNb;
1695          size_t prefetchPos = (size_t)(op-prefixStart); /* track position relative to prefixStart */
1696  
1697          dctx->fseEntropy = 1;
1698          { int i; for (i=0; i<ZSTD_REP_NUM; i++) seqState.prevOffset[i] = dctx->entropy.rep[i]; }
1699          assert(dst != NULL);
1700          assert(iend >= ip);
1701          RETURN_ERROR_IF(
1702              ERR_isError(BIT_initDStream(&seqState.DStream, ip, iend-ip)),
1703              corruption_detected, "");
1704          ZSTD_initFseState(&seqState.stateLL, &seqState.DStream, dctx->LLTptr);
1705          ZSTD_initFseState(&seqState.stateOffb, &seqState.DStream, dctx->OFTptr);
1706          ZSTD_initFseState(&seqState.stateML, &seqState.DStream, dctx->MLTptr);
1707  
1708          /* prepare in advance */
1709          for (seqNb=0; (BIT_reloadDStream(&seqState.DStream) <= BIT_DStream_completed) && (seqNb<seqAdvance); seqNb++) {
1710              seq_t const sequence = ZSTD_decodeSequence(&seqState, isLongOffset);
1711              prefetchPos = ZSTD_prefetchMatch(prefetchPos, sequence, prefixStart, dictEnd);
1712              sequences[seqNb] = sequence;
1713          }
1714          RETURN_ERROR_IF(seqNb<seqAdvance, corruption_detected, "");
1715  
1716          /* decompress without stomping litBuffer */
1717          for (; (BIT_reloadDStream(&(seqState.DStream)) <= BIT_DStream_completed) && (seqNb < nbSeq); seqNb++) {
1718              seq_t sequence = ZSTD_decodeSequence(&seqState, isLongOffset);
1719              size_t oneSeqSize;
1720  
1721              if (dctx->litBufferLocation == ZSTD_split && litPtr + sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK].litLength > dctx->litBufferEnd)
1722              {
1723                  /* lit buffer is reaching split point, empty out the first buffer and transition to litExtraBuffer */
1724                  const size_t leftoverLit = dctx->litBufferEnd - litPtr;
1725                  if (leftoverLit)
1726                  {
1727                      RETURN_ERROR_IF(leftoverLit > (size_t)(oend - op), dstSize_tooSmall, "remaining lit must fit within dstBuffer");
1728                      ZSTD_safecopyDstBeforeSrc(op, litPtr, leftoverLit);
1729                      sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK].litLength -= leftoverLit;
1730                      op += leftoverLit;
1731                  }
1732                  litPtr = dctx->litExtraBuffer;
1733                  litBufferEnd = dctx->litExtraBuffer + ZSTD_LITBUFFEREXTRASIZE;
1734                  dctx->litBufferLocation = ZSTD_not_in_dst;
1735                  oneSeqSize = ZSTD_execSequence(op, oend, sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK], &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd);
1736  #if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
1737                  assert(!ZSTD_isError(oneSeqSize));
1738                  if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK], prefixStart, dictStart);
1739  #endif
1740                  if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
1741  
1742                  prefetchPos = ZSTD_prefetchMatch(prefetchPos, sequence, prefixStart, dictEnd);
1743                  sequences[seqNb & STORED_SEQS_MASK] = sequence;
1744                  op += oneSeqSize;
1745              }
1746              else
1747              {
1748                  /* lit buffer is either wholly contained in first or second split, or not split at all*/
1749                  oneSeqSize = dctx->litBufferLocation == ZSTD_split ?
