1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2015 Linaro Ltd.
4 * Author: Shannon Zhao <shannon.zhao@linaro.org>
5 */
6
7 #include <linux/cpu.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 #include <linux/list.h>
11 #include <linux/perf_event.h>
12 #include <linux/perf/arm_pmu.h>
13 #include <linux/uaccess.h>
14 #include <asm/kvm_emulate.h>
15 #include <kvm/arm_pmu.h>
16 #include <kvm/arm_vgic.h>
17 #include <asm/arm_pmuv3.h>
18
19 #define PERF_ATTR_CFG1_COUNTER_64BIT BIT(0)
20
21 DEFINE_STATIC_KEY_FALSE(kvm_arm_pmu_available);
22
23 static LIST_HEAD(arm_pmus);
24 static DEFINE_MUTEX(arm_pmus_lock);
25
26 static void kvm_pmu_create_perf_event(struct kvm_pmc *pmc);
27 static void kvm_pmu_release_perf_event(struct kvm_pmc *pmc);
28
kvm_pmc_to_vcpu(const struct kvm_pmc * pmc)29 static struct kvm_vcpu *kvm_pmc_to_vcpu(const struct kvm_pmc *pmc)
30 {
31 return container_of(pmc, struct kvm_vcpu, arch.pmu.pmc[pmc->idx]);
32 }
33
kvm_vcpu_idx_to_pmc(struct kvm_vcpu * vcpu,int cnt_idx)34 static struct kvm_pmc *kvm_vcpu_idx_to_pmc(struct kvm_vcpu *vcpu, int cnt_idx)
35 {
36 return &vcpu->arch.pmu.pmc[cnt_idx];
37 }
38
__kvm_pmu_event_mask(unsigned int pmuver)39 static u32 __kvm_pmu_event_mask(unsigned int pmuver)
40 {
41 switch (pmuver) {
42 case ID_AA64DFR0_EL1_PMUVer_IMP:
43 return GENMASK(9, 0);
44 case ID_AA64DFR0_EL1_PMUVer_V3P1:
45 case ID_AA64DFR0_EL1_PMUVer_V3P4:
46 case ID_AA64DFR0_EL1_PMUVer_V3P5:
47 case ID_AA64DFR0_EL1_PMUVer_V3P7:
48 return GENMASK(15, 0);
49 default: /* Shouldn't be here, just for sanity */
50 WARN_ONCE(1, "Unknown PMU version %d\n", pmuver);
51 return 0;
52 }
53 }
54
kvm_pmu_event_mask(struct kvm * kvm)55 static u32 kvm_pmu_event_mask(struct kvm *kvm)
56 {
57 u64 dfr0 = IDREG(kvm, SYS_ID_AA64DFR0_EL1);
58 u8 pmuver = SYS_FIELD_GET(ID_AA64DFR0_EL1, PMUVer, dfr0);
59
60 return __kvm_pmu_event_mask(pmuver);
61 }
62
63 /**
64 * kvm_pmc_is_64bit - determine if counter is 64bit
65 * @pmc: counter context
66 */
kvm_pmc_is_64bit(struct kvm_pmc * pmc)67 static bool kvm_pmc_is_64bit(struct kvm_pmc *pmc)
68 {
69 return (pmc->idx == ARMV8_PMU_CYCLE_IDX ||
70 kvm_pmu_is_3p5(kvm_pmc_to_vcpu(pmc)));
71 }
72
kvm_pmc_has_64bit_overflow(struct kvm_pmc * pmc)73 static bool kvm_pmc_has_64bit_overflow(struct kvm_pmc *pmc)
74 {
75 u64 val = __vcpu_sys_reg(kvm_pmc_to_vcpu(pmc), PMCR_EL0);
76
77 return (pmc->idx < ARMV8_PMU_CYCLE_IDX && (val & ARMV8_PMU_PMCR_LP)) ||
78 (pmc->idx == ARMV8_PMU_CYCLE_IDX && (val & ARMV8_PMU_PMCR_LC));
79 }
80
kvm_pmu_counter_can_chain(struct kvm_pmc * pmc)81 static bool kvm_pmu_counter_can_chain(struct kvm_pmc *pmc)
82 {
83 return (!(pmc->idx & 1) && (pmc->idx + 1) < ARMV8_PMU_CYCLE_IDX &&
84 !kvm_pmc_has_64bit_overflow(pmc));
85 }
86
counter_index_to_reg(u64 idx)87 static u32 counter_index_to_reg(u64 idx)
88 {
89 return (idx == ARMV8_PMU_CYCLE_IDX) ? PMCCNTR_EL0 : PMEVCNTR0_EL0 + idx;
90 }
91
counter_index_to_evtreg(u64 idx)92 static u32 counter_index_to_evtreg(u64 idx)
93 {
94 return (idx == ARMV8_PMU_CYCLE_IDX) ? PMCCFILTR_EL0 : PMEVTYPER0_EL0 + idx;
95 }
96
kvm_pmu_get_pmc_value(struct kvm_pmc * pmc)97 static u64 kvm_pmu_get_pmc_value(struct kvm_pmc *pmc)
98 {
99 struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
100 u64 counter, reg, enabled, running;
101
102 reg = counter_index_to_reg(pmc->idx);
103 counter = __vcpu_sys_reg(vcpu, reg);
104
105 /*
106 * The real counter value is equal to the value of counter register plus
107 * the value perf event counts.
