xref: /openbmc/linux/drivers/phy/phy-xgene.c (revision c900529f3d9161bfde5cca0754f83b4d3c3e0220)
1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   * AppliedMicro X-Gene Multi-purpose PHY driver
4   *
5   * Copyright (c) 2014, Applied Micro Circuits Corporation
6   * Author: Loc Ho <lho@apm.com>
7   *         Tuan Phan <tphan@apm.com>
8   *         Suman Tripathi <stripathi@apm.com>
9   *
10   * The APM X-Gene PHY consists of two PLL clock macro's (CMU) and lanes.
11   * The first PLL clock macro is used for internal reference clock. The second
12   * PLL clock macro is used to generate the clock for the PHY. This driver
13   * configures the first PLL CMU, the second PLL CMU, and programs the PHY to
14   * operate according to the mode of operation. The first PLL CMU is only
15   * required if internal clock is enabled.
16   *
17   * Logical Layer Out Of HW module units:
18   *
19   * -----------------
20   * | Internal      |    |------|
21   * | Ref PLL CMU   |----|      |     -------------    ---------
22   * ------------ ----    | MUX  |-----|PHY PLL CMU|----| Serdes|
23   *                      |      |     |           |    ---------
24   * External Clock ------|      |     -------------
25   *                      |------|
26   *
27   * The Ref PLL CMU CSR (Configuration System Registers) is accessed
28   * indirectly from the SDS offset at 0x2000. It is only required for
29   * internal reference clock.
30   * The PHY PLL CMU CSR is accessed indirectly from the SDS offset at 0x0000.
31   * The Serdes CSR is accessed indirectly from the SDS offset at 0x0400.
32   *
33   * The Ref PLL CMU can be located within the same PHY IP or outside the PHY IP
34   * due to shared Ref PLL CMU. For PHY with Ref PLL CMU shared with another IP,
35   * it is located outside the PHY IP. This is the case for the PHY located
36   * at 0x1f23a000 (SATA Port 4/5). For such PHY, another resource is required
37   * to located the SDS/Ref PLL CMU module and its clock for that IP enabled.
38   *
39   * Currently, this driver only supports Gen3 SATA mode with external clock.
40   */
41  #include <linux/module.h>
42  #include <linux/of.h>
43  #include <linux/platform_device.h>
44  #include <linux/io.h>
45  #include <linux/delay.h>
46  #include <linux/phy/phy.h>
47  #include <linux/clk.h>
48  
49  /* Max 2 lanes per a PHY unit */
50  #define MAX_LANE			2
51  
52  /* Register offset inside the PHY */
53  #define SERDES_PLL_INDIRECT_OFFSET	0x0000
54  #define SERDES_PLL_REF_INDIRECT_OFFSET	0x2000
55  #define SERDES_INDIRECT_OFFSET		0x0400
56  #define SERDES_LANE_STRIDE		0x0200
57  
58  /* Some default Serdes parameters */
59  #define DEFAULT_SATA_TXBOOST_GAIN	{ 0x1e, 0x1e, 0x1e }
60  #define DEFAULT_SATA_TXEYEDIRECTION	{ 0x0, 0x0, 0x0 }
61  #define DEFAULT_SATA_TXEYETUNING	{ 0xa, 0xa, 0xa }
62  #define DEFAULT_SATA_SPD_SEL		{ 0x1, 0x3, 0x7 }
63  #define DEFAULT_SATA_TXAMP		{ 0x8, 0x8, 0x8 }
64  #define DEFAULT_SATA_TXCN1		{ 0x2, 0x2, 0x2 }
65  #define DEFAULT_SATA_TXCN2		{ 0x0, 0x0, 0x0 }
66  #define DEFAULT_SATA_TXCP1		{ 0xa, 0xa, 0xa }
67  
68  #define SATA_SPD_SEL_GEN3		0x7
69  #define SATA_SPD_SEL_GEN2		0x3
70  #define SATA_SPD_SEL_GEN1		0x1
71  
72  #define SSC_DISABLE			0
73  #define SSC_ENABLE			1
74  
75  #define FBDIV_VAL_50M			0x77
76  #define REFDIV_VAL_50M			0x1
77  #define FBDIV_VAL_100M			0x3B
78  #define REFDIV_VAL_100M			0x0
79  
80  /* SATA Clock/Reset CSR */
81  #define SATACLKENREG			0x00000000
82  #define  SATA0_CORE_CLKEN		0x00000002
83  #define  SATA1_CORE_CLKEN		0x00000004
84  #define SATASRESETREG			0x00000004
85  #define  SATA_MEM_RESET_MASK		0x00000020
86  #define  SATA_MEM_RESET_RD(src)		(((src) & 0x00000020) >> 5)
87  #define  SATA_SDS_RESET_MASK		0x00000004
88  #define  SATA_CSR_RESET_MASK		0x00000001
89  #define  SATA_CORE_RESET_MASK		0x00000002
90  #define  SATA_PMCLK_RESET_MASK		0x00000010
91  #define  SATA_PCLK_RESET_MASK		0x00000008
92  
93  /* SDS CSR used for PHY Indirect access */
94  #define SATA_ENET_SDS_PCS_CTL0		0x00000000
95  #define  REGSPEC_CFG_I_TX_WORDMODE0_SET(dst, src) \
96  		(((dst) & ~0x00070000) | (((u32) (src) << 16) & 0x00070000))
97  #define  REGSPEC_CFG_I_RX_WORDMODE0_SET(dst, src) \
98  		(((dst) & ~0x00e00000) | (((u32) (src) << 21) & 0x00e00000))
99  #define SATA_ENET_SDS_CTL0		0x0000000c
100  #define  REGSPEC_CFG_I_CUSTOMER_PIN_MODE0_SET(dst, src) \
101  		(((dst) & ~0x00007fff) | (((u32) (src)) & 0x00007fff))
102  #define SATA_ENET_SDS_CTL1		0x00000010
103  #define  CFG_I_SPD_SEL_CDR_OVR1_SET(dst, src) \
104  		(((dst) & ~0x0000000f) | (((u32) (src)) & 0x0000000f))
105  #define SATA_ENET_SDS_RST_CTL		0x00000024
106  #define SATA_ENET_SDS_IND_CMD_REG	0x0000003c
107  #define  CFG_IND_WR_CMD_MASK		0x00000001
108  #define  CFG_IND_RD_CMD_MASK		0x00000002
109  #define  CFG_IND_CMD_DONE_MASK		0x00000004
110  #define  CFG_IND_ADDR_SET(dst, src) \
111  		(((dst) & ~0x003ffff0) | (((u32) (src) << 4) & 0x003ffff0))
112  #define SATA_ENET_SDS_IND_RDATA_REG	0x00000040
113  #define SATA_ENET_SDS_IND_WDATA_REG	0x00000044
114  #define SATA_ENET_CLK_MACRO_REG		0x0000004c
115  #define  I_RESET_B_SET(dst, src) \
116  		(((dst) & ~0x00000001) | (((u32) (src)) & 0x00000001))
117  #define  I_PLL_FBDIV_SET(dst, src) \
118  		(((dst) & ~0x001ff000) | (((u32) (src) << 12) & 0x001ff000))
119  #define  I_CUSTOMEROV_SET(dst, src) \
120  		(((dst) & ~0x00000f80) | (((u32) (src) << 7) & 0x00000f80))
121  #define  O_PLL_LOCK_RD(src)		(((src) & 0x40000000) >> 30)
122  #define  O_PLL_READY_RD(src)		(((src) & 0x80000000) >> 31)
123  
124  /* PLL Clock Macro Unit (CMU) CSR accessing from SDS indirectly */
125  #define CMU_REG0			0x00000
126  #define  CMU_REG0_PLL_REF_SEL_MASK	0x00002000
127  #define  CMU_REG0_PLL_REF_SEL_SET(dst, src)	\
128  		(((dst) & ~0x00002000) | (((u32) (src) << 13) & 0x00002000))
129  #define  CMU_REG0_PDOWN_MASK		0x00004000
130  #define  CMU_REG0_CAL_COUNT_RESOL_SET(dst, src) \
131  		(((dst) & ~0x000000e0) | (((u32) (src) << 5) & 0x000000e0))
132  #define CMU_REG1			0x00002
133  #define  CMU_REG1_PLL_CP_SET(dst, src) \
134  		(((dst) & ~0x00003c00) | (((u32) (src) << 10) & 0x00003c00))
135  #define  CMU_REG1_PLL_MANUALCAL_SET(dst, src) \
136  		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
137  #define  CMU_REG1_PLL_CP_SEL_SET(dst, src) \
138  		(((dst) & ~0x000003e0) | (((u32) (src) << 5) & 0x000003e0))
139  #define  CMU_REG1_REFCLK_CMOS_SEL_MASK	0x00000001
140  #define  CMU_REG1_REFCLK_CMOS_SEL_SET(dst, src)	\
141  		(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
142  #define CMU_REG2			0x00004
143  #define  CMU_REG2_PLL_REFDIV_SET(dst, src) \
144  		(((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
145  #define  CMU_REG2_PLL_LFRES_SET(dst, src) \
146  		(((dst) & ~0x0000001e) | (((u32) (src) << 1) & 0x0000001e))
147  #define  CMU_REG2_PLL_FBDIV_SET(dst, src) \
148  		(((dst) & ~0x00003fe0) | (((u32) (src) << 5) & 0x00003fe0))
149  #define CMU_REG3			0x00006
150  #define  CMU_REG3_VCOVARSEL_SET(dst, src) \
151  		(((dst) & ~0x0000000f) | (((u32) (src) << 0) & 0x0000000f))
152  #define  CMU_REG3_VCO_MOMSEL_INIT_SET(dst, src) \
153  		(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
154  #define  CMU_REG3_VCO_MANMOMSEL_SET(dst, src) \
155  		(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
156  #define CMU_REG4			0x00008
157  #define CMU_REG5			0x0000a
158  #define  CMU_REG5_PLL_LFSMCAP_SET(dst, src) \
159  		(((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
160  #define  CMU_REG5_PLL_LOCK_RESOLUTION_SET(dst, src) \
161  		(((dst) & ~0x0000000e) | (((u32) (src) << 1) & 0x0000000e))
162  #define  CMU_REG5_PLL_LFCAP_SET(dst, src) \
163  		(((dst) & ~0x00003000) | (((u32) (src) << 12) & 0x00003000))
164  #define  CMU_REG5_PLL_RESETB_MASK	0x00000001
165  #define CMU_REG6			0x0000c
166  #define  CMU_REG6_PLL_VREGTRIM_SET(dst, src) \
167  		(((dst) & ~0x00000600) | (((u32) (src) << 9) & 0x00000600))
168  #define  CMU_REG6_MAN_PVT_CAL_SET(dst, src) \
169  		(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
170  #define CMU_REG7			0x0000e
171  #define  CMU_REG7_PLL_CALIB_DONE_RD(src) ((0x00004000 & (u32) (src)) >> 14)
172  #define  CMU_REG7_VCO_CAL_FAIL_RD(src)	((0x00000c00 & (u32) (src)) >> 10)
173  #define CMU_REG8			0x00010
174  #define CMU_REG9			0x00012
175  #define  CMU_REG9_WORD_LEN_8BIT		0x000
176  #define  CMU_REG9_WORD_LEN_10BIT	0x001
177  #define  CMU_REG9_WORD_LEN_16BIT	0x002
178  #define  CMU_REG9_WORD_LEN_20BIT	0x003
179  #define  CMU_REG9_WORD_LEN_32BIT	0x004
180  #define  CMU_REG9_WORD_LEN_40BIT	0x005
181  #define  CMU_REG9_WORD_LEN_64BIT	0x006
182  #define  CMU_REG9_WORD_LEN_66BIT	0x007
183  #define  CMU_REG9_TX_WORD_MODE_CH1_SET(dst, src) \
184  		(((dst) & ~0x00000380) | (((u32) (src) << 7) & 0x00000380))
185  #define  CMU_REG9_TX_WORD_MODE_CH0_SET(dst, src) \
186  		(((dst) & ~0x00000070) | (((u32) (src) << 4) & 0x00000070))
187  #define  CMU_REG9_PLL_POST_DIVBY2_SET(dst, src) \
