xref: /openbmc/linux/arch/arm64/kvm/arm.c (revision d699090510c3223641a23834b4710e2d4309a6ad)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6 
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/entry-kvm.h>
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kvm_host.h>
13 #include <linux/list.h>
14 #include <linux/module.h>
15 #include <linux/vmalloc.h>
16 #include <linux/fs.h>
17 #include <linux/mman.h>
18 #include <linux/sched.h>
19 #include <linux/kvm.h>
20 #include <linux/kvm_irqfd.h>
21 #include <linux/irqbypass.h>
22 #include <linux/sched/stat.h>
23 #include <linux/psci.h>
24 #include <trace/events/kvm.h>
25 
26 #define CREATE_TRACE_POINTS
27 #include "trace_arm.h"
28 
29 #include <linux/uaccess.h>
30 #include <asm/ptrace.h>
31 #include <asm/mman.h>
32 #include <asm/tlbflush.h>
33 #include <asm/cacheflush.h>
34 #include <asm/cpufeature.h>
35 #include <asm/virt.h>
36 #include <asm/kvm_arm.h>
37 #include <asm/kvm_asm.h>
38 #include <asm/kvm_mmu.h>
39 #include <asm/kvm_nested.h>
40 #include <asm/kvm_pkvm.h>
41 #include <asm/kvm_emulate.h>
42 #include <asm/sections.h>
43 
44 #include <kvm/arm_hypercalls.h>
45 #include <kvm/arm_pmu.h>
46 #include <kvm/arm_psci.h>
47 
48 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
49 
50 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
51 
52 DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
54 
55 DECLARE_KVM_NVHE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
56 
57 static bool vgic_present, kvm_arm_initialised;
58 
59 static DEFINE_PER_CPU(unsigned char, kvm_hyp_initialized);
60 
is_kvm_arm_initialised(void)61 bool is_kvm_arm_initialised(void)
62 {
63 	return kvm_arm_initialised;
64 }
65 
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)66 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
67 {
68 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
69 }
70 
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)71 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
72 			    struct kvm_enable_cap *cap)
73 {
74 	int r;
75 	u64 new_cap;
76 
77 	if (cap->flags)
78 		return -EINVAL;
79 
80 	switch (cap->cap) {
81 	case KVM_CAP_ARM_NISV_TO_USER:
82 		r = 0;
83 		set_bit(KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER,
84 			&kvm->arch.flags);
85 		break;
86 	case KVM_CAP_ARM_MTE:
87 		mutex_lock(&kvm->lock);
88 		if (!system_supports_mte() || kvm->created_vcpus) {
89 			r = -EINVAL;
90 		} else {
91 			r = 0;
92 			set_bit(KVM_ARCH_FLAG_MTE_ENABLED, &kvm->arch.flags);
93 		}
94 		mutex_unlock(&kvm->lock);
95 		break;
96 	case KVM_CAP_ARM_SYSTEM_SUSPEND:
97 		r = 0;
98 		set_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags);
99 		break;
100 	case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
101 		new_cap = cap->args[0];
102 
103 		mutex_lock(&kvm->slots_lock);
104 		/*
105 		 * To keep things simple, allow changing the chunk
106 		 * size only when no memory slots have been created.
107 		 */
108 		if (!kvm_are_all_memslots_empty(kvm)) {
109 			r = -EINVAL;
110 		} else if (new_cap && !kvm_is_block_size_supported(new_cap)) {
111 			r = -EINVAL;
112 		} else {
113 			r = 0;
114 			kvm->arch.mmu.split_page_chunk_size = new_cap;
115 		}
116 		mutex_unlock(&kvm->slots_lock);
117 		break;
118 	default:
119 		r = -EINVAL;
120 		break;
121 	}
122 
123 	return r;
124 }
125 
kvm_arm_default_max_vcpus(void)126 static int kvm_arm_default_max_vcpus(void)
127 {
128 	return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
129 }
130 
131 /**
132  * kvm_arch_init_vm - initializes a VM data structure
133  * @kvm:	pointer to the KVM struct
134  */
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)135 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
136 {
137 	int ret;
138 
139 	mutex_init(&kvm->arch.config_lock);
140 
141 #ifdef CONFIG_LOCKDEP
142 	/* Clue in lockdep that the config_lock must be taken inside kvm->lock */
143 	mutex_lock(&kvm->lock);
144 	mutex_lock(&kvm->arch.config_lock);
145 	mutex_unlock(&kvm->arch.config_lock);
146 	mutex_unlock(&kvm->lock);
147 #endif
148 
149 	ret = kvm_share_hyp(kvm, kvm + 1);
150 	if (ret)
151 		return ret;
152 
153 	ret = pkvm_init_host_vm(kvm);
154 	if (ret)
155 		goto err_unshare_kvm;
156 
157 	if (!zalloc_cpumask_var(&kvm->arch.supported_cpus, GFP_KERNEL_ACCOUNT)) {
158 		ret = -ENOMEM;
159 		goto err_unshare_kvm;
160 	}
161 	cpumask_copy(kvm->arch.supported_cpus, cpu_possible_mask);
162 
163 	ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu, type);
164 	if (ret)
165 		goto err_free_cpumask;
166 
167 	kvm_vgic_early_init(kvm);
168 
169 	kvm_timer_init_vm(kvm);
170 
171 	/* The maximum number of VCPUs is limited by the host's GIC model */
172 	kvm->max_vcpus = kvm_arm_default_max_vcpus();
173 
174 	kvm_arm_init_hypercalls(kvm);
175 
176 	bitmap_zero(kvm->arch.vcpu_features, KVM_VCPU_MAX_FEATURES);
177 
178 	return 0;
179 
180 err_free_cpumask:
181 	free_cpumask_var(kvm->arch.supported_cpus);
182 err_unshare_kvm:
183 	kvm_unshare_hyp(kvm, kvm + 1);
184 	return ret;
185 }
186 
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)187 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
188 {
189 	return VM_FAULT_SIGBUS;
190 }
191 
192 
193 /**
194  * kvm_arch_destroy_vm - destroy the VM data structure
195  * @kvm:	pointer to the KVM struct
196  */
kvm_arch_destroy_vm(struct kvm * kvm)197 void kvm_arch_destroy_vm(struct kvm *kvm)
198 {
199 	bitmap_free(kvm->arch.pmu_filter);
200 	free_cpumask_var(kvm->arch.supported_cpus);
201 
202 	kvm_vgic_destroy(kvm);
203 
204 	if (is_protected_kvm_enabled())
205 		pkvm_destroy_hyp_vm(kvm);
206 
207 	kvm_destroy_vcpus(kvm);
208 
209 	kvm_unshare_hyp(kvm, kvm + 1);
210 
211 	kvm_arm_teardown_hypercalls(kvm);
212 }
213 
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)214 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
215 {
216 	int r;
217 	switch (ext) {
218 	case KVM_CAP_IRQCHIP:
219 		r = vgic_present;
220 		break;
221 	case KVM_CAP_IOEVENTFD:
222 	case KVM_CAP_DEVICE_CTRL:
223 	case KVM_CAP_USER_MEMORY:
224 	case KVM_CAP_SYNC_MMU:
225 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
226 	case KVM_CAP_ONE_REG:
227 	case KVM_CAP_ARM_PSCI:
228 	case KVM_CAP_ARM_PSCI_0_2:
229 	case KVM_CAP_READONLY_MEM:
230 	case KVM_CAP_MP_STATE:
231 	case KVM_CAP_IMMEDIATE_EXIT:
232 	case KVM_CAP_VCPU_EVENTS:
233 	case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
234 	case KVM_CAP_ARM_NISV_TO_USER:
235 	case KVM_CAP_ARM_INJECT_EXT_DABT:
236 	case KVM_CAP_SET_GUEST_DEBUG:
237 	case KVM_CAP_VCPU_ATTRIBUTES:
238 	case KVM_CAP_PTP_KVM:
239 	case KVM_CAP_ARM_SYSTEM_SUSPEND:
240 	case KVM_CAP_IRQFD_RESAMPLE:
241 	case KVM_CAP_COUNTER_OFFSET:
242 		r = 1;
243 		break;
244 	case KVM_CAP_SET_GUEST_DEBUG2:
245 		return KVM_GUESTDBG_VALID_MASK;
246 	case KVM_CAP_ARM_SET_DEVICE_ADDR:
247 		r = 1;
248 		break;
249 	case KVM_CAP_NR_VCPUS:
250 		/*
251 		 * ARM64 treats KVM_CAP_NR_CPUS differently from all other
252 		 * architectures, as it does not always bound it to
253 		 * KVM_CAP_MAX_VCPUS. It should not matter much because
254 		 * this is just an advisory value.
