1 /*
2 * QEMU S390x KVM implementation
3 *
4 * Copyright (c) 2009 Alexander Graf <agraf@suse.de>
5 * Copyright IBM Corp. 2012
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, see <http://www.gnu.org/licenses/>.
19 */
20
21 #include "qemu/osdep.h"
22 #include <sys/ioctl.h>
23
24 #include <linux/kvm.h>
25 #include <asm/ptrace.h>
26
27 #include "cpu.h"
28 #include "s390x-internal.h"
29 #include "kvm_s390x.h"
30 #include "system/kvm_int.h"
31 #include "qemu/cutils.h"
32 #include "qapi/error.h"
33 #include "qemu/error-report.h"
34 #include "qemu/timer.h"
35 #include "qemu/units.h"
36 #include "qemu/main-loop.h"
37 #include "qemu/mmap-alloc.h"
38 #include "qemu/log.h"
39 #include "system/system.h"
40 #include "system/hw_accel.h"
41 #include "system/runstate.h"
42 #include "system/device_tree.h"
43 #include "gdbstub/enums.h"
44 #include "exec/ram_addr.h"
45 #include "trace.h"
46 #include "hw/s390x/s390-pci-inst.h"
47 #include "hw/s390x/s390-pci-bus.h"
48 #include "hw/s390x/ipl.h"
49 #include "hw/s390x/ebcdic.h"
50 #include "exec/memattrs.h"
51 #include "hw/s390x/s390-virtio-ccw.h"
52 #include "hw/s390x/s390-hypercall.h"
53 #include "target/s390x/kvm/pv.h"
54 #include CONFIG_DEVICES
55
56 #define kvm_vm_check_mem_attr(s, attr) \
57 kvm_vm_check_attr(s, KVM_S390_VM_MEM_CTRL, attr)
58
59 #define IPA0_DIAG 0x8300
60 #define IPA0_SIGP 0xae00
61 #define IPA0_B2 0xb200
62 #define IPA0_B9 0xb900
63 #define IPA0_EB 0xeb00
64 #define IPA0_E3 0xe300
65
66 #define PRIV_B2_SCLP_CALL 0x20
67 #define PRIV_B2_CSCH 0x30
68 #define PRIV_B2_HSCH 0x31
69 #define PRIV_B2_MSCH 0x32
70 #define PRIV_B2_SSCH 0x33
71 #define PRIV_B2_STSCH 0x34
72 #define PRIV_B2_TSCH 0x35
73 #define PRIV_B2_TPI 0x36
74 #define PRIV_B2_SAL 0x37
75 #define PRIV_B2_RSCH 0x38
76 #define PRIV_B2_STCRW 0x39
77 #define PRIV_B2_STCPS 0x3a
78 #define PRIV_B2_RCHP 0x3b
79 #define PRIV_B2_SCHM 0x3c
80 #define PRIV_B2_CHSC 0x5f
81 #define PRIV_B2_SIGA 0x74
82 #define PRIV_B2_XSCH 0x76
83
84 #define PRIV_EB_SQBS 0x8a
85 #define PRIV_EB_PCISTB 0xd0
86 #define PRIV_EB_SIC 0xd1
87
88 #define PRIV_B9_EQBS 0x9c
89 #define PRIV_B9_CLP 0xa0
90 #define PRIV_B9_PTF 0xa2
91 #define PRIV_B9_PCISTG 0xd0
92 #define PRIV_B9_PCILG 0xd2
93 #define PRIV_B9_RPCIT 0xd3
94
95 #define PRIV_E3_MPCIFC 0xd0
96 #define PRIV_E3_STPCIFC 0xd4
97
98 #define DIAG_TIMEREVENT 0x288
99 #define DIAG_IPL 0x308
100 #define DIAG_SET_CONTROL_PROGRAM_CODES 0x318
101 #define DIAG_KVM_HYPERCALL 0x500
102 #define DIAG_KVM_BREAKPOINT 0x501
103
104 #define ICPT_INSTRUCTION 0x04
105 #define ICPT_PROGRAM 0x08
106 #define ICPT_EXT_INT 0x14
107 #define ICPT_WAITPSW 0x1c
108 #define ICPT_SOFT_INTERCEPT 0x24
109 #define ICPT_CPU_STOP 0x28
110 #define ICPT_OPEREXC 0x2c
111 #define ICPT_IO 0x40
112 #define ICPT_PV_INSTR 0x68
113 #define ICPT_PV_INSTR_NOTIFICATION 0x6c
114
115 #define NR_LOCAL_IRQS 32
116 /*
117 * Needs to be big enough to contain max_cpus emergency signals
118 * and in addition NR_LOCAL_IRQS interrupts
119 */
120 #define VCPU_IRQ_BUF_SIZE(max_cpus) (sizeof(struct kvm_s390_irq) * \
121 (max_cpus + NR_LOCAL_IRQS))
122 /*
123 * KVM does only support memory slots up to KVM_MEM_MAX_NR_PAGES pages
124 * as the dirty bitmap must be managed by bitops that take an int as
125 * position indicator. This would end at an unaligned address
126 * (0x7fffff00000). As future variants might provide larger pages
127 * and to make all addresses properly aligned, let us split at 4TB.
128 */
129 #define KVM_SLOT_MAX_BYTES (4UL * TiB)
130
131 static CPUWatchpoint hw_watchpoint;
132 /*
133 * We don't use a list because this structure is also used to transmit the
134 * hardware breakpoints to the kernel.
135 */
136 static struct kvm_hw_breakpoint *hw_breakpoints;
137 static int nb_hw_breakpoints;
138
139 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
140 KVM_CAP_LAST_INFO
141 };
142
143 static int cap_async_pf;
144 static int cap_mem_op;
145 static int cap_mem_op_extension;
146 static int cap_s390_irq;
147 static int cap_ri;
148 static int cap_hpage_1m;
149 static int cap_vcpu_resets;
150 static int cap_protected;
151 static int cap_zpci_op;
152 static int cap_protected_dump;
153
154 static bool mem_op_storage_key_support;
155
156 static int active_cmma;
157
kvm_s390_query_mem_limit(uint64_t * memory_limit)158 static int kvm_s390_query_mem_limit(uint64_t *memory_limit)
159 {
160 struct kvm_device_attr attr = {
161 .group = KVM_S390_VM_MEM_CTRL,
162 .attr = KVM_S390_VM_MEM_LIMIT_SIZE,
163 .addr = (uint64_t) memory_limit,
164 };
165
166 return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
167 }
168
kvm_s390_set_mem_limit(uint64_t new_limit,uint64_t * hw_limit)169 int kvm_s390_set_mem_limit(uint64_t new_limit, uint64_t *hw_limit)
170 {
171 int rc;
172
173 struct kvm_device_attr attr = {
174 .group = KVM_S390_VM_MEM_CTRL,
175 .attr = KVM_S390_VM_MEM_LIMIT_SIZE,
176 .addr = (uint64_t) &new_limit,
177 };
178
179 if (!kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_LIMIT_SIZE)) {
180 return 0;
181 }
182
183 rc = kvm_s390_query_mem_limit(hw_limit);
184 if (rc) {
185 return rc;
186 } else if (*hw_limit < new_limit) {
187 return -E2BIG;
188 }
189
190 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
191 }
192
kvm_s390_cmma_active(void)193 int kvm_s390_cmma_active(void)
194 {
195 return active_cmma;
196 }
197
kvm_s390_cmma_available(void)198 static bool kvm_s390_cmma_available(void)
199 {
200 static bool initialized, value;
201
202 if (!initialized) {
203 initialized = true;
204 value = kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_ENABLE_CMMA) &&
205 kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_CLR_CMMA);
206 }
207 return value;
208 }
209
kvm_s390_cmma_reset(void)210 void kvm_s390_cmma_reset(void)
211 {
212 int rc;
213 struct kvm_device_attr attr = {
214 .group = KVM_S390_VM_MEM_CTRL,
215 .attr = KVM_S390_VM_MEM_CLR_CMMA,
216 };
217
218 if (!kvm_s390_cmma_active()) {
219 return;
220 }
221
222 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
223 trace_kvm_clear_cmma(rc);
224 }
225
kvm_s390_enable_cmma(void)226 static void kvm_s390_enable_cmma(void)
227 {
228 int rc;
229 struct kvm_device_attr attr = {
230 .group = KVM_S390_VM_MEM_CTRL,
231 .attr = KVM_S390_VM_MEM_ENABLE_CMMA,
232 };
233
234 if (cap_hpage_1m) {
235 warn_report("CMM will not be enabled because it is not "
236 "compatible with huge memory backings.");
237 return;
238 }
239 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
240 active_cmma = !rc;
241 trace_kvm_enable_cmma(rc);
242 }
243
kvm_s390_set_crypto_attr(uint64_t attr)244 static void kvm_s390_set_crypto_attr(uint64_t attr)
245 {
246 struct kvm_device_attr attribute = {
247 .group = KVM_S390_VM_CRYPTO,
248 .attr = attr,
249 };
250
251 int ret = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute);
252
253 if (ret) {
254 error_report("Failed to set crypto device attribute %lu: %s",
255 attr, strerror(-ret));
256 }
257 }
258
kvm_s390_init_aes_kw(void)259 static void kvm_s390_init_aes_kw(void)
260 {
261 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_AES_KW;
262
263 if (object_property_get_bool(OBJECT(qdev_get_machine()), "aes-key-wrap",
264 NULL)) {
265 attr = KVM_S390_VM_CRYPTO_ENABLE_AES_KW;
266 }
267
268 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
269 kvm_s390_set_crypto_attr(attr);
270 }
271 }
272
kvm_s390_init_dea_kw(void)273 static void kvm_s390_init_dea_kw(void)
274 {
275 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_DEA_KW;
276
277 if (object_property_get_bool(OBJECT(qdev_get_machine()), "dea-key-wrap",
278 NULL)) {
279 attr = KVM_S390_VM_CRYPTO_ENABLE_DEA_KW;
280 }
281
282 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
283 kvm_s390_set_crypto_attr(attr);
284 }
285 }
286
kvm_s390_crypto_reset(void)287 void kvm_s390_crypto_reset(void)
288 {
289 if (s390_has_feat(S390_FEAT_MSA_EXT_3)) {
290 kvm_s390_init_aes_kw();
291 kvm_s390_init_dea_kw();
292 }
293 }
294
kvm_s390_set_max_pagesize(uint64_t pagesize,Error ** errp)295 void kvm_s390_set_max_pagesize(uint64_t pagesize, Error **errp)
296 {
297 if (pagesize == 4 * KiB) {
298 return;
299 }
300
301 if (!hpage_1m_allowed()) {
302 error_setg(errp, "This QEMU machine does not support huge page "
303 "mappings");
304 return;
305 }
306
307 if (pagesize != 1 * MiB) {
308 error_setg(errp, "Memory backing with 2G pages was specified, "
309 "but KVM does not support this memory backing");
310 return;
311 }
312
313 if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_HPAGE_1M, 0)) {
314 error_setg(errp, "Memory backing with 1M pages was specified, "
315 "but KVM does not support this memory backing");
316 return;
317 }
318
319 cap_hpage_1m = 1;
320 }
321
kvm_s390_get_hpage_1m(void)322 int kvm_s390_get_hpage_1m(void)
323 {
324 return cap_hpage_1m;
325 }
326
ccw_machine_class_foreach(ObjectClass * oc,void * opaque)327 static void ccw_machine_class_foreach(ObjectClass *oc, void *opaque)
328 {
329 MachineClass *mc = MACHINE_CLASS(oc);
330
331 mc->default_cpu_type = S390_CPU_TYPE_NAME("host");
332 }
333
kvm_arch_get_default_type(MachineState * ms)334 int kvm_arch_get_default_type(MachineState *ms)
335 {
336 return 0;
337 }
338
kvm_arch_init(MachineState * ms,KVMState * s)339 int kvm_arch_init(MachineState *ms, KVMState *s)
340 {
341 int required_caps[] = {
342 KVM_CAP_DEVICE_CTRL,
343 KVM_CAP_SYNC_REGS,
344 };
345
346 for (int i = 0; i < ARRAY_SIZE(required_caps); i++) {
347 if (!kvm_check_extension(s, required_caps[i])) {
348 error_report("KVM is missing capability #%d - "
349 "please use kernel 3.15 or newer", required_caps[i]);
350 return -1;
351 }
352 }
353
354 object_class_foreach(ccw_machine_class_foreach, TYPE_S390_CCW_MACHINE,
355 false, NULL);
356
357 if (!kvm_check_extension(s, KVM_CAP_S390_COW)) {
358 error_report("KVM is missing capability KVM_CAP_S390_COW - "
359 "unsupported environment");
360 return -1;
361 }
362
363 cap_async_pf = kvm_check_extension(s, KVM_CAP_ASYNC_PF);
364 cap_mem_op = kvm_check_extension(s, KVM_CAP_S390_MEM_OP);
365 cap_mem_op_extension = kvm_check_extension(s, KVM_CAP_S390_MEM_OP_EXTENSION);
366 mem_op_storage_key_support = cap_mem_op_extension > 0;
367 cap_s390_irq = kvm_check_extension(s, KVM_CAP_S390_INJECT_IRQ);
368 cap_vcpu_resets = kvm_check_extension(s, KVM_CAP_S390_VCPU_RESETS);
369 cap_protected = kvm_check_extension(s, KVM_CAP_S390_PROTECTED);
370 cap_zpci_op = kvm_check_extension(s, KVM_CAP_S390_ZPCI_OP);
371 cap_protected_dump = kvm_check_extension(s, KVM_CAP_S390_PROTECTED_DUMP);
372
373 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_SIGP, 0);
374 kvm_vm_enable_cap(s, KVM_CAP_S390_VECTOR_REGISTERS, 0);
375 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_STSI, 0);
376 kvm_vm_enable_cap(s, KVM_CAP_S390_CPU_TOPOLOGY, 0);
377 kvm_vm_enable_cap(s, KVM_CAP_S390_GS, 0);
378 if (kvm_vm_enable_cap(s, KVM_CAP_S390_RI, 0) == 0) {
379 cap_ri = 1;
380 }
381
382 /*
383 * The migration interface for ais was introduced with kernel 4.13
384 * but the capability itself had been active since 4.12. As migration
385 * support is considered necessary, we only try to enable this for
386 * newer machine types if KVM_CAP_S390_AIS_MIGRATION is available.