1750                      ZSTD_execSequenceSplitLitBuffer(op, oend, litPtr + sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK].litLength - WILDCOPY_OVERLENGTH, sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK], &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd) :
1751                      ZSTD_execSequence(op, oend, sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK], &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd);
1752  #if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
1753                  assert(!ZSTD_isError(oneSeqSize));
1754                  if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK], prefixStart, dictStart);
1755  #endif
1756                  if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
1757  
1758                  prefetchPos = ZSTD_prefetchMatch(prefetchPos, sequence, prefixStart, dictEnd);
1759                  sequences[seqNb & STORED_SEQS_MASK] = sequence;
1760                  op += oneSeqSize;
1761              }
1762          }
1763          RETURN_ERROR_IF(seqNb<nbSeq, corruption_detected, "");
1764  
1765          /* finish queue */
1766          seqNb -= seqAdvance;
1767          for ( ; seqNb<nbSeq ; seqNb++) {
1768              seq_t *sequence = &(sequences[seqNb&STORED_SEQS_MASK]);
1769              if (dctx->litBufferLocation == ZSTD_split && litPtr + sequence->litLength > dctx->litBufferEnd)
1770              {
1771                  const size_t leftoverLit = dctx->litBufferEnd - litPtr;
1772                  if (leftoverLit)
1773                  {
1774                      RETURN_ERROR_IF(leftoverLit > (size_t)(oend - op), dstSize_tooSmall, "remaining lit must fit within dstBuffer");
1775                      ZSTD_safecopyDstBeforeSrc(op, litPtr, leftoverLit);
1776                      sequence->litLength -= leftoverLit;
1777                      op += leftoverLit;
1778                  }
1779                  litPtr = dctx->litExtraBuffer;
1780                  litBufferEnd = dctx->litExtraBuffer + ZSTD_LITBUFFEREXTRASIZE;
1781                  dctx->litBufferLocation = ZSTD_not_in_dst;
1782                  {
1783                      size_t const oneSeqSize = ZSTD_execSequence(op, oend, *sequence, &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd);
1784  #if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
1785                      assert(!ZSTD_isError(oneSeqSize));
1786                      if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequences[seqNb&STORED_SEQS_MASK], prefixStart, dictStart);
1787  #endif
1788                      if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
1789                      op += oneSeqSize;
1790                  }
1791              }
1792              else
1793              {
1794                  size_t const oneSeqSize = dctx->litBufferLocation == ZSTD_split ?
1795                      ZSTD_execSequenceSplitLitBuffer(op, oend, litPtr + sequence->litLength - WILDCOPY_OVERLENGTH, *sequence, &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd) :
1796                      ZSTD_execSequence(op, oend, *sequence, &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd);
1797  #if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
1798                  assert(!ZSTD_isError(oneSeqSize));
1799                  if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequences[seqNb&STORED_SEQS_MASK], prefixStart, dictStart);
1800  #endif
1801                  if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
1802                  op += oneSeqSize;
1803              }
1804          }
1805  
1806          /* save reps for next block */
1807          { U32 i; for (i=0; i<ZSTD_REP_NUM; i++) dctx->entropy.rep[i] = (U32)(seqState.prevOffset[i]); }
1808      }
1809  
1810      /* last literal segment */
1811      if (dctx->litBufferLocation == ZSTD_split)  /* first deplete literal buffer in dst, then copy litExtraBuffer */
1812      {
1813          size_t const lastLLSize = litBufferEnd - litPtr;
1814          RETURN_ERROR_IF(lastLLSize > (size_t)(oend - op), dstSize_tooSmall, "");
1815          if (op != NULL) {
1816              ZSTD_memmove(op, litPtr, lastLLSize);
1817              op += lastLLSize;
1818          }
1819          litPtr = dctx->litExtraBuffer;
1820          litBufferEnd = dctx->litExtraBuffer + ZSTD_LITBUFFEREXTRASIZE;
1821      }
1822      {   size_t const lastLLSize = litBufferEnd - litPtr;
1823          RETURN_ERROR_IF(lastLLSize > (size_t)(oend-op), dstSize_tooSmall, "");
1824          if (op != NULL) {
1825              ZSTD_memmove(op, litPtr, lastLLSize);
1826              op += lastLLSize;
