1 /*
2 * ARM implementation of KVM hooks
3 *
4 * Copyright Christoffer Dall 2009-2010
5 * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
6 * Copyright Alex Bennée 2014, Linaro
7 *
8 * This work is licensed under the terms of the GNU GPL, version 2 or later.
9 * See the COPYING file in the top-level directory.
10 *
11 */
12
13 #include "qemu/osdep.h"
14 #include <sys/ioctl.h>
15
16 #include <linux/kvm.h>
17
18 #include "qemu/timer.h"
19 #include "qemu/error-report.h"
20 #include "qemu/main-loop.h"
21 #include "qom/object.h"
22 #include "qapi/error.h"
23 #include "system/system.h"
24 #include "system/runstate.h"
25 #include "system/kvm.h"
26 #include "system/kvm_int.h"
27 #include "kvm_arm.h"
28 #include "cpu.h"
29 #include "cpu-sysregs.h"
30 #include "trace.h"
31 #include "internals.h"
32 #include "hw/pci/pci.h"
33 #include "exec/memattrs.h"
34 #include "system/address-spaces.h"
35 #include "gdbstub/enums.h"
36 #include "hw/boards.h"
37 #include "hw/irq.h"
38 #include "qapi/visitor.h"
39 #include "qemu/log.h"
40 #include "hw/acpi/acpi.h"
41 #include "hw/acpi/ghes.h"
42 #include "target/arm/gtimer.h"
43 #include "migration/blocker.h"
44
45 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
46 KVM_CAP_INFO(DEVICE_CTRL),
47 KVM_CAP_LAST_INFO
48 };
49
50 static bool cap_has_mp_state;
51 static bool cap_has_inject_serror_esr;
52 static bool cap_has_inject_ext_dabt;
53
54 /**
55 * ARMHostCPUFeatures: information about the host CPU (identified
56 * by asking the host kernel)
57 */
58 typedef struct ARMHostCPUFeatures {
59 ARMISARegisters isar;
60 uint64_t features;
61 uint32_t target;
62 const char *dtb_compatible;
63 } ARMHostCPUFeatures;
64
65 static ARMHostCPUFeatures arm_host_cpu_features;
66
67 /**
68 * kvm_arm_vcpu_init:
69 * @cpu: ARMCPU
70 *
71 * Initialize (or reinitialize) the VCPU by invoking the
72 * KVM_ARM_VCPU_INIT ioctl with the CPU type and feature
73 * bitmask specified in the CPUState.
74 *
75 * Returns: 0 if success else < 0 error code
76 */
kvm_arm_vcpu_init(ARMCPU * cpu)77 static int kvm_arm_vcpu_init(ARMCPU *cpu)
78 {
79 struct kvm_vcpu_init init;
80
81 init.target = cpu->kvm_target;
82 memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
83
84 return kvm_vcpu_ioctl(CPU(cpu), KVM_ARM_VCPU_INIT, &init);
85 }
86
87 /**
88 * kvm_arm_vcpu_finalize:
89 * @cpu: ARMCPU
90 * @feature: feature to finalize
91 *
92 * Finalizes the configuration of the specified VCPU feature by
93 * invoking the KVM_ARM_VCPU_FINALIZE ioctl. Features requiring
94 * this are documented in the "KVM_ARM_VCPU_FINALIZE" section of
95 * KVM's API documentation.
96 *
97 * Returns: 0 if success else < 0 error code
98 */
kvm_arm_vcpu_finalize(ARMCPU * cpu,int feature)99 static int kvm_arm_vcpu_finalize(ARMCPU *cpu, int feature)
100 {
101 return kvm_vcpu_ioctl(CPU(cpu), KVM_ARM_VCPU_FINALIZE, &feature);
102 }
103
kvm_arm_create_scratch_host_vcpu(int * fdarray,struct kvm_vcpu_init * init)104 bool kvm_arm_create_scratch_host_vcpu(int *fdarray,
105 struct kvm_vcpu_init *init)
106 {
107 int ret = 0, kvmfd = -1, vmfd = -1, cpufd = -1;
108 int max_vm_pa_size;
109
110 kvmfd = qemu_open_old("/dev/kvm", O_RDWR);
111 if (kvmfd < 0) {
112 goto err;
113 }
114 max_vm_pa_size = ioctl(kvmfd, KVM_CHECK_EXTENSION, KVM_CAP_ARM_VM_IPA_SIZE);
115 if (max_vm_pa_size < 0) {
116 max_vm_pa_size = 0;
117 }
118 do {
119 vmfd = ioctl(kvmfd, KVM_CREATE_VM, max_vm_pa_size);
120 } while (vmfd == -1 && errno == EINTR);
121 if (vmfd < 0) {
122 goto err;
123 }
124
125 /*
126 * The MTE capability must be enabled by the VMM before creating
127 * any VCPUs in order to allow the MTE bits of the ID_AA64PFR1
128 * register to be probed correctly, as they are masked if MTE
129 * is not enabled.
130 */
131 if (kvm_arm_mte_supported()) {
132 KVMState kvm_state;
133
134 kvm_state.fd = kvmfd;
135 kvm_state.vmfd = vmfd;
136 kvm_vm_enable_cap(&kvm_state, KVM_CAP_ARM_MTE, 0);
137 }
138
139 cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
140 if (cpufd < 0) {
141 goto err;
142 }
143
144 if (!init) {
145 /* Caller doesn't want the VCPU to be initialized, so skip it */
146 goto finish;
147 }
148
149 if (init->target == -1) {
150 struct kvm_vcpu_init preferred;
151
152 ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, &preferred);
153 if (ret < 0) {
154 goto err;
155 }
156 init->target = preferred.target;
157 }
158 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
159 if (ret < 0) {
160 goto err;
161 }
162
163 finish:
164 fdarray[0] = kvmfd;
165 fdarray[1] = vmfd;
166 fdarray[2] = cpufd;
167
168 return true;
169
170 err:
171 if (cpufd >= 0) {
172 close(cpufd);
173 }
174 if (vmfd >= 0) {
175 close(vmfd);
176 }
177 if (kvmfd >= 0) {
178 close(kvmfd);
179 }
180
181 return false;
182 }
183
kvm_arm_destroy_scratch_host_vcpu(int * fdarray)184 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
185 {
186 int i;
187
188 for (i = 2; i >= 0; i--) {
189 close(fdarray[i]);
190 }
191 }
192
read_sys_reg32(int fd,uint32_t * pret,uint64_t id)193 static int read_sys_reg32(int fd, uint32_t *pret, uint64_t id)
194 {
195 uint64_t ret;
196 struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)&ret };
197 int err;
198
199 assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
200 err = ioctl(fd, KVM_GET_ONE_REG, &idreg);
201 if (err < 0) {
202 return -1;
203 }
204 *pret = ret;
205 return 0;
206 }
207
read_sys_reg64(int fd,uint64_t * pret,uint64_t id)208 static int read_sys_reg64(int fd, uint64_t *pret, uint64_t id)
209 {
210 struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)pret };
211
212 assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
213 return ioctl(fd, KVM_GET_ONE_REG, &idreg);
214 }
215
kvm_arm_pauth_supported(void)216 static bool kvm_arm_pauth_supported(void)
217 {
218 return (kvm_check_extension(kvm_state, KVM_CAP_ARM_PTRAUTH_ADDRESS) &&
219 kvm_check_extension(kvm_state, KVM_CAP_ARM_PTRAUTH_GENERIC));
220 }
221
222
idregs_sysreg_to_kvm_reg(ARMSysRegs sysreg)223 static uint64_t idregs_sysreg_to_kvm_reg(ARMSysRegs sysreg)
224 {
225 return ARM64_SYS_REG((sysreg & CP_REG_ARM64_SYSREG_OP0_MASK) >> CP_REG_ARM64_SYSREG_OP0_SHIFT,
226 (sysreg & CP_REG_ARM64_SYSREG_OP1_MASK) >> CP_REG_ARM64_SYSREG_OP1_SHIFT,
227 (sysreg & CP_REG_ARM64_SYSREG_CRN_MASK) >> CP_REG_ARM64_SYSREG_CRN_SHIFT,
228 (sysreg & CP_REG_ARM64_SYSREG_CRM_MASK) >> CP_REG_ARM64_SYSREG_CRM_SHIFT,
229 (sysreg & CP_REG_ARM64_SYSREG_OP2_MASK) >> CP_REG_ARM64_SYSREG_OP2_SHIFT);
230 }
231
232 /* read a sysreg value and store it in the idregs */
get_host_cpu_reg(int fd,ARMHostCPUFeatures * ahcf,ARMIDRegisterIdx index)233 static int get_host_cpu_reg(int fd, ARMHostCPUFeatures *ahcf,
234 ARMIDRegisterIdx index)
235 {
236 uint64_t *reg;
237 int ret;
238
239 reg = &ahcf->isar.idregs[index];
240 ret = read_sys_reg64(fd, reg,
241 idregs_sysreg_to_kvm_reg(id_register_sysreg[index]));
242 return ret;
243 }
244
kvm_arm_get_host_cpu_features(ARMHostCPUFeatures * ahcf)245 static bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
246 {
247 /* Identify the feature bits corresponding to the host CPU, and
248 * fill out the ARMHostCPUClass fields accordingly. To do this
249 * we have to create a scratch VM, create a single CPU inside it,
250 * and then query that CPU for the relevant ID registers.
251 */
252 int fdarray[3];
253 bool sve_supported;
254 bool el2_supported;
255 bool pmu_supported = false;
256 uint64_t features = 0;
257 int err;
258
259 /*
260 * target = -1 informs kvm_arm_create_scratch_host_vcpu()
261 * to use the preferred target
262 */
263 struct kvm_vcpu_init init = { .target = -1, };
264
265 /*
266 * Ask for SVE if supported, so that we can query ID_AA64ZFR0,
267 * which is otherwise RAZ.
268 */
269 sve_supported = kvm_arm_sve_supported();
270 if (sve_supported) {
271 init.features[0] |= 1 << KVM_ARM_VCPU_SVE;
272 }
273
274 /*
275 * Ask for EL2 if supported.
276 */
277 el2_supported = kvm_arm_el2_supported();
278 if (el2_supported) {
279 init.features[0] |= 1 << KVM_ARM_VCPU_HAS_EL2;
280 }
281
282 /*
283 * Ask for Pointer Authentication if supported, so that we get
284 * the unsanitized field values for AA64ISAR1_EL1.
285 */
286 if (kvm_arm_pauth_supported()) {
287 init.features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS |
288 1 << KVM_ARM_VCPU_PTRAUTH_GENERIC);
289 }
290
291 if (kvm_arm_pmu_supported()) {
292 init.features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
293 pmu_supported = true;
294 features |= 1ULL << ARM_FEATURE_PMU;
295 }
296
297 if (!kvm_arm_create_scratch_host_vcpu(fdarray, &init)) {
298 return false;
299 }
300
301 ahcf->target = init.target;
302 ahcf->dtb_compatible = "arm,armv8";
303 int fd = fdarray[2];
304
305 err = get_host_cpu_reg(fd, ahcf, ID_AA64PFR0_EL1_IDX);
306 if (unlikely(err < 0)) {
307 /*
308 * Before v4.15, the kernel only exposed a limited number of system
309 * registers, not including any of the interesting AArch64 ID regs.
310 * For the most part we could leave these fields as zero with minimal
311 * effect, since this does not affect the values seen by the guest.