255 		 */
256 		r = min_t(unsigned int, num_online_cpus(),
257 			  kvm_arm_default_max_vcpus());
258 		break;
259 	case KVM_CAP_MAX_VCPUS:
260 	case KVM_CAP_MAX_VCPU_ID:
261 		if (kvm)
262 			r = kvm->max_vcpus;
263 		else
264 			r = kvm_arm_default_max_vcpus();
265 		break;
266 	case KVM_CAP_MSI_DEVID:
267 		if (!kvm)
268 			r = -EINVAL;
269 		else
270 			r = kvm->arch.vgic.msis_require_devid;
271 		break;
272 	case KVM_CAP_ARM_USER_IRQ:
273 		/*
274 		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
275 		 * (bump this number if adding more devices)
276 		 */
277 		r = 1;
278 		break;
279 	case KVM_CAP_ARM_MTE:
280 		r = system_supports_mte();
281 		break;
282 	case KVM_CAP_STEAL_TIME:
283 		r = kvm_arm_pvtime_supported();
284 		break;
285 	case KVM_CAP_ARM_EL1_32BIT:
286 		r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1);
287 		break;
288 	case KVM_CAP_GUEST_DEBUG_HW_BPS:
289 		r = get_num_brps();
290 		break;
291 	case KVM_CAP_GUEST_DEBUG_HW_WPS:
292 		r = get_num_wrps();
293 		break;
294 	case KVM_CAP_ARM_PMU_V3:
295 		r = kvm_arm_support_pmu_v3();
296 		break;
297 	case KVM_CAP_ARM_INJECT_SERROR_ESR:
298 		r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
299 		break;
300 	case KVM_CAP_ARM_VM_IPA_SIZE:
301 		r = get_kvm_ipa_limit();
302 		break;
303 	case KVM_CAP_ARM_SVE:
304 		r = system_supports_sve();
305 		break;
306 	case KVM_CAP_ARM_PTRAUTH_ADDRESS:
307 	case KVM_CAP_ARM_PTRAUTH_GENERIC:
308 		r = system_has_full_ptr_auth();
309 		break;
310 	case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
311 		if (kvm)
312 			r = kvm->arch.mmu.split_page_chunk_size;
313 		else
314 			r = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT;
315 		break;
316 	case KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES:
317 		r = kvm_supported_block_sizes();
318 		break;
319 	default:
320 		r = 0;
321 	}
322 
323 	return r;
324 }
325 
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)326 long kvm_arch_dev_ioctl(struct file *filp,
327 			unsigned int ioctl, unsigned long arg)
328 {
329 	return -EINVAL;
330 }
331 
kvm_arch_alloc_vm(void)332 struct kvm *kvm_arch_alloc_vm(void)
333 {
334 	size_t sz = sizeof(struct kvm);
335 
336 	if (!has_vhe())
337 		return kzalloc(sz, GFP_KERNEL_ACCOUNT);
338 
339 	return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO);
340 }
341 
kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)342 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
343 {
344 	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
345 		return -EBUSY;
346 
347 	if (id >= kvm->max_vcpus)
348 		return -EINVAL;
349 
350 	return 0;
351 }
352 
kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)353 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
354 {
355 	int err;
356 
357 	spin_lock_init(&vcpu->arch.mp_state_lock);
358 
359 #ifdef CONFIG_LOCKDEP
360 	/* Inform lockdep that the config_lock is acquired after vcpu->mutex */
361 	mutex_lock(&vcpu->mutex);
362 	mutex_lock(&vcpu->kvm->arch.config_lock);
363 	mutex_unlock(&vcpu->kvm->arch.config_lock);
364 	mutex_unlock(&vcpu->mutex);
365 #endif
366 
367 	/* Force users to call KVM_ARM_VCPU_INIT */
368 	vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
369 	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
370 
371 	vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
372 
373 	/*
374 	 * Default value for the FP state, will be overloaded at load
375 	 * time if we support FP (pretty likely)
376 	 */
377 	vcpu->arch.fp_state = FP_STATE_FREE;
378 
379 	/* Set up the timer */
380 	kvm_timer_vcpu_init(vcpu);
381 
382 	kvm_pmu_vcpu_init(vcpu);
383 
384 	kvm_arm_reset_debug_ptr(vcpu);
385 
386 	kvm_arm_pvtime_vcpu_init(&vcpu->arch);
387 
388 	vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
389 
390 	err = kvm_vgic_vcpu_init(vcpu);
391 	if (err)
392 		return err;
393 
394 	err = kvm_share_hyp(vcpu, vcpu + 1);
395 	if (err)
396 		kvm_vgic_vcpu_destroy(vcpu);
397 
398 	return err;
399 }
400 
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)401 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
402 {
403 }
404 
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)405 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
406 {
407 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
408 	kvm_timer_vcpu_terminate(vcpu);
409 	kvm_pmu_vcpu_destroy(vcpu);
410 	kvm_vgic_vcpu_destroy(vcpu);
411 	kvm_arm_vcpu_destroy(vcpu);
412 }
413 
kvm_arch_vcpu_blocking(struct kvm_vcpu * vcpu)414 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
415 {
416 
417 }
418 
kvm_arch_vcpu_unblocking(struct kvm_vcpu * vcpu)419 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
420 {
421 
422 }
423 
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)424 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
425 {
426 	struct kvm_s2_mmu *mmu;
427 	int *last_ran;
428 
429 	mmu = vcpu->arch.hw_mmu;
430 	last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
431 
432 	/*
433 	 * We guarantee that both TLBs and I-cache are private to each
434 	 * vcpu. If detecting that a vcpu from the same VM has
435 	 * previously run on the same physical CPU, call into the
436 	 * hypervisor code to nuke the relevant contexts.
437 	 *
438 	 * We might get preempted before the vCPU actually runs, but
439 	 * over-invalidation doesn't affect correctness.
440 	 */
441 	if (*last_ran != vcpu->vcpu_id) {
442 		kvm_call_hyp(__kvm_flush_cpu_context, mmu);
443 		*last_ran = vcpu->vcpu_id;
444 	}
445 
446 	vcpu->cpu = cpu;
447 
448 	kvm_vgic_load(vcpu);
449 	kvm_timer_vcpu_load(vcpu);
450 	if (has_vhe())
451 		kvm_vcpu_load_sysregs_vhe(vcpu);
452 	kvm_arch_vcpu_load_fp(vcpu);
453 	kvm_vcpu_pmu_restore_guest(vcpu);
454 	if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
455 		kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
456 
457 	if (single_task_running())
458 		vcpu_clear_wfx_traps(vcpu);
459 	else
460 		vcpu_set_wfx_traps(vcpu);
461 
462 	if (vcpu_has_ptrauth(vcpu))
463 		vcpu_ptrauth_disable(vcpu);
464 	kvm_arch_vcpu_load_debug_state_flags(vcpu);
465 
466 	if (!cpumask_test_cpu(cpu, vcpu->kvm->arch.supported_cpus))
467 		vcpu_set_on_unsupported_cpu(vcpu);
468 }
469 
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)470 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
471 {
472 	kvm_arch_vcpu_put_debug_state_flags(vcpu);
473 	kvm_arch_vcpu_put_fp(vcpu);
474 	if (has_vhe())
475 		kvm_vcpu_put_sysregs_vhe(vcpu);
476 	kvm_timer_vcpu_put(vcpu);
477 	kvm_vgic_put(vcpu);
478 	kvm_vcpu_pmu_restore_host(vcpu);
479 	kvm_arm_vmid_clear_active();
480 
481 	vcpu_clear_on_unsupported_cpu(vcpu);
482 	vcpu->cpu = -1;
483 }
484 
__kvm_arm_vcpu_power_off(struct kvm_vcpu * vcpu)485 static void __kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
486 {
487 	WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED);
488 	kvm_make_request(KVM_REQ_SLEEP, vcpu);
489 	kvm_vcpu_kick(vcpu);
490 }
491 
kvm_arm_vcpu_power_off(struct kvm_vcpu * vcpu)492 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
493 {
494 	spin_lock(&vcpu->arch.mp_state_lock);
495 	__kvm_arm_vcpu_power_off(vcpu);
496 	spin_unlock(&vcpu->arch.mp_state_lock);
497 }
498 
kvm_arm_vcpu_stopped(struct kvm_vcpu * vcpu)499 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu)
500 {
501 	return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_STOPPED;
502 }
503 
kvm_arm_vcpu_suspend(struct kvm_vcpu * vcpu)504 static void kvm_arm_vcpu_suspend(struct kvm_vcpu *vcpu)
505 {
506 	WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_SUSPENDED);
507 	kvm_make_request(KVM_REQ_SUSPEND, vcpu);
508 	kvm_vcpu_kick(vcpu);
509 }
510 
kvm_arm_vcpu_suspended(struct kvm_vcpu * vcpu)511 static bool kvm_arm_vcpu_suspended(struct kvm_vcpu *vcpu)
512 {
513 	return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_SUSPENDED;
514 }
515 
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)516 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
517 				    struct kvm_mp_state *mp_state)
518 {
519 	*mp_state = READ_ONCE(vcpu->arch.mp_state);
520 
521 	return 0;
522 }
523 
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)524 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
525 				    struct kvm_mp_state *mp_state)
526 {
527 	int ret = 0;
528 
529 	spin_lock(&vcpu->arch.mp_state_lock);
530 
531 	switch (mp_state->mp_state) {
532 	case KVM_MP_STATE_RUNNABLE:
533 		WRITE_ONCE(vcpu->arch.mp_state, *mp_state);
534 		break;
535 	case KVM_MP_STATE_STOPPED:
536 		__kvm_arm_vcpu_power_off(vcpu);
537 		break;
538 	case KVM_MP_STATE_SUSPENDED:
539 		kvm_arm_vcpu_suspend(vcpu);
540 		break;
541 	default:
542 		ret = -EINVAL;
543 	}
544 
545 	spin_unlock(&vcpu->arch.mp_state_lock);
546 
547 	return ret;
548 }
549 
550 /**
551  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
552  * @v:		The VCPU pointer
553  *
554  * If the guest CPU is not waiting for interrupts or an interrupt line is
555  * asserted, the CPU is by definition runnable.
556  */
kvm_arch_vcpu_runnable(struct kvm_vcpu * v)557 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
558 {
559 	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
560 	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
561 		&& !kvm_arm_vcpu_stopped(v) && !v->arch.pause);
562 }
563 
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)564 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
565 {
566 	return vcpu_mode_priv(vcpu);
567 }
568 
569 #ifdef CONFIG_GUEST_PERF_EVENTS
kvm_arch_vcpu_get_ip(struct kvm_vcpu * vcpu)570 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
571 {
572 	return *vcpu_pc(vcpu);
573 }
574 #endif
575 
kvm_vcpu_initialized(struct kvm_vcpu * vcpu)576 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
577 {
578 	return vcpu_get_flag(vcpu, VCPU_INITIALIZED);
579 }
580 
581 /*
582  * Handle both the initialisation that is being done when the vcpu is
583  * run for the first time, as well as the updates that must be
584  * performed each time we get a new thread dealing with this vcpu.
585  */
kvm_arch_vcpu_run_pid_change(struct kvm_vcpu * vcpu)586 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
587 {
588 	struct kvm *kvm = vcpu->kvm;
589 	int ret;
590 
591 	if (!kvm_vcpu_initialized(vcpu))
592 		return -ENOEXEC;
593 
594 	if (!kvm_arm_vcpu_is_finalized(vcpu))
595 		return -EPERM;
596 
597 	ret = kvm_arch_vcpu_run_map_fp(vcpu);
598 	if (ret)
599 		return ret;
600 
601 	if (likely(vcpu_has_run_once(vcpu)))
602 		return 0;
603 
604 	kvm_arm_vcpu_init_debug(vcpu);
605 
606 	if (likely(irqchip_in_kernel(kvm))) {
607 		/*
608 		 * Map the VGIC hardware resources before running a vcpu the
609 		 * first time on this VM.
610 		 */
611 		ret = kvm_vgic_map_resources(kvm);
612 		if (ret)
613 			return ret;
614 	}
615 
616 	ret = kvm_timer_enable(vcpu);
617 	if (ret)
618 		return ret;
619 
620 	ret = kvm_arm_pmu_v3_enable(vcpu);
621 	if (ret)
622 		return ret;
623 
624 	if (is_protected_kvm_enabled()) {
625 		ret = pkvm_create_hyp_vm(kvm);
626 		if (ret)
627 			return ret;
628 	}
629 
630 	/*
631 	 * Initialize traps for protected VMs.
632 	 * NOTE: Move to run in EL2 directly, rather than via a hypercall, once
633 	 * the code is in place for first run initialization at EL2.
