xref: /openbmc/qemu/target/i386/kvm/kvm.c (revision e82989544e38062beeeaad88c175afbeed0400f8)
1 /*
2  * QEMU KVM support
3  *
4  * Copyright (C) 2006-2008 Qumranet Technologies
5  * Copyright IBM, Corp. 2008
6  *
7  * Authors:
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2 or later.
11  * See the COPYING file in the top-level directory.
12  *
13  */
14 
15 #include "qemu/osdep.h"
16 #include "qapi/qapi-events-run-state.h"
17 #include "qapi/error.h"
18 #include "qapi/visitor.h"
19 #include <math.h>
20 #include <sys/ioctl.h>
21 #include <sys/utsname.h>
22 #include <sys/syscall.h>
23 #include <sys/resource.h>
24 #include <sys/time.h>
25 
26 #include <linux/kvm.h>
27 #include <linux/kvm_para.h>
28 #include "standard-headers/asm-x86/kvm_para.h"
29 #include "hw/xen/interface/arch-x86/cpuid.h"
30 
31 #include "cpu.h"
32 #include "host-cpu.h"
33 #include "vmsr_energy.h"
34 #include "system/system.h"
35 #include "system/hw_accel.h"
36 #include "system/kvm_int.h"
37 #include "system/runstate.h"
38 #include "kvm_i386.h"
39 #include "../confidential-guest.h"
40 #include "sev.h"
41 #include "tdx.h"
42 #include "xen-emu.h"
43 #include "hyperv.h"
44 #include "hyperv-proto.h"
45 
46 #include "gdbstub/enums.h"
47 #include "qemu/host-utils.h"
48 #include "qemu/main-loop.h"
49 #include "qemu/ratelimit.h"
50 #include "qemu/config-file.h"
51 #include "qemu/error-report.h"
52 #include "qemu/memalign.h"
53 #include "hw/i386/x86.h"
54 #include "hw/i386/kvm/xen_evtchn.h"
55 #include "hw/i386/pc.h"
56 #include "hw/i386/apic.h"
57 #include "hw/i386/apic_internal.h"
58 #include "hw/i386/apic-msidef.h"
59 #include "hw/i386/intel_iommu.h"
60 #include "hw/i386/topology.h"
61 #include "hw/i386/x86-iommu.h"
62 #include "hw/i386/e820_memory_layout.h"
63 
64 #include "hw/xen/xen.h"
65 
66 #include "hw/pci/pci.h"
67 #include "hw/pci/msi.h"
68 #include "hw/pci/msix.h"
69 #include "migration/blocker.h"
70 #include "exec/memattrs.h"
71 #include "exec/target_page.h"
72 #include "trace.h"
73 
74 #include CONFIG_DEVICES
75 
76 //#define DEBUG_KVM
77 
78 #ifdef DEBUG_KVM
79 #define DPRINTF(fmt, ...) \
80     do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
81 #else
82 #define DPRINTF(fmt, ...) \
83     do { } while (0)
84 #endif
85 
86 /*
87  * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
88  * In order to use vm86 mode, an EPT identity map and a TSS  are needed.
89  * Since these must be part of guest physical memory, we need to allocate
90  * them, both by setting their start addresses in the kernel and by
91  * creating a corresponding e820 entry. We need 4 pages before the BIOS,
92  * so this value allows up to 16M BIOSes.
93  */
94 #define KVM_IDENTITY_BASE 0xfeffc000
95 
96 /* From arch/x86/kvm/lapic.h */
97 #define KVM_APIC_BUS_CYCLE_NS       1
98 #define KVM_APIC_BUS_FREQUENCY      (1000000000ULL / KVM_APIC_BUS_CYCLE_NS)
99 
100 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
101  * 255 kvm_msr_entry structs */
102 #define MSR_BUF_SIZE 4096
103 
104 typedef bool QEMURDMSRHandler(X86CPU *cpu, uint32_t msr, uint64_t *val);
105 typedef bool QEMUWRMSRHandler(X86CPU *cpu, uint32_t msr, uint64_t val);
106 typedef struct {
107     uint32_t msr;
108     QEMURDMSRHandler *rdmsr;
109     QEMUWRMSRHandler *wrmsr;
110 } KVMMSRHandlers;
111 
112 static void kvm_init_msrs(X86CPU *cpu);
113 static int kvm_filter_msr(KVMState *s, uint32_t msr, QEMURDMSRHandler *rdmsr,
114                           QEMUWRMSRHandler *wrmsr);
115 
116 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
117     KVM_CAP_INFO(SET_TSS_ADDR),
118     KVM_CAP_INFO(EXT_CPUID),
119     KVM_CAP_INFO(MP_STATE),
120     KVM_CAP_INFO(SIGNAL_MSI),
121     KVM_CAP_INFO(IRQ_ROUTING),
122     KVM_CAP_INFO(DEBUGREGS),
123     KVM_CAP_INFO(XSAVE),
124     KVM_CAP_INFO(VCPU_EVENTS),
125     KVM_CAP_INFO(X86_ROBUST_SINGLESTEP),
126     KVM_CAP_INFO(MCE),
127     KVM_CAP_INFO(ADJUST_CLOCK),
128     KVM_CAP_INFO(SET_IDENTITY_MAP_ADDR),
129     KVM_CAP_LAST_INFO
130 };
131 
132 static bool has_msr_star;
133 static bool has_msr_hsave_pa;
134 static bool has_msr_tsc_aux;
135 static bool has_msr_tsc_adjust;
136 static bool has_msr_tsc_deadline;
137 static bool has_msr_feature_control;
138 static bool has_msr_misc_enable;
139 static bool has_msr_smbase;
140 static bool has_msr_bndcfgs;
141 static int lm_capable_kernel;
142 static bool has_msr_hv_hypercall;
143 static bool has_msr_hv_crash;
144 static bool has_msr_hv_reset;
145 static bool has_msr_hv_vpindex;
146 static bool hv_vpindex_settable;
147 static bool has_msr_hv_runtime;
148 static bool has_msr_hv_synic;
149 static bool has_msr_hv_stimer;
150 static bool has_msr_hv_frequencies;
151 static bool has_msr_hv_reenlightenment;
152 static bool has_msr_hv_syndbg_options;
153 static bool has_msr_xss;
154 static bool has_msr_umwait;
155 static bool has_msr_spec_ctrl;
156 static bool has_tsc_scale_msr;
157 static bool has_msr_tsx_ctrl;
158 static bool has_msr_virt_ssbd;
159 static bool has_msr_smi_count;
160 static bool has_msr_arch_capabs;
161 static bool has_msr_core_capabs;
162 static bool has_msr_vmx_vmfunc;
163 static bool has_msr_ucode_rev;
164 static bool has_msr_vmx_procbased_ctls2;
165 static bool has_msr_perf_capabs;
166 static bool has_msr_pkrs;
167 static bool has_msr_hwcr;
168 
169 static uint32_t has_architectural_pmu_version;
170 static uint32_t num_architectural_pmu_gp_counters;
171 static uint32_t num_architectural_pmu_fixed_counters;
172 
173 static int has_xsave2;
174 static int has_xcrs;
175 static int has_sregs2;
176 static int has_exception_payload;
177 static int has_triple_fault_event;
178 
179 static bool has_msr_mcg_ext_ctl;
180 
181 static struct kvm_cpuid2 *cpuid_cache;
182 static struct kvm_cpuid2 *hv_cpuid_cache;
183 static struct kvm_msr_list *kvm_feature_msrs;
184 
185 static KVMMSRHandlers msr_handlers[KVM_MSR_FILTER_MAX_RANGES];
186 
187 #define BUS_LOCK_SLICE_TIME 1000000000ULL /* ns */
188 static RateLimit bus_lock_ratelimit_ctrl;
189 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value);
190 
191 static const char *vm_type_name[] = {
192     [KVM_X86_DEFAULT_VM] = "default",
193     [KVM_X86_SEV_VM] = "SEV",
194     [KVM_X86_SEV_ES_VM] = "SEV-ES",
195     [KVM_X86_SNP_VM] = "SEV-SNP",
196     [KVM_X86_TDX_VM] = "TDX",
197 };
198 
kvm_is_vm_type_supported(int type)199 bool kvm_is_vm_type_supported(int type)
200 {
201     uint32_t machine_types;
202 
203     /*
204      * old KVM doesn't support KVM_CAP_VM_TYPES but KVM_X86_DEFAULT_VM
205      * is always supported
206      */
207     if (type == KVM_X86_DEFAULT_VM) {
208         return true;
209     }
210 
211     machine_types = kvm_check_extension(KVM_STATE(current_machine->accelerator),
212                                         KVM_CAP_VM_TYPES);
213     return !!(machine_types & BIT(type));
214 }
215 
kvm_get_vm_type(MachineState * ms)216 int kvm_get_vm_type(MachineState *ms)
217 {
218     int kvm_type = KVM_X86_DEFAULT_VM;
219 
220     if (ms->cgs) {
221         if (!object_dynamic_cast(OBJECT(ms->cgs), TYPE_X86_CONFIDENTIAL_GUEST)) {
222             error_report("configuration type %s not supported for x86 guests",
223                          object_get_typename(OBJECT(ms->cgs)));
224             exit(1);
225         }
226         kvm_type = x86_confidential_guest_kvm_type(
227             X86_CONFIDENTIAL_GUEST(ms->cgs));
228     }
229 
230     if (!kvm_is_vm_type_supported(kvm_type)) {
231         error_report("vm-type %s not supported by KVM", vm_type_name[kvm_type]);
232         exit(1);
233     }
234 
235     return kvm_type;
236 }
237 
kvm_enable_hypercall(uint64_t enable_mask)238 bool kvm_enable_hypercall(uint64_t enable_mask)
239 {
240     KVMState *s = KVM_STATE(current_accel());
241 
242     return !kvm_vm_enable_cap(s, KVM_CAP_EXIT_HYPERCALL, 0, enable_mask);
243 }
244 
kvm_has_smm(void)245 bool kvm_has_smm(void)
246 {
247     return kvm_vm_check_extension(kvm_state, KVM_CAP_X86_SMM);
248 }
249 
kvm_has_adjust_clock_stable(void)250 bool kvm_has_adjust_clock_stable(void)
251 {
252     int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
253 
254     return (ret & KVM_CLOCK_TSC_STABLE);
255 }
256 
kvm_has_exception_payload(void)257 bool kvm_has_exception_payload(void)
258 {
259     return has_exception_payload;
260 }
261 
kvm_x2apic_api_set_flags(uint64_t flags)262 static bool kvm_x2apic_api_set_flags(uint64_t flags)
263 {
264     KVMState *s = KVM_STATE(current_accel());
265 
266     return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
267 }
268 
269 #define MEMORIZE(fn, _result) \
270     ({ \
271         static bool _memorized; \
272         \
273         if (_memorized) { \
274             return _result; \
275         } \
276         _memorized = true; \
277         _result = fn; \
278     })
279 
280 static bool has_x2apic_api;
281 
kvm_has_x2apic_api(void)282 bool kvm_has_x2apic_api(void)
283 {
284     return has_x2apic_api;
285 }
286 
kvm_enable_x2apic(void)287 bool kvm_enable_x2apic(void)
288 {
289     return MEMORIZE(
290              kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
291                                       KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
292              has_x2apic_api);
293 }
294 
kvm_hv_vpindex_settable(void)295 bool kvm_hv_vpindex_settable(void)
296 {
297     return hv_vpindex_settable;
298 }
299 
kvm_get_tsc(CPUState * cs)300 static int kvm_get_tsc(CPUState *cs)
301 {
302     X86CPU *cpu = X86_CPU(cs);
303     CPUX86State *env = &cpu->env;
304     uint64_t value;
305     int ret;
306 
307     if (env->tsc_valid) {
308         return 0;
309     }
310 
311     env->tsc_valid = !runstate_is_running();
312 
313     ret = kvm_get_one_msr(cpu, MSR_IA32_TSC, &value);
314     if (ret < 0) {
315         return ret;
316     }
317 
318     env->tsc = value;
319     return 0;
320 }
321 
do_kvm_synchronize_tsc(CPUState * cpu,run_on_cpu_data arg)322 static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
323 {
324     kvm_get_tsc(cpu);
325 }
326 
kvm_synchronize_all_tsc(void)327 void kvm_synchronize_all_tsc(void)
328 {
329     CPUState *cpu;
330 
331     if (kvm_enabled() && !is_tdx_vm()) {
332         CPU_FOREACH(cpu) {
333             run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
334         }
335     }
336 }
337 
try_get_cpuid(KVMState * s,int max)338 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
339 {
340     struct kvm_cpuid2 *cpuid;
341     int r, size;
342 
343     size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
344     cpuid = g_malloc0(size);
345     cpuid->nent = max;
346     r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
347     if (r == 0 && cpuid->nent >= max) {
348         r = -E2BIG;
349     }
350     if (r < 0) {
351         if (r == -E2BIG) {
352             g_free(cpuid);
353             return NULL;
354         } else {
355             fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
356                     strerror(-r));
357             exit(1);
358         }
359     }
360     return cpuid;
361 }
362 
363 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
364  * for all entries.