387 */
388 if (kvm_kernel_irqchip_allowed() &&
389 kvm_check_extension(s, KVM_CAP_S390_AIS_MIGRATION)) {
390 kvm_vm_enable_cap(s, KVM_CAP_S390_AIS, 0);
391 }
392
393 kvm_set_max_memslot_size(KVM_SLOT_MAX_BYTES);
394 return 0;
395 }
396
kvm_arch_irqchip_create(KVMState * s)397 int kvm_arch_irqchip_create(KVMState *s)
398 {
399 return 0;
400 }
401
kvm_arch_vcpu_id(CPUState * cpu)402 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
403 {
404 return cpu->cpu_index;
405 }
406
kvm_arch_init_vcpu(CPUState * cs)407 int kvm_arch_init_vcpu(CPUState *cs)
408 {
409 unsigned int max_cpus = MACHINE(qdev_get_machine())->smp.max_cpus;
410 S390CPU *cpu = S390_CPU(cs);
411 kvm_s390_set_cpu_state(cpu, cpu->env.cpu_state);
412 cpu->irqstate = g_malloc0(VCPU_IRQ_BUF_SIZE(max_cpus));
413 return 0;
414 }
415
kvm_arch_destroy_vcpu(CPUState * cs)416 int kvm_arch_destroy_vcpu(CPUState *cs)
417 {
418 S390CPU *cpu = S390_CPU(cs);
419
420 g_free(cpu->irqstate);
421 cpu->irqstate = NULL;
422
423 return 0;
424 }
425
kvm_s390_reset_vcpu(S390CPU * cpu,unsigned long type)426 static void kvm_s390_reset_vcpu(S390CPU *cpu, unsigned long type)
427 {
428 CPUState *cs = CPU(cpu);
429
430 /*
431 * The reset call is needed here to reset in-kernel vcpu data that
432 * we can't access directly from QEMU (i.e. with older kernels
433 * which don't support sync_regs/ONE_REG). Before this ioctl
434 * cpu_synchronize_state() is called in common kvm code
435 * (kvm-all).
436 */
437 if (kvm_vcpu_ioctl(cs, type)) {
438 error_report("CPU reset failed on CPU %i type %lx",
439 cs->cpu_index, type);
440 }
441 }
442
kvm_s390_reset_vcpu_initial(S390CPU * cpu)443 void kvm_s390_reset_vcpu_initial(S390CPU *cpu)
444 {
445 kvm_s390_reset_vcpu(cpu, KVM_S390_INITIAL_RESET);
446 }
447
kvm_s390_reset_vcpu_clear(S390CPU * cpu)448 void kvm_s390_reset_vcpu_clear(S390CPU *cpu)
449 {
450 if (cap_vcpu_resets) {
451 kvm_s390_reset_vcpu(cpu, KVM_S390_CLEAR_RESET);
452 } else {
453 kvm_s390_reset_vcpu(cpu, KVM_S390_INITIAL_RESET);
454 }
455 }
456
kvm_s390_reset_vcpu_normal(S390CPU * cpu)457 void kvm_s390_reset_vcpu_normal(S390CPU *cpu)
458 {
459 if (cap_vcpu_resets) {
460 kvm_s390_reset_vcpu(cpu, KVM_S390_NORMAL_RESET);
461 }
462 }
463
can_sync_regs(CPUState * cs,int regs)464 static int can_sync_regs(CPUState *cs, int regs)
465 {
466 return (cs->kvm_run->kvm_valid_regs & regs) == regs;
467 }
468
469 #define KVM_SYNC_REQUIRED_REGS (KVM_SYNC_GPRS | KVM_SYNC_ACRS | \
470 KVM_SYNC_CRS | KVM_SYNC_PREFIX)
471
kvm_arch_put_registers(CPUState * cs,int level,Error ** errp)472 int kvm_arch_put_registers(CPUState *cs, int level, Error **errp)
473 {
474 CPUS390XState *env = cpu_env(cs);
475 struct kvm_fpu fpu = {};
476 int r;
477 int i;
478
479 g_assert(can_sync_regs(cs, KVM_SYNC_REQUIRED_REGS));
480
481 /* always save the PSW and the GPRS*/
482 cs->kvm_run->psw_addr = env->psw.addr;
483 cs->kvm_run->psw_mask = env->psw.mask;
484
485 memcpy(cs->kvm_run->s.regs.gprs, env->regs, sizeof(cs->kvm_run->s.regs.gprs));
486 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GPRS;
487
488 if (can_sync_regs(cs, KVM_SYNC_VRS)) {
489 for (i = 0; i < 32; i++) {
490 cs->kvm_run->s.regs.vrs[i][0] = env->vregs[i][0];
491 cs->kvm_run->s.regs.vrs[i][1] = env->vregs[i][1];
492 }
493 cs->kvm_run->s.regs.fpc = env->fpc;
494 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_VRS;
495 } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) {
496 for (i = 0; i < 16; i++) {
497 cs->kvm_run->s.regs.fprs[i] = *get_freg(env, i);
498 }
499 cs->kvm_run->s.regs.fpc = env->fpc;
500 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_FPRS;
501 } else {
502 /* Floating point */
503 for (i = 0; i < 16; i++) {
504 fpu.fprs[i] = *get_freg(env, i);
505 }
506 fpu.fpc = env->fpc;
507
508 r = kvm_vcpu_ioctl(cs, KVM_SET_FPU, &fpu);
509 if (r < 0) {
510 return r;
511 }
512 }
513
514 /* Do we need to save more than that? */
515 if (level == KVM_PUT_RUNTIME_STATE) {
516 return 0;
517 }
518
519 /*
520 * Access registers, control registers and the prefix - these are
521 * always available via kvm_sync_regs in the kernels that we support
522 */
523 memcpy(cs->kvm_run->s.regs.acrs, env->aregs, sizeof(cs->kvm_run->s.regs.acrs));
524 memcpy(cs->kvm_run->s.regs.crs, env->cregs, sizeof(cs->kvm_run->s.regs.crs));
525 cs->kvm_run->s.regs.prefix = env->psa;
526 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ACRS | KVM_SYNC_CRS | KVM_SYNC_PREFIX;
527
528 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
529 cs->kvm_run->s.regs.cputm = env->cputm;
530 cs->kvm_run->s.regs.ckc = env->ckc;
531 cs->kvm_run->s.regs.todpr = env->todpr;
532 cs->kvm_run->s.regs.gbea = env->gbea;
533 cs->kvm_run->s.regs.pp = env->pp;
534 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ARCH0;
535 } else {
536 /*
537 * These ONE_REGS are not protected by a capability. As they are only
538 * necessary for migration we just trace a possible error, but don't
539 * return with an error return code.
540 */
541 kvm_set_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
542 kvm_set_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
543 kvm_set_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
544 kvm_set_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
545 kvm_set_one_reg(cs, KVM_REG_S390_PP, &env->pp);
546 }
547
548 if (can_sync_regs(cs, KVM_SYNC_RICCB)) {
549 memcpy(cs->kvm_run->s.regs.riccb, env->riccb, 64);
550 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_RICCB;
551 }
552
553 /* pfault parameters */
554 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
555 cs->kvm_run->s.regs.pft = env->pfault_token;
556 cs->kvm_run->s.regs.pfs = env->pfault_select;
557 cs->kvm_run->s.regs.pfc = env->pfault_compare;
558 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PFAULT;
559 } else if (cap_async_pf) {
560 r = kvm_set_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
561 if (r < 0) {
562 return r;
563 }
564 r = kvm_set_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
565 if (r < 0) {
566 return r;
567 }
568 r = kvm_set_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
569 if (r < 0) {
570 return r;
571 }
572 }
573
574 if (can_sync_regs(cs, KVM_SYNC_GSCB)) {
575 memcpy(cs->kvm_run->s.regs.gscb, env->gscb, 32);
576 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GSCB;
577 }
578
579 if (can_sync_regs(cs, KVM_SYNC_BPBC)) {
580 cs->kvm_run->s.regs.bpbc = env->bpbc;
581 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_BPBC;
582 }
583
584 if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) {
585 cs->kvm_run->s.regs.etoken = env->etoken;
586 cs->kvm_run->s.regs.etoken_extension = env->etoken_extension;
587 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ETOKEN;
588 }
589
590 if (can_sync_regs(cs, KVM_SYNC_DIAG318)) {
591 cs->kvm_run->s.regs.diag318 = env->diag318_info;
592 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_DIAG318;
593 }
594
595 return 0;
596 }
597
kvm_arch_get_registers(CPUState * cs,Error ** errp)598 int kvm_arch_get_registers(CPUState *cs, Error **errp)
599 {
600 CPUS390XState *env = cpu_env(cs);
601 struct kvm_fpu fpu;
602 int i, r;
603
604 /* get the PSW */
605 env->psw.addr = cs->kvm_run->psw_addr;
606 env->psw.mask = cs->kvm_run->psw_mask;
607
608 /* the GPRS, ACRS and CRS */
609 g_assert(can_sync_regs(cs, KVM_SYNC_REQUIRED_REGS));
610 memcpy(env->regs, cs->kvm_run->s.regs.gprs, sizeof(env->regs));
611 memcpy(env->aregs, cs->kvm_run->s.regs.acrs, sizeof(env->aregs));
612 memcpy(env->cregs, cs->kvm_run->s.regs.crs, sizeof(env->cregs));
613
614 /* The prefix */
615 env->psa = cs->kvm_run->s.regs.prefix;
616
617 /* Floating point and vector registers */
618 if (can_sync_regs(cs, KVM_SYNC_VRS)) {
619 for (i = 0; i < 32; i++) {
620 env->vregs[i][0] = cs->kvm_run->s.regs.vrs[i][0];
621 env->vregs[i][1] = cs->kvm_run->s.regs.vrs[i][1];
622 }
623 env->fpc = cs->kvm_run->s.regs.fpc;
624 } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) {
625 for (i = 0; i < 16; i++) {
626 *get_freg(env, i) = cs->kvm_run->s.regs.fprs[i];
627 }
628 env->fpc = cs->kvm_run->s.regs.fpc;
629 } else {
630 r = kvm_vcpu_ioctl(cs, KVM_GET_FPU, &fpu);
631 if (r < 0) {
632 return r;
633 }
634 for (i = 0; i < 16; i++) {
635 *get_freg(env, i) = fpu.fprs[i];
636 }
637 env->fpc = fpu.fpc;
638 }
639
640 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
641 env->cputm = cs->kvm_run->s.regs.cputm;
642 env->ckc = cs->kvm_run->s.regs.ckc;
643 env->todpr = cs->kvm_run->s.regs.todpr;
644 env->gbea = cs->kvm_run->s.regs.gbea;
645 env->pp = cs->kvm_run->s.regs.pp;
646 } else {
647 /*
648 * These ONE_REGS are not protected by a capability. As they are only
649 * necessary for migration we just trace a possible error, but don't
650 * return with an error return code.