1827          }
1828      }
1829  
1830      return op-ostart;
1831  }
1832  
1833  static size_t
1834  ZSTD_decompressSequencesLong_default(ZSTD_DCtx* dctx,
1835                                   void* dst, size_t maxDstSize,
1836                             const void* seqStart, size_t seqSize, int nbSeq,
1837                             const ZSTD_longOffset_e isLongOffset,
1838                             const int frame)
1839  {
1840      return ZSTD_decompressSequencesLong_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
1841  }
1842  #endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT */
1843  
1844  
1845  
1846  #if DYNAMIC_BMI2
1847  
1848  #ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG
1849  static BMI2_TARGET_ATTRIBUTE size_t
1850  DONT_VECTORIZE
1851  ZSTD_decompressSequences_bmi2(ZSTD_DCtx* dctx,
1852                                   void* dst, size_t maxDstSize,
1853                             const void* seqStart, size_t seqSize, int nbSeq,
1854                             const ZSTD_longOffset_e isLongOffset,
1855                             const int frame)
1856  {
1857      return ZSTD_decompressSequences_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
1858  }
1859  static BMI2_TARGET_ATTRIBUTE size_t
1860  DONT_VECTORIZE
1861  ZSTD_decompressSequencesSplitLitBuffer_bmi2(ZSTD_DCtx* dctx,
1862                                   void* dst, size_t maxDstSize,
1863                             const void* seqStart, size_t seqSize, int nbSeq,
1864                             const ZSTD_longOffset_e isLongOffset,
1865                             const int frame)
1866  {
1867      return ZSTD_decompressSequences_bodySplitLitBuffer(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
1868  }
1869  #endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG */
1870  
1871  #ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT
1872  static BMI2_TARGET_ATTRIBUTE size_t
1873  ZSTD_decompressSequencesLong_bmi2(ZSTD_DCtx* dctx,
1874                                   void* dst, size_t maxDstSize,
1875                             const void* seqStart, size_t seqSize, int nbSeq,
1876                             const ZSTD_longOffset_e isLongOffset,
1877                             const int frame)
1878  {
1879      return ZSTD_decompressSequencesLong_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
1880  }
1881  #endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT */
1882  
1883  #endif /* DYNAMIC_BMI2 */
1884  
1885  typedef size_t (*ZSTD_decompressSequences_t)(
1886                              ZSTD_DCtx* dctx,
1887                              void* dst, size_t maxDstSize,
1888                              const void* seqStart, size_t seqSize, int nbSeq,
1889                              const ZSTD_longOffset_e isLongOffset,
1890                              const int frame);
1891  
1892  #ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG
1893  static size_t
1894  ZSTD_decompressSequences(ZSTD_DCtx* dctx, void* dst, size_t maxDstSize,
1895                     const void* seqStart, size_t seqSize, int nbSeq,
1896                     const ZSTD_longOffset_e isLongOffset,
1897                     const int frame)
1898  {
1899      DEBUGLOG(5, "ZSTD_decompressSequences");
1900  #if DYNAMIC_BMI2
1901      if (ZSTD_DCtx_get_bmi2(dctx)) {
1902          return ZSTD_decompressSequences_bmi2(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
1903      }
1904  #endif
1905      return ZSTD_decompressSequences_default(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
1906  }
1907  static size_t
1908  ZSTD_decompressSequencesSplitLitBuffer(ZSTD_DCtx* dctx, void* dst, size_t maxDstSize,
1909                                   const void* seqStart, size_t seqSize, int nbSeq,
1910                                   const ZSTD_longOffset_e isLongOffset,
1911                                   const int frame)
1912  {
1913      DEBUGLOG(5, "ZSTD_decompressSequencesSplitLitBuffer");
1914  #if DYNAMIC_BMI2
1915      if (ZSTD_DCtx_get_bmi2(dctx)) {
1916          return ZSTD_decompressSequencesSplitLitBuffer_bmi2(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
1917      }
1918  #endif
1919      return ZSTD_decompressSequencesSplitLitBuffer_default(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
1920  }
1921  #endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG */
1922  
1923  
1924  #ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT
1925  /* ZSTD_decompressSequencesLong() :
1926   * decompression function triggered when a minimum share of offsets is considered "long",
1927   * aka out of cache.