108 */
109 if (pmc->perf_event)
110 counter += perf_event_read_value(pmc->perf_event, &enabled,
111 &running);
112
113 if (!kvm_pmc_is_64bit(pmc))
114 counter = lower_32_bits(counter);
115
116 return counter;
117 }
118
119 /**
120 * kvm_pmu_get_counter_value - get PMU counter value
121 * @vcpu: The vcpu pointer
122 * @select_idx: The counter index
123 */
kvm_pmu_get_counter_value(struct kvm_vcpu * vcpu,u64 select_idx)124 u64 kvm_pmu_get_counter_value(struct kvm_vcpu *vcpu, u64 select_idx)
125 {
126 if (!kvm_vcpu_has_pmu(vcpu))
127 return 0;
128
129 return kvm_pmu_get_pmc_value(kvm_vcpu_idx_to_pmc(vcpu, select_idx));
130 }
131
kvm_pmu_set_pmc_value(struct kvm_pmc * pmc,u64 val,bool force)132 static void kvm_pmu_set_pmc_value(struct kvm_pmc *pmc, u64 val, bool force)
133 {
134 struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
135 u64 reg;
136
137 kvm_pmu_release_perf_event(pmc);
138
139 reg = counter_index_to_reg(pmc->idx);
140
141 if (vcpu_mode_is_32bit(vcpu) && pmc->idx != ARMV8_PMU_CYCLE_IDX &&
142 !force) {
143 /*
144 * Even with PMUv3p5, AArch32 cannot write to the top
145 * 32bit of the counters. The only possible course of
146 * action is to use PMCR.P, which will reset them to
147 * 0 (the only use of the 'force' parameter).
148 */
149 val = __vcpu_sys_reg(vcpu, reg) & GENMASK(63, 32);
150 val |= lower_32_bits(val);
151 }
152
153 __vcpu_sys_reg(vcpu, reg) = val;
154
155 /* Recreate the perf event to reflect the updated sample_period */
156 kvm_pmu_create_perf_event(pmc);
157 }
158
159 /**
160 * kvm_pmu_set_counter_value - set PMU counter value
161 * @vcpu: The vcpu pointer
162 * @select_idx: The counter index
163 * @val: The counter value
164 */
kvm_pmu_set_counter_value(struct kvm_vcpu * vcpu,u64 select_idx,u64 val)165 void kvm_pmu_set_counter_value(struct kvm_vcpu *vcpu, u64 select_idx, u64 val)
166 {
167 if (!kvm_vcpu_has_pmu(vcpu))
168 return;
169
170 kvm_pmu_set_pmc_value(kvm_vcpu_idx_to_pmc(vcpu, select_idx), val, false);
171 }
172
173 /**
174 * kvm_pmu_release_perf_event - remove the perf event
175 * @pmc: The PMU counter pointer
176 */
kvm_pmu_release_perf_event(struct kvm_pmc * pmc)177 static void kvm_pmu_release_perf_event(struct kvm_pmc *pmc)
178 {
179 if (pmc->perf_event) {
180 perf_event_disable(pmc->perf_event);
181 perf_event_release_kernel(pmc->perf_event);
182 pmc->perf_event = NULL;
183 }
184 }
185
186 /**
187 * kvm_pmu_stop_counter - stop PMU counter
188 * @pmc: The PMU counter pointer
189 *
190 * If this counter has been configured to monitor some event, release it here.
191 */
kvm_pmu_stop_counter(struct kvm_pmc * pmc)192 static void kvm_pmu_stop_counter(struct kvm_pmc *pmc)
193 {
194 struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
195 u64 reg, val;
196
197 if (!pmc->perf_event)
198 return;
199
200 val = kvm_pmu_get_pmc_value(pmc);
201
202 reg = counter_index_to_reg(pmc->idx);
203
204 __vcpu_sys_reg(vcpu, reg) = val;
205
206 kvm_pmu_release_perf_event(pmc);
207 }
208
209 /**
210 * kvm_pmu_vcpu_init - assign pmu counter idx for cpu
211 * @vcpu: The vcpu pointer
212 *
213 */
kvm_pmu_vcpu_init(struct kvm_vcpu * vcpu)214 void kvm_pmu_vcpu_init(struct kvm_vcpu *vcpu)
215 {
216 int i;
217 struct kvm_pmu *pmu = &vcpu->arch.pmu;
218
219 for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++)
220 pmu->pmc[i].idx = i;
221 }
222
223 /**
224 * kvm_pmu_vcpu_reset - reset pmu state for cpu
225 * @vcpu: The vcpu pointer
226 *
227 */
kvm_pmu_vcpu_reset(struct kvm_vcpu * vcpu)228 void kvm_pmu_vcpu_reset(struct kvm_vcpu *vcpu)
229 {
230 unsigned long mask = kvm_pmu_valid_counter_mask(vcpu);
231 int i;
232
233 for_each_set_bit(i, &mask, 32)
234 kvm_pmu_stop_counter(kvm_vcpu_idx_to_pmc(vcpu, i));
235 }
236
237 /**
238 * kvm_pmu_vcpu_destroy - free perf event of PMU for cpu
239 * @vcpu: The vcpu pointer
240 *
241 */
kvm_pmu_vcpu_destroy(struct kvm_vcpu * vcpu)242 void kvm_pmu_vcpu_destroy(struct kvm_vcpu *vcpu)
243 {
244 int i;
245
246 for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++)
247 kvm_pmu_release_perf_event(kvm_vcpu_idx_to_pmc(vcpu, i));
248 irq_work_sync(&vcpu->arch.pmu.overflow_work);
249 }
250
kvm_pmu_valid_counter_mask(struct kvm_vcpu * vcpu)251 u64 kvm_pmu_valid_counter_mask(struct kvm_vcpu *vcpu)
252 {
