1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /* Copyright (c) 2013-2022, Intel Corporation. */
3
4 #ifndef _VIRTCHNL_H_
5 #define _VIRTCHNL_H_
6
7 #include <linux/bitops.h>
8 #include <linux/bits.h>
9 #include <linux/overflow.h>
10 #include <uapi/linux/if_ether.h>
11
12 /* Description:
13 * This header file describes the Virtual Function (VF) - Physical Function
14 * (PF) communication protocol used by the drivers for all devices starting
15 * from our 40G product line
16 *
17 * Admin queue buffer usage:
18 * desc->opcode is always aqc_opc_send_msg_to_pf
19 * flags, retval, datalen, and data addr are all used normally.
20 * The Firmware copies the cookie fields when sending messages between the
21 * PF and VF, but uses all other fields internally. Due to this limitation,
22 * we must send all messages as "indirect", i.e. using an external buffer.
23 *
24 * All the VSI indexes are relative to the VF. Each VF can have maximum of
25 * three VSIs. All the queue indexes are relative to the VSI. Each VF can
26 * have a maximum of sixteen queues for all of its VSIs.
27 *
28 * The PF is required to return a status code in v_retval for all messages
29 * except RESET_VF, which does not require any response. The returned value
30 * is of virtchnl_status_code type, defined here.
31 *
32 * In general, VF driver initialization should roughly follow the order of
33 * these opcodes. The VF driver must first validate the API version of the
34 * PF driver, then request a reset, then get resources, then configure
35 * queues and interrupts. After these operations are complete, the VF
36 * driver may start its queues, optionally add MAC and VLAN filters, and
37 * process traffic.
38 */
39
40 /* START GENERIC DEFINES
41 * Need to ensure the following enums and defines hold the same meaning and
42 * value in current and future projects
43 */
44
45 /* Error Codes */
46 enum virtchnl_status_code {
47 VIRTCHNL_STATUS_SUCCESS = 0,
48 VIRTCHNL_STATUS_ERR_PARAM = -5,
49 VIRTCHNL_STATUS_ERR_NO_MEMORY = -18,
50 VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH = -38,
51 VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR = -39,
52 VIRTCHNL_STATUS_ERR_INVALID_VF_ID = -40,
53 VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR = -53,
54 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED = -64,
55 };
56
57 /* Backward compatibility */
58 #define VIRTCHNL_ERR_PARAM VIRTCHNL_STATUS_ERR_PARAM
59 #define VIRTCHNL_STATUS_NOT_SUPPORTED VIRTCHNL_STATUS_ERR_NOT_SUPPORTED
60
61 #define VIRTCHNL_LINK_SPEED_2_5GB_SHIFT 0x0
62 #define VIRTCHNL_LINK_SPEED_100MB_SHIFT 0x1
63 #define VIRTCHNL_LINK_SPEED_1000MB_SHIFT 0x2
64 #define VIRTCHNL_LINK_SPEED_10GB_SHIFT 0x3
65 #define VIRTCHNL_LINK_SPEED_40GB_SHIFT 0x4
66 #define VIRTCHNL_LINK_SPEED_20GB_SHIFT 0x5
67 #define VIRTCHNL_LINK_SPEED_25GB_SHIFT 0x6
68 #define VIRTCHNL_LINK_SPEED_5GB_SHIFT 0x7
69
70 enum virtchnl_link_speed {
71 VIRTCHNL_LINK_SPEED_UNKNOWN = 0,
72 VIRTCHNL_LINK_SPEED_100MB = BIT(VIRTCHNL_LINK_SPEED_100MB_SHIFT),
73 VIRTCHNL_LINK_SPEED_1GB = BIT(VIRTCHNL_LINK_SPEED_1000MB_SHIFT),
74 VIRTCHNL_LINK_SPEED_10GB = BIT(VIRTCHNL_LINK_SPEED_10GB_SHIFT),
75 VIRTCHNL_LINK_SPEED_40GB = BIT(VIRTCHNL_LINK_SPEED_40GB_SHIFT),
76 VIRTCHNL_LINK_SPEED_20GB = BIT(VIRTCHNL_LINK_SPEED_20GB_SHIFT),
77 VIRTCHNL_LINK_SPEED_25GB = BIT(VIRTCHNL_LINK_SPEED_25GB_SHIFT),
78 VIRTCHNL_LINK_SPEED_2_5GB = BIT(VIRTCHNL_LINK_SPEED_2_5GB_SHIFT),
79 VIRTCHNL_LINK_SPEED_5GB = BIT(VIRTCHNL_LINK_SPEED_5GB_SHIFT),
80 };
81
82 /* for hsplit_0 field of Rx HMC context */
83 /* deprecated with AVF 1.0 */
84 enum virtchnl_rx_hsplit {
85 VIRTCHNL_RX_HSPLIT_NO_SPLIT = 0,
86 VIRTCHNL_RX_HSPLIT_SPLIT_L2 = 1,
87 VIRTCHNL_RX_HSPLIT_SPLIT_IP = 2,
88 VIRTCHNL_RX_HSPLIT_SPLIT_TCP_UDP = 4,
89 VIRTCHNL_RX_HSPLIT_SPLIT_SCTP = 8,
90 };
91
92 /* END GENERIC DEFINES */
93
94 /* Opcodes for VF-PF communication. These are placed in the v_opcode field
95 * of the virtchnl_msg structure.
96 */
97 enum virtchnl_ops {
98 /* The PF sends status change events to VFs using
99 * the VIRTCHNL_OP_EVENT opcode.
100 * VFs send requests to the PF using the other ops.
101 * Use of "advanced opcode" features must be negotiated as part of capabilities
102 * exchange and are not considered part of base mode feature set.
103 */
104 VIRTCHNL_OP_UNKNOWN = 0,
105 VIRTCHNL_OP_VERSION = 1, /* must ALWAYS be 1 */
106 VIRTCHNL_OP_RESET_VF = 2,
107 VIRTCHNL_OP_GET_VF_RESOURCES = 3,
108 VIRTCHNL_OP_CONFIG_TX_QUEUE = 4,
109 VIRTCHNL_OP_CONFIG_RX_QUEUE = 5,
110 VIRTCHNL_OP_CONFIG_VSI_QUEUES = 6,
111 VIRTCHNL_OP_CONFIG_IRQ_MAP = 7,
112 VIRTCHNL_OP_ENABLE_QUEUES = 8,
113 VIRTCHNL_OP_DISABLE_QUEUES = 9,
114 VIRTCHNL_OP_ADD_ETH_ADDR = 10,
115 VIRTCHNL_OP_DEL_ETH_ADDR = 11,
116 VIRTCHNL_OP_ADD_VLAN = 12,
117 VIRTCHNL_OP_DEL_VLAN = 13,
118 VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE = 14,
119 VIRTCHNL_OP_GET_STATS = 15,
120 VIRTCHNL_OP_RSVD = 16,
121 VIRTCHNL_OP_EVENT = 17, /* must ALWAYS be 17 */
122 /* opcode 19 is reserved */
123 VIRTCHNL_OP_IWARP = 20, /* advanced opcode */
124 VIRTCHNL_OP_RDMA = VIRTCHNL_OP_IWARP,
125 VIRTCHNL_OP_CONFIG_IWARP_IRQ_MAP = 21, /* advanced opcode */
126 VIRTCHNL_OP_CONFIG_RDMA_IRQ_MAP = VIRTCHNL_OP_CONFIG_IWARP_IRQ_MAP,
127 VIRTCHNL_OP_RELEASE_IWARP_IRQ_MAP = 22, /* advanced opcode */
128 VIRTCHNL_OP_RELEASE_RDMA_IRQ_MAP = VIRTCHNL_OP_RELEASE_IWARP_IRQ_MAP,
129 VIRTCHNL_OP_CONFIG_RSS_KEY = 23,
130 VIRTCHNL_OP_CONFIG_RSS_LUT = 24,
131 VIRTCHNL_OP_GET_RSS_HENA_CAPS = 25,
132 VIRTCHNL_OP_SET_RSS_HENA = 26,
133 VIRTCHNL_OP_ENABLE_VLAN_STRIPPING = 27,
134 VIRTCHNL_OP_DISABLE_VLAN_STRIPPING = 28,
135 VIRTCHNL_OP_REQUEST_QUEUES = 29,
136 VIRTCHNL_OP_ENABLE_CHANNELS = 30,
137 VIRTCHNL_OP_DISABLE_CHANNELS = 31,
138 VIRTCHNL_OP_ADD_CLOUD_FILTER = 32,
139 VIRTCHNL_OP_DEL_CLOUD_FILTER = 33,
140 /* opcode 34 - 43 are reserved */
141 VIRTCHNL_OP_GET_SUPPORTED_RXDIDS = 44,
142 VIRTCHNL_OP_ADD_RSS_CFG = 45,
143 VIRTCHNL_OP_DEL_RSS_CFG = 46,
144 VIRTCHNL_OP_ADD_FDIR_FILTER = 47,
145 VIRTCHNL_OP_DEL_FDIR_FILTER = 48,
146 VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS = 51,
147 VIRTCHNL_OP_ADD_VLAN_V2 = 52,
148 VIRTCHNL_OP_DEL_VLAN_V2 = 53,
149 VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 = 54,
150 VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 = 55,
151 VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 = 56,
152 VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 = 57,
153 VIRTCHNL_OP_MAX,
154 };
155
156 /* These macros are used to generate compilation errors if a structure/union
157 * is not exactly the correct length. It gives a divide by zero error if the
158 * structure/union is not of the correct size, otherwise it creates an enum
159 * that is never used.