634 	 */
635 	if (kvm_vm_is_protected(kvm))
636 		kvm_call_hyp_nvhe(__pkvm_vcpu_init_traps, vcpu);
637 
638 	mutex_lock(&kvm->arch.config_lock);
639 	set_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &kvm->arch.flags);
640 	mutex_unlock(&kvm->arch.config_lock);
641 
642 	return ret;
643 }
644 
kvm_arch_intc_initialized(struct kvm * kvm)645 bool kvm_arch_intc_initialized(struct kvm *kvm)
646 {
647 	return vgic_initialized(kvm);
648 }
649 
kvm_arm_halt_guest(struct kvm * kvm)650 void kvm_arm_halt_guest(struct kvm *kvm)
651 {
652 	unsigned long i;
653 	struct kvm_vcpu *vcpu;
654 
655 	kvm_for_each_vcpu(i, vcpu, kvm)
656 		vcpu->arch.pause = true;
657 	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
658 }
659 
kvm_arm_resume_guest(struct kvm * kvm)660 void kvm_arm_resume_guest(struct kvm *kvm)
661 {
662 	unsigned long i;
663 	struct kvm_vcpu *vcpu;
664 
665 	kvm_for_each_vcpu(i, vcpu, kvm) {
666 		vcpu->arch.pause = false;
667 		__kvm_vcpu_wake_up(vcpu);
668 	}
669 }
670 
kvm_vcpu_sleep(struct kvm_vcpu * vcpu)671 static void kvm_vcpu_sleep(struct kvm_vcpu *vcpu)
672 {
673 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
674 
675 	rcuwait_wait_event(wait,
676 			   (!kvm_arm_vcpu_stopped(vcpu)) && (!vcpu->arch.pause),
677 			   TASK_INTERRUPTIBLE);
678 
679 	if (kvm_arm_vcpu_stopped(vcpu) || vcpu->arch.pause) {
680 		/* Awaken to handle a signal, request we sleep again later. */
681 		kvm_make_request(KVM_REQ_SLEEP, vcpu);
682 	}
683 
684 	/*
685 	 * Make sure we will observe a potential reset request if we've
686 	 * observed a change to the power state. Pairs with the smp_wmb() in
687 	 * kvm_psci_vcpu_on().
688 	 */
689 	smp_rmb();
690 }
691 
692 /**
693  * kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior
694  * @vcpu:	The VCPU pointer
695  *
696  * Suspend execution of a vCPU until a valid wake event is detected, i.e. until
697  * the vCPU is runnable.  The vCPU may or may not be scheduled out, depending
698  * on when a wake event arrives, e.g. there may already be a pending wake event.
699  */
kvm_vcpu_wfi(struct kvm_vcpu * vcpu)700 void kvm_vcpu_wfi(struct kvm_vcpu *vcpu)
701 {
702 	/*
703 	 * Sync back the state of the GIC CPU interface so that we have
704 	 * the latest PMR and group enables. This ensures that
705 	 * kvm_arch_vcpu_runnable has up-to-date data to decide whether
706 	 * we have pending interrupts, e.g. when determining if the
707 	 * vCPU should block.
708 	 *
709 	 * For the same reason, we want to tell GICv4 that we need
710 	 * doorbells to be signalled, should an interrupt become pending.
711 	 */
712 	preempt_disable();
713 	kvm_vgic_vmcr_sync(vcpu);
714 	vcpu_set_flag(vcpu, IN_WFI);
715 	vgic_v4_put(vcpu);
716 	preempt_enable();
717 
718 	kvm_vcpu_halt(vcpu);
719 	vcpu_clear_flag(vcpu, IN_WFIT);
720 
721 	preempt_disable();
722 	vcpu_clear_flag(vcpu, IN_WFI);
723 	vgic_v4_load(vcpu);
724 	preempt_enable();
725 }
726 
kvm_vcpu_suspend(struct kvm_vcpu * vcpu)727 static int kvm_vcpu_suspend(struct kvm_vcpu *vcpu)
728 {
729 	if (!kvm_arm_vcpu_suspended(vcpu))
730 		return 1;
731 
732 	kvm_vcpu_wfi(vcpu);
733 
734 	/*
735 	 * The suspend state is sticky; we do not leave it until userspace
736 	 * explicitly marks the vCPU as runnable. Request that we suspend again
737 	 * later.
738 	 */
739 	kvm_make_request(KVM_REQ_SUSPEND, vcpu);
740 
741 	/*
742 	 * Check to make sure the vCPU is actually runnable. If so, exit to
743 	 * userspace informing it of the wakeup condition.
744 	 */
745 	if (kvm_arch_vcpu_runnable(vcpu)) {
746 		memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event));
747 		vcpu->run->system_event.type = KVM_SYSTEM_EVENT_WAKEUP;
748 		vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
749 		return 0;
750 	}
751 
752 	/*
753 	 * Otherwise, we were unblocked to process a different event, such as a
754 	 * pending signal. Return 1 and allow kvm_arch_vcpu_ioctl_run() to
755 	 * process the event.
756 	 */
757 	return 1;
758 }
759 
760 /**
761  * check_vcpu_requests - check and handle pending vCPU requests
762  * @vcpu:	the VCPU pointer
763  *
764  * Return: 1 if we should enter the guest
765  *	   0 if we should exit to userspace
766  *	   < 0 if we should exit to userspace, where the return value indicates
767  *	   an error
768  */
check_vcpu_requests(struct kvm_vcpu * vcpu)769 static int check_vcpu_requests(struct kvm_vcpu *vcpu)
770 {
771 	if (kvm_request_pending(vcpu)) {
772 		if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu))
773 			return -EIO;
774 
775 		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
776 			kvm_vcpu_sleep(vcpu);
777 
778 		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
779 			kvm_reset_vcpu(vcpu);
780 
781 		/*
782 		 * Clear IRQ_PENDING requests that were made to guarantee
783 		 * that a VCPU sees new virtual interrupts.
784 		 */
785 		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
786 
787 		if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
788 			kvm_update_stolen_time(vcpu);
789 
790 		if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
791 			/* The distributor enable bits were changed */
792 			preempt_disable();
793 			vgic_v4_put(vcpu);
794 			vgic_v4_load(vcpu);
795 			preempt_enable();
796 		}
797 
798 		if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
799 			kvm_pmu_handle_pmcr(vcpu,
800 					    __vcpu_sys_reg(vcpu, PMCR_EL0));
801 
802 		if (kvm_check_request(KVM_REQ_RESYNC_PMU_EL0, vcpu))
803 			kvm_vcpu_pmu_restore_guest(vcpu);
804 
805 		if (kvm_check_request(KVM_REQ_SUSPEND, vcpu))
806 			return kvm_vcpu_suspend(vcpu);
807 
808 		if (kvm_dirty_ring_check_request(vcpu))
809 			return 0;
810 	}
811 
812 	return 1;
813 }
814 
vcpu_mode_is_bad_32bit(struct kvm_vcpu * vcpu)815 static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
816 {
817 	if (likely(!vcpu_mode_is_32bit(vcpu)))
818 		return false;
819 
820 	if (vcpu_has_nv(vcpu))
821 		return true;
822 
823 	return !kvm_supports_32bit_el0();
824 }
825 
826 /**
827  * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest
828  * @vcpu:	The VCPU pointer
829  * @ret:	Pointer to write optional return code
830  *
831  * Returns: true if the VCPU needs to return to a preemptible + interruptible
832  *	    and skip guest entry.
833  *
834  * This function disambiguates between two different types of exits: exits to a
835  * preemptible + interruptible kernel context and exits to userspace. For an
836  * exit to userspace, this function will write the return code to ret and return
837  * true. For an exit to preemptible + interruptible kernel context (i.e. check
838  * for pending work and re-enter), return true without writing to ret.
839  */
kvm_vcpu_exit_request(struct kvm_vcpu * vcpu,int * ret)840 static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret)
841 {
842 	struct kvm_run *run = vcpu->run;
843 
844 	/*
845 	 * If we're using a userspace irqchip, then check if we need
846 	 * to tell a userspace irqchip about timer or PMU level
847 	 * changes and if so, exit to userspace (the actual level
848 	 * state gets updated in kvm_timer_update_run and
849 	 * kvm_pmu_update_run below).
850 	 */
851 	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
852 		if (kvm_timer_should_notify_user(vcpu) ||
853 		    kvm_pmu_should_notify_user(vcpu)) {
854 			*ret = -EINTR;
855 			run->exit_reason = KVM_EXIT_INTR;
856 			return true;
857 		}
858 	}
859 
860 	if (unlikely(vcpu_on_unsupported_cpu(vcpu))) {
861 		run->exit_reason = KVM_EXIT_FAIL_ENTRY;
862 		run->fail_entry.hardware_entry_failure_reason = KVM_EXIT_FAIL_ENTRY_CPU_UNSUPPORTED;
863 		run->fail_entry.cpu = smp_processor_id();
864 		*ret = 0;
865 		return true;
866 	}
867 
868 	return kvm_request_pending(vcpu) ||
869 			xfer_to_guest_mode_work_pending();
870 }
871 
872 /*
873  * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
874  * the vCPU is running.
875  *
876  * This must be noinstr as instrumentation may make use of RCU, and this is not
877  * safe during the EQS.
878  */
kvm_arm_vcpu_enter_exit(struct kvm_vcpu * vcpu)879 static int noinstr kvm_arm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
880 {
881 	int ret;
882 
883 	guest_state_enter_irqoff();
884 	ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
885 	guest_state_exit_irqoff();
886 
887 	return ret;
888 }
889 
890 /**
891  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
892  * @vcpu:	The VCPU pointer
893  *
894  * This function is called through the VCPU_RUN ioctl called from user space. It
895  * will execute VM code in a loop until the time slice for the process is used
896  * or some emulation is needed from user space in which case the function will
897  * return with return value 0 and with the kvm_run structure filled in with the
898  * required data for the requested emulation.
899  */
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)900 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
901 {
902 	struct kvm_run *run = vcpu->run;
903 	int ret;
904 
905 	if (run->exit_reason == KVM_EXIT_MMIO) {
906 		ret = kvm_handle_mmio_return(vcpu);
907 		if (ret <= 0)
908 			return ret;
909 	}
910 
911 	vcpu_load(vcpu);
912 
913 	if (run->immediate_exit) {
914 		ret = -EINTR;
915 		goto out;
916 	}
917 
918 	kvm_sigset_activate(vcpu);
919 
920 	ret = 1;
921 	run->exit_reason = KVM_EXIT_UNKNOWN;
922 	run->flags = 0;
923 	while (ret > 0) {
924 		/*
925 		 * Check conditions before entering the guest
926 		 */
927 		ret = xfer_to_guest_mode_handle_work(vcpu);
928 		if (!ret)
929 			ret = 1;
930 
931 		if (ret > 0)
932 			ret = check_vcpu_requests(vcpu);
933 
934 		/*
935 		 * Preparing the interrupts to be injected also
936 		 * involves poking the GIC, which must be done in a
937 		 * non-preemptible context.
938 		 */
939 		preempt_disable();
940 
941 		/*
942 		 * The VMID allocator only tracks active VMIDs per
943 		 * physical CPU, and therefore the VMID allocated may not be
944 		 * preserved on VMID roll-over if the task was preempted,
945 		 * making a thread's VMID inactive. So we need to call
946 		 * kvm_arm_vmid_update() in non-premptible context.
