1 /*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
18 #include <poll.h>
19
20 #include <linux/kvm.h>
21
22 #include "qemu/atomic.h"
23 #include "qemu/option.h"
24 #include "qemu/config-file.h"
25 #include "qemu/error-report.h"
26 #include "qapi/error.h"
27 #include "hw/pci/msi.h"
28 #include "hw/pci/msix.h"
29 #include "hw/s390x/adapter.h"
30 #include "gdbstub/enums.h"
31 #include "sysemu/kvm_int.h"
32 #include "sysemu/runstate.h"
33 #include "sysemu/cpus.h"
34 #include "sysemu/accel-blocker.h"
35 #include "qemu/bswap.h"
36 #include "exec/memory.h"
37 #include "exec/ram_addr.h"
38 #include "qemu/event_notifier.h"
39 #include "qemu/main-loop.h"
40 #include "trace.h"
41 #include "hw/irq.h"
42 #include "qapi/visitor.h"
43 #include "qapi/qapi-types-common.h"
44 #include "qapi/qapi-visit-common.h"
45 #include "sysemu/reset.h"
46 #include "qemu/guest-random.h"
47 #include "sysemu/hw_accel.h"
48 #include "kvm-cpus.h"
49 #include "sysemu/dirtylimit.h"
50 #include "qemu/range.h"
51
52 #include "hw/boards.h"
53 #include "sysemu/stats.h"
54
55 /* This check must be after config-host.h is included */
56 #ifdef CONFIG_EVENTFD
57 #include <sys/eventfd.h>
58 #endif
59
60 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
61 * need to use the real host PAGE_SIZE, as that's what KVM will use.
62 */
63 #ifdef PAGE_SIZE
64 #undef PAGE_SIZE
65 #endif
66 #define PAGE_SIZE qemu_real_host_page_size()
67
68 #ifndef KVM_GUESTDBG_BLOCKIRQ
69 #define KVM_GUESTDBG_BLOCKIRQ 0
70 #endif
71
72 /* Default num of memslots to be allocated when VM starts */
73 #define KVM_MEMSLOTS_NR_ALLOC_DEFAULT 16
74
75 struct KVMParkedVcpu {
76 unsigned long vcpu_id;
77 int kvm_fd;
78 QLIST_ENTRY(KVMParkedVcpu) node;
79 };
80
81 KVMState *kvm_state;
82 bool kvm_kernel_irqchip;
83 bool kvm_split_irqchip;
84 bool kvm_async_interrupts_allowed;
85 bool kvm_halt_in_kernel_allowed;
86 bool kvm_resamplefds_allowed;
87 bool kvm_msi_via_irqfd_allowed;
88 bool kvm_gsi_routing_allowed;
89 bool kvm_gsi_direct_mapping;
90 bool kvm_allowed;
91 bool kvm_readonly_mem_allowed;
92 bool kvm_vm_attributes_allowed;
93 bool kvm_msi_use_devid;
94 static bool kvm_has_guest_debug;
95 static int kvm_sstep_flags;
96 static bool kvm_immediate_exit;
97 static uint64_t kvm_supported_memory_attributes;
98 static bool kvm_guest_memfd_supported;
99 static hwaddr kvm_max_slot_size = ~0;
100
101 static const KVMCapabilityInfo kvm_required_capabilites[] = {
102 KVM_CAP_INFO(USER_MEMORY),
103 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
104 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
105 KVM_CAP_INFO(INTERNAL_ERROR_DATA),
106 KVM_CAP_INFO(IOEVENTFD),
107 KVM_CAP_INFO(IOEVENTFD_ANY_LENGTH),
108 KVM_CAP_LAST_INFO
109 };
110
111 static NotifierList kvm_irqchip_change_notifiers =
112 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers);
113
114 struct KVMResampleFd {
115 int gsi;
116 EventNotifier *resample_event;
117 QLIST_ENTRY(KVMResampleFd) node;
118 };
119 typedef struct KVMResampleFd KVMResampleFd;
120
121 /*
122 * Only used with split irqchip where we need to do the resample fd
123 * kick for the kernel from userspace.
124 */
125 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list =
126 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list);
127
128 static QemuMutex kml_slots_lock;
129
130 #define kvm_slots_lock() qemu_mutex_lock(&kml_slots_lock)
131 #define kvm_slots_unlock() qemu_mutex_unlock(&kml_slots_lock)
132
133 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem);
134
kvm_resample_fd_remove(int gsi)135 static inline void kvm_resample_fd_remove(int gsi)
136 {
137 KVMResampleFd *rfd;
138
139 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
140 if (rfd->gsi == gsi) {
141 QLIST_REMOVE(rfd, node);
142 g_free(rfd);
143 break;
144 }
145 }
146 }
147
kvm_resample_fd_insert(int gsi,EventNotifier * event)148 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event)
149 {
150 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1);
151
152 rfd->gsi = gsi;
153 rfd->resample_event = event;
154
155 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node);
156 }
157
kvm_resample_fd_notify(int gsi)158 void kvm_resample_fd_notify(int gsi)
159 {
160 KVMResampleFd *rfd;
161
162 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
163 if (rfd->gsi == gsi) {
164 event_notifier_set(rfd->resample_event);
165 trace_kvm_resample_fd_notify(gsi);
166 return;
167 }
168 }
169 }
170
171 /**
172 * kvm_slots_grow(): Grow the slots[] array in the KVMMemoryListener
173 *
174 * @kml: The KVMMemoryListener* to grow the slots[] array
175 * @nr_slots_new: The new size of slots[] array
176 *
177 * Returns: True if the array grows larger, false otherwise.
178 */
kvm_slots_grow(KVMMemoryListener * kml,unsigned int nr_slots_new)179 static bool kvm_slots_grow(KVMMemoryListener *kml, unsigned int nr_slots_new)
180 {
181 unsigned int i, cur = kml->nr_slots_allocated;
182 KVMSlot *slots;
183
184 if (nr_slots_new > kvm_state->nr_slots) {
185 nr_slots_new = kvm_state->nr_slots;
186 }
187
188 if (cur >= nr_slots_new) {
189 /* Big enough, no need to grow, or we reached max */
190 return false;
191 }
192
193 if (cur == 0) {
194 slots = g_new0(KVMSlot, nr_slots_new);
195 } else {
196 assert(kml->slots);
197 slots = g_renew(KVMSlot, kml->slots, nr_slots_new);
198 /*
199 * g_renew() doesn't initialize extended buffers, however kvm
200 * memslots require fields to be zero-initialized. E.g. pointers,
201 * memory_size field, etc.
202 */
203 memset(&slots[cur], 0x0, sizeof(slots[0]) * (nr_slots_new - cur));
204 }
205
206 for (i = cur; i < nr_slots_new; i++) {
207 slots[i].slot = i;
208 }
209
210 kml->slots = slots;
211 kml->nr_slots_allocated = nr_slots_new;
212 trace_kvm_slots_grow(cur, nr_slots_new);
213
214 return true;
215 }
216
kvm_slots_double(KVMMemoryListener * kml)217 static bool kvm_slots_double(KVMMemoryListener *kml)
218 {
219 return kvm_slots_grow(kml, kml->nr_slots_allocated * 2);
220 }
221
kvm_get_max_memslots(void)222 unsigned int kvm_get_max_memslots(void)
223 {
224 KVMState *s = KVM_STATE(current_accel());
225
226 return s->nr_slots;
227 }
228
kvm_get_free_memslots(void)229 unsigned int kvm_get_free_memslots(void)
230 {
231 unsigned int used_slots = 0;
232 KVMState *s = kvm_state;
233 int i;
234
235 kvm_slots_lock();
236 for (i = 0; i < s->nr_as; i++) {
237 if (!s->as[i].ml) {
238 continue;
239 }
240 used_slots = MAX(used_slots, s->as[i].ml->nr_used_slots);
241 }
242 kvm_slots_unlock();
243
244 return s->nr_slots - used_slots;
245 }
246
247 /* Called with KVMMemoryListener.slots_lock held */
kvm_get_free_slot(KVMMemoryListener * kml)248 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
249 {
250 unsigned int n;
251 int i;
252
253 for (i = 0; i < kml->nr_slots_allocated; i++) {
254 if (kml->slots[i].memory_size == 0) {
255 return &kml->slots[i];
256 }
257 }
258
259 /*
260 * If no free slots, try to grow first by doubling. Cache the old size
261 * here to avoid another round of search: if the grow succeeded, it
262 * means slots[] now must have the existing "n" slots occupied,
263 * followed by one or more free slots starting from slots[n].
264 */
265 n = kml->nr_slots_allocated;
266 if (kvm_slots_double(kml)) {
267 return &kml->slots[n];
268 }
269
270 return NULL;
271 }
272
273 /* Called with KVMMemoryListener.slots_lock held */
kvm_alloc_slot(KVMMemoryListener * kml)274 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
275 {
276 KVMSlot *slot = kvm_get_free_slot(kml);
277
278 if (slot) {
279 return slot;
280 }
281
282 fprintf(stderr, "%s: no free slot available\n", __func__);
283 abort();
284 }
285
kvm_lookup_matching_slot(KVMMemoryListener * kml,hwaddr start_addr,hwaddr size)286 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
287 hwaddr start_addr,
288 hwaddr size)
289 {
290 int i;
291
292 for (i = 0; i < kml->nr_slots_allocated; i++) {
293 KVMSlot *mem = &kml->slots[i];
294
295 if (start_addr == mem->start_addr && size == mem->memory_size) {
296 return mem;
297 }
298 }
299
300 return NULL;
301 }
302
303 /*
304 * Calculate and align the start address and the size of the section.
305 * Return the size. If the size is 0, the aligned section is empty.
306 */
kvm_align_section(MemoryRegionSection * section,hwaddr * start)307 static hwaddr kvm_align_section(MemoryRegionSection *section,
308 hwaddr *start)
309 {
310 hwaddr size = int128_get64(section->size);
311 hwaddr delta, aligned;
312
313 /* kvm works in page size chunks, but the function may be called
314 with sub-page size and unaligned start address. Pad the start
315 address to next and truncate size to previous page boundary. */
316 aligned = ROUND_UP(section->offset_within_address_space,
317 qemu_real_host_page_size());
318 delta = aligned - section->offset_within_address_space;
319 *start = aligned;
320 if (delta > size) {
321 return 0;
322 }
323
324 return (size - delta) & qemu_real_host_page_mask();
325 }
326
kvm_physical_memory_addr_from_host(KVMState * s,void * ram,hwaddr * phys_addr)327 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
328 hwaddr *phys_addr)
329 {
330 KVMMemoryListener *kml = &s->memory_listener;
331 int i, ret = 0;
332
333 kvm_slots_lock();
334 for (i = 0; i < kml->nr_slots_allocated; i++) {
335 KVMSlot *mem = &kml->slots[i];
336
337 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
338 *phys_addr = mem->start_addr + (ram - mem->ram);
339 ret = 1;
340 break;
341 }
342 }
343 kvm_slots_unlock();
344
345 return ret;
346 }
347
kvm_set_user_memory_region(KVMMemoryListener * kml,KVMSlot * slot,bool new)348 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
349 {
350 KVMState *s = kvm_state;
351 struct kvm_userspace_memory_region2 mem;
352 int ret;
353
354 mem.slot = slot->slot | (kml->as_id << 16);
355 mem.guest_phys_addr = slot->start_addr;
356 mem.userspace_addr = (unsigned long)slot->ram;
357 mem.flags = slot->flags;
358 mem.guest_memfd = slot->guest_memfd;
359 mem.guest_memfd_offset = slot->guest_memfd_offset;
360
361 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
362 /* Set the slot size to 0 before setting the slot to the desired
363 * value. This is needed based on KVM commit 75d61fbc. */
364 mem.memory_size = 0;
365
366 if (kvm_guest_memfd_supported) {
367 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION2, &mem);
368 } else {
369 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
370 }
371 if (ret < 0) {
372 goto err;
373 }
374 }
375 mem.memory_size = slot->memory_size;
376 if (kvm_guest_memfd_supported) {
377 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION2, &mem);
378 } else {
379 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
380 }
381 slot->old_flags = mem.flags;
382 err:
383 trace_kvm_set_user_memory(mem.slot >> 16, (uint16_t)mem.slot, mem.flags,
384 mem.guest_phys_addr, mem.memory_size,
385 mem.userspace_addr, mem.guest_memfd,
386 mem.guest_memfd_offset, ret);
387 if (ret < 0) {
388 if (kvm_guest_memfd_supported) {
389 error_report("%s: KVM_SET_USER_MEMORY_REGION2 failed, slot=%d,"
390 " start=0x%" PRIx64 ", size=0x%" PRIx64 ","
391 " flags=0x%" PRIx32 ", guest_memfd=%" PRId32 ","
392 " guest_memfd_offset=0x%" PRIx64 ": %s",
393 __func__, mem.slot, slot->start_addr,
394 (uint64_t)mem.memory_size, mem.flags,
395 mem.guest_memfd, (uint64_t)mem.guest_memfd_offset,
396 strerror(errno));
397 } else {
398 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d,"
399 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s",
400 __func__, mem.slot, slot->start_addr,
401 (uint64_t)mem.memory_size, strerror(errno));
402 }
403 }
404 return ret;
405 }
406
kvm_park_vcpu(CPUState * cpu)407 void kvm_park_vcpu(CPUState *cpu)
408 {
409 struct KVMParkedVcpu *vcpu;
410
411 trace_kvm_park_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
412
413 vcpu = g_malloc0(sizeof(*vcpu));
414 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
415 vcpu->kvm_fd = cpu->kvm_fd;
416 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
417 }
418
kvm_unpark_vcpu(KVMState * s,unsigned long vcpu_id)419 int kvm_unpark_vcpu(KVMState *s, unsigned long vcpu_id)
420 {
421 struct KVMParkedVcpu *cpu;
422 int kvm_fd = -ENOENT;
423
424 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
425 if (cpu->vcpu_id == vcpu_id) {
426 QLIST_REMOVE(cpu, node);
427 kvm_fd = cpu->kvm_fd;
428 g_free(cpu);
429 break;
430 }
431 }
432
433 trace_kvm_unpark_vcpu(vcpu_id, kvm_fd > 0 ? "unparked" : "!found parked");
434
435 return kvm_fd;
436 }
437
kvm_create_vcpu(CPUState * cpu)438 int kvm_create_vcpu(CPUState *cpu)
439 {
440 unsigned long vcpu_id = kvm_arch_vcpu_id(cpu);
441 KVMState *s = kvm_state;
442 int kvm_fd;
443
444 /* check if the KVM vCPU already exist but is parked */
445 kvm_fd = kvm_unpark_vcpu(s, vcpu_id);
446 if (kvm_fd < 0) {
447 /* vCPU not parked: create a new KVM vCPU */
448 kvm_fd = kvm_vm_ioctl(s, KVM_CREATE_VCPU, vcpu_id);
449 if (kvm_fd < 0) {
450 error_report("KVM_CREATE_VCPU IOCTL failed for vCPU %lu", vcpu_id);
451 return kvm_fd;
452 }
453 }
454
455 cpu->kvm_fd = kvm_fd;
456 cpu->kvm_state = s;
457 cpu->vcpu_dirty = true;
458 cpu->dirty_pages = 0;
459 cpu->throttle_us_per_full = 0;
460
461 trace_kvm_create_vcpu(cpu->cpu_index, vcpu_id, kvm_fd);
462
463 return 0;
464 }
465
kvm_create_and_park_vcpu(CPUState * cpu)466 int kvm_create_and_park_vcpu(CPUState *cpu)
467 {
468 int ret = 0;
469
470 ret = kvm_create_vcpu(cpu);
471 if (!ret) {
472 kvm_park_vcpu(cpu);
473 }
474
475 return ret;
476 }
477
do_kvm_destroy_vcpu(CPUState * cpu)478 static int do_kvm_destroy_vcpu(CPUState *cpu)
479 {
480 KVMState *s = kvm_state;
481 long mmap_size;
482 int ret = 0;
483
484 trace_kvm_destroy_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
485
486 ret = kvm_arch_destroy_vcpu(cpu);
487 if (ret < 0) {
488 goto err;
489 }
490
491 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
492 if (mmap_size < 0) {
493 ret = mmap_size;
494 trace_kvm_failed_get_vcpu_mmap_size();
495 goto err;
496 }
497
498 ret = munmap(cpu->kvm_run, mmap_size);
499 if (ret < 0) {
500 goto err;
501 }
502
503 if (cpu->kvm_dirty_gfns) {
504 ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes);
505 if (ret < 0) {
506 goto err;
507 }
508 }
509
510 kvm_park_vcpu(cpu);
511 err:
512 return ret;
513 }
514
kvm_destroy_vcpu(CPUState * cpu)515 void kvm_destroy_vcpu(CPUState *cpu)
516 {
517 if (do_kvm_destroy_vcpu(cpu) < 0) {
518 error_report("kvm_destroy_vcpu failed");
519 exit(EXIT_FAILURE);
520 }
521 }
522
kvm_init_vcpu(CPUState * cpu,Error ** errp)523 int kvm_init_vcpu(CPUState *cpu, Error **errp)
524 {
525 KVMState *s = kvm_state;
526 long mmap_size;
527 int ret;
528
529 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
530
531 ret = kvm_create_vcpu(cpu);
532 if (ret < 0) {
533 error_setg_errno(errp, -ret,
534 "kvm_init_vcpu: kvm_create_vcpu failed (%lu)",
535 kvm_arch_vcpu_id(cpu));
536 goto err;
537 }
538
539 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
540 if (mmap_size < 0) {
541 ret = mmap_size;
542 error_setg_errno(errp, -mmap_size,
543 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed");
544 goto err;
545 }
546
547 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
548 cpu->kvm_fd, 0);
549 if (cpu->kvm_run == MAP_FAILED) {
550 ret = -errno;
551 error_setg_errno(errp, ret,
552 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)",
553 kvm_arch_vcpu_id(cpu));
554 goto err;
555 }
556
557 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
558 s->coalesced_mmio_ring =
559 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
560 }
561
562 if (s->kvm_dirty_ring_size) {
563 /* Use MAP_SHARED to share pages with the kernel */
564 cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes,
565 PROT_READ | PROT_WRITE, MAP_SHARED,
566 cpu->kvm_fd,
567 PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET);
568 if (cpu->kvm_dirty_gfns == MAP_FAILED) {
569 ret = -errno;
570 goto err;
571 }
572 }
573
574 ret = kvm_arch_init_vcpu(cpu);
575 if (ret < 0) {
576 error_setg_errno(errp, -ret,
577 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)",
578 kvm_arch_vcpu_id(cpu));
579 }
580 cpu->kvm_vcpu_stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL);
581
582 err:
583 return ret;
584 }
585
586 /*
587 * dirty pages logging control
588 */
589
kvm_mem_flags(MemoryRegion * mr)590 static int kvm_mem_flags(MemoryRegion *mr)
591 {
592 bool readonly = mr->readonly || memory_region_is_romd(mr);
593 int flags = 0;
594
595 if (memory_region_get_dirty_log_mask(mr) != 0) {
596 flags |= KVM_MEM_LOG_DIRTY_PAGES;
597 }
598 if (readonly && kvm_readonly_mem_allowed) {
599 flags |= KVM_MEM_READONLY;
600 }
601 if (memory_region_has_guest_memfd(mr)) {
602 assert(kvm_guest_memfd_supported);
603 flags |= KVM_MEM_GUEST_MEMFD;
604 }
605 return flags;
606 }
607
608 /* Called with KVMMemoryListener.slots_lock held */
kvm_slot_update_flags(KVMMemoryListener * kml,KVMSlot * mem,MemoryRegion * mr)609 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
610 MemoryRegion *mr)
611 {
612 mem->flags = kvm_mem_flags(mr);
613
614 /* If nothing changed effectively, no need to issue ioctl */
615 if (mem->flags == mem->old_flags) {
616 return 0;
617 }
618
619 kvm_slot_init_dirty_bitmap(mem);
620 return kvm_set_user_memory_region(kml, mem, false);
621 }
622
kvm_section_update_flags(KVMMemoryListener * kml,MemoryRegionSection * section)623 static int kvm_section_update_flags(KVMMemoryListener *kml,
624 MemoryRegionSection *section)
625 {
626 hwaddr start_addr, size, slot_size;
627 KVMSlot *mem;
628 int ret = 0;
629
630 size = kvm_align_section(section, &start_addr);
631 if (!size) {
632 return 0;
633 }
634
635 kvm_slots_lock();
636
637 while (size && !ret) {
638 slot_size = MIN(kvm_max_slot_size, size);
639 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
640 if (!mem) {
641 /* We don't have a slot if we want to trap every access. */
642 goto out;
643 }
644
645 ret = kvm_slot_update_flags(kml, mem, section->mr);
646 start_addr += slot_size;
647 size -= slot_size;
648 }
649
650 out:
651 kvm_slots_unlock();
652 return ret;
653 }
654
kvm_log_start(MemoryListener * listener,MemoryRegionSection * section,int old,int new)655 static void kvm_log_start(MemoryListener *listener,
656 MemoryRegionSection *section,
657 int old, int new)
658 {
659 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
660 int r;
661
662 if (old != 0) {
663 return;
664 }
665
666 r = kvm_section_update_flags(kml, section);
667 if (r < 0) {
668 abort();
669 }
670 }
671
kvm_log_stop(MemoryListener * listener,MemoryRegionSection * section,int old,int new)672 static void kvm_log_stop(MemoryListener *listener,
673 MemoryRegionSection *section,
674 int old, int new)
675 {
676 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
677 int r;
678
679 if (new != 0) {
680 return;
681 }
682
683 r = kvm_section_update_flags(kml, section);
684 if (r < 0) {
685 abort();
686 }
687 }
688
689 /* get kvm's dirty pages bitmap and update qemu's */
kvm_slot_sync_dirty_pages(KVMSlot * slot)690 static void kvm_slot_sync_dirty_pages(KVMSlot *slot)
691 {
692 ram_addr_t start = slot->ram_start_offset;
693 ram_addr_t pages = slot->memory_size / qemu_real_host_page_size();
694
695 cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages);
696 }
697
kvm_slot_reset_dirty_pages(KVMSlot * slot)698 static void kvm_slot_reset_dirty_pages(KVMSlot *slot)
699 {
700 memset(slot->dirty_bmap, 0, slot->dirty_bmap_size);
701 }
702
703 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
704
705 /* Allocate the dirty bitmap for a slot */
kvm_slot_init_dirty_bitmap(KVMSlot * mem)706 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem)
707 {
708 if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) {
709 return;
710 }
711
712 /*
713 * XXX bad kernel interface alert
714 * For dirty bitmap, kernel allocates array of size aligned to
715 * bits-per-long. But for case when the kernel is 64bits and
716 * the userspace is 32bits, userspace can't align to the same
717 * bits-per-long, since sizeof(long) is different between kernel
718 * and user space. This way, userspace will provide buffer which
719 * may be 4 bytes less than the kernel will use, resulting in
720 * userspace memory corruption (which is not detectable by valgrind
721 * too, in most cases).