160 */
161 #define VIRTCHNL_CHECK_STRUCT_LEN(n, X) enum virtchnl_static_assert_enum_##X \
162 { virtchnl_static_assert_##X = (n)/((sizeof(struct X) == (n)) ? 1 : 0) }
163 #define VIRTCHNL_CHECK_UNION_LEN(n, X) enum virtchnl_static_asset_enum_##X \
164 { virtchnl_static_assert_##X = (n)/((sizeof(union X) == (n)) ? 1 : 0) }
165
166 /* Message descriptions and data structures. */
167
168 /* VIRTCHNL_OP_VERSION
169 * VF posts its version number to the PF. PF responds with its version number
170 * in the same format, along with a return code.
171 * Reply from PF has its major/minor versions also in param0 and param1.
172 * If there is a major version mismatch, then the VF cannot operate.
173 * If there is a minor version mismatch, then the VF can operate but should
174 * add a warning to the system log.
175 *
176 * This enum element MUST always be specified as == 1, regardless of other
177 * changes in the API. The PF must always respond to this message without
178 * error regardless of version mismatch.
179 */
180 #define VIRTCHNL_VERSION_MAJOR 1
181 #define VIRTCHNL_VERSION_MINOR 1
182 #define VIRTCHNL_VERSION_MINOR_NO_VF_CAPS 0
183
184 struct virtchnl_version_info {
185 u32 major;
186 u32 minor;
187 };
188
189 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_version_info);
190
191 #define VF_IS_V10(_v) (((_v)->major == 1) && ((_v)->minor == 0))
192 #define VF_IS_V11(_ver) (((_ver)->major == 1) && ((_ver)->minor == 1))
193
194 /* VIRTCHNL_OP_RESET_VF
195 * VF sends this request to PF with no parameters
196 * PF does NOT respond! VF driver must delay then poll VFGEN_RSTAT register
197 * until reset completion is indicated. The admin queue must be reinitialized
198 * after this operation.
199 *
200 * When reset is complete, PF must ensure that all queues in all VSIs associated
201 * with the VF are stopped, all queue configurations in the HMC are set to 0,
202 * and all MAC and VLAN filters (except the default MAC address) on all VSIs
203 * are cleared.
204 */
205
206 /* VSI types that use VIRTCHNL interface for VF-PF communication. VSI_SRIOV
207 * vsi_type should always be 6 for backward compatibility. Add other fields
208 * as needed.
209 */
210 enum virtchnl_vsi_type {
211 VIRTCHNL_VSI_TYPE_INVALID = 0,
212 VIRTCHNL_VSI_SRIOV = 6,
213 };
214
215 /* VIRTCHNL_OP_GET_VF_RESOURCES
216 * Version 1.0 VF sends this request to PF with no parameters
217 * Version 1.1 VF sends this request to PF with u32 bitmap of its capabilities
218 * PF responds with an indirect message containing
219 * virtchnl_vf_resource and one or more
220 * virtchnl_vsi_resource structures.
221 */
222
223 struct virtchnl_vsi_resource {
224 u16 vsi_id;
225 u16 num_queue_pairs;
226
227 /* see enum virtchnl_vsi_type */
228 s32 vsi_type;
229 u16 qset_handle;
230 u8 default_mac_addr[ETH_ALEN];
231 };
232
233 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vsi_resource);
234
235 /* VF capability flags
236 * VIRTCHNL_VF_OFFLOAD_L2 flag is inclusive of base mode L2 offloads including
237 * TX/RX Checksum offloading and TSO for non-tunnelled packets.
238 */
239 #define VIRTCHNL_VF_OFFLOAD_L2 BIT(0)
240 #define VIRTCHNL_VF_OFFLOAD_RDMA BIT(1)
241 #define VIRTCHNL_VF_CAP_RDMA VIRTCHNL_VF_OFFLOAD_RDMA
242 #define VIRTCHNL_VF_OFFLOAD_RSS_AQ BIT(3)
243 #define VIRTCHNL_VF_OFFLOAD_RSS_REG BIT(4)
244 #define VIRTCHNL_VF_OFFLOAD_WB_ON_ITR BIT(5)
245 #define VIRTCHNL_VF_OFFLOAD_REQ_QUEUES BIT(6)
246 /* used to negotiate communicating link speeds in Mbps */
247 #define VIRTCHNL_VF_CAP_ADV_LINK_SPEED BIT(7)
248 #define VIRTCHNL_VF_OFFLOAD_VLAN_V2 BIT(15)
249 #define VIRTCHNL_VF_OFFLOAD_VLAN BIT(16)
250 #define VIRTCHNL_VF_OFFLOAD_RX_POLLING BIT(17)
251 #define VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2 BIT(18)
252 #define VIRTCHNL_VF_OFFLOAD_RSS_PF BIT(19)
253 #define VIRTCHNL_VF_OFFLOAD_ENCAP BIT(20)
254 #define VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM BIT(21)
255 #define VIRTCHNL_VF_OFFLOAD_RX_ENCAP_CSUM BIT(22)
256 #define VIRTCHNL_VF_OFFLOAD_ADQ BIT(23)
257 #define VIRTCHNL_VF_OFFLOAD_USO BIT(25)
258 #define VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC BIT(26)
259 #define VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF BIT(27)
260 #define VIRTCHNL_VF_OFFLOAD_FDIR_PF BIT(28)
261
262 #define VF_BASE_MODE_OFFLOADS (VIRTCHNL_VF_OFFLOAD_L2 | \
263 VIRTCHNL_VF_OFFLOAD_VLAN | \
264 VIRTCHNL_VF_OFFLOAD_RSS_PF)
265
266 struct virtchnl_vf_resource {
267 u16 num_vsis;
268 u16 num_queue_pairs;
269 u16 max_vectors;
270 u16 max_mtu;
271
272 u32 vf_cap_flags;
273 u32 rss_key_size;
274 u32 rss_lut_size;
275
276 struct virtchnl_vsi_resource vsi_res[];
277 };
278
279 VIRTCHNL_CHECK_STRUCT_LEN(20, virtchnl_vf_resource);
280 #define virtchnl_vf_resource_LEGACY_SIZEOF 36
281
282 /* VIRTCHNL_OP_CONFIG_TX_QUEUE
283 * VF sends this message to set up parameters for one TX queue.
284 * External data buffer contains one instance of virtchnl_txq_info.
285 * PF configures requested queue and returns a status code.
286 */
287
288 /* Tx queue config info */
289 struct virtchnl_txq_info {
290 u16 vsi_id;
291 u16 queue_id;
292 u16 ring_len; /* number of descriptors, multiple of 8 */
293 u16 headwb_enabled; /* deprecated with AVF 1.0 */
294 u64 dma_ring_addr;
295 u64 dma_headwb_addr; /* deprecated with AVF 1.0 */
296 };
297
298 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_txq_info);
299
300 /* VIRTCHNL_OP_CONFIG_RX_QUEUE
301 * VF sends this message to set up parameters for one RX queue.
302 * External data buffer contains one instance of virtchnl_rxq_info.
303 * PF configures requested queue and returns a status code.
304 */
305
306 /* Rx queue config info */
307 struct virtchnl_rxq_info {
308 u16 vsi_id;
309 u16 queue_id;
310 u32 ring_len; /* number of descriptors, multiple of 32 */
311 u16 hdr_size;
312 u16 splithdr_enabled; /* deprecated with AVF 1.0 */
313 u32 databuffer_size;
314 u32 max_pkt_size;
315 u8 pad0;
316 u8 rxdid;
317 u8 pad1[2];
318 u64 dma_ring_addr;
319
320 /* see enum virtchnl_rx_hsplit; deprecated with AVF 1.0 */
321 s32 rx_split_pos;
322 u32 pad2;
323 };
324
325 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_rxq_info);
326
327 /* VIRTCHNL_OP_CONFIG_VSI_QUEUES
328 * VF sends this message to set parameters for all active TX and RX queues
329 * associated with the specified VSI.
330 * PF configures queues and returns status.
331 * If the number of queues specified is greater than the number of queues
332 * associated with the VSI, an error is returned and no queues are configured.
333 * NOTE: The VF is not required to configure all queues in a single request.
334 * It may send multiple messages. PF drivers must correctly handle all VF
335 * requests.
336 */
337 struct virtchnl_queue_pair_info {
338 /* NOTE: vsi_id and queue_id should be identical for both queues. */
339 struct virtchnl_txq_info txq;
340 struct virtchnl_rxq_info rxq;
341 };
342
343 VIRTCHNL_CHECK_STRUCT_LEN(64, virtchnl_queue_pair_info);
344
345 struct virtchnl_vsi_queue_config_info {
346 u16 vsi_id;
347 u16 num_queue_pairs;
348 u32 pad;
349 struct virtchnl_queue_pair_info qpair[];
350 };
351
352 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_vsi_queue_config_info);
353 #define virtchnl_vsi_queue_config_info_LEGACY_SIZEOF 72
354
355 /* VIRTCHNL_OP_REQUEST_QUEUES
356 * VF sends this message to request the PF to allocate additional queues to
357 * this VF. Each VF gets a guaranteed number of queues on init but asking for
358 * additional queues must be negotiated. This is a best effort request as it
359 * is possible the PF does not have enough queues left to support the request.
360 * If the PF cannot support the number requested it will respond with the
361 * maximum number it is able to support. If the request is successful, PF will
362 * then reset the VF to institute required changes.
363 */
364
365 /* VF resource request */
366 struct virtchnl_vf_res_request {
367 u16 num_queue_pairs;
368 };
369
370 /* VIRTCHNL_OP_CONFIG_IRQ_MAP
371 * VF uses this message to map vectors to queues.