651 */
652 kvm_get_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
653 kvm_get_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
654 kvm_get_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
655 kvm_get_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
656 kvm_get_one_reg(cs, KVM_REG_S390_PP, &env->pp);
657 }
658
659 if (can_sync_regs(cs, KVM_SYNC_RICCB)) {
660 memcpy(env->riccb, cs->kvm_run->s.regs.riccb, 64);
661 }
662
663 if (can_sync_regs(cs, KVM_SYNC_GSCB)) {
664 memcpy(env->gscb, cs->kvm_run->s.regs.gscb, 32);
665 }
666
667 if (can_sync_regs(cs, KVM_SYNC_BPBC)) {
668 env->bpbc = cs->kvm_run->s.regs.bpbc;
669 }
670
671 if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) {
672 env->etoken = cs->kvm_run->s.regs.etoken;
673 env->etoken_extension = cs->kvm_run->s.regs.etoken_extension;
674 }
675
676 /* pfault parameters */
677 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
678 env->pfault_token = cs->kvm_run->s.regs.pft;
679 env->pfault_select = cs->kvm_run->s.regs.pfs;
680 env->pfault_compare = cs->kvm_run->s.regs.pfc;
681 } else if (cap_async_pf) {
682 r = kvm_get_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
683 if (r < 0) {
684 return r;
685 }
686 r = kvm_get_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
687 if (r < 0) {
688 return r;
689 }
690 r = kvm_get_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
691 if (r < 0) {
692 return r;
693 }
694 }
695
696 if (can_sync_regs(cs, KVM_SYNC_DIAG318)) {
697 env->diag318_info = cs->kvm_run->s.regs.diag318;
698 }
699
700 return 0;
701 }
702
kvm_s390_get_clock(uint8_t * tod_high,uint64_t * tod_low)703 int kvm_s390_get_clock(uint8_t *tod_high, uint64_t *tod_low)
704 {
705 int r;
706 struct kvm_device_attr attr = {
707 .group = KVM_S390_VM_TOD,
708 .attr = KVM_S390_VM_TOD_LOW,
709 .addr = (uint64_t)tod_low,
710 };
711
712 r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
713 if (r) {
714 return r;
715 }
716
717 attr.attr = KVM_S390_VM_TOD_HIGH;
718 attr.addr = (uint64_t)tod_high;
719 return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
720 }
721
kvm_s390_get_clock_ext(uint8_t * tod_high,uint64_t * tod_low)722 int kvm_s390_get_clock_ext(uint8_t *tod_high, uint64_t *tod_low)
723 {
724 int r;
725 struct kvm_s390_vm_tod_clock gtod;
726 struct kvm_device_attr attr = {
727 .group = KVM_S390_VM_TOD,
728 .attr = KVM_S390_VM_TOD_EXT,
729 .addr = (uint64_t)>od,
730 };
731
732 r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
733 *tod_high = gtod.epoch_idx;
734 *tod_low = gtod.tod;
735
736 return r;
737 }
738
kvm_s390_set_clock(uint8_t tod_high,uint64_t tod_low)739 int kvm_s390_set_clock(uint8_t tod_high, uint64_t tod_low)
740 {
741 int r;
742 struct kvm_device_attr attr = {
743 .group = KVM_S390_VM_TOD,
744 .attr = KVM_S390_VM_TOD_LOW,
745 .addr = (uint64_t)&tod_low,
746 };
747
748 r = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
749 if (r) {
750 return r;
751 }
752
753 attr.attr = KVM_S390_VM_TOD_HIGH;
754 attr.addr = (uint64_t)&tod_high;
755 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
756 }
757
kvm_s390_set_clock_ext(uint8_t tod_high,uint64_t tod_low)758 int kvm_s390_set_clock_ext(uint8_t tod_high, uint64_t tod_low)
759 {
760 struct kvm_s390_vm_tod_clock gtod = {
761 .epoch_idx = tod_high,
762 .tod = tod_low,
763 };
764 struct kvm_device_attr attr = {
765 .group = KVM_S390_VM_TOD,
766 .attr = KVM_S390_VM_TOD_EXT,
767 .addr = (uint64_t)>od,
768 };
769
770 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
771 }
772
773 /**
774 * kvm_s390_mem_op:
775 * @addr: the logical start address in guest memory
776 * @ar: the access register number
777 * @hostbuf: buffer in host memory. NULL = do only checks w/o copying
778 * @len: length that should be transferred
779 * @is_write: true = write, false = read
780 * Returns: 0 on success, non-zero if an exception or error occurred
781 *
782 * Use KVM ioctl to read/write from/to guest memory. An access exception
783 * is injected into the vCPU in case of translation errors.
784 */
kvm_s390_mem_op(S390CPU * cpu,vaddr addr,uint8_t ar,void * hostbuf,int len,bool is_write)785 int kvm_s390_mem_op(S390CPU *cpu, vaddr addr, uint8_t ar, void *hostbuf,
786 int len, bool is_write)
787 {
788 struct kvm_s390_mem_op mem_op = {
789 .gaddr = addr,
790 .flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION,
791 .size = len,
792 .op = is_write ? KVM_S390_MEMOP_LOGICAL_WRITE
793 : KVM_S390_MEMOP_LOGICAL_READ,
794 .buf = (uint64_t)hostbuf,
795 .ar = ar,
796 .key = (cpu->env.psw.mask & PSW_MASK_KEY) >> PSW_SHIFT_KEY,
797 };
798 int ret;
799
800 if (!cap_mem_op) {
801 return -ENOSYS;
802 }
803 if (!hostbuf) {
804 mem_op.flags |= KVM_S390_MEMOP_F_CHECK_ONLY;
805 }
806 if (mem_op_storage_key_support) {
807 mem_op.flags |= KVM_S390_MEMOP_F_SKEY_PROTECTION;
808 }
809
810 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op);
811 if (ret < 0) {
812 warn_report("KVM_S390_MEM_OP failed: %s", strerror(-ret));
813 }
814 return ret;
815 }
816
kvm_s390_mem_op_pv(S390CPU * cpu,uint64_t offset,void * hostbuf,int len,bool is_write)817 int kvm_s390_mem_op_pv(S390CPU *cpu, uint64_t offset, void *hostbuf,
818 int len, bool is_write)
819 {
820 struct kvm_s390_mem_op mem_op = {
821 .sida_offset = offset,
822 .size = len,
823 .op = is_write ? KVM_S390_MEMOP_SIDA_WRITE
824 : KVM_S390_MEMOP_SIDA_READ,
825 .buf = (uint64_t)hostbuf,
826 };
827 int ret;
828
829 if (!cap_mem_op || !cap_protected) {
830 return -ENOSYS;
831 }
832
833 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op);
834 if (ret < 0) {
835 error_report("KVM_S390_MEM_OP failed: %s", strerror(-ret));
836 abort();
837 }
838 return ret;
839 }
840
841 static uint8_t const *sw_bp_inst;
842 static uint8_t sw_bp_ilen;
843
determine_sw_breakpoint_instr(void)844 static void determine_sw_breakpoint_instr(void)
845 {
846 /* DIAG 501 is used for sw breakpoints with old kernels */
847 static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01};
848 /* Instruction 0x0000 is used for sw breakpoints with recent kernels */
849 static const uint8_t instr_0x0000[] = {0x00, 0x00};
850
851 if (sw_bp_inst) {
852 return;
853 }
854 if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_USER_INSTR0, 0)) {
855 sw_bp_inst = diag_501;
856 sw_bp_ilen = sizeof(diag_501);
857 trace_kvm_sw_breakpoint(4);
858 } else {
859 sw_bp_inst = instr_0x0000;
860 sw_bp_ilen = sizeof(instr_0x0000);
861 trace_kvm_sw_breakpoint(2);
862 }
863 }
864
kvm_arch_insert_sw_breakpoint(CPUState * cs,struct kvm_sw_breakpoint * bp)865 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
866 {
867 determine_sw_breakpoint_instr();
868
869 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
870 sw_bp_ilen, 0) ||
871 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)sw_bp_inst, sw_bp_ilen, 1)) {
872 return -EINVAL;
873 }
874 return 0;
875 }
876
kvm_arch_remove_sw_breakpoint(CPUState * cs,struct kvm_sw_breakpoint * bp)877 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
878 {
879 uint8_t t[MAX_ILEN];
880
881 if (cpu_memory_rw_debug(cs, bp->pc, t, sw_bp_ilen, 0)) {
882 return -EINVAL;
883 } else if (memcmp(t, sw_bp_inst, sw_bp_ilen)) {
884 return -EINVAL;
885 } else if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
886 sw_bp_ilen, 1)) {
887 return -EINVAL;
888 }
889
890 return 0;
891 }
892
find_hw_breakpoint(target_ulong addr,int len,int type)893 static struct kvm_hw_breakpoint *find_hw_breakpoint(target_ulong addr,
894 int len, int type)
895 {
896 int n;
897
898 for (n = 0; n < nb_hw_breakpoints; n++) {
899 if (hw_breakpoints[n].addr == addr && hw_breakpoints[n].type == type &&
900 (hw_breakpoints[n].len == len || len == -1)) {
901 return &hw_breakpoints[n];
902 }
903 }
904
905 return NULL;
906 }
907
insert_hw_breakpoint(target_ulong addr,int len,int type)908 static int insert_hw_breakpoint(target_ulong addr, int len, int type)
909 {
910 int size;
911
912 if (find_hw_breakpoint(addr, len, type)) {
913 return -EEXIST;
914 }
915
916 size = (nb_hw_breakpoints + 1) * sizeof(struct kvm_hw_breakpoint);
917
918 if (!hw_breakpoints) {
919 nb_hw_breakpoints = 0;
920 hw_breakpoints = (struct kvm_hw_breakpoint *)g_try_malloc(size);
921 } else {
922 hw_breakpoints =
923 (struct kvm_hw_breakpoint *)g_try_realloc(hw_breakpoints, size);
924 }
925
926 if (!hw_breakpoints) {
927 nb_hw_breakpoints = 0;
928 return -ENOMEM;
929 }
930
931 hw_breakpoints[nb_hw_breakpoints].addr = addr;
932 hw_breakpoints[nb_hw_breakpoints].len = len;
933 hw_breakpoints[nb_hw_breakpoints].type = type;
934
935 nb_hw_breakpoints++;
936
937 return 0;
938 }
939
kvm_arch_insert_hw_breakpoint(vaddr addr,vaddr len,int type)940 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
941 {
942 switch (type) {
943 case GDB_BREAKPOINT_HW:
944 type = KVM_HW_BP;
945 break;
946 case GDB_WATCHPOINT_WRITE:
947 if (len < 1) {
948 return -EINVAL;
949 }
950 type = KVM_HW_WP_WRITE;
951 break;
952 default:
953 return -ENOSYS;
954 }
955 return insert_hw_breakpoint(addr, len, type);
956 }
957
kvm_arch_remove_hw_breakpoint(vaddr addr,vaddr len,int type)958 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
959 {
960 int size;
961 struct kvm_hw_breakpoint *bp = find_hw_breakpoint(addr, len, type);
962
963 if (bp == NULL) {
964 return -ENOENT;
965 }
966
967 nb_hw_breakpoints--;
968 if (nb_hw_breakpoints > 0) {
969 /*
970 * In order to trim the array, move the last element to the position to
971 * be removed - if necessary.