312 *
313 * However, it could cause problems down the line for QEMU,
314 * so provide a minimal v8.0 default.
315 *
316 * ??? Could read MIDR and use knowledge from cpu64.c.
317 * ??? Could map a page of memory into our temp guest and
318 * run the tiniest of hand-crafted kernels to extract
319 * the values seen by the guest.
320 * ??? Either of these sounds like too much effort just
321 * to work around running a modern host kernel.
322 */
323 SET_IDREG(&ahcf->isar, ID_AA64PFR0, 0x00000011); /* EL1&0, AArch64 only */
324 err = 0;
325 } else {
326 err |= get_host_cpu_reg(fd, ahcf, ID_AA64PFR1_EL1_IDX);
327 err |= get_host_cpu_reg(fd, ahcf, ID_AA64SMFR0_EL1_IDX);
328 err |= get_host_cpu_reg(fd, ahcf, ID_AA64DFR0_EL1_IDX);
329 err |= get_host_cpu_reg(fd, ahcf, ID_AA64DFR1_EL1_IDX);
330 err |= get_host_cpu_reg(fd, ahcf, ID_AA64ISAR0_EL1_IDX);
331 err |= get_host_cpu_reg(fd, ahcf, ID_AA64ISAR1_EL1_IDX);
332 err |= get_host_cpu_reg(fd, ahcf, ID_AA64ISAR2_EL1_IDX);
333 err |= get_host_cpu_reg(fd, ahcf, ID_AA64MMFR0_EL1_IDX);
334 err |= get_host_cpu_reg(fd, ahcf, ID_AA64MMFR1_EL1_IDX);
335 err |= get_host_cpu_reg(fd, ahcf, ID_AA64MMFR2_EL1_IDX);
336 err |= get_host_cpu_reg(fd, ahcf, ID_AA64MMFR3_EL1_IDX);
337
338 /*
339 * Note that if AArch32 support is not present in the host,
340 * the AArch32 sysregs are present to be read, but will
341 * return UNKNOWN values. This is neither better nor worse
342 * than skipping the reads and leaving 0, as we must avoid
343 * considering the values in every case.
344 */
345 err |= get_host_cpu_reg(fd, ahcf, ID_PFR0_EL1_IDX);
346 err |= get_host_cpu_reg(fd, ahcf, ID_PFR1_EL1_IDX);
347 err |= get_host_cpu_reg(fd, ahcf, ID_DFR0_EL1_IDX);
348 err |= get_host_cpu_reg(fd, ahcf, ID_MMFR0_EL1_IDX);
349 err |= get_host_cpu_reg(fd, ahcf, ID_MMFR1_EL1_IDX);
350 err |= get_host_cpu_reg(fd, ahcf, ID_MMFR2_EL1_IDX);
351 err |= get_host_cpu_reg(fd, ahcf, ID_MMFR3_EL1_IDX);
352 err |= get_host_cpu_reg(fd, ahcf, ID_ISAR0_EL1_IDX);
353 err |= get_host_cpu_reg(fd, ahcf, ID_ISAR1_EL1_IDX);
354 err |= get_host_cpu_reg(fd, ahcf, ID_ISAR2_EL1_IDX);
355 err |= get_host_cpu_reg(fd, ahcf, ID_ISAR3_EL1_IDX);
356 err |= get_host_cpu_reg(fd, ahcf, ID_ISAR4_EL1_IDX);
357 err |= get_host_cpu_reg(fd, ahcf, ID_ISAR5_EL1_IDX);
358 err |= get_host_cpu_reg(fd, ahcf, ID_ISAR6_EL1_IDX);
359 err |= get_host_cpu_reg(fd, ahcf, ID_MMFR4_EL1_IDX);
360
361 err |= read_sys_reg32(fd, &ahcf->isar.mvfr0,
362 ARM64_SYS_REG(3, 0, 0, 3, 0));
363 err |= read_sys_reg32(fd, &ahcf->isar.mvfr1,
364 ARM64_SYS_REG(3, 0, 0, 3, 1));
365 err |= read_sys_reg32(fd, &ahcf->isar.mvfr2,
366 ARM64_SYS_REG(3, 0, 0, 3, 2));
367 err |= get_host_cpu_reg(fd, ahcf, ID_PFR2_EL1_IDX);
368 err |= get_host_cpu_reg(fd, ahcf, ID_DFR1_EL1_IDX);
369 err |= get_host_cpu_reg(fd, ahcf, ID_MMFR5_EL1_IDX);
370
371 /*
372 * DBGDIDR is a bit complicated because the kernel doesn't
373 * provide an accessor for it in 64-bit mode, which is what this
374 * scratch VM is in, and there's no architected "64-bit sysreg
375 * which reads the same as the 32-bit register" the way there is
376 * for other ID registers. Instead we synthesize a value from the
377 * AArch64 ID_AA64DFR0, the same way the kernel code in
378 * arch/arm64/kvm/sys_regs.c:trap_dbgidr() does.
379 * We only do this if the CPU supports AArch32 at EL1.
380 */
381 if (FIELD_EX32_IDREG(&ahcf->isar, ID_AA64PFR0, EL1) >= 2) {
382 int wrps = FIELD_EX64_IDREG(&ahcf->isar, ID_AA64DFR0, WRPS);
383 int brps = FIELD_EX64_IDREG(&ahcf->isar, ID_AA64DFR0, BRPS);
384 int ctx_cmps =
385 FIELD_EX64_IDREG(&ahcf->isar, ID_AA64DFR0, CTX_CMPS);
386 int version = 6; /* ARMv8 debug architecture */
387 bool has_el3 =
388 !!FIELD_EX32_IDREG(&ahcf->isar, ID_AA64PFR0, EL3);
389 uint32_t dbgdidr = 0;
390
391 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, WRPS, wrps);
392 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, BRPS, brps);
393 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, CTX_CMPS, ctx_cmps);
394 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, VERSION, version);
395 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, NSUHD_IMP, has_el3);
396 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, SE_IMP, has_el3);
397 dbgdidr |= (1 << 15); /* RES1 bit */
398 ahcf->isar.dbgdidr = dbgdidr;
399 }
400
401 if (pmu_supported) {
402 /* PMCR_EL0 is only accessible if the vCPU has feature PMU_V3 */
403 err |= read_sys_reg64(fd, &ahcf->isar.reset_pmcr_el0,
404 ARM64_SYS_REG(3, 3, 9, 12, 0));
405 }
406
407 if (sve_supported) {
408 /*
409 * There is a range of kernels between kernel commit 73433762fcae
410 * and f81cb2c3ad41 which have a bug where the kernel doesn't
411 * expose SYS_ID_AA64ZFR0_EL1 via the ONE_REG API unless the VM has
412 * enabled SVE support, which resulted in an error rather than RAZ.
413 * So only read the register if we set KVM_ARM_VCPU_SVE above.
414 */
415 err |= get_host_cpu_reg(fd, ahcf, ID_AA64ZFR0_EL1_IDX);
416 }
417 }
418
419 kvm_arm_destroy_scratch_host_vcpu(fdarray);
420
421 if (err < 0) {
422 return false;
423 }
424
425 /*
426 * We can assume any KVM supporting CPU is at least a v8
427 * with VFPv4+Neon; this in turn implies most of the other
428 * feature bits.
429 */
430 features |= 1ULL << ARM_FEATURE_V8;
431 features |= 1ULL << ARM_FEATURE_NEON;
432 features |= 1ULL << ARM_FEATURE_AARCH64;
433 features |= 1ULL << ARM_FEATURE_GENERIC_TIMER;
434
435 if (el2_supported) {
436 features |= 1ULL << ARM_FEATURE_EL2;
437 }
438
439 ahcf->features = features;
440
441 return true;
442 }
443
kvm_arm_set_cpu_features_from_host(ARMCPU * cpu)444 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
445 {
446 CPUARMState *env = &cpu->env;
447
448 if (!arm_host_cpu_features.dtb_compatible) {
449 if (!kvm_enabled() ||
450 !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) {
451 /* We can't report this error yet, so flag that we need to
452 * in arm_cpu_realizefn().
453 */
454 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
455 cpu->host_cpu_probe_failed = true;
456 return;
457 }
458 }
459
460 cpu->kvm_target = arm_host_cpu_features.target;
461 cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
462 cpu->isar = arm_host_cpu_features.isar;
463 env->features = arm_host_cpu_features.features;
464 }
465
kvm_no_adjvtime_get(Object * obj,Error ** errp)466 static bool kvm_no_adjvtime_get(Object *obj, Error **errp)
467 {
468 return !ARM_CPU(obj)->kvm_adjvtime;
469 }
470
kvm_no_adjvtime_set(Object * obj,bool value,Error ** errp)471 static void kvm_no_adjvtime_set(Object *obj, bool value, Error **errp)
472 {
473 ARM_CPU(obj)->kvm_adjvtime = !value;
474 }
475
kvm_steal_time_get(Object * obj,Error ** errp)476 static bool kvm_steal_time_get(Object *obj, Error **errp)
477 {
478 return ARM_CPU(obj)->kvm_steal_time != ON_OFF_AUTO_OFF;
479 }
480
kvm_steal_time_set(Object * obj,bool value,Error ** errp)481 static void kvm_steal_time_set(Object *obj, bool value, Error **errp)
482 {
483 ARM_CPU(obj)->kvm_steal_time = value ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
484 }
485
486 /* KVM VCPU properties should be prefixed with "kvm-". */
kvm_arm_add_vcpu_properties(ARMCPU * cpu)487 void kvm_arm_add_vcpu_properties(ARMCPU *cpu)
488 {
489 CPUARMState *env = &cpu->env;
490 Object *obj = OBJECT(cpu);
491
492 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
493 cpu->kvm_adjvtime = true;
494 object_property_add_bool(obj, "kvm-no-adjvtime", kvm_no_adjvtime_get,
495 kvm_no_adjvtime_set);
496 object_property_set_description(obj, "kvm-no-adjvtime",
497 "Set on to disable the adjustment of "
498 "the virtual counter. VM stopped time "
499 "will be counted.");
500 }
501
502 cpu->kvm_steal_time = ON_OFF_AUTO_AUTO;
503 object_property_add_bool(obj, "kvm-steal-time", kvm_steal_time_get,
504 kvm_steal_time_set);
505 object_property_set_description(obj, "kvm-steal-time",
506 "Set off to disable KVM steal time.");
507 }
508
kvm_arm_pmu_supported(void)509 bool kvm_arm_pmu_supported(void)
510 {
511 return kvm_check_extension(kvm_state, KVM_CAP_ARM_PMU_V3);
512 }
513
kvm_arm_get_max_vm_ipa_size(MachineState * ms,bool * fixed_ipa)514 int kvm_arm_get_max_vm_ipa_size(MachineState *ms, bool *fixed_ipa)
515 {
516 KVMState *s = KVM_STATE(ms->accelerator);
517 int ret;
518
519 ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE);
520 *fixed_ipa = ret <= 0;
521
522 return ret > 0 ? ret : 40;
523 }
524
kvm_arch_get_default_type(MachineState * ms)525 int kvm_arch_get_default_type(MachineState *ms)
526 {
527 bool fixed_ipa;
528 int size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa);
529 return fixed_ipa ? 0 : size;
530 }
531
kvm_arch_init(MachineState * ms,KVMState * s)532 int kvm_arch_init(MachineState *ms, KVMState *s)
533 {
534 int ret = 0;
535 /* For ARM interrupt delivery is always asynchronous,
536 * whether we are using an in-kernel VGIC or not.