188  		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
189  #define  CMU_REG9_VBG_BYPASSB_SET(dst, src) \
190  		(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
191  #define  CMU_REG9_IGEN_BYPASS_SET(dst, src) \
192  		(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
193  #define CMU_REG10			0x00014
194  #define  CMU_REG10_VREG_REFSEL_SET(dst, src) \
195  		(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
196  #define CMU_REG11			0x00016
197  #define CMU_REG12			0x00018
198  #define  CMU_REG12_STATE_DELAY9_SET(dst, src) \
199  		(((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0))
200  #define CMU_REG13			0x0001a
201  #define CMU_REG14			0x0001c
202  #define CMU_REG15			0x0001e
203  #define CMU_REG16			0x00020
204  #define  CMU_REG16_PVT_DN_MAN_ENA_MASK	0x00000001
205  #define  CMU_REG16_PVT_UP_MAN_ENA_MASK	0x00000002
206  #define  CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(dst, src) \
207  		(((dst) & ~0x0000001c) | (((u32) (src) << 2) & 0x0000001c))
208  #define  CMU_REG16_CALIBRATION_DONE_OVERRIDE_SET(dst, src) \
209  		(((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
210  #define  CMU_REG16_BYPASS_PLL_LOCK_SET(dst, src) \
211  		(((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020))
212  #define CMU_REG17			0x00022
213  #define  CMU_REG17_PVT_CODE_R2A_SET(dst, src) \
214  		(((dst) & ~0x00007f00) | (((u32) (src) << 8) & 0x00007f00))
215  #define  CMU_REG17_RESERVED_7_SET(dst, src) \
216  		(((dst) & ~0x000000e0) | (((u32) (src) << 5) & 0x000000e0))
217  #define  CMU_REG17_PVT_TERM_MAN_ENA_MASK	0x00008000
218  #define CMU_REG18			0x00024
219  #define CMU_REG19			0x00026
220  #define CMU_REG20			0x00028
221  #define CMU_REG21			0x0002a
222  #define CMU_REG22			0x0002c
223  #define CMU_REG23			0x0002e
224  #define CMU_REG24			0x00030
225  #define CMU_REG25			0x00032
226  #define CMU_REG26			0x00034
227  #define  CMU_REG26_FORCE_PLL_LOCK_SET(dst, src) \
228  		(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
229  #define CMU_REG27			0x00036
230  #define CMU_REG28			0x00038
231  #define CMU_REG29			0x0003a
232  #define CMU_REG30			0x0003c
233  #define  CMU_REG30_LOCK_COUNT_SET(dst, src) \
234  		(((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006))
235  #define  CMU_REG30_PCIE_MODE_SET(dst, src) \
236  		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
237  #define CMU_REG31			0x0003e
238  #define CMU_REG32			0x00040
239  #define  CMU_REG32_FORCE_VCOCAL_START_MASK	0x00004000
240  #define  CMU_REG32_PVT_CAL_WAIT_SEL_SET(dst, src) \
241  		(((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006))
242  #define  CMU_REG32_IREF_ADJ_SET(dst, src) \
243  		(((dst) & ~0x00000180) | (((u32) (src) << 7) & 0x00000180))
244  #define CMU_REG33			0x00042
245  #define CMU_REG34			0x00044
246  #define  CMU_REG34_VCO_CAL_VTH_LO_MAX_SET(dst, src) \
247  		(((dst) & ~0x0000000f) | (((u32) (src) << 0) & 0x0000000f))
248  #define  CMU_REG34_VCO_CAL_VTH_HI_MAX_SET(dst, src) \
249  		(((dst) & ~0x00000f00) | (((u32) (src) << 8) & 0x00000f00))
250  #define  CMU_REG34_VCO_CAL_VTH_LO_MIN_SET(dst, src) \
251  		(((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0))
252  #define  CMU_REG34_VCO_CAL_VTH_HI_MIN_SET(dst, src) \
253  		(((dst) & ~0x0000f000) | (((u32) (src) << 12) & 0x0000f000))
254  #define CMU_REG35			0x00046
255  #define  CMU_REG35_PLL_SSC_MOD_SET(dst, src) \
256  		(((dst) & ~0x0000fe00) | (((u32) (src) << 9) & 0x0000fe00))
257  #define CMU_REG36				0x00048
258  #define  CMU_REG36_PLL_SSC_EN_SET(dst, src) \
259  		(((dst) & ~0x00000010) | (((u32) (src) << 4) & 0x00000010))
260  #define  CMU_REG36_PLL_SSC_VSTEP_SET(dst, src) \
261  		(((dst) & ~0x0000ffc0) | (((u32) (src) << 6) & 0x0000ffc0))
262  #define  CMU_REG36_PLL_SSC_DSMSEL_SET(dst, src) \
263  		(((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020))
264  #define CMU_REG37			0x0004a
265  #define CMU_REG38			0x0004c
266  #define CMU_REG39			0x0004e
267  
268  /* PHY lane CSR accessing from SDS indirectly */
269  #define RXTX_REG0			0x000
270  #define  RXTX_REG0_CTLE_EQ_HR_SET(dst, src) \
271  		(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
272  #define  RXTX_REG0_CTLE_EQ_QR_SET(dst, src) \
273  		(((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
274  #define  RXTX_REG0_CTLE_EQ_FR_SET(dst, src) \
275  		(((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
276  #define RXTX_REG1			0x002
277  #define  RXTX_REG1_RXACVCM_SET(dst, src) \
278  		(((dst) & ~0x0000f000) | (((u32) (src) << 12) & 0x0000f000))
279  #define  RXTX_REG1_CTLE_EQ_SET(dst, src) \
280  		(((dst) & ~0x00000f80) | (((u32) (src) << 7) & 0x00000f80))
281  #define  RXTX_REG1_RXVREG1_SET(dst, src) \
282  		(((dst) & ~0x00000060) | (((u32) (src) << 5) & 0x00000060))
283  #define  RXTX_REG1_RXIREF_ADJ_SET(dst, src) \
284  		(((dst) & ~0x00000006) | (((u32) (src) << 1) &  0x00000006))
285  #define RXTX_REG2			0x004
286  #define  RXTX_REG2_VTT_ENA_SET(dst, src) \
287  		(((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
288  #define  RXTX_REG2_TX_FIFO_ENA_SET(dst, src) \
289  		(((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020))
290  #define  RXTX_REG2_VTT_SEL_SET(dst, src) \
291  		(((dst) & ~0x000000c0) | (((u32) (src) << 6) & 0x000000c0))
292  #define RXTX_REG4			0x008
293  #define  RXTX_REG4_TX_LOOPBACK_BUF_EN_MASK	0x00000040
294  #define  RXTX_REG4_TX_DATA_RATE_SET(dst, src) \
295  		(((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
296  #define  RXTX_REG4_TX_WORD_MODE_SET(dst, src) \
297  		(((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
298  #define RXTX_REG5			0x00a
299  #define  RXTX_REG5_TX_CN1_SET(dst, src) \
300  		(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
301  #define  RXTX_REG5_TX_CP1_SET(dst, src) \
302  		(((dst) & ~0x000007e0) | (((u32) (src) << 5) & 0x000007e0))
303  #define  RXTX_REG5_TX_CN2_SET(dst, src) \
304  		(((dst) & ~0x0000001f) | (((u32) (src) << 0) & 0x0000001f))
305  #define RXTX_REG6			0x00c
306  #define  RXTX_REG6_TXAMP_CNTL_SET(dst, src) \
307  		(((dst) & ~0x00000780) | (((u32) (src) << 7) & 0x00000780))
308  #define  RXTX_REG6_TXAMP_ENA_SET(dst, src) \
309  		(((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
310  #define  RXTX_REG6_RX_BIST_ERRCNT_RD_SET(dst, src) \
311  		(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
312  #define  RXTX_REG6_TX_IDLE_SET(dst, src) \
313  		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
314  #define  RXTX_REG6_RX_BIST_RESYNC_SET(dst, src) \
315  		(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
316  #define RXTX_REG7			0x00e
317  #define  RXTX_REG7_RESETB_RXD_MASK	0x00000100
318  #define  RXTX_REG7_RESETB_RXA_MASK	0x00000080
319  #define  RXTX_REG7_BIST_ENA_RX_SET(dst, src) \
320  		(((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
321  #define  RXTX_REG7_RX_WORD_MODE_SET(dst, src) \
322  		(((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
323  #define RXTX_REG8			0x010
324  #define  RXTX_REG8_CDR_LOOP_ENA_SET(dst, src) \
325  		(((dst) & ~0x00004000) | (((u32) (src) << 14) & 0x00004000))
326  #define  RXTX_REG8_CDR_BYPASS_RXLOS_SET(dst, src) \
327  		(((dst) & ~0x00000800) | (((u32) (src) << 11) & 0x00000800))
328  #define  RXTX_REG8_SSC_ENABLE_SET(dst, src) \
329  		(((dst) & ~0x00000200) | (((u32) (src) << 9) & 0x00000200))
330  #define  RXTX_REG8_SD_VREF_SET(dst, src) \
331  		(((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0))
332  #define  RXTX_REG8_SD_DISABLE_SET(dst, src) \
333  		(((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
334  #define RXTX_REG7			0x00e
335  #define  RXTX_REG7_RESETB_RXD_SET(dst, src) \
336  		(((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
337  #define  RXTX_REG7_RESETB_RXA_SET(dst, src) \
338  		(((dst) & ~0x00000080) | (((u32) (src) << 7) & 0x00000080))
339  #define  RXTX_REG7_LOOP_BACK_ENA_CTLE_MASK	0x00004000
340  #define  RXTX_REG7_LOOP_BACK_ENA_CTLE_SET(dst, src) \
341  		(((dst) & ~0x00004000) | (((u32) (src) << 14) & 0x00004000))
342  #define RXTX_REG11			0x016
343  #define  RXTX_REG11_PHASE_ADJUST_LIMIT_SET(dst, src) \
344  		(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
345  #define RXTX_REG12			0x018
346  #define  RXTX_REG12_LATCH_OFF_ENA_SET(dst, src) \
347  		(((dst) & ~0x00002000) | (((u32) (src) << 13) & 0x00002000))
348  #define  RXTX_REG12_SUMOS_ENABLE_SET(dst, src) \
349  		(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
350  #define  RXTX_REG12_RX_DET_TERM_ENABLE_MASK	0x00000002
351  #define  RXTX_REG12_RX_DET_TERM_ENABLE_SET(dst, src) \
352  		(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
353  #define RXTX_REG13			0x01a
354  #define RXTX_REG14			0x01c
355  #define  RXTX_REG14_CLTE_LATCAL_MAN_PROG_SET(dst, src) \
356  		(((dst) & ~0x0000003f) | (((u32) (src) << 0) & 0x0000003f))
357  #define  RXTX_REG14_CTLE_LATCAL_MAN_ENA_SET(dst, src) \