253 u64 val = __vcpu_sys_reg(vcpu, PMCR_EL0) >> ARMV8_PMU_PMCR_N_SHIFT;
254
255 val &= ARMV8_PMU_PMCR_N_MASK;
256 if (val == 0)
257 return BIT(ARMV8_PMU_CYCLE_IDX);
258 else
259 return GENMASK(val - 1, 0) | BIT(ARMV8_PMU_CYCLE_IDX);
260 }
261
262 /**
263 * kvm_pmu_enable_counter_mask - enable selected PMU counters
264 * @vcpu: The vcpu pointer
265 * @val: the value guest writes to PMCNTENSET register
266 *
267 * Call perf_event_enable to start counting the perf event
268 */
kvm_pmu_enable_counter_mask(struct kvm_vcpu * vcpu,u64 val)269 void kvm_pmu_enable_counter_mask(struct kvm_vcpu *vcpu, u64 val)
270 {
271 int i;
272 if (!kvm_vcpu_has_pmu(vcpu))
273 return;
274
275 if (!(__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E) || !val)
276 return;
277
278 for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++) {
279 struct kvm_pmc *pmc;
280
281 if (!(val & BIT(i)))
282 continue;
283
284 pmc = kvm_vcpu_idx_to_pmc(vcpu, i);
285
286 if (!pmc->perf_event) {
287 kvm_pmu_create_perf_event(pmc);
288 } else {
289 perf_event_enable(pmc->perf_event);
290 if (pmc->perf_event->state != PERF_EVENT_STATE_ACTIVE)
291 kvm_debug("fail to enable perf event\n");
292 }
293 }
294 }
295
296 /**
297 * kvm_pmu_disable_counter_mask - disable selected PMU counters
298 * @vcpu: The vcpu pointer
299 * @val: the value guest writes to PMCNTENCLR register
300 *
301 * Call perf_event_disable to stop counting the perf event
302 */
kvm_pmu_disable_counter_mask(struct kvm_vcpu * vcpu,u64 val)303 void kvm_pmu_disable_counter_mask(struct kvm_vcpu *vcpu, u64 val)
304 {
305 int i;
306
307 if (!kvm_vcpu_has_pmu(vcpu) || !val)
308 return;
309
310 for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++) {
311 struct kvm_pmc *pmc;
312
313 if (!(val & BIT(i)))
314 continue;
315
316 pmc = kvm_vcpu_idx_to_pmc(vcpu, i);
317
318 if (pmc->perf_event)
319 perf_event_disable(pmc->perf_event);
320 }
321 }
322
kvm_pmu_overflow_status(struct kvm_vcpu * vcpu)323 static u64 kvm_pmu_overflow_status(struct kvm_vcpu *vcpu)
324 {
325 u64 reg = 0;
326
327 if ((__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E)) {
328 reg = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
329 reg &= __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
330 }
331
332 return reg;
333 }
334
kvm_pmu_update_state(struct kvm_vcpu * vcpu)335 static void kvm_pmu_update_state(struct kvm_vcpu *vcpu)
336 {
337 struct kvm_pmu *pmu = &vcpu->arch.pmu;
338 bool overflow;
339
340 if (!kvm_vcpu_has_pmu(vcpu))
341 return;
342
343 overflow = !!kvm_pmu_overflow_status(vcpu);
344 if (pmu->irq_level == overflow)
345 return;
346
347 pmu->irq_level = overflow;
348
349 if (likely(irqchip_in_kernel(vcpu->kvm))) {
350 int ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id,
351 pmu->irq_num, overflow, pmu);
352 WARN_ON(ret);
353 }
354 }
355
kvm_pmu_should_notify_user(struct kvm_vcpu * vcpu)356 bool kvm_pmu_should_notify_user(struct kvm_vcpu *vcpu)
357 {
358 struct kvm_pmu *pmu = &vcpu->arch.pmu;
359 struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
360 bool run_level = sregs->device_irq_level & KVM_ARM_DEV_PMU;
361
362 if (likely(irqchip_in_kernel(vcpu->kvm)))
363 return false;
364
365 return pmu->irq_level != run_level;
366 }
367
368 /*
369 * Reflect the PMU overflow interrupt output level into the kvm_run structure
370 */
kvm_pmu_update_run(struct kvm_vcpu * vcpu)371 void kvm_pmu_update_run(struct kvm_vcpu *vcpu)
372 {
373 struct kvm_sync_regs *regs = &vcpu->run->s.regs;
374
375 /* Populate the timer bitmap for user space */
376 regs->device_irq_level &= ~KVM_ARM_DEV_PMU;
377 if (vcpu->arch.pmu.irq_level)
378 regs->device_irq_level |= KVM_ARM_DEV_PMU;
379 }
380
381 /**
382 * kvm_pmu_flush_hwstate - flush pmu state to cpu
383 * @vcpu: The vcpu pointer
384 *
385 * Check if the PMU has overflowed while we were running in the host, and inject
386 * an interrupt if that was the case.
387 */
kvm_pmu_flush_hwstate(struct kvm_vcpu * vcpu)388 void kvm_pmu_flush_hwstate(struct kvm_vcpu *vcpu)
389 {
390 kvm_pmu_update_state(vcpu);
391 }
392
393 /**
394 * kvm_pmu_sync_hwstate - sync pmu state from cpu
395 * @vcpu: The vcpu pointer
396 *
397 * Check if the PMU has overflowed while we were running in the guest, and
398 * inject an interrupt if that was the case.