365  */
get_supported_cpuid(KVMState * s)366 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
367 {
368     struct kvm_cpuid2 *cpuid;
369     int max = 1;
370 
371     if (cpuid_cache != NULL) {
372         return cpuid_cache;
373     }
374     while ((cpuid = try_get_cpuid(s, max)) == NULL) {
375         max *= 2;
376     }
377     cpuid_cache = cpuid;
378     return cpuid;
379 }
380 
host_tsx_broken(void)381 static bool host_tsx_broken(void)
382 {
383     int family, model, stepping;\
384     char vendor[CPUID_VENDOR_SZ + 1];
385 
386     host_cpu_vendor_fms(vendor, &family, &model, &stepping);
387 
388     /* Check if we are running on a Haswell host known to have broken TSX */
389     return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
390            (family == 6) &&
391            ((model == 63 && stepping < 4) ||
392             model == 60 || model == 69 || model == 70);
393 }
394 
395 /* Returns the value for a specific register on the cpuid entry
396  */
cpuid_entry_get_reg(struct kvm_cpuid_entry2 * entry,int reg)397 uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
398 {
399     uint32_t ret = 0;
400     switch (reg) {
401     case R_EAX:
402         ret = entry->eax;
403         break;
404     case R_EBX:
405         ret = entry->ebx;
406         break;
407     case R_ECX:
408         ret = entry->ecx;
409         break;
410     case R_EDX:
411         ret = entry->edx;
412         break;
413     }
414     return ret;
415 }
416 
417 /* Find matching entry for function/index on kvm_cpuid2 struct
418  */
cpuid_find_entry(struct kvm_cpuid2 * cpuid,uint32_t function,uint32_t index)419 struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
420                                           uint32_t function,
421                                           uint32_t index)
422 {
423     int i;
424     for (i = 0; i < cpuid->nent; ++i) {
425         if (cpuid->entries[i].function == function &&
426             cpuid->entries[i].index == index) {
427             return &cpuid->entries[i];
428         }
429     }
430     /* not found: */
431     return NULL;
432 }
433 
kvm_arch_get_supported_cpuid(KVMState * s,uint32_t function,uint32_t index,int reg)434 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
435                                       uint32_t index, int reg)
436 {
437     struct kvm_cpuid2 *cpuid;
438     uint32_t ret = 0;
439     uint32_t cpuid_1_edx, unused;
440     uint64_t bitmask;
441 
442     cpuid = get_supported_cpuid(s);
443 
444     struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
445     if (entry) {
446         ret = cpuid_entry_get_reg(entry, reg);
447     }
448 
449     /* Fixups for the data returned by KVM, below */
450 
451     if (function == 1 && reg == R_EDX) {
452         /* KVM before 2.6.30 misreports the following features */
453         ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
454         /* KVM never reports CPUID_HT but QEMU can support when vcpus > 1 */
455         ret |= CPUID_HT;
456     } else if (function == 1 && reg == R_ECX) {
457         /* We can set the hypervisor flag, even if KVM does not return it on
458          * GET_SUPPORTED_CPUID
459          */
460         ret |= CPUID_EXT_HYPERVISOR;
461         /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
462          * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
463          * and the irqchip is in the kernel.
464          */
465         if (kvm_irqchip_in_kernel() &&
466                 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
467             ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
468         }
469 
470         /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
471          * without the in-kernel irqchip
472          */
473         if (!kvm_irqchip_in_kernel()) {
474             ret &= ~CPUID_EXT_X2APIC;
475         }
476 
477         if (enable_cpu_pm) {
478             int disable_exits = kvm_check_extension(s,
479                                                     KVM_CAP_X86_DISABLE_EXITS);
480 
481             if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
482                 ret |= CPUID_EXT_MONITOR;
483             }
484         }
485     } else if (function == 6 && reg == R_EAX) {
486         ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
487     } else if (function == 7 && index == 0 && reg == R_EBX) {
488         /* Not new instructions, just an optimization.  */
489         uint32_t ebx;
490         host_cpuid(7, 0, &unused, &ebx, &unused, &unused);
491         ret |= ebx & CPUID_7_0_EBX_ERMS;
492 
493         if (host_tsx_broken()) {
494             ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
495         }
496     } else if (function == 7 && index == 0 && reg == R_EDX) {
497         /* Not new instructions, just an optimization.  */
498         uint32_t edx;
499         host_cpuid(7, 0, &unused, &unused, &unused, &edx);
500         ret |= edx & CPUID_7_0_EDX_FSRM;
501 
502         /*
503          * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts.
504          * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is
505          * returned by KVM_GET_MSR_INDEX_LIST.
506          *
507          * But also, because Windows does not like ARCH_CAPABILITIES on AMD
508          * mcahines at all, do not show the fake ARCH_CAPABILITIES MSR that
509          * KVM sets up.
510          */
511         if (!has_msr_arch_capabs || !(edx & CPUID_7_0_EDX_ARCH_CAPABILITIES)) {
512             ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES;
513         }
514     } else if (function == 7 && index == 1 && reg == R_EAX) {
515         /* Not new instructions, just an optimization.  */
516         uint32_t eax;
517         host_cpuid(7, 1, &eax, &unused, &unused, &unused);
518         ret |= eax & (CPUID_7_1_EAX_FZRM | CPUID_7_1_EAX_FSRS | CPUID_7_1_EAX_FSRC);
519     } else if (function == 7 && index == 2 && reg == R_EDX) {
520         uint32_t edx;
521         host_cpuid(7, 2, &unused, &unused, &unused, &edx);
522         ret |= edx & CPUID_7_2_EDX_MCDT_NO;
523     } else if (function == 0xd && index == 0 &&
524                (reg == R_EAX || reg == R_EDX)) {
525         /*
526          * The value returned by KVM_GET_SUPPORTED_CPUID does not include
527          * features that still have to be enabled with the arch_prctl
528          * system call.  QEMU needs the full value, which is retrieved
529          * with KVM_GET_DEVICE_ATTR.
530          */
531         struct kvm_device_attr attr = {
532             .group = 0,
533             .attr = KVM_X86_XCOMP_GUEST_SUPP,
534             .addr = (unsigned long) &bitmask
535         };
536 
537         bool sys_attr = kvm_check_extension(s, KVM_CAP_SYS_ATTRIBUTES);
538         if (!sys_attr) {
539             return ret;
540         }
541 
542         int rc = kvm_ioctl(s, KVM_GET_DEVICE_ATTR, &attr);
543         if (rc < 0) {
544             if (rc != -ENXIO) {
545                 warn_report("KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) "
546                             "error: %d", rc);
547             }
548             return ret;
549         }
550         ret = (reg == R_EAX) ? bitmask : bitmask >> 32;
551     } else if (function == 0x80000001 && reg == R_ECX) {
552         /*
553          * It's safe to enable TOPOEXT even if it's not returned by
554          * GET_SUPPORTED_CPUID.  Unconditionally enabling TOPOEXT here allows
555          * us to keep CPU models including TOPOEXT runnable on older kernels.