722 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
723 * a hope that sizeof(long) won't become >8 any time soon.
724 *
725 * Note: the granule of kvm dirty log is qemu_real_host_page_size.
726 * And mem->memory_size is aligned to it (otherwise this mem can't
727 * be registered to KVM).
728 */
729 hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(),
730 /*HOST_LONG_BITS*/ 64) / 8;
731 mem->dirty_bmap = g_malloc0(bitmap_size);
732 mem->dirty_bmap_size = bitmap_size;
733 }
734
735 /*
736 * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if
737 * succeeded, false otherwise
738 */
kvm_slot_get_dirty_log(KVMState * s,KVMSlot * slot)739 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot)
740 {
741 struct kvm_dirty_log d = {};
742 int ret;
743
744 d.dirty_bitmap = slot->dirty_bmap;
745 d.slot = slot->slot | (slot->as_id << 16);
746 ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d);
747
748 if (ret == -ENOENT) {
749 /* kernel does not have dirty bitmap in this slot */
750 ret = 0;
751 }
752 if (ret) {
753 error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d",
754 __func__, ret);
755 }
756 return ret == 0;
757 }
758
759 /* Should be with all slots_lock held for the address spaces. */
kvm_dirty_ring_mark_page(KVMState * s,uint32_t as_id,uint32_t slot_id,uint64_t offset)760 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id,
761 uint32_t slot_id, uint64_t offset)
762 {
763 KVMMemoryListener *kml;
764 KVMSlot *mem;
765
766 if (as_id >= s->nr_as) {
767 return;
768 }
769
770 kml = s->as[as_id].ml;
771 mem = &kml->slots[slot_id];
772
773 if (!mem->memory_size || offset >=
774 (mem->memory_size / qemu_real_host_page_size())) {
775 return;
776 }
777
778 set_bit(offset, mem->dirty_bmap);
779 }
780
dirty_gfn_is_dirtied(struct kvm_dirty_gfn * gfn)781 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn)
782 {
783 /*
784 * Read the flags before the value. Pairs with barrier in
785 * KVM's kvm_dirty_ring_push() function.
786 */
787 return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY;
788 }
789
dirty_gfn_set_collected(struct kvm_dirty_gfn * gfn)790 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn)
791 {
792 /*
793 * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS
794 * sees the full content of the ring:
795 *
796 * CPU0 CPU1 CPU2
797 * ------------------------------------------------------------------------------
798 * fill gfn0
799 * store-rel flags for gfn0
800 * load-acq flags for gfn0
801 * store-rel RESET for gfn0
802 * ioctl(RESET_RINGS)
803 * load-acq flags for gfn0
804 * check if flags have RESET
805 *
806 * The synchronization goes from CPU2 to CPU0 to CPU1.
807 */
808 qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET);
809 }
810
811 /*
812 * Should be with all slots_lock held for the address spaces. It returns the
813 * dirty page we've collected on this dirty ring.
814 */
kvm_dirty_ring_reap_one(KVMState * s,CPUState * cpu)815 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu)
816 {
817 struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur;
818 uint32_t ring_size = s->kvm_dirty_ring_size;
819 uint32_t count = 0, fetch = cpu->kvm_fetch_index;
820
821 /*
822 * It's possible that we race with vcpu creation code where the vcpu is
823 * put onto the vcpus list but not yet initialized the dirty ring
824 * structures. If so, skip it.
825 */
826 if (!cpu->created) {
827 return 0;
828 }
829
830 assert(dirty_gfns && ring_size);
831 trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index);
832
833 while (true) {
834 cur = &dirty_gfns[fetch % ring_size];
835 if (!dirty_gfn_is_dirtied(cur)) {
836 break;
837 }
838 kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff,
839 cur->offset);
840 dirty_gfn_set_collected(cur);
841 trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset);
842 fetch++;
843 count++;
844 }
845 cpu->kvm_fetch_index = fetch;
846 cpu->dirty_pages += count;
847
848 return count;
849 }
850
851 /* Must be with slots_lock held */
kvm_dirty_ring_reap_locked(KVMState * s,CPUState * cpu)852 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu)
853 {
854 int ret;
855 uint64_t total = 0;
856 int64_t stamp;
857
858 stamp = get_clock();
859
860 if (cpu) {
861 total = kvm_dirty_ring_reap_one(s, cpu);
862 } else {
863 CPU_FOREACH(cpu) {
864 total += kvm_dirty_ring_reap_one(s, cpu);
865 }
866 }
867
868 if (total) {
869 ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS);
870 assert(ret == total);
871 }
872
873 stamp = get_clock() - stamp;
874
875 if (total) {
876 trace_kvm_dirty_ring_reap(total, stamp / 1000);
877 }
878
879 return total;
880 }
881
882 /*
883 * Currently for simplicity, we must hold BQL before calling this. We can
884 * consider to drop the BQL if we're clear with all the race conditions.
885 */
kvm_dirty_ring_reap(KVMState * s,CPUState * cpu)886 static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu)
887 {
888 uint64_t total;
889
890 /*
891 * We need to lock all kvm slots for all address spaces here,
892 * because:
893 *
894 * (1) We need to mark dirty for dirty bitmaps in multiple slots
895 * and for tons of pages, so it's better to take the lock here
896 * once rather than once per page. And more importantly,
897 *
898 * (2) We must _NOT_ publish dirty bits to the other threads
899 * (e.g., the migration thread) via the kvm memory slot dirty
900 * bitmaps before correctly re-protect those dirtied pages.
901 * Otherwise we can have potential risk of data corruption if
902 * the page data is read in the other thread before we do
903 * reset below.
904 */
905 kvm_slots_lock();
906 total = kvm_dirty_ring_reap_locked(s, cpu);
907 kvm_slots_unlock();
908
909 return total;
910 }
911
do_kvm_cpu_synchronize_kick(CPUState * cpu,run_on_cpu_data arg)912 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg)
913 {
914 /* No need to do anything */
915 }
916
917 /*
918 * Kick all vcpus out in a synchronized way. When returned, we
919 * guarantee that every vcpu has been kicked and at least returned to
920 * userspace once.
921 */
kvm_cpu_synchronize_kick_all(void)922 static void kvm_cpu_synchronize_kick_all(void)
923 {
924 CPUState *cpu;
925
926 CPU_FOREACH(cpu) {
927 run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL);
928 }
929 }
930
931 /*
932 * Flush all the existing dirty pages to the KVM slot buffers. When
933 * this call returns, we guarantee that all the touched dirty pages
934 * before calling this function have been put into the per-kvmslot
935 * dirty bitmap.
936 *
937 * This function must be called with BQL held.
938 */
kvm_dirty_ring_flush(void)939 static void kvm_dirty_ring_flush(void)
940 {
941 trace_kvm_dirty_ring_flush(0);
942 /*
943 * The function needs to be serialized. Since this function
944 * should always be with BQL held, serialization is guaranteed.
945 * However, let's be sure of it.
946 */
947 assert(bql_locked());
948 /*
949 * First make sure to flush the hardware buffers by kicking all
950 * vcpus out in a synchronous way.
951 */
952 kvm_cpu_synchronize_kick_all();
953 kvm_dirty_ring_reap(kvm_state, NULL);
954 trace_kvm_dirty_ring_flush(1);
955 }
956
957 /**
958 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
959 *
960 * This function will first try to fetch dirty bitmap from the kernel,
961 * and then updates qemu's dirty bitmap.
962 *
963 * NOTE: caller must be with kml->slots_lock held.
964 *
965 * @kml: the KVM memory listener object
966 * @section: the memory section to sync the dirty bitmap with
967 */
kvm_physical_sync_dirty_bitmap(KVMMemoryListener * kml,MemoryRegionSection * section)968 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
969 MemoryRegionSection *section)
970 {
971 KVMState *s = kvm_state;
972 KVMSlot *mem;
973 hwaddr start_addr, size;
974 hwaddr slot_size;
975
976 size = kvm_align_section(section, &start_addr);
977 while (size) {
978 slot_size = MIN(kvm_max_slot_size, size);
979 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
980 if (!mem) {
981 /* We don't have a slot if we want to trap every access. */
982 return;
983 }
984 if (kvm_slot_get_dirty_log(s, mem)) {
985 kvm_slot_sync_dirty_pages(mem);
986 }
987 start_addr += slot_size;
988 size -= slot_size;
989 }
990 }
991
992 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
993 #define KVM_CLEAR_LOG_SHIFT 6
994 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT)
995 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN)
996
kvm_log_clear_one_slot(KVMSlot * mem,int as_id,uint64_t start,uint64_t size)997 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start,
998 uint64_t size)
999 {
1000 KVMState *s = kvm_state;
1001 uint64_t end, bmap_start, start_delta, bmap_npages;
1002 struct kvm_clear_dirty_log d;
1003 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size();
1004 int ret;
1005
1006 /*
1007 * We need to extend either the start or the size or both to
1008 * satisfy the KVM interface requirement. Firstly, do the start
1009 * page alignment on 64 host pages
1010 */
1011 bmap_start = start & KVM_CLEAR_LOG_MASK;
1012 start_delta = start - bmap_start;
1013 bmap_start /= psize;
1014
1015 /*
1016 * The kernel interface has restriction on the size too, that either:
1017 *
1018 * (1) the size is 64 host pages aligned (just like the start), or
1019 * (2) the size fills up until the end of the KVM memslot.
1020 */
1021 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN)
1022 << KVM_CLEAR_LOG_SHIFT;
1023 end = mem->memory_size / psize;
1024 if (bmap_npages > end - bmap_start) {
1025 bmap_npages = end - bmap_start;
1026 }
1027 start_delta /= psize;
1028
1029 /*
1030 * Prepare the bitmap to clear dirty bits. Here we must guarantee
1031 * that we won't clear any unknown dirty bits otherwise we might
1032 * accidentally clear some set bits which are not yet synced from
1033 * the kernel into QEMU's bitmap, then we'll lose track of the
1034 * guest modifications upon those pages (which can directly lead
1035 * to guest data loss or panic after migration).
1036 *
1037 * Layout of the KVMSlot.dirty_bmap:
1038 *
1039 * |<-------- bmap_npages -----------..>|
1040 * [1]
1041 * start_delta size
1042 * |----------------|-------------|------------------|------------|
1043 * ^ ^ ^ ^
1044 * | | | |
1045 * start bmap_start (start) end
1046 * of memslot of memslot
1047 *
1048 * [1] bmap_npages can be aligned to either 64 pages or the end of slot
1049 */
1050
1051 assert(bmap_start % BITS_PER_LONG == 0);
1052 /* We should never do log_clear before log_sync */
1053 assert(mem->dirty_bmap);
1054 if (start_delta || bmap_npages - size / psize) {
1055 /* Slow path - we need to manipulate a temp bitmap */
1056 bmap_clear = bitmap_new(bmap_npages);
1057 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap,
1058 bmap_start, start_delta + size / psize);
1059 /*
1060 * We need to fill the holes at start because that was not
1061 * specified by the caller and we extended the bitmap only for
1062 * 64 pages alignment
1063 */
1064 bitmap_clear(bmap_clear, 0, start_delta);
1065 d.dirty_bitmap = bmap_clear;
1066 } else {
1067 /*
1068 * Fast path - both start and size align well with BITS_PER_LONG
1069 * (or the end of memory slot)
1070 */
1071 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start);
1072 }
1073
1074 d.first_page = bmap_start;
1075 /* It should never overflow. If it happens, say something */
1076 assert(bmap_npages <= UINT32_MAX);
1077 d.num_pages = bmap_npages;
1078 d.slot = mem->slot | (as_id << 16);
1079
1080 ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d);
1081 if (ret < 0 && ret != -ENOENT) {
1082 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
1083 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d",
1084 __func__, d.slot, (uint64_t)d.first_page,
1085 (uint32_t)d.num_pages, ret);
1086 } else {
1087 ret = 0;
1088 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages);
1089 }
1090
1091 /*
1092 * After we have updated the remote dirty bitmap, we update the
1093 * cached bitmap as well for the memslot, then if another user
1094 * clears the same region we know we shouldn't clear it again on
1095 * the remote otherwise it's data loss as well.
1096 */
1097 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta,
1098 size / psize);
1099 /* This handles the NULL case well */
1100 g_free(bmap_clear);
1101 return ret;
1102 }
1103
1104
1105 /**
1106 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
1107 *
1108 * NOTE: this will be a no-op if we haven't enabled manual dirty log
1109 * protection in the host kernel because in that case this operation
1110 * will be done within log_sync().