358  		(((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
359  #define RXTX_REG26			0x034
360  #define  RXTX_REG26_PERIOD_ERROR_LATCH_SET(dst, src) \
361  		(((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
362  #define  RXTX_REG26_BLWC_ENA_SET(dst, src) \
363  		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
364  #define RXTX_REG21			0x02a
365  #define  RXTX_REG21_DO_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
366  #define  RXTX_REG21_XO_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
367  #define  RXTX_REG21_LATCH_CAL_FAIL_ODD_RD(src)	((0x0000000f & (u32)(src)))
368  #define RXTX_REG22			0x02c
369  #define  RXTX_REG22_SO_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
370  #define  RXTX_REG22_EO_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
371  #define  RXTX_REG22_LATCH_CAL_FAIL_EVEN_RD(src)	((0x0000000f & (u32)(src)))
372  #define RXTX_REG23			0x02e
373  #define  RXTX_REG23_DE_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
374  #define  RXTX_REG23_XE_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
375  #define RXTX_REG24			0x030
376  #define  RXTX_REG24_EE_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
377  #define  RXTX_REG24_SE_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
378  #define RXTX_REG27			0x036
379  #define RXTX_REG28			0x038
380  #define RXTX_REG31			0x03e
381  #define RXTX_REG38			0x04c
382  #define  RXTX_REG38_CUSTOMER_PINMODE_INV_SET(dst, src) \
383  		(((dst) & 0x0000fffe) | (((u32) (src) << 1) & 0x0000fffe))
384  #define RXTX_REG39			0x04e
385  #define RXTX_REG40			0x050
386  #define RXTX_REG41			0x052
387  #define RXTX_REG42			0x054
388  #define RXTX_REG43			0x056
389  #define RXTX_REG44			0x058
390  #define RXTX_REG45			0x05a
391  #define RXTX_REG46			0x05c
392  #define RXTX_REG47			0x05e
393  #define RXTX_REG48			0x060
394  #define RXTX_REG49			0x062
395  #define RXTX_REG50			0x064
396  #define RXTX_REG51			0x066
397  #define RXTX_REG52			0x068
398  #define RXTX_REG53			0x06a
399  #define RXTX_REG54			0x06c
400  #define RXTX_REG55			0x06e
401  #define RXTX_REG61			0x07a
402  #define  RXTX_REG61_ISCAN_INBERT_SET(dst, src) \
403  		(((dst) & ~0x00000010) | (((u32) (src) << 4) & 0x00000010))
404  #define  RXTX_REG61_LOADFREQ_SHIFT_SET(dst, src) \
405  		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
406  #define  RXTX_REG61_EYE_COUNT_WIDTH_SEL_SET(dst, src) \
407  		(((dst) & ~0x000000c0) | (((u32) (src) << 6) & 0x000000c0))
408  #define  RXTX_REG61_SPD_SEL_CDR_SET(dst, src) \
409  		(((dst) & ~0x00003c00) | (((u32) (src) << 10) & 0x00003c00))
410  #define RXTX_REG62			0x07c
411  #define  RXTX_REG62_PERIOD_H1_QLATCH_SET(dst, src) \
412  		(((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
413  #define RXTX_REG81			0x0a2
414  #define  RXTX_REG89_MU_TH7_SET(dst, src) \
415  		(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
416  #define  RXTX_REG89_MU_TH8_SET(dst, src) \
417  		(((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
418  #define  RXTX_REG89_MU_TH9_SET(dst, src) \
419  		(((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
420  #define RXTX_REG96			0x0c0
421  #define  RXTX_REG96_MU_FREQ1_SET(dst, src) \
422  		(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
423  #define  RXTX_REG96_MU_FREQ2_SET(dst, src) \
424  		(((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
425  #define  RXTX_REG96_MU_FREQ3_SET(dst, src) \
426  		(((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
427  #define RXTX_REG99			0x0c6
428  #define  RXTX_REG99_MU_PHASE1_SET(dst, src) \
429  		(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
430  #define  RXTX_REG99_MU_PHASE2_SET(dst, src) \
431  		(((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
432  #define  RXTX_REG99_MU_PHASE3_SET(dst, src) \
433  		(((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
434  #define RXTX_REG102			0x0cc
435  #define  RXTX_REG102_FREQLOOP_LIMIT_SET(dst, src) \
436  		(((dst) & ~0x00000060) | (((u32) (src) << 5) & 0x00000060))
437  #define RXTX_REG114			0x0e4
438  #define RXTX_REG121			0x0f2
439  #define  RXTX_REG121_SUMOS_CAL_CODE_RD(src) ((0x0000003e & (u32)(src)) >> 0x1)
440  #define RXTX_REG125			0x0fa
441  #define  RXTX_REG125_PQ_REG_SET(dst, src) \
442  		(((dst) & ~0x0000fe00) | (((u32) (src) << 9) & 0x0000fe00))
443  #define  RXTX_REG125_SIGN_PQ_SET(dst, src) \
444  		(((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
445  #define  RXTX_REG125_SIGN_PQ_2C_SET(dst, src) \
446  		(((dst) & ~0x00000080) | (((u32) (src) << 7) & 0x00000080))
447  #define  RXTX_REG125_PHZ_MANUALCODE_SET(dst, src) \
448  		(((dst) & ~0x0000007c) | (((u32) (src) << 2) & 0x0000007c))
449  #define  RXTX_REG125_PHZ_MANUAL_SET(dst, src) \
450  		(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
451  #define RXTX_REG127			0x0fe
452  #define  RXTX_REG127_FORCE_SUM_CAL_START_MASK	0x00000002
453  #define  RXTX_REG127_FORCE_LAT_CAL_START_MASK	0x00000004
454  #define  RXTX_REG127_FORCE_SUM_CAL_START_SET(dst, src) \
455  		(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
456  #define  RXTX_REG127_FORCE_LAT_CAL_START_SET(dst, src) \
457  		(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
458  #define  RXTX_REG127_LATCH_MAN_CAL_ENA_SET(dst, src) \
459  		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
460  #define  RXTX_REG127_DO_LATCH_MANCAL_SET(dst, src) \
461  		(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
462  #define  RXTX_REG127_XO_LATCH_MANCAL_SET(dst, src) \
463  		(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
464  #define RXTX_REG128			0x100
465  #define  RXTX_REG128_LATCH_CAL_WAIT_SEL_SET(dst, src) \
466  		(((dst) & ~0x0000000c) | (((u32) (src) << 2) & 0x0000000c))
467  #define  RXTX_REG128_EO_LATCH_MANCAL_SET(dst, src) \
468  		(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
469  #define  RXTX_REG128_SO_LATCH_MANCAL_SET(dst, src) \
470  		(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
471  #define RXTX_REG129			0x102
472  #define  RXTX_REG129_DE_LATCH_MANCAL_SET(dst, src) \
473  		(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
474  #define  RXTX_REG129_XE_LATCH_MANCAL_SET(dst, src) \
475  		(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
476  #define RXTX_REG130			0x104
477  #define  RXTX_REG130_EE_LATCH_MANCAL_SET(dst, src) \
478  		(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
479  #define  RXTX_REG130_SE_LATCH_MANCAL_SET(dst, src) \
480  		(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
481  #define RXTX_REG145			0x122
482  #define  RXTX_REG145_TX_IDLE_SATA_SET(dst, src) \
483  		(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
484  #define  RXTX_REG145_RXES_ENA_SET(dst, src) \
485  		(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
486  #define  RXTX_REG145_RXDFE_CONFIG_SET(dst, src) \
487  		(((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
488  #define  RXTX_REG145_RXVWES_LATENA_SET(dst, src) \
489  		(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
490  #define RXTX_REG147			0x126
491  #define RXTX_REG148			0x128
492  
493  /* Clock macro type */
494  enum cmu_type_t {
495  	REF_CMU = 0,	/* Clock macro is the internal reference clock */
496  	PHY_CMU = 1,	/* Clock macro is the PLL for the Serdes */
497  };
498  
499  enum mux_type_t {
500  	MUX_SELECT_ATA = 0,	/* Switch the MUX to ATA */
501  	MUX_SELECT_SGMMII = 0,	/* Switch the MUX to SGMII */
502  };
503  
504  enum clk_type_t {
505  	CLK_EXT_DIFF = 0,	/* External differential */
506  	CLK_INT_DIFF = 1,	/* Internal differential */
507  	CLK_INT_SING = 2,	/* Internal single ended */
508  };
509  
510  enum xgene_phy_mode {
511  	MODE_SATA	= 0,	/* List them for simple reference */
512  	MODE_SGMII	= 1,
513  	MODE_PCIE	= 2,
514  	MODE_USB	= 3,
515  	MODE_XFI	= 4,
516  	MODE_MAX
517  };
518  
519  struct xgene_sata_override_param {
520  	u32 speed[MAX_LANE]; /* Index for override parameter per lane */
521  	u32 txspeed[3];			/* Tx speed */
522  	u32 txboostgain[MAX_LANE*3];	/* Tx freq boost and gain control */
523  	u32 txeyetuning[MAX_LANE*3];	/* Tx eye tuning */
524  	u32 txeyedirection[MAX_LANE*3]; /* Tx eye tuning direction */
525  	u32 txamplitude[MAX_LANE*3];	/* Tx amplitude control */
526  	u32 txprecursor_cn1[MAX_LANE*3]; /* Tx emphasis taps 1st pre-cursor */
527  	u32 txprecursor_cn2[MAX_LANE*3]; /* Tx emphasis taps 2nd pre-cursor */
528  	u32 txpostcursor_cp1[MAX_LANE*3]; /* Tx emphasis taps post-cursor */
529  };
530  
531  struct xgene_phy_ctx {
532  	struct device *dev;
533  	struct phy *phy;
534  	enum xgene_phy_mode mode;		/* Mode of operation */
535  	enum clk_type_t clk_type;	/* Input clock selection */
536  	void __iomem *sds_base;		/* PHY CSR base addr */
537  	struct clk *clk;		/* Optional clock */
538  
539  	/* Override Serdes parameters */
540  	struct xgene_sata_override_param sata_param;
541  };
542  
543  /*
544   * For chip earlier than A3 version, enable this flag.