947 		 */
948 		kvm_arm_vmid_update(&vcpu->arch.hw_mmu->vmid);
949 
950 		kvm_pmu_flush_hwstate(vcpu);
951 
952 		local_irq_disable();
953 
954 		kvm_vgic_flush_hwstate(vcpu);
955 
956 		kvm_pmu_update_vcpu_events(vcpu);
957 
958 		/*
959 		 * Ensure we set mode to IN_GUEST_MODE after we disable
960 		 * interrupts and before the final VCPU requests check.
961 		 * See the comment in kvm_vcpu_exiting_guest_mode() and
962 		 * Documentation/virt/kvm/vcpu-requests.rst
963 		 */
964 		smp_store_mb(vcpu->mode, IN_GUEST_MODE);
965 
966 		if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) {
967 			vcpu->mode = OUTSIDE_GUEST_MODE;
968 			isb(); /* Ensure work in x_flush_hwstate is committed */
969 			kvm_pmu_sync_hwstate(vcpu);
970 			if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
971 				kvm_timer_sync_user(vcpu);
972 			kvm_vgic_sync_hwstate(vcpu);
973 			local_irq_enable();
974 			preempt_enable();
975 			continue;
976 		}
977 
978 		kvm_arm_setup_debug(vcpu);
979 		kvm_arch_vcpu_ctxflush_fp(vcpu);
980 
981 		/**************************************************************
982 		 * Enter the guest
983 		 */
984 		trace_kvm_entry(*vcpu_pc(vcpu));
985 		guest_timing_enter_irqoff();
986 
987 		ret = kvm_arm_vcpu_enter_exit(vcpu);
988 
989 		vcpu->mode = OUTSIDE_GUEST_MODE;
990 		vcpu->stat.exits++;
991 		/*
992 		 * Back from guest
993 		 *************************************************************/
994 
995 		kvm_arm_clear_debug(vcpu);
996 
997 		/*
998 		 * We must sync the PMU state before the vgic state so
999 		 * that the vgic can properly sample the updated state of the
1000 		 * interrupt line.
1001 		 */
1002 		kvm_pmu_sync_hwstate(vcpu);
1003 
1004 		/*
1005 		 * Sync the vgic state before syncing the timer state because
1006 		 * the timer code needs to know if the virtual timer
1007 		 * interrupts are active.
1008 		 */
1009 		kvm_vgic_sync_hwstate(vcpu);
1010 
1011 		/*
1012 		 * Sync the timer hardware state before enabling interrupts as
1013 		 * we don't want vtimer interrupts to race with syncing the
1014 		 * timer virtual interrupt state.
1015 		 */
1016 		if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
1017 			kvm_timer_sync_user(vcpu);
1018 
1019 		kvm_arch_vcpu_ctxsync_fp(vcpu);
1020 
1021 		/*
1022 		 * We must ensure that any pending interrupts are taken before
1023 		 * we exit guest timing so that timer ticks are accounted as
1024 		 * guest time. Transiently unmask interrupts so that any
1025 		 * pending interrupts are taken.
1026 		 *
1027 		 * Per ARM DDI 0487G.b section D1.13.4, an ISB (or other
1028 		 * context synchronization event) is necessary to ensure that
1029 		 * pending interrupts are taken.
1030 		 */
1031 		if (ARM_EXCEPTION_CODE(ret) == ARM_EXCEPTION_IRQ) {
1032 			local_irq_enable();
1033 			isb();
1034 			local_irq_disable();
1035 		}
1036 
1037 		guest_timing_exit_irqoff();
1038 
1039 		local_irq_enable();
1040 
1041 		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
1042 
1043 		/* Exit types that need handling before we can be preempted */
1044 		handle_exit_early(vcpu, ret);
1045 
1046 		preempt_enable();
1047 
1048 		/*
1049 		 * The ARMv8 architecture doesn't give the hypervisor
1050 		 * a mechanism to prevent a guest from dropping to AArch32 EL0
1051 		 * if implemented by the CPU. If we spot the guest in such
1052 		 * state and that we decided it wasn't supposed to do so (like
1053 		 * with the asymmetric AArch32 case), return to userspace with
1054 		 * a fatal error.
1055 		 */
1056 		if (vcpu_mode_is_bad_32bit(vcpu)) {
1057 			/*
1058 			 * As we have caught the guest red-handed, decide that
1059 			 * it isn't fit for purpose anymore by making the vcpu
1060 			 * invalid. The VMM can try and fix it by issuing  a
1061 			 * KVM_ARM_VCPU_INIT if it really wants to.
1062 			 */
1063 			vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
1064 			ret = ARM_EXCEPTION_IL;
1065 		}
1066 
1067 		ret = handle_exit(vcpu, ret);
1068 	}
1069 
1070 	/* Tell userspace about in-kernel device output levels */
1071 	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
1072 		kvm_timer_update_run(vcpu);
1073 		kvm_pmu_update_run(vcpu);
1074 	}
1075 
1076 	kvm_sigset_deactivate(vcpu);
1077 
1078 out:
1079 	/*
1080 	 * In the unlikely event that we are returning to userspace
1081 	 * with pending exceptions or PC adjustment, commit these
1082 	 * adjustments in order to give userspace a consistent view of
1083 	 * the vcpu state. Note that this relies on __kvm_adjust_pc()
1084 	 * being preempt-safe on VHE.
1085 	 */
1086 	if (unlikely(vcpu_get_flag(vcpu, PENDING_EXCEPTION) ||
1087 		     vcpu_get_flag(vcpu, INCREMENT_PC)))
1088 		kvm_call_hyp(__kvm_adjust_pc, vcpu);
1089 
1090 	vcpu_put(vcpu);
1091 	return ret;
1092 }
1093 
vcpu_interrupt_line(struct kvm_vcpu * vcpu,int number,bool level)1094 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
1095 {
1096 	int bit_index;
1097 	bool set;
1098 	unsigned long *hcr;
1099 
1100 	if (number == KVM_ARM_IRQ_CPU_IRQ)
1101 		bit_index = __ffs(HCR_VI);
1102 	else /* KVM_ARM_IRQ_CPU_FIQ */
1103 		bit_index = __ffs(HCR_VF);
1104 
1105 	hcr = vcpu_hcr(vcpu);
1106 	if (level)
1107 		set = test_and_set_bit(bit_index, hcr);
1108 	else
1109 		set = test_and_clear_bit(bit_index, hcr);
1110 
1111 	/*
1112 	 * If we didn't change anything, no need to wake up or kick other CPUs
1113 	 */
1114 	if (set == level)
1115 		return 0;
1116 
1117 	/*
1118 	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
1119 	 * trigger a world-switch round on the running physical CPU to set the
1120 	 * virtual IRQ/FIQ fields in the HCR appropriately.
1121 	 */
1122 	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
1123 	kvm_vcpu_kick(vcpu);
1124 
1125 	return 0;
1126 }
1127 
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_level,bool line_status)1128 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1129 			  bool line_status)
1130 {
1131 	u32 irq = irq_level->irq;
1132 	unsigned int irq_type, vcpu_idx, irq_num;
1133 	int nrcpus = atomic_read(&kvm->online_vcpus);
1134 	struct kvm_vcpu *vcpu = NULL;
1135 	bool level = irq_level->level;
1136 
1137 	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
1138 	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
1139 	vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
1140 	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
1141 
1142 	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
1143 
1144 	switch (irq_type) {
1145 	case KVM_ARM_IRQ_TYPE_CPU:
1146 		if (irqchip_in_kernel(kvm))
1147 			return -ENXIO;
1148 
1149 		if (vcpu_idx >= nrcpus)
1150 			return -EINVAL;
1151 
1152 		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1153 		if (!vcpu)
1154 			return -EINVAL;
1155 
1156 		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
1157 			return -EINVAL;
1158 
1159 		return vcpu_interrupt_line(vcpu, irq_num, level);
1160 	case KVM_ARM_IRQ_TYPE_PPI:
1161 		if (!irqchip_in_kernel(kvm))
1162 			return -ENXIO;
1163 
1164 		if (vcpu_idx >= nrcpus)
1165 			return -EINVAL;
1166 
1167 		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1168 		if (!vcpu)
1169 			return -EINVAL;
1170 
1171 		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
1172 			return -EINVAL;
1173 
1174 		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
1175 	case KVM_ARM_IRQ_TYPE_SPI:
1176 		if (!irqchip_in_kernel(kvm))
1177 			return -ENXIO;
1178 
1179 		if (irq_num < VGIC_NR_PRIVATE_IRQS)
1180 			return -EINVAL;
1181 
1182 		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
1183 	}
1184 
1185 	return -EINVAL;
1186 }
1187 
kvm_vcpu_init_check_features(struct kvm_vcpu * vcpu,const struct kvm_vcpu_init * init)1188 static int kvm_vcpu_init_check_features(struct kvm_vcpu *vcpu,
1189 					const struct kvm_vcpu_init *init)
1190 {
1191 	unsigned long features = init->features[0];
1192 	int i;
1193 
1194 	if (features & ~KVM_VCPU_VALID_FEATURES)
1195 		return -ENOENT;
1196 
1197 	for (i = 1; i < ARRAY_SIZE(init->features); i++) {
1198 		if (init->features[i])
1199 			return -ENOENT;
1200 	}
1201 
1202 	if (!test_bit(KVM_ARM_VCPU_EL1_32BIT, &features))
1203 		return 0;
1204 
1205 	if (!cpus_have_const_cap(ARM64_HAS_32BIT_EL1))
1206 		return -EINVAL;
1207 
1208 	/* MTE is incompatible with AArch32 */
1209 	if (kvm_has_mte(vcpu->kvm))
1210 		return -EINVAL;
1211 
1212 	/* NV is incompatible with AArch32 */
1213 	if (test_bit(KVM_ARM_VCPU_HAS_EL2, &features))
1214 		return -EINVAL;
1215 
1216 	return 0;
1217 }
1218 
kvm_vcpu_init_changed(struct kvm_vcpu * vcpu,const struct kvm_vcpu_init * init)1219 static bool kvm_vcpu_init_changed(struct kvm_vcpu *vcpu,
1220 				  const struct kvm_vcpu_init *init)
1221 {
1222 	unsigned long features = init->features[0];
1223 
1224 	return !bitmap_equal(vcpu->arch.features, &features, KVM_VCPU_MAX_FEATURES);
1225 }
1226 
__kvm_vcpu_set_target(struct kvm_vcpu * vcpu,const struct kvm_vcpu_init * init)1227 static int __kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1228 				 const struct kvm_vcpu_init *init)
1229 {
1230 	unsigned long features = init->features[0];
1231 	struct kvm *kvm = vcpu->kvm;
1232 	int ret = -EINVAL;
1233 
1234 	mutex_lock(&kvm->arch.config_lock);
1235 
1236 	if (test_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags) &&
1237 	    !bitmap_equal(kvm->arch.vcpu_features, &features, KVM_VCPU_MAX_FEATURES))
1238 		goto out_unlock;
1239 
1240 	bitmap_copy(vcpu->arch.features, &features, KVM_VCPU_MAX_FEATURES);
1241 
1242 	/* Now we know what it is, we can reset it. */
1243 	ret = kvm_reset_vcpu(vcpu);
1244 	if (ret) {
1245 		bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
1246 		goto out_unlock;
1247 	}
1248 
1249 	bitmap_copy(kvm->arch.vcpu_features, &features, KVM_VCPU_MAX_FEATURES);
1250 	set_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags);
1251 	vcpu_set_flag(vcpu, VCPU_INITIALIZED);
1252 out_unlock:
1253 	mutex_unlock(&kvm->arch.config_lock);
1254 	return ret;
1255 }
1256 
kvm_vcpu_set_target(struct kvm_vcpu * vcpu,const struct kvm_vcpu_init * init)1257 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1258 			       const struct kvm_vcpu_init *init)
1259 {
1260 	int ret;
1261 
1262 	if (init->target != KVM_ARM_TARGET_GENERIC_V8 &&
1263 	    init->target != kvm_target_cpu())
1264 		return -EINVAL;
1265 
1266 	ret = kvm_vcpu_init_check_features(vcpu, init);
1267 	if (ret)
1268 		return ret;
1269 
1270 	if (!kvm_vcpu_initialized(vcpu))
1271 		return __kvm_vcpu_set_target(vcpu, init);
1272 
1273 	if (kvm_vcpu_init_changed(vcpu, init))
1274 		return -EINVAL;
1275 
1276 	return kvm_reset_vcpu(vcpu);
1277 }
1278 
kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu * vcpu,struct kvm_vcpu_init * init)1279 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1280 					 struct kvm_vcpu_init *init)
1281 {
1282 	bool power_off = false;
1283 	int ret;
1284 
1285 	/*
1286 	 * Treat the power-off vCPU feature as ephemeral. Clear the bit to avoid
1287 	 * reflecting it in the finalized feature set, thus limiting its scope
1288 	 * to a single KVM_ARM_VCPU_INIT call.