399 */
kvm_pmu_sync_hwstate(struct kvm_vcpu * vcpu)400 void kvm_pmu_sync_hwstate(struct kvm_vcpu *vcpu)
401 {
402 kvm_pmu_update_state(vcpu);
403 }
404
405 /**
406 * When perf interrupt is an NMI, we cannot safely notify the vcpu corresponding
407 * to the event.
408 * This is why we need a callback to do it once outside of the NMI context.
409 */
kvm_pmu_perf_overflow_notify_vcpu(struct irq_work * work)410 static void kvm_pmu_perf_overflow_notify_vcpu(struct irq_work *work)
411 {
412 struct kvm_vcpu *vcpu;
413
414 vcpu = container_of(work, struct kvm_vcpu, arch.pmu.overflow_work);
415 kvm_vcpu_kick(vcpu);
416 }
417
418 /*
419 * Perform an increment on any of the counters described in @mask,
420 * generating the overflow if required, and propagate it as a chained
421 * event if possible.
422 */
kvm_pmu_counter_increment(struct kvm_vcpu * vcpu,unsigned long mask,u32 event)423 static void kvm_pmu_counter_increment(struct kvm_vcpu *vcpu,
424 unsigned long mask, u32 event)
425 {
426 int i;
427
428 if (!(__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E))
429 return;
430
431 /* Weed out disabled counters */
432 mask &= __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
433
434 for_each_set_bit(i, &mask, ARMV8_PMU_CYCLE_IDX) {
435 struct kvm_pmc *pmc = kvm_vcpu_idx_to_pmc(vcpu, i);
436 u64 type, reg;
437
438 /* Filter on event type */
439 type = __vcpu_sys_reg(vcpu, counter_index_to_evtreg(i));
440 type &= kvm_pmu_event_mask(vcpu->kvm);
441 if (type != event)
442 continue;
443
444 /* Increment this counter */
445 reg = __vcpu_sys_reg(vcpu, counter_index_to_reg(i)) + 1;
446 if (!kvm_pmc_is_64bit(pmc))
447 reg = lower_32_bits(reg);
448 __vcpu_sys_reg(vcpu, counter_index_to_reg(i)) = reg;
449
450 /* No overflow? move on */
451 if (kvm_pmc_has_64bit_overflow(pmc) ? reg : lower_32_bits(reg))
452 continue;
453
454 /* Mark overflow */
455 __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= BIT(i);
456
457 if (kvm_pmu_counter_can_chain(pmc))
458 kvm_pmu_counter_increment(vcpu, BIT(i + 1),
459 ARMV8_PMUV3_PERFCTR_CHAIN);
460 }
461 }
462
463 /* Compute the sample period for a given counter value */
compute_period(struct kvm_pmc * pmc,u64 counter)464 static u64 compute_period(struct kvm_pmc *pmc, u64 counter)
465 {
466 u64 val;
467
468 if (kvm_pmc_is_64bit(pmc) && kvm_pmc_has_64bit_overflow(pmc))
469 val = (-counter) & GENMASK(63, 0);
470 else
471 val = (-counter) & GENMASK(31, 0);
472
473 return val;
474 }
475
476 /**
477 * When the perf event overflows, set the overflow status and inform the vcpu.
478 */
kvm_pmu_perf_overflow(struct perf_event * perf_event,struct perf_sample_data * data,struct pt_regs * regs)479 static void kvm_pmu_perf_overflow(struct perf_event *perf_event,
480 struct perf_sample_data *data,
481 struct pt_regs *regs)
482 {
483 struct kvm_pmc *pmc = perf_event->overflow_handler_context;
484 struct arm_pmu *cpu_pmu = to_arm_pmu(perf_event->pmu);
485 struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
486 int idx = pmc->idx;
487 u64 period;
488
489 cpu_pmu->pmu.stop(perf_event, PERF_EF_UPDATE);
490
491 /*
492 * Reset the sample period to the architectural limit,
493 * i.e. the point where the counter overflows.