972 */
973 if (bp != &hw_breakpoints[nb_hw_breakpoints]) {
974 *bp = hw_breakpoints[nb_hw_breakpoints];
975 }
976 size = nb_hw_breakpoints * sizeof(struct kvm_hw_breakpoint);
977 hw_breakpoints =
978 g_realloc(hw_breakpoints, size);
979 } else {
980 g_free(hw_breakpoints);
981 hw_breakpoints = NULL;
982 }
983
984 return 0;
985 }
986
kvm_arch_remove_all_hw_breakpoints(void)987 void kvm_arch_remove_all_hw_breakpoints(void)
988 {
989 nb_hw_breakpoints = 0;
990 g_free(hw_breakpoints);
991 hw_breakpoints = NULL;
992 }
993
kvm_arch_update_guest_debug(CPUState * cpu,struct kvm_guest_debug * dbg)994 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
995 {
996 int i;
997
998 if (nb_hw_breakpoints > 0) {
999 dbg->arch.nr_hw_bp = nb_hw_breakpoints;
1000 dbg->arch.hw_bp = hw_breakpoints;
1001
1002 for (i = 0; i < nb_hw_breakpoints; ++i) {
1003 hw_breakpoints[i].phys_addr = s390_cpu_get_phys_addr_debug(cpu,
1004 hw_breakpoints[i].addr);
1005 }
1006 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1007 } else {
1008 dbg->arch.nr_hw_bp = 0;
1009 dbg->arch.hw_bp = NULL;
1010 }
1011 }
1012
kvm_arch_pre_run(CPUState * cpu,struct kvm_run * run)1013 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
1014 {
1015 }
1016
kvm_arch_post_run(CPUState * cs,struct kvm_run * run)1017 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
1018 {
1019 return MEMTXATTRS_UNSPECIFIED;
1020 }
1021
kvm_arch_process_async_events(CPUState * cs)1022 int kvm_arch_process_async_events(CPUState *cs)
1023 {
1024 return cs->halted;
1025 }
1026
s390_kvm_irq_to_interrupt(struct kvm_s390_irq * irq,struct kvm_s390_interrupt * interrupt)1027 static int s390_kvm_irq_to_interrupt(struct kvm_s390_irq *irq,
1028 struct kvm_s390_interrupt *interrupt)
1029 {
1030 int r = 0;
1031
1032 interrupt->type = irq->type;
1033 switch (irq->type) {
1034 case KVM_S390_INT_VIRTIO:
1035 interrupt->parm = irq->u.ext.ext_params;
1036 /* fall through */
1037 case KVM_S390_INT_PFAULT_INIT:
1038 case KVM_S390_INT_PFAULT_DONE:
1039 interrupt->parm64 = irq->u.ext.ext_params2;
1040 break;
1041 case KVM_S390_PROGRAM_INT:
1042 interrupt->parm = irq->u.pgm.code;
1043 break;
1044 case KVM_S390_SIGP_SET_PREFIX:
1045 interrupt->parm = irq->u.prefix.address;
1046 break;
1047 case KVM_S390_INT_SERVICE:
1048 interrupt->parm = irq->u.ext.ext_params;
1049 break;
1050 case KVM_S390_MCHK:
1051 interrupt->parm = irq->u.mchk.cr14;
1052 interrupt->parm64 = irq->u.mchk.mcic;
1053 break;
1054 case KVM_S390_INT_EXTERNAL_CALL:
1055 interrupt->parm = irq->u.extcall.code;
1056 break;
1057 case KVM_S390_INT_EMERGENCY:
1058 interrupt->parm = irq->u.emerg.code;
1059 break;
1060 case KVM_S390_SIGP_STOP:
1061 case KVM_S390_RESTART:
1062 break; /* These types have no parameters */
1063 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1064 interrupt->parm = irq->u.io.subchannel_id << 16;
1065 interrupt->parm |= irq->u.io.subchannel_nr;
1066 interrupt->parm64 = (uint64_t)irq->u.io.io_int_parm << 32;
1067 interrupt->parm64 |= irq->u.io.io_int_word;
1068 break;
1069 default:
1070 r = -EINVAL;
1071 break;
1072 }
1073 return r;
1074 }
1075
inject_vcpu_irq_legacy(CPUState * cs,struct kvm_s390_irq * irq)1076 static void inject_vcpu_irq_legacy(CPUState *cs, struct kvm_s390_irq *irq)
1077 {
1078 struct kvm_s390_interrupt kvmint = {};
1079 int r;
1080
1081 r = s390_kvm_irq_to_interrupt(irq, &kvmint);
1082 if (r < 0) {
1083 fprintf(stderr, "%s called with bogus interrupt\n", __func__);
1084 exit(1);
1085 }
1086
1087 r = kvm_vcpu_ioctl(cs, KVM_S390_INTERRUPT, &kvmint);
1088 if (r < 0) {
1089 fprintf(stderr, "KVM failed to inject interrupt\n");
1090 exit(1);
1091 }
1092 }
1093
kvm_s390_vcpu_interrupt(S390CPU * cpu,struct kvm_s390_irq * irq)1094 void kvm_s390_vcpu_interrupt(S390CPU *cpu, struct kvm_s390_irq *irq)
1095 {
1096 CPUState *cs = CPU(cpu);
1097 int r;
1098
1099 if (cap_s390_irq) {
1100 r = kvm_vcpu_ioctl(cs, KVM_S390_IRQ, irq);
1101 if (!r) {
1102 return;
1103 }
1104 error_report("KVM failed to inject interrupt %llx", irq->type);
1105 exit(1);
1106 }
1107
1108 inject_vcpu_irq_legacy(cs, irq);
1109 }
1110
kvm_s390_floating_interrupt_legacy(struct kvm_s390_irq * irq)1111 void kvm_s390_floating_interrupt_legacy(struct kvm_s390_irq *irq)
1112 {
1113 struct kvm_s390_interrupt kvmint = {};
1114 int r;
1115
1116 r = s390_kvm_irq_to_interrupt(irq, &kvmint);
1117 if (r < 0) {
1118 fprintf(stderr, "%s called with bogus interrupt\n", __func__);
1119 exit(1);
1120 }
1121
1122 r = kvm_vm_ioctl(kvm_state, KVM_S390_INTERRUPT, &kvmint);
1123 if (r < 0) {
1124 fprintf(stderr, "KVM failed to inject interrupt\n");
1125 exit(1);
1126 }
1127 }
1128
kvm_s390_program_interrupt(S390CPU * cpu,uint16_t code)1129 void kvm_s390_program_interrupt(S390CPU *cpu, uint16_t code)
1130 {
1131 struct kvm_s390_irq irq = {
1132 .type = KVM_S390_PROGRAM_INT,
1133 .u.pgm.code = code,
1134 };
1135 qemu_log_mask(CPU_LOG_INT, "program interrupt at %#" PRIx64 "\n",
1136 cpu->env.psw.addr);
1137 kvm_s390_vcpu_interrupt(cpu, &irq);
1138 }
1139
kvm_s390_access_exception(S390CPU * cpu,uint16_t code,uint64_t te_code)1140 void kvm_s390_access_exception(S390CPU *cpu, uint16_t code, uint64_t te_code)
1141 {
1142 struct kvm_s390_irq irq = {
1143 .type = KVM_S390_PROGRAM_INT,
1144 .u.pgm.code = code,
1145 .u.pgm.trans_exc_code = te_code,
1146 .u.pgm.exc_access_id = te_code & 3,
1147 };
1148
1149 kvm_s390_vcpu_interrupt(cpu, &irq);
1150 }
1151
kvm_sclp_service_call(S390CPU * cpu,struct kvm_run * run,uint16_t ipbh0)1152 static void kvm_sclp_service_call(S390CPU *cpu, struct kvm_run *run,
1153 uint16_t ipbh0)
1154 {
1155 CPUS390XState *env = &cpu->env;
1156 uint64_t sccb;
1157 uint32_t code;
1158 int r;
1159
1160 sccb = env->regs[ipbh0 & 0xf];
1161 code = env->regs[(ipbh0 & 0xf0) >> 4];
1162
1163 switch (run->s390_sieic.icptcode) {
1164 case ICPT_PV_INSTR_NOTIFICATION:
1165 g_assert(s390_is_pv());
1166 /* The notification intercepts are currently handled by KVM */
1167 error_report("unexpected SCLP PV notification");
1168 exit(1);
1169 break;
1170 case ICPT_PV_INSTR:
1171 g_assert(s390_is_pv());
1172 sclp_service_call_protected(cpu, sccb, code);
1173 /* Setting the CC is done by the Ultravisor. */
1174 break;
1175 case ICPT_INSTRUCTION:
1176 g_assert(!s390_is_pv());
1177 r = sclp_service_call(cpu, sccb, code);
1178 if (r < 0) {
1179 kvm_s390_program_interrupt(cpu, -r);
1180 return;
1181 }
1182 setcc(cpu, r);
1183 }
1184 }
1185
handle_b2(S390CPU * cpu,struct kvm_run * run,uint8_t ipa1)1186 static int handle_b2(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1187 {
1188 CPUS390XState *env = &cpu->env;
1189 int rc = 0;
1190 uint16_t ipbh0 = (run->s390_sieic.ipb & 0xffff0000) >> 16;
1191
1192 switch (ipa1) {
1193 case PRIV_B2_XSCH:
1194 ioinst_handle_xsch(cpu, env->regs[1], RA_IGNORED);
1195 break;
1196 case PRIV_B2_CSCH:
1197 ioinst_handle_csch(cpu, env->regs[1], RA_IGNORED);
1198 break;
1199 case PRIV_B2_HSCH:
1200 ioinst_handle_hsch(cpu, env->regs[1], RA_IGNORED);
1201 break;
1202 case PRIV_B2_MSCH:
1203 ioinst_handle_msch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
1204 break;
1205 case PRIV_B2_SSCH:
1206 ioinst_handle_ssch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
1207 break;
1208 case PRIV_B2_STCRW:
1209 ioinst_handle_stcrw(cpu, run->s390_sieic.ipb, RA_IGNORED);
1210 break;
1211 case PRIV_B2_STSCH:
1212 ioinst_handle_stsch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
1213 break;
1214 case PRIV_B2_TSCH:
1215 /* We should only get tsch via KVM_EXIT_S390_TSCH. */
1216 fprintf(stderr, "Spurious tsch intercept\n");
1217 break;
1218 case PRIV_B2_CHSC:
1219 ioinst_handle_chsc(cpu, run->s390_sieic.ipb, RA_IGNORED);
1220 break;
1221 case PRIV_B2_TPI:
1222 /* This should have been handled by kvm already. */
1223 fprintf(stderr, "Spurious tpi intercept\n");
1224 break;
1225 case PRIV_B2_SCHM:
1226 ioinst_handle_schm(cpu, env->regs[1], env->regs[2],
1227 run->s390_sieic.ipb, RA_IGNORED);
1228 break;
1229 case PRIV_B2_RSCH:
1230 ioinst_handle_rsch(cpu, env->regs[1], RA_IGNORED);
1231 break;
1232 case PRIV_B2_RCHP:
1233 ioinst_handle_rchp(cpu, env->regs[1], RA_IGNORED);
1234 break;
1235 case PRIV_B2_STCPS:
1236 /* We do not provide this instruction, it is suppressed. */
1237 break;
1238 case PRIV_B2_SAL:
1239 ioinst_handle_sal(cpu, env->regs[1], RA_IGNORED);
1240 break;
1241 case PRIV_B2_SIGA:
1242 /* Not provided, set CC = 3 for subchannel not operational */
1243 setcc(cpu, 3);
1244 break;
1245 case PRIV_B2_SCLP_CALL:
1246 kvm_sclp_service_call(cpu, run, ipbh0);
1247 break;
1248 default:
1249 rc = -1;
1250 trace_kvm_insn_unhandled_priv(ipa1);
1251 break;
1252 }
1253
1254 return rc;
1255 }
1256
get_base_disp_rxy(S390CPU * cpu,struct kvm_run * run,uint8_t * ar)1257 static uint64_t get_base_disp_rxy(S390CPU *cpu, struct kvm_run *run,
1258 uint8_t *ar)
1259 {
1260 CPUS390XState *env = &cpu->env;
1261 uint32_t x2 = (run->s390_sieic.ipa & 0x000f);
1262 uint32_t base2 = run->s390_sieic.ipb >> 28;
1263 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
1264 ((run->s390_sieic.ipb & 0xff00) << 4);
1265
1266 if (disp2 & 0x80000) {
1267 disp2 += 0xfff00000;
1268 }
1269 if (ar) {
1270 *ar = base2;
1271 }
1272
1273 return (base2 ? env->regs[base2] : 0) +
1274 (x2 ? env->regs[x2] : 0) + (long)(int)disp2;
1275 }
1276
get_base_disp_rsy(S390CPU * cpu,struct kvm_run * run,uint8_t * ar)1277 static uint64_t get_base_disp_rsy(S390CPU *cpu, struct kvm_run *run,
1278 uint8_t *ar)
1279 {
1280 CPUS390XState *env = &cpu->env;
1281 uint32_t base2 = run->s390_sieic.ipb >> 28;
1282 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
1283 ((run->s390_sieic.ipb & 0xff00) << 4);
1284
1285 if (disp2 & 0x80000) {
1286 disp2 += 0xfff00000;
1287 }
1288 if (ar) {
1289 *ar = base2;
1290 }
1291
1292 return (base2 ? env->regs[base2] : 0) + (long)(int)disp2;
1293 }
1294
kvm_clp_service_call(S390CPU * cpu,struct kvm_run * run)1295 static int kvm_clp_service_call(S390CPU *cpu, struct kvm_run *run)
1296 {
1297 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1298
1299 if (s390_has_feat(S390_FEAT_ZPCI)) {
1300 return clp_service_call(cpu, r2, RA_IGNORED);
1301 } else {
1302 return -1;
1303 }
1304 }
1305
kvm_pcilg_service_call(S390CPU * cpu,struct kvm_run * run)1306 static int kvm_pcilg_service_call(S390CPU *cpu, struct kvm_run *run)
1307 {
1308 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1309 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1310
1311 if (s390_has_feat(S390_FEAT_ZPCI)) {
1312 return pcilg_service_call(cpu, r1, r2, RA_IGNORED);
1313 } else {
1314 return -1;
1315 }
1316 }
1317
kvm_pcistg_service_call(S390CPU * cpu,struct kvm_run * run)1318 static int kvm_pcistg_service_call(S390CPU *cpu, struct kvm_run *run)
1319 {
1320 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1321 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1322