372 * The rxq_map and txq_map fields are bitmaps used to indicate which queues
373 * are to be associated with the specified vector.
374 * The "other" causes are always mapped to vector 0. The VF may not request
375 * that vector 0 be used for traffic.
376 * PF configures interrupt mapping and returns status.
377 * NOTE: due to hardware requirements, all active queues (both TX and RX)
378 * should be mapped to interrupts, even if the driver intends to operate
379 * only in polling mode. In this case the interrupt may be disabled, but
380 * the ITR timer will still run to trigger writebacks.
381 */
382 struct virtchnl_vector_map {
383 u16 vsi_id;
384 u16 vector_id;
385 u16 rxq_map;
386 u16 txq_map;
387 u16 rxitr_idx;
388 u16 txitr_idx;
389 };
390
391 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_vector_map);
392
393 struct virtchnl_irq_map_info {
394 u16 num_vectors;
395 struct virtchnl_vector_map vecmap[];
396 };
397
398 VIRTCHNL_CHECK_STRUCT_LEN(2, virtchnl_irq_map_info);
399 #define virtchnl_irq_map_info_LEGACY_SIZEOF 14
400
401 /* VIRTCHNL_OP_ENABLE_QUEUES
402 * VIRTCHNL_OP_DISABLE_QUEUES
403 * VF sends these message to enable or disable TX/RX queue pairs.
404 * The queues fields are bitmaps indicating which queues to act upon.
405 * (Currently, we only support 16 queues per VF, but we make the field
406 * u32 to allow for expansion.)
407 * PF performs requested action and returns status.
408 * NOTE: The VF is not required to enable/disable all queues in a single
409 * request. It may send multiple messages.
410 * PF drivers must correctly handle all VF requests.
411 */
412 struct virtchnl_queue_select {
413 u16 vsi_id;
414 u16 pad;
415 u32 rx_queues;
416 u32 tx_queues;
417 };
418
419 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_select);
420
421 /* VIRTCHNL_OP_ADD_ETH_ADDR
422 * VF sends this message in order to add one or more unicast or multicast
423 * address filters for the specified VSI.
424 * PF adds the filters and returns status.
425 */
426
427 /* VIRTCHNL_OP_DEL_ETH_ADDR
428 * VF sends this message in order to remove one or more unicast or multicast
429 * filters for the specified VSI.
430 * PF removes the filters and returns status.
431 */
432
433 /* VIRTCHNL_ETHER_ADDR_LEGACY
434 * Prior to adding the @type member to virtchnl_ether_addr, there were 2 pad
435 * bytes. Moving forward all VF drivers should not set type to
436 * VIRTCHNL_ETHER_ADDR_LEGACY. This is only here to not break previous/legacy
437 * behavior. The control plane function (i.e. PF) can use a best effort method
438 * of tracking the primary/device unicast in this case, but there is no
439 * guarantee and functionality depends on the implementation of the PF.
440 */
441
442 /* VIRTCHNL_ETHER_ADDR_PRIMARY
443 * All VF drivers should set @type to VIRTCHNL_ETHER_ADDR_PRIMARY for the
444 * primary/device unicast MAC address filter for VIRTCHNL_OP_ADD_ETH_ADDR and
445 * VIRTCHNL_OP_DEL_ETH_ADDR. This allows for the underlying control plane
446 * function (i.e. PF) to accurately track and use this MAC address for
447 * displaying on the host and for VM/function reset.
448 */
449
450 /* VIRTCHNL_ETHER_ADDR_EXTRA
451 * All VF drivers should set @type to VIRTCHNL_ETHER_ADDR_EXTRA for any extra
452 * unicast and/or multicast filters that are being added/deleted via
453 * VIRTCHNL_OP_DEL_ETH_ADDR/VIRTCHNL_OP_ADD_ETH_ADDR respectively.
454 */
455 struct virtchnl_ether_addr {
456 u8 addr[ETH_ALEN];
457 u8 type;
458 #define VIRTCHNL_ETHER_ADDR_LEGACY 0
459 #define VIRTCHNL_ETHER_ADDR_PRIMARY 1
460 #define VIRTCHNL_ETHER_ADDR_EXTRA 2
461 #define VIRTCHNL_ETHER_ADDR_TYPE_MASK 3 /* first two bits of type are valid */
462 u8 pad;
463 };
464
465 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_ether_addr);
466
467 struct virtchnl_ether_addr_list {
468 u16 vsi_id;
469 u16 num_elements;
470 struct virtchnl_ether_addr list[];
471 };
472
473 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_ether_addr_list);
474 #define virtchnl_ether_addr_list_LEGACY_SIZEOF 12
475
476 /* VIRTCHNL_OP_ADD_VLAN
477 * VF sends this message to add one or more VLAN tag filters for receives.
478 * PF adds the filters and returns status.
479 * If a port VLAN is configured by the PF, this operation will return an
480 * error to the VF.
481 */
482
483 /* VIRTCHNL_OP_DEL_VLAN
484 * VF sends this message to remove one or more VLAN tag filters for receives.
485 * PF removes the filters and returns status.
486 * If a port VLAN is configured by the PF, this operation will return an
487 * error to the VF.
488 */
489
490 struct virtchnl_vlan_filter_list {
491 u16 vsi_id;
492 u16 num_elements;
493 u16 vlan_id[];
494 };
495
496 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_vlan_filter_list);
497 #define virtchnl_vlan_filter_list_LEGACY_SIZEOF 6
498
499 /* This enum is used for all of the VIRTCHNL_VF_OFFLOAD_VLAN_V2_CAPS related
500 * structures and opcodes.
501 *
502 * VIRTCHNL_VLAN_UNSUPPORTED - This field is not supported and if a VF driver
503 * populates it the PF should return VIRTCHNL_STATUS_ERR_NOT_SUPPORTED.
504 *
505 * VIRTCHNL_VLAN_ETHERTYPE_8100 - This field supports 0x8100 ethertype.
506 * VIRTCHNL_VLAN_ETHERTYPE_88A8 - This field supports 0x88A8 ethertype.
507 * VIRTCHNL_VLAN_ETHERTYPE_9100 - This field supports 0x9100 ethertype.
508 *
509 * VIRTCHNL_VLAN_ETHERTYPE_AND - Used when multiple ethertypes can be supported
510 * by the PF concurrently. For example, if the PF can support
511 * VIRTCHNL_VLAN_ETHERTYPE_8100 AND VIRTCHNL_VLAN_ETHERTYPE_88A8 filters it
512 * would OR the following bits:
513 *
514 * VIRTHCNL_VLAN_ETHERTYPE_8100 |
515 * VIRTCHNL_VLAN_ETHERTYPE_88A8 |
516 * VIRTCHNL_VLAN_ETHERTYPE_AND;
517 *
518 * The VF would interpret this as VLAN filtering can be supported on both 0x8100
519 * and 0x88A8 VLAN ethertypes.
520 *
521 * VIRTCHNL_ETHERTYPE_XOR - Used when only a single ethertype can be supported
522 * by the PF concurrently. For example if the PF can support
523 * VIRTCHNL_VLAN_ETHERTYPE_8100 XOR VIRTCHNL_VLAN_ETHERTYPE_88A8 stripping
524 * offload it would OR the following bits:
525 *
526 * VIRTCHNL_VLAN_ETHERTYPE_8100 |
527 * VIRTCHNL_VLAN_ETHERTYPE_88A8 |
528 * VIRTCHNL_VLAN_ETHERTYPE_XOR;
529 *
530 * The VF would interpret this as VLAN stripping can be supported on either
531 * 0x8100 or 0x88a8 VLAN ethertypes. So when requesting VLAN stripping via
532 * VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 the specified ethertype will override
533 * the previously set value.
534 *
535 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1 - Used to tell the VF to insert and/or
536 * strip the VLAN tag using the L2TAG1 field of the Tx/Rx descriptors.
537 *
538 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 - Used to tell the VF to insert hardware
539 * offloaded VLAN tags using the L2TAG2 field of the Tx descriptor.
540 *
541 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 - Used to tell the VF to strip hardware
542 * offloaded VLAN tags using the L2TAG2_2 field of the Rx descriptor.
543 *
544 * VIRTCHNL_VLAN_PRIO - This field supports VLAN priority bits. This is used for
545 * VLAN filtering if the underlying PF supports it.
546 *
547 * VIRTCHNL_VLAN_TOGGLE_ALLOWED - This field is used to say whether a
548 * certain VLAN capability can be toggled. For example if the underlying PF/CP
549 * allows the VF to toggle VLAN filtering, stripping, and/or insertion it should
550 * set this bit along with the supported ethertypes.
551 */
552 enum virtchnl_vlan_support {
553 VIRTCHNL_VLAN_UNSUPPORTED = 0,
554 VIRTCHNL_VLAN_ETHERTYPE_8100 = BIT(0),
555 VIRTCHNL_VLAN_ETHERTYPE_88A8 = BIT(1),
556 VIRTCHNL_VLAN_ETHERTYPE_9100 = BIT(2),
557 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1 = BIT(8),
558 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 = BIT(9),
559 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 = BIT(10),
560 VIRTCHNL_VLAN_PRIO = BIT(24),
561 VIRTCHNL_VLAN_FILTER_MASK = BIT(28),
562 VIRTCHNL_VLAN_ETHERTYPE_AND = BIT(29),
563 VIRTCHNL_VLAN_ETHERTYPE_XOR = BIT(30),
564 VIRTCHNL_VLAN_TOGGLE = BIT(31),
565 };
566
567 /* This structure is used as part of the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS
568 * for filtering, insertion, and stripping capabilities.
569 *
570 * If only outer capabilities are supported (for filtering, insertion, and/or
571 * stripping) then this refers to the outer most or single VLAN from the VF's
572 * perspective.