1289 	 */
1290 	if (init->features[0] & BIT(KVM_ARM_VCPU_POWER_OFF)) {
1291 		init->features[0] &= ~BIT(KVM_ARM_VCPU_POWER_OFF);
1292 		power_off = true;
1293 	}
1294 
1295 	ret = kvm_vcpu_set_target(vcpu, init);
1296 	if (ret)
1297 		return ret;
1298 
1299 	/*
1300 	 * Ensure a rebooted VM will fault in RAM pages and detect if the
1301 	 * guest MMU is turned off and flush the caches as needed.
1302 	 *
1303 	 * S2FWB enforces all memory accesses to RAM being cacheable,
1304 	 * ensuring that the data side is always coherent. We still
1305 	 * need to invalidate the I-cache though, as FWB does *not*
1306 	 * imply CTR_EL0.DIC.
1307 	 */
1308 	if (vcpu_has_run_once(vcpu)) {
1309 		if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1310 			stage2_unmap_vm(vcpu->kvm);
1311 		else
1312 			icache_inval_all_pou();
1313 	}
1314 
1315 	vcpu_reset_hcr(vcpu);
1316 
1317 	/*
1318 	 * Handle the "start in power-off" case.
1319 	 */
1320 	spin_lock(&vcpu->arch.mp_state_lock);
1321 
1322 	if (power_off)
1323 		__kvm_arm_vcpu_power_off(vcpu);
1324 	else
1325 		WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE);
1326 
1327 	spin_unlock(&vcpu->arch.mp_state_lock);
1328 
1329 	return 0;
1330 }
1331 
kvm_arm_vcpu_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1332 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1333 				 struct kvm_device_attr *attr)
1334 {
1335 	int ret = -ENXIO;
1336 
1337 	switch (attr->group) {
1338 	default:
1339 		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1340 		break;
1341 	}
1342 
1343 	return ret;
1344 }
1345 
kvm_arm_vcpu_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1346 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1347 				 struct kvm_device_attr *attr)
1348 {
1349 	int ret = -ENXIO;
1350 
1351 	switch (attr->group) {
1352 	default:
1353 		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1354 		break;
1355 	}
1356 
1357 	return ret;
1358 }
1359 
kvm_arm_vcpu_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1360 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1361 				 struct kvm_device_attr *attr)
1362 {
1363 	int ret = -ENXIO;
1364 
1365 	switch (attr->group) {
1366 	default:
1367 		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1368 		break;
1369 	}
1370 
1371 	return ret;
1372 }
1373 
kvm_arm_vcpu_get_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)1374 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1375 				   struct kvm_vcpu_events *events)
1376 {
1377 	memset(events, 0, sizeof(*events));
1378 
1379 	return __kvm_arm_vcpu_get_events(vcpu, events);
1380 }
1381 
kvm_arm_vcpu_set_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)1382 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1383 				   struct kvm_vcpu_events *events)
1384 {
1385 	int i;
1386 
1387 	/* check whether the reserved field is zero */
1388 	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1389 		if (events->reserved[i])
1390 			return -EINVAL;
1391 
1392 	/* check whether the pad field is zero */
1393 	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1394 		if (events->exception.pad[i])
1395 			return -EINVAL;
1396 
1397 	return __kvm_arm_vcpu_set_events(vcpu, events);
1398 }
1399 
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1400 long kvm_arch_vcpu_ioctl(struct file *filp,
1401 			 unsigned int ioctl, unsigned long arg)
1402 {
1403 	struct kvm_vcpu *vcpu = filp->private_data;
1404 	void __user *argp = (void __user *)arg;
1405 	struct kvm_device_attr attr;
1406 	long r;
1407 
1408 	switch (ioctl) {
1409 	case KVM_ARM_VCPU_INIT: {
1410 		struct kvm_vcpu_init init;
1411 
1412 		r = -EFAULT;
1413 		if (copy_from_user(&init, argp, sizeof(init)))
1414 			break;
1415 
1416 		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1417 		break;
1418 	}
1419 	case KVM_SET_ONE_REG:
1420 	case KVM_GET_ONE_REG: {
1421 		struct kvm_one_reg reg;
1422 
1423 		r = -ENOEXEC;
1424 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1425 			break;
1426 
1427 		r = -EFAULT;
1428 		if (copy_from_user(&reg, argp, sizeof(reg)))
1429 			break;
1430 
1431 		/*
1432 		 * We could owe a reset due to PSCI. Handle the pending reset
1433 		 * here to ensure userspace register accesses are ordered after
1434 		 * the reset.
1435 		 */
1436 		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1437 			kvm_reset_vcpu(vcpu);
1438 
1439 		if (ioctl == KVM_SET_ONE_REG)
1440 			r = kvm_arm_set_reg(vcpu, &reg);
1441 		else
1442 			r = kvm_arm_get_reg(vcpu, &reg);
1443 		break;
1444 	}
1445 	case KVM_GET_REG_LIST: {
1446 		struct kvm_reg_list __user *user_list = argp;
1447 		struct kvm_reg_list reg_list;
1448 		unsigned n;
1449 
1450 		r = -ENOEXEC;
1451 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1452 			break;
1453 
1454 		r = -EPERM;
1455 		if (!kvm_arm_vcpu_is_finalized(vcpu))
1456 			break;
1457 
1458 		r = -EFAULT;
1459 		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1460 			break;
1461 		n = reg_list.n;
1462 		reg_list.n = kvm_arm_num_regs(vcpu);
1463 		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1464 			break;
1465 		r = -E2BIG;
1466 		if (n < reg_list.n)
1467 			break;
1468 		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1469 		break;
1470 	}
1471 	case KVM_SET_DEVICE_ATTR: {
1472 		r = -EFAULT;
1473 		if (copy_from_user(&attr, argp, sizeof(attr)))
1474 			break;
1475 		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1476 		break;
1477 	}
1478 	case KVM_GET_DEVICE_ATTR: {
1479 		r = -EFAULT;
1480 		if (copy_from_user(&attr, argp, sizeof(attr)))
1481 			break;
1482 		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1483 		break;
1484 	}
1485 	case KVM_HAS_DEVICE_ATTR: {
1486 		r = -EFAULT;
1487 		if (copy_from_user(&attr, argp, sizeof(attr)))
1488 			break;
1489 		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1490 		break;
1491 	}
1492 	case KVM_GET_VCPU_EVENTS: {
1493 		struct kvm_vcpu_events events;
1494 
1495 		if (kvm_arm_vcpu_get_events(vcpu, &events))
1496 			return -EINVAL;
1497 
1498 		if (copy_to_user(argp, &events, sizeof(events)))
1499 			return -EFAULT;
1500 
1501 		return 0;
1502 	}
1503 	case KVM_SET_VCPU_EVENTS: {
1504 		struct kvm_vcpu_events events;
1505 
1506 		if (copy_from_user(&events, argp, sizeof(events)))
1507 			return -EFAULT;
1508 
1509 		return kvm_arm_vcpu_set_events(vcpu, &events);
1510 	}
1511 	case KVM_ARM_VCPU_FINALIZE: {
1512 		int what;
1513 
1514 		if (!kvm_vcpu_initialized(vcpu))
1515 			return -ENOEXEC;
1516 
1517 		if (get_user(what, (const int __user *)argp))
1518 			return -EFAULT;
1519 
1520 		return kvm_arm_vcpu_finalize(vcpu, what);
1521 	}
1522 	default:
1523 		r = -EINVAL;
1524 	}
1525 
1526 	return r;
1527 }
1528 
kvm_arch_sync_dirty_log(struct kvm * kvm,struct kvm_memory_slot * memslot)1529 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1530 {
1531 
1532 }
1533 
kvm_vm_ioctl_set_device_addr(struct kvm * kvm,struct kvm_arm_device_addr * dev_addr)1534 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1535 					struct kvm_arm_device_addr *dev_addr)
1536 {
1537 	switch (FIELD_GET(KVM_ARM_DEVICE_ID_MASK, dev_addr->id)) {
1538 	case KVM_ARM_DEVICE_VGIC_V2:
1539 		if (!vgic_present)
1540 			return -ENXIO;
1541 		return kvm_set_legacy_vgic_v2_addr(kvm, dev_addr);
1542 	default:
1543 		return -ENODEV;
1544 	}
1545 }
1546 
kvm_vm_has_attr(struct kvm * kvm,struct kvm_device_attr * attr)1547 static int kvm_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1548 {
1549 	switch (attr->group) {
1550 	case KVM_ARM_VM_SMCCC_CTRL:
1551 		return kvm_vm_smccc_has_attr(kvm, attr);
1552 	default:
1553 		return -ENXIO;
1554 	}
1555 }
1556 
kvm_vm_set_attr(struct kvm * kvm,struct kvm_device_attr * attr)1557 static int kvm_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1558 {
1559 	switch (attr->group) {
1560 	case KVM_ARM_VM_SMCCC_CTRL:
1561 		return kvm_vm_smccc_set_attr(kvm, attr);
1562 	default:
1563 		return -ENXIO;
1564 	}
1565 }
1566 
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1567 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1568 {
1569 	struct kvm *kvm = filp->private_data;
1570 	void __user *argp = (void __user *)arg;
1571 	struct kvm_device_attr attr;
1572 
1573 	switch (ioctl) {
1574 	case KVM_CREATE_IRQCHIP: {
1575 		int ret;
1576 		if (!vgic_present)
1577 			return -ENXIO;
1578 		mutex_lock(&kvm->lock);
1579 		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1580 		mutex_unlock(&kvm->lock);
1581 		return ret;
1582 	}
1583 	case KVM_ARM_SET_DEVICE_ADDR: {
1584 		struct kvm_arm_device_addr dev_addr;
1585 
1586 		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1587 			return -EFAULT;
1588 		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1589 	}
1590 	case KVM_ARM_PREFERRED_TARGET: {
1591 		struct kvm_vcpu_init init = {
1592 			.target = KVM_ARM_TARGET_GENERIC_V8,
1593 		};
1594 
1595 		if (copy_to_user(argp, &init, sizeof(init)))
1596 			return -EFAULT;
1597 
1598 		return 0;
1599 	}
1600 	case KVM_ARM_MTE_COPY_TAGS: {
1601 		struct kvm_arm_copy_mte_tags copy_tags;
1602 
1603 		if (copy_from_user(&copy_tags, argp, sizeof(copy_tags)))
1604 			return -EFAULT;
1605 		return kvm_vm_ioctl_mte_copy_tags(kvm, &copy_tags);
1606 	}
1607 	case KVM_ARM_SET_COUNTER_OFFSET: {