537 */
538 kvm_async_interrupts_allowed = true;
539
540 /*
541 * PSCI wakes up secondary cores, so we always need to
542 * have vCPUs waiting in kernel space
543 */
544 kvm_halt_in_kernel_allowed = true;
545
546 cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
547
548 /* Check whether user space can specify guest syndrome value */
549 cap_has_inject_serror_esr =
550 kvm_check_extension(s, KVM_CAP_ARM_INJECT_SERROR_ESR);
551
552 if (ms->smp.cpus > 256 &&
553 !kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) {
554 error_report("Using more than 256 vcpus requires a host kernel "
555 "with KVM_CAP_ARM_IRQ_LINE_LAYOUT_2");
556 ret = -EINVAL;
557 }
558
559 if (kvm_check_extension(s, KVM_CAP_ARM_NISV_TO_USER)) {
560 if (kvm_vm_enable_cap(s, KVM_CAP_ARM_NISV_TO_USER, 0)) {
561 error_report("Failed to enable KVM_CAP_ARM_NISV_TO_USER cap");
562 } else {
563 /* Set status for supporting the external dabt injection */
564 cap_has_inject_ext_dabt = kvm_check_extension(s,
565 KVM_CAP_ARM_INJECT_EXT_DABT);
566 }
567 }
568
569 if (s->kvm_eager_split_size) {
570 uint32_t sizes;
571
572 sizes = kvm_vm_check_extension(s, KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES);
573 if (!sizes) {
574 s->kvm_eager_split_size = 0;
575 warn_report("Eager Page Split support not available");
576 } else if (!(s->kvm_eager_split_size & sizes)) {
577 error_report("Eager Page Split requested chunk size not valid");
578 ret = -EINVAL;
579 } else {
580 ret = kvm_vm_enable_cap(s, KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE, 0,
581 s->kvm_eager_split_size);
582 if (ret < 0) {
583 error_report("Enabling of Eager Page Split failed: %s",
584 strerror(-ret));
585 }
586 }
587 }
588
589 max_hw_wps = kvm_check_extension(s, KVM_CAP_GUEST_DEBUG_HW_WPS);
590 hw_watchpoints = g_array_sized_new(true, true,
591 sizeof(HWWatchpoint), max_hw_wps);
592
593 max_hw_bps = kvm_check_extension(s, KVM_CAP_GUEST_DEBUG_HW_BPS);
594 hw_breakpoints = g_array_sized_new(true, true,
595 sizeof(HWBreakpoint), max_hw_bps);
596
597 return ret;
598 }
599
kvm_arch_vcpu_id(CPUState * cpu)600 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
601 {
602 return cpu->cpu_index;
603 }
604
605 /* We track all the KVM devices which need their memory addresses
606 * passing to the kernel in a list of these structures.
607 * When board init is complete we run through the list and
608 * tell the kernel the base addresses of the memory regions.
609 * We use a MemoryListener to track mapping and unmapping of
610 * the regions during board creation, so the board models don't
611 * need to do anything special for the KVM case.
612 *
613 * Sometimes the address must be OR'ed with some other fields
614 * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION).
615 * @kda_addr_ormask aims at storing the value of those fields.
616 */
617 typedef struct KVMDevice {
618 struct kvm_arm_device_addr kda;
619 struct kvm_device_attr kdattr;
620 uint64_t kda_addr_ormask;
621 MemoryRegion *mr;
622 QSLIST_ENTRY(KVMDevice) entries;
623 int dev_fd;
624 } KVMDevice;
625
626 static QSLIST_HEAD(, KVMDevice) kvm_devices_head;
627
kvm_arm_devlistener_add(MemoryListener * listener,MemoryRegionSection * section)628 static void kvm_arm_devlistener_add(MemoryListener *listener,
629 MemoryRegionSection *section)
630 {
631 KVMDevice *kd;
632
633 QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
634 if (section->mr == kd->mr) {
635 kd->kda.addr = section->offset_within_address_space;
636 }
637 }
638 }
639
kvm_arm_devlistener_del(MemoryListener * listener,MemoryRegionSection * section)640 static void kvm_arm_devlistener_del(MemoryListener *listener,
641 MemoryRegionSection *section)
642 {
643 KVMDevice *kd;
644
645 QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
646 if (section->mr == kd->mr) {
647 kd->kda.addr = -1;
648 }
649 }
650 }
651
652 static MemoryListener devlistener = {
653 .name = "kvm-arm",
654 .region_add = kvm_arm_devlistener_add,
655 .region_del = kvm_arm_devlistener_del,
656 .priority = MEMORY_LISTENER_PRIORITY_MIN,
657 };
658
kvm_arm_set_device_addr(KVMDevice * kd)659 static void kvm_arm_set_device_addr(KVMDevice *kd)
660 {
661 struct kvm_device_attr *attr = &kd->kdattr;
662 int ret;
663 uint64_t addr = kd->kda.addr;
664
665 addr |= kd->kda_addr_ormask;
666 attr->addr = (uintptr_t)&addr;
667 ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
668
669 if (ret < 0) {
670 fprintf(stderr, "Failed to set device address: %s\n",
671 strerror(-ret));
672 abort();
673 }
674 }
675
kvm_arm_machine_init_done(Notifier * notifier,void * data)676 static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
677 {
678 KVMDevice *kd, *tkd;
679
680 QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
681 if (kd->kda.addr != -1) {
682 kvm_arm_set_device_addr(kd);
683 }
684 memory_region_unref(kd->mr);
685 QSLIST_REMOVE_HEAD(&kvm_devices_head, entries);
686 g_free(kd);
687 }
688 memory_listener_unregister(&devlistener);
689 }
690
691 static Notifier notify = {
692 .notify = kvm_arm_machine_init_done,
693 };
694
kvm_arm_register_device(MemoryRegion * mr,uint64_t devid,uint64_t group,uint64_t attr,int dev_fd,uint64_t addr_ormask)695 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
696 uint64_t attr, int dev_fd, uint64_t addr_ormask)
697 {
698 KVMDevice *kd;
699
700 if (!kvm_irqchip_in_kernel()) {
701 return;
702 }
703
704 if (QSLIST_EMPTY(&kvm_devices_head)) {
705 memory_listener_register(&devlistener, &address_space_memory);
706 qemu_add_machine_init_done_notifier(¬ify);
707 }
708 kd = g_new0(KVMDevice, 1);
709 kd->mr = mr;
710 kd->kda.id = devid;
711 kd->kda.addr = -1;
712 kd->kdattr.flags = 0;
713 kd->kdattr.group = group;
714 kd->kdattr.attr = attr;
715 kd->dev_fd = dev_fd;
716 kd->kda_addr_ormask = addr_ormask;
717 QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
718 memory_region_ref(kd->mr);
719 }
720
compare_u64(const void * a,const void * b)721 static int compare_u64(const void *a, const void *b)
722 {
723 if (*(uint64_t *)a > *(uint64_t *)b) {
724 return 1;
725 }
726 if (*(uint64_t *)a < *(uint64_t *)b) {
727 return -1;
728 }
729 return 0;
730 }
731
732 /*
733 * cpreg_values are sorted in ascending order by KVM register ID
734 * (see kvm_arm_init_cpreg_list). This allows us to cheaply find
735 * the storage for a KVM register by ID with a binary search.
736 */
kvm_arm_get_cpreg_ptr(ARMCPU * cpu,uint64_t regidx)737 static uint64_t *kvm_arm_get_cpreg_ptr(ARMCPU *cpu, uint64_t regidx)
738 {
739 uint64_t *res;
740
741 res = bsearch(®idx, cpu->cpreg_indexes, cpu->cpreg_array_len,
742 sizeof(uint64_t), compare_u64);
743 assert(res);
744
745 return &cpu->cpreg_values[res - cpu->cpreg_indexes];
746 }
747
748 /**
749 * kvm_arm_reg_syncs_via_cpreg_list:
750 * @regidx: KVM register index
751 *
752 * Return true if this KVM register should be synchronized via the
753 * cpreg list of arbitrary system registers, false if it is synchronized
754 * by hand using code in kvm_arch_get/put_registers().
755 */
kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)756 static bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
757 {
758 switch (regidx & KVM_REG_ARM_COPROC_MASK) {
759 case KVM_REG_ARM_CORE:
760 case KVM_REG_ARM64_SVE:
761 return false;
762 default:
763 return true;
764 }
765 }
766
767 /**
768 * kvm_arm_init_cpreg_list:
769 * @cpu: ARMCPU
770 *
771 * Initialize the ARMCPU cpreg list according to the kernel's
772 * definition of what CPU registers it knows about (and throw away
773 * the previous TCG-created cpreg list).
774 *
775 * Returns: 0 if success, else < 0 error code
776 */
kvm_arm_init_cpreg_list(ARMCPU * cpu)777 static int kvm_arm_init_cpreg_list(ARMCPU *cpu)
778 {
779 struct kvm_reg_list rl;
780 struct kvm_reg_list *rlp;
781 int i, ret, arraylen;
782 CPUState *cs = CPU(cpu);
783
784 rl.n = 0;
785 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
786 if (ret != -E2BIG) {
787 return ret;
788 }
789 rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
790 rlp->n = rl.n;
791 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
792 if (ret) {
793 goto out;
794 }
795 /* Sort the list we get back from the kernel, since cpreg_tuples
796 * must be in strictly ascending order.
797 */
798 qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
799
800 for (i = 0, arraylen = 0; i < rlp->n; i++) {
801 if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
802 continue;
803 }
804 switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
805 case KVM_REG_SIZE_U32:
806 case KVM_REG_SIZE_U64:
807 break;
808 default:
809 fprintf(stderr, "Can't handle size of register in kernel list\n");
810 ret = -EINVAL;
811 goto out;
812 }
813
814 arraylen++;
815 }
816
817 cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
818 cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
819 cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
820 arraylen);
821 cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
822 arraylen);
823 cpu->cpreg_array_len = arraylen;
824 cpu->cpreg_vmstate_array_len = arraylen;
825
826 for (i = 0, arraylen = 0; i < rlp->n; i++) {
827 uint64_t regidx = rlp->reg[i];
828 if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
829 continue;
830 }
831 cpu->cpreg_indexes[arraylen] = regidx;
832 arraylen++;
833 }
834 assert(cpu->cpreg_array_len == arraylen);
835
836 if (!write_kvmstate_to_list(cpu)) {
837 /* Shouldn't happen unless kernel is inconsistent about
838 * what registers exist.
839 */
840 fprintf(stderr, "Initial read of kernel register state failed\n");
841 ret = -EINVAL;
842 goto out;
843 }
844
845 out:
846 g_free(rlp);
847 return ret;
848 }
849
850 /**
851 * kvm_arm_cpreg_level:
852 * @regidx: KVM register index
853 *
854 * Return the level of this coprocessor/system register. Return value is
855 * either KVM_PUT_RUNTIME_STATE, KVM_PUT_RESET_STATE, or KVM_PUT_FULL_STATE.
856 */
kvm_arm_cpreg_level(uint64_t regidx)857 static int kvm_arm_cpreg_level(uint64_t regidx)
858 {
859 /*
860 * All system registers are assumed to be level KVM_PUT_RUNTIME_STATE.