573 *
574 * If only inner capabilities are supported (for filtering, insertion, and/or
575 * stripping) then this refers to the outer most or single VLAN from the VF's
576 * perspective. Functionally this is the same as if only outer capabilities are
577 * supported. The VF driver is just forced to use the inner fields when
578 * adding/deleting filters and enabling/disabling offloads (if supported).
579 *
580 * If both outer and inner capabilities are supported (for filtering, insertion,
581 * and/or stripping) then outer refers to the outer most or single VLAN and
582 * inner refers to the second VLAN, if it exists, in the packet.
583 *
584 * There is no support for tunneled VLAN offloads, so outer or inner are never
585 * referring to a tunneled packet from the VF's perspective.
586 */
587 struct virtchnl_vlan_supported_caps {
588 u32 outer;
589 u32 inner;
590 };
591
592 /* The PF populates these fields based on the supported VLAN filtering. If a
593 * field is VIRTCHNL_VLAN_UNSUPPORTED then it's not supported and the PF will
594 * reject any VIRTCHNL_OP_ADD_VLAN_V2 or VIRTCHNL_OP_DEL_VLAN_V2 messages using
595 * the unsupported fields.
596 *
597 * Also, a VF is only allowed to toggle its VLAN filtering setting if the
598 * VIRTCHNL_VLAN_TOGGLE bit is set.
599 *
600 * The ethertype(s) specified in the ethertype_init field are the ethertypes
601 * enabled for VLAN filtering. VLAN filtering in this case refers to the outer
602 * most VLAN from the VF's perspective. If both inner and outer filtering are
603 * allowed then ethertype_init only refers to the outer most VLAN as only
604 * VLAN ethertype supported for inner VLAN filtering is
605 * VIRTCHNL_VLAN_ETHERTYPE_8100. By default, inner VLAN filtering is disabled
606 * when both inner and outer filtering are allowed.
607 *
608 * The max_filters field tells the VF how many VLAN filters it's allowed to have
609 * at any one time. If it exceeds this amount and tries to add another filter,
610 * then the request will be rejected by the PF. To prevent failures, the VF
611 * should keep track of how many VLAN filters it has added and not attempt to
612 * add more than max_filters.
613 */
614 struct virtchnl_vlan_filtering_caps {
615 struct virtchnl_vlan_supported_caps filtering_support;
616 u32 ethertype_init;
617 u16 max_filters;
618 u8 pad[2];
619 };
620
621 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vlan_filtering_caps);
622
623 /* This enum is used for the virtchnl_vlan_offload_caps structure to specify
624 * if the PF supports a different ethertype for stripping and insertion.
625 *
626 * VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION - The ethertype(s) specified
627 * for stripping affect the ethertype(s) specified for insertion and visa versa
628 * as well. If the VF tries to configure VLAN stripping via
629 * VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 with VIRTCHNL_VLAN_ETHERTYPE_8100 then
630 * that will be the ethertype for both stripping and insertion.
631 *
632 * VIRTCHNL_ETHERTYPE_MATCH_NOT_REQUIRED - The ethertype(s) specified for
633 * stripping do not affect the ethertype(s) specified for insertion and visa
634 * versa.
635 */
636 enum virtchnl_vlan_ethertype_match {
637 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION = 0,
638 VIRTCHNL_ETHERTYPE_MATCH_NOT_REQUIRED = 1,
639 };
640
641 /* The PF populates these fields based on the supported VLAN offloads. If a
642 * field is VIRTCHNL_VLAN_UNSUPPORTED then it's not supported and the PF will
643 * reject any VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 or
644 * VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 messages using the unsupported fields.
645 *
646 * Also, a VF is only allowed to toggle its VLAN offload setting if the
647 * VIRTCHNL_VLAN_TOGGLE_ALLOWED bit is set.
648 *
649 * The VF driver needs to be aware of how the tags are stripped by hardware and
650 * inserted by the VF driver based on the level of offload support. The PF will
651 * populate these fields based on where the VLAN tags are expected to be
652 * offloaded via the VIRTHCNL_VLAN_TAG_LOCATION_* bits. The VF will need to
653 * interpret these fields. See the definition of the
654 * VIRTCHNL_VLAN_TAG_LOCATION_* bits above the virtchnl_vlan_support
655 * enumeration.
656 */
657 struct virtchnl_vlan_offload_caps {
658 struct virtchnl_vlan_supported_caps stripping_support;
659 struct virtchnl_vlan_supported_caps insertion_support;
660 u32 ethertype_init;
661 u8 ethertype_match;
662 u8 pad[3];
663 };
664
665 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_vlan_offload_caps);
666
667 /* VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS
668 * VF sends this message to determine its VLAN capabilities.
669 *
670 * PF will mark which capabilities it supports based on hardware support and
671 * current configuration. For example, if a port VLAN is configured the PF will
672 * not allow outer VLAN filtering, stripping, or insertion to be configured so
673 * it will block these features from the VF.
674 *
675 * The VF will need to cross reference its capabilities with the PFs
676 * capabilities in the response message from the PF to determine the VLAN
677 * support.
678 */
679 struct virtchnl_vlan_caps {
680 struct virtchnl_vlan_filtering_caps filtering;
681 struct virtchnl_vlan_offload_caps offloads;
682 };
683
684 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_vlan_caps);
685
686 struct virtchnl_vlan {
687 u16 tci; /* tci[15:13] = PCP and tci[11:0] = VID */
688 u16 tci_mask; /* only valid if VIRTCHNL_VLAN_FILTER_MASK set in
689 * filtering caps
690 */
691 u16 tpid; /* 0x8100, 0x88a8, etc. and only type(s) set in
692 * filtering caps. Note that tpid here does not refer to
693 * VIRTCHNL_VLAN_ETHERTYPE_*, but it refers to the
694 * actual 2-byte VLAN TPID
695 */
696 u8 pad[2];
697 };
698
699 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_vlan);
700
701 struct virtchnl_vlan_filter {
702 struct virtchnl_vlan inner;
703 struct virtchnl_vlan outer;
704 u8 pad[16];
705 };
706
707 VIRTCHNL_CHECK_STRUCT_LEN(32, virtchnl_vlan_filter);
708
709 /* VIRTCHNL_OP_ADD_VLAN_V2
710 * VIRTCHNL_OP_DEL_VLAN_V2
711 *
712 * VF sends these messages to add/del one or more VLAN tag filters for Rx
713 * traffic.
714 *
715 * The PF attempts to add the filters and returns status.
716 *
717 * The VF should only ever attempt to add/del virtchnl_vlan_filter(s) using the
718 * supported fields negotiated via VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS.
719 */
720 struct virtchnl_vlan_filter_list_v2 {
721 u16 vport_id;
722 u16 num_elements;
723 u8 pad[4];
724 struct virtchnl_vlan_filter filters[];
725 };
726
727 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_vlan_filter_list_v2);
728 #define virtchnl_vlan_filter_list_v2_LEGACY_SIZEOF 40
729
730 /* VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2
731 * VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2
732 * VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2
733 * VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2
734 *
735 * VF sends this message to enable or disable VLAN stripping or insertion. It
736 * also needs to specify an ethertype. The VF knows which VLAN ethertypes are
737 * allowed and whether or not it's allowed to enable/disable the specific
738 * offload via the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS message. The VF needs to
739 * parse the virtchnl_vlan_caps.offloads fields to determine which offload
740 * messages are allowed.
741 *
742 * For example, if the PF populates the virtchnl_vlan_caps.offloads in the
743 * following manner the VF will be allowed to enable and/or disable 0x8100 inner
744 * VLAN insertion and/or stripping via the opcodes listed above. Inner in this
745 * case means the outer most or single VLAN from the VF's perspective. This is
746 * because no outer offloads are supported. See the comments above the
747 * virtchnl_vlan_supported_caps structure for more details.
748 *
749 * virtchnl_vlan_caps.offloads.stripping_support.inner =
750 * VIRTCHNL_VLAN_TOGGLE |
751 * VIRTCHNL_VLAN_ETHERTYPE_8100;
752 *
753 * virtchnl_vlan_caps.offloads.insertion_support.inner =
754 * VIRTCHNL_VLAN_TOGGLE |
755 * VIRTCHNL_VLAN_ETHERTYPE_8100;
756 *
757 * In order to enable inner (again note that in this case inner is the outer
758 * most or single VLAN from the VF's perspective) VLAN stripping for 0x8100
759 * VLANs, the VF would populate the virtchnl_vlan_setting structure in the
760 * following manner and send the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 message.
761 *
762 * virtchnl_vlan_setting.inner_ethertype_setting =
763 * VIRTCHNL_VLAN_ETHERTYPE_8100;
764 *
765 * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on
766 * initialization.
767 *
768 * The reason that VLAN TPID(s) are not being used for the
769 * outer_ethertype_setting and inner_ethertype_setting fields is because it's
770 * possible a device could support VLAN insertion and/or stripping offload on
771 * multiple ethertypes concurrently, so this method allows a VF to request
772 * multiple ethertypes in one message using the virtchnl_vlan_support
773 * enumeration.
774 *
775 * For example, if the PF populates the virtchnl_vlan_caps.offloads in the
776 * following manner the VF will be allowed to enable 0x8100 and 0x88a8 outer
777 * VLAN insertion and stripping simultaneously. The
778 * virtchnl_vlan_caps.offloads.ethertype_match field will also have to be
779 * populated based on what the PF can support.