1608 		struct kvm_arm_counter_offset offset;
1609 
1610 		if (copy_from_user(&offset, argp, sizeof(offset)))
1611 			return -EFAULT;
1612 		return kvm_vm_ioctl_set_counter_offset(kvm, &offset);
1613 	}
1614 	case KVM_HAS_DEVICE_ATTR: {
1615 		if (copy_from_user(&attr, argp, sizeof(attr)))
1616 			return -EFAULT;
1617 
1618 		return kvm_vm_has_attr(kvm, &attr);
1619 	}
1620 	case KVM_SET_DEVICE_ATTR: {
1621 		if (copy_from_user(&attr, argp, sizeof(attr)))
1622 			return -EFAULT;
1623 
1624 		return kvm_vm_set_attr(kvm, &attr);
1625 	}
1626 	default:
1627 		return -EINVAL;
1628 	}
1629 }
1630 
1631 /* unlocks vcpus from @vcpu_lock_idx and smaller */
unlock_vcpus(struct kvm * kvm,int vcpu_lock_idx)1632 static void unlock_vcpus(struct kvm *kvm, int vcpu_lock_idx)
1633 {
1634 	struct kvm_vcpu *tmp_vcpu;
1635 
1636 	for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
1637 		tmp_vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
1638 		mutex_unlock(&tmp_vcpu->mutex);
1639 	}
1640 }
1641 
unlock_all_vcpus(struct kvm * kvm)1642 void unlock_all_vcpus(struct kvm *kvm)
1643 {
1644 	lockdep_assert_held(&kvm->lock);
1645 
1646 	unlock_vcpus(kvm, atomic_read(&kvm->online_vcpus) - 1);
1647 }
1648 
1649 /* Returns true if all vcpus were locked, false otherwise */
lock_all_vcpus(struct kvm * kvm)1650 bool lock_all_vcpus(struct kvm *kvm)
1651 {
1652 	struct kvm_vcpu *tmp_vcpu;
1653 	unsigned long c;
1654 
1655 	lockdep_assert_held(&kvm->lock);
1656 
1657 	/*
1658 	 * Any time a vcpu is in an ioctl (including running), the
1659 	 * core KVM code tries to grab the vcpu->mutex.
1660 	 *
1661 	 * By grabbing the vcpu->mutex of all VCPUs we ensure that no
1662 	 * other VCPUs can fiddle with the state while we access it.
1663 	 */
1664 	kvm_for_each_vcpu(c, tmp_vcpu, kvm) {
1665 		if (!mutex_trylock(&tmp_vcpu->mutex)) {
1666 			unlock_vcpus(kvm, c - 1);
1667 			return false;
1668 		}
1669 	}
1670 
1671 	return true;
1672 }
1673 
nvhe_percpu_size(void)1674 static unsigned long nvhe_percpu_size(void)
1675 {
1676 	return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1677 		(unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1678 }
1679 
nvhe_percpu_order(void)1680 static unsigned long nvhe_percpu_order(void)
1681 {
1682 	unsigned long size = nvhe_percpu_size();
1683 
1684 	return size ? get_order(size) : 0;
1685 }
1686 
1687 /* A lookup table holding the hypervisor VA for each vector slot */
1688 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
1689 
kvm_init_vector_slot(void * base,enum arm64_hyp_spectre_vector slot)1690 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1691 {
1692 	hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1693 }
1694 
kvm_init_vector_slots(void)1695 static int kvm_init_vector_slots(void)
1696 {
1697 	int err;
1698 	void *base;
1699 
1700 	base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
1701 	kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
1702 
1703 	base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
1704 	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
1705 
1706 	if (kvm_system_needs_idmapped_vectors() &&
1707 	    !is_protected_kvm_enabled()) {
1708 		err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
1709 					       __BP_HARDEN_HYP_VECS_SZ, &base);
1710 		if (err)
1711 			return err;
1712 	}
1713 
1714 	kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
1715 	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1716 	return 0;
1717 }
1718 
cpu_prepare_hyp_mode(int cpu,u32 hyp_va_bits)1719 static void __init cpu_prepare_hyp_mode(int cpu, u32 hyp_va_bits)
1720 {
1721 	struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
1722 	unsigned long tcr;
1723 
1724 	/*
1725 	 * Calculate the raw per-cpu offset without a translation from the
1726 	 * kernel's mapping to the linear mapping, and store it in tpidr_el2
1727 	 * so that we can use adr_l to access per-cpu variables in EL2.
1728 	 * Also drop the KASAN tag which gets in the way...
1729 	 */
1730 	params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
1731 			    (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1732 
1733 	params->mair_el2 = read_sysreg(mair_el1);
1734 
1735 	tcr = read_sysreg(tcr_el1);
1736 	if (cpus_have_final_cap(ARM64_KVM_HVHE)) {
1737 		tcr |= TCR_EPD1_MASK;
1738 	} else {
1739 		tcr &= TCR_EL2_MASK;
1740 		tcr |= TCR_EL2_RES1;
1741 	}
1742 	tcr &= ~TCR_T0SZ_MASK;
1743 	tcr |= TCR_T0SZ(hyp_va_bits);
1744 	params->tcr_el2 = tcr;
1745 
1746 	params->pgd_pa = kvm_mmu_get_httbr();
1747 	if (is_protected_kvm_enabled())
1748 		params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
1749 	else
1750 		params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
1751 	if (cpus_have_final_cap(ARM64_KVM_HVHE))
1752 		params->hcr_el2 |= HCR_E2H;
1753 	params->vttbr = params->vtcr = 0;
1754 
1755 	/*
1756 	 * Flush the init params from the data cache because the struct will
1757 	 * be read while the MMU is off.
1758 	 */
1759 	kvm_flush_dcache_to_poc(params, sizeof(*params));
1760 }
1761 
hyp_install_host_vector(void)1762 static void hyp_install_host_vector(void)
1763 {
1764 	struct kvm_nvhe_init_params *params;
1765 	struct arm_smccc_res res;
1766 
1767 	/* Switch from the HYP stub to our own HYP init vector */
1768 	__hyp_set_vectors(kvm_get_idmap_vector());
1769 
1770 	/*
1771 	 * Call initialization code, and switch to the full blown HYP code.
1772 	 * If the cpucaps haven't been finalized yet, something has gone very
1773 	 * wrong, and hyp will crash and burn when it uses any
1774 	 * cpus_have_const_cap() wrapper.
1775 	 */
1776 	BUG_ON(!system_capabilities_finalized());
1777 	params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1778 	arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1779 	WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1780 }
1781 
cpu_init_hyp_mode(void)1782 static void cpu_init_hyp_mode(void)
1783 {
1784 	hyp_install_host_vector();
1785 
1786 	/*
1787 	 * Disabling SSBD on a non-VHE system requires us to enable SSBS
1788 	 * at EL2.
1789 	 */
1790 	if (this_cpu_has_cap(ARM64_SSBS) &&
1791 	    arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1792 		kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1793 	}
1794 }
1795 
cpu_hyp_reset(void)1796 static void cpu_hyp_reset(void)
1797 {
1798 	if (!is_kernel_in_hyp_mode())
1799 		__hyp_reset_vectors();
1800 }
1801 
1802 /*
1803  * EL2 vectors can be mapped and rerouted in a number of ways,
1804  * depending on the kernel configuration and CPU present:
1805  *
1806  * - If the CPU is affected by Spectre-v2, the hardening sequence is
1807  *   placed in one of the vector slots, which is executed before jumping
1808  *   to the real vectors.
1809  *
1810  * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1811  *   containing the hardening sequence is mapped next to the idmap page,
1812  *   and executed before jumping to the real vectors.
1813  *
1814  * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1815  *   empty slot is selected, mapped next to the idmap page, and
1816  *   executed before jumping to the real vectors.
1817  *
1818  * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1819  * VHE, as we don't have hypervisor-specific mappings. If the system
1820  * is VHE and yet selects this capability, it will be ignored.
1821  */
cpu_set_hyp_vector(void)1822 static void cpu_set_hyp_vector(void)
1823 {
1824 	struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1825 	void *vector = hyp_spectre_vector_selector[data->slot];
1826 
1827 	if (!is_protected_kvm_enabled())
1828 		*this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
1829 	else
1830 		kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
1831 }
1832 
cpu_hyp_init_context(void)1833 static void cpu_hyp_init_context(void)
1834 {
1835 	kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1836 
1837 	if (!is_kernel_in_hyp_mode())
1838 		cpu_init_hyp_mode();
1839 }
1840 
cpu_hyp_init_features(void)1841 static void cpu_hyp_init_features(void)
1842 {
1843 	cpu_set_hyp_vector();
1844 	kvm_arm_init_debug();
1845 
1846 	if (is_kernel_in_hyp_mode())
1847 		kvm_timer_init_vhe();
1848 
1849 	if (vgic_present)
1850 		kvm_vgic_init_cpu_hardware();
1851 }
1852 
cpu_hyp_reinit(void)1853 static void cpu_hyp_reinit(void)
1854 {
1855 	cpu_hyp_reset();
1856 	cpu_hyp_init_context();
1857 	cpu_hyp_init_features();
1858 }
1859 
cpu_hyp_init(void * discard)1860 static void cpu_hyp_init(void *discard)
1861 {
1862 	if (!__this_cpu_read(kvm_hyp_initialized)) {
1863 		cpu_hyp_reinit();
1864 		__this_cpu_write(kvm_hyp_initialized, 1);
1865 	}
1866 }
1867 
cpu_hyp_uninit(void * discard)1868 static void cpu_hyp_uninit(void *discard)
1869 {
1870 	if (__this_cpu_read(kvm_hyp_initialized)) {
1871 		cpu_hyp_reset();
1872 		__this_cpu_write(kvm_hyp_initialized, 0);
1873 	}
1874 }
1875 
kvm_arch_hardware_enable(void)1876 int kvm_arch_hardware_enable(void)
1877 {
1878 	/*
1879 	 * Most calls to this function are made with migration
1880 	 * disabled, but not with preemption disabled. The former is
1881 	 * enough to ensure correctness, but most of the helpers
1882 	 * expect the later and will throw a tantrum otherwise.