861 * If a register should be written less often, you must add it here
862 * with a state of either KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
863 */
864 switch (regidx) {
865 case KVM_REG_ARM_TIMER_CNT:
866 case KVM_REG_ARM_PTIMER_CNT:
867 return KVM_PUT_FULL_STATE;
868 }
869 return KVM_PUT_RUNTIME_STATE;
870 }
871
write_kvmstate_to_list(ARMCPU * cpu)872 bool write_kvmstate_to_list(ARMCPU *cpu)
873 {
874 CPUState *cs = CPU(cpu);
875 int i;
876 bool ok = true;
877
878 for (i = 0; i < cpu->cpreg_array_len; i++) {
879 uint64_t regidx = cpu->cpreg_indexes[i];
880 uint32_t v32;
881 int ret;
882
883 switch (regidx & KVM_REG_SIZE_MASK) {
884 case KVM_REG_SIZE_U32:
885 ret = kvm_get_one_reg(cs, regidx, &v32);
886 if (!ret) {
887 cpu->cpreg_values[i] = v32;
888 }
889 break;
890 case KVM_REG_SIZE_U64:
891 ret = kvm_get_one_reg(cs, regidx, cpu->cpreg_values + i);
892 break;
893 default:
894 g_assert_not_reached();
895 }
896 if (ret) {
897 ok = false;
898 }
899 }
900 return ok;
901 }
902
write_list_to_kvmstate(ARMCPU * cpu,int level)903 bool write_list_to_kvmstate(ARMCPU *cpu, int level)
904 {
905 CPUState *cs = CPU(cpu);
906 int i;
907 bool ok = true;
908
909 for (i = 0; i < cpu->cpreg_array_len; i++) {
910 uint64_t regidx = cpu->cpreg_indexes[i];
911 uint32_t v32;
912 int ret;
913
914 if (kvm_arm_cpreg_level(regidx) > level) {
915 continue;
916 }
917
918 switch (regidx & KVM_REG_SIZE_MASK) {
919 case KVM_REG_SIZE_U32:
920 v32 = cpu->cpreg_values[i];
921 ret = kvm_set_one_reg(cs, regidx, &v32);
922 break;
923 case KVM_REG_SIZE_U64:
924 ret = kvm_set_one_reg(cs, regidx, cpu->cpreg_values + i);
925 break;
926 default:
927 g_assert_not_reached();
928 }
929 if (ret) {
930 /* We might fail for "unknown register" and also for
931 * "you tried to set a register which is constant with
932 * a different value from what it actually contains".
933 */
934 ok = false;
935 }
936 }
937 return ok;
938 }
939
kvm_arm_cpu_pre_save(ARMCPU * cpu)940 void kvm_arm_cpu_pre_save(ARMCPU *cpu)
941 {
942 /* KVM virtual time adjustment */
943 if (cpu->kvm_vtime_dirty) {
944 *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT) = cpu->kvm_vtime;
945 }
946 }
947
kvm_arm_cpu_post_load(ARMCPU * cpu)948 bool kvm_arm_cpu_post_load(ARMCPU *cpu)
949 {
950 if (!write_list_to_kvmstate(cpu, KVM_PUT_FULL_STATE)) {
951 return false;
952 }
953 /* Note that it's OK for the TCG side not to know about
954 * every register in the list; KVM is authoritative if
955 * we're using it.
956 */
957 write_list_to_cpustate(cpu);
958
959 /* KVM virtual time adjustment */
960 if (cpu->kvm_adjvtime) {
961 cpu->kvm_vtime = *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT);
962 cpu->kvm_vtime_dirty = true;
963 }
964
965 return true;
966 }
967
kvm_arm_reset_vcpu(ARMCPU * cpu)968 void kvm_arm_reset_vcpu(ARMCPU *cpu)
969 {
970 int ret;
971
972 /* Re-init VCPU so that all registers are set to
973 * their respective reset values.
974 */
975 ret = kvm_arm_vcpu_init(cpu);
976 if (ret < 0) {
977 fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
978 abort();
979 }
980 if (!write_kvmstate_to_list(cpu)) {
981 fprintf(stderr, "write_kvmstate_to_list failed\n");
982 abort();
983 }
984 /*
985 * Sync the reset values also into the CPUState. This is necessary
986 * because the next thing we do will be a kvm_arch_put_registers()
987 * which will update the list values from the CPUState before copying
988 * the list values back to KVM. It's OK to ignore failure returns here
989 * for the same reason we do so in kvm_arch_get_registers().
990 */
991 write_list_to_cpustate(cpu);
992 }
993
994 /*
995 * Update KVM's MP_STATE based on what QEMU thinks it is
996 */
kvm_arm_sync_mpstate_to_kvm(ARMCPU * cpu)997 static int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
998 {
999 if (cap_has_mp_state) {
1000 struct kvm_mp_state mp_state = {
1001 .mp_state = (cpu->power_state == PSCI_OFF) ?
1002 KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
1003 };
1004 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
1005 }
1006 return 0;
1007 }
1008
1009 /*
1010 * Sync the KVM MP_STATE into QEMU
1011 */
kvm_arm_sync_mpstate_to_qemu(ARMCPU * cpu)1012 static int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
1013 {
1014 if (cap_has_mp_state) {
1015 struct kvm_mp_state mp_state;
1016 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
1017 if (ret) {
1018 return ret;
1019 }
1020 cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
1021 PSCI_OFF : PSCI_ON;
1022 }
1023 return 0;
1024 }
1025
1026 /**
1027 * kvm_arm_get_virtual_time:
1028 * @cpu: ARMCPU
1029 *
1030 * Gets the VCPU's virtual counter and stores it in the KVM CPU state.
1031 */
kvm_arm_get_virtual_time(ARMCPU * cpu)1032 static void kvm_arm_get_virtual_time(ARMCPU *cpu)
1033 {
1034 int ret;
1035
1036 if (cpu->kvm_vtime_dirty) {
1037 return;
1038 }
1039
1040 ret = kvm_get_one_reg(CPU(cpu), KVM_REG_ARM_TIMER_CNT, &cpu->kvm_vtime);
1041 if (ret) {
1042 error_report("Failed to get KVM_REG_ARM_TIMER_CNT");
1043 abort();
1044 }
1045
1046 cpu->kvm_vtime_dirty = true;
1047 }
1048
1049 /**
1050 * kvm_arm_put_virtual_time:
1051 * @cpu: ARMCPU
1052 *
1053 * Sets the VCPU's virtual counter to the value stored in the KVM CPU state.
1054 */
kvm_arm_put_virtual_time(ARMCPU * cpu)1055 static void kvm_arm_put_virtual_time(ARMCPU *cpu)
1056 {
1057 int ret;
1058
1059 if (!cpu->kvm_vtime_dirty) {
1060 return;
1061 }
1062
1063 ret = kvm_set_one_reg(CPU(cpu), KVM_REG_ARM_TIMER_CNT, &cpu->kvm_vtime);
1064 if (ret) {
1065 error_report("Failed to set KVM_REG_ARM_TIMER_CNT");
1066 abort();
1067 }
1068
1069 cpu->kvm_vtime_dirty = false;
1070 }
1071
1072 /**
1073 * kvm_put_vcpu_events:
1074 * @cpu: ARMCPU
1075 *
1076 * Put VCPU related state to kvm.
1077 *
1078 * Returns: 0 if success else < 0 error code
1079 */
kvm_put_vcpu_events(ARMCPU * cpu)1080 static int kvm_put_vcpu_events(ARMCPU *cpu)
1081 {
1082 CPUARMState *env = &cpu->env;
1083 struct kvm_vcpu_events events;
1084 int ret;
1085
1086 if (!kvm_has_vcpu_events()) {
1087 return 0;
1088 }
1089
1090 memset(&events, 0, sizeof(events));
1091 events.exception.serror_pending = env->serror.pending;
1092
1093 /* Inject SError to guest with specified syndrome if host kernel
1094 * supports it, otherwise inject SError without syndrome.
1095 */
1096 if (cap_has_inject_serror_esr) {
1097 events.exception.serror_has_esr = env->serror.has_esr;
1098 events.exception.serror_esr = env->serror.esr;
1099 }
1100
1101 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
1102 if (ret) {
1103 error_report("failed to put vcpu events");
1104 }
1105
1106 return ret;
1107 }
1108
1109 /**
1110 * kvm_get_vcpu_events:
1111 * @cpu: ARMCPU
1112 *
1113 * Get VCPU related state from kvm.
1114 *
1115 * Returns: 0 if success else < 0 error code
1116 */
kvm_get_vcpu_events(ARMCPU * cpu)1117 static int kvm_get_vcpu_events(ARMCPU *cpu)
1118 {
1119 CPUARMState *env = &cpu->env;
1120 struct kvm_vcpu_events events;
1121 int ret;
1122
1123 if (!kvm_has_vcpu_events()) {
1124 return 0;
1125 }
1126
1127 memset(&events, 0, sizeof(events));
1128 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
1129 if (ret) {
1130 error_report("failed to get vcpu events");
1131 return ret;
1132 }
1133
1134 env->serror.pending = events.exception.serror_pending;
1135 env->serror.has_esr = events.exception.serror_has_esr;
1136 env->serror.esr = events.exception.serror_esr;
1137
1138 return 0;
1139 }
1140
1141 #define ARM64_REG_ESR_EL1 ARM64_SYS_REG(3, 0, 5, 2, 0)
1142 #define ARM64_REG_TCR_EL1 ARM64_SYS_REG(3, 0, 2, 0, 2)
1143
1144 /*
1145 * ESR_EL1
1146 * ISS encoding
1147 * AARCH64: DFSC, bits [5:0]
1148 * AARCH32:
1149 * TTBCR.EAE == 0
1150 * FS[4] - DFSR[10]
1151 * FS[3:0] - DFSR[3:0]
1152 * TTBCR.EAE == 1
1153 * FS, bits [5:0]
1154 */
1155 #define ESR_DFSC(aarch64, lpae, v) \
1156 ((aarch64 || (lpae)) ? ((v) & 0x3F) \
1157 : (((v) >> 6) | ((v) & 0x1F)))
1158
1159 #define ESR_DFSC_EXTABT(aarch64, lpae) \
1160 ((aarch64) ? 0x10 : (lpae) ? 0x10 : 0x8)
1161
1162 /**
1163 * kvm_arm_verify_ext_dabt_pending:
1164 * @cpu: ARMCPU
1165 *
1166 * Verify the fault status code wrt the Ext DABT injection
1167 *
1168 * Returns: true if the fault status code is as expected, false otherwise
1169 */
kvm_arm_verify_ext_dabt_pending(ARMCPU * cpu)1170 static bool kvm_arm_verify_ext_dabt_pending(ARMCPU *cpu)
1171 {
1172 CPUState *cs = CPU(cpu);
1173 uint64_t dfsr_val;
1174
1175 if (!kvm_get_one_reg(cs, ARM64_REG_ESR_EL1, &dfsr_val)) {
1176 CPUARMState *env = &cpu->env;
1177 int aarch64_mode = arm_feature(env, ARM_FEATURE_AARCH64);
1178 int lpae = 0;
1179
1180 if (!aarch64_mode) {
1181 uint64_t ttbcr;
1182
1183 if (!kvm_get_one_reg(cs, ARM64_REG_TCR_EL1, &ttbcr)) {
1184 lpae = arm_feature(env, ARM_FEATURE_LPAE)
1185 && (ttbcr & TTBCR_EAE);
1186 }
1187 }
1188 /*
1189 * The verification here is based on the DFSC bits
1190 * of the ESR_EL1 reg only
1191 */
1192 return (ESR_DFSC(aarch64_mode, lpae, dfsr_val) ==
1193 ESR_DFSC_EXTABT(aarch64_mode, lpae));
1194 }
1195 return false;
1196 }
1197
kvm_arch_pre_run(CPUState * cs,struct kvm_run * run)1198 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
1199 {
1200 ARMCPU *cpu = ARM_CPU(cs);
1201 CPUARMState *env = &cpu->env;
1202
1203 if (unlikely(env->ext_dabt_raised)) {
1204 /*
1205 * Verifying that the ext DABT has been properly injected,
1206 * otherwise risking indefinitely re-running the faulting instruction
1207 * Covering a very narrow case for kernels 5.5..5.5.4
1208 * when injected abort was misconfigured to be
1209 * an IMPLEMENTATION DEFINED exception (for 32-bit EL1)
1210 */
1211 if (!arm_feature(env, ARM_FEATURE_AARCH64) &&
1212 unlikely(!kvm_arm_verify_ext_dabt_pending(cpu))) {
1213
1214 error_report("Data abort exception with no valid ISS generated by "
1215 "guest memory access. KVM unable to emulate faulting "
1216 "instruction. Failed to inject an external data abort "
1217 "into the guest.");
1218 abort();
1219 }
1220 /* Clear the status */
1221 env->ext_dabt_raised = 0;
1222 }
1223 }
1224
kvm_arch_post_run(CPUState * cs,struct kvm_run * run)1225 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
1226 {
1227 ARMCPU *cpu;
1228 uint32_t switched_level;
1229
1230 if (kvm_irqchip_in_kernel()) {
1231 /*
1232 * We only need to sync timer states with user-space interrupt
1233 * controllers, so return early and save cycles if we don't.