1323 if (s390_has_feat(S390_FEAT_ZPCI)) {
1324 return pcistg_service_call(cpu, r1, r2, RA_IGNORED);
1325 } else {
1326 return -1;
1327 }
1328 }
1329
kvm_stpcifc_service_call(S390CPU * cpu,struct kvm_run * run)1330 static int kvm_stpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
1331 {
1332 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1333 uint64_t fiba;
1334 uint8_t ar;
1335
1336 if (s390_has_feat(S390_FEAT_ZPCI)) {
1337 fiba = get_base_disp_rxy(cpu, run, &ar);
1338
1339 return stpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED);
1340 } else {
1341 return -1;
1342 }
1343 }
1344
kvm_sic_service_call(S390CPU * cpu,struct kvm_run * run)1345 static int kvm_sic_service_call(S390CPU *cpu, struct kvm_run *run)
1346 {
1347 CPUS390XState *env = &cpu->env;
1348 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1349 uint8_t r3 = run->s390_sieic.ipa & 0x000f;
1350 uint8_t isc;
1351 uint16_t mode;
1352 int r;
1353
1354 mode = env->regs[r1] & 0xffff;
1355 isc = (env->regs[r3] >> 27) & 0x7;
1356 r = css_do_sic(cpu, isc, mode);
1357 if (r) {
1358 kvm_s390_program_interrupt(cpu, -r);
1359 }
1360
1361 return 0;
1362 }
1363
kvm_rpcit_service_call(S390CPU * cpu,struct kvm_run * run)1364 static int kvm_rpcit_service_call(S390CPU *cpu, struct kvm_run *run)
1365 {
1366 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1367 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1368
1369 if (s390_has_feat(S390_FEAT_ZPCI)) {
1370 return rpcit_service_call(cpu, r1, r2, RA_IGNORED);
1371 } else {
1372 return -1;
1373 }
1374 }
1375
kvm_pcistb_service_call(S390CPU * cpu,struct kvm_run * run)1376 static int kvm_pcistb_service_call(S390CPU *cpu, struct kvm_run *run)
1377 {
1378 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1379 uint8_t r3 = run->s390_sieic.ipa & 0x000f;
1380 uint64_t gaddr;
1381 uint8_t ar;
1382
1383 if (s390_has_feat(S390_FEAT_ZPCI)) {
1384 gaddr = get_base_disp_rsy(cpu, run, &ar);
1385
1386 return pcistb_service_call(cpu, r1, r3, gaddr, ar, RA_IGNORED);
1387 } else {
1388 return -1;
1389 }
1390 }
1391
kvm_mpcifc_service_call(S390CPU * cpu,struct kvm_run * run)1392 static int kvm_mpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
1393 {
1394 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1395 uint64_t fiba;
1396 uint8_t ar;
1397
1398 if (s390_has_feat(S390_FEAT_ZPCI)) {
1399 fiba = get_base_disp_rxy(cpu, run, &ar);
1400
1401 return mpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED);
1402 } else {
1403 return -1;
1404 }
1405 }
1406
kvm_handle_ptf(S390CPU * cpu,struct kvm_run * run)1407 static void kvm_handle_ptf(S390CPU *cpu, struct kvm_run *run)
1408 {
1409 uint8_t r1 = (run->s390_sieic.ipb >> 20) & 0x0f;
1410
1411 s390_handle_ptf(cpu, r1, RA_IGNORED);
1412 }
1413
handle_b9(S390CPU * cpu,struct kvm_run * run,uint8_t ipa1)1414 static int handle_b9(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1415 {
1416 int r = 0;
1417
1418 switch (ipa1) {
1419 case PRIV_B9_CLP:
1420 r = kvm_clp_service_call(cpu, run);
1421 break;
1422 case PRIV_B9_PCISTG:
1423 r = kvm_pcistg_service_call(cpu, run);
1424 break;
1425 case PRIV_B9_PCILG:
1426 r = kvm_pcilg_service_call(cpu, run);
1427 break;
1428 case PRIV_B9_RPCIT:
1429 r = kvm_rpcit_service_call(cpu, run);
1430 break;
1431 case PRIV_B9_PTF:
1432 kvm_handle_ptf(cpu, run);
1433 break;
1434 case PRIV_B9_EQBS:
1435 /* just inject exception */
1436 r = -1;
1437 break;
1438 default:
1439 r = -1;
1440 trace_kvm_insn_unhandled_priv(ipa1);
1441 break;
1442 }
1443
1444 return r;
1445 }
1446
handle_eb(S390CPU * cpu,struct kvm_run * run,uint8_t ipbl)1447 static int handle_eb(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
1448 {
1449 int r = 0;
1450
1451 switch (ipbl) {
1452 case PRIV_EB_PCISTB:
1453 r = kvm_pcistb_service_call(cpu, run);
1454 break;
1455 case PRIV_EB_SIC:
1456 r = kvm_sic_service_call(cpu, run);
1457 break;
1458 case PRIV_EB_SQBS:
1459 /* just inject exception */
1460 r = -1;
1461 break;
1462 default:
1463 r = -1;
1464 trace_kvm_insn_unhandled_priv(ipbl);
1465 break;
1466 }
1467
1468 return r;
1469 }
1470
handle_e3(S390CPU * cpu,struct kvm_run * run,uint8_t ipbl)1471 static int handle_e3(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
1472 {
1473 int r = 0;
1474
1475 switch (ipbl) {
1476 case PRIV_E3_MPCIFC:
1477 r = kvm_mpcifc_service_call(cpu, run);
1478 break;
1479 case PRIV_E3_STPCIFC:
1480 r = kvm_stpcifc_service_call(cpu, run);
1481 break;
1482 default:
1483 r = -1;
1484 trace_kvm_insn_unhandled_priv(ipbl);
1485 break;
1486 }
1487
1488 return r;
1489 }
1490
kvm_handle_diag_288(S390CPU * cpu,struct kvm_run * run)1491 static void kvm_handle_diag_288(S390CPU *cpu, struct kvm_run *run)
1492 {
1493 uint64_t r1, r3;
1494 int rc;
1495
1496 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1497 r3 = run->s390_sieic.ipa & 0x000f;
1498 rc = handle_diag_288(&cpu->env, r1, r3);
1499 if (rc) {
1500 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1501 }
1502 }
1503
kvm_handle_diag_308(S390CPU * cpu,struct kvm_run * run)1504 static void kvm_handle_diag_308(S390CPU *cpu, struct kvm_run *run)
1505 {
1506 uint64_t r1, r3;
1507
1508 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1509 r3 = run->s390_sieic.ipa & 0x000f;
1510 handle_diag_308(&cpu->env, r1, r3, RA_IGNORED);
1511 }
1512
handle_sw_breakpoint(S390CPU * cpu,struct kvm_run * run)1513 static int handle_sw_breakpoint(S390CPU *cpu, struct kvm_run *run)
1514 {
1515 CPUS390XState *env = &cpu->env;
1516 unsigned long pc;
1517
1518 pc = env->psw.addr - sw_bp_ilen;
1519 if (kvm_find_sw_breakpoint(CPU(cpu), pc)) {
1520 env->psw.addr = pc;
1521 return EXCP_DEBUG;
1522 }
1523
1524 return -ENOENT;
1525 }
1526
kvm_s390_set_diag318(CPUState * cs,uint64_t diag318_info)1527 void kvm_s390_set_diag318(CPUState *cs, uint64_t diag318_info)
1528 {
1529 CPUS390XState *env = &S390_CPU(cs)->env;
1530
1531 /* Feat bit is set only if KVM supports sync for diag318 */
1532 if (s390_has_feat(S390_FEAT_DIAG_318)) {
1533 env->diag318_info = diag318_info;
1534 cs->kvm_run->s.regs.diag318 = diag318_info;
1535 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_DIAG318;
1536 /*
1537 * diag 318 info is zeroed during a clear reset and
1538 * diag 308 IPL subcodes.
1539 */
1540 }
1541 }
1542
handle_diag_318(S390CPU * cpu,struct kvm_run * run)1543 static void handle_diag_318(S390CPU *cpu, struct kvm_run *run)
1544 {
1545 uint64_t reg = (run->s390_sieic.ipa & 0x00f0) >> 4;
1546 uint64_t diag318_info = run->s.regs.gprs[reg];
1547 CPUState *t;
1548
1549 /*
1550 * DIAG 318 can only be enabled with KVM support. As such, let's
1551 * ensure a guest cannot execute this instruction erroneously.
1552 */
1553 if (!s390_has_feat(S390_FEAT_DIAG_318)) {
1554 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1555 return;
1556 }
1557
1558 CPU_FOREACH(t) {
1559 run_on_cpu(t, s390_do_cpu_set_diag318,
1560 RUN_ON_CPU_HOST_ULONG(diag318_info));
1561 }
1562 }
1563
1564 #define DIAG_KVM_CODE_MASK 0x000000000000ffff
1565
handle_diag(S390CPU * cpu,struct kvm_run * run,uint32_t ipb)1566 static int handle_diag(S390CPU *cpu, struct kvm_run *run, uint32_t ipb)
1567 {
1568 int r = 0;
1569 uint16_t func_code;
1570
1571 /*
1572 * For any diagnose call we support, bits 48-63 of the resulting
1573 * address specify the function code; the remainder is ignored.
1574 */
1575 func_code = decode_basedisp_rs(&cpu->env, ipb, NULL) & DIAG_KVM_CODE_MASK;
1576 switch (func_code) {
1577 case DIAG_TIMEREVENT:
1578 kvm_handle_diag_288(cpu, run);
1579 break;
1580 case DIAG_IPL:
1581 kvm_handle_diag_308(cpu, run);
1582 break;
1583 case DIAG_SET_CONTROL_PROGRAM_CODES:
1584 handle_diag_318(cpu, run);
1585 break;
1586 #ifdef CONFIG_S390_CCW_VIRTIO
1587 case DIAG_KVM_HYPERCALL:
1588 handle_diag_500(cpu, RA_IGNORED);
1589 break;
1590 #endif /* CONFIG_S390_CCW_VIRTIO */
1591 case DIAG_KVM_BREAKPOINT:
1592 r = handle_sw_breakpoint(cpu, run);
1593 break;
1594 default:
1595 trace_kvm_insn_diag(func_code);
1596 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1597 break;
1598 }
1599
1600 return r;
1601 }
1602
kvm_s390_handle_sigp(S390CPU * cpu,uint8_t ipa1,uint32_t ipb)1603 static int kvm_s390_handle_sigp(S390CPU *cpu, uint8_t ipa1, uint32_t ipb)
1604 {
1605 CPUS390XState *env = &cpu->env;
1606 const uint8_t r1 = ipa1 >> 4;
1607 const uint8_t r3 = ipa1 & 0x0f;
1608 int ret;
1609 uint8_t order;
1610
1611 /* get order code */
1612 order = decode_basedisp_rs(env, ipb, NULL) & SIGP_ORDER_MASK;
1613
1614 ret = handle_sigp(env, order, r1, r3);
1615 setcc(cpu, ret);
1616 return 0;
1617 }
1618
handle_instruction(S390CPU * cpu,struct kvm_run * run)1619 static int handle_instruction(S390CPU *cpu, struct kvm_run *run)
1620 {
1621 unsigned int ipa0 = (run->s390_sieic.ipa & 0xff00);
1622 uint8_t ipa1 = run->s390_sieic.ipa & 0x00ff;
1623 int r = -1;
1624
1625 trace_kvm_insn(run->s390_sieic.ipa, run->s390_sieic.ipb);
1626 switch (ipa0) {
1627 case IPA0_B2:
1628 r = handle_b2(cpu, run, ipa1);
1629 break;
1630 case IPA0_B9:
1631 r = handle_b9(cpu, run, ipa1);
1632 break;
1633 case IPA0_EB:
1634 r = handle_eb(cpu, run, run->s390_sieic.ipb & 0xff);
1635 break;
1636 case IPA0_E3:
1637 r = handle_e3(cpu, run, run->s390_sieic.ipb & 0xff);
1638 break;
1639 case IPA0_DIAG:
1640 r = handle_diag(cpu, run, run->s390_sieic.ipb);
1641 break;
1642 case IPA0_SIGP:
1643 r = kvm_s390_handle_sigp(cpu, ipa1, run->s390_sieic.ipb);
1644 break;
1645 }
1646
1647 if (r < 0) {
1648 r = 0;
1649 kvm_s390_program_interrupt(cpu, PGM_OPERATION);
1650 }
1651
1652 return r;
1653 }
1654
unmanageable_intercept(S390CPU * cpu,S390CrashReason reason,int pswoffset)1655 static void unmanageable_intercept(S390CPU *cpu, S390CrashReason reason,
1656 int pswoffset)
1657 {
1658 CPUState *cs = CPU(cpu);
1659
1660 s390_cpu_halt(cpu);
1661 cpu->env.crash_reason = reason;
1662 qemu_system_guest_panicked(cpu_get_crash_info(cs));
1663 }
1664
1665 /* try to detect pgm check loops */
handle_oper_loop(S390CPU * cpu,struct kvm_run * run)1666 static int handle_oper_loop(S390CPU *cpu, struct kvm_run *run)
1667 {
1668 CPUState *cs = CPU(cpu);
1669 PSW oldpsw, newpsw;
1670
1671 newpsw.mask = ldq_phys(cs->as, cpu->env.psa +
1672 offsetof(LowCore, program_new_psw));
1673 newpsw.addr = ldq_phys(cs->as, cpu->env.psa +
1674 offsetof(LowCore, program_new_psw) + 8);
1675 oldpsw.mask = run->psw_mask;
1676 oldpsw.addr = run->psw_addr;
1677 /*
1678 * Avoid endless loops of operation exceptions, if the pgm new
1679 * PSW will cause a new operation exception.
1680 * The heuristic checks if the pgm new psw is within 6 bytes before
1681 * the faulting psw address (with same DAT, AS settings) and the
1682 * new psw is not a wait psw and the fault was not triggered by
1683 * problem state. In that case go into crashed state.