494 */
495 period = compute_period(pmc, local64_read(&perf_event->count));
496
497 local64_set(&perf_event->hw.period_left, 0);
498 perf_event->attr.sample_period = period;
499 perf_event->hw.sample_period = period;
500
501 __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= BIT(idx);
502
503 if (kvm_pmu_counter_can_chain(pmc))
504 kvm_pmu_counter_increment(vcpu, BIT(idx + 1),
505 ARMV8_PMUV3_PERFCTR_CHAIN);
506
507 if (kvm_pmu_overflow_status(vcpu)) {
508 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
509
510 if (!in_nmi())
511 kvm_vcpu_kick(vcpu);
512 else
513 irq_work_queue(&vcpu->arch.pmu.overflow_work);
514 }
515
516 cpu_pmu->pmu.start(perf_event, PERF_EF_RELOAD);
517 }
518
519 /**
520 * kvm_pmu_software_increment - do software increment
521 * @vcpu: The vcpu pointer
522 * @val: the value guest writes to PMSWINC register
523 */
kvm_pmu_software_increment(struct kvm_vcpu * vcpu,u64 val)524 void kvm_pmu_software_increment(struct kvm_vcpu *vcpu, u64 val)
525 {
526 kvm_pmu_counter_increment(vcpu, val, ARMV8_PMUV3_PERFCTR_SW_INCR);
527 }
528
529 /**
530 * kvm_pmu_handle_pmcr - handle PMCR register
531 * @vcpu: The vcpu pointer
532 * @val: the value guest writes to PMCR register
533 */
kvm_pmu_handle_pmcr(struct kvm_vcpu * vcpu,u64 val)534 void kvm_pmu_handle_pmcr(struct kvm_vcpu *vcpu, u64 val)
535 {
536 int i;
537
538 if (!kvm_vcpu_has_pmu(vcpu))
539 return;
540
541 /* Fixup PMCR_EL0 to reconcile the PMU version and the LP bit */
542 if (!kvm_pmu_is_3p5(vcpu))
543 val &= ~ARMV8_PMU_PMCR_LP;
544
545 /* The reset bits don't indicate any state, and shouldn't be saved. */
546 __vcpu_sys_reg(vcpu, PMCR_EL0) = val & ~(ARMV8_PMU_PMCR_C | ARMV8_PMU_PMCR_P);
547
548 if (val & ARMV8_PMU_PMCR_E) {
549 kvm_pmu_enable_counter_mask(vcpu,
550 __vcpu_sys_reg(vcpu, PMCNTENSET_EL0));
551 } else {
552 kvm_pmu_disable_counter_mask(vcpu,
553 __vcpu_sys_reg(vcpu, PMCNTENSET_EL0));
554 }
555
556 if (val & ARMV8_PMU_PMCR_C)
557 kvm_pmu_set_counter_value(vcpu, ARMV8_PMU_CYCLE_IDX, 0);
558
559 if (val & ARMV8_PMU_PMCR_P) {
560 unsigned long mask = kvm_pmu_valid_counter_mask(vcpu);
561 mask &= ~BIT(ARMV8_PMU_CYCLE_IDX);
562 for_each_set_bit(i, &mask, 32)
563 kvm_pmu_set_pmc_value(kvm_vcpu_idx_to_pmc(vcpu, i), 0, true);
564 }
565 kvm_vcpu_pmu_restore_guest(vcpu);
566 }
567
kvm_pmu_counter_is_enabled(struct kvm_pmc * pmc)568 static bool kvm_pmu_counter_is_enabled(struct kvm_pmc *pmc)
569 {
570 struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
571 return (__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E) &&
572 (__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & BIT(pmc->idx));
573 }
574
575 /**
576 * kvm_pmu_create_perf_event - create a perf event for a counter
577 * @pmc: Counter context
578 */
kvm_pmu_create_perf_event(struct kvm_pmc * pmc)579 static void kvm_pmu_create_perf_event(struct kvm_pmc *pmc)
580 {
581 struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
582 struct arm_pmu *arm_pmu = vcpu->kvm->arch.arm_pmu;
583 struct perf_event *event;
584 struct perf_event_attr attr;
585 u64 eventsel, reg, data;
586
587 reg = counter_index_to_evtreg(pmc->idx);
588 data = __vcpu_sys_reg(vcpu, reg);
589
590 kvm_pmu_stop_counter(pmc);
591 if (pmc->idx == ARMV8_PMU_CYCLE_IDX)
592 eventsel = ARMV8_PMUV3_PERFCTR_CPU_CYCLES;
593 else
594 eventsel = data & kvm_pmu_event_mask(vcpu->kvm);
595
596 /*
597 * Neither SW increment nor chained events need to be backed
598 * by a perf event.
599 */
600 if (eventsel == ARMV8_PMUV3_PERFCTR_SW_INCR ||
601 eventsel == ARMV8_PMUV3_PERFCTR_CHAIN)
602 return;
603
604 /*
605 * If we have a filter in place and that the event isn't allowed, do
606 * not install a perf event either.
607 */
608 if (vcpu->kvm->arch.pmu_filter &&
609 !test_bit(eventsel, vcpu->kvm->arch.pmu_filter))
610 return;
611
612 memset(&attr, 0, sizeof(struct perf_event_attr));
613 attr.type = arm_pmu->pmu.type;
614 attr.size = sizeof(attr);
615 attr.pinned = 1;
616 attr.disabled = !kvm_pmu_counter_is_enabled(pmc);
617 attr.exclude_user = data & ARMV8_PMU_EXCLUDE_EL0 ? 1 : 0;
618 attr.exclude_kernel = data & ARMV8_PMU_EXCLUDE_EL1 ? 1 : 0;
619 attr.exclude_hv = 1; /* Don't count EL2 events */
620 attr.exclude_host = 1; /* Don't count host events */
621 attr.config = eventsel;
622
623 /*
624 * If counting with a 64bit counter, advertise it to the perf
625 * code, carefully dealing with the initial sample period
626 * which also depends on the overflow.
627 */
628 if (kvm_pmc_is_64bit(pmc))
629 attr.config1 |= PERF_ATTR_CFG1_COUNTER_64BIT;
630
631 attr.sample_period = compute_period(pmc, kvm_pmu_get_pmc_value(pmc));
632
633 event = perf_event_create_kernel_counter(&attr, -1, current,
634 kvm_pmu_perf_overflow, pmc);
635
636 if (IS_ERR(event)) {
637 pr_err_once("kvm: pmu event creation failed %ld\n",
638 PTR_ERR(event));
639 return;
640 }
641
642 pmc->perf_event = event;
643 }
644
645 /**
646 * kvm_pmu_set_counter_event_type - set selected counter to monitor some event
647 * @vcpu: The vcpu pointer
648 * @data: The data guest writes to PMXEVTYPER_EL0
649 * @select_idx: The number of selected counter
650 *
651 * When OS accesses PMXEVTYPER_EL0, that means it wants to set a PMC to count an
652 * event with given hardware event number. Here we call perf_event API to
653 * emulate this action and create a kernel perf event for it.