780 *
781 * virtchnl_vlan_caps.offloads.stripping_support.outer =
782 * VIRTCHNL_VLAN_TOGGLE |
783 * VIRTCHNL_VLAN_ETHERTYPE_8100 |
784 * VIRTCHNL_VLAN_ETHERTYPE_88A8 |
785 * VIRTCHNL_VLAN_ETHERTYPE_AND;
786 *
787 * virtchnl_vlan_caps.offloads.insertion_support.outer =
788 * VIRTCHNL_VLAN_TOGGLE |
789 * VIRTCHNL_VLAN_ETHERTYPE_8100 |
790 * VIRTCHNL_VLAN_ETHERTYPE_88A8 |
791 * VIRTCHNL_VLAN_ETHERTYPE_AND;
792 *
793 * In order to enable outer VLAN stripping for 0x8100 and 0x88a8 VLANs, the VF
794 * would populate the virthcnl_vlan_offload_structure in the following manner
795 * and send the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 message.
796 *
797 * virtchnl_vlan_setting.outer_ethertype_setting =
798 * VIRTHCNL_VLAN_ETHERTYPE_8100 |
799 * VIRTHCNL_VLAN_ETHERTYPE_88A8;
800 *
801 * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on
802 * initialization.
803 *
804 * There is also the case where a PF and the underlying hardware can support
805 * VLAN offloads on multiple ethertypes, but not concurrently. For example, if
806 * the PF populates the virtchnl_vlan_caps.offloads in the following manner the
807 * VF will be allowed to enable and/or disable 0x8100 XOR 0x88a8 outer VLAN
808 * offloads. The ethertypes must match for stripping and insertion.
809 *
810 * virtchnl_vlan_caps.offloads.stripping_support.outer =
811 * VIRTCHNL_VLAN_TOGGLE |
812 * VIRTCHNL_VLAN_ETHERTYPE_8100 |
813 * VIRTCHNL_VLAN_ETHERTYPE_88A8 |
814 * VIRTCHNL_VLAN_ETHERTYPE_XOR;
815 *
816 * virtchnl_vlan_caps.offloads.insertion_support.outer =
817 * VIRTCHNL_VLAN_TOGGLE |
818 * VIRTCHNL_VLAN_ETHERTYPE_8100 |
819 * VIRTCHNL_VLAN_ETHERTYPE_88A8 |
820 * VIRTCHNL_VLAN_ETHERTYPE_XOR;
821 *
822 * virtchnl_vlan_caps.offloads.ethertype_match =
823 * VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
824 *
825 * In order to enable outer VLAN stripping for 0x88a8 VLANs, the VF would
826 * populate the virtchnl_vlan_setting structure in the following manner and send
827 * the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2. Also, this will change the
828 * ethertype for VLAN insertion if it's enabled. So, for completeness, a
829 * VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 with the same ethertype should be sent.
830 *
831 * virtchnl_vlan_setting.outer_ethertype_setting = VIRTHCNL_VLAN_ETHERTYPE_88A8;
832 *
833 * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on
834 * initialization.
835 */
836 struct virtchnl_vlan_setting {
837 u32 outer_ethertype_setting;
838 u32 inner_ethertype_setting;
839 u16 vport_id;
840 u8 pad[6];
841 };
842
843 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vlan_setting);
844
845 /* VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE
846 * VF sends VSI id and flags.
847 * PF returns status code in retval.
848 * Note: we assume that broadcast accept mode is always enabled.
849 */
850 struct virtchnl_promisc_info {
851 u16 vsi_id;
852 u16 flags;
853 };
854
855 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_promisc_info);
856
857 #define FLAG_VF_UNICAST_PROMISC 0x00000001
858 #define FLAG_VF_MULTICAST_PROMISC 0x00000002
859
860 /* VIRTCHNL_OP_GET_STATS
861 * VF sends this message to request stats for the selected VSI. VF uses
862 * the virtchnl_queue_select struct to specify the VSI. The queue_id
863 * field is ignored by the PF.
864 *
865 * PF replies with struct eth_stats in an external buffer.
866 */
867
868 /* VIRTCHNL_OP_CONFIG_RSS_KEY
869 * VIRTCHNL_OP_CONFIG_RSS_LUT
870 * VF sends these messages to configure RSS. Only supported if both PF
871 * and VF drivers set the VIRTCHNL_VF_OFFLOAD_RSS_PF bit during
872 * configuration negotiation. If this is the case, then the RSS fields in
873 * the VF resource struct are valid.
874 * Both the key and LUT are initialized to 0 by the PF, meaning that
875 * RSS is effectively disabled until set up by the VF.
876 */
877 struct virtchnl_rss_key {
878 u16 vsi_id;
879 u16 key_len;
880 u8 key[]; /* RSS hash key, packed bytes */
881 };
882
883 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_rss_key);
884 #define virtchnl_rss_key_LEGACY_SIZEOF 6
885
886 struct virtchnl_rss_lut {
887 u16 vsi_id;
888 u16 lut_entries;
889 u8 lut[]; /* RSS lookup table */
890 };
891
892 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_rss_lut);
893 #define virtchnl_rss_lut_LEGACY_SIZEOF 6
894
895 /* VIRTCHNL_OP_GET_RSS_HENA_CAPS
896 * VIRTCHNL_OP_SET_RSS_HENA
897 * VF sends these messages to get and set the hash filter enable bits for RSS.
898 * By default, the PF sets these to all possible traffic types that the
899 * hardware supports. The VF can query this value if it wants to change the
900 * traffic types that are hashed by the hardware.
901 */
902 struct virtchnl_rss_hena {
903 u64 hena;
904 };
905
906 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_rss_hena);
907
908 /* VIRTCHNL_OP_ENABLE_CHANNELS
909 * VIRTCHNL_OP_DISABLE_CHANNELS
910 * VF sends these messages to enable or disable channels based on
911 * the user specified queue count and queue offset for each traffic class.
912 * This struct encompasses all the information that the PF needs from
913 * VF to create a channel.
914 */
915 struct virtchnl_channel_info {
916 u16 count; /* number of queues in a channel */
917 u16 offset; /* queues in a channel start from 'offset' */
918 u32 pad;
919 u64 max_tx_rate;
920 };
921
922 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_channel_info);
923
924 struct virtchnl_tc_info {
925 u32 num_tc;
926 u32 pad;
927 struct virtchnl_channel_info list[];
928 };
929
930 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_tc_info);
931 #define virtchnl_tc_info_LEGACY_SIZEOF 24
932
933 /* VIRTCHNL_ADD_CLOUD_FILTER
934 * VIRTCHNL_DEL_CLOUD_FILTER
935 * VF sends these messages to add or delete a cloud filter based on the
936 * user specified match and action filters. These structures encompass
937 * all the information that the PF needs from the VF to add/delete a
938 * cloud filter.
939 */
940
941 struct virtchnl_l4_spec {
942 u8 src_mac[ETH_ALEN];
943 u8 dst_mac[ETH_ALEN];
944 __be16 vlan_id;
945 __be16 pad; /* reserved for future use */
946 __be32 src_ip[4];
947 __be32 dst_ip[4];
948 __be16 src_port;
949 __be16 dst_port;
950 };
951
952 VIRTCHNL_CHECK_STRUCT_LEN(52, virtchnl_l4_spec);
953
954 union virtchnl_flow_spec {
955 struct virtchnl_l4_spec tcp_spec;
956 u8 buffer[128]; /* reserved for future use */
957 };
958
959 VIRTCHNL_CHECK_UNION_LEN(128, virtchnl_flow_spec);
960
961 enum virtchnl_action {
962 /* action types */
963 VIRTCHNL_ACTION_DROP = 0,
964 VIRTCHNL_ACTION_TC_REDIRECT,
965 VIRTCHNL_ACTION_PASSTHRU,
966 VIRTCHNL_ACTION_QUEUE,
967 VIRTCHNL_ACTION_Q_REGION,
968 VIRTCHNL_ACTION_MARK,
969 VIRTCHNL_ACTION_COUNT,
970 };
971
972 enum virtchnl_flow_type {
973 /* flow types */
974 VIRTCHNL_TCP_V4_FLOW = 0,
975 VIRTCHNL_TCP_V6_FLOW,
976 };
977
978 struct virtchnl_filter {
979 union virtchnl_flow_spec data;
980 union virtchnl_flow_spec mask;
981
982 /* see enum virtchnl_flow_type */
983 s32 flow_type;
984
985 /* see enum virtchnl_action */
986 s32 action;
987 u32 action_meta;
988 u8 field_flags;
989 u8 pad[3];
990 };
991
992 VIRTCHNL_CHECK_STRUCT_LEN(272, virtchnl_filter);
993
994 struct virtchnl_supported_rxdids {
995 u64 supported_rxdids;
996 };
997
998 /* VIRTCHNL_OP_EVENT
999 * PF sends this message to inform the VF driver of events that may affect it.
1000 * No direct response is expected from the VF, though it may generate other
1001 * messages in response to this one.
1002 */
1003 enum virtchnl_event_codes {
1004 VIRTCHNL_EVENT_UNKNOWN = 0,
1005 VIRTCHNL_EVENT_LINK_CHANGE,
1006 VIRTCHNL_EVENT_RESET_IMPENDING,
1007 VIRTCHNL_EVENT_PF_DRIVER_CLOSE,
1008 };
1009
1010 #define PF_EVENT_SEVERITY_INFO 0
1011 #define PF_EVENT_SEVERITY_CERTAIN_DOOM 255
1012
1013 struct virtchnl_pf_event {
1014 /* see enum virtchnl_event_codes */
1015 s32 event;
1016 union {
1017 /* If the PF driver does not support the new speed reporting
1018 * capabilities then use link_event else use link_event_adv to
1019 * get the speed and link information. The ability to understand
1020 * new speeds is indicated by setting the capability flag
1021 * VIRTCHNL_VF_CAP_ADV_LINK_SPEED in vf_cap_flags parameter
1022 * in virtchnl_vf_resource struct and can be used to determine
1023 * which link event struct to use below.