545   * To enable, pass boot argument phy_xgene.preA3Chip=1
546   */
547  static int preA3Chip;
548  MODULE_PARM_DESC(preA3Chip, "Enable pre-A3 chip support (1=enable 0=disable)");
549  module_param_named(preA3Chip, preA3Chip, int, 0444);
550  
sds_wr(void __iomem * csr_base,u32 indirect_cmd_reg,u32 indirect_data_reg,u32 addr,u32 data)551  static void sds_wr(void __iomem *csr_base, u32 indirect_cmd_reg,
552  		   u32 indirect_data_reg, u32 addr, u32 data)
553  {
554  	unsigned long deadline = jiffies + HZ;
555  	u32 val;
556  	u32 cmd;
557  
558  	cmd = CFG_IND_WR_CMD_MASK | CFG_IND_CMD_DONE_MASK;
559  	cmd = CFG_IND_ADDR_SET(cmd, addr);
560  	writel(data, csr_base + indirect_data_reg);
561  	readl(csr_base + indirect_data_reg); /* Force a barrier */
562  	writel(cmd, csr_base + indirect_cmd_reg);
563  	readl(csr_base + indirect_cmd_reg); /* Force a barrier */
564  	do {
565  		val = readl(csr_base + indirect_cmd_reg);
566  	} while (!(val & CFG_IND_CMD_DONE_MASK) &&
567  		 time_before(jiffies, deadline));
568  	if (!(val & CFG_IND_CMD_DONE_MASK))
569  		pr_err("SDS WR timeout at 0x%p offset 0x%08X value 0x%08X\n",
570  		       csr_base + indirect_cmd_reg, addr, data);
571  }
572  
sds_rd(void __iomem * csr_base,u32 indirect_cmd_reg,u32 indirect_data_reg,u32 addr,u32 * data)573  static void sds_rd(void __iomem *csr_base, u32 indirect_cmd_reg,
574  		   u32 indirect_data_reg, u32 addr, u32 *data)
575  {
576  	unsigned long deadline = jiffies + HZ;
577  	u32 val;
578  	u32 cmd;
579  
580  	cmd = CFG_IND_RD_CMD_MASK | CFG_IND_CMD_DONE_MASK;
581  	cmd = CFG_IND_ADDR_SET(cmd, addr);
582  	writel(cmd, csr_base + indirect_cmd_reg);
583  	readl(csr_base + indirect_cmd_reg); /* Force a barrier */
584  	do {
585  		val = readl(csr_base + indirect_cmd_reg);
586  	} while (!(val & CFG_IND_CMD_DONE_MASK) &&
587  		 time_before(jiffies, deadline));
588  	*data = readl(csr_base + indirect_data_reg);
589  	if (!(val & CFG_IND_CMD_DONE_MASK))
590  		pr_err("SDS WR timeout at 0x%p offset 0x%08X value 0x%08X\n",
591  		       csr_base + indirect_cmd_reg, addr, *data);
592  }
593  
cmu_wr(struct xgene_phy_ctx * ctx,enum cmu_type_t cmu_type,u32 reg,u32 data)594  static void cmu_wr(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
595  		   u32 reg, u32 data)
596  {
597  	void __iomem *sds_base = ctx->sds_base;
598  	u32 val;
599  
600  	if (cmu_type == REF_CMU)
601  		reg += SERDES_PLL_REF_INDIRECT_OFFSET;
602  	else
603  		reg += SERDES_PLL_INDIRECT_OFFSET;
604  	sds_wr(sds_base, SATA_ENET_SDS_IND_CMD_REG,
605  		SATA_ENET_SDS_IND_WDATA_REG, reg, data);
606  	sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
607  		SATA_ENET_SDS_IND_RDATA_REG, reg, &val);
608  	pr_debug("CMU WR addr 0x%X value 0x%08X <-> 0x%08X\n", reg, data, val);
609  }
610  
cmu_rd(struct xgene_phy_ctx * ctx,enum cmu_type_t cmu_type,u32 reg,u32 * data)611  static void cmu_rd(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
612  		   u32 reg, u32 *data)
613  {
614  	void __iomem *sds_base = ctx->sds_base;
615  
616  	if (cmu_type == REF_CMU)
617  		reg += SERDES_PLL_REF_INDIRECT_OFFSET;
618  	else
619  		reg += SERDES_PLL_INDIRECT_OFFSET;
620  	sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
621  		SATA_ENET_SDS_IND_RDATA_REG, reg, data);
622  	pr_debug("CMU RD addr 0x%X value 0x%08X\n", reg, *data);
623  }
624  
cmu_toggle1to0(struct xgene_phy_ctx * ctx,enum cmu_type_t cmu_type,u32 reg,u32 bits)625  static void cmu_toggle1to0(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
626  			   u32 reg, u32 bits)
627  {
628  	u32 val;
629  
630  	cmu_rd(ctx, cmu_type, reg, &val);
631  	val |= bits;
632  	cmu_wr(ctx, cmu_type, reg, val);
633  	cmu_rd(ctx, cmu_type, reg, &val);
634  	val &= ~bits;
635  	cmu_wr(ctx, cmu_type, reg, val);
636  }
637  
cmu_clrbits(struct xgene_phy_ctx * ctx,enum cmu_type_t cmu_type,u32 reg,u32 bits)638  static void cmu_clrbits(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
639  			u32 reg, u32 bits)
640  {
641  	u32 val;
642  
643  	cmu_rd(ctx, cmu_type, reg, &val);
644  	val &= ~bits;
645  	cmu_wr(ctx, cmu_type, reg, val);
646  }
647  
cmu_setbits(struct xgene_phy_ctx * ctx,enum cmu_type_t cmu_type,u32 reg,u32 bits)648  static void cmu_setbits(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
649  			u32 reg, u32 bits)
650  {
651  	u32 val;
652  
653  	cmu_rd(ctx, cmu_type, reg, &val);
654  	val |= bits;
655  	cmu_wr(ctx, cmu_type, reg, val);
656  }
657  
serdes_wr(struct xgene_phy_ctx * ctx,int lane,u32 reg,u32 data)658  static void serdes_wr(struct xgene_phy_ctx *ctx, int lane, u32 reg, u32 data)
659  {
660  	void __iomem *sds_base = ctx->sds_base;
661  	u32 val;
662  
663  	reg += SERDES_INDIRECT_OFFSET;
664  	reg += lane * SERDES_LANE_STRIDE;
665  	sds_wr(sds_base, SATA_ENET_SDS_IND_CMD_REG,
666  	       SATA_ENET_SDS_IND_WDATA_REG, reg, data);
667  	sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
668  	       SATA_ENET_SDS_IND_RDATA_REG, reg, &val);
669  	pr_debug("SERDES WR addr 0x%X value 0x%08X <-> 0x%08X\n", reg, data,
670  		 val);
671  }
672  
serdes_rd(struct xgene_phy_ctx * ctx,int lane,u32 reg,u32 * data)673  static void serdes_rd(struct xgene_phy_ctx *ctx, int lane, u32 reg, u32 *data)
674  {
675  	void __iomem *sds_base = ctx->sds_base;
676  
677  	reg += SERDES_INDIRECT_OFFSET;
678  	reg += lane * SERDES_LANE_STRIDE;
679  	sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
680  	       SATA_ENET_SDS_IND_RDATA_REG, reg, data);
681  	pr_debug("SERDES RD addr 0x%X value 0x%08X\n", reg, *data);
682  }
683  
serdes_clrbits(struct xgene_phy_ctx * ctx,int lane,u32 reg,u32 bits)684  static void serdes_clrbits(struct xgene_phy_ctx *ctx, int lane, u32 reg,
685  			   u32 bits)
686  {
687  	u32 val;
688  
689  	serdes_rd(ctx, lane, reg, &val);
690  	val &= ~bits;
691  	serdes_wr(ctx, lane, reg, val);
692  }
693  
serdes_setbits(struct xgene_phy_ctx * ctx,int lane,u32 reg,u32 bits)694  static void serdes_setbits(struct xgene_phy_ctx *ctx, int lane, u32 reg,
695  			   u32 bits)
696  {
697  	u32 val;
698  
699  	serdes_rd(ctx, lane, reg, &val);
700  	val |= bits;
701  	serdes_wr(ctx, lane, reg, val);
702  }
703  
xgene_phy_cfg_cmu_clk_type(struct xgene_phy_ctx * ctx,enum cmu_type_t cmu_type,enum clk_type_t clk_type)704  static void xgene_phy_cfg_cmu_clk_type(struct xgene_phy_ctx *ctx,
705  				       enum cmu_type_t cmu_type,
706  				       enum clk_type_t clk_type)
707  {
708  	u32 val;
709  
710  	/* Set the reset sequence delay for TX ready assertion */
711  	cmu_rd(ctx, cmu_type, CMU_REG12, &val);
712  	val = CMU_REG12_STATE_DELAY9_SET(val, 0x1);
713  	cmu_wr(ctx, cmu_type, CMU_REG12, val);
714  	/* Set the programmable stage delays between various enable stages */
715  	cmu_wr(ctx, cmu_type, CMU_REG13, 0x0222);
716  	cmu_wr(ctx, cmu_type, CMU_REG14, 0x2225);
717  
718  	/* Configure clock type */
719  	if (clk_type == CLK_EXT_DIFF) {
720  		/* Select external clock mux */
721  		cmu_rd(ctx, cmu_type, CMU_REG0, &val);
722  		val = CMU_REG0_PLL_REF_SEL_SET(val, 0x0);
723  		cmu_wr(ctx, cmu_type, CMU_REG0, val);
724  		/* Select CMOS as reference clock  */
725  		cmu_rd(ctx, cmu_type, CMU_REG1, &val);
726  		val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x0);
727  		cmu_wr(ctx, cmu_type, CMU_REG1, val);
728  		dev_dbg(ctx->dev, "Set external reference clock\n");
729  	} else if (clk_type == CLK_INT_DIFF) {
730  		/* Select internal clock mux */
731  		cmu_rd(ctx, cmu_type, CMU_REG0, &val);
732  		val = CMU_REG0_PLL_REF_SEL_SET(val, 0x1);
733  		cmu_wr(ctx, cmu_type, CMU_REG0, val);
734  		/* Select CMOS as reference clock  */
735  		cmu_rd(ctx, cmu_type, CMU_REG1, &val);
736  		val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x1);
737  		cmu_wr(ctx, cmu_type, CMU_REG1, val);
738  		dev_dbg(ctx->dev, "Set internal reference clock\n");
739  	} else if (clk_type == CLK_INT_SING) {
740  		/*
741  		 * NOTE: This clock type is NOT support for controller
742  		 *	 whose internal clock shared in the PCIe controller
743  		 *
744  		 * Select internal clock mux
745  		 */
746  		cmu_rd(ctx, cmu_type, CMU_REG1, &val);
747  		val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x1);
748  		cmu_wr(ctx, cmu_type, CMU_REG1, val);
749  		/* Select CML as reference clock */
750  		cmu_rd(ctx, cmu_type, CMU_REG1, &val);
751  		val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x0);
752  		cmu_wr(ctx, cmu_type, CMU_REG1, val);
753  		dev_dbg(ctx->dev,
754  			"Set internal single ended reference clock\n");
755  	}
756  }
757  
xgene_phy_sata_cfg_cmu_core(struct xgene_phy_ctx * ctx,enum cmu_type_t cmu_type,enum clk_type_t clk_type)758  static void xgene_phy_sata_cfg_cmu_core(struct xgene_phy_ctx *ctx,
759  					enum cmu_type_t cmu_type,