1684 */
1685
1686 if (oldpsw.addr - newpsw.addr <= 6 &&
1687 !(newpsw.mask & PSW_MASK_WAIT) &&
1688 !(oldpsw.mask & PSW_MASK_PSTATE) &&
1689 (newpsw.mask & PSW_MASK_ASC) == (oldpsw.mask & PSW_MASK_ASC) &&
1690 (newpsw.mask & PSW_MASK_DAT) == (oldpsw.mask & PSW_MASK_DAT)) {
1691 unmanageable_intercept(cpu, S390_CRASH_REASON_OPINT_LOOP,
1692 offsetof(LowCore, program_new_psw));
1693 return EXCP_HALTED;
1694 }
1695 return 0;
1696 }
1697
handle_intercept(S390CPU * cpu)1698 static int handle_intercept(S390CPU *cpu)
1699 {
1700 CPUState *cs = CPU(cpu);
1701 struct kvm_run *run = cs->kvm_run;
1702 int icpt_code = run->s390_sieic.icptcode;
1703 int r = 0;
1704
1705 trace_kvm_intercept(icpt_code, (long)run->psw_addr);
1706 switch (icpt_code) {
1707 case ICPT_INSTRUCTION:
1708 case ICPT_PV_INSTR:
1709 case ICPT_PV_INSTR_NOTIFICATION:
1710 r = handle_instruction(cpu, run);
1711 break;
1712 case ICPT_PROGRAM:
1713 unmanageable_intercept(cpu, S390_CRASH_REASON_PGMINT_LOOP,
1714 offsetof(LowCore, program_new_psw));
1715 r = EXCP_HALTED;
1716 break;
1717 case ICPT_EXT_INT:
1718 unmanageable_intercept(cpu, S390_CRASH_REASON_EXTINT_LOOP,
1719 offsetof(LowCore, external_new_psw));
1720 r = EXCP_HALTED;
1721 break;
1722 case ICPT_WAITPSW:
1723 /* disabled wait, since enabled wait is handled in kernel */
1724 s390_handle_wait(cpu);
1725 r = EXCP_HALTED;
1726 break;
1727 case ICPT_CPU_STOP:
1728 do_stop_interrupt(&cpu->env);
1729 r = EXCP_HALTED;
1730 break;
1731 case ICPT_OPEREXC:
1732 /* check for break points */
1733 r = handle_sw_breakpoint(cpu, run);
1734 if (r == -ENOENT) {
1735 /* Then check for potential pgm check loops */
1736 r = handle_oper_loop(cpu, run);
1737 if (r == 0) {
1738 kvm_s390_program_interrupt(cpu, PGM_OPERATION);
1739 }
1740 }
1741 break;
1742 case ICPT_SOFT_INTERCEPT:
1743 fprintf(stderr, "KVM unimplemented icpt SOFT\n");
1744 exit(1);
1745 break;
1746 case ICPT_IO:
1747 fprintf(stderr, "KVM unimplemented icpt IO\n");
1748 exit(1);
1749 break;
1750 default:
1751 fprintf(stderr, "Unknown intercept code: %d\n", icpt_code);
1752 exit(1);
1753 break;
1754 }
1755
1756 return r;
1757 }
1758
handle_tsch(S390CPU * cpu)1759 static int handle_tsch(S390CPU *cpu)
1760 {
1761 CPUState *cs = CPU(cpu);
1762 struct kvm_run *run = cs->kvm_run;
1763 int ret;
1764
1765 ret = ioinst_handle_tsch(cpu, cpu->env.regs[1], run->s390_tsch.ipb,
1766 RA_IGNORED);
1767 if (ret < 0) {
1768 /*
1769 * Failure.
1770 * If an I/O interrupt had been dequeued, we have to reinject it.
1771 */
1772 if (run->s390_tsch.dequeued) {
1773 s390_io_interrupt(run->s390_tsch.subchannel_id,
1774 run->s390_tsch.subchannel_nr,
1775 run->s390_tsch.io_int_parm,
1776 run->s390_tsch.io_int_word);
1777 }
1778 ret = 0;
1779 }
1780 return ret;
1781 }
1782
insert_stsi_3_2_2(S390CPU * cpu,__u64 addr,uint8_t ar)1783 static void insert_stsi_3_2_2(S390CPU *cpu, __u64 addr, uint8_t ar)
1784 {
1785 const MachineState *ms = MACHINE(qdev_get_machine());
1786 uint16_t conf_cpus = 0, reserved_cpus = 0;
1787 SysIB_322 sysib;
1788 int del, i;
1789
1790 if (s390_is_pv()) {
1791 s390_cpu_pv_mem_read(cpu, 0, &sysib, sizeof(sysib));
1792 } else if (s390_cpu_virt_mem_read(cpu, addr, ar, &sysib, sizeof(sysib))) {
1793 return;
1794 }
1795 /* Shift the stack of Extended Names to prepare for our own data */
1796 memmove(&sysib.ext_names[1], &sysib.ext_names[0],
1797 sizeof(sysib.ext_names[0]) * (sysib.count - 1));
1798 /* First virt level, that doesn't provide Ext Names delimits stack. It is
1799 * assumed it's not capable of managing Extended Names for lower levels.
1800 */
1801 for (del = 1; del < sysib.count; del++) {
1802 if (!sysib.vm[del].ext_name_encoding || !sysib.ext_names[del][0]) {
1803 break;
1804 }
1805 }
1806 if (del < sysib.count) {
1807 memset(sysib.ext_names[del], 0,
1808 sizeof(sysib.ext_names[0]) * (sysib.count - del));
1809 }
1810
1811 /* count the cpus and split them into configured and reserved ones */
1812 for (i = 0; i < ms->possible_cpus->len; i++) {
1813 if (ms->possible_cpus->cpus[i].cpu) {
1814 conf_cpus++;
1815 } else {
1816 reserved_cpus++;
1817 }
1818 }
1819 sysib.vm[0].total_cpus = conf_cpus + reserved_cpus;
1820 sysib.vm[0].conf_cpus = conf_cpus;
1821 sysib.vm[0].reserved_cpus = reserved_cpus;
1822
1823 /* Insert short machine name in EBCDIC, padded with blanks */
1824 if (qemu_name) {
1825 memset(sysib.vm[0].name, 0x40, sizeof(sysib.vm[0].name));
1826 ebcdic_put(sysib.vm[0].name, qemu_name, MIN(sizeof(sysib.vm[0].name),
1827 strlen(qemu_name)));
1828 }
1829 sysib.vm[0].ext_name_encoding = 2; /* 2 = UTF-8 */
1830 /* If hypervisor specifies zero Extended Name in STSI322 SYSIB, it's
1831 * considered by s390 as not capable of providing any Extended Name.
1832 * Therefore if no name was specified on qemu invocation, we go with the
1833 * same "KVMguest" default, which KVM has filled into short name field.
1834 */
1835 strpadcpy((char *)sysib.ext_names[0],
1836 sizeof(sysib.ext_names[0]),
1837 qemu_name ?: "KVMguest", '\0');
1838
1839 /* Insert UUID */
1840 memcpy(sysib.vm[0].uuid, &qemu_uuid, sizeof(sysib.vm[0].uuid));
1841
1842 if (s390_is_pv()) {
1843 s390_cpu_pv_mem_write(cpu, 0, &sysib, sizeof(sysib));
1844 } else {
1845 s390_cpu_virt_mem_write(cpu, addr, ar, &sysib, sizeof(sysib));
1846 }
1847 }
1848
handle_stsi(S390CPU * cpu)1849 static int handle_stsi(S390CPU *cpu)
1850 {
1851 CPUState *cs = CPU(cpu);
1852 struct kvm_run *run = cs->kvm_run;
1853
1854 switch (run->s390_stsi.fc) {
1855 case 3:
1856 if (run->s390_stsi.sel1 != 2 || run->s390_stsi.sel2 != 2) {
1857 return 0;
1858 }
1859 insert_stsi_3_2_2(cpu, run->s390_stsi.addr, run->s390_stsi.ar);
1860 return 0;
1861 case 15:
1862 insert_stsi_15_1_x(cpu, run->s390_stsi.sel2, run->s390_stsi.addr,
1863 run->s390_stsi.ar, RA_IGNORED);
1864 return 0;
1865 default:
1866 return 0;
1867 }
1868 }
1869
kvm_arch_handle_debug_exit(S390CPU * cpu)1870 static int kvm_arch_handle_debug_exit(S390CPU *cpu)
1871 {
1872 CPUState *cs = CPU(cpu);
1873 struct kvm_run *run = cs->kvm_run;
1874
1875 int ret = 0;
1876 struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
1877
1878 switch (arch_info->type) {
1879 case KVM_HW_WP_WRITE:
1880 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
1881 cs->watchpoint_hit = &hw_watchpoint;
1882 hw_watchpoint.vaddr = arch_info->addr;
1883 hw_watchpoint.flags = BP_MEM_WRITE;
1884 ret = EXCP_DEBUG;
1885 }
1886 break;
1887 case KVM_HW_BP:
1888 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
1889 ret = EXCP_DEBUG;
1890 }
1891 break;
1892 case KVM_SINGLESTEP:
1893 if (cs->singlestep_enabled) {
1894 ret = EXCP_DEBUG;
1895 }
1896 break;
1897 default:
1898 ret = -ENOSYS;
1899 }
1900
1901 return ret;
1902 }
1903
kvm_arch_handle_exit(CPUState * cs,struct kvm_run * run)1904 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1905 {
1906 S390CPU *cpu = S390_CPU(cs);
1907 int ret = 0;
1908
1909 bql_lock();
1910
1911 kvm_cpu_synchronize_state(cs);
1912
1913 switch (run->exit_reason) {
1914 case KVM_EXIT_S390_SIEIC:
1915 ret = handle_intercept(cpu);
1916 break;
1917 case KVM_EXIT_S390_RESET:
1918 s390_ipl_reset_request(cs, S390_RESET_REIPL);
1919 break;
1920 case KVM_EXIT_S390_TSCH:
1921 ret = handle_tsch(cpu);
1922 break;
1923 case KVM_EXIT_S390_STSI:
1924 ret = handle_stsi(cpu);
1925 break;
1926 case KVM_EXIT_DEBUG:
1927 ret = kvm_arch_handle_debug_exit(cpu);
1928 break;
1929 default:
1930 fprintf(stderr, "Unknown KVM exit: %d\n", run->exit_reason);
1931 break;
1932 }
1933 bql_unlock();
1934
1935 if (ret == 0) {
1936 ret = EXCP_INTERRUPT;
1937 }
1938 return ret;
1939 }
1940
kvm_arch_stop_on_emulation_error(CPUState * cpu)1941 bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
1942 {
1943 return true;
1944 }
1945
kvm_s390_enable_css_support(S390CPU * cpu)1946 void kvm_s390_enable_css_support(S390CPU *cpu)
1947 {
1948 int r;
1949
1950 /* Activate host kernel channel subsystem support. */
1951 r = kvm_vcpu_enable_cap(CPU(cpu), KVM_CAP_S390_CSS_SUPPORT, 0);
1952 assert(r == 0);
1953 }
1954
kvm_arch_init_irq_routing(KVMState * s)1955 void kvm_arch_init_irq_routing(KVMState *s)
1956 {
1957 /*
1958 * Note that while irqchip capabilities generally imply that cpustates
1959 * are handled in-kernel, it is not true for s390 (yet); therefore, we
1960 * have to override the common code kvm_halt_in_kernel_allowed setting.