1234 */
1235 return MEMTXATTRS_UNSPECIFIED;
1236 }
1237
1238 cpu = ARM_CPU(cs);
1239
1240 /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
1241 if (run->s.regs.device_irq_level != cpu->device_irq_level) {
1242 switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level;
1243
1244 bql_lock();
1245
1246 if (switched_level & KVM_ARM_DEV_EL1_VTIMER) {
1247 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT],
1248 !!(run->s.regs.device_irq_level &
1249 KVM_ARM_DEV_EL1_VTIMER));
1250 switched_level &= ~KVM_ARM_DEV_EL1_VTIMER;
1251 }
1252
1253 if (switched_level & KVM_ARM_DEV_EL1_PTIMER) {
1254 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS],
1255 !!(run->s.regs.device_irq_level &
1256 KVM_ARM_DEV_EL1_PTIMER));
1257 switched_level &= ~KVM_ARM_DEV_EL1_PTIMER;
1258 }
1259
1260 if (switched_level & KVM_ARM_DEV_PMU) {
1261 qemu_set_irq(cpu->pmu_interrupt,
1262 !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU));
1263 switched_level &= ~KVM_ARM_DEV_PMU;
1264 }
1265
1266 if (switched_level) {
1267 qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n",
1268 __func__, switched_level);
1269 }
1270
1271 /* We also mark unknown levels as processed to not waste cycles */
1272 cpu->device_irq_level = run->s.regs.device_irq_level;
1273 bql_unlock();
1274 }
1275
1276 return MEMTXATTRS_UNSPECIFIED;
1277 }
1278
kvm_arm_vm_state_change(void * opaque,bool running,RunState state)1279 static void kvm_arm_vm_state_change(void *opaque, bool running, RunState state)
1280 {
1281 ARMCPU *cpu = opaque;
1282
1283 if (running) {
1284 if (cpu->kvm_adjvtime) {
1285 kvm_arm_put_virtual_time(cpu);
1286 }
1287 } else {
1288 if (cpu->kvm_adjvtime) {
1289 kvm_arm_get_virtual_time(cpu);
1290 }
1291 }
1292 }
1293
1294 /**
1295 * kvm_arm_handle_dabt_nisv:
1296 * @cpu: ARMCPU
1297 * @esr_iss: ISS encoding (limited) for the exception from Data Abort
1298 * ISV bit set to '0b0' -> no valid instruction syndrome
1299 * @fault_ipa: faulting address for the synchronous data abort
1300 *
1301 * Returns: 0 if the exception has been handled, < 0 otherwise
1302 */
kvm_arm_handle_dabt_nisv(ARMCPU * cpu,uint64_t esr_iss,uint64_t fault_ipa)1303 static int kvm_arm_handle_dabt_nisv(ARMCPU *cpu, uint64_t esr_iss,
1304 uint64_t fault_ipa)
1305 {
1306 CPUARMState *env = &cpu->env;
1307 /*
1308 * Request KVM to inject the external data abort into the guest
1309 */
1310 if (cap_has_inject_ext_dabt) {
1311 struct kvm_vcpu_events events = { };
1312 /*
1313 * The external data abort event will be handled immediately by KVM
1314 * using the address fault that triggered the exit on given VCPU.
1315 * Requesting injection of the external data abort does not rely
1316 * on any other VCPU state. Therefore, in this particular case, the VCPU
1317 * synchronization can be exceptionally skipped.
1318 */
1319 events.exception.ext_dabt_pending = 1;
1320 /* KVM_CAP_ARM_INJECT_EXT_DABT implies KVM_CAP_VCPU_EVENTS */
1321 if (!kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events)) {
1322 env->ext_dabt_raised = 1;
1323 return 0;
1324 }
1325 } else {
1326 error_report("Data abort exception triggered by guest memory access "
1327 "at physical address: 0x" TARGET_FMT_lx,
1328 (target_ulong)fault_ipa);
1329 error_printf("KVM unable to emulate faulting instruction.\n");
1330 }
1331 return -1;
1332 }
1333
1334 /**
1335 * kvm_arm_handle_debug:
1336 * @cpu: ARMCPU
1337 * @debug_exit: debug part of the KVM exit structure
1338 *
1339 * Returns: TRUE if the debug exception was handled.
1340 *
1341 * See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register
1342 *
1343 * To minimise translating between kernel and user-space the kernel
1344 * ABI just provides user-space with the full exception syndrome
1345 * register value to be decoded in QEMU.
1346 */
kvm_arm_handle_debug(ARMCPU * cpu,struct kvm_debug_exit_arch * debug_exit)1347 static bool kvm_arm_handle_debug(ARMCPU *cpu,
1348 struct kvm_debug_exit_arch *debug_exit)
1349 {
1350 int hsr_ec = syn_get_ec(debug_exit->hsr);
1351 CPUState *cs = CPU(cpu);
1352 CPUARMState *env = &cpu->env;
1353
1354 /* Ensure PC is synchronised */
1355 kvm_cpu_synchronize_state(cs);
1356
1357 switch (hsr_ec) {
1358 case EC_SOFTWARESTEP:
1359 if (cs->singlestep_enabled) {
1360 return true;
1361 } else {
1362 /*
1363 * The kernel should have suppressed the guest's ability to
1364 * single step at this point so something has gone wrong.
1365 */
1366 error_report("%s: guest single-step while debugging unsupported"
1367 " (%"PRIx64", %"PRIx32")",
1368 __func__, env->pc, debug_exit->hsr);
1369 return false;
1370 }
1371 break;
1372 case EC_AA64_BKPT:
1373 if (kvm_find_sw_breakpoint(cs, env->pc)) {
1374 return true;
1375 }
1376 break;
1377 case EC_BREAKPOINT:
1378 if (find_hw_breakpoint(cs, env->pc)) {
1379 return true;
1380 }
1381 break;
1382 case EC_WATCHPOINT:
1383 {
1384 CPUWatchpoint *wp = find_hw_watchpoint(cs, debug_exit->far);
1385 if (wp) {
1386 cs->watchpoint_hit = wp;
1387 return true;
1388 }
1389 break;
1390 }
1391 default:
1392 error_report("%s: unhandled debug exit (%"PRIx32", %"PRIx64")",
1393 __func__, debug_exit->hsr, env->pc);
1394 }
1395
1396 /* If we are not handling the debug exception it must belong to
1397 * the guest. Let's re-use the existing TCG interrupt code to set
1398 * everything up properly.
1399 */
1400 cs->exception_index = EXCP_BKPT;
1401 env->exception.syndrome = debug_exit->hsr;
1402 env->exception.vaddress = debug_exit->far;
1403 env->exception.target_el = 1;
1404 bql_lock();
1405 arm_cpu_do_interrupt(cs);
1406 bql_unlock();
1407
1408 return false;
1409 }
1410
kvm_arch_handle_exit(CPUState * cs,struct kvm_run * run)1411 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1412 {
1413 ARMCPU *cpu = ARM_CPU(cs);
1414 int ret = 0;
1415
1416 switch (run->exit_reason) {
1417 case KVM_EXIT_DEBUG:
1418 if (kvm_arm_handle_debug(cpu, &run->debug.arch)) {
1419 ret = EXCP_DEBUG;
1420 } /* otherwise return to guest */
1421 break;
1422 case KVM_EXIT_ARM_NISV:
1423 /* External DABT with no valid iss to decode */
1424 ret = kvm_arm_handle_dabt_nisv(cpu, run->arm_nisv.esr_iss,
1425 run->arm_nisv.fault_ipa);
1426 break;
1427 default:
1428 qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
1429 __func__, run->exit_reason);
1430 break;
1431 }
1432 return ret;
1433 }
1434
kvm_arch_stop_on_emulation_error(CPUState * cs)1435 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
1436 {
1437 return true;
1438 }
1439
kvm_arch_process_async_events(CPUState * cs)1440 int kvm_arch_process_async_events(CPUState *cs)
1441 {
1442 return 0;
1443 }
1444
1445 /**
1446 * kvm_arm_hw_debug_active:
1447 * @cpu: ARMCPU
1448 *
1449 * Return: TRUE if any hardware breakpoints in use.
1450 */
kvm_arm_hw_debug_active(ARMCPU * cpu)1451 static bool kvm_arm_hw_debug_active(ARMCPU *cpu)
1452 {
1453 return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
1454 }
1455
1456 /**
1457 * kvm_arm_copy_hw_debug_data:
1458 * @ptr: kvm_guest_debug_arch structure
1459 *
1460 * Copy the architecture specific debug registers into the
1461 * kvm_guest_debug ioctl structure.