556          */
557         ret |= CPUID_EXT3_TOPOEXT;
558     } else if (function == 0x80000001 && reg == R_EDX) {
559         /* On Intel, kvm returns cpuid according to the Intel spec,
560          * so add missing bits according to the AMD spec:
561          */
562         cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
563         ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
564     } else if (function == 0x80000007 && reg == R_EBX) {
565         ret |= CPUID_8000_0007_EBX_OVERFLOW_RECOV | CPUID_8000_0007_EBX_SUCCOR;
566     } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
567         /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
568          * be enabled without the in-kernel irqchip
569          */
570         if (!kvm_irqchip_in_kernel()) {
571             ret &= ~CPUID_KVM_PV_UNHALT;
572         }
573         if (kvm_irqchip_is_split()) {
574             ret |= CPUID_KVM_MSI_EXT_DEST_ID;
575         }
576     } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
577         ret |= CPUID_KVM_HINTS_REALTIME;
578     }
579 
580     if (current_machine->cgs) {
581         ret = x86_confidential_guest_adjust_cpuid_features(
582             X86_CONFIDENTIAL_GUEST(current_machine->cgs),
583             function, index, reg, ret);
584     }
585     return ret;
586 }
587 
kvm_arch_get_supported_msr_feature(KVMState * s,uint32_t index)588 uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index)
589 {
590     struct {
591         struct kvm_msrs info;
592         struct kvm_msr_entry entries[1];
593     } msr_data = {};
594     uint64_t value;
595     uint32_t ret, can_be_one, must_be_one;
596 
597     if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */
598         return 0;
599     }
600 
601     /* Check if requested MSR is supported feature MSR */
602     int i;
603     for (i = 0; i < kvm_feature_msrs->nmsrs; i++)
604         if (kvm_feature_msrs->indices[i] == index) {
605             break;
606         }
607     if (i == kvm_feature_msrs->nmsrs) {
608         return 0; /* if the feature MSR is not supported, simply return 0 */
609     }
610 
611     msr_data.info.nmsrs = 1;
612     msr_data.entries[0].index = index;
613 
614     ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data);
615     if (ret != 1) {
616         error_report("KVM get MSR (index=0x%x) feature failed, %s",
617             index, strerror(-ret));
618         exit(1);
619     }
620 
621     value = msr_data.entries[0].data;
622     switch (index) {
623     case MSR_IA32_VMX_PROCBASED_CTLS2:
624         if (!has_msr_vmx_procbased_ctls2) {
625             /* KVM forgot to add these bits for some time, do this ourselves. */
626             if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) &
627                 CPUID_XSAVE_XSAVES) {
628                 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32;
629             }
630             if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) &
631                 CPUID_EXT_RDRAND) {
632                 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32;
633             }
634             if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
635                 CPUID_7_0_EBX_INVPCID) {
636                 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32;
637             }
638             if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
639                 CPUID_7_0_EBX_RDSEED) {
640                 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32;
641             }
642             if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) &
643                 CPUID_EXT2_RDTSCP) {
644                 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32;
645             }
646         }
647         /* fall through */
648     case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
649     case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
650     case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
651     case MSR_IA32_VMX_TRUE_EXIT_CTLS:
652         /*
653          * Return true for bits that can be one, but do not have to be one.
654          * The SDM tells us which bits could have a "must be one" setting,
655          * so we can do the opposite transformation in make_vmx_msr_value.
656          */
657         must_be_one = (uint32_t)value;
658         can_be_one = (uint32_t)(value >> 32);
659         return can_be_one & ~must_be_one;
660 
661     default:
662         return value;
663     }
664 }
665 
kvm_get_mce_cap_supported(KVMState * s,uint64_t * mce_cap,int * max_banks)666 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
667                                      int *max_banks)
668 {
669     *max_banks = kvm_check_extension(s, KVM_CAP_MCE);
670     return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
671 }
672 
kvm_mce_inject(X86CPU * cpu,hwaddr paddr,int code)673 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
674 {
675     CPUState *cs = CPU(cpu);
676     CPUX86State *env = &cpu->env;
677     uint64_t status = MCI_STATUS_VAL | MCI_STATUS_EN | MCI_STATUS_MISCV |
678                       MCI_STATUS_ADDRV;
679     uint64_t mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV;
680     int flags = 0;
681 
682     if (!IS_AMD_CPU(env)) {
683         status |= MCI_STATUS_S | MCI_STATUS_UC;
684         if (code == BUS_MCEERR_AR) {
685             status |= MCI_STATUS_AR | 0x134;
686             mcg_status |= MCG_STATUS_EIPV;
687         } else {
688             status |= 0xc0;
689         }
690     } else {
691         if (code == BUS_MCEERR_AR) {
692             status |= MCI_STATUS_UC | MCI_STATUS_POISON;
693             mcg_status |= MCG_STATUS_EIPV;
694         } else {
695             /* Setting the POISON bit for deferred errors indicates to the
696              * guest kernel that the address provided by the MCE is valid
697              * and usable which will ensure that the guest kernel will send
698              * a SIGBUS_AO signal to the guest process. This allows for
699              * more desirable behavior in the case that the guest process
700              * with poisoned memory has set the MCE_KILL_EARLY prctl flag
701              * which indicates that the process would prefer to handle or
702              * shutdown due to the poisoned memory condition before the
703              * memory has been accessed.
704              *
705              * While the POISON bit would not be set in a deferred error
706              * sent from hardware, the bit is not meaningful for deferred
707              * errors and can be reused in this scenario.
708              */
709             status |= MCI_STATUS_DEFERRED | MCI_STATUS_POISON;
710         }
711     }
712 
713     flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
714     /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
715      * guest kernel back into env->mcg_ext_ctl.
716      */
717     cpu_synchronize_state(cs);
718     if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
719         mcg_status |= MCG_STATUS_LMCE;
720         flags = 0;
721     }
722 
723     cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
724                        (MCM_ADDR_PHYS << 6) | 0xc, flags);
725 }
726 
emit_hypervisor_memory_failure(MemoryFailureAction action,bool ar)727 static void emit_hypervisor_memory_failure(MemoryFailureAction action, bool ar)
728 {
729     MemoryFailureFlags mff = {.action_required = ar, .recursive = false};
730 
731     qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_HYPERVISOR, action,
732                                    &mff);
733 }
734 
hardware_memory_error(void * host_addr)735 static void hardware_memory_error(void *host_addr)
736 {
737     emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_FATAL, true);
738     error_report("QEMU got Hardware memory error at addr %p", host_addr);
739     exit(1);
740 }
741 
kvm_arch_on_sigbus_vcpu(CPUState * c,int code,void * addr)742 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
743 {
744     X86CPU *cpu = X86_CPU(c);
745     CPUX86State *env = &cpu->env;
746     ram_addr_t ram_addr;
747     hwaddr paddr;
748 
749     /* If we get an action required MCE, it has been injected by KVM
750      * while the VM was running.  An action optional MCE instead should
751      * be coming from the main thread, which qemu_init_sigbus identifies
752      * as the "early kill" thread.
753      */
754     assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
755 
756     if ((env->mcg_cap & MCG_SER_P) && addr) {
757         ram_addr = qemu_ram_addr_from_host(addr);
758         if (ram_addr != RAM_ADDR_INVALID &&
759             kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
760             kvm_hwpoison_page_add(ram_addr);
761             kvm_mce_inject(cpu, paddr, code);
762 
763             /*
764              * Use different logging severity based on error type.
765              * If there is additional MCE reporting on the hypervisor, QEMU VA
766              * could be another source to identify the PA and MCE details.
767              */
768             if (code == BUS_MCEERR_AR) {
769                 error_report("Guest MCE Memory Error at QEMU addr %p and "
770                     "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
771                     addr, paddr, "BUS_MCEERR_AR");
772             } else {
773                  warn_report("Guest MCE Memory Error at QEMU addr %p and "
774                      "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
775                      addr, paddr, "BUS_MCEERR_AO");
776             }
777 
778             return;
779         }
780 
781         if (code == BUS_MCEERR_AO) {
782             warn_report("Hardware memory error at addr %p of type %s "
783                 "for memory used by QEMU itself instead of guest system!",
784                  addr, "BUS_MCEERR_AO");
785         }
786     }
787 
788     if (code == BUS_MCEERR_AR) {
789         hardware_memory_error(addr);
790     }
791 
792     /* Hope we are lucky for AO MCE, just notify a event */
793     emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, false);
794 }
795 
kvm_queue_exception(CPUX86State * env,int32_t exception_nr,uint8_t exception_has_payload,uint64_t exception_payload)796 static void kvm_queue_exception(CPUX86State *env,
797                                 int32_t exception_nr,
798                                 uint8_t exception_has_payload,
799                                 uint64_t exception_payload)
800 {
801     assert(env->exception_nr == -1);
802     assert(!env->exception_pending);
803     assert(!env->exception_injected);
804     assert(!env->exception_has_payload);
805 
806     env->exception_nr = exception_nr;
807 
808     if (has_exception_payload) {
809         env->exception_pending = 1;
810 
811         env->exception_has_payload = exception_has_payload;
812         env->exception_payload = exception_payload;
813     } else {
814         env->exception_injected = 1;
815 
816         if (exception_nr == EXCP01_DB) {
817             assert(exception_has_payload);
818             env->dr[6] = exception_payload;
819         } else if (exception_nr == EXCP0E_PAGE) {
820             assert(exception_has_payload);
821             env->cr[2] = exception_payload;
822         } else {
823             assert(!exception_has_payload);
824         }
825     }
826 }
827 
cpu_update_state(void * opaque,bool running,RunState state)828 static void cpu_update_state(void *opaque, bool running, RunState state)
829 {
830     CPUX86State *env = opaque;
831 
832     if (running) {
833         env->tsc_valid = false;
834     }
835 }
836 
kvm_arch_vcpu_id(CPUState * cs)837 unsigned long kvm_arch_vcpu_id(CPUState *cs)
838 {
839     X86CPU *cpu = X86_CPU(cs);
840     return cpu->apic_id;
841 }
842 
843 #ifndef KVM_CPUID_SIGNATURE_NEXT
844 #define KVM_CPUID_SIGNATURE_NEXT                0x40000100
845 #endif
846 
hyperv_enabled(X86CPU * cpu)847 static bool hyperv_enabled(X86CPU *cpu)
848 {
849     return kvm_check_extension(kvm_state, KVM_CAP_HYPERV) > 0 &&
850         ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) ||
851          cpu->hyperv_features || cpu->hyperv_passthrough);
852 }
853 
854 /*
855  * Check whether target_freq is within conservative
856  * ntp correctable bounds (250ppm) of freq
857  */
freq_within_bounds(int freq,int target_freq)858 static inline bool freq_within_bounds(int freq, int target_freq)
859 {
860         int max_freq = freq + (freq * 250 / 1000000);
861         int min_freq = freq - (freq * 250 / 1000000);
862 
863         if (target_freq >= min_freq && target_freq <= max_freq) {
864                 return true;
865         }
866 
867         return false;
868 }
869 
kvm_arch_set_tsc_khz(CPUState * cs)870 static int kvm_arch_set_tsc_khz(CPUState *cs)
871 {
872     X86CPU *cpu = X86_CPU(cs);
873     CPUX86State *env = &cpu->env;
874     int r, cur_freq;
875     bool set_ioctl = false;
876 
877     /*
878      * TSC of TD vcpu is immutable, it cannot be set/changed via vcpu scope
879      * VM_SET_TSC_KHZ, but only be initialized via VM scope VM_SET_TSC_KHZ
880      * before ioctl KVM_TDX_INIT_VM in tdx_pre_create_vcpu()
881      */
882     if (is_tdx_vm()) {
883         return 0;
884     }
885 
886     if (!env->tsc_khz) {
887         return 0;
888     }
889 
890     cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
891                kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP;
892 
893     /*
894      * If TSC scaling is supported, attempt to set TSC frequency.
895      */
896     if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) {
897         set_ioctl = true;
898     }
899 
900     /*
901      * If desired TSC frequency is within bounds of NTP correction,
902      * attempt to set TSC frequency.
903      */
904     if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) {
905         set_ioctl = true;
906     }
907 
908     r = set_ioctl ?