1024 */
1025 struct {
1026 enum virtchnl_link_speed link_speed;
1027 bool link_status;
1028 u8 pad[3];
1029 } link_event;
1030 struct {
1031 /* link_speed provided in Mbps */
1032 u32 link_speed;
1033 u8 link_status;
1034 u8 pad[3];
1035 } link_event_adv;
1036 } event_data;
1037
1038 s32 severity;
1039 };
1040
1041 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_pf_event);
1042
1043 /* used to specify if a ceq_idx or aeq_idx is invalid */
1044 #define VIRTCHNL_RDMA_INVALID_QUEUE_IDX 0xFFFF
1045 /* VIRTCHNL_OP_CONFIG_RDMA_IRQ_MAP
1046 * VF uses this message to request PF to map RDMA vectors to RDMA queues.
1047 * The request for this originates from the VF RDMA driver through
1048 * a client interface between VF LAN and VF RDMA driver.
1049 * A vector could have an AEQ and CEQ attached to it although
1050 * there is a single AEQ per VF RDMA instance in which case
1051 * most vectors will have an VIRTCHNL_RDMA_INVALID_QUEUE_IDX for aeq and valid
1052 * idx for ceqs There will never be a case where there will be multiple CEQs
1053 * attached to a single vector.
1054 * PF configures interrupt mapping and returns status.
1055 */
1056
1057 struct virtchnl_rdma_qv_info {
1058 u32 v_idx; /* msix_vector */
1059 u16 ceq_idx; /* set to VIRTCHNL_RDMA_INVALID_QUEUE_IDX if invalid */
1060 u16 aeq_idx; /* set to VIRTCHNL_RDMA_INVALID_QUEUE_IDX if invalid */
1061 u8 itr_idx;
1062 u8 pad[3];
1063 };
1064
1065 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_rdma_qv_info);
1066
1067 struct virtchnl_rdma_qvlist_info {
1068 u32 num_vectors;
1069 struct virtchnl_rdma_qv_info qv_info[];
1070 };
1071
1072 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_rdma_qvlist_info);
1073 #define virtchnl_rdma_qvlist_info_LEGACY_SIZEOF 16
1074
1075 /* VF reset states - these are written into the RSTAT register:
1076 * VFGEN_RSTAT on the VF
1077 * When the PF initiates a reset, it writes 0
1078 * When the reset is complete, it writes 1
1079 * When the PF detects that the VF has recovered, it writes 2
1080 * VF checks this register periodically to determine if a reset has occurred,
1081 * then polls it to know when the reset is complete.
1082 * If either the PF or VF reads the register while the hardware
1083 * is in a reset state, it will return DEADBEEF, which, when masked
1084 * will result in 3.
1085 */
1086 enum virtchnl_vfr_states {
1087 VIRTCHNL_VFR_INPROGRESS = 0,
1088 VIRTCHNL_VFR_COMPLETED,
1089 VIRTCHNL_VFR_VFACTIVE,
1090 };
1091
1092 /* Type of RSS algorithm */
1093 enum virtchnl_rss_algorithm {
1094 VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC = 0,
1095 VIRTCHNL_RSS_ALG_R_ASYMMETRIC = 1,
1096 VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC = 2,
1097 VIRTCHNL_RSS_ALG_XOR_SYMMETRIC = 3,
1098 };
1099
1100 #define VIRTCHNL_MAX_NUM_PROTO_HDRS 32
1101 #define PROTO_HDR_SHIFT 5
1102 #define PROTO_HDR_FIELD_START(proto_hdr_type) ((proto_hdr_type) << PROTO_HDR_SHIFT)
1103 #define PROTO_HDR_FIELD_MASK ((1UL << PROTO_HDR_SHIFT) - 1)
1104
1105 /* VF use these macros to configure each protocol header.
1106 * Specify which protocol headers and protocol header fields base on
1107 * virtchnl_proto_hdr_type and virtchnl_proto_hdr_field.
1108 * @param hdr: a struct of virtchnl_proto_hdr
1109 * @param hdr_type: ETH/IPV4/TCP, etc
1110 * @param field: SRC/DST/TEID/SPI, etc
1111 */
1112 #define VIRTCHNL_ADD_PROTO_HDR_FIELD(hdr, field) \
1113 ((hdr)->field_selector |= BIT((field) & PROTO_HDR_FIELD_MASK))
1114 #define VIRTCHNL_DEL_PROTO_HDR_FIELD(hdr, field) \
1115 ((hdr)->field_selector &= ~BIT((field) & PROTO_HDR_FIELD_MASK))
1116 #define VIRTCHNL_TEST_PROTO_HDR_FIELD(hdr, val) \
1117 ((hdr)->field_selector & BIT((val) & PROTO_HDR_FIELD_MASK))
1118 #define VIRTCHNL_GET_PROTO_HDR_FIELD(hdr) ((hdr)->field_selector)
1119
1120 #define VIRTCHNL_ADD_PROTO_HDR_FIELD_BIT(hdr, hdr_type, field) \
1121 (VIRTCHNL_ADD_PROTO_HDR_FIELD(hdr, \
1122 VIRTCHNL_PROTO_HDR_ ## hdr_type ## _ ## field))
1123 #define VIRTCHNL_DEL_PROTO_HDR_FIELD_BIT(hdr, hdr_type, field) \
1124 (VIRTCHNL_DEL_PROTO_HDR_FIELD(hdr, \
1125 VIRTCHNL_PROTO_HDR_ ## hdr_type ## _ ## field))
1126
1127 #define VIRTCHNL_SET_PROTO_HDR_TYPE(hdr, hdr_type) \
1128 ((hdr)->type = VIRTCHNL_PROTO_HDR_ ## hdr_type)
1129 #define VIRTCHNL_GET_PROTO_HDR_TYPE(hdr) \
1130 (((hdr)->type) >> PROTO_HDR_SHIFT)
1131 #define VIRTCHNL_TEST_PROTO_HDR_TYPE(hdr, val) \
1132 ((hdr)->type == ((s32)((val) >> PROTO_HDR_SHIFT)))
1133 #define VIRTCHNL_TEST_PROTO_HDR(hdr, val) \
1134 (VIRTCHNL_TEST_PROTO_HDR_TYPE((hdr), (val)) && \
1135 VIRTCHNL_TEST_PROTO_HDR_FIELD((hdr), (val)))
1136
1137 /* Protocol header type within a packet segment. A segment consists of one or
1138 * more protocol headers that make up a logical group of protocol headers. Each
1139 * logical group of protocol headers encapsulates or is encapsulated using/by
1140 * tunneling or encapsulation protocols for network virtualization.
1141 */
1142 enum virtchnl_proto_hdr_type {
1143 VIRTCHNL_PROTO_HDR_NONE,
1144 VIRTCHNL_PROTO_HDR_ETH,
1145 VIRTCHNL_PROTO_HDR_S_VLAN,
1146 VIRTCHNL_PROTO_HDR_C_VLAN,
1147 VIRTCHNL_PROTO_HDR_IPV4,
1148 VIRTCHNL_PROTO_HDR_IPV6,
1149 VIRTCHNL_PROTO_HDR_TCP,
1150 VIRTCHNL_PROTO_HDR_UDP,
1151 VIRTCHNL_PROTO_HDR_SCTP,
1152 VIRTCHNL_PROTO_HDR_GTPU_IP,
1153 VIRTCHNL_PROTO_HDR_GTPU_EH,
1154 VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN,
1155 VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP,
1156 VIRTCHNL_PROTO_HDR_PPPOE,
1157 VIRTCHNL_PROTO_HDR_L2TPV3,
1158 VIRTCHNL_PROTO_HDR_ESP,
1159 VIRTCHNL_PROTO_HDR_AH,
1160 VIRTCHNL_PROTO_HDR_PFCP,
1161 };
1162
1163 /* Protocol header field within a protocol header. */
1164 enum virtchnl_proto_hdr_field {
1165 /* ETHER */
1166 VIRTCHNL_PROTO_HDR_ETH_SRC =
1167 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ETH),
1168 VIRTCHNL_PROTO_HDR_ETH_DST,
1169 VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE,
1170 /* S-VLAN */
1171 VIRTCHNL_PROTO_HDR_S_VLAN_ID =
1172 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_S_VLAN),
1173 /* C-VLAN */
1174 VIRTCHNL_PROTO_HDR_C_VLAN_ID =
1175 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_C_VLAN),
1176 /* IPV4 */
1177 VIRTCHNL_PROTO_HDR_IPV4_SRC =
1178 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV4),
1179 VIRTCHNL_PROTO_HDR_IPV4_DST,
1180 VIRTCHNL_PROTO_HDR_IPV4_DSCP,
1181 VIRTCHNL_PROTO_HDR_IPV4_TTL,
1182 VIRTCHNL_PROTO_HDR_IPV4_PROT,
1183 /* IPV6 */
1184 VIRTCHNL_PROTO_HDR_IPV6_SRC =
1185 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV6),
1186 VIRTCHNL_PROTO_HDR_IPV6_DST,
1187 VIRTCHNL_PROTO_HDR_IPV6_TC,
1188 VIRTCHNL_PROTO_HDR_IPV6_HOP_LIMIT,
1189 VIRTCHNL_PROTO_HDR_IPV6_PROT,
1190 /* TCP */
1191 VIRTCHNL_PROTO_HDR_TCP_SRC_PORT =
1192 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_TCP),
1193 VIRTCHNL_PROTO_HDR_TCP_DST_PORT,
1194 /* UDP */
1195 VIRTCHNL_PROTO_HDR_UDP_SRC_PORT =
1196 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_UDP),
1197 VIRTCHNL_PROTO_HDR_UDP_DST_PORT,
1198 /* SCTP */
1199 VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT =
1200 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_SCTP),
1201 VIRTCHNL_PROTO_HDR_SCTP_DST_PORT,
1202 /* GTPU_IP */
1203 VIRTCHNL_PROTO_HDR_GTPU_IP_TEID =
1204 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_IP),
1205 /* GTPU_EH */
1206 VIRTCHNL_PROTO_HDR_GTPU_EH_PDU =
1207 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_EH),
1208 VIRTCHNL_PROTO_HDR_GTPU_EH_QFI,
1209 /* PPPOE */
1210 VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID =
1211 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_PPPOE),
1212 /* L2TPV3 */
1213 VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID =
1214 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_L2TPV3),
1215 /* ESP */
1216 VIRTCHNL_PROTO_HDR_ESP_SPI =
1217 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ESP),
1218 /* AH */
1219 VIRTCHNL_PROTO_HDR_AH_SPI =
1220 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_AH),
1221 /* PFCP */
1222 VIRTCHNL_PROTO_HDR_PFCP_S_FIELD =
1223 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_PFCP),
1224 VIRTCHNL_PROTO_HDR_PFCP_SEID,
1225 };
1226
1227 struct virtchnl_proto_hdr {
1228 /* see enum virtchnl_proto_hdr_type */
1229 s32 type;
1230 u32 field_selector; /* a bit mask to select field for header type */
1231 u8 buffer[64];
1232 /**
1233 * binary buffer in network order for specific header type.