1961 */
1962 if (kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
1963 kvm_gsi_routing_allowed = true;
1964 kvm_halt_in_kernel_allowed = false;
1965 }
1966 }
1967
kvm_s390_assign_subch_ioeventfd(EventNotifier * notifier,uint32_t sch,int vq,bool assign)1968 int kvm_s390_assign_subch_ioeventfd(EventNotifier *notifier, uint32_t sch,
1969 int vq, bool assign)
1970 {
1971 struct kvm_ioeventfd kick = {
1972 .flags = KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY |
1973 KVM_IOEVENTFD_FLAG_DATAMATCH,
1974 .fd = event_notifier_get_fd(notifier),
1975 .datamatch = vq,
1976 .addr = sch,
1977 .len = 8,
1978 };
1979 trace_kvm_assign_subch_ioeventfd(kick.fd, kick.addr, assign,
1980 kick.datamatch);
1981 if (!kvm_check_extension(kvm_state, KVM_CAP_IOEVENTFD)) {
1982 return -ENOSYS;
1983 }
1984 if (!assign) {
1985 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1986 }
1987 return kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1988 }
1989
kvm_s390_get_protected_dump(void)1990 int kvm_s390_get_protected_dump(void)
1991 {
1992 return cap_protected_dump;
1993 }
1994
kvm_s390_get_ri(void)1995 int kvm_s390_get_ri(void)
1996 {
1997 return cap_ri;
1998 }
1999
kvm_s390_set_cpu_state(S390CPU * cpu,uint8_t cpu_state)2000 int kvm_s390_set_cpu_state(S390CPU *cpu, uint8_t cpu_state)
2001 {
2002 struct kvm_mp_state mp_state = {};
2003 int ret;
2004
2005 /* the kvm part might not have been initialized yet */
2006 if (CPU(cpu)->kvm_state == NULL) {
2007 return 0;
2008 }
2009
2010 switch (cpu_state) {
2011 case S390_CPU_STATE_STOPPED:
2012 mp_state.mp_state = KVM_MP_STATE_STOPPED;
2013 break;
2014 case S390_CPU_STATE_CHECK_STOP:
2015 mp_state.mp_state = KVM_MP_STATE_CHECK_STOP;
2016 break;
2017 case S390_CPU_STATE_OPERATING:
2018 mp_state.mp_state = KVM_MP_STATE_OPERATING;
2019 break;
2020 case S390_CPU_STATE_LOAD:
2021 mp_state.mp_state = KVM_MP_STATE_LOAD;
2022 break;
2023 default:
2024 error_report("Requested CPU state is not a valid S390 CPU state: %u",
2025 cpu_state);
2026 exit(1);
2027 }
2028
2029 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
2030 if (ret) {
2031 trace_kvm_failed_cpu_state_set(CPU(cpu)->cpu_index, cpu_state,
2032 strerror(-ret));
2033 }
2034
2035 return ret;
2036 }
2037
kvm_s390_vcpu_interrupt_pre_save(S390CPU * cpu)2038 void kvm_s390_vcpu_interrupt_pre_save(S390CPU *cpu)
2039 {
2040 unsigned int max_cpus = MACHINE(qdev_get_machine())->smp.max_cpus;
2041 struct kvm_s390_irq_state irq_state = {
2042 .buf = (uint64_t) cpu->irqstate,
2043 .len = VCPU_IRQ_BUF_SIZE(max_cpus),
2044 };
2045 CPUState *cs = CPU(cpu);
2046 int32_t bytes;
2047
2048 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) {
2049 return;
2050 }
2051
2052 bytes = kvm_vcpu_ioctl(cs, KVM_S390_GET_IRQ_STATE, &irq_state);
2053 if (bytes < 0) {
2054 cpu->irqstate_saved_size = 0;
2055 error_report("Migration of interrupt state failed");
2056 return;
2057 }
2058
2059 cpu->irqstate_saved_size = bytes;
2060 }
2061
kvm_s390_vcpu_interrupt_post_load(S390CPU * cpu)2062 int kvm_s390_vcpu_interrupt_post_load(S390CPU *cpu)
2063 {
2064 CPUState *cs = CPU(cpu);
2065 struct kvm_s390_irq_state irq_state = {
2066 .buf = (uint64_t) cpu->irqstate,
2067 .len = cpu->irqstate_saved_size,
2068 };
2069 int r;
2070
2071 if (cpu->irqstate_saved_size == 0) {
2072 return 0;
2073 }
2074
2075 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) {
2076 return -ENOSYS;
2077 }
2078
2079 r = kvm_vcpu_ioctl(cs, KVM_S390_SET_IRQ_STATE, &irq_state);
2080 if (r) {
2081 error_report("Setting interrupt state failed %d", r);
2082 }
2083 return r;
2084 }
2085
kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry * route,uint64_t address,uint32_t data,PCIDevice * dev)2086 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
2087 uint64_t address, uint32_t data, PCIDevice *dev)
2088 {
2089 S390PCIBusDevice *pbdev;
2090 uint32_t vec = data & ZPCI_MSI_VEC_MASK;
2091
2092 if (!dev) {
2093 trace_kvm_msi_route_fixup("no pci device");
2094 return -ENODEV;
2095 }
2096
2097 pbdev = s390_pci_find_dev_by_target(s390_get_phb(), DEVICE(dev)->id);
2098 if (!pbdev) {
2099 trace_kvm_msi_route_fixup("no zpci device");
2100 return -ENODEV;
2101 }
2102
2103 route->type = KVM_IRQ_ROUTING_S390_ADAPTER;
2104 route->flags = 0;
2105 route->u.adapter.summary_addr = pbdev->routes.adapter.summary_addr;
2106 route->u.adapter.ind_addr = pbdev->routes.adapter.ind_addr;
2107 route->u.adapter.summary_offset = pbdev->routes.adapter.summary_offset;
2108 route->u.adapter.ind_offset = pbdev->routes.adapter.ind_offset + vec;
2109 route->u.adapter.adapter_id = pbdev->routes.adapter.adapter_id;
2110 return 0;
2111 }
2112
kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry * route,int vector,PCIDevice * dev)2113 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
2114 int vector, PCIDevice *dev)
2115 {
2116 return 0;
2117 }
2118
kvm_arch_release_virq_post(int virq)2119 int kvm_arch_release_virq_post(int virq)
2120 {
2121 return 0;
2122 }
2123
kvm_arch_msi_data_to_gsi(uint32_t data)2124 int kvm_arch_msi_data_to_gsi(uint32_t data)
2125 {
2126 abort();
2127 }
2128
query_cpu_subfunc(S390FeatBitmap features)2129 static int query_cpu_subfunc(S390FeatBitmap features)
2130 {
2131 struct kvm_s390_vm_cpu_subfunc prop = {};
2132 struct kvm_device_attr attr = {
2133 .group = KVM_S390_VM_CPU_MODEL,
2134 .attr = KVM_S390_VM_CPU_MACHINE_SUBFUNC,
2135 .addr = (uint64_t) &prop,
2136 };
2137 int rc;
2138
2139 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2140 if (rc) {
2141 return rc;
2142 }
2143
2144 /*
2145 * We're going to add all subfunctions now, if the corresponding feature
2146 * is available that unlocks the query functions.
2147 */
2148 s390_add_from_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo);
2149 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) {
2150 s390_add_from_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff);
2151 }
2152 if (test_bit(S390_FEAT_MSA, features)) {
2153 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac);
2154 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc);
2155 s390_add_from_feat_block(features, S390_FEAT_TYPE_KM, prop.km);
2156 s390_add_from_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd);
2157 s390_add_from_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd);
2158 }
2159 if (test_bit(S390_FEAT_MSA_EXT_3, features)) {
2160 s390_add_from_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo);
2161 }
2162 if (test_bit(S390_FEAT_MSA_EXT_4, features)) {
2163 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr);
2164 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf);
2165 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo);
2166 s390_add_from_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc);
2167 }
2168 if (test_bit(S390_FEAT_MSA_EXT_5, features)) {
2169 s390_add_from_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno);
2170 }
2171 if (test_bit(S390_FEAT_MSA_EXT_8, features)) {
2172 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma);
2173 }
2174 if (test_bit(S390_FEAT_MSA_EXT_9, features)) {
2175 s390_add_from_feat_block(features, S390_FEAT_TYPE_KDSA, prop.kdsa);
2176 }
2177 if (test_bit(S390_FEAT_ESORT_BASE, features)) {
2178 s390_add_from_feat_block(features, S390_FEAT_TYPE_SORTL, prop.sortl);
2179 }
2180 if (test_bit(S390_FEAT_DEFLATE_BASE, features)) {
2181 s390_add_from_feat_block(features, S390_FEAT_TYPE_DFLTCC, prop.dfltcc);
2182 }
2183 if (test_bit(S390_FEAT_CCF_BASE, features)) {
2184 s390_add_from_feat_block(features, S390_FEAT_TYPE_PFCR, prop.pfcr);
2185 }
2186 return 0;
2187 }
2188
configure_cpu_subfunc(const S390FeatBitmap features)2189 static int configure_cpu_subfunc(const S390FeatBitmap features)
2190 {
2191 struct kvm_s390_vm_cpu_subfunc prop = {};
2192 struct kvm_device_attr attr = {
2193 .group = KVM_S390_VM_CPU_MODEL,
2194 .attr = KVM_S390_VM_CPU_PROCESSOR_SUBFUNC,
2195 .addr = (uint64_t) &prop,
2196 };
2197
2198 if (!kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2199 KVM_S390_VM_CPU_PROCESSOR_SUBFUNC)) {
2200 /* hardware support might be missing, IBC will handle most of this */
2201 return 0;
2202 }
2203
2204 s390_fill_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo);
2205 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) {
2206 s390_fill_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff);
2207 }
2208 if (test_bit(S390_FEAT_MSA, features)) {
2209 s390_fill_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac);
2210 s390_fill_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc);
2211 s390_fill_feat_block(features, S390_FEAT_TYPE_KM, prop.km);
2212 s390_fill_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd);
2213 s390_fill_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd);
2214 }
2215 if (test_bit(S390_FEAT_MSA_EXT_3, features)) {
2216 s390_fill_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo);
2217 }
2218 if (test_bit(S390_FEAT_MSA_EXT_4, features)) {
2219 s390_fill_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr);
2220 s390_fill_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf);
2221 s390_fill_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo);
2222 s390_fill_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc);
2223 }
2224 if (test_bit(S390_FEAT_MSA_EXT_5, features)) {
2225 s390_fill_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno);
2226 }
2227 if (test_bit(S390_FEAT_MSA_EXT_8, features)) {
2228 s390_fill_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma);
2229 }
2230 if (test_bit(S390_FEAT_MSA_EXT_9, features)) {
2231 s390_fill_feat_block(features, S390_FEAT_TYPE_KDSA, prop.kdsa);
2232 }
2233 if (test_bit(S390_FEAT_ESORT_BASE, features)) {
2234 s390_fill_feat_block(features, S390_FEAT_TYPE_SORTL, prop.sortl);
2235 }
2236 if (test_bit(S390_FEAT_DEFLATE_BASE, features)) {
2237 s390_fill_feat_block(features, S390_FEAT_TYPE_DFLTCC, prop.dfltcc);
2238 }
2239 if (test_bit(S390_FEAT_CCF_BASE, features)) {
2240 s390_fill_feat_block(features, S390_FEAT_TYPE_PFCR, prop.pfcr);
2241 }
2242 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2243 }
2244
ap_available(void)2245 static bool ap_available(void)
2246 {
2247 return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO,
2248 KVM_S390_VM_CRYPTO_ENABLE_APIE);
2249 }
2250
ap_enabled(const S390FeatBitmap features)2251 static bool ap_enabled(const S390FeatBitmap features)
2252 {
2253 return test_bit(S390_FEAT_AP, features);
2254 }
2255
uv_feat_supported(void)2256 static bool uv_feat_supported(void)
2257 {
2258 return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2259 KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST);
2260 }
2261
query_uv_feat_guest(S390FeatBitmap features)2262 static int query_uv_feat_guest(S390FeatBitmap features)
2263 {
2264 struct kvm_s390_vm_cpu_uv_feat prop = {};
2265 struct kvm_device_attr attr = {
2266 .group = KVM_S390_VM_CPU_MODEL,
2267 .attr = KVM_S390_VM_CPU_MACHINE_UV_FEAT_GUEST,
2268 .addr = (uint64_t) &prop,
2269 };
2270 int rc;
2271
2272 /* AP support check is currently the only user of the UV feature test */
2273 if (!(uv_feat_supported() && ap_available())) {
2274 return 0;
2275 }
2276
2277 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2278 if (rc) {
2279 return rc;
2280 }
2281
2282 if (prop.ap) {
2283 set_bit(S390_FEAT_UV_FEAT_AP, features);
2284 }
2285 if (prop.ap_intr) {
2286 set_bit(S390_FEAT_UV_FEAT_AP_INTR, features);
2287 }
2288
2289 return 0;
2290 }
2291
2292 static int kvm_to_feat[][2] = {
2293 { KVM_S390_VM_CPU_FEAT_ESOP, S390_FEAT_ESOP },
2294 { KVM_S390_VM_CPU_FEAT_SIEF2, S390_FEAT_SIE_F2 },
2295 { KVM_S390_VM_CPU_FEAT_64BSCAO , S390_FEAT_SIE_64BSCAO },
2296 { KVM_S390_VM_CPU_FEAT_SIIF, S390_FEAT_SIE_SIIF },