1883 	 */
1884 	preempt_disable();
1885 
1886 	cpu_hyp_init(NULL);
1887 
1888 	kvm_vgic_cpu_up();
1889 	kvm_timer_cpu_up();
1890 
1891 	preempt_enable();
1892 
1893 	return 0;
1894 }
1895 
kvm_arch_hardware_disable(void)1896 void kvm_arch_hardware_disable(void)
1897 {
1898 	kvm_timer_cpu_down();
1899 	kvm_vgic_cpu_down();
1900 
1901 	if (!is_protected_kvm_enabled())
1902 		cpu_hyp_uninit(NULL);
1903 }
1904 
1905 #ifdef CONFIG_CPU_PM
hyp_init_cpu_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)1906 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1907 				    unsigned long cmd,
1908 				    void *v)
1909 {
1910 	/*
1911 	 * kvm_hyp_initialized is left with its old value over
1912 	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1913 	 * re-enable hyp.
1914 	 */
1915 	switch (cmd) {
1916 	case CPU_PM_ENTER:
1917 		if (__this_cpu_read(kvm_hyp_initialized))
1918 			/*
1919 			 * don't update kvm_hyp_initialized here
1920 			 * so that the hyp will be re-enabled
1921 			 * when we resume. See below.
1922 			 */
1923 			cpu_hyp_reset();
1924 
1925 		return NOTIFY_OK;
1926 	case CPU_PM_ENTER_FAILED:
1927 	case CPU_PM_EXIT:
1928 		if (__this_cpu_read(kvm_hyp_initialized))
1929 			/* The hyp was enabled before suspend. */
1930 			cpu_hyp_reinit();
1931 
1932 		return NOTIFY_OK;
1933 
1934 	default:
1935 		return NOTIFY_DONE;
1936 	}
1937 }
1938 
1939 static struct notifier_block hyp_init_cpu_pm_nb = {
1940 	.notifier_call = hyp_init_cpu_pm_notifier,
1941 };
1942 
hyp_cpu_pm_init(void)1943 static void __init hyp_cpu_pm_init(void)
1944 {
1945 	if (!is_protected_kvm_enabled())
1946 		cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1947 }
hyp_cpu_pm_exit(void)1948 static void __init hyp_cpu_pm_exit(void)
1949 {
1950 	if (!is_protected_kvm_enabled())
1951 		cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1952 }
1953 #else
hyp_cpu_pm_init(void)1954 static inline void __init hyp_cpu_pm_init(void)
1955 {
1956 }
hyp_cpu_pm_exit(void)1957 static inline void __init hyp_cpu_pm_exit(void)
1958 {
1959 }
1960 #endif
1961 
init_cpu_logical_map(void)1962 static void __init init_cpu_logical_map(void)
1963 {
1964 	unsigned int cpu;
1965 
1966 	/*
1967 	 * Copy the MPIDR <-> logical CPU ID mapping to hyp.
1968 	 * Only copy the set of online CPUs whose features have been checked
1969 	 * against the finalized system capabilities. The hypervisor will not
1970 	 * allow any other CPUs from the `possible` set to boot.
1971 	 */
1972 	for_each_online_cpu(cpu)
1973 		hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
1974 }
1975 
1976 #define init_psci_0_1_impl_state(config, what)	\
1977 	config.psci_0_1_ ## what ## _implemented = psci_ops.what
1978 
init_psci_relay(void)1979 static bool __init init_psci_relay(void)
1980 {
1981 	/*
1982 	 * If PSCI has not been initialized, protected KVM cannot install
1983 	 * itself on newly booted CPUs.
1984 	 */
1985 	if (!psci_ops.get_version) {
1986 		kvm_err("Cannot initialize protected mode without PSCI\n");
1987 		return false;
1988 	}
1989 
1990 	kvm_host_psci_config.version = psci_ops.get_version();
1991 	kvm_host_psci_config.smccc_version = arm_smccc_get_version();
1992 
1993 	if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
1994 		kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
1995 		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
1996 		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
1997 		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
1998 		init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
1999 	}
2000 	return true;
2001 }
2002 
init_subsystems(void)2003 static int __init init_subsystems(void)
2004 {
2005 	int err = 0;
2006 
2007 	/*
2008 	 * Enable hardware so that subsystem initialisation can access EL2.
2009 	 */
2010 	on_each_cpu(cpu_hyp_init, NULL, 1);
2011 
2012 	/*
2013 	 * Register CPU lower-power notifier
2014 	 */
2015 	hyp_cpu_pm_init();
2016 
2017 	/*
2018 	 * Init HYP view of VGIC
2019 	 */
2020 	err = kvm_vgic_hyp_init();
2021 	switch (err) {
2022 	case 0:
2023 		vgic_present = true;
2024 		break;
2025 	case -ENODEV:
2026 	case -ENXIO:
2027 		vgic_present = false;
2028 		err = 0;
2029 		break;
2030 	default:
2031 		goto out;
2032 	}
2033 
2034 	/*
2035 	 * Init HYP architected timer support
2036 	 */
2037 	err = kvm_timer_hyp_init(vgic_present);
2038 	if (err)
2039 		goto out;
2040 
2041 	kvm_register_perf_callbacks(NULL);
2042 
2043 out:
2044 	if (err)
2045 		hyp_cpu_pm_exit();
2046 
2047 	if (err || !is_protected_kvm_enabled())
2048 		on_each_cpu(cpu_hyp_uninit, NULL, 1);
2049 
2050 	return err;
2051 }
2052 
teardown_subsystems(void)2053 static void __init teardown_subsystems(void)
2054 {
2055 	kvm_unregister_perf_callbacks();
2056 	hyp_cpu_pm_exit();
2057 }
2058 
teardown_hyp_mode(void)2059 static void __init teardown_hyp_mode(void)
2060 {
2061 	int cpu;
2062 
2063 	free_hyp_pgds();
2064 	for_each_possible_cpu(cpu) {
2065 		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
2066 		free_pages(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu], nvhe_percpu_order());
2067 	}
2068 }
2069 
do_pkvm_init(u32 hyp_va_bits)2070 static int __init do_pkvm_init(u32 hyp_va_bits)
2071 {
2072 	void *per_cpu_base = kvm_ksym_ref(kvm_nvhe_sym(kvm_arm_hyp_percpu_base));
2073 	int ret;
2074 
2075 	preempt_disable();
2076 	cpu_hyp_init_context();
2077 	ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
2078 				num_possible_cpus(), kern_hyp_va(per_cpu_base),
2079 				hyp_va_bits);
2080 	cpu_hyp_init_features();
2081 
2082 	/*
2083 	 * The stub hypercalls are now disabled, so set our local flag to
2084 	 * prevent a later re-init attempt in kvm_arch_hardware_enable().
2085 	 */
2086 	__this_cpu_write(kvm_hyp_initialized, 1);
2087 	preempt_enable();
2088 
2089 	return ret;
2090 }
2091 
get_hyp_id_aa64pfr0_el1(void)2092 static u64 get_hyp_id_aa64pfr0_el1(void)
2093 {
2094 	/*
2095 	 * Track whether the system isn't affected by spectre/meltdown in the
2096 	 * hypervisor's view of id_aa64pfr0_el1, used for protected VMs.
2097 	 * Although this is per-CPU, we make it global for simplicity, e.g., not
2098 	 * to have to worry about vcpu migration.
2099 	 *
2100 	 * Unlike for non-protected VMs, userspace cannot override this for
2101 	 * protected VMs.
2102 	 */
2103 	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
2104 
2105 	val &= ~(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2) |
2106 		 ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3));
2107 
2108 	val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2),
2109 			  arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED);
2110 	val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3),
2111 			  arm64_get_meltdown_state() == SPECTRE_UNAFFECTED);
2112 
2113 	return val;
2114 }
2115 
kvm_hyp_init_symbols(void)2116 static void kvm_hyp_init_symbols(void)
2117 {
2118 	kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = get_hyp_id_aa64pfr0_el1();
2119 	kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
2120 	kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1);
2121 	kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
2122 	kvm_nvhe_sym(id_aa64isar2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
2123 	kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
2124 	kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
2125 	kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1);
2126 	kvm_nvhe_sym(id_aa64smfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64SMFR0_EL1);
2127 	kvm_nvhe_sym(__icache_flags) = __icache_flags;
2128 	kvm_nvhe_sym(kvm_arm_vmid_bits) = kvm_arm_vmid_bits;
2129 }
2130 
kvm_hyp_init_protection(u32 hyp_va_bits)2131 static int __init kvm_hyp_init_protection(u32 hyp_va_bits)
2132 {
2133 	void *addr = phys_to_virt(hyp_mem_base);
2134 	int ret;
2135 
2136 	ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
2137 	if (ret)
2138 		return ret;
2139 
2140 	ret = do_pkvm_init(hyp_va_bits);
2141 	if (ret)
2142 		return ret;
2143 
2144 	free_hyp_pgds();
2145 
2146 	return 0;
2147 }
2148 
pkvm_hyp_init_ptrauth(void)2149 static void pkvm_hyp_init_ptrauth(void)
2150 {
2151 	struct kvm_cpu_context *hyp_ctxt;
2152 	int cpu;
2153 
2154 	for_each_possible_cpu(cpu) {
2155 		hyp_ctxt = per_cpu_ptr_nvhe_sym(kvm_hyp_ctxt, cpu);
2156 		hyp_ctxt->sys_regs[APIAKEYLO_EL1] = get_random_long();
2157 		hyp_ctxt->sys_regs[APIAKEYHI_EL1] = get_random_long();
2158 		hyp_ctxt->sys_regs[APIBKEYLO_EL1] = get_random_long();
2159 		hyp_ctxt->sys_regs[APIBKEYHI_EL1] = get_random_long();
2160 		hyp_ctxt->sys_regs[APDAKEYLO_EL1] = get_random_long();
2161 		hyp_ctxt->sys_regs[APDAKEYHI_EL1] = get_random_long();
2162 		hyp_ctxt->sys_regs[APDBKEYLO_EL1] = get_random_long();
2163 		hyp_ctxt->sys_regs[APDBKEYHI_EL1] = get_random_long();
2164 		hyp_ctxt->sys_regs[APGAKEYLO_EL1] = get_random_long();
2165 		hyp_ctxt->sys_regs[APGAKEYHI_EL1] = get_random_long();
2166 	}
2167 }
2168 
2169 /* Inits Hyp-mode on all online CPUs */
init_hyp_mode(void)2170 static int __init init_hyp_mode(void)
2171 {
2172 	u32 hyp_va_bits;
2173 	int cpu;
2174 	int err = -ENOMEM;
2175 
2176 	/*
2177 	 * The protected Hyp-mode cannot be initialized if the memory pool
2178 	 * allocation has failed.