1234 * For example, if type = VIRTCHNL_PROTO_HDR_IPV4, a IPv4
1235 * header is expected to be copied into the buffer.
1236 */
1237 };
1238
1239 VIRTCHNL_CHECK_STRUCT_LEN(72, virtchnl_proto_hdr);
1240
1241 struct virtchnl_proto_hdrs {
1242 u8 tunnel_level;
1243 u8 pad[3];
1244 /**
1245 * specify where protocol header start from.
1246 * 0 - from the outer layer
1247 * 1 - from the first inner layer
1248 * 2 - from the second inner layer
1249 * ....
1250 **/
1251 int count; /* the proto layers must < VIRTCHNL_MAX_NUM_PROTO_HDRS */
1252 struct virtchnl_proto_hdr proto_hdr[VIRTCHNL_MAX_NUM_PROTO_HDRS];
1253 };
1254
1255 VIRTCHNL_CHECK_STRUCT_LEN(2312, virtchnl_proto_hdrs);
1256
1257 struct virtchnl_rss_cfg {
1258 struct virtchnl_proto_hdrs proto_hdrs; /* protocol headers */
1259
1260 /* see enum virtchnl_rss_algorithm; rss algorithm type */
1261 s32 rss_algorithm;
1262 u8 reserved[128]; /* reserve for future */
1263 };
1264
1265 VIRTCHNL_CHECK_STRUCT_LEN(2444, virtchnl_rss_cfg);
1266
1267 /* action configuration for FDIR */
1268 struct virtchnl_filter_action {
1269 /* see enum virtchnl_action type */
1270 s32 type;
1271 union {
1272 /* used for queue and qgroup action */
1273 struct {
1274 u16 index;
1275 u8 region;
1276 } queue;
1277 /* used for count action */
1278 struct {
1279 /* share counter ID with other flow rules */
1280 u8 shared;
1281 u32 id; /* counter ID */
1282 } count;
1283 /* used for mark action */
1284 u32 mark_id;
1285 u8 reserve[32];
1286 } act_conf;
1287 };
1288
1289 VIRTCHNL_CHECK_STRUCT_LEN(36, virtchnl_filter_action);
1290
1291 #define VIRTCHNL_MAX_NUM_ACTIONS 8
1292
1293 struct virtchnl_filter_action_set {
1294 /* action number must be less then VIRTCHNL_MAX_NUM_ACTIONS */
1295 int count;
1296 struct virtchnl_filter_action actions[VIRTCHNL_MAX_NUM_ACTIONS];
1297 };
1298
1299 VIRTCHNL_CHECK_STRUCT_LEN(292, virtchnl_filter_action_set);
1300
1301 /* pattern and action for FDIR rule */
1302 struct virtchnl_fdir_rule {
1303 struct virtchnl_proto_hdrs proto_hdrs;
1304 struct virtchnl_filter_action_set action_set;
1305 };
1306
1307 VIRTCHNL_CHECK_STRUCT_LEN(2604, virtchnl_fdir_rule);
1308
1309 /* Status returned to VF after VF requests FDIR commands
1310 * VIRTCHNL_FDIR_SUCCESS
1311 * VF FDIR related request is successfully done by PF
1312 * The request can be OP_ADD/DEL/QUERY_FDIR_FILTER.
1313 *
1314 * VIRTCHNL_FDIR_FAILURE_RULE_NORESOURCE
1315 * OP_ADD_FDIR_FILTER request is failed due to no Hardware resource.
1316 *
1317 * VIRTCHNL_FDIR_FAILURE_RULE_EXIST
1318 * OP_ADD_FDIR_FILTER request is failed due to the rule is already existed.
1319 *
1320 * VIRTCHNL_FDIR_FAILURE_RULE_CONFLICT
1321 * OP_ADD_FDIR_FILTER request is failed due to conflict with existing rule.
1322 *
1323 * VIRTCHNL_FDIR_FAILURE_RULE_NONEXIST
1324 * OP_DEL_FDIR_FILTER request is failed due to this rule doesn't exist.
1325 *
1326 * VIRTCHNL_FDIR_FAILURE_RULE_INVALID
1327 * OP_ADD_FDIR_FILTER request is failed due to parameters validation
1328 * or HW doesn't support.
1329 *
1330 * VIRTCHNL_FDIR_FAILURE_RULE_TIMEOUT
1331 * OP_ADD/DEL_FDIR_FILTER request is failed due to timing out
1332 * for programming.
1333 *
1334 * VIRTCHNL_FDIR_FAILURE_QUERY_INVALID
1335 * OP_QUERY_FDIR_FILTER request is failed due to parameters validation,
1336 * for example, VF query counter of a rule who has no counter action.
1337 */
1338 enum virtchnl_fdir_prgm_status {
1339 VIRTCHNL_FDIR_SUCCESS = 0,
1340 VIRTCHNL_FDIR_FAILURE_RULE_NORESOURCE,
1341 VIRTCHNL_FDIR_FAILURE_RULE_EXIST,
1342 VIRTCHNL_FDIR_FAILURE_RULE_CONFLICT,
1343 VIRTCHNL_FDIR_FAILURE_RULE_NONEXIST,
1344 VIRTCHNL_FDIR_FAILURE_RULE_INVALID,
1345 VIRTCHNL_FDIR_FAILURE_RULE_TIMEOUT,
1346 VIRTCHNL_FDIR_FAILURE_QUERY_INVALID,
1347 };
1348
1349 /* VIRTCHNL_OP_ADD_FDIR_FILTER
1350 * VF sends this request to PF by filling out vsi_id,
1351 * validate_only and rule_cfg. PF will return flow_id
1352 * if the request is successfully done and return add_status to VF.
1353 */
1354 struct virtchnl_fdir_add {
1355 u16 vsi_id; /* INPUT */
1356 /*
1357 * 1 for validating a fdir rule, 0 for creating a fdir rule.
1358 * Validate and create share one ops: VIRTCHNL_OP_ADD_FDIR_FILTER.
1359 */
1360 u16 validate_only; /* INPUT */
1361 u32 flow_id; /* OUTPUT */
1362 struct virtchnl_fdir_rule rule_cfg; /* INPUT */
1363
1364 /* see enum virtchnl_fdir_prgm_status; OUTPUT */
1365 s32 status;
1366 };
1367
1368 VIRTCHNL_CHECK_STRUCT_LEN(2616, virtchnl_fdir_add);
1369
1370 /* VIRTCHNL_OP_DEL_FDIR_FILTER
1371 * VF sends this request to PF by filling out vsi_id
1372 * and flow_id. PF will return del_status to VF.