909         kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
910         -ENOTSUP;
911 
912     if (r < 0) {
913         /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
914          * TSC frequency doesn't match the one we want.
915          */
916         cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
917                    kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
918                    -ENOTSUP;
919         if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
920             warn_report("TSC frequency mismatch between "
921                         "VM (%" PRId64 " kHz) and host (%d kHz), "
922                         "and TSC scaling unavailable",
923                         env->tsc_khz, cur_freq);
924             return r;
925         }
926     }
927 
928     return 0;
929 }
930 
tsc_is_stable_and_known(CPUX86State * env)931 static bool tsc_is_stable_and_known(CPUX86State *env)
932 {
933     if (!env->tsc_khz) {
934         return false;
935     }
936     return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
937         || env->user_tsc_khz;
938 }
939 
940 #define DEFAULT_EVMCS_VERSION ((1 << 8) | 1)
941 
942 static struct {
943     const char *desc;
944     struct {
945         uint32_t func;
946         int reg;
947         uint32_t bits;
948     } flags[2];
949     uint64_t dependencies;
950     bool skip_passthrough;
951 } kvm_hyperv_properties[] = {
952     [HYPERV_FEAT_RELAXED] = {
953         .desc = "relaxed timing (hv-relaxed)",
954         .flags = {
955             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
956              .bits = HV_RELAXED_TIMING_RECOMMENDED}
957         }
958     },
959     [HYPERV_FEAT_VAPIC] = {
960         .desc = "virtual APIC (hv-vapic)",
961         .flags = {
962             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
963              .bits = HV_APIC_ACCESS_AVAILABLE}
964         }
965     },
966     [HYPERV_FEAT_TIME] = {
967         .desc = "clocksources (hv-time)",
968         .flags = {
969             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
970              .bits = HV_TIME_REF_COUNT_AVAILABLE | HV_REFERENCE_TSC_AVAILABLE}
971         }
972     },
973     [HYPERV_FEAT_CRASH] = {
974         .desc = "crash MSRs (hv-crash)",
975         .flags = {
976             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
977              .bits = HV_GUEST_CRASH_MSR_AVAILABLE}
978         }
979     },
980     [HYPERV_FEAT_RESET] = {
981         .desc = "reset MSR (hv-reset)",
982         .flags = {
983             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
984              .bits = HV_RESET_AVAILABLE}
985         }
986     },
987     [HYPERV_FEAT_VPINDEX] = {
988         .desc = "VP_INDEX MSR (hv-vpindex)",
989         .flags = {
990             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
991              .bits = HV_VP_INDEX_AVAILABLE}
992         }
993     },
994     [HYPERV_FEAT_RUNTIME] = {
995         .desc = "VP_RUNTIME MSR (hv-runtime)",
996         .flags = {
997             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
998              .bits = HV_VP_RUNTIME_AVAILABLE}
999         }
1000     },
1001     [HYPERV_FEAT_SYNIC] = {
1002         .desc = "synthetic interrupt controller (hv-synic)",
1003         .flags = {
1004             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
1005              .bits = HV_SYNIC_AVAILABLE}
1006         }
1007     },
1008     [HYPERV_FEAT_STIMER] = {
1009         .desc = "synthetic timers (hv-stimer)",
1010         .flags = {
1011             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
1012              .bits = HV_SYNTIMERS_AVAILABLE}
1013         },
1014         .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME)
1015     },
1016     [HYPERV_FEAT_FREQUENCIES] = {
1017         .desc = "frequency MSRs (hv-frequencies)",
1018         .flags = {
1019             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
1020              .bits = HV_ACCESS_FREQUENCY_MSRS},
1021             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1022              .bits = HV_FREQUENCY_MSRS_AVAILABLE}
1023         }
1024     },
1025     [HYPERV_FEAT_REENLIGHTENMENT] = {
1026         .desc = "reenlightenment MSRs (hv-reenlightenment)",
1027         .flags = {
1028             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
1029              .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL}
1030         }
1031     },
1032     [HYPERV_FEAT_TLBFLUSH] = {
1033         .desc = "paravirtualized TLB flush (hv-tlbflush)",
1034         .flags = {
1035             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
1036              .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED |
1037              HV_EX_PROCESSOR_MASKS_RECOMMENDED}
1038         },
1039         .dependencies = BIT(HYPERV_FEAT_VPINDEX)
1040     },
1041     [HYPERV_FEAT_EVMCS] = {
1042         .desc = "enlightened VMCS (hv-evmcs)",
1043         .flags = {
1044             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
1045              .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED}
1046         },
1047         .dependencies = BIT(HYPERV_FEAT_VAPIC)
1048     },
1049     [HYPERV_FEAT_IPI] = {
1050         .desc = "paravirtualized IPI (hv-ipi)",
1051         .flags = {
1052             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
1053              .bits = HV_CLUSTER_IPI_RECOMMENDED |
1054              HV_EX_PROCESSOR_MASKS_RECOMMENDED}
1055         },
1056         .dependencies = BIT(HYPERV_FEAT_VPINDEX)
1057     },
1058     [HYPERV_FEAT_STIMER_DIRECT] = {
1059         .desc = "direct mode synthetic timers (hv-stimer-direct)",
1060         .flags = {
1061             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1062              .bits = HV_STIMER_DIRECT_MODE_AVAILABLE}
1063         },
1064         .dependencies = BIT(HYPERV_FEAT_STIMER)
1065     },
1066     [HYPERV_FEAT_AVIC] = {
1067         .desc = "AVIC/APICv support (hv-avic/hv-apicv)",
1068         .flags = {
1069             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
1070              .bits = HV_DEPRECATING_AEOI_RECOMMENDED}
1071         }
1072     },
1073     [HYPERV_FEAT_SYNDBG] = {
1074         .desc = "Enable synthetic kernel debugger channel (hv-syndbg)",
1075         .flags = {
1076             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1077              .bits = HV_FEATURE_DEBUG_MSRS_AVAILABLE}
1078         },
1079         .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_RELAXED),
1080         .skip_passthrough = true,
1081     },
1082     [HYPERV_FEAT_MSR_BITMAP] = {
1083         .desc = "enlightened MSR-Bitmap (hv-emsr-bitmap)",
1084         .flags = {
1085             {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX,
1086              .bits = HV_NESTED_MSR_BITMAP}
1087         }
1088     },
1089     [HYPERV_FEAT_XMM_INPUT] = {
1090         .desc = "XMM fast hypercall input (hv-xmm-input)",
1091         .flags = {
1092             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1093              .bits = HV_HYPERCALL_XMM_INPUT_AVAILABLE}
1094         }
1095     },
1096     [HYPERV_FEAT_TLBFLUSH_EXT] = {
1097         .desc = "Extended gva ranges for TLB flush hypercalls (hv-tlbflush-ext)",
1098         .flags = {
1099             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1100              .bits = HV_EXT_GVA_RANGES_FLUSH_AVAILABLE}
1101         },
1102         .dependencies = BIT(HYPERV_FEAT_TLBFLUSH)
1103     },
1104     [HYPERV_FEAT_TLBFLUSH_DIRECT] = {
1105         .desc = "direct TLB flush (hv-tlbflush-direct)",
1106         .flags = {
1107             {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX,
1108              .bits = HV_NESTED_DIRECT_FLUSH}
1109         },
1110         .dependencies = BIT(HYPERV_FEAT_VAPIC)
1111     },
1112 };
1113 
try_get_hv_cpuid(CPUState * cs,int max,bool do_sys_ioctl)1114 static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max,
1115                                            bool do_sys_ioctl)
1116 {
1117     struct kvm_cpuid2 *cpuid;
1118     int r, size;
1119 
1120     size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
1121     cpuid = g_malloc0(size);
1122     cpuid->nent = max;
1123 
1124     if (do_sys_ioctl) {
1125         r = kvm_ioctl(kvm_state, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1126     } else {
1127         r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1128     }
1129     if (r == 0 && cpuid->nent >= max) {
1130         r = -E2BIG;
1131     }
1132     if (r < 0) {
1133         if (r == -E2BIG) {
1134             g_free(cpuid);
1135             return NULL;
1136         } else {
1137             fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n",
1138                     strerror(-r));
1139             exit(1);
1140         }
1141     }
1142     return cpuid;
1143 }
1144 
1145 /*
1146  * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough
1147  * for all entries.
1148  */
get_supported_hv_cpuid(CPUState * cs)1149 static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs)
1150 {
1151     struct kvm_cpuid2 *cpuid;
1152     /* 0x40000000..0x40000005, 0x4000000A, 0x40000080..0x40000082 leaves */
1153     int max = 11;
1154     int i;
1155     bool do_sys_ioctl;
1156 
1157     do_sys_ioctl =
1158         kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID) > 0;
1159 
1160     /*
1161      * Non-empty KVM context is needed when KVM_CAP_SYS_HYPERV_CPUID is
1162      * unsupported, kvm_hyperv_expand_features() checks for that.
1163      */
1164     assert(do_sys_ioctl || cs->kvm_state);
1165 
1166     /*
1167      * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with
1168      * -E2BIG, however, it doesn't report back the right size. Keep increasing
1169      * it and re-trying until we succeed.
1170      */
1171     while ((cpuid = try_get_hv_cpuid(cs, max, do_sys_ioctl)) == NULL) {
1172         max++;
1173     }
1174 
1175     /*
1176      * KVM_GET_SUPPORTED_HV_CPUID does not set EVMCS CPUID bit before
1177      * KVM_CAP_HYPERV_ENLIGHTENED_VMCS is enabled but we want to get the
1178      * information early, just check for the capability and set the bit
1179      * manually.
1180      */
1181     if (!do_sys_ioctl && kvm_check_extension(cs->kvm_state,
1182                             KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1183         for (i = 0; i < cpuid->nent; i++) {
1184             if (cpuid->entries[i].function == HV_CPUID_ENLIGHTMENT_INFO) {
1185                 cpuid->entries[i].eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1186             }
1187         }
1188     }
1189 
1190     return cpuid;
1191 }
1192 
1193 /*
1194  * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature
1195  * leaves from KVM_CAP_HYPERV* and present MSRs data.