1928   * note : "long" definition seems overloaded here, sometimes meaning "wider than bitstream register", and sometimes meaning "farther than memory cache distance".
1929   * This function will try to mitigate main memory latency through the use of prefetching */
1930  static size_t
1931  ZSTD_decompressSequencesLong(ZSTD_DCtx* dctx,
1932                               void* dst, size_t maxDstSize,
1933                               const void* seqStart, size_t seqSize, int nbSeq,
1934                               const ZSTD_longOffset_e isLongOffset,
1935                               const int frame)
1936  {
1937      DEBUGLOG(5, "ZSTD_decompressSequencesLong");
1938  #if DYNAMIC_BMI2
1939      if (ZSTD_DCtx_get_bmi2(dctx)) {
1940          return ZSTD_decompressSequencesLong_bmi2(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
1941      }
1942  #endif
1943    return ZSTD_decompressSequencesLong_default(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
1944  }
1945  #endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT */
1946  
1947  
1948  
1949  #if !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
1950      !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
1951  /* ZSTD_getLongOffsetsShare() :
1952   * condition : offTable must be valid
1953   * @return : "share" of long offsets (arbitrarily defined as > (1<<23))
1954   *           compared to maximum possible of (1<<OffFSELog) */
1955  static unsigned
1956  ZSTD_getLongOffsetsShare(const ZSTD_seqSymbol* offTable)
1957  {
1958      const void* ptr = offTable;
1959      U32 const tableLog = ((const ZSTD_seqSymbol_header*)ptr)[0].tableLog;
1960      const ZSTD_seqSymbol* table = offTable + 1;
1961      U32 const max = 1 << tableLog;
1962      U32 u, total = 0;
1963      DEBUGLOG(5, "ZSTD_getLongOffsetsShare: (tableLog=%u)", tableLog);
1964  
1965      assert(max <= (1 << OffFSELog));  /* max not too large */
1966      for (u=0; u<max; u++) {
1967          if (table[u].nbAdditionalBits > 22) total += 1;
1968      }
1969  
1970      assert(tableLog <= OffFSELog);
1971      total <<= (OffFSELog - tableLog);  /* scale to OffFSELog */
1972  
1973      return total;
1974  }
1975  #endif
1976  
1977  size_t
1978  ZSTD_decompressBlock_internal(ZSTD_DCtx* dctx,
1979                                void* dst, size_t dstCapacity,
1980                          const void* src, size_t srcSize, const int frame, const streaming_operation streaming)
1981  {   /* blockType == blockCompressed */
1982      const BYTE* ip = (const BYTE*)src;
1983      /* isLongOffset must be true if there are long offsets.
1984       * Offsets are long if they are larger than 2^STREAM_ACCUMULATOR_MIN.
1985       * We don't expect that to be the case in 64-bit mode.
1986       * In block mode, window size is not known, so we have to be conservative.