1462 */
kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch * ptr)1463 static void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
1464 {
1465 int i;
1466 memset(ptr, 0, sizeof(struct kvm_guest_debug_arch));
1467
1468 for (i = 0; i < max_hw_wps; i++) {
1469 HWWatchpoint *wp = get_hw_wp(i);
1470 ptr->dbg_wcr[i] = wp->wcr;
1471 ptr->dbg_wvr[i] = wp->wvr;
1472 }
1473 for (i = 0; i < max_hw_bps; i++) {
1474 HWBreakpoint *bp = get_hw_bp(i);
1475 ptr->dbg_bcr[i] = bp->bcr;
1476 ptr->dbg_bvr[i] = bp->bvr;
1477 }
1478 }
1479
kvm_arch_update_guest_debug(CPUState * cs,struct kvm_guest_debug * dbg)1480 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
1481 {
1482 if (kvm_sw_breakpoints_active(cs)) {
1483 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1484 }
1485 if (kvm_arm_hw_debug_active(ARM_CPU(cs))) {
1486 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
1487 kvm_arm_copy_hw_debug_data(&dbg->arch);
1488 }
1489 }
1490
kvm_arch_init_irq_routing(KVMState * s)1491 void kvm_arch_init_irq_routing(KVMState *s)
1492 {
1493 }
1494
kvm_arch_irqchip_create(KVMState * s)1495 int kvm_arch_irqchip_create(KVMState *s)
1496 {
1497 if (kvm_kernel_irqchip_split()) {
1498 error_report("-machine kernel_irqchip=split is not supported on ARM.");
1499 exit(1);
1500 }
1501
1502 /* If we can create the VGIC using the newer device control API, we
1503 * let the device do this when it initializes itself, otherwise we
1504 * fall back to the old API */
1505 return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
1506 }
1507
kvm_arm_vgic_probe(void)1508 int kvm_arm_vgic_probe(void)
1509 {
1510 int val = 0;
1511
1512 if (kvm_create_device(kvm_state,
1513 KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
1514 val |= KVM_ARM_VGIC_V3;
1515 }
1516 if (kvm_create_device(kvm_state,
1517 KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
1518 val |= KVM_ARM_VGIC_V2;
1519 }
1520 return val;
1521 }
1522
kvm_arm_set_irq(int cpu,int irqtype,int irq,int level)1523 int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level)
1524 {
1525 int kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT) | irq;
1526 int cpu_idx1 = cpu % 256;
1527 int cpu_idx2 = cpu / 256;
1528
1529 kvm_irq |= (cpu_idx1 << KVM_ARM_IRQ_VCPU_SHIFT) |
1530 (cpu_idx2 << KVM_ARM_IRQ_VCPU2_SHIFT);
1531
1532 return kvm_set_irq(kvm_state, kvm_irq, !!level);
1533 }
1534
kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry * route,uint64_t address,uint32_t data,PCIDevice * dev)1535 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
1536 uint64_t address, uint32_t data, PCIDevice *dev)
1537 {
1538 AddressSpace *as = pci_device_iommu_address_space(dev);
1539 hwaddr xlat, len, doorbell_gpa;
1540 MemoryRegionSection mrs;
1541 MemoryRegion *mr;
1542
1543 if (as == &address_space_memory) {
1544 return 0;
1545 }
1546
1547 /* MSI doorbell address is translated by an IOMMU */
1548
1549 RCU_READ_LOCK_GUARD();
1550
1551 mr = address_space_translate(as, address, &xlat, &len, true,
1552 MEMTXATTRS_UNSPECIFIED);
1553
1554 if (!mr) {
1555 return 1;
1556 }
1557
1558 mrs = memory_region_find(mr, xlat, 1);
1559
1560 if (!mrs.mr) {
1561 return 1;
1562 }
1563
1564 doorbell_gpa = mrs.offset_within_address_space;
1565 memory_region_unref(mrs.mr);
1566
1567 route->u.msi.address_lo = doorbell_gpa;
1568 route->u.msi.address_hi = doorbell_gpa >> 32;
1569
1570 trace_kvm_arm_fixup_msi_route(address, doorbell_gpa);
1571
1572 return 0;
1573 }
1574
kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry * route,int vector,PCIDevice * dev)1575 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
1576 int vector, PCIDevice *dev)
1577 {
1578 return 0;
1579 }
1580
kvm_arch_release_virq_post(int virq)1581 int kvm_arch_release_virq_post(int virq)
1582 {
1583 return 0;
1584 }
1585
kvm_arch_msi_data_to_gsi(uint32_t data)1586 int kvm_arch_msi_data_to_gsi(uint32_t data)
1587 {
1588 return (data - 32) & 0xffff;
1589 }
1590
kvm_arch_get_eager_split_size(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)1591 static void kvm_arch_get_eager_split_size(Object *obj, Visitor *v,
1592 const char *name, void *opaque,
1593 Error **errp)
1594 {
1595 KVMState *s = KVM_STATE(obj);
1596 uint64_t value = s->kvm_eager_split_size;
1597
1598 visit_type_size(v, name, &value, errp);
1599 }
1600
kvm_arch_set_eager_split_size(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)1601 static void kvm_arch_set_eager_split_size(Object *obj, Visitor *v,
1602 const char *name, void *opaque,
1603 Error **errp)
1604 {
1605 KVMState *s = KVM_STATE(obj);
1606 uint64_t value;
1607
1608 if (s->fd != -1) {
1609 error_setg(errp, "Unable to set early-split-size after KVM has been initialized");
1610 return;
1611 }
1612
1613 if (!visit_type_size(v, name, &value, errp)) {
1614 return;
1615 }
1616
1617 if (value && !is_power_of_2(value)) {
1618 error_setg(errp, "early-split-size must be a power of two");
1619 return;
1620 }
1621
1622 s->kvm_eager_split_size = value;
1623 }
1624
kvm_arch_accel_class_init(ObjectClass * oc)1625 void kvm_arch_accel_class_init(ObjectClass *oc)
1626 {
1627 object_class_property_add(oc, "eager-split-size", "size",
1628 kvm_arch_get_eager_split_size,
1629 kvm_arch_set_eager_split_size, NULL, NULL);
1630
1631 object_class_property_set_description(oc, "eager-split-size",
1632 "Eager Page Split chunk size for hugepages. (default: 0, disabled)");
1633 }
1634
kvm_arch_insert_hw_breakpoint(vaddr addr,vaddr len,int type)1635 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
1636 {
1637 switch (type) {
1638 case GDB_BREAKPOINT_HW:
1639 return insert_hw_breakpoint(addr);
1640 break;
1641 case GDB_WATCHPOINT_READ:
1642 case GDB_WATCHPOINT_WRITE:
1643 case GDB_WATCHPOINT_ACCESS:
1644 return insert_hw_watchpoint(addr, len, type);
1645 default:
1646 return -ENOSYS;
1647 }
1648 }
1649
kvm_arch_remove_hw_breakpoint(vaddr addr,vaddr len,int type)1650 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
1651 {
1652 switch (type) {
1653 case GDB_BREAKPOINT_HW:
1654 return delete_hw_breakpoint(addr);
1655 case GDB_WATCHPOINT_READ:
1656 case GDB_WATCHPOINT_WRITE:
1657 case GDB_WATCHPOINT_ACCESS:
1658 return delete_hw_watchpoint(addr, len, type);
1659 default:
1660 return -ENOSYS;
1661 }
1662 }
1663
kvm_arch_remove_all_hw_breakpoints(void)1664 void kvm_arch_remove_all_hw_breakpoints(void)
1665 {
1666 if (cur_hw_wps > 0) {
1667 g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
1668 }
1669 if (cur_hw_bps > 0) {
1670 g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
1671 }
1672 }
1673
kvm_arm_set_device_attr(ARMCPU * cpu,struct kvm_device_attr * attr,const char * name)1674 static bool kvm_arm_set_device_attr(ARMCPU *cpu, struct kvm_device_attr *attr,
1675 const char *name)
1676 {
1677 int err;
1678
1679 err = kvm_vcpu_ioctl(CPU(cpu), KVM_HAS_DEVICE_ATTR, attr);
1680 if (err != 0) {
1681 error_report("%s: KVM_HAS_DEVICE_ATTR: %s", name, strerror(-err));
1682 return false;
1683 }
1684
1685 err = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEVICE_ATTR, attr);
1686 if (err != 0) {
1687 error_report("%s: KVM_SET_DEVICE_ATTR: %s", name, strerror(-err));
1688 return false;
1689 }
1690
1691 return true;
1692 }
1693
kvm_arm_pmu_init(ARMCPU * cpu)1694 void kvm_arm_pmu_init(ARMCPU *cpu)
1695 {
1696 struct kvm_device_attr attr = {
1697 .group = KVM_ARM_VCPU_PMU_V3_CTRL,
1698 .attr = KVM_ARM_VCPU_PMU_V3_INIT,
1699 };
1700
1701 if (!cpu->has_pmu) {
1702 return;
1703 }
1704 if (!kvm_arm_set_device_attr(cpu, &attr, "PMU")) {
1705 error_report("failed to init PMU");
1706 abort();
1707 }
1708 }
1709
kvm_arm_pmu_set_irq(ARMCPU * cpu,int irq)1710 void kvm_arm_pmu_set_irq(ARMCPU *cpu, int irq)
1711 {
1712 struct kvm_device_attr attr = {
1713 .group = KVM_ARM_VCPU_PMU_V3_CTRL,
1714 .addr = (intptr_t)&irq,
1715 .attr = KVM_ARM_VCPU_PMU_V3_IRQ,
1716 };
1717
1718 if (!cpu->has_pmu) {
1719 return;
1720 }
1721 if (!kvm_arm_set_device_attr(cpu, &attr, "PMU")) {
1722 error_report("failed to set irq for PMU");
1723 abort();
1724 }
1725 }
1726
kvm_arm_pvtime_init(ARMCPU * cpu,uint64_t ipa)1727 void kvm_arm_pvtime_init(ARMCPU *cpu, uint64_t ipa)
1728 {
1729 struct kvm_device_attr attr = {
1730 .group = KVM_ARM_VCPU_PVTIME_CTRL,
1731 .attr = KVM_ARM_VCPU_PVTIME_IPA,
1732 .addr = (uint64_t)&ipa,
1733 };
1734
1735 if (cpu->kvm_steal_time == ON_OFF_AUTO_OFF) {
1736 return;
1737 }
1738 if (!kvm_arm_set_device_attr(cpu, &attr, "PVTIME IPA")) {
1739 error_report("failed to init PVTIME IPA");
1740 abort();
1741 }
1742 }
1743
kvm_arm_steal_time_finalize(ARMCPU * cpu,Error ** errp)1744 void kvm_arm_steal_time_finalize(ARMCPU *cpu, Error **errp)
1745 {
1746 bool has_steal_time = kvm_check_extension(kvm_state, KVM_CAP_STEAL_TIME);
1747
1748 if (cpu->kvm_steal_time == ON_OFF_AUTO_AUTO) {
1749 if (!has_steal_time || !arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1750 cpu->kvm_steal_time = ON_OFF_AUTO_OFF;
1751 } else {
1752 cpu->kvm_steal_time = ON_OFF_AUTO_ON;
1753 }
1754 } else if (cpu->kvm_steal_time == ON_OFF_AUTO_ON) {
1755 if (!has_steal_time) {
1756 error_setg(errp, "'kvm-steal-time' cannot be enabled "
1757 "on this host");
1758 return;
1759 } else if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1760 /*
1761 * DEN0057A chapter 2 says "This specification only covers
1762 * systems in which the Execution state of the hypervisor
1763 * as well as EL1 of virtual machines is AArch64.". And,
1764 * to ensure that, the smc/hvc calls are only specified as
1765 * smc64/hvc64.