1196  */
get_supported_hv_cpuid_legacy(CPUState * cs)1197 static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs)
1198 {
1199     X86CPU *cpu = X86_CPU(cs);
1200     struct kvm_cpuid2 *cpuid;
1201     struct kvm_cpuid_entry2 *entry_feat, *entry_recomm;
1202 
1203     /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */
1204     cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries));
1205     cpuid->nent = 2;
1206 
1207     /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */
1208     entry_feat = &cpuid->entries[0];
1209     entry_feat->function = HV_CPUID_FEATURES;
1210 
1211     entry_recomm = &cpuid->entries[1];
1212     entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO;
1213     entry_recomm->ebx = cpu->hyperv_spinlock_attempts;
1214 
1215     if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) {
1216         entry_feat->eax |= HV_HYPERCALL_AVAILABLE;
1217         entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE;
1218         entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1219         entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED;
1220         entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED;
1221     }
1222 
1223     if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
1224         entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE;
1225         entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE;
1226     }
1227 
1228     if (has_msr_hv_frequencies) {
1229         entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS;
1230         entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE;
1231     }
1232 
1233     if (has_msr_hv_crash) {
1234         entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE;
1235     }
1236 
1237     if (has_msr_hv_reenlightenment) {
1238         entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
1239     }
1240 
1241     if (has_msr_hv_reset) {
1242         entry_feat->eax |= HV_RESET_AVAILABLE;
1243     }
1244 
1245     if (has_msr_hv_vpindex) {
1246         entry_feat->eax |= HV_VP_INDEX_AVAILABLE;
1247     }
1248 
1249     if (has_msr_hv_runtime) {
1250         entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE;
1251     }
1252 
1253     if (has_msr_hv_synic) {
1254         unsigned int cap = cpu->hyperv_synic_kvm_only ?
1255             KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1256 
1257         if (kvm_check_extension(cs->kvm_state, cap) > 0) {
1258             entry_feat->eax |= HV_SYNIC_AVAILABLE;
1259         }
1260     }
1261 
1262     if (has_msr_hv_stimer) {
1263         entry_feat->eax |= HV_SYNTIMERS_AVAILABLE;
1264     }
1265 
1266     if (has_msr_hv_syndbg_options) {
1267         entry_feat->edx |= HV_GUEST_DEBUGGING_AVAILABLE;
1268         entry_feat->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE;
1269         entry_feat->ebx |= HV_PARTITION_DEBUGGING_ALLOWED;
1270     }
1271 
1272     if (kvm_check_extension(cs->kvm_state,
1273                             KVM_CAP_HYPERV_TLBFLUSH) > 0) {
1274         entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
1275         entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1276     }
1277 
1278     if (kvm_check_extension(cs->kvm_state,
1279                             KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1280         entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1281     }
1282 
1283     if (kvm_check_extension(cs->kvm_state,
1284                             KVM_CAP_HYPERV_SEND_IPI) > 0) {
1285         entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED;
1286         entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1287     }
1288 
1289     return cpuid;
1290 }
1291 
hv_cpuid_get_host(CPUState * cs,uint32_t func,int reg)1292 static uint32_t hv_cpuid_get_host(CPUState *cs, uint32_t func, int reg)
1293 {
1294     struct kvm_cpuid_entry2 *entry;
1295     struct kvm_cpuid2 *cpuid;
1296 
1297     if (hv_cpuid_cache) {
1298         cpuid = hv_cpuid_cache;
1299     } else {
1300         if (kvm_check_extension(kvm_state, KVM_CAP_HYPERV_CPUID) > 0) {
1301             cpuid = get_supported_hv_cpuid(cs);
1302         } else {
1303             /*
1304              * 'cs->kvm_state' may be NULL when Hyper-V features are expanded
1305              * before KVM context is created but this is only done when
1306              * KVM_CAP_SYS_HYPERV_CPUID is supported and it implies
1307              * KVM_CAP_HYPERV_CPUID.
1308              */
1309             assert(cs->kvm_state);
1310 
1311             cpuid = get_supported_hv_cpuid_legacy(cs);
1312         }
1313         hv_cpuid_cache = cpuid;
1314     }
1315 
1316     if (!cpuid) {
1317         return 0;
1318     }
1319 
1320     entry = cpuid_find_entry(cpuid, func, 0);
1321     if (!entry) {
1322         return 0;
1323     }
1324 
1325     return cpuid_entry_get_reg(entry, reg);
1326 }
1327 
hyperv_feature_supported(CPUState * cs,int feature)1328 static bool hyperv_feature_supported(CPUState *cs, int feature)
1329 {
1330     uint32_t func, bits;
1331     int i, reg;
1332 
1333     /*
1334      * kvm_hyperv_properties needs to define at least one CPUID flag which
1335      * must be used to detect the feature, it's hard to say whether it is
1336      * supported or not otherwise.
1337      */
1338     assert(kvm_hyperv_properties[feature].flags[0].func);
1339 
1340     for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) {
1341 
1342         func = kvm_hyperv_properties[feature].flags[i].func;
1343         reg = kvm_hyperv_properties[feature].flags[i].reg;
1344         bits = kvm_hyperv_properties[feature].flags[i].bits;
1345 
1346         if (!func) {
1347             continue;
1348         }
1349 
1350         if ((hv_cpuid_get_host(cs, func, reg) & bits) != bits) {
1351             return false;
1352         }
1353     }
1354 
1355     return true;
1356 }
1357 
1358 /* Checks that all feature dependencies are enabled */
hv_feature_check_deps(X86CPU * cpu,int feature,Error ** errp)1359 static bool hv_feature_check_deps(X86CPU *cpu, int feature, Error **errp)
1360 {
1361     uint64_t deps;
1362     int dep_feat;
1363 
1364     deps = kvm_hyperv_properties[feature].dependencies;
1365     while (deps) {
1366         dep_feat = ctz64(deps);
1367         if (!(hyperv_feat_enabled(cpu, dep_feat))) {
1368             error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1369                        kvm_hyperv_properties[feature].desc,
1370                        kvm_hyperv_properties[dep_feat].desc);
1371             return false;
1372         }
1373         deps &= ~(1ull << dep_feat);
1374     }
1375 
1376     return true;
1377 }
1378 
hv_build_cpuid_leaf(CPUState * cs,uint32_t func,int reg)1379 static uint32_t hv_build_cpuid_leaf(CPUState *cs, uint32_t func, int reg)
1380 {
1381     X86CPU *cpu = X86_CPU(cs);
1382     uint32_t r = 0;
1383     int i, j;
1384 
1385     for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties); i++) {
1386         if (!hyperv_feat_enabled(cpu, i)) {
1387             continue;
1388         }
1389 
1390         for (j = 0; j < ARRAY_SIZE(kvm_hyperv_properties[i].flags); j++) {
1391             if (kvm_hyperv_properties[i].flags[j].func != func) {
1392                 continue;
1393             }
1394             if (kvm_hyperv_properties[i].flags[j].reg != reg) {
1395                 continue;
1396             }
1397 
1398             r |= kvm_hyperv_properties[i].flags[j].bits;
1399         }
1400     }
1401 
1402     /* HV_CPUID_NESTED_FEATURES.EAX also encodes the supported eVMCS range */
1403     if (func == HV_CPUID_NESTED_FEATURES && reg == R_EAX) {
1404         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1405             r |= DEFAULT_EVMCS_VERSION;
1406         }
1407     }
1408 
1409     return r;
1410 }
1411 
1412 /*
1413  * Expand Hyper-V CPU features. In partucular, check that all the requested
1414  * features are supported by the host and the sanity of the configuration
1415  * (that all the required dependencies are included). Also, this takes care
1416  * of 'hv_passthrough' mode and fills the environment with all supported
1417  * Hyper-V features.
1418  */
kvm_hyperv_expand_features(X86CPU * cpu,Error ** errp)1419 bool kvm_hyperv_expand_features(X86CPU *cpu, Error **errp)
1420 {
1421     CPUState *cs = CPU(cpu);
1422     Error *local_err = NULL;
1423     int feat;
1424 
1425     if (!hyperv_enabled(cpu))
1426         return true;
1427 
1428     /*
1429      * When kvm_hyperv_expand_features is called at CPU feature expansion
1430      * time per-CPU kvm_state is not available yet so we can only proceed
1431      * when KVM_CAP_SYS_HYPERV_CPUID is supported.
1432      */
1433     if (!cs->kvm_state &&
1434         !kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID))
1435         return true;
1436 
1437     if (cpu->hyperv_passthrough) {
1438         cpu->hyperv_vendor_id[0] =
1439             hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EBX);
1440         cpu->hyperv_vendor_id[1] =
1441             hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_ECX);
1442         cpu->hyperv_vendor_id[2] =
1443             hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EDX);
1444         cpu->hyperv_vendor = g_realloc(cpu->hyperv_vendor,
1445                                        sizeof(cpu->hyperv_vendor_id) + 1);
1446         memcpy(cpu->hyperv_vendor, cpu->hyperv_vendor_id,
1447                sizeof(cpu->hyperv_vendor_id));
1448         cpu->hyperv_vendor[sizeof(cpu->hyperv_vendor_id)] = 0;
1449 
1450         cpu->hyperv_interface_id[0] =
1451             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EAX);
1452         cpu->hyperv_interface_id[1] =
1453             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EBX);
1454         cpu->hyperv_interface_id[2] =
1455             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_ECX);
1456         cpu->hyperv_interface_id[3] =
1457             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EDX);
1458 
1459         cpu->hyperv_ver_id_build =
1460             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EAX);
1461         cpu->hyperv_ver_id_major =
1462             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) >> 16;
1463         cpu->hyperv_ver_id_minor =
1464             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) & 0xffff;
1465         cpu->hyperv_ver_id_sp =
1466             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_ECX);
1467         cpu->hyperv_ver_id_sb =
1468             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) >> 24;
1469         cpu->hyperv_ver_id_sn =
1470             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) & 0xffffff;
1471 
1472         cpu->hv_max_vps = hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS,
1473                                             R_EAX);
1474         cpu->hyperv_limits[0] =
1475             hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EBX);
1476         cpu->hyperv_limits[1] =
1477             hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_ECX);
1478         cpu->hyperv_limits[2] =
1479             hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EDX);
1480 
1481         cpu->hyperv_spinlock_attempts =
1482             hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EBX);
1483 
1484         /*
1485          * Mark feature as enabled in 'cpu->hyperv_features' as
1486          * hv_build_cpuid_leaf() uses this info to build guest CPUIDs.
1487          */
1488         for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1489             if (hyperv_feature_supported(cs, feat) &&
1490                 !kvm_hyperv_properties[feat].skip_passthrough) {
1491                 cpu->hyperv_features |= BIT(feat);
1492             }
1493         }
1494     } else {
1495         /* Check features availability and dependencies */
1496         for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1497             /* If the feature was not requested skip it. */
1498             if (!hyperv_feat_enabled(cpu, feat)) {
1499                 continue;
1500             }
1501 
1502             /* Check if the feature is supported by KVM */
1503             if (!hyperv_feature_supported(cs, feat)) {
1504                 error_setg(errp, "Hyper-V %s is not supported by kernel",
1505                            kvm_hyperv_properties[feat].desc);
1506                 return false;
1507             }
1508 
1509             /* Check dependencies */
1510             if (!hv_feature_check_deps(cpu, feat, &local_err)) {
1511                 error_propagate(errp, local_err);
1512                 return false;
1513             }
1514         }
1515     }
1516 
1517     /* Additional dependencies not covered by kvm_hyperv_properties[] */
1518     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1519         !cpu->hyperv_synic_kvm_only &&
1520         !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) {
1521         error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1522                    kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc,
1523                    kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc);
1524         return false;
1525     }
1526 
1527     return true;
1528 }
1529 
1530 /*
1531  * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent.