760  					enum clk_type_t clk_type)
761  {
762  	u32 val;
763  	int ref_100MHz;
764  
765  	if (cmu_type == REF_CMU) {
766  		/* Set VCO calibration voltage threshold */
767  		cmu_rd(ctx, cmu_type, CMU_REG34, &val);
768  		val = CMU_REG34_VCO_CAL_VTH_LO_MAX_SET(val, 0x7);
769  		val = CMU_REG34_VCO_CAL_VTH_HI_MAX_SET(val, 0xc);
770  		val = CMU_REG34_VCO_CAL_VTH_LO_MIN_SET(val, 0x3);
771  		val = CMU_REG34_VCO_CAL_VTH_HI_MIN_SET(val, 0x8);
772  		cmu_wr(ctx, cmu_type, CMU_REG34, val);
773  	}
774  
775  	/* Set the VCO calibration counter */
776  	cmu_rd(ctx, cmu_type, CMU_REG0, &val);
777  	if (cmu_type == REF_CMU || preA3Chip)
778  		val = CMU_REG0_CAL_COUNT_RESOL_SET(val, 0x4);
779  	else
780  		val = CMU_REG0_CAL_COUNT_RESOL_SET(val, 0x7);
781  	cmu_wr(ctx, cmu_type, CMU_REG0, val);
782  
783  	/* Configure PLL for calibration */
784  	cmu_rd(ctx, cmu_type, CMU_REG1, &val);
785  	val = CMU_REG1_PLL_CP_SET(val, 0x1);
786  	if (cmu_type == REF_CMU || preA3Chip)
787  		val = CMU_REG1_PLL_CP_SEL_SET(val, 0x5);
788  	else
789  		val = CMU_REG1_PLL_CP_SEL_SET(val, 0x3);
790  	if (cmu_type == REF_CMU)
791  		val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x0);
792  	else
793  		val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x1);
794  	cmu_wr(ctx, cmu_type, CMU_REG1, val);
795  
796  	if (cmu_type != REF_CMU)
797  		cmu_clrbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
798  
799  	/* Configure the PLL for either 100MHz or 50MHz */
800  	cmu_rd(ctx, cmu_type, CMU_REG2, &val);
801  	if (cmu_type == REF_CMU) {
802  		val = CMU_REG2_PLL_LFRES_SET(val, 0xa);
803  		ref_100MHz = 1;
804  	} else {
805  		val = CMU_REG2_PLL_LFRES_SET(val, 0x3);
806  		if (clk_type == CLK_EXT_DIFF)
807  			ref_100MHz = 0;
808  		else
809  			ref_100MHz = 1;
810  	}
811  	if (ref_100MHz) {
812  		val = CMU_REG2_PLL_FBDIV_SET(val, FBDIV_VAL_100M);
813  		val = CMU_REG2_PLL_REFDIV_SET(val, REFDIV_VAL_100M);
814  	} else {
815  		val = CMU_REG2_PLL_FBDIV_SET(val, FBDIV_VAL_50M);
816  		val = CMU_REG2_PLL_REFDIV_SET(val, REFDIV_VAL_50M);
817  	}
818  	cmu_wr(ctx, cmu_type, CMU_REG2, val);
819  
820  	/* Configure the VCO */
821  	cmu_rd(ctx, cmu_type, CMU_REG3, &val);
822  	if (cmu_type == REF_CMU) {
823  		val = CMU_REG3_VCOVARSEL_SET(val, 0x3);
824  		val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x10);
825  	} else {
826  		val = CMU_REG3_VCOVARSEL_SET(val, 0xF);
827  		if (preA3Chip)
828  			val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x15);
829  		else
830  			val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x1a);
831  		val = CMU_REG3_VCO_MANMOMSEL_SET(val, 0x15);
832  	}
833  	cmu_wr(ctx, cmu_type, CMU_REG3, val);
834  
835  	/* Disable force PLL lock */
836  	cmu_rd(ctx, cmu_type, CMU_REG26, &val);
837  	val = CMU_REG26_FORCE_PLL_LOCK_SET(val, 0x0);
838  	cmu_wr(ctx, cmu_type, CMU_REG26, val);
839  
840  	/* Setup PLL loop filter */
841  	cmu_rd(ctx, cmu_type, CMU_REG5, &val);
842  	val = CMU_REG5_PLL_LFSMCAP_SET(val, 0x3);
843  	val = CMU_REG5_PLL_LFCAP_SET(val, 0x3);
844  	if (cmu_type == REF_CMU || !preA3Chip)
845  		val = CMU_REG5_PLL_LOCK_RESOLUTION_SET(val, 0x7);
846  	else
847  		val = CMU_REG5_PLL_LOCK_RESOLUTION_SET(val, 0x4);
848  	cmu_wr(ctx, cmu_type, CMU_REG5, val);
849  
850  	/* Enable or disable manual calibration */
851  	cmu_rd(ctx, cmu_type, CMU_REG6, &val);
852  	val = CMU_REG6_PLL_VREGTRIM_SET(val, preA3Chip ? 0x0 : 0x2);
853  	val = CMU_REG6_MAN_PVT_CAL_SET(val, preA3Chip ? 0x1 : 0x0);
854  	cmu_wr(ctx, cmu_type, CMU_REG6, val);
855  
856  	/* Configure lane for 20-bits */
857  	if (cmu_type == PHY_CMU) {
858  		cmu_rd(ctx, cmu_type, CMU_REG9, &val);
859  		val = CMU_REG9_TX_WORD_MODE_CH1_SET(val,
860  						    CMU_REG9_WORD_LEN_20BIT);
861  		val = CMU_REG9_TX_WORD_MODE_CH0_SET(val,
862  						    CMU_REG9_WORD_LEN_20BIT);
863  		val = CMU_REG9_PLL_POST_DIVBY2_SET(val, 0x1);
864  		if (!preA3Chip) {
865  			val = CMU_REG9_VBG_BYPASSB_SET(val, 0x0);
866  			val = CMU_REG9_IGEN_BYPASS_SET(val , 0x0);
867  		}
868  		cmu_wr(ctx, cmu_type, CMU_REG9, val);
869  
870  		if (!preA3Chip) {
871  			cmu_rd(ctx, cmu_type, CMU_REG10, &val);
872  			val = CMU_REG10_VREG_REFSEL_SET(val, 0x1);
873  			cmu_wr(ctx, cmu_type, CMU_REG10, val);
874  		}
875  	}
876  
877  	cmu_rd(ctx, cmu_type, CMU_REG16, &val);
878  	val = CMU_REG16_CALIBRATION_DONE_OVERRIDE_SET(val, 0x1);
879  	val = CMU_REG16_BYPASS_PLL_LOCK_SET(val, 0x1);
880  	if (cmu_type == REF_CMU || preA3Chip)
881  		val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x4);
882  	else
883  		val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x7);
884  	cmu_wr(ctx, cmu_type, CMU_REG16, val);
885  
886  	/* Configure for SATA */
887  	cmu_rd(ctx, cmu_type, CMU_REG30, &val);
888  	val = CMU_REG30_PCIE_MODE_SET(val, 0x0);
889  	val = CMU_REG30_LOCK_COUNT_SET(val, 0x3);
890  	cmu_wr(ctx, cmu_type, CMU_REG30, val);
891  
892  	/* Disable state machine bypass */
893  	cmu_wr(ctx, cmu_type, CMU_REG31, 0xF);
894  
895  	cmu_rd(ctx, cmu_type, CMU_REG32, &val);
896  	val = CMU_REG32_PVT_CAL_WAIT_SEL_SET(val, 0x3);
897  	if (cmu_type == REF_CMU || preA3Chip)
898  		val = CMU_REG32_IREF_ADJ_SET(val, 0x3);
899  	else
900  		val = CMU_REG32_IREF_ADJ_SET(val, 0x1);
901  	cmu_wr(ctx, cmu_type, CMU_REG32, val);
902  
903  	/* Set VCO calibration threshold */
904  	if (cmu_type != REF_CMU && preA3Chip)
905  		cmu_wr(ctx, cmu_type, CMU_REG34, 0x8d27);
906  	else
907  		cmu_wr(ctx, cmu_type, CMU_REG34, 0x873c);
908  
909  	/* Set CTLE Override and override waiting from state machine */
910  	cmu_wr(ctx, cmu_type, CMU_REG37, 0xF00F);
911  }
912  
xgene_phy_ssc_enable(struct xgene_phy_ctx * ctx,enum cmu_type_t cmu_type)913  static void xgene_phy_ssc_enable(struct xgene_phy_ctx *ctx,
914  				 enum cmu_type_t cmu_type)
915  {
916  	u32 val;
917  
918  	/* Set SSC modulation value */
919  	cmu_rd(ctx, cmu_type, CMU_REG35, &val);
920  	val = CMU_REG35_PLL_SSC_MOD_SET(val, 98);
921  	cmu_wr(ctx, cmu_type, CMU_REG35, val);
922  
923  	/* Enable SSC, set vertical step and DSM value */
924  	cmu_rd(ctx, cmu_type, CMU_REG36, &val);
925  	val = CMU_REG36_PLL_SSC_VSTEP_SET(val, 30);
926  	val = CMU_REG36_PLL_SSC_EN_SET(val, 1);
927  	val = CMU_REG36_PLL_SSC_DSMSEL_SET(val, 1);
928  	cmu_wr(ctx, cmu_type, CMU_REG36, val);
929  
930  	/* Reset the PLL */
931  	cmu_clrbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
932  	cmu_setbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
933  
934  	/* Force VCO calibration to restart */
935  	cmu_toggle1to0(ctx, cmu_type, CMU_REG32,
936  		       CMU_REG32_FORCE_VCOCAL_START_MASK);
937  }
938  
xgene_phy_sata_cfg_lanes(struct xgene_phy_ctx * ctx)939  static void xgene_phy_sata_cfg_lanes(struct xgene_phy_ctx *ctx)
940  {
941  	u32 val;
942  	u32 reg;
943  	int i;
944  	int lane;
945  
946  	for (lane = 0; lane < MAX_LANE; lane++) {
947  		serdes_wr(ctx, lane, RXTX_REG147, 0x6);
948  
949  		/* Set boost control for quarter, half, and full rate */
950  		serdes_rd(ctx, lane, RXTX_REG0, &val);
951  		val = RXTX_REG0_CTLE_EQ_HR_SET(val, 0x10);
952  		val = RXTX_REG0_CTLE_EQ_QR_SET(val, 0x10);
953  		val = RXTX_REG0_CTLE_EQ_FR_SET(val, 0x10);
954  		serdes_wr(ctx, lane, RXTX_REG0, val);
955  
956  		/* Set boost control value */
957  		serdes_rd(ctx, lane, RXTX_REG1, &val);
958  		val = RXTX_REG1_RXACVCM_SET(val, 0x7);
959  		val = RXTX_REG1_CTLE_EQ_SET(val,
960  			ctx->sata_param.txboostgain[lane * 3 +
961  			ctx->sata_param.speed[lane]]);
962  		serdes_wr(ctx, lane, RXTX_REG1, val);
963  
964  		/* Latch VTT value based on the termination to ground and
965  		 * enable TX FIFO
966  		 */
967  		serdes_rd(ctx, lane, RXTX_REG2, &val);
968  		val = RXTX_REG2_VTT_ENA_SET(val, 0x1);
969  		val = RXTX_REG2_VTT_SEL_SET(val, 0x1);
970  		val = RXTX_REG2_TX_FIFO_ENA_SET(val, 0x1);
971  		serdes_wr(ctx, lane, RXTX_REG2, val);
972  
973  		/* Configure Tx for 20-bits */
974  		serdes_rd(ctx, lane, RXTX_REG4, &val);
975  		val = RXTX_REG4_TX_WORD_MODE_SET(val, CMU_REG9_WORD_LEN_20BIT);
976  		serdes_wr(ctx, lane, RXTX_REG4, val);
977  
978  		if (!preA3Chip) {
979  			serdes_rd(ctx, lane, RXTX_REG1, &val);
980  			val = RXTX_REG1_RXVREG1_SET(val, 0x2);
981  			val = RXTX_REG1_RXIREF_ADJ_SET(val, 0x2);
982  			serdes_wr(ctx, lane, RXTX_REG1, val);
983  		}
984  
985  		/* Set pre-emphasis first 1 and 2, and post-emphasis values */
986  		serdes_rd(ctx, lane, RXTX_REG5, &val);
987  		val = RXTX_REG5_TX_CN1_SET(val,
988  			ctx->sata_param.txprecursor_cn1[lane * 3 +
989  			ctx->sata_param.speed[lane]]);
990  		val = RXTX_REG5_TX_CP1_SET(val,
991  			ctx->sata_param.txpostcursor_cp1[lane * 3 +
992  			ctx->sata_param.speed[lane]]);