1987       * (note: but it could be evaluated from current-lowLimit)
1988       */
1989      ZSTD_longOffset_e const isLongOffset = (ZSTD_longOffset_e)(MEM_32bits() && (!frame || (dctx->fParams.windowSize > (1ULL << STREAM_ACCUMULATOR_MIN))));
1990      DEBUGLOG(5, "ZSTD_decompressBlock_internal (size : %u)", (U32)srcSize);
1991  
1992      RETURN_ERROR_IF(srcSize >= ZSTD_BLOCKSIZE_MAX, srcSize_wrong, "");
1993  
1994      /* Decode literals section */
1995      {   size_t const litCSize = ZSTD_decodeLiteralsBlock(dctx, src, srcSize, dst, dstCapacity, streaming);
1996          DEBUGLOG(5, "ZSTD_decodeLiteralsBlock : %u", (U32)litCSize);
1997          if (ZSTD_isError(litCSize)) return litCSize;
1998          ip += litCSize;
1999          srcSize -= litCSize;
2000      }
2001  
2002      /* Build Decoding Tables */
2003      {
2004          /* These macros control at build-time which decompressor implementation
2005           * we use. If neither is defined, we do some inspection and dispatch at
2006           * runtime.
2007           */
2008  #if !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
2009      !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
2010          int usePrefetchDecoder = dctx->ddictIsCold;
2011  #endif
2012          int nbSeq;
2013          size_t const seqHSize = ZSTD_decodeSeqHeaders(dctx, &nbSeq, ip, srcSize);
2014          if (ZSTD_isError(seqHSize)) return seqHSize;
2015          ip += seqHSize;
2016          srcSize -= seqHSize;
2017  
2018          RETURN_ERROR_IF(dst == NULL && nbSeq > 0, dstSize_tooSmall, "NULL not handled");
2019  
2020  #if !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
2021      !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
2022          if ( !usePrefetchDecoder
2023            && (!frame || (dctx->fParams.windowSize > (1<<24)))
2024            && (nbSeq>ADVANCED_SEQS) ) {  /* could probably use a larger nbSeq limit */
2025              U32 const shareLongOffsets = ZSTD_getLongOffsetsShare(dctx->OFTptr);
2026              U32 const minShare = MEM_64bits() ? 7 : 20; /* heuristic values, correspond to 2.73% and 7.81% */
2027              usePrefetchDecoder = (shareLongOffsets >= minShare);
2028          }
2029  #endif
2030  
2031          dctx->ddictIsCold = 0;
2032  
2033  #if !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
2034      !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
2035          if (usePrefetchDecoder)
2036  #endif
2037  #ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT
2038              return ZSTD_decompressSequencesLong(dctx, dst, dstCapacity, ip, srcSize, nbSeq, isLongOffset, frame);
2039  #endif
2040  
2041  #ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG
2042          /* else */
2043          if (dctx->litBufferLocation == ZSTD_split)
2044              return ZSTD_decompressSequencesSplitLitBuffer(dctx, dst, dstCapacity, ip, srcSize, nbSeq, isLongOffset, frame);
2045          else
2046              return ZSTD_decompressSequences(dctx, dst, dstCapacity, ip, srcSize, nbSeq, isLongOffset, frame);
2047  #endif
2048      }
2049  }
2050  
2051  
2052  void ZSTD_checkContinuity(ZSTD_DCtx* dctx, const void* dst, size_t dstSize)
2053  {
2054      if (dst != dctx->previousDstEnd && dstSize > 0) {   /* not contiguous */
2055          dctx->dictEnd = dctx->previousDstEnd;
2056          dctx->virtualStart = (const char*)dst - ((const char*)(dctx->previousDstEnd) - (const char*)(dctx->prefixStart));
2057          dctx->prefixStart = dst;
2058          dctx->previousDstEnd = dst;
2059      }
2060  }
2061  
2062  
2063  size_t ZSTD_decompressBlock(ZSTD_DCtx* dctx,
2064                              void* dst, size_t dstCapacity,
2065                        const void* src, size_t srcSize)
2066  {
2067      size_t dSize;
2068      ZSTD_checkContinuity(dctx, dst, dstCapacity);
2069      dSize = ZSTD_decompressBlock_internal(dctx, dst, dstCapacity, src, srcSize, /* frame */ 0, not_streaming);
2070      dctx->previousDstEnd = (char*)dst + dSize;
2071      return dSize;
2072  }
2073