654 */
kvm_pmu_set_counter_event_type(struct kvm_vcpu * vcpu,u64 data,u64 select_idx)655 void kvm_pmu_set_counter_event_type(struct kvm_vcpu *vcpu, u64 data,
656 u64 select_idx)
657 {
658 struct kvm_pmc *pmc = kvm_vcpu_idx_to_pmc(vcpu, select_idx);
659 u64 reg, mask;
660
661 if (!kvm_vcpu_has_pmu(vcpu))
662 return;
663
664 mask = ARMV8_PMU_EVTYPE_MASK;
665 mask &= ~ARMV8_PMU_EVTYPE_EVENT;
666 mask |= kvm_pmu_event_mask(vcpu->kvm);
667
668 reg = counter_index_to_evtreg(pmc->idx);
669
670 __vcpu_sys_reg(vcpu, reg) = data & mask;
671
672 kvm_pmu_create_perf_event(pmc);
673 }
674
kvm_host_pmu_init(struct arm_pmu * pmu)675 void kvm_host_pmu_init(struct arm_pmu *pmu)
676 {
677 struct arm_pmu_entry *entry;
678
679 /*
680 * Check the sanitised PMU version for the system, as KVM does not
681 * support implementations where PMUv3 exists on a subset of CPUs.
682 */
683 if (!pmuv3_implemented(kvm_arm_pmu_get_pmuver_limit()))
684 return;
685
686 mutex_lock(&arm_pmus_lock);
687
688 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
689 if (!entry)
690 goto out_unlock;
691
692 entry->arm_pmu = pmu;
693 list_add_tail(&entry->entry, &arm_pmus);
694
695 if (list_is_singular(&arm_pmus))
696 static_branch_enable(&kvm_arm_pmu_available);
697
698 out_unlock:
699 mutex_unlock(&arm_pmus_lock);
700 }
701
kvm_pmu_probe_armpmu(void)702 static struct arm_pmu *kvm_pmu_probe_armpmu(void)
703 {
704 struct arm_pmu *tmp, *pmu = NULL;
705 struct arm_pmu_entry *entry;
706 int cpu;
707
708 mutex_lock(&arm_pmus_lock);
709
710 /*
711 * It is safe to use a stale cpu to iterate the list of PMUs so long as
712 * the same value is used for the entirety of the loop. Given this, and
713 * the fact that no percpu data is used for the lookup there is no need
714 * to disable preemption.
715 *
716 * It is still necessary to get a valid cpu, though, to probe for the
717 * default PMU instance as userspace is not required to specify a PMU
718 * type. In order to uphold the preexisting behavior KVM selects the
719 * PMU instance for the core where the first call to the
720 * KVM_ARM_VCPU_PMU_V3_CTRL attribute group occurs. A dependent use case
721 * would be a user with disdain of all things big.LITTLE that affines
722 * the VMM to a particular cluster of cores.
723 *
724 * In any case, userspace should just do the sane thing and use the UAPI
725 * to select a PMU type directly. But, be wary of the baggage being
726 * carried here.
727 */
728 cpu = raw_smp_processor_id();
729 list_for_each_entry(entry, &arm_pmus, entry) {
730 tmp = entry->arm_pmu;
731
732 if (cpumask_test_cpu(cpu, &tmp->supported_cpus)) {
733 pmu = tmp;
734 break;
735 }
736 }
737
738 mutex_unlock(&arm_pmus_lock);
739
740 return pmu;
741 }
742
kvm_pmu_get_pmceid(struct kvm_vcpu * vcpu,bool pmceid1)743 u64 kvm_pmu_get_pmceid(struct kvm_vcpu *vcpu, bool pmceid1)
744 {
745 unsigned long *bmap = vcpu->kvm->arch.pmu_filter;
746 u64 val, mask = 0;
747 int base, i, nr_events;
748
749 if (!kvm_vcpu_has_pmu(vcpu))
750 return 0;
751
752 if (!pmceid1) {
753 val = read_sysreg(pmceid0_el0);
754 /* always support CHAIN */
755 val |= BIT(ARMV8_PMUV3_PERFCTR_CHAIN);
756 base = 0;
757 } else {
758 val = read_sysreg(pmceid1_el0);
759 /*
760 * Don't advertise STALL_SLOT*, as PMMIR_EL0 is handled
761 * as RAZ
762 */
763 val &= ~(BIT_ULL(ARMV8_PMUV3_PERFCTR_STALL_SLOT - 32) |
764 BIT_ULL(ARMV8_PMUV3_PERFCTR_STALL_SLOT_FRONTEND - 32) |
765 BIT_ULL(ARMV8_PMUV3_PERFCTR_STALL_SLOT_BACKEND - 32));
766 base = 32;
767 }
768
769 if (!bmap)
770 return val;
771
772 nr_events = kvm_pmu_event_mask(vcpu->kvm) + 1;
773
774 for (i = 0; i < 32; i += 8) {
775 u64 byte;
776
777 byte = bitmap_get_value8(bmap, base + i);
778 mask |= byte << i;
779 if (nr_events >= (0x4000 + base + 32)) {
780 byte = bitmap_get_value8(bmap, 0x4000 + base + i);
781 mask |= byte << (32 + i);
782 }
783 }
784
785 return val & mask;
786 }
787
kvm_arm_pmu_v3_enable(struct kvm_vcpu * vcpu)788 int kvm_arm_pmu_v3_enable(struct kvm_vcpu *vcpu)
789 {
790 if (!kvm_vcpu_has_pmu(vcpu))
791 return 0;
792
793 if (!vcpu->arch.pmu.created)
794 return -EINVAL;
795
796 /*
797 * A valid interrupt configuration for the PMU is either to have a
798 * properly configured interrupt number and using an in-kernel
799 * irqchip, or to not have an in-kernel GIC and not set an IRQ.