993  		val = RXTX_REG5_TX_CN2_SET(val,
994  			ctx->sata_param.txprecursor_cn2[lane * 3 +
995  			ctx->sata_param.speed[lane]]);
996  		serdes_wr(ctx, lane, RXTX_REG5, val);
997  
998  		/* Set TX amplitude value */
999  		serdes_rd(ctx, lane, RXTX_REG6, &val);
1000  		val = RXTX_REG6_TXAMP_CNTL_SET(val,
1001  			ctx->sata_param.txamplitude[lane * 3 +
1002  			ctx->sata_param.speed[lane]]);
1003  		val = RXTX_REG6_TXAMP_ENA_SET(val, 0x1);
1004  		val = RXTX_REG6_TX_IDLE_SET(val, 0x0);
1005  		val = RXTX_REG6_RX_BIST_RESYNC_SET(val, 0x0);
1006  		val = RXTX_REG6_RX_BIST_ERRCNT_RD_SET(val, 0x0);
1007  		serdes_wr(ctx, lane, RXTX_REG6, val);
1008  
1009  		/* Configure Rx for 20-bits */
1010  		serdes_rd(ctx, lane, RXTX_REG7, &val);
1011  		val = RXTX_REG7_BIST_ENA_RX_SET(val, 0x0);
1012  		val = RXTX_REG7_RX_WORD_MODE_SET(val, CMU_REG9_WORD_LEN_20BIT);
1013  		serdes_wr(ctx, lane, RXTX_REG7, val);
1014  
1015  		/* Set CDR and LOS values and enable Rx SSC */
1016  		serdes_rd(ctx, lane, RXTX_REG8, &val);
1017  		val = RXTX_REG8_CDR_LOOP_ENA_SET(val, 0x1);
1018  		val = RXTX_REG8_CDR_BYPASS_RXLOS_SET(val, 0x0);
1019  		val = RXTX_REG8_SSC_ENABLE_SET(val, 0x1);
1020  		val = RXTX_REG8_SD_DISABLE_SET(val, 0x0);
1021  		val = RXTX_REG8_SD_VREF_SET(val, 0x4);
1022  		serdes_wr(ctx, lane, RXTX_REG8, val);
1023  
1024  		/* Set phase adjust upper/lower limits */
1025  		serdes_rd(ctx, lane, RXTX_REG11, &val);
1026  		val = RXTX_REG11_PHASE_ADJUST_LIMIT_SET(val, 0x0);
1027  		serdes_wr(ctx, lane, RXTX_REG11, val);
1028  
1029  		/* Enable Latch Off; disable SUMOS and Tx termination */
1030  		serdes_rd(ctx, lane, RXTX_REG12, &val);
1031  		val = RXTX_REG12_LATCH_OFF_ENA_SET(val, 0x1);
1032  		val = RXTX_REG12_SUMOS_ENABLE_SET(val, 0x0);
1033  		val = RXTX_REG12_RX_DET_TERM_ENABLE_SET(val, 0x0);
1034  		serdes_wr(ctx, lane, RXTX_REG12, val);
1035  
1036  		/* Set period error latch to 512T and enable BWL */
1037  		serdes_rd(ctx, lane, RXTX_REG26, &val);
1038  		val = RXTX_REG26_PERIOD_ERROR_LATCH_SET(val, 0x0);
1039  		val = RXTX_REG26_BLWC_ENA_SET(val, 0x1);
1040  		serdes_wr(ctx, lane, RXTX_REG26, val);
1041  
1042  		serdes_wr(ctx, lane, RXTX_REG28, 0x0);
1043  
1044  		/* Set DFE loop preset value */
1045  		serdes_wr(ctx, lane, RXTX_REG31, 0x0);
1046  
1047  		/* Set Eye Monitor counter width to 12-bit */
1048  		serdes_rd(ctx, lane, RXTX_REG61, &val);
1049  		val = RXTX_REG61_ISCAN_INBERT_SET(val, 0x1);
1050  		val = RXTX_REG61_LOADFREQ_SHIFT_SET(val, 0x0);
1051  		val = RXTX_REG61_EYE_COUNT_WIDTH_SEL_SET(val, 0x0);
1052  		serdes_wr(ctx, lane, RXTX_REG61, val);
1053  
1054  		serdes_rd(ctx, lane, RXTX_REG62, &val);
1055  		val = RXTX_REG62_PERIOD_H1_QLATCH_SET(val, 0x0);
1056  		serdes_wr(ctx, lane, RXTX_REG62, val);
1057  
1058  		/* Set BW select tap X for DFE loop */
1059  		for (i = 0; i < 9; i++) {
1060  			reg = RXTX_REG81 + i * 2;
1061  			serdes_rd(ctx, lane, reg, &val);
1062  			val = RXTX_REG89_MU_TH7_SET(val, 0xe);
1063  			val = RXTX_REG89_MU_TH8_SET(val, 0xe);
1064  			val = RXTX_REG89_MU_TH9_SET(val, 0xe);
1065  			serdes_wr(ctx, lane, reg, val);
1066  		}
1067  
1068  		/* Set BW select tap X for frequency adjust loop */
1069  		for (i = 0; i < 3; i++) {
1070  			reg = RXTX_REG96 + i * 2;
1071  			serdes_rd(ctx, lane, reg, &val);
1072  			val = RXTX_REG96_MU_FREQ1_SET(val, 0x10);
1073  			val = RXTX_REG96_MU_FREQ2_SET(val, 0x10);
1074  			val = RXTX_REG96_MU_FREQ3_SET(val, 0x10);
1075  			serdes_wr(ctx, lane, reg, val);
1076  		}
1077  
1078  		/* Set BW select tap X for phase adjust loop */
1079  		for (i = 0; i < 3; i++) {
1080  			reg = RXTX_REG99 + i * 2;
1081  			serdes_rd(ctx, lane, reg, &val);
1082  			val = RXTX_REG99_MU_PHASE1_SET(val, 0x7);
1083  			val = RXTX_REG99_MU_PHASE2_SET(val, 0x7);
1084  			val = RXTX_REG99_MU_PHASE3_SET(val, 0x7);
1085  			serdes_wr(ctx, lane, reg, val);
1086  		}
1087  
1088  		serdes_rd(ctx, lane, RXTX_REG102, &val);
1089  		val = RXTX_REG102_FREQLOOP_LIMIT_SET(val, 0x0);
1090  		serdes_wr(ctx, lane, RXTX_REG102, val);
1091  
1092  		serdes_wr(ctx, lane, RXTX_REG114, 0xffe0);
1093  
1094  		serdes_rd(ctx, lane, RXTX_REG125, &val);
1095  		val = RXTX_REG125_SIGN_PQ_SET(val,
1096  			ctx->sata_param.txeyedirection[lane * 3 +
1097  			ctx->sata_param.speed[lane]]);
1098  		val = RXTX_REG125_PQ_REG_SET(val,
1099  			ctx->sata_param.txeyetuning[lane * 3 +
1100  			ctx->sata_param.speed[lane]]);
1101  		val = RXTX_REG125_PHZ_MANUAL_SET(val, 0x1);
1102  		serdes_wr(ctx, lane, RXTX_REG125, val);
1103  
1104  		serdes_rd(ctx, lane, RXTX_REG127, &val);
1105  		val = RXTX_REG127_LATCH_MAN_CAL_ENA_SET(val, 0x0);
1106  		serdes_wr(ctx, lane, RXTX_REG127, val);
1107  
1108  		serdes_rd(ctx, lane, RXTX_REG128, &val);
1109  		val = RXTX_REG128_LATCH_CAL_WAIT_SEL_SET(val, 0x3);
1110  		serdes_wr(ctx, lane, RXTX_REG128, val);
1111  
1112  		serdes_rd(ctx, lane, RXTX_REG145, &val);
1113  		val = RXTX_REG145_RXDFE_CONFIG_SET(val, 0x3);
1114  		val = RXTX_REG145_TX_IDLE_SATA_SET(val, 0x0);
1115  		if (preA3Chip) {
1116  			val = RXTX_REG145_RXES_ENA_SET(val, 0x1);
1117  			val = RXTX_REG145_RXVWES_LATENA_SET(val, 0x1);
1118  		} else {
1119  			val = RXTX_REG145_RXES_ENA_SET(val, 0x0);
1120  			val = RXTX_REG145_RXVWES_LATENA_SET(val, 0x0);
1121  		}
1122  		serdes_wr(ctx, lane, RXTX_REG145, val);
1123  
1124  		/*
1125  		 * Set Rx LOS filter clock rate, sample rate, and threshold
1126  		 * windows
1127  		 */
1128  		for (i = 0; i < 4; i++) {
1129  			reg = RXTX_REG148 + i * 2;
1130  			serdes_wr(ctx, lane, reg, 0xFFFF);
1131  		}
1132  	}
1133  }
1134  
xgene_phy_cal_rdy_chk(struct xgene_phy_ctx * ctx,enum cmu_type_t cmu_type,enum clk_type_t clk_type)1135  static int xgene_phy_cal_rdy_chk(struct xgene_phy_ctx *ctx,
1136  				 enum cmu_type_t cmu_type,
1137  				 enum clk_type_t clk_type)
1138  {
1139  	void __iomem *csr_serdes = ctx->sds_base;
1140  	int loop;
1141  	u32 val;
1142  
1143  	/* Release PHY main reset */
1144  	writel(0xdf, csr_serdes + SATA_ENET_SDS_RST_CTL);
1145  	readl(csr_serdes + SATA_ENET_SDS_RST_CTL); /* Force a barrier */
1146  
1147  	if (cmu_type != REF_CMU) {
1148  		cmu_setbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
1149  		/*
1150  		 * As per PHY design spec, the PLL reset requires a minimum
1151  		 * of 800us.
1152  		 */
1153  		usleep_range(800, 1000);
1154  
1155  		cmu_rd(ctx, cmu_type, CMU_REG1, &val);
1156  		val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x0);
1157  		cmu_wr(ctx, cmu_type, CMU_REG1, val);
1158  		/*
1159  		 * As per PHY design spec, the PLL auto calibration requires
1160  		 * a minimum of 800us.
1161  		 */
1162  		usleep_range(800, 1000);
1163  
1164  		cmu_toggle1to0(ctx, cmu_type, CMU_REG32,
1165  			       CMU_REG32_FORCE_VCOCAL_START_MASK);
1166  		/*
1167  		 * As per PHY design spec, the PLL requires a minimum of
1168  		 * 800us to settle.
1169  		 */
1170  		usleep_range(800, 1000);
1171  	}
1172  
1173  	if (!preA3Chip)
1174  		goto skip_manual_cal;
1175  
1176  	/*
1177  	 * Configure the termination resister calibration
1178  	 * The serial receive pins, RXP/RXN, have TERMination resistor
1179  	 * that is required to be calibrated.
1180  	 */
1181  	cmu_rd(ctx, cmu_type, CMU_REG17, &val);
1182  	val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x12);
1183  	val = CMU_REG17_RESERVED_7_SET(val, 0x0);
1184  	cmu_wr(ctx, cmu_type, CMU_REG17, val);
1185  	cmu_toggle1to0(ctx, cmu_type, CMU_REG17,
1186  		       CMU_REG17_PVT_TERM_MAN_ENA_MASK);
1187  	/*
1188  	 * The serial transmit pins, TXP/TXN, have Pull-UP and Pull-DOWN
1189  	 * resistors that are required to the calibrated.
1190  	 * Configure the pull DOWN calibration
1191  	 */
1192  	cmu_rd(ctx, cmu_type, CMU_REG17, &val);
1193  	val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x29);
1194  	val = CMU_REG17_RESERVED_7_SET(val, 0x0);
1195  	cmu_wr(ctx, cmu_type, CMU_REG17, val);
1196  	cmu_toggle1to0(ctx, cmu_type, CMU_REG16,
1197  		       CMU_REG16_PVT_DN_MAN_ENA_MASK);
1198  	/* Configure the pull UP calibration */
1199  	cmu_rd(ctx, cmu_type, CMU_REG17, &val);
1200  	val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x28);
1201  	val = CMU_REG17_RESERVED_7_SET(val, 0x0);
1202  	cmu_wr(ctx, cmu_type, CMU_REG17, val);
1203  	cmu_toggle1to0(ctx, cmu_type, CMU_REG16,
1204  		       CMU_REG16_PVT_UP_MAN_ENA_MASK);
1205  
1206  skip_manual_cal:
1207  	/* Poll the PLL calibration completion status for at least 1 ms */
1208  	loop = 100;
1209  	do {
1210  		cmu_rd(ctx, cmu_type, CMU_REG7, &val);
1211  		if (CMU_REG7_PLL_CALIB_DONE_RD(val))
1212  			break;
1213  		/*
1214  		 * As per PHY design spec, PLL calibration status requires
1215  		 * a minimum of 10us to be updated.