1373 */
1374 struct virtchnl_fdir_del {
1375 u16 vsi_id; /* INPUT */
1376 u16 pad;
1377 u32 flow_id; /* INPUT */
1378
1379 /* see enum virtchnl_fdir_prgm_status; OUTPUT */
1380 s32 status;
1381 };
1382
1383 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_fdir_del);
1384
1385 #define __vss_byone(p, member, count, old) \
1386 (struct_size(p, member, count) + (old - 1 - struct_size(p, member, 0)))
1387
1388 #define __vss_byelem(p, member, count, old) \
1389 (struct_size(p, member, count - 1) + (old - struct_size(p, member, 0)))
1390
1391 #define __vss_full(p, member, count, old) \
1392 (struct_size(p, member, count) + (old - struct_size(p, member, 0)))
1393
1394 #define __vss(type, func, p, member, count) \
1395 struct type: func(p, member, count, type##_LEGACY_SIZEOF)
1396
1397 #define virtchnl_struct_size(p, m, c) \
1398 _Generic(*p, \
1399 __vss(virtchnl_vf_resource, __vss_full, p, m, c), \
1400 __vss(virtchnl_vsi_queue_config_info, __vss_full, p, m, c), \
1401 __vss(virtchnl_irq_map_info, __vss_full, p, m, c), \
1402 __vss(virtchnl_ether_addr_list, __vss_full, p, m, c), \
1403 __vss(virtchnl_vlan_filter_list, __vss_full, p, m, c), \
1404 __vss(virtchnl_vlan_filter_list_v2, __vss_byelem, p, m, c), \
1405 __vss(virtchnl_tc_info, __vss_byelem, p, m, c), \
1406 __vss(virtchnl_rdma_qvlist_info, __vss_byelem, p, m, c), \
1407 __vss(virtchnl_rss_key, __vss_byone, p, m, c), \
1408 __vss(virtchnl_rss_lut, __vss_byone, p, m, c))
1409
1410 /**
1411 * virtchnl_vc_validate_vf_msg
1412 * @ver: Virtchnl version info
1413 * @v_opcode: Opcode for the message
1414 * @msg: pointer to the msg buffer
1415 * @msglen: msg length
1416 *
1417 * validate msg format against struct for each opcode
1418 */
1419 static inline int
virtchnl_vc_validate_vf_msg(struct virtchnl_version_info * ver,u32 v_opcode,u8 * msg,u16 msglen)1420 virtchnl_vc_validate_vf_msg(struct virtchnl_version_info *ver, u32 v_opcode,
1421 u8 *msg, u16 msglen)
1422 {
1423 bool err_msg_format = false;
1424 u32 valid_len = 0;
1425
1426 /* Validate message length. */
1427 switch (v_opcode) {
1428 case VIRTCHNL_OP_VERSION:
1429 valid_len = sizeof(struct virtchnl_version_info);
1430 break;
1431 case VIRTCHNL_OP_RESET_VF:
1432 break;
1433 case VIRTCHNL_OP_GET_VF_RESOURCES:
1434 if (VF_IS_V11(ver))
1435 valid_len = sizeof(u32);
1436 break;
1437 case VIRTCHNL_OP_CONFIG_TX_QUEUE:
1438 valid_len = sizeof(struct virtchnl_txq_info);
1439 break;
1440 case VIRTCHNL_OP_CONFIG_RX_QUEUE:
1441 valid_len = sizeof(struct virtchnl_rxq_info);
1442 break;
1443 case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
1444 valid_len = virtchnl_vsi_queue_config_info_LEGACY_SIZEOF;
1445 if (msglen >= valid_len) {
1446 struct virtchnl_vsi_queue_config_info *vqc =
1447 (struct virtchnl_vsi_queue_config_info *)msg;
1448 valid_len = virtchnl_struct_size(vqc, qpair,
1449 vqc->num_queue_pairs);
1450 if (vqc->num_queue_pairs == 0)
1451 err_msg_format = true;
1452 }
1453 break;
1454 case VIRTCHNL_OP_CONFIG_IRQ_MAP:
1455 valid_len = virtchnl_irq_map_info_LEGACY_SIZEOF;
1456 if (msglen >= valid_len) {
1457 struct virtchnl_irq_map_info *vimi =
1458 (struct virtchnl_irq_map_info *)msg;
1459 valid_len = virtchnl_struct_size(vimi, vecmap,
1460 vimi->num_vectors);
1461 if (vimi->num_vectors == 0)
1462 err_msg_format = true;
1463 }
1464 break;
1465 case VIRTCHNL_OP_ENABLE_QUEUES:
1466 case VIRTCHNL_OP_DISABLE_QUEUES:
1467 valid_len = sizeof(struct virtchnl_queue_select);
1468 break;
1469 case VIRTCHNL_OP_ADD_ETH_ADDR:
1470 case VIRTCHNL_OP_DEL_ETH_ADDR:
1471 valid_len = virtchnl_ether_addr_list_LEGACY_SIZEOF;
1472 if (msglen >= valid_len) {
1473 struct virtchnl_ether_addr_list *veal =
1474 (struct virtchnl_ether_addr_list *)msg;
1475 valid_len = virtchnl_struct_size(veal, list,
1476 veal->num_elements);
1477 if (veal->num_elements == 0)
1478 err_msg_format = true;
1479 }
1480 break;
1481 case VIRTCHNL_OP_ADD_VLAN:
1482 case VIRTCHNL_OP_DEL_VLAN:
1483 valid_len = virtchnl_vlan_filter_list_LEGACY_SIZEOF;
1484 if (msglen >= valid_len) {
1485 struct virtchnl_vlan_filter_list *vfl =
1486 (struct virtchnl_vlan_filter_list *)msg;
1487 valid_len = virtchnl_struct_size(vfl, vlan_id,
1488 vfl->num_elements);
1489 if (vfl->num_elements == 0)
1490 err_msg_format = true;
1491 }
1492 break;
1493 case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
1494 valid_len = sizeof(struct virtchnl_promisc_info);
1495 break;
1496 case VIRTCHNL_OP_GET_STATS:
1497 valid_len = sizeof(struct virtchnl_queue_select);
1498 break;
1499 case VIRTCHNL_OP_RDMA:
1500 /* These messages are opaque to us and will be validated in
1501 * the RDMA client code. We just need to check for nonzero
1502 * length. The firmware will enforce max length restrictions.
1503 */
1504 if (msglen)
1505 valid_len = msglen;
1506 else
1507 err_msg_format = true;
1508 break;
1509 case VIRTCHNL_OP_RELEASE_RDMA_IRQ_MAP:
1510 break;
1511 case VIRTCHNL_OP_CONFIG_RDMA_IRQ_MAP:
1512 valid_len = virtchnl_rdma_qvlist_info_LEGACY_SIZEOF;
1513 if (msglen >= valid_len) {
1514 struct virtchnl_rdma_qvlist_info *qv =
1515 (struct virtchnl_rdma_qvlist_info *)msg;
1516
1517 valid_len = virtchnl_struct_size(qv, qv_info,
1518 qv->num_vectors);
1519 }
1520 break;
1521 case VIRTCHNL_OP_CONFIG_RSS_KEY:
1522 valid_len = virtchnl_rss_key_LEGACY_SIZEOF;
1523 if (msglen >= valid_len) {
1524 struct virtchnl_rss_key *vrk =
1525 (struct virtchnl_rss_key *)msg;
1526 valid_len = virtchnl_struct_size(vrk, key,
1527 vrk->key_len);
1528 }
1529 break;
1530 case VIRTCHNL_OP_CONFIG_RSS_LUT:
1531 valid_len = virtchnl_rss_lut_LEGACY_SIZEOF;
1532 if (msglen >= valid_len) {
1533 struct virtchnl_rss_lut *vrl =
1534 (struct virtchnl_rss_lut *)msg;
1535 valid_len = virtchnl_struct_size(vrl, lut,
1536 vrl->lut_entries);
1537 }
1538 break;
1539 case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
1540 break;
1541 case VIRTCHNL_OP_SET_RSS_HENA:
1542 valid_len = sizeof(struct virtchnl_rss_hena);
1543 break;
1544 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
1545 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
1546 break;
1547 case VIRTCHNL_OP_REQUEST_QUEUES:
1548 valid_len = sizeof(struct virtchnl_vf_res_request);
1549 break;
1550 case VIRTCHNL_OP_ENABLE_CHANNELS:
1551 valid_len = virtchnl_tc_info_LEGACY_SIZEOF;
1552 if (msglen >= valid_len) {
1553 struct virtchnl_tc_info *vti =
1554 (struct virtchnl_tc_info *)msg;
1555 valid_len = virtchnl_struct_size(vti, list,
1556 vti->num_tc);
1557 if (vti->num_tc == 0)
1558 err_msg_format = true;
1559 }
1560 break;
1561 case VIRTCHNL_OP_DISABLE_CHANNELS:
1562 break;
1563 case VIRTCHNL_OP_ADD_CLOUD_FILTER:
1564 case VIRTCHNL_OP_DEL_CLOUD_FILTER:
1565 valid_len = sizeof(struct virtchnl_filter);
1566 break;
1567 case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS:
1568 break;
1569 case VIRTCHNL_OP_ADD_RSS_CFG:
1570 case VIRTCHNL_OP_DEL_RSS_CFG:
1571 valid_len = sizeof(struct virtchnl_rss_cfg);
1572 break;
1573 case VIRTCHNL_OP_ADD_FDIR_FILTER:
1574 valid_len = sizeof(struct virtchnl_fdir_add);
1575 break;
1576 case VIRTCHNL_OP_DEL_FDIR_FILTER:
1577 valid_len = sizeof(struct virtchnl_fdir_del);
1578 break;
1579 case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
1580 break;
1581 case VIRTCHNL_OP_ADD_VLAN_V2:
1582 case VIRTCHNL_OP_DEL_VLAN_V2:
1583 valid_len = virtchnl_vlan_filter_list_v2_LEGACY_SIZEOF;
1584 if (msglen >= valid_len) {
1585 struct virtchnl_vlan_filter_list_v2 *vfl =
1586 (struct virtchnl_vlan_filter_list_v2 *)msg;
1587
1588 valid_len = virtchnl_struct_size(vfl, filters,
1589 vfl->num_elements);
1590
1591 if (vfl->num_elements == 0) {
1592 err_msg_format = true;
1593 break;
1594 }
1595 }
1596 break;
1597 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
1598 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
1599 case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
1600 case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
1601 valid_len = sizeof(struct virtchnl_vlan_setting);
1602 break;
1603 /* These are always errors coming from the VF. */
1604 case VIRTCHNL_OP_EVENT:
1605 case VIRTCHNL_OP_UNKNOWN:
1606 default:
1607 return VIRTCHNL_STATUS_ERR_PARAM;
1608 }
1609 /* few more checks */
1610 if (err_msg_format || valid_len != msglen)
1611 return VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH;
1612
1613 return 0;
1614 }
1615 #endif /* _VIRTCHNL_H_ */
1616