2179 	 */
2180 	if (is_protected_kvm_enabled() && !hyp_mem_base)
2181 		goto out_err;
2182 
2183 	/*
2184 	 * Allocate Hyp PGD and setup Hyp identity mapping
2185 	 */
2186 	err = kvm_mmu_init(&hyp_va_bits);
2187 	if (err)
2188 		goto out_err;
2189 
2190 	/*
2191 	 * Allocate stack pages for Hypervisor-mode
2192 	 */
2193 	for_each_possible_cpu(cpu) {
2194 		unsigned long stack_page;
2195 
2196 		stack_page = __get_free_page(GFP_KERNEL);
2197 		if (!stack_page) {
2198 			err = -ENOMEM;
2199 			goto out_err;
2200 		}
2201 
2202 		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
2203 	}
2204 
2205 	/*
2206 	 * Allocate and initialize pages for Hypervisor-mode percpu regions.
2207 	 */
2208 	for_each_possible_cpu(cpu) {
2209 		struct page *page;
2210 		void *page_addr;
2211 
2212 		page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
2213 		if (!page) {
2214 			err = -ENOMEM;
2215 			goto out_err;
2216 		}
2217 
2218 		page_addr = page_address(page);
2219 		memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
2220 		kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu] = (unsigned long)page_addr;
2221 	}
2222 
2223 	/*
2224 	 * Map the Hyp-code called directly from the host
2225 	 */
2226 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
2227 				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
2228 	if (err) {
2229 		kvm_err("Cannot map world-switch code\n");
2230 		goto out_err;
2231 	}
2232 
2233 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
2234 				  kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
2235 	if (err) {
2236 		kvm_err("Cannot map .hyp.rodata section\n");
2237 		goto out_err;
2238 	}
2239 
2240 	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
2241 				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
2242 	if (err) {
2243 		kvm_err("Cannot map rodata section\n");
2244 		goto out_err;
2245 	}
2246 
2247 	/*
2248 	 * .hyp.bss is guaranteed to be placed at the beginning of the .bss
2249 	 * section thanks to an assertion in the linker script. Map it RW and
2250 	 * the rest of .bss RO.
2251 	 */
2252 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
2253 				  kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
2254 	if (err) {
2255 		kvm_err("Cannot map hyp bss section: %d\n", err);
2256 		goto out_err;
2257 	}
2258 
2259 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
2260 				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
2261 	if (err) {
2262 		kvm_err("Cannot map bss section\n");
2263 		goto out_err;
2264 	}
2265 
2266 	/*
2267 	 * Map the Hyp stack pages
2268 	 */
2269 	for_each_possible_cpu(cpu) {
2270 		struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
2271 		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
2272 
2273 		err = create_hyp_stack(__pa(stack_page), &params->stack_hyp_va);
2274 		if (err) {
2275 			kvm_err("Cannot map hyp stack\n");
2276 			goto out_err;
2277 		}
2278 
2279 		/*
2280 		 * Save the stack PA in nvhe_init_params. This will be needed
2281 		 * to recreate the stack mapping in protected nVHE mode.
2282 		 * __hyp_pa() won't do the right thing there, since the stack
2283 		 * has been mapped in the flexible private VA space.
2284 		 */
2285 		params->stack_pa = __pa(stack_page);
2286 	}
2287 
2288 	for_each_possible_cpu(cpu) {
2289 		char *percpu_begin = (char *)kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu];
2290 		char *percpu_end = percpu_begin + nvhe_percpu_size();
2291 
2292 		/* Map Hyp percpu pages */
2293 		err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
2294 		if (err) {
2295 			kvm_err("Cannot map hyp percpu region\n");
2296 			goto out_err;
2297 		}
2298 
2299 		/* Prepare the CPU initialization parameters */
2300 		cpu_prepare_hyp_mode(cpu, hyp_va_bits);
2301 	}
2302 
2303 	kvm_hyp_init_symbols();
2304 
2305 	if (is_protected_kvm_enabled()) {
2306 		if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL) &&
2307 		    cpus_have_const_cap(ARM64_HAS_ADDRESS_AUTH))
2308 			pkvm_hyp_init_ptrauth();
2309 
2310 		init_cpu_logical_map();
2311 
2312 		if (!init_psci_relay()) {
2313 			err = -ENODEV;
2314 			goto out_err;
2315 		}
2316 
2317 		err = kvm_hyp_init_protection(hyp_va_bits);
2318 		if (err) {
2319 			kvm_err("Failed to init hyp memory protection\n");
2320 			goto out_err;
2321 		}
2322 	}
2323 
2324 	return 0;
2325 
2326 out_err:
2327 	teardown_hyp_mode();
2328 	kvm_err("error initializing Hyp mode: %d\n", err);
2329 	return err;
2330 }
2331 
kvm_mpidr_to_vcpu(struct kvm * kvm,unsigned long mpidr)2332 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
2333 {
2334 	struct kvm_vcpu *vcpu;
2335 	unsigned long i;
2336 
2337 	mpidr &= MPIDR_HWID_BITMASK;
2338 	kvm_for_each_vcpu(i, vcpu, kvm) {
2339 		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
2340 			return vcpu;
2341 	}
2342 	return NULL;
2343 }
2344 
kvm_arch_irqchip_in_kernel(struct kvm * kvm)2345 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm)
2346 {
2347 	return irqchip_in_kernel(kvm);
2348 }
2349 
kvm_arch_has_irq_bypass(void)2350 bool kvm_arch_has_irq_bypass(void)
2351 {
2352 	return true;
2353 }
2354 
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)2355 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
2356 				      struct irq_bypass_producer *prod)
2357 {
2358 	struct kvm_kernel_irqfd *irqfd =
2359 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2360 
2361 	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
2362 					  &irqfd->irq_entry);
2363 }
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)2364 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
2365 				      struct irq_bypass_producer *prod)
2366 {
2367 	struct kvm_kernel_irqfd *irqfd =
2368 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2369 
2370 	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
2371 				     &irqfd->irq_entry);
2372 }
2373 
kvm_arch_irq_bypass_stop(struct irq_bypass_consumer * cons)2374 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
2375 {
2376 	struct kvm_kernel_irqfd *irqfd =
2377 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2378 
2379 	kvm_arm_halt_guest(irqfd->kvm);
2380 }
2381 
kvm_arch_irq_bypass_start(struct irq_bypass_consumer * cons)2382 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
2383 {
2384 	struct kvm_kernel_irqfd *irqfd =
2385 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2386 
2387 	kvm_arm_resume_guest(irqfd->kvm);
2388 }
2389 
2390 /* Initialize Hyp-mode and memory mappings on all CPUs */
kvm_arm_init(void)2391 static __init int kvm_arm_init(void)
2392 {
2393 	int err;
2394 	bool in_hyp_mode;
2395 
2396 	if (!is_hyp_mode_available()) {
2397 		kvm_info("HYP mode not available\n");
2398 		return -ENODEV;
2399 	}
2400 
2401 	if (kvm_get_mode() == KVM_MODE_NONE) {
2402 		kvm_info("KVM disabled from command line\n");
2403 		return -ENODEV;
2404 	}
2405 
2406 	err = kvm_sys_reg_table_init();
2407 	if (err) {
2408 		kvm_info("Error initializing system register tables");
2409 		return err;
2410 	}
2411 
2412 	in_hyp_mode = is_kernel_in_hyp_mode();
2413 
2414 	if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
2415 	    cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2416 		kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
2417 			 "Only trusted guests should be used on this system.\n");
2418 
2419 	err = kvm_set_ipa_limit();
2420 	if (err)
2421 		return err;
2422 
2423 	err = kvm_arm_init_sve();
2424 	if (err)
2425 		return err;
2426 
2427 	err = kvm_arm_vmid_alloc_init();
2428 	if (err) {
2429 		kvm_err("Failed to initialize VMID allocator.\n");
2430 		return err;
2431 	}
2432 
2433 	if (!in_hyp_mode) {
2434 		err = init_hyp_mode();
2435 		if (err)
2436 			goto out_err;
2437 	}
2438 
2439 	err = kvm_init_vector_slots();
2440 	if (err) {
2441 		kvm_err("Cannot initialise vector slots\n");
2442 		goto out_hyp;
2443 	}
2444 
2445 	err = init_subsystems();
2446 	if (err)
2447 		goto out_hyp;
2448 
2449 	if (is_protected_kvm_enabled()) {
2450 		kvm_info("Protected nVHE mode initialized successfully\n");
2451 	} else if (in_hyp_mode) {
2452 		kvm_info("VHE mode initialized successfully\n");
2453 	} else {
2454 		kvm_info("Hyp mode initialized successfully\n");
2455 	}
2456 
2457 	/*
2458 	 * FIXME: Do something reasonable if kvm_init() fails after pKVM
2459 	 * hypervisor protection is finalized.
2460 	 */
2461 	err = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2462 	if (err)
2463 		goto out_subs;
2464 
2465 	kvm_arm_initialised = true;
2466 
2467 	return 0;
2468 
2469 out_subs:
2470 	teardown_subsystems();
2471 out_hyp:
2472 	if (!in_hyp_mode)
2473 		teardown_hyp_mode();
2474 out_err:
2475 	kvm_arm_vmid_alloc_free();
2476 	return err;
2477 }
2478 
early_kvm_mode_cfg(char * arg)2479 static int __init early_kvm_mode_cfg(char *arg)
2480 {
2481 	if (!arg)
2482 		return -EINVAL;
2483 
2484 	if (strcmp(arg, "none") == 0) {
2485 		kvm_mode = KVM_MODE_NONE;
2486 		return 0;
2487 	}
2488 
2489 	if (!is_hyp_mode_available()) {
2490 		pr_warn_once("KVM is not available. Ignoring kvm-arm.mode\n");
2491 		return 0;
2492 	}
2493 
2494 	if (strcmp(arg, "protected") == 0) {
2495 		if (!is_kernel_in_hyp_mode())
2496 			kvm_mode = KVM_MODE_PROTECTED;
2497 		else
2498 			pr_warn_once("Protected KVM not available with VHE\n");
2499 
2500 		return 0;
2501 	}
2502 
2503 	if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) {
2504 		kvm_mode = KVM_MODE_DEFAULT;
2505 		return 0;
2506 	}
2507 
2508 	if (strcmp(arg, "nested") == 0 && !WARN_ON(!is_kernel_in_hyp_mode())) {
2509 		kvm_mode = KVM_MODE_NV;
2510 		return 0;
2511 	}
2512 
2513 	return -EINVAL;
2514 }
2515 early_param("kvm-arm.mode", early_kvm_mode_cfg);
2516 
kvm_get_mode(void)2517 enum kvm_mode kvm_get_mode(void)
2518 {
2519 	return kvm_mode;
2520 }
2521 
2522 module_init(kvm_arm_init);
2523