800 */
801 if (irqchip_in_kernel(vcpu->kvm)) {
802 int irq = vcpu->arch.pmu.irq_num;
803 /*
804 * If we are using an in-kernel vgic, at this point we know
805 * the vgic will be initialized, so we can check the PMU irq
806 * number against the dimensions of the vgic and make sure
807 * it's valid.
808 */
809 if (!irq_is_ppi(irq) && !vgic_valid_spi(vcpu->kvm, irq))
810 return -EINVAL;
811 } else if (kvm_arm_pmu_irq_initialized(vcpu)) {
812 return -EINVAL;
813 }
814
815 /* One-off reload of the PMU on first run */
816 kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu);
817
818 return 0;
819 }
820
kvm_arm_pmu_v3_init(struct kvm_vcpu * vcpu)821 static int kvm_arm_pmu_v3_init(struct kvm_vcpu *vcpu)
822 {
823 if (irqchip_in_kernel(vcpu->kvm)) {
824 int ret;
825
826 /*
827 * If using the PMU with an in-kernel virtual GIC
828 * implementation, we require the GIC to be already
829 * initialized when initializing the PMU.
830 */
831 if (!vgic_initialized(vcpu->kvm))
832 return -ENODEV;
833
834 if (!kvm_arm_pmu_irq_initialized(vcpu))
835 return -ENXIO;
836
837 ret = kvm_vgic_set_owner(vcpu, vcpu->arch.pmu.irq_num,
838 &vcpu->arch.pmu);
839 if (ret)
840 return ret;
841 }
842
843 init_irq_work(&vcpu->arch.pmu.overflow_work,
844 kvm_pmu_perf_overflow_notify_vcpu);
845
846 vcpu->arch.pmu.created = true;
847 return 0;
848 }
849
850 /*
851 * For one VM the interrupt type must be same for each vcpu.
852 * As a PPI, the interrupt number is the same for all vcpus,
853 * while as an SPI it must be a separate number per vcpu.
854 */
pmu_irq_is_valid(struct kvm * kvm,int irq)855 static bool pmu_irq_is_valid(struct kvm *kvm, int irq)
856 {
857 unsigned long i;
858 struct kvm_vcpu *vcpu;
859
860 kvm_for_each_vcpu(i, vcpu, kvm) {
861 if (!kvm_arm_pmu_irq_initialized(vcpu))
862 continue;
863
864 if (irq_is_ppi(irq)) {
865 if (vcpu->arch.pmu.irq_num != irq)
866 return false;
867 } else {
868 if (vcpu->arch.pmu.irq_num == irq)
869 return false;
870 }
871 }
872
873 return true;
874 }
875
kvm_arm_pmu_v3_set_pmu(struct kvm_vcpu * vcpu,int pmu_id)876 static int kvm_arm_pmu_v3_set_pmu(struct kvm_vcpu *vcpu, int pmu_id)
877 {
878 struct kvm *kvm = vcpu->kvm;
879 struct arm_pmu_entry *entry;
880 struct arm_pmu *arm_pmu;
881 int ret = -ENXIO;
882
883 lockdep_assert_held(&kvm->arch.config_lock);
884 mutex_lock(&arm_pmus_lock);
885
886 list_for_each_entry(entry, &arm_pmus, entry) {
887 arm_pmu = entry->arm_pmu;
888 if (arm_pmu->pmu.type == pmu_id) {
889 if (kvm_vm_has_ran_once(kvm) ||
890 (kvm->arch.pmu_filter && kvm->arch.arm_pmu != arm_pmu)) {
891 ret = -EBUSY;
892 break;
893 }
894
895 kvm->arch.arm_pmu = arm_pmu;
896 cpumask_copy(kvm->arch.supported_cpus, &arm_pmu->supported_cpus);
897 ret = 0;
898 break;
899 }
900 }
901
902 mutex_unlock(&arm_pmus_lock);
903 return ret;
904 }
905
kvm_arm_pmu_v3_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)906 int kvm_arm_pmu_v3_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
907 {
908 struct kvm *kvm = vcpu->kvm;
909
910 lockdep_assert_held(&kvm->arch.config_lock);
911
912 if (!kvm_vcpu_has_pmu(vcpu))
913 return -ENODEV;
914
915 if (vcpu->arch.pmu.created)
916 return -EBUSY;
917
918 if (!kvm->arch.arm_pmu) {
919 /*
920 * No PMU set, get the default one.
921 *
922 * The observant among you will notice that the supported_cpus
923 * mask does not get updated for the default PMU even though it
924 * is quite possible the selected instance supports only a
925 * subset of cores in the system. This is intentional, and
926 * upholds the preexisting behavior on heterogeneous systems
927 * where vCPUs can be scheduled on any core but the guest
928 * counters could stop working.