1111 *
1112 * @kml: the kvm memory listener
1113 * @section: the memory range to clear dirty bitmap
1114 */
kvm_physical_log_clear(KVMMemoryListener * kml,MemoryRegionSection * section)1115 static int kvm_physical_log_clear(KVMMemoryListener *kml,
1116 MemoryRegionSection *section)
1117 {
1118 KVMState *s = kvm_state;
1119 uint64_t start, size, offset, count;
1120 KVMSlot *mem;
1121 int ret = 0, i;
1122
1123 if (!s->manual_dirty_log_protect) {
1124 /* No need to do explicit clear */
1125 return ret;
1126 }
1127
1128 start = section->offset_within_address_space;
1129 size = int128_get64(section->size);
1130
1131 if (!size) {
1132 /* Nothing more we can do... */
1133 return ret;
1134 }
1135
1136 kvm_slots_lock();
1137
1138 for (i = 0; i < kml->nr_slots_allocated; i++) {
1139 mem = &kml->slots[i];
1140 /* Discard slots that are empty or do not overlap the section */
1141 if (!mem->memory_size ||
1142 mem->start_addr > start + size - 1 ||
1143 start > mem->start_addr + mem->memory_size - 1) {
1144 continue;
1145 }
1146
1147 if (start >= mem->start_addr) {
1148 /* The slot starts before section or is aligned to it. */
1149 offset = start - mem->start_addr;
1150 count = MIN(mem->memory_size - offset, size);
1151 } else {
1152 /* The slot starts after section. */
1153 offset = 0;
1154 count = MIN(mem->memory_size, size - (mem->start_addr - start));
1155 }
1156 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count);
1157 if (ret < 0) {
1158 break;
1159 }
1160 }
1161
1162 kvm_slots_unlock();
1163
1164 return ret;
1165 }
1166
kvm_coalesce_mmio_region(MemoryListener * listener,MemoryRegionSection * secion,hwaddr start,hwaddr size)1167 static void kvm_coalesce_mmio_region(MemoryListener *listener,
1168 MemoryRegionSection *secion,
1169 hwaddr start, hwaddr size)
1170 {
1171 KVMState *s = kvm_state;
1172
1173 if (s->coalesced_mmio) {
1174 struct kvm_coalesced_mmio_zone zone;
1175
1176 zone.addr = start;
1177 zone.size = size;
1178 zone.pad = 0;
1179
1180 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1181 }
1182 }
1183
kvm_uncoalesce_mmio_region(MemoryListener * listener,MemoryRegionSection * secion,hwaddr start,hwaddr size)1184 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
1185 MemoryRegionSection *secion,
1186 hwaddr start, hwaddr size)
1187 {
1188 KVMState *s = kvm_state;
1189
1190 if (s->coalesced_mmio) {
1191 struct kvm_coalesced_mmio_zone zone;
1192
1193 zone.addr = start;
1194 zone.size = size;
1195 zone.pad = 0;
1196
1197 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1198 }
1199 }
1200
kvm_coalesce_pio_add(MemoryListener * listener,MemoryRegionSection * section,hwaddr start,hwaddr size)1201 static void kvm_coalesce_pio_add(MemoryListener *listener,
1202 MemoryRegionSection *section,
1203 hwaddr start, hwaddr size)
1204 {
1205 KVMState *s = kvm_state;
1206
1207 if (s->coalesced_pio) {
1208 struct kvm_coalesced_mmio_zone zone;
1209
1210 zone.addr = start;
1211 zone.size = size;
1212 zone.pio = 1;
1213
1214 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1215 }
1216 }
1217
kvm_coalesce_pio_del(MemoryListener * listener,MemoryRegionSection * section,hwaddr start,hwaddr size)1218 static void kvm_coalesce_pio_del(MemoryListener *listener,
1219 MemoryRegionSection *section,
1220 hwaddr start, hwaddr size)
1221 {
1222 KVMState *s = kvm_state;
1223
1224 if (s->coalesced_pio) {
1225 struct kvm_coalesced_mmio_zone zone;
1226
1227 zone.addr = start;
1228 zone.size = size;
1229 zone.pio = 1;
1230
1231 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1232 }
1233 }
1234
kvm_check_extension(KVMState * s,unsigned int extension)1235 int kvm_check_extension(KVMState *s, unsigned int extension)
1236 {
1237 int ret;
1238
1239 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1240 if (ret < 0) {
1241 ret = 0;
1242 }
1243
1244 return ret;
1245 }
1246
kvm_vm_check_extension(KVMState * s,unsigned int extension)1247 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
1248 {
1249 int ret;
1250
1251 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1252 if (ret < 0) {
1253 /* VM wide version not implemented, use global one instead */
1254 ret = kvm_check_extension(s, extension);
1255 }
1256
1257 return ret;
1258 }
1259
1260 /*
1261 * We track the poisoned pages to be able to:
1262 * - replace them on VM reset
1263 * - block a migration for a VM with a poisoned page
1264 */
1265 typedef struct HWPoisonPage {
1266 ram_addr_t ram_addr;
1267 QLIST_ENTRY(HWPoisonPage) list;
1268 } HWPoisonPage;
1269
1270 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
1271 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
1272
kvm_unpoison_all(void * param)1273 static void kvm_unpoison_all(void *param)
1274 {
1275 HWPoisonPage *page, *next_page;
1276
1277 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
1278 QLIST_REMOVE(page, list);
1279 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
1280 g_free(page);
1281 }
1282 }
1283
kvm_hwpoison_page_add(ram_addr_t ram_addr)1284 void kvm_hwpoison_page_add(ram_addr_t ram_addr)
1285 {
1286 HWPoisonPage *page;
1287
1288 QLIST_FOREACH(page, &hwpoison_page_list, list) {
1289 if (page->ram_addr == ram_addr) {
1290 return;
1291 }
1292 }
1293 page = g_new(HWPoisonPage, 1);
1294 page->ram_addr = ram_addr;
1295 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
1296 }
1297
kvm_hwpoisoned_mem(void)1298 bool kvm_hwpoisoned_mem(void)
1299 {
1300 return !QLIST_EMPTY(&hwpoison_page_list);
1301 }
1302
adjust_ioeventfd_endianness(uint32_t val,uint32_t size)1303 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
1304 {
1305 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
1306 /* The kernel expects ioeventfd values in HOST_BIG_ENDIAN
1307 * endianness, but the memory core hands them in target endianness.
1308 * For example, PPC is always treated as big-endian even if running
1309 * on KVM and on PPC64LE. Correct here.
1310 */
1311 switch (size) {
1312 case 2:
1313 val = bswap16(val);
1314 break;
1315 case 4:
1316 val = bswap32(val);
1317 break;
1318 }
1319 #endif
1320 return val;
1321 }
1322
kvm_set_ioeventfd_mmio(int fd,hwaddr addr,uint32_t val,bool assign,uint32_t size,bool datamatch)1323 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
1324 bool assign, uint32_t size, bool datamatch)
1325 {
1326 int ret;
1327 struct kvm_ioeventfd iofd = {
1328 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1329 .addr = addr,
1330 .len = size,
1331 .flags = 0,
1332 .fd = fd,
1333 };
1334
1335 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
1336 datamatch);
1337 if (!kvm_enabled()) {
1338 return -ENOSYS;
1339 }
1340
1341 if (datamatch) {
1342 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1343 }
1344 if (!assign) {
1345 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1346 }
1347
1348 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1349
1350 if (ret < 0) {
1351 return -errno;
1352 }
1353
1354 return 0;
1355 }
1356
kvm_set_ioeventfd_pio(int fd,uint16_t addr,uint16_t val,bool assign,uint32_t size,bool datamatch)1357 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
1358 bool assign, uint32_t size, bool datamatch)
1359 {
1360 struct kvm_ioeventfd kick = {
1361 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1362 .addr = addr,
1363 .flags = KVM_IOEVENTFD_FLAG_PIO,
1364 .len = size,
1365 .fd = fd,
1366 };
1367 int r;
1368 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
1369 if (!kvm_enabled()) {
1370 return -ENOSYS;
1371 }
1372 if (datamatch) {
1373 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1374 }
1375 if (!assign) {
1376 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1377 }
1378 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1379 if (r < 0) {
1380 return r;
1381 }
1382 return 0;
1383 }
1384
1385
1386 static const KVMCapabilityInfo *
kvm_check_extension_list(KVMState * s,const KVMCapabilityInfo * list)1387 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
1388 {
1389 while (list->name) {
1390 if (!kvm_check_extension(s, list->value)) {
1391 return list;
1392 }
1393 list++;
1394 }
1395 return NULL;
1396 }
1397
kvm_set_max_memslot_size(hwaddr max_slot_size)1398 void kvm_set_max_memslot_size(hwaddr max_slot_size)
1399 {
1400 g_assert(
1401 ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size
1402 );
1403 kvm_max_slot_size = max_slot_size;
1404 }
1405
kvm_set_memory_attributes(hwaddr start,uint64_t size,uint64_t attr)1406 static int kvm_set_memory_attributes(hwaddr start, uint64_t size, uint64_t attr)
1407 {
1408 struct kvm_memory_attributes attrs;
1409 int r;
1410
1411 assert((attr & kvm_supported_memory_attributes) == attr);
1412 attrs.attributes = attr;
1413 attrs.address = start;
1414 attrs.size = size;
1415 attrs.flags = 0;
1416
1417 r = kvm_vm_ioctl(kvm_state, KVM_SET_MEMORY_ATTRIBUTES, &attrs);
1418 if (r) {
1419 error_report("failed to set memory (0x%" HWADDR_PRIx "+0x%" PRIx64 ") "
1420 "with attr 0x%" PRIx64 " error '%s'",
1421 start, size, attr, strerror(errno));
1422 }
1423 return r;
1424 }
1425
kvm_set_memory_attributes_private(hwaddr start,uint64_t size)1426 int kvm_set_memory_attributes_private(hwaddr start, uint64_t size)
1427 {
1428 return kvm_set_memory_attributes(start, size, KVM_MEMORY_ATTRIBUTE_PRIVATE);
1429 }
1430
kvm_set_memory_attributes_shared(hwaddr start,uint64_t size)1431 int kvm_set_memory_attributes_shared(hwaddr start, uint64_t size)
1432 {
1433 return kvm_set_memory_attributes(start, size, 0);
1434 }
1435
1436 /* Called with KVMMemoryListener.slots_lock held */
kvm_set_phys_mem(KVMMemoryListener * kml,MemoryRegionSection * section,bool add)1437 static void kvm_set_phys_mem(KVMMemoryListener *kml,
1438 MemoryRegionSection *section, bool add)
1439 {
1440 KVMSlot *mem;
1441 int err;
1442 MemoryRegion *mr = section->mr;
1443 bool writable = !mr->readonly && !mr->rom_device;
1444 hwaddr start_addr, size, slot_size, mr_offset;
1445 ram_addr_t ram_start_offset;
1446 void *ram;
1447
1448 if (!memory_region_is_ram(mr)) {
1449 if (writable || !kvm_readonly_mem_allowed) {
1450 return;
1451 } else if (!mr->romd_mode) {
1452 /* If the memory device is not in romd_mode, then we actually want
1453 * to remove the kvm memory slot so all accesses will trap. */
1454 add = false;
1455 }
1456 }
1457
1458 size = kvm_align_section(section, &start_addr);
1459 if (!size) {
1460 return;
1461 }
1462
1463 /* The offset of the kvmslot within the memory region */
1464 mr_offset = section->offset_within_region + start_addr -
1465 section->offset_within_address_space;
1466
1467 /* use aligned delta to align the ram address and offset */
1468 ram = memory_region_get_ram_ptr(mr) + mr_offset;
1469 ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset;
1470
1471 if (!add) {
1472 do {
1473 slot_size = MIN(kvm_max_slot_size, size);
1474 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
1475 if (!mem) {
1476 return;
1477 }
1478 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1479 /*
1480 * NOTE: We should be aware of the fact that here we're only
1481 * doing a best effort to sync dirty bits. No matter whether
1482 * we're using dirty log or dirty ring, we ignored two facts:
1483 *
1484 * (1) dirty bits can reside in hardware buffers (PML)
1485 *
1486 * (2) after we collected dirty bits here, pages can be dirtied
1487 * again before we do the final KVM_SET_USER_MEMORY_REGION to
1488 * remove the slot.
1489 *
1490 * Not easy. Let's cross the fingers until it's fixed.
1491 */
1492 if (kvm_state->kvm_dirty_ring_size) {
1493 kvm_dirty_ring_reap_locked(kvm_state, NULL);
1494 if (kvm_state->kvm_dirty_ring_with_bitmap) {
1495 kvm_slot_sync_dirty_pages(mem);
1496 kvm_slot_get_dirty_log(kvm_state, mem);
1497 }
1498 } else {
1499 kvm_slot_get_dirty_log(kvm_state, mem);
1500 }
1501 kvm_slot_sync_dirty_pages(mem);
1502 }
1503
1504 /* unregister the slot */
1505 g_free(mem->dirty_bmap);
1506 mem->dirty_bmap = NULL;
1507 mem->memory_size = 0;
1508 mem->flags = 0;
1509 err = kvm_set_user_memory_region(kml, mem, false);
1510 if (err) {
1511 fprintf(stderr, "%s: error unregistering slot: %s\n",
1512 __func__, strerror(-err));
1513 abort();
1514 }
1515 start_addr += slot_size;
1516 size -= slot_size;
1517 kml->nr_used_slots--;
1518 } while (size);
1519 return;
1520 }
1521
1522 /* register the new slot */
1523 do {
1524 slot_size = MIN(kvm_max_slot_size, size);
1525 mem = kvm_alloc_slot(kml);
1526 mem->as_id = kml->as_id;
1527 mem->memory_size = slot_size;
1528 mem->start_addr = start_addr;
1529 mem->ram_start_offset = ram_start_offset;
1530 mem->ram = ram;
1531 mem->flags = kvm_mem_flags(mr);
1532 mem->guest_memfd = mr->ram_block->guest_memfd;
1533 mem->guest_memfd_offset = (uint8_t*)ram - mr->ram_block->host;
1534
1535 kvm_slot_init_dirty_bitmap(mem);
1536 err = kvm_set_user_memory_region(kml, mem, true);
1537 if (err) {
1538 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
1539 strerror(-err));
1540 abort();
1541 }
1542
1543 if (memory_region_has_guest_memfd(mr)) {
1544 err = kvm_set_memory_attributes_private(start_addr, slot_size);
1545 if (err) {
1546 error_report("%s: failed to set memory attribute private: %s",
1547 __func__, strerror(-err));
1548 exit(1);
1549 }
1550 }
1551
1552 start_addr += slot_size;
1553 ram_start_offset += slot_size;
1554 ram += slot_size;
1555 size -= slot_size;
1556 kml->nr_used_slots++;
1557 } while (size);
1558 }
1559
kvm_dirty_ring_reaper_thread(void * data)1560 static void *kvm_dirty_ring_reaper_thread(void *data)
1561 {
1562 KVMState *s = data;
1563 struct KVMDirtyRingReaper *r = &s->reaper;
1564
1565 rcu_register_thread();
1566
1567 trace_kvm_dirty_ring_reaper("init");
1568
1569 while (true) {
1570 r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT;
1571 trace_kvm_dirty_ring_reaper("wait");
1572 /*
1573 * TODO: provide a smarter timeout rather than a constant?
1574 */
1575 sleep(1);
1576
1577 /* keep sleeping so that dirtylimit not be interfered by reaper */
1578 if (dirtylimit_in_service()) {
1579 continue;
1580 }
1581
1582 trace_kvm_dirty_ring_reaper("wakeup");
1583 r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING;
1584
1585 bql_lock();
1586 kvm_dirty_ring_reap(s, NULL);
1587 bql_unlock();
1588
1589 r->reaper_iteration++;
1590 }
1591
1592 trace_kvm_dirty_ring_reaper("exit");
1593
1594 rcu_unregister_thread();
1595
1596 return NULL;
1597 }
1598
kvm_dirty_ring_reaper_init(KVMState * s)1599 static void kvm_dirty_ring_reaper_init(KVMState *s)
1600 {
1601 struct KVMDirtyRingReaper *r = &s->reaper;
1602
1603 qemu_thread_create(&r->reaper_thr, "kvm-reaper",
1604 kvm_dirty_ring_reaper_thread,
1605 s, QEMU_THREAD_JOINABLE);
1606 }
1607
kvm_dirty_ring_init(KVMState * s)1608 static int kvm_dirty_ring_init(KVMState *s)
1609 {
1610 uint32_t ring_size = s->kvm_dirty_ring_size;
1611 uint64_t ring_bytes = ring_size * sizeof(struct kvm_dirty_gfn);
1612 unsigned int capability = KVM_CAP_DIRTY_LOG_RING;
1613 int ret;
1614
1615 s->kvm_dirty_ring_size = 0;
1616 s->kvm_dirty_ring_bytes = 0;
1617
1618 /* Bail if the dirty ring size isn't specified */
1619 if (!ring_size) {
1620 return 0;
1621 }
1622
1623 /*
1624 * Read the max supported pages. Fall back to dirty logging mode
1625 * if the dirty ring isn't supported.
1626 */
1627 ret = kvm_vm_check_extension(s, capability);
1628 if (ret <= 0) {
1629 capability = KVM_CAP_DIRTY_LOG_RING_ACQ_REL;
1630 ret = kvm_vm_check_extension(s, capability);
1631 }
1632
1633 if (ret <= 0) {
1634 warn_report("KVM dirty ring not available, using bitmap method");
1635 return 0;
1636 }
1637
1638 if (ring_bytes > ret) {
1639 error_report("KVM dirty ring size %" PRIu32 " too big "
1640 "(maximum is %ld). Please use a smaller value.",
1641 ring_size, (long)ret / sizeof(struct kvm_dirty_gfn));
1642 return -EINVAL;
1643 }
1644
1645 ret = kvm_vm_enable_cap(s, capability, 0, ring_bytes);
1646 if (ret) {
1647 error_report("Enabling of KVM dirty ring failed: %s. "
1648 "Suggested minimum value is 1024.", strerror(-ret));
1649 return -EIO;
1650 }
1651
1652 /* Enable the backup bitmap if it is supported */
1653 ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP);
1654 if (ret > 0) {
1655 ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP, 0);
1656 if (ret) {
1657 error_report("Enabling of KVM dirty ring's backup bitmap failed: "
1658 "%s. ", strerror(-ret));
1659 return -EIO;
1660 }
1661
1662 s->kvm_dirty_ring_with_bitmap = true;
1663 }
1664
1665 s->kvm_dirty_ring_size = ring_size;
1666 s->kvm_dirty_ring_bytes = ring_bytes;
1667
1668 return 0;
1669 }
1670
kvm_region_add(MemoryListener * listener,MemoryRegionSection * section)1671 static void kvm_region_add(MemoryListener *listener,
1672 MemoryRegionSection *section)
1673 {
1674 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1675 KVMMemoryUpdate *update;
1676
1677 update = g_new0(KVMMemoryUpdate, 1);
1678 update->section = *section;
1679
1680 QSIMPLEQ_INSERT_TAIL(&kml->transaction_add, update, next);
1681 }
1682
kvm_region_del(MemoryListener * listener,MemoryRegionSection * section)1683 static void kvm_region_del(MemoryListener *listener,
1684 MemoryRegionSection *section)
1685 {
1686 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1687 KVMMemoryUpdate *update;
1688
1689 update = g_new0(KVMMemoryUpdate, 1);
1690 update->section = *section;
1691
1692 QSIMPLEQ_INSERT_TAIL(&kml->transaction_del, update, next);
1693 }
1694
kvm_region_commit(MemoryListener * listener)1695 static void kvm_region_commit(MemoryListener *listener)
1696 {
1697 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener,
1698 listener);
1699 KVMMemoryUpdate *u1, *u2;
1700 bool need_inhibit = false;
1701
1702 if (QSIMPLEQ_EMPTY(&kml->transaction_add) &&
1703 QSIMPLEQ_EMPTY(&kml->transaction_del)) {
1704 return;
1705 }
1706
1707 /*
1708 * We have to be careful when regions to add overlap with ranges to remove.