1532  */
hyperv_fill_cpuids(CPUState * cs,struct kvm_cpuid_entry2 * cpuid_ent)1533 static int hyperv_fill_cpuids(CPUState *cs,
1534                               struct kvm_cpuid_entry2 *cpuid_ent)
1535 {
1536     X86CPU *cpu = X86_CPU(cs);
1537     struct kvm_cpuid_entry2 *c;
1538     uint32_t signature[3];
1539     uint32_t cpuid_i = 0, max_cpuid_leaf = 0;
1540     uint32_t nested_eax =
1541         hv_build_cpuid_leaf(cs, HV_CPUID_NESTED_FEATURES, R_EAX);
1542 
1543     max_cpuid_leaf = nested_eax ? HV_CPUID_NESTED_FEATURES :
1544         HV_CPUID_IMPLEMENT_LIMITS;
1545 
1546     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) {
1547         max_cpuid_leaf =
1548             MAX(max_cpuid_leaf, HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES);
1549     }
1550 
1551     c = &cpuid_ent[cpuid_i++];
1552     c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
1553     c->eax = max_cpuid_leaf;
1554     c->ebx = cpu->hyperv_vendor_id[0];
1555     c->ecx = cpu->hyperv_vendor_id[1];
1556     c->edx = cpu->hyperv_vendor_id[2];
1557 
1558     c = &cpuid_ent[cpuid_i++];
1559     c->function = HV_CPUID_INTERFACE;
1560     c->eax = cpu->hyperv_interface_id[0];
1561     c->ebx = cpu->hyperv_interface_id[1];
1562     c->ecx = cpu->hyperv_interface_id[2];
1563     c->edx = cpu->hyperv_interface_id[3];
1564 
1565     c = &cpuid_ent[cpuid_i++];
1566     c->function = HV_CPUID_VERSION;
1567     c->eax = cpu->hyperv_ver_id_build;
1568     c->ebx = (uint32_t)cpu->hyperv_ver_id_major << 16 |
1569         cpu->hyperv_ver_id_minor;
1570     c->ecx = cpu->hyperv_ver_id_sp;
1571     c->edx = (uint32_t)cpu->hyperv_ver_id_sb << 24 |
1572         (cpu->hyperv_ver_id_sn & 0xffffff);
1573 
1574     c = &cpuid_ent[cpuid_i++];
1575     c->function = HV_CPUID_FEATURES;
1576     c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EAX);
1577     c->ebx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EBX);
1578     c->edx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EDX);
1579 
1580     /* Unconditionally required with any Hyper-V enlightenment */
1581     c->eax |= HV_HYPERCALL_AVAILABLE;
1582 
1583     /* SynIC and Vmbus devices require messages/signals hypercalls */
1584     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1585         !cpu->hyperv_synic_kvm_only) {
1586         c->ebx |= HV_POST_MESSAGES | HV_SIGNAL_EVENTS;
1587     }
1588 
1589 
1590     /* Not exposed by KVM but needed to make CPU hotplug in Windows work */
1591     c->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1592 
1593     c = &cpuid_ent[cpuid_i++];
1594     c->function = HV_CPUID_ENLIGHTMENT_INFO;
1595     c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX);
1596     c->ebx = cpu->hyperv_spinlock_attempts;
1597 
1598     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) &&
1599         !hyperv_feat_enabled(cpu, HYPERV_FEAT_AVIC)) {
1600         c->eax |= HV_APIC_ACCESS_RECOMMENDED;
1601     }
1602 
1603     if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) {
1604         c->eax |= HV_NO_NONARCH_CORESHARING;
1605     } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) {
1606         c->eax |= hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX) &
1607             HV_NO_NONARCH_CORESHARING;
1608     }
1609 
1610     c = &cpuid_ent[cpuid_i++];
1611     c->function = HV_CPUID_IMPLEMENT_LIMITS;
1612     c->eax = cpu->hv_max_vps;
1613     c->ebx = cpu->hyperv_limits[0];
1614     c->ecx = cpu->hyperv_limits[1];
1615     c->edx = cpu->hyperv_limits[2];
1616 
1617     if (nested_eax) {
1618         uint32_t function;
1619 
1620         /* Create zeroed 0x40000006..0x40000009 leaves */
1621         for (function = HV_CPUID_IMPLEMENT_LIMITS + 1;
1622              function < HV_CPUID_NESTED_FEATURES; function++) {
1623             c = &cpuid_ent[cpuid_i++];
1624             c->function = function;
1625         }
1626 
1627         c = &cpuid_ent[cpuid_i++];
1628         c->function = HV_CPUID_NESTED_FEATURES;
1629         c->eax = nested_eax;
1630     }
1631 
1632     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) {
1633         c = &cpuid_ent[cpuid_i++];
1634         c->function = HV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS;
1635         c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ?
1636             HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS;
1637         memcpy(signature, "Microsoft VS", 12);
1638         c->eax = 0;
1639         c->ebx = signature[0];
1640         c->ecx = signature[1];
1641         c->edx = signature[2];
1642 
1643         c = &cpuid_ent[cpuid_i++];
1644         c->function = HV_CPUID_SYNDBG_INTERFACE;
1645         memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12);
1646         c->eax = signature[0];
1647         c->ebx = 0;
1648         c->ecx = 0;
1649         c->edx = 0;
1650 
1651         c = &cpuid_ent[cpuid_i++];
1652         c->function = HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES;
1653         c->eax = HV_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
1654         c->ebx = 0;
1655         c->ecx = 0;
1656         c->edx = 0;
1657     }
1658 
1659     return cpuid_i;
1660 }
1661 
1662 static Error *hv_passthrough_mig_blocker;
1663 static Error *hv_no_nonarch_cs_mig_blocker;
1664 
1665 /* Checks that the exposed eVMCS version range is supported by KVM */
evmcs_version_supported(uint16_t evmcs_version,uint16_t supported_evmcs_version)1666 static bool evmcs_version_supported(uint16_t evmcs_version,
1667                                     uint16_t supported_evmcs_version)
1668 {
1669     uint8_t min_version = evmcs_version & 0xff;
1670     uint8_t max_version = evmcs_version >> 8;
1671     uint8_t min_supported_version = supported_evmcs_version & 0xff;
1672     uint8_t max_supported_version = supported_evmcs_version >> 8;
1673 
1674     return (min_version >= min_supported_version) &&
1675         (max_version <= max_supported_version);
1676 }
1677 
hyperv_init_vcpu(X86CPU * cpu)1678 static int hyperv_init_vcpu(X86CPU *cpu)
1679 {
1680     CPUState *cs = CPU(cpu);
1681     Error *local_err = NULL;
1682     int ret;
1683 
1684     if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) {
1685         error_setg(&hv_passthrough_mig_blocker,
1686                    "'hv-passthrough' CPU flag prevents migration, use explicit"
1687                    " set of hv-* flags instead");
1688         ret = migrate_add_blocker(&hv_passthrough_mig_blocker, &local_err);
1689         if (ret < 0) {
1690             error_report_err(local_err);
1691             return ret;
1692         }
1693     }
1694 
1695     if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO &&
1696         hv_no_nonarch_cs_mig_blocker == NULL) {
1697         error_setg(&hv_no_nonarch_cs_mig_blocker,
1698                    "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration"
1699                    " use explicit 'hv-no-nonarch-coresharing=on' instead (but"
1700                    " make sure SMT is disabled and/or that vCPUs are properly"
1701                    " pinned)");
1702         ret = migrate_add_blocker(&hv_no_nonarch_cs_mig_blocker, &local_err);
1703         if (ret < 0) {
1704             error_report_err(local_err);
1705             return ret;
1706         }
1707     }
1708 
1709     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) {
1710         /*
1711          * the kernel doesn't support setting vp_index; assert that its value
1712          * is in sync
1713          */
1714         uint64_t value;
1715 
1716         ret = kvm_get_one_msr(cpu, HV_X64_MSR_VP_INDEX, &value);
1717         if (ret < 0) {
1718             return ret;
1719         }
1720 
1721         if (value != hyperv_vp_index(CPU(cpu))) {
1722             error_report("kernel's vp_index != QEMU's vp_index");
1723             return -ENXIO;
1724         }
1725     }
1726 
1727     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
1728         uint32_t synic_cap = cpu->hyperv_synic_kvm_only ?
1729             KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1730         ret = kvm_vcpu_enable_cap(cs, synic_cap, 0);
1731         if (ret < 0) {
1732             error_report("failed to turn on HyperV SynIC in KVM: %s",
1733                          strerror(-ret));
1734             return ret;
1735         }
1736 
1737         if (!cpu->hyperv_synic_kvm_only) {
1738             ret = hyperv_x86_synic_add(cpu);
1739             if (ret < 0) {
1740                 error_report("failed to create HyperV SynIC: %s",
1741                              strerror(-ret));
1742                 return ret;
1743             }
1744         }
1745     }
1746 
1747     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1748         uint16_t evmcs_version = DEFAULT_EVMCS_VERSION;
1749         uint16_t supported_evmcs_version;
1750 
1751         ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0,
1752                                   (uintptr_t)&supported_evmcs_version);
1753 
1754         /*
1755          * KVM is required to support EVMCS ver.1. as that's what 'hv-evmcs'
1756          * option sets. Note: we hardcode the maximum supported eVMCS version
1757          * to '1' as well so 'hv-evmcs' feature is migratable even when (and if)
1758          * ver.2 is implemented. A new option (e.g. 'hv-evmcs=2') will then have
1759          * to be added.