1766 */
1767 error_setg(errp, "'kvm-steal-time' cannot be enabled "
1768 "for AArch32 guests");
1769 return;
1770 }
1771 }
1772 }
1773
kvm_arm_aarch32_supported(void)1774 bool kvm_arm_aarch32_supported(void)
1775 {
1776 return kvm_check_extension(kvm_state, KVM_CAP_ARM_EL1_32BIT);
1777 }
1778
kvm_arm_el2_supported(void)1779 bool kvm_arm_el2_supported(void)
1780 {
1781 return kvm_check_extension(kvm_state, KVM_CAP_ARM_EL2);
1782 }
1783
kvm_arm_sve_supported(void)1784 bool kvm_arm_sve_supported(void)
1785 {
1786 return kvm_check_extension(kvm_state, KVM_CAP_ARM_SVE);
1787 }
1788
kvm_arm_mte_supported(void)1789 bool kvm_arm_mte_supported(void)
1790 {
1791 return kvm_check_extension(kvm_state, KVM_CAP_ARM_MTE);
1792 }
1793
1794 QEMU_BUILD_BUG_ON(KVM_ARM64_SVE_VQ_MIN != 1);
1795
kvm_arm_sve_get_vls(ARMCPU * cpu)1796 uint32_t kvm_arm_sve_get_vls(ARMCPU *cpu)
1797 {
1798 /* Only call this function if kvm_arm_sve_supported() returns true. */
1799 static uint64_t vls[KVM_ARM64_SVE_VLS_WORDS];
1800 static bool probed;
1801 uint32_t vq = 0;
1802 int i;
1803
1804 /*
1805 * KVM ensures all host CPUs support the same set of vector lengths.
1806 * So we only need to create the scratch VCPUs once and then cache
1807 * the results.
1808 */
1809 if (!probed) {
1810 struct kvm_vcpu_init init = {
1811 .target = -1,
1812 .features[0] = (1 << KVM_ARM_VCPU_SVE),
1813 };
1814 struct kvm_one_reg reg = {
1815 .id = KVM_REG_ARM64_SVE_VLS,
1816 .addr = (uint64_t)&vls[0],
1817 };
1818 int fdarray[3], ret;
1819
1820 probed = true;
1821
1822 if (!kvm_arm_create_scratch_host_vcpu(fdarray, &init)) {
1823 error_report("failed to create scratch VCPU with SVE enabled");
1824 abort();
1825 }
1826 ret = ioctl(fdarray[2], KVM_GET_ONE_REG, ®);
1827 kvm_arm_destroy_scratch_host_vcpu(fdarray);
1828 if (ret) {
1829 error_report("failed to get KVM_REG_ARM64_SVE_VLS: %s",
1830 strerror(errno));
1831 abort();
1832 }
1833
1834 for (i = KVM_ARM64_SVE_VLS_WORDS - 1; i >= 0; --i) {
1835 if (vls[i]) {
1836 vq = 64 - clz64(vls[i]) + i * 64;
1837 break;
1838 }
1839 }
1840 if (vq > ARM_MAX_VQ) {
1841 warn_report("KVM supports vector lengths larger than "
1842 "QEMU can enable");
1843 vls[0] &= MAKE_64BIT_MASK(0, ARM_MAX_VQ);
1844 }
1845 }
1846
1847 return vls[0];
1848 }
1849
kvm_arm_sve_set_vls(ARMCPU * cpu)1850 static int kvm_arm_sve_set_vls(ARMCPU *cpu)
1851 {
1852 uint64_t vls[KVM_ARM64_SVE_VLS_WORDS] = { cpu->sve_vq.map };
1853
1854 assert(cpu->sve_max_vq <= KVM_ARM64_SVE_VQ_MAX);
1855
1856 return kvm_set_one_reg(CPU(cpu), KVM_REG_ARM64_SVE_VLS, &vls[0]);
1857 }
1858
1859 #define ARM_CPU_ID_MPIDR 3, 0, 0, 0, 5
1860
kvm_arch_pre_create_vcpu(CPUState * cpu,Error ** errp)1861 int kvm_arch_pre_create_vcpu(CPUState *cpu, Error **errp)
1862 {
1863 return 0;
1864 }
1865
kvm_arch_init_vcpu(CPUState * cs)1866 int kvm_arch_init_vcpu(CPUState *cs)
1867 {
1868 int ret;
1869 uint64_t mpidr;
1870 ARMCPU *cpu = ARM_CPU(cs);
1871 CPUARMState *env = &cpu->env;
1872 uint64_t psciver;
1873
1874 if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE) {
1875 error_report("KVM is not supported for this guest CPU type");
1876 return -EINVAL;
1877 }
1878
1879 qemu_add_vm_change_state_handler(kvm_arm_vm_state_change, cpu);
1880
1881 /* Determine init features for this CPU */
1882 memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
1883 if (cs->start_powered_off) {
1884 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
1885 }
1886 if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
1887 cpu->psci_version = QEMU_PSCI_VERSION_0_2;
1888 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
1889 }
1890 if (!arm_feature(env, ARM_FEATURE_AARCH64)) {
1891 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
1892 }
1893 if (cpu->has_pmu) {
1894 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
1895 }
1896 if (cpu_isar_feature(aa64_sve, cpu)) {
1897 assert(kvm_arm_sve_supported());
1898 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_SVE;
1899 }
1900 if (cpu_isar_feature(aa64_pauth, cpu)) {
1901 cpu->kvm_init_features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS |
1902 1 << KVM_ARM_VCPU_PTRAUTH_GENERIC);
1903 }
1904 if (cpu->has_el2 && kvm_arm_el2_supported()) {
1905 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_HAS_EL2;
1906 }
1907
1908 /* Do KVM_ARM_VCPU_INIT ioctl */
1909 ret = kvm_arm_vcpu_init(cpu);
1910 if (ret) {
1911 return ret;
1912 }
1913
1914 if (cpu_isar_feature(aa64_sve, cpu)) {
1915 ret = kvm_arm_sve_set_vls(cpu);
1916 if (ret) {
1917 return ret;
1918 }
1919 ret = kvm_arm_vcpu_finalize(cpu, KVM_ARM_VCPU_SVE);
1920 if (ret) {
1921 return ret;
1922 }
1923 }
1924
1925 /*
1926 * KVM reports the exact PSCI version it is implementing via a
1927 * special sysreg. If it is present, use its contents to determine
1928 * what to report to the guest in the dtb (it is the PSCI version,
1929 * in the same 15-bits major 16-bits minor format that PSCI_VERSION
1930 * returns).
1931 */
1932 if (!kvm_get_one_reg(cs, KVM_REG_ARM_PSCI_VERSION, &psciver)) {
1933 cpu->psci_version = psciver;
1934 }
1935
1936 /*
1937 * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
1938 * Currently KVM has its own idea about MPIDR assignment, so we
1939 * override our defaults with what we get from KVM.
1940 */
1941 ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr);
1942 if (ret) {
1943 return ret;
1944 }
1945 cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK;
1946
1947 return kvm_arm_init_cpreg_list(cpu);
1948 }
1949
kvm_arch_destroy_vcpu(CPUState * cs)1950 int kvm_arch_destroy_vcpu(CPUState *cs)
1951 {
1952 return 0;
1953 }
1954
1955 /* Callers must hold the iothread mutex lock */
kvm_inject_arm_sea(CPUState * c)1956 static void kvm_inject_arm_sea(CPUState *c)
1957 {
1958 ARMCPU *cpu = ARM_CPU(c);
1959 CPUARMState *env = &cpu->env;
1960 uint32_t esr;
1961 bool same_el;
1962
1963 c->exception_index = EXCP_DATA_ABORT;
1964 env->exception.target_el = 1;
1965
1966 /*
1967 * Set the DFSC to synchronous external abort and set FnV to not valid,
1968 * this will tell guest the FAR_ELx is UNKNOWN for this abort.
1969 */
1970 same_el = arm_current_el(env) == env->exception.target_el;
1971 esr = syn_data_abort_no_iss(same_el, 1, 0, 0, 0, 0, 0x10);
1972
1973 env->exception.syndrome = esr;
1974
1975 arm_cpu_do_interrupt(c);
1976 }
1977
1978 #define AARCH64_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
1979 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
1980
1981 #define AARCH64_SIMD_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
1982 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
1983
1984 #define AARCH64_SIMD_CTRL_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
1985 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
1986
kvm_arch_put_fpsimd(CPUState * cs)1987 static int kvm_arch_put_fpsimd(CPUState *cs)
1988 {
1989 CPUARMState *env = &ARM_CPU(cs)->env;
1990 int i, ret;
1991
1992 for (i = 0; i < 32; i++) {
1993 uint64_t *q = aa64_vfp_qreg(env, i);
1994 #if HOST_BIG_ENDIAN
1995 uint64_t fp_val[2] = { q[1], q[0] };
1996 ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]),
1997 fp_val);
1998 #else
1999 ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q);
2000 #endif
2001 if (ret) {
2002 return ret;
2003 }
2004 }
2005
2006 return 0;
2007 }
2008
2009 /*
2010 * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
2011 * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
2012 * code the slice index to zero for now as it's unlikely we'll need more than
2013 * one slice for quite some time.
2014 */
kvm_arch_put_sve(CPUState * cs)2015 static int kvm_arch_put_sve(CPUState *cs)
2016 {
2017 ARMCPU *cpu = ARM_CPU(cs);
2018 CPUARMState *env = &cpu->env;
2019 uint64_t tmp[ARM_MAX_VQ * 2];
2020 uint64_t *r;
2021 int n, ret;
2022
2023 for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
2024 r = sve_bswap64(tmp, &env->vfp.zregs[n].d[0], cpu->sve_max_vq * 2);
2025 ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r);
2026 if (ret) {
2027 return ret;
2028 }
2029 }
2030
2031 for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
2032 r = sve_bswap64(tmp, r = &env->vfp.pregs[n].p[0],
2033 DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
2034 ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r);
2035 if (ret) {
2036 return ret;
2037 }
2038 }
2039
2040 r = sve_bswap64(tmp, &env->vfp.pregs[FFR_PRED_NUM].p[0],
2041 DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
2042 ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r);
2043 if (ret) {
2044 return ret;
2045 }
2046
2047 return 0;
2048 }
2049
kvm_arch_put_registers(CPUState * cs,int level,Error ** errp)2050 int kvm_arch_put_registers(CPUState *cs, int level, Error **errp)
2051 {
2052 uint64_t val;
2053 uint32_t fpr;
2054 int i, ret;
2055 unsigned int el;
2056
2057 ARMCPU *cpu = ARM_CPU(cs);
2058 CPUARMState *env = &cpu->env;
2059
2060 /* If we are in AArch32 mode then we need to copy the AArch32 regs to the
2061 * AArch64 registers before pushing them out to 64-bit KVM.
2062 */
2063 if (!is_a64(env)) {
2064 aarch64_sync_32_to_64(env);
2065 }
2066
2067 for (i = 0; i < 31; i++) {
2068 ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]),
2069 &env->xregs[i]);
2070 if (ret) {
2071 return ret;
2072 }
2073 }
2074
2075 /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
2076 * QEMU side we keep the current SP in xregs[31] as well.
2077 */
2078 aarch64_save_sp(env, 1);
2079
2080 ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]);
2081 if (ret) {
2082 return ret;
2083 }
2084
2085 ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]);
2086 if (ret) {
2087 return ret;
2088 }
2089
2090 /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
2091 if (is_a64(env)) {
2092 val = pstate_read(env);
2093 } else {
2094 val = cpsr_read(env);
2095 }
2096 ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val);
2097 if (ret) {
2098 return ret;
2099 }
2100
2101 ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc);
2102 if (ret) {
2103 return ret;
2104 }
2105
2106 ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]);
2107 if (ret) {
2108 return ret;
2109 }
2110
2111 /* Saved Program State Registers
2112 *
2113 * Before we restore from the banked_spsr[] array we need to
2114 * ensure that any modifications to env->spsr are correctly
2115 * reflected in the banks.