929 */
930 kvm->arch.arm_pmu = kvm_pmu_probe_armpmu();
931 if (!kvm->arch.arm_pmu)
932 return -ENODEV;
933 }
934
935 switch (attr->attr) {
936 case KVM_ARM_VCPU_PMU_V3_IRQ: {
937 int __user *uaddr = (int __user *)(long)attr->addr;
938 int irq;
939
940 if (!irqchip_in_kernel(kvm))
941 return -EINVAL;
942
943 if (get_user(irq, uaddr))
944 return -EFAULT;
945
946 /* The PMU overflow interrupt can be a PPI or a valid SPI. */
947 if (!(irq_is_ppi(irq) || irq_is_spi(irq)))
948 return -EINVAL;
949
950 if (!pmu_irq_is_valid(kvm, irq))
951 return -EINVAL;
952
953 if (kvm_arm_pmu_irq_initialized(vcpu))
954 return -EBUSY;
955
956 kvm_debug("Set kvm ARM PMU irq: %d\n", irq);
957 vcpu->arch.pmu.irq_num = irq;
958 return 0;
959 }
960 case KVM_ARM_VCPU_PMU_V3_FILTER: {
961 u8 pmuver = kvm_arm_pmu_get_pmuver_limit();
962 struct kvm_pmu_event_filter __user *uaddr;
963 struct kvm_pmu_event_filter filter;
964 int nr_events;
965
966 /*
967 * Allow userspace to specify an event filter for the entire
968 * event range supported by PMUVer of the hardware, rather
969 * than the guest's PMUVer for KVM backward compatibility.
970 */
971 nr_events = __kvm_pmu_event_mask(pmuver) + 1;
972
973 uaddr = (struct kvm_pmu_event_filter __user *)(long)attr->addr;
974
975 if (copy_from_user(&filter, uaddr, sizeof(filter)))
976 return -EFAULT;
977
978 if (((u32)filter.base_event + filter.nevents) > nr_events ||
979 (filter.action != KVM_PMU_EVENT_ALLOW &&
980 filter.action != KVM_PMU_EVENT_DENY))
981 return -EINVAL;
982
983 if (kvm_vm_has_ran_once(kvm))
984 return -EBUSY;
985
986 if (!kvm->arch.pmu_filter) {
987 kvm->arch.pmu_filter = bitmap_alloc(nr_events, GFP_KERNEL_ACCOUNT);
988 if (!kvm->arch.pmu_filter)
989 return -ENOMEM;
990
991 /*
992 * The default depends on the first applied filter.
993 * If it allows events, the default is to deny.
994 * Conversely, if the first filter denies a set of
995 * events, the default is to allow.
996 */
997 if (filter.action == KVM_PMU_EVENT_ALLOW)
998 bitmap_zero(kvm->arch.pmu_filter, nr_events);
999 else
1000 bitmap_fill(kvm->arch.pmu_filter, nr_events);
1001 }
1002
1003 if (filter.action == KVM_PMU_EVENT_ALLOW)
1004 bitmap_set(kvm->arch.pmu_filter, filter.base_event, filter.nevents);
1005 else
1006 bitmap_clear(kvm->arch.pmu_filter, filter.base_event, filter.nevents);
1007
1008 return 0;
1009 }
1010 case KVM_ARM_VCPU_PMU_V3_SET_PMU: {
1011 int __user *uaddr = (int __user *)(long)attr->addr;
1012 int pmu_id;
1013
1014 if (get_user(pmu_id, uaddr))
1015 return -EFAULT;
1016
1017 return kvm_arm_pmu_v3_set_pmu(vcpu, pmu_id);
1018 }
1019 case KVM_ARM_VCPU_PMU_V3_INIT:
1020 return kvm_arm_pmu_v3_init(vcpu);
1021 }
1022
1023 return -ENXIO;
1024 }
1025
kvm_arm_pmu_v3_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1026 int kvm_arm_pmu_v3_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1027 {
1028 switch (attr->attr) {
1029 case KVM_ARM_VCPU_PMU_V3_IRQ: {
1030 int __user *uaddr = (int __user *)(long)attr->addr;
1031 int irq;
1032
1033 if (!irqchip_in_kernel(vcpu->kvm))
1034 return -EINVAL;
1035
1036 if (!kvm_vcpu_has_pmu(vcpu))
1037 return -ENODEV;
1038
1039 if (!kvm_arm_pmu_irq_initialized(vcpu))
1040 return -ENXIO;
1041
1042 irq = vcpu->arch.pmu.irq_num;
1043 return put_user(irq, uaddr);
1044 }
1045 }
1046
1047 return -ENXIO;
1048 }
1049
kvm_arm_pmu_v3_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1050 int kvm_arm_pmu_v3_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1051 {
1052 switch (attr->attr) {
1053 case KVM_ARM_VCPU_PMU_V3_IRQ:
1054 case KVM_ARM_VCPU_PMU_V3_INIT:
1055 case KVM_ARM_VCPU_PMU_V3_FILTER:
1056 case KVM_ARM_VCPU_PMU_V3_SET_PMU:
1057 if (kvm_vcpu_has_pmu(vcpu))
1058 return 0;
1059 }
1060
1061 return -ENXIO;
1062 }
1063
kvm_arm_pmu_get_pmuver_limit(void)1064 u8 kvm_arm_pmu_get_pmuver_limit(void)
1065 {
1066 u64 tmp;
1067
1068 tmp = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1069 tmp = cpuid_feature_cap_perfmon_field(tmp,
1070 ID_AA64DFR0_EL1_PMUVer_SHIFT,
1071 ID_AA64DFR0_EL1_PMUVer_V3P5);
1072 return FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer), tmp);
1073 }
1074