1709 * We have to simulate atomic KVM memslot updates by making sure no ioctl()
1710 * is currently active.
1711 *
1712 * The lists are order by addresses, so it's easy to find overlaps.
1713 */
1714 u1 = QSIMPLEQ_FIRST(&kml->transaction_del);
1715 u2 = QSIMPLEQ_FIRST(&kml->transaction_add);
1716 while (u1 && u2) {
1717 Range r1, r2;
1718
1719 range_init_nofail(&r1, u1->section.offset_within_address_space,
1720 int128_get64(u1->section.size));
1721 range_init_nofail(&r2, u2->section.offset_within_address_space,
1722 int128_get64(u2->section.size));
1723
1724 if (range_overlaps_range(&r1, &r2)) {
1725 need_inhibit = true;
1726 break;
1727 }
1728 if (range_lob(&r1) < range_lob(&r2)) {
1729 u1 = QSIMPLEQ_NEXT(u1, next);
1730 } else {
1731 u2 = QSIMPLEQ_NEXT(u2, next);
1732 }
1733 }
1734
1735 kvm_slots_lock();
1736 if (need_inhibit) {
1737 accel_ioctl_inhibit_begin();
1738 }
1739
1740 /* Remove all memslots before adding the new ones. */
1741 while (!QSIMPLEQ_EMPTY(&kml->transaction_del)) {
1742 u1 = QSIMPLEQ_FIRST(&kml->transaction_del);
1743 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_del, next);
1744
1745 kvm_set_phys_mem(kml, &u1->section, false);
1746 memory_region_unref(u1->section.mr);
1747
1748 g_free(u1);
1749 }
1750 while (!QSIMPLEQ_EMPTY(&kml->transaction_add)) {
1751 u1 = QSIMPLEQ_FIRST(&kml->transaction_add);
1752 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_add, next);
1753
1754 memory_region_ref(u1->section.mr);
1755 kvm_set_phys_mem(kml, &u1->section, true);
1756
1757 g_free(u1);
1758 }
1759
1760 if (need_inhibit) {
1761 accel_ioctl_inhibit_end();
1762 }
1763 kvm_slots_unlock();
1764 }
1765
kvm_log_sync(MemoryListener * listener,MemoryRegionSection * section)1766 static void kvm_log_sync(MemoryListener *listener,
1767 MemoryRegionSection *section)
1768 {
1769 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1770
1771 kvm_slots_lock();
1772 kvm_physical_sync_dirty_bitmap(kml, section);
1773 kvm_slots_unlock();
1774 }
1775
kvm_log_sync_global(MemoryListener * l,bool last_stage)1776 static void kvm_log_sync_global(MemoryListener *l, bool last_stage)
1777 {
1778 KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener);
1779 KVMState *s = kvm_state;
1780 KVMSlot *mem;
1781 int i;
1782
1783 /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */
1784 kvm_dirty_ring_flush();
1785
1786 kvm_slots_lock();
1787 for (i = 0; i < kml->nr_slots_allocated; i++) {
1788 mem = &kml->slots[i];
1789 if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1790 kvm_slot_sync_dirty_pages(mem);
1791
1792 if (s->kvm_dirty_ring_with_bitmap && last_stage &&
1793 kvm_slot_get_dirty_log(s, mem)) {
1794 kvm_slot_sync_dirty_pages(mem);
1795 }
1796
1797 /*
1798 * This is not needed by KVM_GET_DIRTY_LOG because the
1799 * ioctl will unconditionally overwrite the whole region.
1800 * However kvm dirty ring has no such side effect.
1801 */
1802 kvm_slot_reset_dirty_pages(mem);
1803 }
1804 }
1805 kvm_slots_unlock();
1806 }
1807
kvm_log_clear(MemoryListener * listener,MemoryRegionSection * section)1808 static void kvm_log_clear(MemoryListener *listener,
1809 MemoryRegionSection *section)
1810 {
1811 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1812 int r;
1813
1814 r = kvm_physical_log_clear(kml, section);
1815 if (r < 0) {
1816 error_report_once("%s: kvm log clear failed: mr=%s "
1817 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__,
1818 section->mr->name, section->offset_within_region,
1819 int128_get64(section->size));
1820 abort();
1821 }
1822 }
1823
kvm_mem_ioeventfd_add(MemoryListener * listener,MemoryRegionSection * section,bool match_data,uint64_t data,EventNotifier * e)1824 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
1825 MemoryRegionSection *section,
1826 bool match_data, uint64_t data,
1827 EventNotifier *e)
1828 {
1829 int fd = event_notifier_get_fd(e);
1830 int r;
1831
1832 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1833 data, true, int128_get64(section->size),
1834 match_data);
1835 if (r < 0) {
1836 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1837 __func__, strerror(-r), -r);
1838 abort();
1839 }
1840 }
1841
kvm_mem_ioeventfd_del(MemoryListener * listener,MemoryRegionSection * section,bool match_data,uint64_t data,EventNotifier * e)1842 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
1843 MemoryRegionSection *section,
1844 bool match_data, uint64_t data,
1845 EventNotifier *e)
1846 {
1847 int fd = event_notifier_get_fd(e);
1848 int r;
1849
1850 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1851 data, false, int128_get64(section->size),
1852 match_data);
1853 if (r < 0) {
1854 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1855 __func__, strerror(-r), -r);
1856 abort();
1857 }
1858 }
1859
kvm_io_ioeventfd_add(MemoryListener * listener,MemoryRegionSection * section,bool match_data,uint64_t data,EventNotifier * e)1860 static void kvm_io_ioeventfd_add(MemoryListener *listener,
1861 MemoryRegionSection *section,
1862 bool match_data, uint64_t data,
1863 EventNotifier *e)
1864 {
1865 int fd = event_notifier_get_fd(e);
1866 int r;
1867
1868 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1869 data, true, int128_get64(section->size),
1870 match_data);
1871 if (r < 0) {
1872 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1873 __func__, strerror(-r), -r);
1874 abort();
1875 }
1876 }
1877
kvm_io_ioeventfd_del(MemoryListener * listener,MemoryRegionSection * section,bool match_data,uint64_t data,EventNotifier * e)1878 static void kvm_io_ioeventfd_del(MemoryListener *listener,
1879 MemoryRegionSection *section,
1880 bool match_data, uint64_t data,
1881 EventNotifier *e)
1882
1883 {
1884 int fd = event_notifier_get_fd(e);
1885 int r;
1886
1887 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1888 data, false, int128_get64(section->size),
1889 match_data);
1890 if (r < 0) {
1891 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1892 __func__, strerror(-r), -r);
1893 abort();
1894 }
1895 }
1896
kvm_memory_listener_register(KVMState * s,KVMMemoryListener * kml,AddressSpace * as,int as_id,const char * name)1897 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
1898 AddressSpace *as, int as_id, const char *name)
1899 {
1900 int i;
1901
1902 kml->as_id = as_id;
1903
1904 kvm_slots_grow(kml, KVM_MEMSLOTS_NR_ALLOC_DEFAULT);
1905
1906 QSIMPLEQ_INIT(&kml->transaction_add);
1907 QSIMPLEQ_INIT(&kml->transaction_del);
1908
1909 kml->listener.region_add = kvm_region_add;
1910 kml->listener.region_del = kvm_region_del;
1911 kml->listener.commit = kvm_region_commit;
1912 kml->listener.log_start = kvm_log_start;
1913 kml->listener.log_stop = kvm_log_stop;
1914 kml->listener.priority = MEMORY_LISTENER_PRIORITY_ACCEL;
1915 kml->listener.name = name;
1916
1917 if (s->kvm_dirty_ring_size) {
1918 kml->listener.log_sync_global = kvm_log_sync_global;
1919 } else {
1920 kml->listener.log_sync = kvm_log_sync;
1921 kml->listener.log_clear = kvm_log_clear;
1922 }
1923
1924 memory_listener_register(&kml->listener, as);
1925
1926 for (i = 0; i < s->nr_as; ++i) {
1927 if (!s->as[i].as) {
1928 s->as[i].as = as;
1929 s->as[i].ml = kml;
1930 break;
1931 }
1932 }
1933 }
1934
1935 static MemoryListener kvm_io_listener = {
1936 .name = "kvm-io",
1937 .coalesced_io_add = kvm_coalesce_pio_add,
1938 .coalesced_io_del = kvm_coalesce_pio_del,
1939 .eventfd_add = kvm_io_ioeventfd_add,
1940 .eventfd_del = kvm_io_ioeventfd_del,
1941 .priority = MEMORY_LISTENER_PRIORITY_DEV_BACKEND,
1942 };
1943
kvm_set_irq(KVMState * s,int irq,int level)1944 int kvm_set_irq(KVMState *s, int irq, int level)
1945 {
1946 struct kvm_irq_level event;
1947 int ret;
1948
1949 assert(kvm_async_interrupts_enabled());
1950
1951 event.level = level;
1952 event.irq = irq;
1953 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
1954 if (ret < 0) {
1955 perror("kvm_set_irq");
1956 abort();
1957 }
1958
1959 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
1960 }
1961
1962 #ifdef KVM_CAP_IRQ_ROUTING
1963 typedef struct KVMMSIRoute {
1964 struct kvm_irq_routing_entry kroute;
1965 QTAILQ_ENTRY(KVMMSIRoute) entry;
1966 } KVMMSIRoute;
1967
set_gsi(KVMState * s,unsigned int gsi)1968 static void set_gsi(KVMState *s, unsigned int gsi)
1969 {
1970 set_bit(gsi, s->used_gsi_bitmap);
1971 }
1972
clear_gsi(KVMState * s,unsigned int gsi)1973 static void clear_gsi(KVMState *s, unsigned int gsi)
1974 {
1975 clear_bit(gsi, s->used_gsi_bitmap);
1976 }
1977
kvm_init_irq_routing(KVMState * s)1978 void kvm_init_irq_routing(KVMState *s)
1979 {
1980 int gsi_count;
1981
1982 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1983 if (gsi_count > 0) {
1984 /* Round up so we can search ints using ffs */
1985 s->used_gsi_bitmap = bitmap_new(gsi_count);
1986 s->gsi_count = gsi_count;
1987 }
1988
1989 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1990 s->nr_allocated_irq_routes = 0;
1991
1992 kvm_arch_init_irq_routing(s);
1993 }
1994
kvm_irqchip_commit_routes(KVMState * s)1995 void kvm_irqchip_commit_routes(KVMState *s)
1996 {
1997 int ret;
1998
1999 if (kvm_gsi_direct_mapping()) {
2000 return;
2001 }
2002
2003 if (!kvm_gsi_routing_enabled()) {
2004 return;
2005 }
2006
2007 s->irq_routes->flags = 0;
2008 trace_kvm_irqchip_commit_routes();
2009 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
2010 assert(ret == 0);
2011 }
2012
kvm_add_routing_entry(KVMState * s,struct kvm_irq_routing_entry * entry)2013 void kvm_add_routing_entry(KVMState *s,
2014 struct kvm_irq_routing_entry *entry)
2015 {
2016 struct kvm_irq_routing_entry *new;
2017 int n, size;
2018
2019 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
2020 n = s->nr_allocated_irq_routes * 2;
2021 if (n < 64) {
2022 n = 64;
2023 }
2024 size = sizeof(struct kvm_irq_routing);
2025 size += n * sizeof(*new);
2026 s->irq_routes = g_realloc(s->irq_routes, size);
2027 s->nr_allocated_irq_routes = n;
2028 }
2029 n = s->irq_routes->nr++;
2030 new = &s->irq_routes->entries[n];
2031
2032 *new = *entry;
2033
2034 set_gsi(s, entry->gsi);
2035 }
2036
kvm_update_routing_entry(KVMState * s,struct kvm_irq_routing_entry * new_entry)2037 static int kvm_update_routing_entry(KVMState *s,
2038 struct kvm_irq_routing_entry *new_entry)
2039 {
2040 struct kvm_irq_routing_entry *entry;
2041 int n;
2042
2043 for (n = 0; n < s->irq_routes->nr; n++) {
2044 entry = &s->irq_routes->entries[n];
2045 if (entry->gsi != new_entry->gsi) {
2046 continue;
2047 }
2048
2049 if(!memcmp(entry, new_entry, sizeof *entry)) {
2050 return 0;
2051 }
2052
2053 *entry = *new_entry;
2054
2055 return 0;
2056 }
2057
2058 return -ESRCH;
2059 }
2060
kvm_irqchip_add_irq_route(KVMState * s,int irq,int irqchip,int pin)2061 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
2062 {
2063 struct kvm_irq_routing_entry e = {};
2064
2065 assert(pin < s->gsi_count);
2066
2067 e.gsi = irq;
2068 e.type = KVM_IRQ_ROUTING_IRQCHIP;
2069 e.flags = 0;
2070 e.u.irqchip.irqchip = irqchip;
2071 e.u.irqchip.pin = pin;
2072 kvm_add_routing_entry(s, &e);
2073 }
2074
kvm_irqchip_release_virq(KVMState * s,int virq)2075 void kvm_irqchip_release_virq(KVMState *s, int virq)
2076 {
2077 struct kvm_irq_routing_entry *e;
2078 int i;
2079
2080 if (kvm_gsi_direct_mapping()) {
2081 return;
2082 }
2083
2084 for (i = 0; i < s->irq_routes->nr; i++) {
2085 e = &s->irq_routes->entries[i];
2086 if (e->gsi == virq) {
2087 s->irq_routes->nr--;
2088 *e = s->irq_routes->entries[s->irq_routes->nr];
2089 }
2090 }
2091 clear_gsi(s, virq);
2092 kvm_arch_release_virq_post(virq);
2093 trace_kvm_irqchip_release_virq(virq);
2094 }
2095
kvm_irqchip_add_change_notifier(Notifier * n)2096 void kvm_irqchip_add_change_notifier(Notifier *n)
2097 {
2098 notifier_list_add(&kvm_irqchip_change_notifiers, n);
2099 }
2100
kvm_irqchip_remove_change_notifier(Notifier * n)2101 void kvm_irqchip_remove_change_notifier(Notifier *n)
2102 {
2103 notifier_remove(n);
2104 }
2105
kvm_irqchip_change_notify(void)2106 void kvm_irqchip_change_notify(void)
2107 {
2108 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL);
2109 }
2110
kvm_irqchip_get_virq(KVMState * s)2111 int kvm_irqchip_get_virq(KVMState *s)
2112 {
2113 int next_virq;
2114
2115 /* Return the lowest unused GSI in the bitmap */
2116 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
2117 if (next_virq >= s->gsi_count) {
2118 return -ENOSPC;
2119 } else {
2120 return next_virq;
2121 }
2122 }
2123
kvm_irqchip_send_msi(KVMState * s,MSIMessage msg)2124 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
2125 {
2126 struct kvm_msi msi;
2127
2128 msi.address_lo = (uint32_t)msg.address;
2129 msi.address_hi = msg.address >> 32;
2130 msi.data = le32_to_cpu(msg.data);
2131 msi.flags = 0;
2132 memset(msi.pad, 0, sizeof(msi.pad));
2133
2134 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
2135 }
2136
kvm_irqchip_add_msi_route(KVMRouteChange * c,int vector,PCIDevice * dev)2137 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
2138 {
2139 struct kvm_irq_routing_entry kroute = {};
2140 int virq;
2141 KVMState *s = c->s;
2142 MSIMessage msg = {0, 0};
2143
2144 if (pci_available && dev) {
2145 msg = pci_get_msi_message(dev, vector);
2146 }
2147
2148 if (kvm_gsi_direct_mapping()) {
2149 return kvm_arch_msi_data_to_gsi(msg.data);
2150 }
2151
2152 if (!kvm_gsi_routing_enabled()) {
2153 return -ENOSYS;
2154 }
2155
2156 virq = kvm_irqchip_get_virq(s);
2157 if (virq < 0) {
2158 return virq;
2159 }
2160
2161 kroute.gsi = virq;
2162 kroute.type = KVM_IRQ_ROUTING_MSI;
2163 kroute.flags = 0;
2164 kroute.u.msi.address_lo = (uint32_t)msg.address;
2165 kroute.u.msi.address_hi = msg.address >> 32;
2166 kroute.u.msi.data = le32_to_cpu(msg.data);
2167 if (pci_available && kvm_msi_devid_required()) {
2168 kroute.flags = KVM_MSI_VALID_DEVID;
2169 kroute.u.msi.devid = pci_requester_id(dev);
2170 }
2171 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
2172 kvm_irqchip_release_virq(s, virq);
2173 return -EINVAL;
2174 }
2175
2176 if (s->irq_routes->nr < s->gsi_count) {
2177 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
2178 vector, virq);
2179
2180 kvm_add_routing_entry(s, &kroute);
2181 kvm_arch_add_msi_route_post(&kroute, vector, dev);
2182 c->changes++;
2183 } else {
2184 kvm_irqchip_release_virq(s, virq);
2185 return -ENOSPC;
2186 }
2187
2188 return virq;
2189 }
2190
kvm_irqchip_update_msi_route(KVMState * s,int virq,MSIMessage msg,PCIDevice * dev)2191 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
2192 PCIDevice *dev)
2193 {
2194 struct kvm_irq_routing_entry kroute = {};
2195
2196 if (kvm_gsi_direct_mapping()) {
2197 return 0;
2198 }
2199
2200 if (!kvm_irqchip_in_kernel()) {
2201 return -ENOSYS;
2202 }
2203
2204 kroute.gsi = virq;
2205 kroute.type = KVM_IRQ_ROUTING_MSI;
2206 kroute.flags = 0;
2207 kroute.u.msi.address_lo = (uint32_t)msg.address;
2208 kroute.u.msi.address_hi = msg.address >> 32;
2209 kroute.u.msi.data = le32_to_cpu(msg.data);
2210 if (pci_available && kvm_msi_devid_required()) {
2211 kroute.flags = KVM_MSI_VALID_DEVID;
2212 kroute.u.msi.devid = pci_requester_id(dev);
2213 }
2214 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
2215 return -EINVAL;
2216 }
2217
2218 trace_kvm_irqchip_update_msi_route(virq);
2219
2220 return kvm_update_routing_entry(s, &kroute);
2221 }
2222
kvm_irqchip_assign_irqfd(KVMState * s,EventNotifier * event,EventNotifier * resample,int virq,bool assign)2223 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2224 EventNotifier *resample, int virq,
2225 bool assign)
2226 {
2227 int fd = event_notifier_get_fd(event);
2228 int rfd = resample ? event_notifier_get_fd(resample) : -1;
2229
2230 struct kvm_irqfd irqfd = {
2231 .fd = fd,
2232 .gsi = virq,
2233 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
2234 };
2235
2236 if (rfd != -1) {
2237 assert(assign);
2238 if (kvm_irqchip_is_split()) {
2239 /*
2240 * When the slow irqchip (e.g. IOAPIC) is in the
2241 * userspace, KVM kernel resamplefd will not work because
2242 * the EOI of the interrupt will be delivered to userspace
2243 * instead, so the KVM kernel resamplefd kick will be
2244 * skipped. The userspace here mimics what the kernel
2245 * provides with resamplefd, remember the resamplefd and
2246 * kick it when we receive EOI of this IRQ.