1216  		 */
1217  		usleep_range(10, 100);
1218  	} while (--loop > 0);
1219  
1220  	cmu_rd(ctx, cmu_type, CMU_REG7, &val);
1221  	dev_dbg(ctx->dev, "PLL calibration %s\n",
1222  		CMU_REG7_PLL_CALIB_DONE_RD(val) ? "done" : "failed");
1223  	if (CMU_REG7_VCO_CAL_FAIL_RD(val)) {
1224  		dev_err(ctx->dev,
1225  			"PLL calibration failed due to VCO failure\n");
1226  		return -1;
1227  	}
1228  	dev_dbg(ctx->dev, "PLL calibration successful\n");
1229  
1230  	cmu_rd(ctx, cmu_type, CMU_REG15, &val);
1231  	dev_dbg(ctx->dev, "PHY Tx is %sready\n", val & 0x300 ? "" : "not ");
1232  	return 0;
1233  }
1234  
xgene_phy_pdwn_force_vco(struct xgene_phy_ctx * ctx,enum cmu_type_t cmu_type,enum clk_type_t clk_type)1235  static void xgene_phy_pdwn_force_vco(struct xgene_phy_ctx *ctx,
1236  				     enum cmu_type_t cmu_type,
1237  				     enum clk_type_t clk_type)
1238  {
1239  	u32 val;
1240  
1241  	dev_dbg(ctx->dev, "Reset VCO and re-start again\n");
1242  	if (cmu_type == PHY_CMU) {
1243  		cmu_rd(ctx, cmu_type, CMU_REG16, &val);
1244  		val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x7);
1245  		cmu_wr(ctx, cmu_type, CMU_REG16, val);
1246  	}
1247  
1248  	cmu_toggle1to0(ctx, cmu_type, CMU_REG0, CMU_REG0_PDOWN_MASK);
1249  	cmu_toggle1to0(ctx, cmu_type, CMU_REG32,
1250  		       CMU_REG32_FORCE_VCOCAL_START_MASK);
1251  }
1252  
xgene_phy_hw_init_sata(struct xgene_phy_ctx * ctx,enum clk_type_t clk_type,int ssc_enable)1253  static int xgene_phy_hw_init_sata(struct xgene_phy_ctx *ctx,
1254  				  enum clk_type_t clk_type, int ssc_enable)
1255  {
1256  	void __iomem *sds_base = ctx->sds_base;
1257  	u32 val;
1258  	int i;
1259  
1260  	/* Configure the PHY for operation */
1261  	dev_dbg(ctx->dev, "Reset PHY\n");
1262  	/* Place PHY into reset */
1263  	writel(0x0, sds_base + SATA_ENET_SDS_RST_CTL);
1264  	val = readl(sds_base + SATA_ENET_SDS_RST_CTL);	/* Force a barrier */
1265  	/* Release PHY lane from reset (active high) */
1266  	writel(0x20, sds_base + SATA_ENET_SDS_RST_CTL);
1267  	readl(sds_base + SATA_ENET_SDS_RST_CTL);	/* Force a barrier */
1268  	/* Release all PHY module out of reset except PHY main reset */
1269  	writel(0xde, sds_base + SATA_ENET_SDS_RST_CTL);
1270  	readl(sds_base + SATA_ENET_SDS_RST_CTL);	/* Force a barrier */
1271  
1272  	/* Set the operation speed */
1273  	val = readl(sds_base + SATA_ENET_SDS_CTL1);
1274  	val = CFG_I_SPD_SEL_CDR_OVR1_SET(val,
1275  		ctx->sata_param.txspeed[ctx->sata_param.speed[0]]);
1276  	writel(val, sds_base + SATA_ENET_SDS_CTL1);
1277  
1278  	dev_dbg(ctx->dev, "Set the customer pin mode to SATA\n");
1279  	val = readl(sds_base + SATA_ENET_SDS_CTL0);
1280  	val = REGSPEC_CFG_I_CUSTOMER_PIN_MODE0_SET(val, 0x4421);
1281  	writel(val, sds_base + SATA_ENET_SDS_CTL0);
1282  
1283  	/* Configure the clock macro unit (CMU) clock type */
1284  	xgene_phy_cfg_cmu_clk_type(ctx, PHY_CMU, clk_type);
1285  
1286  	/* Configure the clock macro */
1287  	xgene_phy_sata_cfg_cmu_core(ctx, PHY_CMU, clk_type);
1288  
1289  	/* Enable SSC if enabled */
1290  	if (ssc_enable)
1291  		xgene_phy_ssc_enable(ctx, PHY_CMU);
1292  
1293  	/* Configure PHY lanes */
1294  	xgene_phy_sata_cfg_lanes(ctx);
1295  
1296  	/* Set Rx/Tx 20-bit */
1297  	val = readl(sds_base + SATA_ENET_SDS_PCS_CTL0);
1298  	val = REGSPEC_CFG_I_RX_WORDMODE0_SET(val, 0x3);
1299  	val = REGSPEC_CFG_I_TX_WORDMODE0_SET(val, 0x3);
1300  	writel(val, sds_base + SATA_ENET_SDS_PCS_CTL0);
1301  
1302  	/* Start PLL calibration and try for three times */
1303  	i = 10;
1304  	do {
1305  		if (!xgene_phy_cal_rdy_chk(ctx, PHY_CMU, clk_type))
1306  			break;
1307  		/* If failed, toggle the VCO power signal and start again */
1308  		xgene_phy_pdwn_force_vco(ctx, PHY_CMU, clk_type);
1309  	} while (--i > 0);
1310  	/* Even on failure, allow to continue any way */
1311  	if (i <= 0)
1312  		dev_err(ctx->dev, "PLL calibration failed\n");
1313  
1314  	return 0;
1315  }
1316  
xgene_phy_hw_initialize(struct xgene_phy_ctx * ctx,enum clk_type_t clk_type,int ssc_enable)1317  static int xgene_phy_hw_initialize(struct xgene_phy_ctx *ctx,
1318  				   enum clk_type_t clk_type,
1319  				   int ssc_enable)
1320  {
1321  	int rc;
1322  
1323  	dev_dbg(ctx->dev, "PHY init clk type %d\n", clk_type);
1324  
1325  	if (ctx->mode == MODE_SATA) {
1326  		rc = xgene_phy_hw_init_sata(ctx, clk_type, ssc_enable);
1327  		if (rc)
1328  			return rc;
1329  	} else {
1330  		dev_err(ctx->dev, "Un-supported customer pin mode %d\n",
1331  			ctx->mode);
1332  		return -ENODEV;
1333  	}
1334  
1335  	return 0;
1336  }
1337  
1338  /*
1339   * Receiver Offset Calibration:
1340   *
1341   * Calibrate the receiver signal path offset in two steps - summar and
1342   * latch calibrations
1343   */
xgene_phy_force_lat_summer_cal(struct xgene_phy_ctx * ctx,int lane)1344  static void xgene_phy_force_lat_summer_cal(struct xgene_phy_ctx *ctx, int lane)
1345  {
1346  	int i;
1347  	static const struct {
1348  		u32 reg;
1349  		u32 val;
1350  	} serdes_reg[] = {
1351  		{RXTX_REG38, 0x0},
1352  		{RXTX_REG39, 0xff00},
1353  		{RXTX_REG40, 0xffff},
1354  		{RXTX_REG41, 0xffff},
1355  		{RXTX_REG42, 0xffff},
1356  		{RXTX_REG43, 0xffff},
1357  		{RXTX_REG44, 0xffff},
1358  		{RXTX_REG45, 0xffff},
1359  		{RXTX_REG46, 0xffff},
1360  		{RXTX_REG47, 0xfffc},
1361  		{RXTX_REG48, 0x0},
1362  		{RXTX_REG49, 0x0},
1363  		{RXTX_REG50, 0x0},
1364  		{RXTX_REG51, 0x0},
1365  		{RXTX_REG52, 0x0},
1366  		{RXTX_REG53, 0x0},
1367  		{RXTX_REG54, 0x0},
1368  		{RXTX_REG55, 0x0},
1369  	};
1370  
1371  	/* Start SUMMER calibration */
1372  	serdes_setbits(ctx, lane, RXTX_REG127,
1373  		       RXTX_REG127_FORCE_SUM_CAL_START_MASK);
1374  	/*
1375  	 * As per PHY design spec, the Summer calibration requires a minimum
1376  	 * of 100us to complete.
1377  	 */
1378  	usleep_range(100, 500);
1379  	serdes_clrbits(ctx, lane, RXTX_REG127,
1380  			RXTX_REG127_FORCE_SUM_CAL_START_MASK);
1381  	/*
1382  	 * As per PHY design spec, the auto calibration requires a minimum
1383  	 * of 100us to complete.
1384  	 */
1385  	usleep_range(100, 500);
1386  
1387  	/* Start latch calibration */
1388  	serdes_setbits(ctx, lane, RXTX_REG127,
1389  		       RXTX_REG127_FORCE_LAT_CAL_START_MASK);
1390  	/*
1391  	 * As per PHY design spec, the latch calibration requires a minimum
1392  	 * of 100us to complete.
1393  	 */
1394  	usleep_range(100, 500);
1395  	serdes_clrbits(ctx, lane, RXTX_REG127,
1396  		       RXTX_REG127_FORCE_LAT_CAL_START_MASK);
1397  
1398  	/* Configure the PHY lane for calibration */
1399  	serdes_wr(ctx, lane, RXTX_REG28, 0x7);
1400  	serdes_wr(ctx, lane, RXTX_REG31, 0x7e00);
1401  	serdes_clrbits(ctx, lane, RXTX_REG4,
1402  		       RXTX_REG4_TX_LOOPBACK_BUF_EN_MASK);
1403  	serdes_clrbits(ctx, lane, RXTX_REG7,
1404  		       RXTX_REG7_LOOP_BACK_ENA_CTLE_MASK);
1405  	for (i = 0; i < ARRAY_SIZE(serdes_reg); i++)
1406  		serdes_wr(ctx, lane, serdes_reg[i].reg,
1407  			  serdes_reg[i].val);
1408  }
1409  
xgene_phy_reset_rxd(struct xgene_phy_ctx * ctx,int lane)1410  static void xgene_phy_reset_rxd(struct xgene_phy_ctx *ctx, int lane)
1411  {
1412  	/* Reset digital Rx */
1413  	serdes_clrbits(ctx, lane, RXTX_REG7, RXTX_REG7_RESETB_RXD_MASK);
1414  	/* As per PHY design spec, the reset requires a minimum of 100us. */
1415  	usleep_range(100, 150);
1416  	serdes_setbits(ctx, lane, RXTX_REG7, RXTX_REG7_RESETB_RXD_MASK);
1417  }
1418  
xgene_phy_get_avg(int accum,int samples)1419  static int xgene_phy_get_avg(int accum, int samples)
1420  {
1421  	return (accum + (samples / 2)) / samples;
1422  }
1423  
xgene_phy_gen_avg_val(struct xgene_phy_ctx * ctx,int lane)1424  static void xgene_phy_gen_avg_val(struct xgene_phy_ctx *ctx, int lane)
1425  {
1426  	int max_loop = 10;
1427  	int avg_loop = 0;
1428  	int lat_do = 0, lat_xo = 0, lat_eo = 0, lat_so = 0;
1429  	int lat_de = 0, lat_xe = 0, lat_ee = 0, lat_se = 0;
1430  	int sum_cal = 0;
1431  	int lat_do_itr, lat_xo_itr, lat_eo_itr, lat_so_itr;
1432  	int lat_de_itr, lat_xe_itr, lat_ee_itr, lat_se_itr;
1433  	int sum_cal_itr;
1434  	int fail_even;
1435  	int fail_odd;
1436  	u32 val;
1437  
1438  	dev_dbg(ctx->dev, "Generating avg calibration value for lane %d\n",
1439  		lane);
1440  
1441  	/* Enable RX Hi-Z termination */
1442  	serdes_setbits(ctx, lane, RXTX_REG12,
1443  			RXTX_REG12_RX_DET_TERM_ENABLE_MASK);
1444  	/* Turn off DFE */
1445  	serdes_wr(ctx, lane, RXTX_REG28, 0x0000);
1446  	/* DFE Presets to zero */
1447  	serdes_wr(ctx, lane, RXTX_REG31, 0x0000);
1448  
1449  	/*
1450  	 * Receiver Offset Calibration:
1451  	 * Calibrate the receiver signal path offset in two steps - summar
1452  	 * and latch calibration.
1453  	 * Runs the "Receiver Offset Calibration multiple times to determine
1454  	 * the average value to use.