1760          */
1761         if (ret < 0) {
1762             error_report("Hyper-V %s is not supported by kernel",
1763                          kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc);
1764             return ret;
1765         }
1766 
1767         if (!evmcs_version_supported(evmcs_version, supported_evmcs_version)) {
1768             error_report("eVMCS version range [%d..%d] is not supported by "
1769                          "kernel (supported: [%d..%d])", evmcs_version & 0xff,
1770                          evmcs_version >> 8, supported_evmcs_version & 0xff,
1771                          supported_evmcs_version >> 8);
1772             return -ENOTSUP;
1773         }
1774     }
1775 
1776     if (cpu->hyperv_enforce_cpuid) {
1777         ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENFORCE_CPUID, 0, 1);
1778         if (ret < 0) {
1779             error_report("failed to enable KVM_CAP_HYPERV_ENFORCE_CPUID: %s",
1780                          strerror(-ret));
1781             return ret;
1782         }
1783     }
1784 
1785     /* Skip SynIC and VP_INDEX since they are hard deps already */
1786     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_STIMER) &&
1787         hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) &&
1788         hyperv_feat_enabled(cpu, HYPERV_FEAT_RUNTIME)) {
1789         hyperv_x86_set_vmbus_recommended_features_enabled();
1790     }
1791 
1792     return 0;
1793 }
1794 
1795 static Error *invtsc_mig_blocker;
1796 
kvm_init_xsave(CPUX86State * env)1797 static void kvm_init_xsave(CPUX86State *env)
1798 {
1799     if (has_xsave2) {
1800         env->xsave_buf_len = QEMU_ALIGN_UP(has_xsave2, 4096);
1801     } else {
1802         env->xsave_buf_len = sizeof(struct kvm_xsave);
1803     }
1804 
1805     env->xsave_buf = qemu_memalign(4096, env->xsave_buf_len);
1806     memset(env->xsave_buf, 0, env->xsave_buf_len);
1807     /*
1808      * The allocated storage must be large enough for all of the
1809      * possible XSAVE state components.
1810      */
1811     assert(kvm_arch_get_supported_cpuid(kvm_state, 0xd, 0, R_ECX) <=
1812            env->xsave_buf_len);
1813 }
1814 
kvm_init_nested_state(CPUX86State * env)1815 static void kvm_init_nested_state(CPUX86State *env)
1816 {
1817     struct kvm_vmx_nested_state_hdr *vmx_hdr;
1818     uint32_t size;
1819 
1820     if (!env->nested_state) {
1821         return;
1822     }
1823 
1824     size = env->nested_state->size;
1825 
1826     memset(env->nested_state, 0, size);
1827     env->nested_state->size = size;
1828 
1829     if (cpu_has_vmx(env)) {
1830         env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX;
1831         vmx_hdr = &env->nested_state->hdr.vmx;
1832         vmx_hdr->vmxon_pa = -1ull;
1833         vmx_hdr->vmcs12_pa = -1ull;
1834     } else if (cpu_has_svm(env)) {
1835         env->nested_state->format = KVM_STATE_NESTED_FORMAT_SVM;
1836     }
1837 }
1838 
kvm_x86_build_cpuid(CPUX86State * env,struct kvm_cpuid_entry2 * entries,uint32_t cpuid_i)1839 uint32_t kvm_x86_build_cpuid(CPUX86State *env, struct kvm_cpuid_entry2 *entries,
1840                              uint32_t cpuid_i)
1841 {
1842     uint32_t limit, i, j;
1843     uint32_t unused;
1844     struct kvm_cpuid_entry2 *c;
1845 
1846     cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
1847 
1848     for (i = 0; i <= limit; i++) {
1849         j = 0;
1850         if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1851             goto full;
1852         }
1853         c = &entries[cpuid_i++];
1854         switch (i) {
1855         case 2: {
1856             /* Keep reading function 2 till all the input is received */
1857             int times;
1858 
1859             c->function = i;
1860             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1861             times = c->eax & 0xff;
1862             if (times > 1) {
1863                 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
1864                            KVM_CPUID_FLAG_STATE_READ_NEXT;
1865             }
1866 
1867             for (j = 1; j < times; ++j) {
1868                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1869                     goto full;
1870                 }
1871                 c = &entries[cpuid_i++];
1872                 c->function = i;
1873                 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
1874                 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1875             }
1876             break;
1877         }
1878         case 0x1f:
1879             if (!x86_has_cpuid_0x1f(env_archcpu(env))) {
1880                 cpuid_i--;
1881                 break;
1882             }
1883             /* fallthrough */
1884         case 4:
1885         case 0xb:
1886         case 0xd:
1887             for (j = 0; ; j++) {
1888                 c->function = i;
1889                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1890                 c->index = j;
1891                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1892 
1893                 if (i == 4 && c->eax == 0) {
1894                     break;
1895                 }
1896                 if (i == 0xb && !(c->ecx & 0xff00)) {
1897                     break;
1898                 }
1899                 if (i == 0x1f && !(c->ecx & 0xff00)) {
1900                     break;
1901                 }
1902                 if (i == 0xd && c->eax == 0) {
1903                     if (j < 63) {
1904                         continue;
1905                     } else {
1906                         cpuid_i--;
1907                         break;
1908                     }
1909                 }
1910                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1911                     goto full;
1912                 }
1913                 c = &entries[cpuid_i++];
1914             }
1915             break;
1916         case 0x12:
1917             for (j = 0; ; j++) {
1918                 c->function = i;
1919                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1920                 c->index = j;
1921                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1922 
1923                 if (j > 1 && (c->eax & 0xf) != 1) {
1924                     break;
1925                 }
1926 
1927                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1928                     goto full;
1929                 }
1930                 c = &entries[cpuid_i++];
1931             }
1932             break;
1933         case 0x7:
1934         case 0x14:
1935         case 0x1d:
1936         case 0x1e:
1937         case 0x24: {
1938             uint32_t times;
1939 
1940             c->function = i;
1941             c->index = 0;
1942             c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1943             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1944             times = c->eax;
1945 
1946             for (j = 1; j <= times; ++j) {
1947                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1948                     goto full;
1949                 }
1950                 c = &entries[cpuid_i++];
1951                 c->function = i;
1952                 c->index = j;
1953                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1954                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1955             }
1956             break;
1957         }
1958         default:
1959             c->function = i;
1960             c->flags = 0;
1961             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1962             if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1963                 /*
1964                  * KVM already returns all zeroes if a CPUID entry is missing,
1965                  * so we can omit it and avoid hitting KVM's 80-entry limit.
1966                  */
1967                 cpuid_i--;
1968             }
1969             break;
1970         }
1971     }
1972 
1973     if (limit >= 0x0a) {
1974         uint32_t eax, edx;
1975 
1976         cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
1977 
1978         has_architectural_pmu_version = eax & 0xff;
1979         if (has_architectural_pmu_version > 0) {
1980             num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
1981 
1982             /* Shouldn't be more than 32, since that's the number of bits
1983              * available in EBX to tell us _which_ counters are available.
1984              * Play it safe.
1985              */
1986             if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
1987                 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
1988             }
1989 
1990             if (has_architectural_pmu_version > 1) {
1991                 num_architectural_pmu_fixed_counters = edx & 0x1f;
1992 
1993                 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
1994                     num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
1995                 }
1996             }
1997         }
1998     }
1999 
2000     cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
2001 
2002     for (i = 0x80000000; i <= limit; i++) {
2003         j = 0;
2004         if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2005             goto full;
2006         }
2007         c = &entries[cpuid_i++];
2008 
2009         switch (i) {
2010         case 0x8000001d:
2011             /* Query for all AMD cache information leaves */
2012             for (j = 0; ; j++) {
2013                 c->function = i;
2014                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2015                 c->index = j;
2016                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
2017 
2018                 if (c->eax == 0) {
2019                     break;
2020                 }
2021                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2022                     goto full;
2023                 }
2024                 c = &entries[cpuid_i++];
2025             }
2026             break;
2027         default:
2028             c->function = i;
2029             c->flags = 0;
2030             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
2031             if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
2032                 /*
2033                  * KVM already returns all zeroes if a CPUID entry is missing,
2034                  * so we can omit it and avoid hitting KVM's 80-entry limit.
2035                  */
2036                 cpuid_i--;
2037             }
2038             break;
2039         }
2040     }
2041 
2042     /* Call Centaur's CPUID instructions they are supported. */
2043     if (env->cpuid_xlevel2 > 0) {
2044         cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
2045 
2046         for (i = 0xC0000000; i <= limit; i++) {
2047             j = 0;
2048             if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2049                 goto full;
2050             }
2051             c = &entries[cpuid_i++];
2052 
2053             c->function = i;
2054             c->flags = 0;
2055             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
2056         }
2057     }
2058 
2059     return cpuid_i;
2060 
2061 full:
2062     fprintf(stderr, "cpuid_data is full, no space for "
2063             "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
2064     abort();
2065 }
2066 
kvm_arch_pre_create_vcpu(CPUState * cpu,Error ** errp)2067 int kvm_arch_pre_create_vcpu(CPUState *cpu, Error **errp)
2068 {
2069     if (is_tdx_vm()) {
2070         return tdx_pre_create_vcpu(cpu, errp);
2071     }
2072 
2073     return 0;
2074 }
2075 
kvm_arch_init_vcpu(CPUState * cs)2076 int kvm_arch_init_vcpu(CPUState *cs)
2077 {
2078     struct {
2079         struct kvm_cpuid2 cpuid;
2080         struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
2081     } cpuid_data;
2082     /*
2083      * The kernel defines these structs with padding fields so there
2084      * should be no extra padding in our cpuid_data struct.
2085      */
2086     QEMU_BUILD_BUG_ON(sizeof(cpuid_data) !=
2087                       sizeof(struct kvm_cpuid2) +
2088                       sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES);
2089 
2090     X86CPU *cpu = X86_CPU(cs);
2091     CPUX86State *env = &cpu->env;
2092     uint32_t cpuid_i;
2093     struct kvm_cpuid_entry2 *c;
2094     uint32_t signature[3];
2095     int kvm_base = KVM_CPUID_SIGNATURE;
2096     int max_nested_state_len;
2097     int r;
2098     Error *local_err = NULL;
2099 
2100     if (current_machine->cgs) {
2101         r = x86_confidential_guest_check_features(
2102                 X86_CONFIDENTIAL_GUEST(current_machine->cgs), cs);
2103         if (r < 0) {
2104             return r;
2105         }
2106     }
2107 
2108     memset(&cpuid_data, 0, sizeof(cpuid_data));
2109 
2110     cpuid_i = 0;
2111 
2112     has_xsave2 = kvm_check_extension(cs->kvm_state, KVM_CAP_XSAVE2);
2113 
2114     r = kvm_arch_set_tsc_khz(cs);
2115     if (r < 0) {
2116         return r;
2117     }
2118 
2119     /* vcpu's TSC frequency is either specified by user, or following
2120      * the value used by KVM if the former is not present. In the
2121      * latter case, we query it from KVM and record in env->tsc_khz,
2122      * so that vcpu's TSC frequency can be migrated later via this field.
2123      */
2124     if (!env->tsc_khz) {
2125         r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
2126             kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
2127             -ENOTSUP;
2128         if (r > 0) {
2129             env->tsc_khz = r;
2130         }
2131     }
2132 
2133     env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY;
2134 
2135     /*
2136      * kvm_hyperv_expand_features() is called here for the second time in case
2137      * KVM_CAP_SYS_HYPERV_CPUID is not supported. While we can't possibly handle
2138      * 'query-cpu-model-expansion' in this case as we don't have a KVM vCPU to
2139      * check which Hyper-V enlightenments are supported and which are not, we
2140      * can still proceed and check/expand Hyper-V enlightenments here so legacy
2141      * behavior is preserved.