2247 *
2248 * This is hackery because IOAPIC is mostly bypassed
2249 * (except EOI broadcasts) when irqfd is used. However
2250 * this can bring much performance back for split irqchip
2251 * with INTx IRQs (for VFIO, this gives 93% perf of the
2252 * full fast path, which is 46% perf boost comparing to
2253 * the INTx slow path).
2254 */
2255 kvm_resample_fd_insert(virq, resample);
2256 } else {
2257 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
2258 irqfd.resamplefd = rfd;
2259 }
2260 } else if (!assign) {
2261 if (kvm_irqchip_is_split()) {
2262 kvm_resample_fd_remove(virq);
2263 }
2264 }
2265
2266 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
2267 }
2268
2269 #else /* !KVM_CAP_IRQ_ROUTING */
2270
kvm_init_irq_routing(KVMState * s)2271 void kvm_init_irq_routing(KVMState *s)
2272 {
2273 }
2274
kvm_irqchip_release_virq(KVMState * s,int virq)2275 void kvm_irqchip_release_virq(KVMState *s, int virq)
2276 {
2277 }
2278
kvm_irqchip_send_msi(KVMState * s,MSIMessage msg)2279 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
2280 {
2281 abort();
2282 }
2283
kvm_irqchip_add_msi_route(KVMRouteChange * c,int vector,PCIDevice * dev)2284 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
2285 {
2286 return -ENOSYS;
2287 }
2288
kvm_irqchip_add_adapter_route(KVMState * s,AdapterInfo * adapter)2289 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
2290 {
2291 return -ENOSYS;
2292 }
2293
kvm_irqchip_add_hv_sint_route(KVMState * s,uint32_t vcpu,uint32_t sint)2294 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
2295 {
2296 return -ENOSYS;
2297 }
2298
kvm_irqchip_assign_irqfd(KVMState * s,EventNotifier * event,EventNotifier * resample,int virq,bool assign)2299 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2300 EventNotifier *resample, int virq,
2301 bool assign)
2302 {
2303 abort();
2304 }
2305
kvm_irqchip_update_msi_route(KVMState * s,int virq,MSIMessage msg)2306 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
2307 {
2308 return -ENOSYS;
2309 }
2310 #endif /* !KVM_CAP_IRQ_ROUTING */
2311
kvm_irqchip_add_irqfd_notifier_gsi(KVMState * s,EventNotifier * n,EventNotifier * rn,int virq)2312 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2313 EventNotifier *rn, int virq)
2314 {
2315 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true);
2316 }
2317
kvm_irqchip_remove_irqfd_notifier_gsi(KVMState * s,EventNotifier * n,int virq)2318 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2319 int virq)
2320 {
2321 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false);
2322 }
2323
kvm_irqchip_add_irqfd_notifier(KVMState * s,EventNotifier * n,EventNotifier * rn,qemu_irq irq)2324 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
2325 EventNotifier *rn, qemu_irq irq)
2326 {
2327 gpointer key, gsi;
2328 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2329
2330 if (!found) {
2331 return -ENXIO;
2332 }
2333 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
2334 }
2335
kvm_irqchip_remove_irqfd_notifier(KVMState * s,EventNotifier * n,qemu_irq irq)2336 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
2337 qemu_irq irq)
2338 {
2339 gpointer key, gsi;
2340 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2341
2342 if (!found) {
2343 return -ENXIO;
2344 }
2345 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
2346 }
2347
kvm_irqchip_set_qemuirq_gsi(KVMState * s,qemu_irq irq,int gsi)2348 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
2349 {
2350 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
2351 }
2352
kvm_irqchip_create(KVMState * s)2353 static void kvm_irqchip_create(KVMState *s)
2354 {
2355 int ret;
2356
2357 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO);
2358 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
2359 ;
2360 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
2361 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
2362 if (ret < 0) {
2363 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
2364 exit(1);
2365 }
2366 } else {
2367 return;
2368 }
2369
2370 if (kvm_check_extension(s, KVM_CAP_IRQFD) <= 0) {
2371 fprintf(stderr, "kvm: irqfd not implemented\n");
2372 exit(1);
2373 }
2374
2375 /* First probe and see if there's a arch-specific hook to create the
2376 * in-kernel irqchip for us */
2377 ret = kvm_arch_irqchip_create(s);
2378 if (ret == 0) {
2379 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) {
2380 error_report("Split IRQ chip mode not supported.");
2381 exit(1);
2382 } else {
2383 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
2384 }
2385 }
2386 if (ret < 0) {
2387 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
2388 exit(1);
2389 }
2390
2391 kvm_kernel_irqchip = true;
2392 /* If we have an in-kernel IRQ chip then we must have asynchronous
2393 * interrupt delivery (though the reverse is not necessarily true)
2394 */
2395 kvm_async_interrupts_allowed = true;
2396 kvm_halt_in_kernel_allowed = true;
2397
2398 kvm_init_irq_routing(s);
2399
2400 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
2401 }
2402
2403 /* Find number of supported CPUs using the recommended
2404 * procedure from the kernel API documentation to cope with
2405 * older kernels that may be missing capabilities.
2406 */
kvm_recommended_vcpus(KVMState * s)2407 static int kvm_recommended_vcpus(KVMState *s)
2408 {
2409 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
2410 return (ret) ? ret : 4;
2411 }
2412
kvm_max_vcpus(KVMState * s)2413 static int kvm_max_vcpus(KVMState *s)
2414 {
2415 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
2416 return (ret) ? ret : kvm_recommended_vcpus(s);
2417 }
2418
kvm_max_vcpu_id(KVMState * s)2419 static int kvm_max_vcpu_id(KVMState *s)
2420 {
2421 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
2422 return (ret) ? ret : kvm_max_vcpus(s);
2423 }
2424
kvm_vcpu_id_is_valid(int vcpu_id)2425 bool kvm_vcpu_id_is_valid(int vcpu_id)
2426 {
2427 KVMState *s = KVM_STATE(current_accel());
2428 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
2429 }
2430
kvm_dirty_ring_enabled(void)2431 bool kvm_dirty_ring_enabled(void)
2432 {
2433 return kvm_state && kvm_state->kvm_dirty_ring_size;
2434 }
2435
2436 static void query_stats_cb(StatsResultList **result, StatsTarget target,
2437 strList *names, strList *targets, Error **errp);
2438 static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp);
2439
kvm_dirty_ring_size(void)2440 uint32_t kvm_dirty_ring_size(void)
2441 {
2442 return kvm_state->kvm_dirty_ring_size;
2443 }
2444
kvm_init(MachineState * ms)2445 static int kvm_init(MachineState *ms)
2446 {
2447 MachineClass *mc = MACHINE_GET_CLASS(ms);
2448 static const char upgrade_note[] =
2449 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
2450 "(see http://sourceforge.net/projects/kvm).\n";
2451 const struct {
2452 const char *name;
2453 int num;
2454 } num_cpus[] = {
2455 { "SMP", ms->smp.cpus },
2456 { "hotpluggable", ms->smp.max_cpus },
2457 { /* end of list */ }
2458 }, *nc = num_cpus;
2459 int soft_vcpus_limit, hard_vcpus_limit;
2460 KVMState *s;
2461 const KVMCapabilityInfo *missing_cap;
2462 int ret;
2463 int type;
2464 uint64_t dirty_log_manual_caps;
2465
2466 qemu_mutex_init(&kml_slots_lock);
2467
2468 s = KVM_STATE(ms->accelerator);
2469
2470 /*
2471 * On systems where the kernel can support different base page
2472 * sizes, host page size may be different from TARGET_PAGE_SIZE,
2473 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
2474 * page size for the system though.
2475 */
2476 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size());
2477
2478 s->sigmask_len = 8;
2479 accel_blocker_init();
2480
2481 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG
2482 QTAILQ_INIT(&s->kvm_sw_breakpoints);
2483 #endif
2484 QLIST_INIT(&s->kvm_parked_vcpus);
2485 s->fd = qemu_open_old(s->device ?: "/dev/kvm", O_RDWR);
2486 if (s->fd == -1) {
2487 fprintf(stderr, "Could not access KVM kernel module: %m\n");
2488 ret = -errno;
2489 goto err;
2490 }
2491
2492 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
2493 if (ret < KVM_API_VERSION) {
2494 if (ret >= 0) {
2495 ret = -EINVAL;
2496 }
2497 fprintf(stderr, "kvm version too old\n");
2498 goto err;
2499 }
2500
2501 if (ret > KVM_API_VERSION) {
2502 ret = -EINVAL;
2503 fprintf(stderr, "kvm version not supported\n");
2504 goto err;
2505 }
2506
2507 kvm_supported_memory_attributes = kvm_check_extension(s, KVM_CAP_MEMORY_ATTRIBUTES);
2508 kvm_guest_memfd_supported =
2509 kvm_check_extension(s, KVM_CAP_GUEST_MEMFD) &&
2510 kvm_check_extension(s, KVM_CAP_USER_MEMORY2) &&
2511 (kvm_supported_memory_attributes & KVM_MEMORY_ATTRIBUTE_PRIVATE);
2512
2513 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
2514 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
2515
2516 /* If unspecified, use the default value */
2517 if (!s->nr_slots) {
2518 s->nr_slots = 32;
2519 }
2520
2521 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE);
2522 if (s->nr_as <= 1) {
2523 s->nr_as = 1;
2524 }
2525 s->as = g_new0(struct KVMAs, s->nr_as);
2526
2527 if (object_property_find(OBJECT(current_machine), "kvm-type")) {
2528 g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine),
2529 "kvm-type",
2530 &error_abort);
2531 type = mc->kvm_type(ms, kvm_type);
2532 } else if (mc->kvm_type) {
2533 type = mc->kvm_type(ms, NULL);
2534 } else {
2535 type = kvm_arch_get_default_type(ms);
2536 }
2537
2538 if (type < 0) {
2539 ret = -EINVAL;
2540 goto err;
2541 }
2542
2543 do {
2544 ret = kvm_ioctl(s, KVM_CREATE_VM, type);
2545 } while (ret == -EINTR);
2546
2547 if (ret < 0) {
2548 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
2549 strerror(-ret));
2550
2551 #ifdef TARGET_S390X
2552 if (ret == -EINVAL) {
2553 fprintf(stderr,
2554 "Host kernel setup problem detected. Please verify:\n");
2555 fprintf(stderr, "- for kernels supporting the switch_amode or"
2556 " user_mode parameters, whether\n");
2557 fprintf(stderr,
2558 " user space is running in primary address space\n");
2559 fprintf(stderr,
2560 "- for kernels supporting the vm.allocate_pgste sysctl, "
2561 "whether it is enabled\n");
2562 }
2563 #elif defined(TARGET_PPC)
2564 if (ret == -EINVAL) {
2565 fprintf(stderr,
2566 "PPC KVM module is not loaded. Try modprobe kvm_%s.\n",
2567 (type == 2) ? "pr" : "hv");
2568 }
2569 #endif
2570 goto err;
2571 }
2572
2573 s->vmfd = ret;
2574
2575 /* check the vcpu limits */
2576 soft_vcpus_limit = kvm_recommended_vcpus(s);
2577 hard_vcpus_limit = kvm_max_vcpus(s);
2578
2579 while (nc->name) {
2580 if (nc->num > soft_vcpus_limit) {
2581 warn_report("Number of %s cpus requested (%d) exceeds "
2582 "the recommended cpus supported by KVM (%d)",
2583 nc->name, nc->num, soft_vcpus_limit);
2584
2585 if (nc->num > hard_vcpus_limit) {
2586 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
2587 "the maximum cpus supported by KVM (%d)\n",
2588 nc->name, nc->num, hard_vcpus_limit);
2589 exit(1);
2590 }
2591 }
2592 nc++;
2593 }
2594
2595 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
2596 if (!missing_cap) {
2597 missing_cap =
2598 kvm_check_extension_list(s, kvm_arch_required_capabilities);
2599 }
2600 if (missing_cap) {
2601 ret = -EINVAL;
2602 fprintf(stderr, "kvm does not support %s\n%s",
2603 missing_cap->name, upgrade_note);
2604 goto err;
2605 }
2606
2607 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
2608 s->coalesced_pio = s->coalesced_mmio &&
2609 kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
2610
2611 /*
2612 * Enable KVM dirty ring if supported, otherwise fall back to
2613 * dirty logging mode
2614 */
2615 ret = kvm_dirty_ring_init(s);
2616 if (ret < 0) {
2617 goto err;
2618 }
2619
2620 /*
2621 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is
2622 * enabled. More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no
2623 * page is wr-protected initially, which is against how kvm dirty ring is
2624 * usage - kvm dirty ring requires all pages are wr-protected at the very
2625 * beginning. Enabling this feature for dirty ring causes data corruption.
2626 *
2627 * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log,
2628 * we may expect a higher stall time when starting the migration. In the
2629 * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too:
2630 * instead of clearing dirty bit, it can be a way to explicitly wr-protect
2631 * guest pages.
2632 */
2633 if (!s->kvm_dirty_ring_size) {
2634 dirty_log_manual_caps =
2635 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
2636 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE |
2637 KVM_DIRTY_LOG_INITIALLY_SET);
2638 s->manual_dirty_log_protect = dirty_log_manual_caps;
2639 if (dirty_log_manual_caps) {
2640 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0,
2641 dirty_log_manual_caps);
2642 if (ret) {
2643 warn_report("Trying to enable capability %"PRIu64" of "
2644 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. "
2645 "Falling back to the legacy mode. ",
2646 dirty_log_manual_caps);
2647 s->manual_dirty_log_protect = 0;
2648 }
2649 }
2650 }
2651
2652 #ifdef KVM_CAP_VCPU_EVENTS
2653 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
2654 #endif
2655 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
2656
2657 s->irq_set_ioctl = KVM_IRQ_LINE;
2658 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
2659 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
2660 }
2661
2662 kvm_readonly_mem_allowed =
2663 (kvm_vm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
2664
2665 kvm_resamplefds_allowed =
2666 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
2667
2668 kvm_vm_attributes_allowed =
2669 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
2670
2671 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG
2672 kvm_has_guest_debug =
2673 (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0);
2674 #endif
2675
2676 kvm_sstep_flags = 0;
2677 if (kvm_has_guest_debug) {
2678 kvm_sstep_flags = SSTEP_ENABLE;
2679
2680 #if defined TARGET_KVM_HAVE_GUEST_DEBUG
2681 int guest_debug_flags =
2682 kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2);
2683
2684 if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) {
2685 kvm_sstep_flags |= SSTEP_NOIRQ;
2686 }
2687 #endif
2688 }
2689
2690 kvm_state = s;
2691
2692 ret = kvm_arch_init(ms, s);
2693 if (ret < 0) {
2694 goto err;
2695 }
2696
2697 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) {
2698 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
2699 }
2700
2701 qemu_register_reset(kvm_unpoison_all, NULL);
2702
2703 if (s->kernel_irqchip_allowed) {
2704 kvm_irqchip_create(s);
2705 }
2706
2707 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
2708 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
2709 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
2710 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
2711
2712 kvm_memory_listener_register(s, &s->memory_listener,
2713 &address_space_memory, 0, "kvm-memory");
2714 memory_listener_register(&kvm_io_listener,
2715 &address_space_io);
2716
2717 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2718 if (!s->sync_mmu) {
2719 ret = ram_block_discard_disable(true);
2720 assert(!ret);
2721 }
2722
2723 if (s->kvm_dirty_ring_size) {
2724 kvm_dirty_ring_reaper_init(s);
2725 }
2726
2727 if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) {
2728 add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb,
2729 query_stats_schemas_cb);
2730 }
2731
2732 return 0;
2733
2734 err:
2735 assert(ret < 0);
2736 if (s->vmfd >= 0) {
2737 close(s->vmfd);
2738 }
2739 if (s->fd != -1) {
2740 close(s->fd);
2741 }
2742 g_free(s->as);
2743 g_free(s->memory_listener.slots);
2744
2745 return ret;
2746 }
2747
kvm_set_sigmask_len(KVMState * s,unsigned int sigmask_len)2748 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
2749 {
2750 s->sigmask_len = sigmask_len;
2751 }
2752
kvm_handle_io(uint16_t port,MemTxAttrs attrs,void * data,int direction,int size,uint32_t count)2753 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
2754 int size, uint32_t count)
2755 {
2756 int i;
2757 uint8_t *ptr = data;
2758
2759 for (i = 0; i < count; i++) {
2760 address_space_rw(&address_space_io, port, attrs,
2761 ptr, size,
2762 direction == KVM_EXIT_IO_OUT);
2763 ptr += size;
2764 }
2765 }
2766
kvm_handle_internal_error(CPUState * cpu,struct kvm_run * run)2767 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
2768 {
2769 int i;
2770
2771 fprintf(stderr, "KVM internal error. Suberror: %d\n",
2772 run->internal.suberror);
2773
2774 for (i = 0; i < run->internal.ndata; ++i) {
2775 fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n",
2776 i, (uint64_t)run->internal.data[i]);
2777 }
2778 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
2779 fprintf(stderr, "emulation failure\n");
2780 if (!kvm_arch_stop_on_emulation_error(cpu)) {
2781 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2782 return EXCP_INTERRUPT;
2783 }
2784 }
2785 /* FIXME: Should trigger a qmp message to let management know
2786 * something went wrong.