1455  	 */
1456  	while (avg_loop < max_loop) {
1457  		/* Start the calibration */
1458  		xgene_phy_force_lat_summer_cal(ctx, lane);
1459  
1460  		serdes_rd(ctx, lane, RXTX_REG21, &val);
1461  		lat_do_itr = RXTX_REG21_DO_LATCH_CALOUT_RD(val);
1462  		lat_xo_itr = RXTX_REG21_XO_LATCH_CALOUT_RD(val);
1463  		fail_odd = RXTX_REG21_LATCH_CAL_FAIL_ODD_RD(val);
1464  
1465  		serdes_rd(ctx, lane, RXTX_REG22, &val);
1466  		lat_eo_itr = RXTX_REG22_EO_LATCH_CALOUT_RD(val);
1467  		lat_so_itr = RXTX_REG22_SO_LATCH_CALOUT_RD(val);
1468  		fail_even = RXTX_REG22_LATCH_CAL_FAIL_EVEN_RD(val);
1469  
1470  		serdes_rd(ctx, lane, RXTX_REG23, &val);
1471  		lat_de_itr = RXTX_REG23_DE_LATCH_CALOUT_RD(val);
1472  		lat_xe_itr = RXTX_REG23_XE_LATCH_CALOUT_RD(val);
1473  
1474  		serdes_rd(ctx, lane, RXTX_REG24, &val);
1475  		lat_ee_itr = RXTX_REG24_EE_LATCH_CALOUT_RD(val);
1476  		lat_se_itr = RXTX_REG24_SE_LATCH_CALOUT_RD(val);
1477  
1478  		serdes_rd(ctx, lane, RXTX_REG121, &val);
1479  		sum_cal_itr = RXTX_REG121_SUMOS_CAL_CODE_RD(val);
1480  
1481  		/* Check for failure. If passed, sum them for averaging */
1482  		if ((fail_even == 0 || fail_even == 1) &&
1483  		    (fail_odd == 0 || fail_odd == 1)) {
1484  			lat_do += lat_do_itr;
1485  			lat_xo += lat_xo_itr;
1486  			lat_eo += lat_eo_itr;
1487  			lat_so += lat_so_itr;
1488  			lat_de += lat_de_itr;
1489  			lat_xe += lat_xe_itr;
1490  			lat_ee += lat_ee_itr;
1491  			lat_se += lat_se_itr;
1492  			sum_cal += sum_cal_itr;
1493  
1494  			dev_dbg(ctx->dev, "Iteration %d:\n", avg_loop);
1495  			dev_dbg(ctx->dev, "DO 0x%x XO 0x%x EO 0x%x SO 0x%x\n",
1496  				lat_do_itr, lat_xo_itr, lat_eo_itr,
1497  				lat_so_itr);
1498  			dev_dbg(ctx->dev, "DE 0x%x XE 0x%x EE 0x%x SE 0x%x\n",
1499  				lat_de_itr, lat_xe_itr, lat_ee_itr,
1500  				lat_se_itr);
1501  			dev_dbg(ctx->dev, "SUM 0x%x\n", sum_cal_itr);
1502  			++avg_loop;
1503  		} else {
1504  			dev_err(ctx->dev,
1505  				"Receiver calibration failed at %d loop\n",
1506  				avg_loop);
1507  		}
1508  		xgene_phy_reset_rxd(ctx, lane);
1509  	}
1510  
1511  	/* Update latch manual calibration with average value */
1512  	serdes_rd(ctx, lane, RXTX_REG127, &val);
1513  	val = RXTX_REG127_DO_LATCH_MANCAL_SET(val,
1514  		xgene_phy_get_avg(lat_do, max_loop));
1515  	val = RXTX_REG127_XO_LATCH_MANCAL_SET(val,
1516  		xgene_phy_get_avg(lat_xo, max_loop));
1517  	serdes_wr(ctx, lane, RXTX_REG127, val);
1518  
1519  	serdes_rd(ctx, lane, RXTX_REG128, &val);
1520  	val = RXTX_REG128_EO_LATCH_MANCAL_SET(val,
1521  		xgene_phy_get_avg(lat_eo, max_loop));
1522  	val = RXTX_REG128_SO_LATCH_MANCAL_SET(val,
1523  		xgene_phy_get_avg(lat_so, max_loop));
1524  	serdes_wr(ctx, lane, RXTX_REG128, val);
1525  
1526  	serdes_rd(ctx, lane, RXTX_REG129, &val);
1527  	val = RXTX_REG129_DE_LATCH_MANCAL_SET(val,
1528  		xgene_phy_get_avg(lat_de, max_loop));
1529  	val = RXTX_REG129_XE_LATCH_MANCAL_SET(val,
1530  		xgene_phy_get_avg(lat_xe, max_loop));
1531  	serdes_wr(ctx, lane, RXTX_REG129, val);
1532  
1533  	serdes_rd(ctx, lane, RXTX_REG130, &val);
1534  	val = RXTX_REG130_EE_LATCH_MANCAL_SET(val,
1535  		xgene_phy_get_avg(lat_ee, max_loop));
1536  	val = RXTX_REG130_SE_LATCH_MANCAL_SET(val,
1537  		xgene_phy_get_avg(lat_se, max_loop));
1538  	serdes_wr(ctx, lane, RXTX_REG130, val);
1539  
1540  	/* Update SUMMER calibration with average value */
1541  	serdes_rd(ctx, lane, RXTX_REG14, &val);
1542  	val = RXTX_REG14_CLTE_LATCAL_MAN_PROG_SET(val,
1543  		xgene_phy_get_avg(sum_cal, max_loop));
1544  	serdes_wr(ctx, lane, RXTX_REG14, val);
1545  
1546  	dev_dbg(ctx->dev, "Average Value:\n");
1547  	dev_dbg(ctx->dev, "DO 0x%x XO 0x%x EO 0x%x SO 0x%x\n",
1548  		 xgene_phy_get_avg(lat_do, max_loop),
1549  		 xgene_phy_get_avg(lat_xo, max_loop),
1550  		 xgene_phy_get_avg(lat_eo, max_loop),
1551  		 xgene_phy_get_avg(lat_so, max_loop));
1552  	dev_dbg(ctx->dev, "DE 0x%x XE 0x%x EE 0x%x SE 0x%x\n",
1553  		 xgene_phy_get_avg(lat_de, max_loop),
1554  		 xgene_phy_get_avg(lat_xe, max_loop),
1555  		 xgene_phy_get_avg(lat_ee, max_loop),
1556  		 xgene_phy_get_avg(lat_se, max_loop));
1557  	dev_dbg(ctx->dev, "SUM 0x%x\n",
1558  		xgene_phy_get_avg(sum_cal, max_loop));
1559  
1560  	serdes_rd(ctx, lane, RXTX_REG14, &val);
1561  	val = RXTX_REG14_CTLE_LATCAL_MAN_ENA_SET(val, 0x1);
1562  	serdes_wr(ctx, lane, RXTX_REG14, val);
1563  	dev_dbg(ctx->dev, "Enable Manual Summer calibration\n");
1564  
1565  	serdes_rd(ctx, lane, RXTX_REG127, &val);
1566  	val = RXTX_REG127_LATCH_MAN_CAL_ENA_SET(val, 0x1);
1567  	dev_dbg(ctx->dev, "Enable Manual Latch calibration\n");
1568  	serdes_wr(ctx, lane, RXTX_REG127, val);
1569  
1570  	/* Disable RX Hi-Z termination */
1571  	serdes_rd(ctx, lane, RXTX_REG12, &val);
1572  	val = RXTX_REG12_RX_DET_TERM_ENABLE_SET(val, 0);
1573  	serdes_wr(ctx, lane, RXTX_REG12, val);
1574  	/* Turn on DFE */
1575  	serdes_wr(ctx, lane, RXTX_REG28, 0x0007);
1576  	/* Set DFE preset */
1577  	serdes_wr(ctx, lane, RXTX_REG31, 0x7e00);
1578  }
1579  
xgene_phy_hw_init(struct phy * phy)1580  static int xgene_phy_hw_init(struct phy *phy)
1581  {
1582  	struct xgene_phy_ctx *ctx = phy_get_drvdata(phy);
1583  	int rc;
1584  	int i;
1585  
1586  	rc = xgene_phy_hw_initialize(ctx, CLK_EXT_DIFF, SSC_DISABLE);
1587  	if (rc) {
1588  		dev_err(ctx->dev, "PHY initialize failed %d\n", rc);
1589  		return rc;
1590  	}
1591  
1592  	/* Setup clock properly after PHY configuration */
1593  	if (!IS_ERR(ctx->clk)) {
1594  		/* HW requires an toggle of the clock */
1595  		clk_prepare_enable(ctx->clk);
1596  		clk_disable_unprepare(ctx->clk);
1597  		clk_prepare_enable(ctx->clk);
1598  	}
1599  
1600  	/* Compute average value */
1601  	for (i = 0; i < MAX_LANE; i++)
1602  		xgene_phy_gen_avg_val(ctx, i);
1603  
1604  	dev_dbg(ctx->dev, "PHY initialized\n");
1605  	return 0;
1606  }
1607  
1608  static const struct phy_ops xgene_phy_ops = {
1609  	.init		= xgene_phy_hw_init,
1610  	.owner		= THIS_MODULE,
1611  };
1612  
xgene_phy_xlate(struct device * dev,struct of_phandle_args * args)1613  static struct phy *xgene_phy_xlate(struct device *dev,
1614  				   struct of_phandle_args *args)
1615  {
1616  	struct xgene_phy_ctx *ctx = dev_get_drvdata(dev);
1617  
1618  	if (args->args_count <= 0)
1619  		return ERR_PTR(-EINVAL);
1620  	if (args->args[0] >= MODE_MAX)
1621  		return ERR_PTR(-EINVAL);
1622  
1623  	ctx->mode = args->args[0];
1624  	return ctx->phy;
1625  }
1626  
xgene_phy_get_param(struct platform_device * pdev,const char * name,u32 * buffer,int count,u32 * default_val,u32 conv_factor)1627  static void xgene_phy_get_param(struct platform_device *pdev,
1628  				const char *name, u32 *buffer,
1629  				int count, u32 *default_val,
1630  				u32 conv_factor)
1631  {
1632  	int i;
1633  
1634  	if (!of_property_read_u32_array(pdev->dev.of_node, name, buffer,
1635  					count)) {
1636  		for (i = 0; i < count; i++)
1637  			buffer[i] /= conv_factor;
1638  		return;
1639  	}
1640  	/* Does not exist, load default */
1641  	for (i = 0; i < count; i++)
1642  		buffer[i] = default_val[i % 3];
1643  }
1644  
xgene_phy_probe(struct platform_device * pdev)1645  static int xgene_phy_probe(struct platform_device *pdev)
1646  {
1647  	struct phy_provider *phy_provider;
1648  	struct xgene_phy_ctx *ctx;
1649  	u32 default_spd[] = DEFAULT_SATA_SPD_SEL;
1650  	u32 default_txboost_gain[] = DEFAULT_SATA_TXBOOST_GAIN;
1651  	u32 default_txeye_direction[] = DEFAULT_SATA_TXEYEDIRECTION;
1652  	u32 default_txeye_tuning[] = DEFAULT_SATA_TXEYETUNING;
1653  	u32 default_txamp[] = DEFAULT_SATA_TXAMP;
1654  	u32 default_txcn1[] = DEFAULT_SATA_TXCN1;
1655  	u32 default_txcn2[] = DEFAULT_SATA_TXCN2;
1656  	u32 default_txcp1[] = DEFAULT_SATA_TXCP1;
1657  	int i;
1658  
1659  	ctx = devm_kzalloc(&pdev->dev, sizeof(*ctx), GFP_KERNEL);
1660  	if (!ctx)
1661  		return -ENOMEM;
1662  
1663  	ctx->dev = &pdev->dev;
1664  
1665  	ctx->sds_base = devm_platform_ioremap_resource(pdev, 0);
1666  	if (IS_ERR(ctx->sds_base))
1667  		return PTR_ERR(ctx->sds_base);
1668  
1669  	/* Retrieve optional clock */
1670  	ctx->clk = clk_get(&pdev->dev, NULL);
1671  
1672  	/* Load override paramaters */
1673  	xgene_phy_get_param(pdev, "apm,tx-eye-tuning",
1674  		ctx->sata_param.txeyetuning, 6, default_txeye_tuning, 1);
1675  	xgene_phy_get_param(pdev, "apm,tx-eye-direction",
1676  		ctx->sata_param.txeyedirection, 6, default_txeye_direction, 1);
1677  	xgene_phy_get_param(pdev, "apm,tx-boost-gain",
1678  		ctx->sata_param.txboostgain, 6, default_txboost_gain, 1);
1679  	xgene_phy_get_param(pdev, "apm,tx-amplitude",
1680  		ctx->sata_param.txamplitude, 6, default_txamp, 13300);
1681  	xgene_phy_get_param(pdev, "apm,tx-pre-cursor1",
1682  		ctx->sata_param.txprecursor_cn1, 6, default_txcn1, 18200);
1683  	xgene_phy_get_param(pdev, "apm,tx-pre-cursor2",
1684  		ctx->sata_param.txprecursor_cn2, 6, default_txcn2, 18200);
1685  	xgene_phy_get_param(pdev, "apm,tx-post-cursor",
1686  		ctx->sata_param.txpostcursor_cp1, 6, default_txcp1, 18200);
1687  	xgene_phy_get_param(pdev, "apm,tx-speed",
1688  		ctx->sata_param.txspeed, 3, default_spd, 1);
1689  	for (i = 0; i < MAX_LANE; i++)
1690  		ctx->sata_param.speed[i] = 2; /* Default to Gen3 */
1691  
1692  	platform_set_drvdata(pdev, ctx);
1693  
1694  	ctx->phy = devm_phy_create(ctx->dev, NULL, &xgene_phy_ops);
1695  	if (IS_ERR(ctx->phy)) {
1696  		dev_dbg(&pdev->dev, "Failed to create PHY\n");
1697  		return PTR_ERR(ctx->phy);
1698  	}
1699  	phy_set_drvdata(ctx->phy, ctx);
1700  
1701  	phy_provider = devm_of_phy_provider_register(ctx->dev, xgene_phy_xlate);
1702  	return PTR_ERR_OR_ZERO(phy_provider);
1703  }
1704  
1705  static const struct of_device_id xgene_phy_of_match[] = {
1706  	{.compatible = "apm,xgene-phy",},
1707  	{},
1708  };
1709  MODULE_DEVICE_TABLE(of, xgene_phy_of_match);
1710  
1711  static struct platform_driver xgene_phy_driver = {
1712  	.probe = xgene_phy_probe,
1713  	.driver = {
1714  		   .name = "xgene-phy",
1715  		   .of_match_table = xgene_phy_of_match,
1716  	},
1717  };
1718  module_platform_driver(xgene_phy_driver);
1719  
1720  MODULE_DESCRIPTION("APM X-Gene Multi-Purpose PHY driver");
1721  MODULE_AUTHOR("Loc Ho <lho@apm.com>");
1722  MODULE_LICENSE("GPL v2");
1723  MODULE_VERSION("0.1");
1724