2297 { KVM_S390_VM_CPU_FEAT_GPERE, S390_FEAT_SIE_GPERE },
2298 { KVM_S390_VM_CPU_FEAT_GSLS, S390_FEAT_SIE_GSLS },
2299 { KVM_S390_VM_CPU_FEAT_IB, S390_FEAT_SIE_IB },
2300 { KVM_S390_VM_CPU_FEAT_CEI, S390_FEAT_SIE_CEI },
2301 { KVM_S390_VM_CPU_FEAT_IBS, S390_FEAT_SIE_IBS },
2302 { KVM_S390_VM_CPU_FEAT_SKEY, S390_FEAT_SIE_SKEY },
2303 { KVM_S390_VM_CPU_FEAT_CMMA, S390_FEAT_SIE_CMMA },
2304 { KVM_S390_VM_CPU_FEAT_PFMFI, S390_FEAT_SIE_PFMFI},
2305 { KVM_S390_VM_CPU_FEAT_SIGPIF, S390_FEAT_SIE_SIGPIF},
2306 { KVM_S390_VM_CPU_FEAT_KSS, S390_FEAT_SIE_KSS},
2307 };
2308
query_cpu_feat(S390FeatBitmap features)2309 static int query_cpu_feat(S390FeatBitmap features)
2310 {
2311 struct kvm_s390_vm_cpu_feat prop = {};
2312 struct kvm_device_attr attr = {
2313 .group = KVM_S390_VM_CPU_MODEL,
2314 .attr = KVM_S390_VM_CPU_MACHINE_FEAT,
2315 .addr = (uint64_t) &prop,
2316 };
2317 int rc;
2318 int i;
2319
2320 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2321 if (rc) {
2322 return rc;
2323 }
2324
2325 for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) {
2326 if (test_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat)) {
2327 set_bit(kvm_to_feat[i][1], features);
2328 }
2329 }
2330 return 0;
2331 }
2332
configure_cpu_feat(const S390FeatBitmap features)2333 static int configure_cpu_feat(const S390FeatBitmap features)
2334 {
2335 struct kvm_s390_vm_cpu_feat prop = {};
2336 struct kvm_device_attr attr = {
2337 .group = KVM_S390_VM_CPU_MODEL,
2338 .attr = KVM_S390_VM_CPU_PROCESSOR_FEAT,
2339 .addr = (uint64_t) &prop,
2340 };
2341 int i;
2342
2343 for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) {
2344 if (test_bit(kvm_to_feat[i][1], features)) {
2345 set_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat);
2346 }
2347 }
2348 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2349 }
2350
kvm_s390_cpu_models_supported(void)2351 bool kvm_s390_cpu_models_supported(void)
2352 {
2353 return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2354 KVM_S390_VM_CPU_MACHINE) &&
2355 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2356 KVM_S390_VM_CPU_PROCESSOR) &&
2357 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2358 KVM_S390_VM_CPU_MACHINE_FEAT) &&
2359 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2360 KVM_S390_VM_CPU_PROCESSOR_FEAT) &&
2361 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2362 KVM_S390_VM_CPU_MACHINE_SUBFUNC);
2363 }
2364
kvm_s390_get_host_cpu_model(S390CPUModel * model,Error ** errp)2365 bool kvm_s390_get_host_cpu_model(S390CPUModel *model, Error **errp)
2366 {
2367 struct kvm_s390_vm_cpu_machine prop = {};
2368 struct kvm_device_attr attr = {
2369 .group = KVM_S390_VM_CPU_MODEL,
2370 .attr = KVM_S390_VM_CPU_MACHINE,
2371 .addr = (uint64_t) &prop,
2372 };
2373 uint16_t unblocked_ibc = 0, cpu_type = 0;
2374 int rc;
2375
2376 memset(model, 0, sizeof(*model));
2377
2378 if (!kvm_s390_cpu_models_supported()) {
2379 error_setg(errp, "KVM doesn't support CPU models");
2380 return false;
2381 }
2382
2383 /* query the basic cpu model properties */
2384 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2385 if (rc) {
2386 error_setg(errp, "KVM: Error querying host CPU model: %d", rc);
2387 return false;
2388 }
2389
2390 cpu_type = cpuid_type(prop.cpuid);
2391 if (has_ibc(prop.ibc)) {
2392 model->lowest_ibc = lowest_ibc(prop.ibc);
2393 unblocked_ibc = unblocked_ibc(prop.ibc);
2394 }
2395 model->cpu_id = cpuid_id(prop.cpuid);
2396 model->cpu_id_format = cpuid_format(prop.cpuid);
2397 model->cpu_ver = 0xff;
2398
2399 /* get supported cpu features indicated via STFL(E) */
2400 s390_add_from_feat_block(model->features, S390_FEAT_TYPE_STFL,
2401 (uint8_t *) prop.fac_mask);
2402 /* dat-enhancement facility 2 has no bit but was introduced with stfle */
2403 if (test_bit(S390_FEAT_STFLE, model->features)) {
2404 set_bit(S390_FEAT_DAT_ENH_2, model->features);
2405 }
2406 /* get supported cpu features indicated e.g. via SCLP */
2407 rc = query_cpu_feat(model->features);
2408 if (rc) {
2409 error_setg(errp, "KVM: Error querying CPU features: %d", rc);
2410 return false;
2411 }
2412 /* get supported cpu subfunctions indicated via query / test bit */
2413 rc = query_cpu_subfunc(model->features);
2414 if (rc) {
2415 error_setg(errp, "KVM: Error querying CPU subfunctions: %d", rc);
2416 return false;
2417 }
2418
2419 /* PTFF subfunctions might be indicated although kernel support missing */
2420 if (!test_bit(S390_FEAT_MULTIPLE_EPOCH, model->features)) {
2421 clear_bit(S390_FEAT_PTFF_QSIE, model->features);
2422 clear_bit(S390_FEAT_PTFF_QTOUE, model->features);
2423 clear_bit(S390_FEAT_PTFF_STOE, model->features);
2424 clear_bit(S390_FEAT_PTFF_STOUE, model->features);
2425 }
2426
2427 /* with cpu model support, CMM is only indicated if really available */
2428 if (kvm_s390_cmma_available()) {
2429 set_bit(S390_FEAT_CMM, model->features);
2430 } else {
2431 /* no cmm -> no cmm nt */
2432 clear_bit(S390_FEAT_CMM_NT, model->features);
2433 }
2434
2435 /* bpb needs kernel support for migration, VSIE and reset */
2436 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_BPB)) {
2437 clear_bit(S390_FEAT_BPB, model->features);
2438 }
2439
2440 /*
2441 * If we have support for protected virtualization, indicate
2442 * the protected virtualization IPL unpack facility.
2443 */
2444 if (cap_protected) {
2445 set_bit(S390_FEAT_UNPACK, model->features);
2446 }
2447
2448 /*
2449 * If we have kernel support for CPU Topology indicate the
2450 * configuration-topology facility.
2451 */
2452 if (kvm_check_extension(kvm_state, KVM_CAP_S390_CPU_TOPOLOGY)) {
2453 set_bit(S390_FEAT_CONFIGURATION_TOPOLOGY, model->features);
2454 }
2455
2456 /* We emulate a zPCI bus and AEN, therefore we don't need HW support */
2457 set_bit(S390_FEAT_ZPCI, model->features);
2458 set_bit(S390_FEAT_ADAPTER_EVENT_NOTIFICATION, model->features);
2459
2460 if (s390_known_cpu_type(cpu_type)) {
2461 /* we want the exact model, even if some features are missing */
2462 model->def = s390_find_cpu_def(cpu_type, ibc_gen(unblocked_ibc),
2463 ibc_ec_ga(unblocked_ibc), NULL);
2464 } else {
2465 /* model unknown, e.g. too new - search using features */
2466 model->def = s390_find_cpu_def(0, ibc_gen(unblocked_ibc),
2467 ibc_ec_ga(unblocked_ibc),
2468 model->features);
2469 }
2470 if (!model->def) {
2471 error_setg(errp, "KVM: host CPU model could not be identified");
2472 return false;
2473 }
2474 /* for now, we can only provide the AP feature with HW support */
2475 if (ap_available()) {
2476 set_bit(S390_FEAT_AP, model->features);
2477 }
2478
2479 /*
2480 * Extended-Length SCCB is handled entirely within QEMU.
2481 * For PV guests this is completely fenced by the Ultravisor, as Service
2482 * Call error checking and STFLE interpretation are handled via SIE.
2483 */
2484 set_bit(S390_FEAT_EXTENDED_LENGTH_SCCB, model->features);
2485
2486 if (kvm_check_extension(kvm_state, KVM_CAP_S390_DIAG318)) {
2487 set_bit(S390_FEAT_DIAG_318, model->features);
2488 }
2489
2490 /* Test for Ultravisor features that influence secure guest behavior */
2491 query_uv_feat_guest(model->features);
2492
2493 /* strip of features that are not part of the maximum model */
2494 bitmap_and(model->features, model->features, model->def->full_feat,
2495 S390_FEAT_MAX);
2496 return true;
2497 }
2498
configure_uv_feat_guest(const S390FeatBitmap features)2499 static int configure_uv_feat_guest(const S390FeatBitmap features)
2500 {
2501 struct kvm_s390_vm_cpu_uv_feat uv_feat = {};
2502 struct kvm_device_attr attribute = {
2503 .group = KVM_S390_VM_CPU_MODEL,
2504 .attr = KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST,
2505 .addr = (__u64) &uv_feat,
2506 };
2507
2508 /* AP support check is currently the only user of the UV feature test */
2509 if (!(uv_feat_supported() && ap_enabled(features))) {
2510 return 0;
2511 }
2512
2513 if (test_bit(S390_FEAT_UV_FEAT_AP, features)) {
2514 uv_feat.ap = 1;
2515 }
2516 if (test_bit(S390_FEAT_UV_FEAT_AP_INTR, features)) {
2517 uv_feat.ap_intr = 1;
2518 }
2519
2520 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute);
2521 }
2522
kvm_s390_configure_apie(bool interpret)2523 static void kvm_s390_configure_apie(bool interpret)
2524 {
2525 uint64_t attr = interpret ? KVM_S390_VM_CRYPTO_ENABLE_APIE :
2526 KVM_S390_VM_CRYPTO_DISABLE_APIE;
2527
2528 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
2529 kvm_s390_set_crypto_attr(attr);
2530 }
2531 }
2532
kvm_s390_apply_cpu_model(const S390CPUModel * model,Error ** errp)2533 bool kvm_s390_apply_cpu_model(const S390CPUModel *model, Error **errp)
2534 {
2535 struct kvm_s390_vm_cpu_processor prop = {
2536 .fac_list = { 0 },
2537 };
2538 struct kvm_device_attr attr = {
2539 .group = KVM_S390_VM_CPU_MODEL,
2540 .attr = KVM_S390_VM_CPU_PROCESSOR,
2541 .addr = (uint64_t) &prop,
2542 };
2543 int rc;
2544
2545 if (!model) {
2546 /* compatibility handling if cpu models are disabled */
2547 if (kvm_s390_cmma_available()) {
2548 kvm_s390_enable_cmma();
2549 }
2550 return true;
2551 }
2552 if (!kvm_s390_cpu_models_supported()) {
2553 error_setg(errp, "KVM doesn't support CPU models");
2554 return false;
2555 }
2556 prop.cpuid = s390_cpuid_from_cpu_model(model);
2557 prop.ibc = s390_ibc_from_cpu_model(model);
2558 /* configure cpu features indicated via STFL(e) */
2559 s390_fill_feat_block(model->features, S390_FEAT_TYPE_STFL,
2560 (uint8_t *) prop.fac_list);
2561 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2562 if (rc) {
2563 error_setg(errp, "KVM: Error configuring the CPU model: %d", rc);
2564 return false;
2565 }
2566 /* configure cpu features indicated e.g. via SCLP */
2567 rc = configure_cpu_feat(model->features);
2568 if (rc) {
2569 error_setg(errp, "KVM: Error configuring CPU features: %d", rc);
2570 return false;
2571 }
2572 /* configure cpu subfunctions indicated via query / test bit */
2573 rc = configure_cpu_subfunc(model->features);
2574 if (rc) {
2575 error_setg(errp, "KVM: Error configuring CPU subfunctions: %d", rc);
2576 return false;
2577 }
2578 /* enable CMM via CMMA */
2579 if (test_bit(S390_FEAT_CMM, model->features)) {
2580 kvm_s390_enable_cmma();
2581 }
2582
2583 if (ap_enabled(model->features)) {
2584 kvm_s390_configure_apie(true);
2585 }
2586
2587 /* configure UV-features for the guest indicated via query / test_bit */
2588 rc = configure_uv_feat_guest(model->features);
2589 if (rc) {
2590 error_setg(errp, "KVM: Error configuring CPU UV features %d", rc);
2591 return false;
2592 }
2593 return true;
2594 }
2595
kvm_s390_restart_interrupt(S390CPU * cpu)2596 void kvm_s390_restart_interrupt(S390CPU *cpu)
2597 {
2598 struct kvm_s390_irq irq = {
2599 .type = KVM_S390_RESTART,
2600 };
2601
2602 kvm_s390_vcpu_interrupt(cpu, &irq);
2603 }
2604
kvm_s390_stop_interrupt(S390CPU * cpu)2605 void kvm_s390_stop_interrupt(S390CPU *cpu)
2606 {
2607 struct kvm_s390_irq irq = {
2608 .type = KVM_S390_SIGP_STOP,
2609 };
2610
2611 kvm_s390_vcpu_interrupt(cpu, &irq);
2612 }
2613
kvm_s390_get_zpci_op(void)2614 int kvm_s390_get_zpci_op(void)
2615 {
2616 return cap_zpci_op;
2617 }
2618
kvm_s390_topology_set_mtcr(uint64_t attr)2619 int kvm_s390_topology_set_mtcr(uint64_t attr)
2620 {
2621 struct kvm_device_attr attribute = {
2622 .group = KVM_S390_VM_CPU_TOPOLOGY,
2623 .attr = attr,
2624 };
2625
2626 if (!s390_has_feat(S390_FEAT_CONFIGURATION_TOPOLOGY)) {
2627 return 0;
2628 }
2629 if (!kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_TOPOLOGY, attr)) {
2630 return -ENOTSUP;
2631 }
2632
2633 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute);
2634 }
2635
kvm_arch_accel_class_init(ObjectClass * oc)2636 void kvm_arch_accel_class_init(ObjectClass *oc)
2637 {
2638 }
2639