2787 */
2788 return -1;
2789 }
2790
kvm_flush_coalesced_mmio_buffer(void)2791 void kvm_flush_coalesced_mmio_buffer(void)
2792 {
2793 KVMState *s = kvm_state;
2794
2795 if (!s || s->coalesced_flush_in_progress) {
2796 return;
2797 }
2798
2799 s->coalesced_flush_in_progress = true;
2800
2801 if (s->coalesced_mmio_ring) {
2802 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
2803 while (ring->first != ring->last) {
2804 struct kvm_coalesced_mmio *ent;
2805
2806 ent = &ring->coalesced_mmio[ring->first];
2807
2808 if (ent->pio == 1) {
2809 address_space_write(&address_space_io, ent->phys_addr,
2810 MEMTXATTRS_UNSPECIFIED, ent->data,
2811 ent->len);
2812 } else {
2813 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
2814 }
2815 smp_wmb();
2816 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
2817 }
2818 }
2819
2820 s->coalesced_flush_in_progress = false;
2821 }
2822
do_kvm_cpu_synchronize_state(CPUState * cpu,run_on_cpu_data arg)2823 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
2824 {
2825 if (!cpu->vcpu_dirty && !kvm_state->guest_state_protected) {
2826 int ret = kvm_arch_get_registers(cpu);
2827 if (ret) {
2828 error_report("Failed to get registers: %s", strerror(-ret));
2829 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2830 vm_stop(RUN_STATE_INTERNAL_ERROR);
2831 }
2832
2833 cpu->vcpu_dirty = true;
2834 }
2835 }
2836
kvm_cpu_synchronize_state(CPUState * cpu)2837 void kvm_cpu_synchronize_state(CPUState *cpu)
2838 {
2839 if (!cpu->vcpu_dirty && !kvm_state->guest_state_protected) {
2840 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
2841 }
2842 }
2843
do_kvm_cpu_synchronize_post_reset(CPUState * cpu,run_on_cpu_data arg)2844 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
2845 {
2846 int ret = kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
2847 if (ret) {
2848 error_report("Failed to put registers after reset: %s", strerror(-ret));
2849 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2850 vm_stop(RUN_STATE_INTERNAL_ERROR);
2851 }
2852
2853 cpu->vcpu_dirty = false;
2854 }
2855
kvm_cpu_synchronize_post_reset(CPUState * cpu)2856 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
2857 {
2858 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
2859 }
2860
do_kvm_cpu_synchronize_post_init(CPUState * cpu,run_on_cpu_data arg)2861 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
2862 {
2863 int ret = kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
2864 if (ret) {
2865 error_report("Failed to put registers after init: %s", strerror(-ret));
2866 exit(1);
2867 }
2868
2869 cpu->vcpu_dirty = false;
2870 }
2871
kvm_cpu_synchronize_post_init(CPUState * cpu)2872 void kvm_cpu_synchronize_post_init(CPUState *cpu)
2873 {
2874 if (!kvm_state->guest_state_protected) {
2875 /*
2876 * This runs before the machine_init_done notifiers, and is the last
2877 * opportunity to synchronize the state of confidential guests.
2878 */
2879 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
2880 }
2881 }
2882
do_kvm_cpu_synchronize_pre_loadvm(CPUState * cpu,run_on_cpu_data arg)2883 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
2884 {
2885 cpu->vcpu_dirty = true;
2886 }
2887
kvm_cpu_synchronize_pre_loadvm(CPUState * cpu)2888 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
2889 {
2890 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
2891 }
2892
2893 #ifdef KVM_HAVE_MCE_INJECTION
2894 static __thread void *pending_sigbus_addr;
2895 static __thread int pending_sigbus_code;
2896 static __thread bool have_sigbus_pending;
2897 #endif
2898
kvm_cpu_kick(CPUState * cpu)2899 static void kvm_cpu_kick(CPUState *cpu)
2900 {
2901 qatomic_set(&cpu->kvm_run->immediate_exit, 1);
2902 }
2903
kvm_cpu_kick_self(void)2904 static void kvm_cpu_kick_self(void)
2905 {
2906 if (kvm_immediate_exit) {
2907 kvm_cpu_kick(current_cpu);
2908 } else {
2909 qemu_cpu_kick_self();
2910 }
2911 }
2912
kvm_eat_signals(CPUState * cpu)2913 static void kvm_eat_signals(CPUState *cpu)
2914 {
2915 struct timespec ts = { 0, 0 };
2916 siginfo_t siginfo;
2917 sigset_t waitset;
2918 sigset_t chkset;
2919 int r;
2920
2921 if (kvm_immediate_exit) {
2922 qatomic_set(&cpu->kvm_run->immediate_exit, 0);
2923 /* Write kvm_run->immediate_exit before the cpu->exit_request
2924 * write in kvm_cpu_exec.
2925 */
2926 smp_wmb();
2927 return;
2928 }
2929
2930 sigemptyset(&waitset);
2931 sigaddset(&waitset, SIG_IPI);
2932
2933 do {
2934 r = sigtimedwait(&waitset, &siginfo, &ts);
2935 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
2936 perror("sigtimedwait");
2937 exit(1);
2938 }
2939
2940 r = sigpending(&chkset);
2941 if (r == -1) {
2942 perror("sigpending");
2943 exit(1);
2944 }
2945 } while (sigismember(&chkset, SIG_IPI));
2946 }
2947
kvm_convert_memory(hwaddr start,hwaddr size,bool to_private)2948 int kvm_convert_memory(hwaddr start, hwaddr size, bool to_private)
2949 {
2950 MemoryRegionSection section;
2951 ram_addr_t offset;
2952 MemoryRegion *mr;
2953 RAMBlock *rb;
2954 void *addr;
2955 int ret = -1;
2956
2957 trace_kvm_convert_memory(start, size, to_private ? "shared_to_private" : "private_to_shared");
2958
2959 if (!QEMU_PTR_IS_ALIGNED(start, qemu_real_host_page_size()) ||
2960 !QEMU_PTR_IS_ALIGNED(size, qemu_real_host_page_size())) {
2961 return -1;
2962 }
2963
2964 if (!size) {
2965 return -1;
2966 }
2967
2968 section = memory_region_find(get_system_memory(), start, size);
2969 mr = section.mr;
2970 if (!mr) {
2971 /*
2972 * Ignore converting non-assigned region to shared.
2973 *
2974 * TDX requires vMMIO region to be shared to inject #VE to guest.
2975 * OVMF issues conservatively MapGPA(shared) on 32bit PCI MMIO region,
2976 * and vIO-APIC 0xFEC00000 4K page.
2977 * OVMF assigns 32bit PCI MMIO region to
2978 * [top of low memory: typically 2GB=0xC000000, 0xFC00000)
2979 */
2980 if (!to_private) {
2981 return 0;
2982 }
2983 return -1;
2984 }
2985
2986 if (!memory_region_has_guest_memfd(mr)) {
2987 /*
2988 * Because vMMIO region must be shared, guest TD may convert vMMIO
2989 * region to shared explicitly. Don't complain such case. See
2990 * memory_region_type() for checking if the region is MMIO region.
2991 */
2992 if (!to_private &&
2993 !memory_region_is_ram(mr) &&
2994 !memory_region_is_ram_device(mr) &&
2995 !memory_region_is_rom(mr) &&
2996 !memory_region_is_romd(mr)) {
2997 ret = 0;
2998 } else {
2999 error_report("Convert non guest_memfd backed memory region "
3000 "(0x%"HWADDR_PRIx" ,+ 0x%"HWADDR_PRIx") to %s",
3001 start, size, to_private ? "private" : "shared");
3002 }
3003 goto out_unref;
3004 }
3005
3006 if (to_private) {
3007 ret = kvm_set_memory_attributes_private(start, size);
3008 } else {
3009 ret = kvm_set_memory_attributes_shared(start, size);
3010 }
3011 if (ret) {
3012 goto out_unref;
3013 }
3014
3015 addr = memory_region_get_ram_ptr(mr) + section.offset_within_region;
3016 rb = qemu_ram_block_from_host(addr, false, &offset);
3017
3018 if (to_private) {
3019 if (rb->page_size != qemu_real_host_page_size()) {
3020 /*
3021 * shared memory is backed by hugetlb, which is supposed to be
3022 * pre-allocated and doesn't need to be discarded
3023 */
3024 goto out_unref;
3025 }
3026 ret = ram_block_discard_range(rb, offset, size);
3027 } else {
3028 ret = ram_block_discard_guest_memfd_range(rb, offset, size);
3029 }
3030
3031 out_unref:
3032 memory_region_unref(mr);
3033 return ret;
3034 }
3035
kvm_cpu_exec(CPUState * cpu)3036 int kvm_cpu_exec(CPUState *cpu)
3037 {
3038 struct kvm_run *run = cpu->kvm_run;
3039 int ret, run_ret;
3040
3041 trace_kvm_cpu_exec();
3042
3043 if (kvm_arch_process_async_events(cpu)) {
3044 qatomic_set(&cpu->exit_request, 0);
3045 return EXCP_HLT;
3046 }
3047
3048 bql_unlock();
3049 cpu_exec_start(cpu);
3050
3051 do {
3052 MemTxAttrs attrs;
3053
3054 if (cpu->vcpu_dirty) {
3055 ret = kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
3056 if (ret) {
3057 error_report("Failed to put registers after init: %s",
3058 strerror(-ret));
3059 ret = -1;
3060 break;
3061 }
3062
3063 cpu->vcpu_dirty = false;
3064 }
3065
3066 kvm_arch_pre_run(cpu, run);
3067 if (qatomic_read(&cpu->exit_request)) {
3068 trace_kvm_interrupt_exit_request();
3069 /*
3070 * KVM requires us to reenter the kernel after IO exits to complete
3071 * instruction emulation. This self-signal will ensure that we
3072 * leave ASAP again.
3073 */
3074 kvm_cpu_kick_self();
3075 }
3076
3077 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
3078 * Matching barrier in kvm_eat_signals.
3079 */
3080 smp_rmb();
3081
3082 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
3083
3084 attrs = kvm_arch_post_run(cpu, run);
3085
3086 #ifdef KVM_HAVE_MCE_INJECTION
3087 if (unlikely(have_sigbus_pending)) {
3088 bql_lock();
3089 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
3090 pending_sigbus_addr);
3091 have_sigbus_pending = false;
3092 bql_unlock();
3093 }
3094 #endif
3095
3096 if (run_ret < 0) {
3097 if (run_ret == -EINTR || run_ret == -EAGAIN) {
3098 trace_kvm_io_window_exit();
3099 kvm_eat_signals(cpu);
3100 ret = EXCP_INTERRUPT;
3101 break;
3102 }
3103 if (!(run_ret == -EFAULT && run->exit_reason == KVM_EXIT_MEMORY_FAULT)) {
3104 fprintf(stderr, "error: kvm run failed %s\n",
3105 strerror(-run_ret));
3106 #ifdef TARGET_PPC
3107 if (run_ret == -EBUSY) {
3108 fprintf(stderr,
3109 "This is probably because your SMT is enabled.\n"
3110 "VCPU can only run on primary threads with all "
3111 "secondary threads offline.\n");
3112 }
3113 #endif
3114 ret = -1;
3115 break;
3116 }
3117 }
3118
3119 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
3120 switch (run->exit_reason) {
3121 case KVM_EXIT_IO:
3122 /* Called outside BQL */
3123 kvm_handle_io(run->io.port, attrs,
3124 (uint8_t *)run + run->io.data_offset,
3125 run->io.direction,
3126 run->io.size,
3127 run->io.count);
3128 ret = 0;
3129 break;
3130 case KVM_EXIT_MMIO:
3131 /* Called outside BQL */
3132 address_space_rw(&address_space_memory,
3133 run->mmio.phys_addr, attrs,
3134 run->mmio.data,
3135 run->mmio.len,
3136 run->mmio.is_write);
3137 ret = 0;
3138 break;
3139 case KVM_EXIT_IRQ_WINDOW_OPEN:
3140 ret = EXCP_INTERRUPT;
3141 break;
3142 case KVM_EXIT_SHUTDOWN:
3143 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
3144 ret = EXCP_INTERRUPT;
3145 break;
3146 case KVM_EXIT_UNKNOWN:
3147 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
3148 (uint64_t)run->hw.hardware_exit_reason);
3149 ret = -1;
3150 break;
3151 case KVM_EXIT_INTERNAL_ERROR:
3152 ret = kvm_handle_internal_error(cpu, run);
3153 break;
3154 case KVM_EXIT_DIRTY_RING_FULL:
3155 /*
3156 * We shouldn't continue if the dirty ring of this vcpu is
3157 * still full. Got kicked by KVM_RESET_DIRTY_RINGS.
3158 */
3159 trace_kvm_dirty_ring_full(cpu->cpu_index);
3160 bql_lock();
3161 /*
3162 * We throttle vCPU by making it sleep once it exit from kernel
3163 * due to dirty ring full. In the dirtylimit scenario, reaping
3164 * all vCPUs after a single vCPU dirty ring get full result in
3165 * the miss of sleep, so just reap the ring-fulled vCPU.
3166 */
3167 if (dirtylimit_in_service()) {
3168 kvm_dirty_ring_reap(kvm_state, cpu);
3169 } else {
3170 kvm_dirty_ring_reap(kvm_state, NULL);
3171 }
3172 bql_unlock();
3173 dirtylimit_vcpu_execute(cpu);
3174 ret = 0;
3175 break;
3176 case KVM_EXIT_SYSTEM_EVENT:
3177 trace_kvm_run_exit_system_event(cpu->cpu_index, run->system_event.type);
3178 switch (run->system_event.type) {
3179 case KVM_SYSTEM_EVENT_SHUTDOWN:
3180 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
3181 ret = EXCP_INTERRUPT;
3182 break;
3183 case KVM_SYSTEM_EVENT_RESET:
3184 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
3185 ret = EXCP_INTERRUPT;
3186 break;
3187 case KVM_SYSTEM_EVENT_CRASH:
3188 kvm_cpu_synchronize_state(cpu);
3189 bql_lock();
3190 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
3191 bql_unlock();
3192 ret = 0;
3193 break;
3194 default:
3195 ret = kvm_arch_handle_exit(cpu, run);
3196 break;
3197 }
3198 break;
3199 case KVM_EXIT_MEMORY_FAULT:
3200 trace_kvm_memory_fault(run->memory_fault.gpa,
3201 run->memory_fault.size,
3202 run->memory_fault.flags);
3203 if (run->memory_fault.flags & ~KVM_MEMORY_EXIT_FLAG_PRIVATE) {
3204 error_report("KVM_EXIT_MEMORY_FAULT: Unknown flag 0x%" PRIx64,
3205 (uint64_t)run->memory_fault.flags);
3206 ret = -1;
3207 break;
3208 }
3209 ret = kvm_convert_memory(run->memory_fault.gpa, run->memory_fault.size,
3210 run->memory_fault.flags & KVM_MEMORY_EXIT_FLAG_PRIVATE);
3211 break;
3212 default:
3213 ret = kvm_arch_handle_exit(cpu, run);
3214 break;
3215 }
3216 } while (ret == 0);
3217
3218 cpu_exec_end(cpu);
3219 bql_lock();
3220
3221 if (ret < 0) {
3222 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
3223 vm_stop(RUN_STATE_INTERNAL_ERROR);
3224 }
3225
3226 qatomic_set(&cpu->exit_request, 0);
3227 return ret;
3228 }
3229
kvm_ioctl(KVMState * s,int type,...)3230 int kvm_ioctl(KVMState *s, int type, ...)
3231 {
3232 int ret;
3233 void *arg;
3234 va_list ap;
3235
3236 va_start(ap, type);
3237 arg = va_arg(ap, void *);
3238 va_end(ap);
3239
3240 trace_kvm_ioctl(type, arg);
3241 ret = ioctl(s->fd, type, arg);
3242 if (ret == -1) {
3243 ret = -errno;
3244 }
3245 return ret;
3246 }
3247
kvm_vm_ioctl(KVMState * s,int type,...)3248 int kvm_vm_ioctl(KVMState *s, int type, ...)
3249 {
3250 int ret;
3251 void *arg;
3252 va_list ap;
3253
3254 va_start(ap, type);
3255 arg = va_arg(ap, void *);
3256 va_end(ap);
3257
3258 trace_kvm_vm_ioctl(type, arg);
3259 accel_ioctl_begin();
3260 ret = ioctl(s->vmfd, type, arg);
3261 accel_ioctl_end();
3262 if (ret == -1) {
3263 ret = -errno;
3264 }
3265 return ret;
3266 }
3267
kvm_vcpu_ioctl(CPUState * cpu,int type,...)3268 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
3269 {
3270 int ret;
3271 void *arg;
3272 va_list ap;
3273
3274 va_start(ap, type);
3275 arg = va_arg(ap, void *);
3276 va_end(ap);
3277
3278 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
3279 accel_cpu_ioctl_begin(cpu);
3280 ret = ioctl(cpu->kvm_fd, type, arg);
3281 accel_cpu_ioctl_end(cpu);
3282 if (ret == -1) {
3283 ret = -errno;
3284 }
3285 return ret;
3286 }
3287
kvm_device_ioctl(int fd,int type,...)3288 int kvm_device_ioctl(int fd, int type, ...)