2116 */
2117 el = arm_current_el(env);
2118 if (el > 0 && !is_a64(env)) {
2119 i = bank_number(env->uncached_cpsr & CPSR_M);
2120 env->banked_spsr[i] = env->spsr;
2121 }
2122
2123 /* KVM 0-4 map to QEMU banks 1-5 */
2124 for (i = 0; i < KVM_NR_SPSR; i++) {
2125 ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(spsr[i]),
2126 &env->banked_spsr[i + 1]);
2127 if (ret) {
2128 return ret;
2129 }
2130 }
2131
2132 if (cpu_isar_feature(aa64_sve, cpu)) {
2133 ret = kvm_arch_put_sve(cs);
2134 } else {
2135 ret = kvm_arch_put_fpsimd(cs);
2136 }
2137 if (ret) {
2138 return ret;
2139 }
2140
2141 fpr = vfp_get_fpsr(env);
2142 ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr);
2143 if (ret) {
2144 return ret;
2145 }
2146
2147 fpr = vfp_get_fpcr(env);
2148 ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr);
2149 if (ret) {
2150 return ret;
2151 }
2152
2153 write_cpustate_to_list(cpu, true);
2154
2155 if (!write_list_to_kvmstate(cpu, level)) {
2156 return -EINVAL;
2157 }
2158
2159 /*
2160 * Setting VCPU events should be triggered after syncing the registers
2161 * to avoid overwriting potential changes made by KVM upon calling
2162 * KVM_SET_VCPU_EVENTS ioctl
2163 */
2164 ret = kvm_put_vcpu_events(cpu);
2165 if (ret) {
2166 return ret;
2167 }
2168
2169 return kvm_arm_sync_mpstate_to_kvm(cpu);
2170 }
2171
kvm_arch_get_fpsimd(CPUState * cs)2172 static int kvm_arch_get_fpsimd(CPUState *cs)
2173 {
2174 CPUARMState *env = &ARM_CPU(cs)->env;
2175 int i, ret;
2176
2177 for (i = 0; i < 32; i++) {
2178 uint64_t *q = aa64_vfp_qreg(env, i);
2179 ret = kvm_get_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q);
2180 if (ret) {
2181 return ret;
2182 } else {
2183 #if HOST_BIG_ENDIAN
2184 uint64_t t;
2185 t = q[0], q[0] = q[1], q[1] = t;
2186 #endif
2187 }
2188 }
2189
2190 return 0;
2191 }
2192
2193 /*
2194 * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
2195 * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
2196 * code the slice index to zero for now as it's unlikely we'll need more than
2197 * one slice for quite some time.
2198 */
kvm_arch_get_sve(CPUState * cs)2199 static int kvm_arch_get_sve(CPUState *cs)
2200 {
2201 ARMCPU *cpu = ARM_CPU(cs);
2202 CPUARMState *env = &cpu->env;
2203 uint64_t *r;
2204 int n, ret;
2205
2206 for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
2207 r = &env->vfp.zregs[n].d[0];
2208 ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r);
2209 if (ret) {
2210 return ret;
2211 }
2212 sve_bswap64(r, r, cpu->sve_max_vq * 2);
2213 }
2214
2215 for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
2216 r = &env->vfp.pregs[n].p[0];
2217 ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r);
2218 if (ret) {
2219 return ret;
2220 }
2221 sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
2222 }
2223
2224 r = &env->vfp.pregs[FFR_PRED_NUM].p[0];
2225 ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r);
2226 if (ret) {
2227 return ret;
2228 }
2229 sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
2230
2231 return 0;
2232 }
2233
kvm_arch_get_registers(CPUState * cs,Error ** errp)2234 int kvm_arch_get_registers(CPUState *cs, Error **errp)
2235 {
2236 uint64_t val;
2237 unsigned int el;
2238 uint32_t fpr;
2239 int i, ret;
2240
2241 ARMCPU *cpu = ARM_CPU(cs);
2242 CPUARMState *env = &cpu->env;
2243
2244 for (i = 0; i < 31; i++) {
2245 ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]),
2246 &env->xregs[i]);
2247 if (ret) {
2248 return ret;
2249 }
2250 }
2251
2252 ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]);
2253 if (ret) {
2254 return ret;
2255 }
2256
2257 ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]);
2258 if (ret) {
2259 return ret;
2260 }
2261
2262 ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val);
2263 if (ret) {
2264 return ret;
2265 }
2266
2267 env->aarch64 = ((val & PSTATE_nRW) == 0);
2268 if (is_a64(env)) {
2269 pstate_write(env, val);
2270 } else {
2271 cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
2272 }
2273
2274 /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
2275 * QEMU side we keep the current SP in xregs[31] as well.
2276 */
2277 aarch64_restore_sp(env, 1);
2278
2279 ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc);
2280 if (ret) {
2281 return ret;
2282 }
2283
2284 /* If we are in AArch32 mode then we need to sync the AArch32 regs with the
2285 * incoming AArch64 regs received from 64-bit KVM.
2286 * We must perform this after all of the registers have been acquired from
2287 * the kernel.
2288 */
2289 if (!is_a64(env)) {
2290 aarch64_sync_64_to_32(env);
2291 }
2292
2293 ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]);
2294 if (ret) {
2295 return ret;
2296 }
2297
2298 /* Fetch the SPSR registers
2299 *
2300 * KVM SPSRs 0-4 map to QEMU banks 1-5
2301 */
2302 for (i = 0; i < KVM_NR_SPSR; i++) {
2303 ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(spsr[i]),
2304 &env->banked_spsr[i + 1]);
2305 if (ret) {
2306 return ret;
2307 }
2308 }
2309
2310 el = arm_current_el(env);
2311 if (el > 0 && !is_a64(env)) {
2312 i = bank_number(env->uncached_cpsr & CPSR_M);
2313 env->spsr = env->banked_spsr[i];
2314 }
2315
2316 if (cpu_isar_feature(aa64_sve, cpu)) {
2317 ret = kvm_arch_get_sve(cs);
2318 } else {
2319 ret = kvm_arch_get_fpsimd(cs);
2320 }
2321 if (ret) {
2322 return ret;
2323 }
2324
2325 ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr);
2326 if (ret) {
2327 return ret;
2328 }
2329 vfp_set_fpsr(env, fpr);
2330
2331 ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr);
2332 if (ret) {
2333 return ret;
2334 }
2335 vfp_set_fpcr(env, fpr);
2336
2337 ret = kvm_get_vcpu_events(cpu);
2338 if (ret) {
2339 return ret;
2340 }
2341
2342 if (!write_kvmstate_to_list(cpu)) {
2343 return -EINVAL;
2344 }
2345 /* Note that it's OK to have registers which aren't in CPUState,
2346 * so we can ignore a failure return here.
2347 */
2348 write_list_to_cpustate(cpu);
2349
2350 ret = kvm_arm_sync_mpstate_to_qemu(cpu);
2351
2352 /* TODO: other registers */
2353 return ret;
2354 }
2355
kvm_arch_on_sigbus_vcpu(CPUState * c,int code,void * addr)2356 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
2357 {
2358 ram_addr_t ram_addr;
2359 hwaddr paddr;
2360
2361 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
2362
2363 if (acpi_ghes_present() && addr) {
2364 ram_addr = qemu_ram_addr_from_host(addr);
2365 if (ram_addr != RAM_ADDR_INVALID &&
2366 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
2367 kvm_hwpoison_page_add(ram_addr);
2368 /*
2369 * If this is a BUS_MCEERR_AR, we know we have been called
2370 * synchronously from the vCPU thread, so we can easily
2371 * synchronize the state and inject an error.
2372 *
2373 * TODO: we currently don't tell the guest at all about
2374 * BUS_MCEERR_AO. In that case we might either be being
2375 * called synchronously from the vCPU thread, or a bit
2376 * later from the main thread, so doing the injection of
2377 * the error would be more complicated.
2378 */
2379 if (code == BUS_MCEERR_AR) {
2380 kvm_cpu_synchronize_state(c);
2381 if (!acpi_ghes_memory_errors(ACPI_HEST_SRC_ID_SEA, paddr)) {
2382 kvm_inject_arm_sea(c);
2383 } else {
2384 error_report("failed to record the error");
2385 abort();
2386 }
2387 }
2388 return;
2389 }
2390 if (code == BUS_MCEERR_AO) {
2391 error_report("Hardware memory error at addr %p for memory used by "
2392 "QEMU itself instead of guest system!", addr);
2393 }
2394 }
2395
2396 if (code == BUS_MCEERR_AR) {
2397 error_report("Hardware memory error!");
2398 exit(1);
2399 }
2400 }
2401
2402 /* C6.6.29 BRK instruction */
2403 static const uint32_t brk_insn = 0xd4200000;
2404
kvm_arch_insert_sw_breakpoint(CPUState * cs,struct kvm_sw_breakpoint * bp)2405 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
2406 {
2407 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
2408 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
2409 return -EINVAL;
2410 }
2411 return 0;
2412 }
2413
kvm_arch_remove_sw_breakpoint(CPUState * cs,struct kvm_sw_breakpoint * bp)2414 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
2415 {
2416 static uint32_t brk;
2417
2418 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) ||
2419 brk != brk_insn ||
2420 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
2421 return -EINVAL;
2422 }
2423 return 0;
2424 }
2425
kvm_arm_enable_mte(Object * cpuobj,Error ** errp)2426 void kvm_arm_enable_mte(Object *cpuobj, Error **errp)
2427 {
2428 static bool tried_to_enable;
2429 static bool succeeded_to_enable;
2430 Error *mte_migration_blocker = NULL;
2431 ARMCPU *cpu = ARM_CPU(cpuobj);
2432 int ret;
2433
2434 if (!tried_to_enable) {
2435 /*
2436 * MTE on KVM is enabled on a per-VM basis (and retrying doesn't make
2437 * sense), and we only want a single migration blocker as well.
2438 */
2439 tried_to_enable = true;
2440
2441 ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_ARM_MTE, 0);
2442 if (ret) {
2443 error_setg_errno(errp, -ret, "Failed to enable KVM_CAP_ARM_MTE");
2444 return;
2445 }
2446
2447 /* TODO: Add migration support with MTE enabled */
2448 error_setg(&mte_migration_blocker,
2449 "Live migration disabled due to MTE enabled");
2450 if (migrate_add_blocker(&mte_migration_blocker, errp)) {
2451 error_free(mte_migration_blocker);
2452 return;
2453 }
2454
2455 succeeded_to_enable = true;
2456 }
2457
2458 if (succeeded_to_enable) {
2459 cpu->kvm_mte = true;
2460 }
2461 }
2462
arm_cpu_kvm_set_irq(void * arm_cpu,int irq,int level)2463 void arm_cpu_kvm_set_irq(void *arm_cpu, int irq, int level)
2464 {
2465 ARMCPU *cpu = arm_cpu;
2466 CPUARMState *env = &cpu->env;
2467 CPUState *cs = CPU(cpu);
2468 uint32_t linestate_bit;
2469 int irq_id;
2470
2471 switch (irq) {
2472 case ARM_CPU_IRQ:
2473 irq_id = KVM_ARM_IRQ_CPU_IRQ;
2474 linestate_bit = CPU_INTERRUPT_HARD;
2475 break;
2476 case ARM_CPU_FIQ:
2477 irq_id = KVM_ARM_IRQ_CPU_FIQ;
2478 linestate_bit = CPU_INTERRUPT_FIQ;
2479 break;
2480 default:
2481 g_assert_not_reached();
2482 }
2483
2484 if (level) {
2485 env->irq_line_state |= linestate_bit;
2486 } else {
2487 env->irq_line_state &= ~linestate_bit;
2488 }
2489 kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
2490 }
2491