3289 {
3290 int ret;
3291 void *arg;
3292 va_list ap;
3293
3294 va_start(ap, type);
3295 arg = va_arg(ap, void *);
3296 va_end(ap);
3297
3298 trace_kvm_device_ioctl(fd, type, arg);
3299 accel_ioctl_begin();
3300 ret = ioctl(fd, type, arg);
3301 accel_ioctl_end();
3302 if (ret == -1) {
3303 ret = -errno;
3304 }
3305 return ret;
3306 }
3307
kvm_vm_check_attr(KVMState * s,uint32_t group,uint64_t attr)3308 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
3309 {
3310 int ret;
3311 struct kvm_device_attr attribute = {
3312 .group = group,
3313 .attr = attr,
3314 };
3315
3316 if (!kvm_vm_attributes_allowed) {
3317 return 0;
3318 }
3319
3320 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
3321 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
3322 return ret ? 0 : 1;
3323 }
3324
kvm_device_check_attr(int dev_fd,uint32_t group,uint64_t attr)3325 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
3326 {
3327 struct kvm_device_attr attribute = {
3328 .group = group,
3329 .attr = attr,
3330 .flags = 0,
3331 };
3332
3333 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
3334 }
3335
kvm_device_access(int fd,int group,uint64_t attr,void * val,bool write,Error ** errp)3336 int kvm_device_access(int fd, int group, uint64_t attr,
3337 void *val, bool write, Error **errp)
3338 {
3339 struct kvm_device_attr kvmattr;
3340 int err;
3341
3342 kvmattr.flags = 0;
3343 kvmattr.group = group;
3344 kvmattr.attr = attr;
3345 kvmattr.addr = (uintptr_t)val;
3346
3347 err = kvm_device_ioctl(fd,
3348 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
3349 &kvmattr);
3350 if (err < 0) {
3351 error_setg_errno(errp, -err,
3352 "KVM_%s_DEVICE_ATTR failed: Group %d "
3353 "attr 0x%016" PRIx64,
3354 write ? "SET" : "GET", group, attr);
3355 }
3356 return err;
3357 }
3358
kvm_has_sync_mmu(void)3359 bool kvm_has_sync_mmu(void)
3360 {
3361 return kvm_state->sync_mmu;
3362 }
3363
kvm_has_vcpu_events(void)3364 int kvm_has_vcpu_events(void)
3365 {
3366 return kvm_state->vcpu_events;
3367 }
3368
kvm_max_nested_state_length(void)3369 int kvm_max_nested_state_length(void)
3370 {
3371 return kvm_state->max_nested_state_len;
3372 }
3373
kvm_has_gsi_routing(void)3374 int kvm_has_gsi_routing(void)
3375 {
3376 #ifdef KVM_CAP_IRQ_ROUTING
3377 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
3378 #else
3379 return false;
3380 #endif
3381 }
3382
kvm_arm_supports_user_irq(void)3383 bool kvm_arm_supports_user_irq(void)
3384 {
3385 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
3386 }
3387
3388 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG
kvm_find_sw_breakpoint(CPUState * cpu,vaddr pc)3389 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, vaddr pc)
3390 {
3391 struct kvm_sw_breakpoint *bp;
3392
3393 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
3394 if (bp->pc == pc) {
3395 return bp;
3396 }
3397 }
3398 return NULL;
3399 }
3400
kvm_sw_breakpoints_active(CPUState * cpu)3401 int kvm_sw_breakpoints_active(CPUState *cpu)
3402 {
3403 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
3404 }
3405
3406 struct kvm_set_guest_debug_data {
3407 struct kvm_guest_debug dbg;
3408 int err;
3409 };
3410
kvm_invoke_set_guest_debug(CPUState * cpu,run_on_cpu_data data)3411 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
3412 {
3413 struct kvm_set_guest_debug_data *dbg_data =
3414 (struct kvm_set_guest_debug_data *) data.host_ptr;
3415
3416 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
3417 &dbg_data->dbg);
3418 }
3419
kvm_update_guest_debug(CPUState * cpu,unsigned long reinject_trap)3420 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
3421 {
3422 struct kvm_set_guest_debug_data data;
3423
3424 data.dbg.control = reinject_trap;
3425
3426 if (cpu->singlestep_enabled) {
3427 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
3428
3429 if (cpu->singlestep_enabled & SSTEP_NOIRQ) {
3430 data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ;
3431 }
3432 }
3433 kvm_arch_update_guest_debug(cpu, &data.dbg);
3434
3435 run_on_cpu(cpu, kvm_invoke_set_guest_debug,
3436 RUN_ON_CPU_HOST_PTR(&data));
3437 return data.err;
3438 }
3439
kvm_supports_guest_debug(void)3440 bool kvm_supports_guest_debug(void)
3441 {
3442 /* probed during kvm_init() */
3443 return kvm_has_guest_debug;
3444 }
3445
kvm_insert_breakpoint(CPUState * cpu,int type,vaddr addr,vaddr len)3446 int kvm_insert_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len)
3447 {
3448 struct kvm_sw_breakpoint *bp;
3449 int err;
3450
3451 if (type == GDB_BREAKPOINT_SW) {
3452 bp = kvm_find_sw_breakpoint(cpu, addr);
3453 if (bp) {
3454 bp->use_count++;
3455 return 0;
3456 }
3457
3458 bp = g_new(struct kvm_sw_breakpoint, 1);
3459 bp->pc = addr;
3460 bp->use_count = 1;
3461 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
3462 if (err) {
3463 g_free(bp);
3464 return err;
3465 }
3466
3467 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3468 } else {
3469 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
3470 if (err) {
3471 return err;
3472 }
3473 }
3474
3475 CPU_FOREACH(cpu) {
3476 err = kvm_update_guest_debug(cpu, 0);
3477 if (err) {
3478 return err;
3479 }
3480 }
3481 return 0;
3482 }
3483
kvm_remove_breakpoint(CPUState * cpu,int type,vaddr addr,vaddr len)3484 int kvm_remove_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len)
3485 {
3486 struct kvm_sw_breakpoint *bp;
3487 int err;
3488
3489 if (type == GDB_BREAKPOINT_SW) {
3490 bp = kvm_find_sw_breakpoint(cpu, addr);
3491 if (!bp) {
3492 return -ENOENT;
3493 }
3494
3495 if (bp->use_count > 1) {
3496 bp->use_count--;
3497 return 0;
3498 }
3499
3500 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
3501 if (err) {
3502 return err;
3503 }
3504
3505 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3506 g_free(bp);
3507 } else {
3508 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
3509 if (err) {
3510 return err;
3511 }
3512 }
3513
3514 CPU_FOREACH(cpu) {
3515 err = kvm_update_guest_debug(cpu, 0);
3516 if (err) {
3517 return err;
3518 }
3519 }
3520 return 0;
3521 }
3522
kvm_remove_all_breakpoints(CPUState * cpu)3523 void kvm_remove_all_breakpoints(CPUState *cpu)
3524 {
3525 struct kvm_sw_breakpoint *bp, *next;
3526 KVMState *s = cpu->kvm_state;
3527 CPUState *tmpcpu;
3528
3529 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
3530 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
3531 /* Try harder to find a CPU that currently sees the breakpoint. */
3532 CPU_FOREACH(tmpcpu) {
3533 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
3534 break;
3535 }
3536 }
3537 }
3538 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
3539 g_free(bp);
3540 }
3541 kvm_arch_remove_all_hw_breakpoints();
3542
3543 CPU_FOREACH(cpu) {
3544 kvm_update_guest_debug(cpu, 0);
3545 }
3546 }
3547
3548 #endif /* !TARGET_KVM_HAVE_GUEST_DEBUG */
3549
kvm_set_signal_mask(CPUState * cpu,const sigset_t * sigset)3550 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
3551 {
3552 KVMState *s = kvm_state;
3553 struct kvm_signal_mask *sigmask;
3554 int r;
3555
3556 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
3557
3558 sigmask->len = s->sigmask_len;
3559 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
3560 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
3561 g_free(sigmask);
3562
3563 return r;
3564 }
3565
kvm_ipi_signal(int sig)3566 static void kvm_ipi_signal(int sig)
3567 {
3568 if (current_cpu) {
3569 assert(kvm_immediate_exit);
3570 kvm_cpu_kick(current_cpu);
3571 }
3572 }
3573
kvm_init_cpu_signals(CPUState * cpu)3574 void kvm_init_cpu_signals(CPUState *cpu)
3575 {
3576 int r;
3577 sigset_t set;
3578 struct sigaction sigact;
3579
3580 memset(&sigact, 0, sizeof(sigact));
3581 sigact.sa_handler = kvm_ipi_signal;
3582 sigaction(SIG_IPI, &sigact, NULL);
3583
3584 pthread_sigmask(SIG_BLOCK, NULL, &set);
3585 #if defined KVM_HAVE_MCE_INJECTION
3586 sigdelset(&set, SIGBUS);
3587 pthread_sigmask(SIG_SETMASK, &set, NULL);
3588 #endif
3589 sigdelset(&set, SIG_IPI);
3590 if (kvm_immediate_exit) {
3591 r = pthread_sigmask(SIG_SETMASK, &set, NULL);
3592 } else {
3593 r = kvm_set_signal_mask(cpu, &set);
3594 }
3595 if (r) {
3596 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
3597 exit(1);
3598 }
3599 }
3600
3601 /* Called asynchronously in VCPU thread. */
kvm_on_sigbus_vcpu(CPUState * cpu,int code,void * addr)3602 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
3603 {
3604 #ifdef KVM_HAVE_MCE_INJECTION
3605 if (have_sigbus_pending) {
3606 return 1;
3607 }
3608 have_sigbus_pending = true;
3609 pending_sigbus_addr = addr;
3610 pending_sigbus_code = code;
3611 qatomic_set(&cpu->exit_request, 1);
3612 return 0;
3613 #else
3614 return 1;
3615 #endif
3616 }
3617
3618 /* Called synchronously (via signalfd) in main thread. */
kvm_on_sigbus(int code,void * addr)3619 int kvm_on_sigbus(int code, void *addr)
3620 {
3621 #ifdef KVM_HAVE_MCE_INJECTION
3622 /* Action required MCE kills the process if SIGBUS is blocked. Because
3623 * that's what happens in the I/O thread, where we handle MCE via signalfd,
3624 * we can only get action optional here.
3625 */
3626 assert(code != BUS_MCEERR_AR);
3627 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
3628 return 0;
3629 #else
3630 return 1;
3631 #endif
3632 }
3633
kvm_create_device(KVMState * s,uint64_t type,bool test)3634 int kvm_create_device(KVMState *s, uint64_t type, bool test)
3635 {
3636 int ret;
3637 struct kvm_create_device create_dev;
3638
3639 create_dev.type = type;
3640 create_dev.fd = -1;
3641 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
3642
3643 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
3644 return -ENOTSUP;
3645 }
3646
3647 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
3648 if (ret) {
3649 return ret;
3650 }
3651
3652 return test ? 0 : create_dev.fd;
3653 }
3654
kvm_device_supported(int vmfd,uint64_t type)3655 bool kvm_device_supported(int vmfd, uint64_t type)
3656 {
3657 struct kvm_create_device create_dev = {
3658 .type = type,
3659 .fd = -1,
3660 .flags = KVM_CREATE_DEVICE_TEST,
3661 };
3662
3663 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
3664 return false;
3665 }
3666
3667 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
3668 }
3669
kvm_set_one_reg(CPUState * cs,uint64_t id,void * source)3670 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
3671 {
3672 struct kvm_one_reg reg;
3673 int r;
3674
3675 reg.id = id;
3676 reg.addr = (uintptr_t) source;
3677 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
3678 if (r) {
3679 trace_kvm_failed_reg_set(id, strerror(-r));
3680 }
3681 return r;
3682 }
3683
kvm_get_one_reg(CPUState * cs,uint64_t id,void * target)3684 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
3685 {
3686 struct kvm_one_reg reg;
3687 int r;
3688
3689 reg.id = id;
3690 reg.addr = (uintptr_t) target;
3691 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
3692 if (r) {
3693 trace_kvm_failed_reg_get(id, strerror(-r));
3694 }
3695 return r;
3696 }
3697
kvm_accel_has_memory(MachineState * ms,AddressSpace * as,hwaddr start_addr,hwaddr size)3698 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as,
3699 hwaddr start_addr, hwaddr size)
3700 {
3701 KVMState *kvm = KVM_STATE(ms->accelerator);
3702 int i;
3703
3704 for (i = 0; i < kvm->nr_as; ++i) {
3705 if (kvm->as[i].as == as && kvm->as[i].ml) {
3706 size = MIN(kvm_max_slot_size, size);
3707 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml,
3708 start_addr, size);
3709 }
3710 }
3711
3712 return false;
3713 }
3714
kvm_get_kvm_shadow_mem(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)3715 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v,
3716 const char *name, void *opaque,
3717 Error **errp)
3718 {
3719 KVMState *s = KVM_STATE(obj);
3720 int64_t value = s->kvm_shadow_mem;
3721
3722 visit_type_int(v, name, &value, errp);
3723 }
3724
kvm_set_kvm_shadow_mem(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)3725 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v,
3726 const char *name, void *opaque,
3727 Error **errp)
3728 {
3729 KVMState *s = KVM_STATE(obj);
3730 int64_t value;
3731
3732 if (s->fd != -1) {
3733 error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3734 return;
3735 }
3736
3737 if (!visit_type_int(v, name, &value, errp)) {
3738 return;
3739 }
3740
3741 s->kvm_shadow_mem = value;
3742 }
3743
kvm_set_kernel_irqchip(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)3744 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v,
3745 const char *name, void *opaque,
3746 Error **errp)
3747 {
3748 KVMState *s = KVM_STATE(obj);
3749 OnOffSplit mode;
3750
3751 if (s->fd != -1) {
3752 error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3753 return;
3754 }
3755
3756 if (!visit_type_OnOffSplit(v, name, &mode, errp)) {
3757 return;
3758 }
3759 switch (mode) {
3760 case ON_OFF_SPLIT_ON:
3761 s->kernel_irqchip_allowed = true;
3762 s->kernel_irqchip_required = true;
3763 s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3764 break;
3765 case ON_OFF_SPLIT_OFF:
3766 s->kernel_irqchip_allowed = false;
3767 s->kernel_irqchip_required = false;
3768 s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3769 break;
3770 case ON_OFF_SPLIT_SPLIT:
3771 s->kernel_irqchip_allowed = true;
3772 s->kernel_irqchip_required = true;
3773 s->kernel_irqchip_split = ON_OFF_AUTO_ON;
3774 break;
3775 default:
3776 /* The value was checked in visit_type_OnOffSplit() above. If
3777 * we get here, then something is wrong in QEMU.
3778 */
3779 abort();
3780 }
3781 }
3782
kvm_kernel_irqchip_allowed(void)3783 bool kvm_kernel_irqchip_allowed(void)
3784 {
3785 return kvm_state->kernel_irqchip_allowed;
3786 }
3787
kvm_kernel_irqchip_required(void)3788 bool kvm_kernel_irqchip_required(void)
3789 {
3790 return kvm_state->kernel_irqchip_required;
3791 }
3792
kvm_kernel_irqchip_split(void)3793 bool kvm_kernel_irqchip_split(void)
3794 {
3795 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON;
3796 }
3797
kvm_get_dirty_ring_size(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)3798 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v,
3799 const char *name, void *opaque,
3800 Error **errp)
3801 {
3802 KVMState *s = KVM_STATE(obj);
3803 uint32_t value = s->kvm_dirty_ring_size;
3804
3805 visit_type_uint32(v, name, &value, errp);
3806 }
3807
kvm_set_dirty_ring_size(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)3808 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v,
3809 const char *name, void *opaque,
3810 Error **errp)
3811 {
3812 KVMState *s = KVM_STATE(obj);
3813 uint32_t value;
3814
3815 if (s->fd != -1) {
3816 error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3817 return;
3818 }
3819
3820 if (!visit_type_uint32(v, name, &value, errp)) {
3821 return;
3822 }
3823 if (value & (value - 1)) {
3824 error_setg(errp, "dirty-ring-size must be a power of two.");
3825 return;
3826 }
3827
3828 s->kvm_dirty_ring_size = value;
3829 }
3830
kvm_get_device(Object * obj,Error ** errp G_GNUC_UNUSED)3831 static char *kvm_get_device(Object *obj,
3832 Error **errp G_GNUC_UNUSED)
3833 {
3834 KVMState *s = KVM_STATE(obj);
3835
3836 return g_strdup(s->device);
3837 }
3838
kvm_set_device(Object * obj,const char * value,Error ** errp G_GNUC_UNUSED)3839 static void kvm_set_device(Object *obj,
3840 const char *value,
3841 Error **errp G_GNUC_UNUSED)
3842 {
3843 KVMState *s = KVM_STATE(obj);
3844
3845 g_free(s->device);
3846 s->device = g_strdup(value);
3847 }
3848
kvm_set_kvm_rapl(Object * obj,bool value,Error ** errp)3849 static void kvm_set_kvm_rapl(Object *obj, bool value, Error **errp)
3850 {
3851 KVMState *s = KVM_STATE(obj);
3852 s->msr_energy.enable = value;
3853 }
3854
kvm_set_kvm_rapl_socket_path(Object * obj,const char * str,Error ** errp)3855 static void kvm_set_kvm_rapl_socket_path(Object *obj,
3856 const char *str,
3857 Error **errp)
3858 {
3859 KVMState *s = KVM_STATE(obj);
3860 g_free(s->msr_energy.socket_path);
3861 s->msr_energy.socket_path = g_strdup(str);
3862 }
3863
kvm_accel_instance_init(Object * obj)3864 static void kvm_accel_instance_init(Object *obj)
3865 {
3866 KVMState *s = KVM_STATE(obj);
3867
3868 s->fd = -1;
3869 s->vmfd = -1;
3870 s->kvm_shadow_mem = -1;
3871 s->kernel_irqchip_allowed = true;
3872 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO;
3873 /* KVM dirty ring is by default off */
3874 s->kvm_dirty_ring_size = 0;
3875 s->kvm_dirty_ring_with_bitmap = false;
3876 s->kvm_eager_split_size = 0;
3877 s->notify_vmexit = NOTIFY_VMEXIT_OPTION_RUN;
3878 s->notify_window = 0;
3879 s->xen_version = 0;
3880 s->xen_gnttab_max_frames = 64;
3881 s->xen_evtchn_max_pirq = 256;
3882 s->device = NULL;
3883 s->msr_energy.enable = false;
3884 }
3885
3886 /**
3887 * kvm_gdbstub_sstep_flags():
3888 *
3889 * Returns: SSTEP_* flags that KVM supports for guest debug. The
3890 * support is probed during kvm_init()
3891 */
kvm_gdbstub_sstep_flags(void)3892 static int kvm_gdbstub_sstep_flags(void)
3893 {
3894 return kvm_sstep_flags;
3895 }
3896
kvm_accel_class_init(ObjectClass * oc,void * data)3897 static void kvm_accel_class_init(ObjectClass *oc, void *data)
3898 {
3899 AccelClass *ac = ACCEL_CLASS(oc);
3900 ac->name = "KVM";
3901 ac->init_machine = kvm_init;
3902 ac->has_memory = kvm_accel_has_memory;
3903 ac->allowed = &kvm_allowed;
3904 ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags;
3905
3906 object_class_property_add(oc, "kernel-irqchip", "on|off|split",
3907 NULL, kvm_set_kernel_irqchip,
3908 NULL, NULL);
3909 object_class_property_set_description(oc, "kernel-irqchip",
3910 "Configure KVM in-kernel irqchip");
3911
3912 object_class_property_add(oc, "kvm-shadow-mem", "int",
3913 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem,
3914 NULL, NULL);
3915 object_class_property_set_description(oc, "kvm-shadow-mem",
3916 "KVM shadow MMU size");
3917
3918 object_class_property_add(oc, "dirty-ring-size", "uint32",
3919 kvm_get_dirty_ring_size, kvm_set_dirty_ring_size,
3920 NULL, NULL);
3921 object_class_property_set_description(oc, "dirty-ring-size",
3922 "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)");
3923
3924 object_class_property_add_str(oc, "device", kvm_get_device, kvm_set_device);
3925 object_class_property_set_description(oc, "device",
3926 "Path to the device node to use (default: /dev/kvm)");
3927
3928 object_class_property_add_bool(oc, "rapl",
3929 NULL,
3930 kvm_set_kvm_rapl);
3931 object_class_property_set_description(oc, "rapl",
3932 "Allow energy related MSRs for RAPL interface in Guest");
3933
3934 object_class_property_add_str(oc, "rapl-helper-socket", NULL,
3935 kvm_set_kvm_rapl_socket_path);
3936 object_class_property_set_description(oc, "rapl-helper-socket",
3937 "Socket Path for comminucating with the Virtual MSR helper daemon");
3938
3939 kvm_arch_accel_class_init(oc);
3940 }
3941
3942 static const TypeInfo kvm_accel_type = {
3943 .name = TYPE_KVM_ACCEL,
3944 .parent = TYPE_ACCEL,
3945 .instance_init = kvm_accel_instance_init,
3946 .class_init = kvm_accel_class_init,
3947 .instance_size = sizeof(KVMState),
3948 };
3949
kvm_type_init(void)3950 static void kvm_type_init(void)
3951 {
3952 type_register_static(&kvm_accel_type);
3953 }
3954
3955 type_init(kvm_type_init);
3956
3957 typedef struct StatsArgs {
3958 union StatsResultsType {
3959 StatsResultList **stats;
3960 StatsSchemaList **schema;
3961 } result;
3962 strList *names;
3963 Error **errp;
3964 } StatsArgs;
3965
add_kvmstat_entry(struct kvm_stats_desc * pdesc,uint64_t * stats_data,StatsList * stats_list,Error ** errp)3966 static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc,
3967 uint64_t *stats_data,
3968 StatsList *stats_list,
3969 Error **errp)
3970 {
3971
3972 Stats *stats;
3973 uint64List *val_list = NULL;
3974
3975 /* Only add stats that we understand. */
3976 switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
3977 case KVM_STATS_TYPE_CUMULATIVE:
3978 case KVM_STATS_TYPE_INSTANT:
3979 case KVM_STATS_TYPE_PEAK:
3980 case KVM_STATS_TYPE_LINEAR_HIST:
3981 case KVM_STATS_TYPE_LOG_HIST:
3982 break;
3983 default:
3984 return stats_list;
3985 }
3986
3987 switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
3988 case KVM_STATS_UNIT_NONE:
3989 case KVM_STATS_UNIT_BYTES:
3990 case KVM_STATS_UNIT_CYCLES:
3991 case KVM_STATS_UNIT_SECONDS:
3992 case KVM_STATS_UNIT_BOOLEAN:
3993 break;
3994 default:
3995 return stats_list;
3996 }
3997
3998 switch (pdesc->flags & KVM_STATS_BASE_MASK) {
3999 case KVM_STATS_BASE_POW10:
4000 case KVM_STATS_BASE_POW2:
4001 break;
4002 default:
4003 return stats_list;
4004 }
4005
4006 /* Alloc and populate data list */
4007 stats = g_new0(Stats, 1);
4008 stats->name = g_strdup(pdesc->name);
4009 stats->value = g_new0(StatsValue, 1);
4010
4011 if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) {
4012 stats->value->u.boolean = *stats_data;
4013 stats->value->type = QTYPE_QBOOL;
4014 } else if (pdesc->size == 1) {
4015 stats->value->u.scalar = *stats_data;
4016 stats->value->type = QTYPE_QNUM;
4017 } else {
4018 int i;
4019 for (i = 0; i < pdesc->size; i++) {
4020 QAPI_LIST_PREPEND(val_list, stats_data[i]);
4021 }
4022 stats->value->u.list = val_list;
4023 stats->value->type = QTYPE_QLIST;
4024 }
4025
4026 QAPI_LIST_PREPEND(stats_list, stats);
4027 return stats_list;
4028 }
4029
add_kvmschema_entry(struct kvm_stats_desc * pdesc,StatsSchemaValueList * list,Error ** errp)4030 static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc,
4031 StatsSchemaValueList *list,
4032 Error **errp)
4033 {
4034 StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1);
4035 schema_entry->value = g_new0(StatsSchemaValue, 1);
4036
4037 switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
4038 case KVM_STATS_TYPE_CUMULATIVE:
4039 schema_entry->value->type = STATS_TYPE_CUMULATIVE;
4040 break;
4041 case KVM_STATS_TYPE_INSTANT:
4042 schema_entry->value->type = STATS_TYPE_INSTANT;
4043 break;
4044 case KVM_STATS_TYPE_PEAK:
4045 schema_entry->value->type = STATS_TYPE_PEAK;
4046 break;
4047 case KVM_STATS_TYPE_LINEAR_HIST:
4048 schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM;
4049 schema_entry->value->bucket_size = pdesc->bucket_size;
4050 schema_entry->value->has_bucket_size = true;
4051 break;
4052 case KVM_STATS_TYPE_LOG_HIST:
4053 schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM;
4054 break;
4055 default:
4056 goto exit;
4057 }
4058
4059 switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
4060 case KVM_STATS_UNIT_NONE:
4061 break;
4062 case KVM_STATS_UNIT_BOOLEAN:
4063 schema_entry->value->has_unit = true;
4064 schema_entry->value->unit = STATS_UNIT_BOOLEAN;
4065 break;
4066 case KVM_STATS_UNIT_BYTES:
4067 schema_entry->value->has_unit = true;
4068 schema_entry->value->unit = STATS_UNIT_BYTES;
4069 break;
4070 case KVM_STATS_UNIT_CYCLES:
4071 schema_entry->value->has_unit = true;
4072 schema_entry->value->unit = STATS_UNIT_CYCLES;
4073 break;
4074 case KVM_STATS_UNIT_SECONDS:
4075 schema_entry->value->has_unit = true;
4076 schema_entry->value->unit = STATS_UNIT_SECONDS;
4077 break;
4078 default:
4079 goto exit;
4080 }
4081
4082 schema_entry->value->exponent = pdesc->exponent;
4083 if (pdesc->exponent) {
4084 switch (pdesc->flags & KVM_STATS_BASE_MASK) {
4085 case KVM_STATS_BASE_POW10:
4086 schema_entry->value->has_base = true;
4087 schema_entry->value->base = 10;
4088 break;
4089 case KVM_STATS_BASE_POW2:
4090 schema_entry->value->has_base = true;
4091 schema_entry->value->base = 2;
4092 break;
4093 default:
4094 goto exit;
4095 }
4096 }
4097
4098 schema_entry->value->name = g_strdup(pdesc->name);
4099 schema_entry->next = list;
4100 return schema_entry;
4101 exit:
4102 g_free(schema_entry->value);
4103 g_free(schema_entry);
4104 return list;
4105 }
4106
4107 /* Cached stats descriptors */
4108 typedef struct StatsDescriptors {
4109 const char *ident; /* cache key, currently the StatsTarget */
4110 struct kvm_stats_desc *kvm_stats_desc;
4111 struct kvm_stats_header kvm_stats_header;
4112 QTAILQ_ENTRY(StatsDescriptors) next;
4113 } StatsDescriptors;
4114
4115 static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors =
4116 QTAILQ_HEAD_INITIALIZER(stats_descriptors);
4117
4118 /*
4119 * Return the descriptors for 'target', that either have already been read
4120 * or are retrieved from 'stats_fd'.
4121 */
find_stats_descriptors(StatsTarget target,int stats_fd,Error ** errp)4122 static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd,
4123 Error **errp)
4124 {
4125 StatsDescriptors *descriptors;
4126 const char *ident;
4127 struct kvm_stats_desc *kvm_stats_desc;
4128 struct kvm_stats_header *kvm_stats_header;
4129 size_t size_desc;
4130 ssize_t ret;
4131
4132 ident = StatsTarget_str(target);
4133 QTAILQ_FOREACH(descriptors, &stats_descriptors, next) {
4134 if (g_str_equal(descriptors->ident, ident)) {
4135 return descriptors;
4136 }
4137 }
4138
4139 descriptors = g_new0(StatsDescriptors, 1);
4140
4141 /* Read stats header */
4142 kvm_stats_header = &descriptors->kvm_stats_header;
4143 ret = pread(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header), 0);
4144 if (ret != sizeof(*kvm_stats_header)) {
4145 error_setg(errp, "KVM stats: failed to read stats header: "
4146 "expected %zu actual %zu",
4147 sizeof(*kvm_stats_header), ret);
4148 g_free(descriptors);
4149 return NULL;
4150 }
4151 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
4152
4153 /* Read stats descriptors */
4154 kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc);
4155 ret = pread(stats_fd, kvm_stats_desc,
4156 size_desc * kvm_stats_header->num_desc,
4157 kvm_stats_header->desc_offset);
4158
4159 if (ret != size_desc * kvm_stats_header->num_desc) {
4160 error_setg(errp, "KVM stats: failed to read stats descriptors: "
4161 "expected %zu actual %zu",
4162 size_desc * kvm_stats_header->num_desc, ret);
4163 g_free(descriptors);
4164 g_free(kvm_stats_desc);
4165 return NULL;
4166 }
4167 descriptors->kvm_stats_desc = kvm_stats_desc;
4168 descriptors->ident = ident;
4169 QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next);
4170 return descriptors;
4171 }
4172
query_stats(StatsResultList ** result,StatsTarget target,strList * names,int stats_fd,CPUState * cpu,Error ** errp)4173 static void query_stats(StatsResultList **result, StatsTarget target,
4174 strList *names, int stats_fd, CPUState *cpu,
4175 Error **errp)
4176 {
4177 struct kvm_stats_desc *kvm_stats_desc;
4178 struct kvm_stats_header *kvm_stats_header;
4179 StatsDescriptors *descriptors;
4180 g_autofree uint64_t *stats_data = NULL;
4181 struct kvm_stats_desc *pdesc;
4182 StatsList *stats_list = NULL;
4183 size_t size_desc, size_data = 0;
4184 ssize_t ret;
4185 int i;
4186
4187 descriptors = find_stats_descriptors(target, stats_fd, errp);
4188 if (!descriptors) {
4189 return;
4190 }
4191
4192 kvm_stats_header = &descriptors->kvm_stats_header;
4193 kvm_stats_desc = descriptors->kvm_stats_desc;
4194 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
4195
4196 /* Tally the total data size; read schema data */
4197 for (i = 0; i < kvm_stats_header->num_desc; ++i) {
4198 pdesc = (void *)kvm_stats_desc + i * size_desc;
4199 size_data += pdesc->size * sizeof(*stats_data);
4200 }
4201
4202 stats_data = g_malloc0(size_data);
4203 ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset);
4204
4205 if (ret != size_data) {
4206 error_setg(errp, "KVM stats: failed to read data: "
4207 "expected %zu actual %zu", size_data, ret);
4208 return;
4209 }
4210
4211 for (i = 0; i < kvm_stats_header->num_desc; ++i) {
4212 uint64_t *stats;
4213 pdesc = (void *)kvm_stats_desc + i * size_desc;
4214
4215 /* Add entry to the list */
4216 stats = (void *)stats_data + pdesc->offset;
4217 if (!apply_str_list_filter(pdesc->name, names)) {
4218 continue;
4219 }
4220 stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp);
4221 }
4222
4223 if (!stats_list) {
4224 return;
4225 }
4226
4227 switch (target) {
4228 case STATS_TARGET_VM:
4229 add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list);
4230 break;
4231 case STATS_TARGET_VCPU:
4232 add_stats_entry(result, STATS_PROVIDER_KVM,
4233 cpu->parent_obj.canonical_path,
4234 stats_list);
4235 break;
4236 default:
4237 g_assert_not_reached();
4238 }
4239 }
4240
query_stats_schema(StatsSchemaList ** result,StatsTarget target,int stats_fd,Error ** errp)4241 static void query_stats_schema(StatsSchemaList **result, StatsTarget target,
4242 int stats_fd, Error **errp)
4243 {
4244 struct kvm_stats_desc *kvm_stats_desc;
4245 struct kvm_stats_header *kvm_stats_header;
4246 StatsDescriptors *descriptors;
4247 struct kvm_stats_desc *pdesc;
4248 StatsSchemaValueList *stats_list = NULL;
4249 size_t size_desc;
4250 int i;
4251
4252 descriptors = find_stats_descriptors(target, stats_fd, errp);
4253 if (!descriptors) {
4254 return;
4255 }
4256
4257 kvm_stats_header = &descriptors->kvm_stats_header;
4258 kvm_stats_desc = descriptors->kvm_stats_desc;
4259 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
4260
4261 /* Tally the total data size; read schema data */
4262 for (i = 0; i < kvm_stats_header->num_desc; ++i) {
4263 pdesc = (void *)kvm_stats_desc + i * size_desc;
4264 stats_list = add_kvmschema_entry(pdesc, stats_list, errp);
4265 }
4266
4267 add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list);
4268 }
4269
query_stats_vcpu(CPUState * cpu,StatsArgs * kvm_stats_args)4270 static void query_stats_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args)
4271 {
4272 int stats_fd = cpu->kvm_vcpu_stats_fd;
4273 Error *local_err = NULL;
4274
4275 if (stats_fd == -1) {
4276 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
4277 error_propagate(kvm_stats_args->errp, local_err);
4278 return;
4279 }
4280 query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU,
4281 kvm_stats_args->names, stats_fd, cpu,
4282 kvm_stats_args->errp);
4283 }
4284
query_stats_schema_vcpu(CPUState * cpu,StatsArgs * kvm_stats_args)4285 static void query_stats_schema_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args)
4286 {
4287 int stats_fd = cpu->kvm_vcpu_stats_fd;
4288 Error *local_err = NULL;
4289
4290 if (stats_fd == -1) {
4291 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
4292 error_propagate(kvm_stats_args->errp, local_err);
4293 return;
4294 }
4295 query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd,
4296 kvm_stats_args->errp);
4297 }
4298
query_stats_cb(StatsResultList ** result,StatsTarget target,strList * names,strList * targets,Error ** errp)4299 static void query_stats_cb(StatsResultList **result, StatsTarget target,
4300 strList *names, strList *targets, Error **errp)
4301 {
4302 KVMState *s = kvm_state;
4303 CPUState *cpu;
4304 int stats_fd;
4305
4306 switch (target) {
4307 case STATS_TARGET_VM:
4308 {
4309 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
4310 if (stats_fd == -1) {
4311 error_setg_errno(errp, errno, "KVM stats: ioctl failed");
4312 return;
4313 }
4314 query_stats(result, target, names, stats_fd, NULL, errp);
4315 close(stats_fd);
4316 break;
4317 }
4318 case STATS_TARGET_VCPU:
4319 {
4320 StatsArgs stats_args;
4321 stats_args.result.stats = result;
4322 stats_args.names = names;
4323 stats_args.errp = errp;
4324 CPU_FOREACH(cpu) {
4325 if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) {
4326 continue;
4327 }
4328 query_stats_vcpu(cpu, &stats_args);
4329 }
4330 break;
4331 }
4332 default:
4333 break;
4334 }
4335 }
4336
query_stats_schemas_cb(StatsSchemaList ** result,Error ** errp)4337 void query_stats_schemas_cb(StatsSchemaList **result, Error **errp)
4338 {
4339 StatsArgs stats_args;
4340 KVMState *s = kvm_state;
4341 int stats_fd;
4342
4343 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
4344 if (stats_fd == -1) {
4345 error_setg_errno(errp, errno, "KVM stats: ioctl failed");
4346 return;
4347 }
4348 query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp);
4349 close(stats_fd);
4350
4351 if (first_cpu) {
4352 stats_args.result.schema = result;
4353 stats_args.errp = errp;
4354 query_stats_schema_vcpu(first_cpu, &stats_args);
4355 }
4356 }
4357
kvm_mark_guest_state_protected(void)4358 void kvm_mark_guest_state_protected(void)
4359 {
4360 kvm_state->guest_state_protected = true;
4361 }
4362
kvm_create_guest_memfd(uint64_t size,uint64_t flags,Error ** errp)4363 int kvm_create_guest_memfd(uint64_t size, uint64_t flags, Error **errp)
4364 {
4365 int fd;
4366 struct kvm_create_guest_memfd guest_memfd = {
4367 .size = size,
4368 .flags = flags,
4369 };
4370
4371 if (!kvm_guest_memfd_supported) {
4372 error_setg(errp, "KVM does not support guest_memfd");
4373 return -1;
4374 }
4375
4376 fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_GUEST_MEMFD, &guest_memfd);
4377 if (fd < 0) {
4378 error_setg_errno(errp, errno, "Error creating KVM guest_memfd");
4379 return -1;
4380 }
4381
4382 return fd;
4383 }
4384