2142      */
2143     if (!kvm_hyperv_expand_features(cpu, &local_err)) {
2144         error_report_err(local_err);
2145         return -ENOSYS;
2146     }
2147 
2148     if (hyperv_enabled(cpu)) {
2149         r = hyperv_init_vcpu(cpu);
2150         if (r) {
2151             return r;
2152         }
2153 
2154         cpuid_i = hyperv_fill_cpuids(cs, cpuid_data.entries);
2155         kvm_base = KVM_CPUID_SIGNATURE_NEXT;
2156         has_msr_hv_hypercall = true;
2157     }
2158 
2159     if (cs->kvm_state->xen_version) {
2160 #ifdef CONFIG_XEN_EMU
2161         struct kvm_cpuid_entry2 *xen_max_leaf;
2162 
2163         memcpy(signature, "XenVMMXenVMM", 12);
2164 
2165         xen_max_leaf = c = &cpuid_data.entries[cpuid_i++];
2166         c->function = kvm_base + XEN_CPUID_SIGNATURE;
2167         c->eax = kvm_base + XEN_CPUID_TIME;
2168         c->ebx = signature[0];
2169         c->ecx = signature[1];
2170         c->edx = signature[2];
2171 
2172         c = &cpuid_data.entries[cpuid_i++];
2173         c->function = kvm_base + XEN_CPUID_VENDOR;
2174         c->eax = cs->kvm_state->xen_version;
2175         c->ebx = 0;
2176         c->ecx = 0;
2177         c->edx = 0;
2178 
2179         c = &cpuid_data.entries[cpuid_i++];
2180         c->function = kvm_base + XEN_CPUID_HVM_MSR;
2181         /* Number of hypercall-transfer pages */
2182         c->eax = 1;
2183         /* Hypercall MSR base address */
2184         if (hyperv_enabled(cpu)) {
2185             c->ebx = XEN_HYPERCALL_MSR_HYPERV;
2186             kvm_xen_init(cs->kvm_state, c->ebx);
2187         } else {
2188             c->ebx = XEN_HYPERCALL_MSR;
2189         }
2190         c->ecx = 0;
2191         c->edx = 0;
2192 
2193         c = &cpuid_data.entries[cpuid_i++];
2194         c->function = kvm_base + XEN_CPUID_TIME;
2195         c->eax = ((!!tsc_is_stable_and_known(env) << 1) |
2196             (!!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP) << 2));
2197         /* default=0 (emulate if necessary) */
2198         c->ebx = 0;
2199         /* guest tsc frequency */
2200         c->ecx = env->user_tsc_khz;
2201         /* guest tsc incarnation (migration count) */
2202         c->edx = 0;
2203 
2204         c = &cpuid_data.entries[cpuid_i++];
2205         c->function = kvm_base + XEN_CPUID_HVM;
2206         xen_max_leaf->eax = kvm_base + XEN_CPUID_HVM;
2207         if (cs->kvm_state->xen_version >= XEN_VERSION(4, 5)) {
2208             c->function = kvm_base + XEN_CPUID_HVM;
2209 
2210             if (cpu->xen_vapic) {
2211                 c->eax |= XEN_HVM_CPUID_APIC_ACCESS_VIRT;
2212                 c->eax |= XEN_HVM_CPUID_X2APIC_VIRT;
2213             }
2214 
2215             c->eax |= XEN_HVM_CPUID_IOMMU_MAPPINGS;
2216 
2217             if (cs->kvm_state->xen_version >= XEN_VERSION(4, 6)) {
2218                 c->eax |= XEN_HVM_CPUID_VCPU_ID_PRESENT;
2219                 c->ebx = cs->cpu_index;
2220             }
2221 
2222             if (cs->kvm_state->xen_version >= XEN_VERSION(4, 17)) {
2223                 c->eax |= XEN_HVM_CPUID_UPCALL_VECTOR;
2224             }
2225         }
2226 
2227         r = kvm_xen_init_vcpu(cs);
2228         if (r) {
2229             return r;
2230         }
2231 
2232         kvm_base += 0x100;
2233 #else /* CONFIG_XEN_EMU */
2234         /* This should never happen as kvm_arch_init() would have died first. */
2235         fprintf(stderr, "Cannot enable Xen CPUID without Xen support\n");
2236         abort();
2237 #endif
2238     } else if (cpu->expose_kvm) {
2239         memcpy(signature, "KVMKVMKVM\0\0\0", 12);
2240         c = &cpuid_data.entries[cpuid_i++];
2241         c->function = KVM_CPUID_SIGNATURE | kvm_base;
2242         c->eax = KVM_CPUID_FEATURES | kvm_base;
2243         c->ebx = signature[0];
2244         c->ecx = signature[1];
2245         c->edx = signature[2];
2246 
2247         c = &cpuid_data.entries[cpuid_i++];
2248         c->function = KVM_CPUID_FEATURES | kvm_base;
2249         c->eax = env->features[FEAT_KVM];
2250         c->edx = env->features[FEAT_KVM_HINTS];
2251     }
2252 
2253     if (cpu->kvm_pv_enforce_cpuid) {
2254         r = kvm_vcpu_enable_cap(cs, KVM_CAP_ENFORCE_PV_FEATURE_CPUID, 0, 1);
2255         if (r < 0) {
2256             fprintf(stderr,
2257                     "failed to enable KVM_CAP_ENFORCE_PV_FEATURE_CPUID: %s",
2258                     strerror(-r));
2259             abort();
2260         }
2261     }
2262 
2263     cpuid_i = kvm_x86_build_cpuid(env, cpuid_data.entries, cpuid_i);
2264     cpuid_data.cpuid.nent = cpuid_i;
2265 
2266     if (x86_cpu_family(env->cpuid_version) >= 6
2267         && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
2268            (CPUID_MCE | CPUID_MCA)) {
2269         uint64_t mcg_cap, unsupported_caps;
2270         int banks;
2271         int ret;
2272 
2273         ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
2274         if (ret < 0) {
2275             fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
2276             return ret;
2277         }
2278 
2279         if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
2280             error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
2281                          (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
2282             return -ENOTSUP;
2283         }
2284 
2285         unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
2286         if (unsupported_caps) {
2287             if (unsupported_caps & MCG_LMCE_P) {
2288                 error_report("kvm: LMCE not supported");
2289                 return -ENOTSUP;
2290             }
2291             warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
2292                         unsupported_caps);
2293         }
2294 
2295         env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
2296         ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
2297         if (ret < 0) {
2298             fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
2299             return ret;
2300         }
2301     }
2302 
2303     cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env);
2304 
2305     c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
2306     if (c) {
2307         has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
2308                                   !!(c->ecx & CPUID_EXT_SMX);
2309     }
2310 
2311     c = cpuid_find_entry(&cpuid_data.cpuid, 7, 0);
2312     if (c && (c->ebx & CPUID_7_0_EBX_SGX)) {
2313         has_msr_feature_control = true;
2314     }
2315 
2316     if (env->mcg_cap & MCG_LMCE_P) {
2317         has_msr_mcg_ext_ctl = has_msr_feature_control = true;
2318     }
2319 
2320     if (!env->user_tsc_khz) {
2321         if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
2322             invtsc_mig_blocker == NULL) {
2323             error_setg(&invtsc_mig_blocker,
2324                        "State blocked by non-migratable CPU device"
2325                        " (invtsc flag)");
2326             r = migrate_add_blocker(&invtsc_mig_blocker, &local_err);
2327             if (r < 0) {
2328                 error_report_err(local_err);
2329                 return r;
2330             }
2331         }
2332     }
2333 
2334     if (cpu->vmware_cpuid_freq
2335         /* Guests depend on 0x40000000 to detect this feature, so only expose
2336          * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
2337         && cpu->expose_kvm
2338         && kvm_base == KVM_CPUID_SIGNATURE
2339         /* TSC clock must be stable and known for this feature. */
2340         && tsc_is_stable_and_known(env)) {
2341 
2342         c = &cpuid_data.entries[cpuid_i++];
2343         c->function = KVM_CPUID_SIGNATURE | 0x10;
2344         c->eax = env->tsc_khz;
2345         c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */
2346         c->ecx = c->edx = 0;
2347 
2348         c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
2349         c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
2350     }
2351 
2352     cpuid_data.cpuid.nent = cpuid_i;
2353 
2354     cpuid_data.cpuid.padding = 0;
2355     r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
2356     if (r) {
2357         goto fail;
2358     }
2359     kvm_init_xsave(env);
2360 
2361     max_nested_state_len = kvm_max_nested_state_length();
2362     if (max_nested_state_len > 0) {
2363         assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data));
2364 
2365         if (cpu_has_vmx(env) || cpu_has_svm(env)) {
2366             env->nested_state = g_malloc0(max_nested_state_len);
2367             env->nested_state->size = max_nested_state_len;
2368 
2369             kvm_init_nested_state(env);
2370         }
2371     }
2372 
2373     cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
2374 
2375     if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
2376         has_msr_tsc_aux = false;
2377     }
2378 
2379     kvm_init_msrs(cpu);
2380 
2381     return 0;
2382 
2383  fail:
2384     migrate_del_blocker(&invtsc_mig_blocker);
2385 
2386     return r;
2387 }
2388 
kvm_arch_destroy_vcpu(CPUState * cs)2389 int kvm_arch_destroy_vcpu(CPUState *cs)
2390 {
2391     X86CPU *cpu = X86_CPU(cs);
2392     CPUX86State *env = &cpu->env;
2393 
2394     g_free(env->xsave_buf);
2395 
2396     g_free(cpu->kvm_msr_buf);
2397     cpu->kvm_msr_buf = NULL;
2398 
2399     g_free(env->nested_state);
2400     env->nested_state = NULL;
2401 
2402     qemu_del_vm_change_state_handler(cpu->vmsentry);
2403 
2404     return 0;
2405 }
2406 
kvm_arch_reset_vcpu(X86CPU * cpu)2407 void kvm_arch_reset_vcpu(X86CPU *cpu)
2408 {
2409     CPUX86State *env = &cpu->env;
2410 
2411     env->xcr0 = 1;
2412     if (kvm_irqchip_in_kernel()) {
2413         env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
2414                                           KVM_MP_STATE_UNINITIALIZED;
2415     } else {
2416         env->mp_state = KVM_MP_STATE_RUNNABLE;
2417     }
2418 
2419     /* enabled by default */
2420     env->poll_control_msr = 1;
2421 
2422     kvm_init_nested_state(env);
2423 
2424     sev_es_set_reset_vector(CPU(cpu));
2425 }
2426 
kvm_arch_after_reset_vcpu(X86CPU * cpu)2427 void kvm_arch_after_reset_vcpu(X86CPU *cpu)
2428 {
2429     CPUX86State *env = &cpu->env;
2430     int i;
2431 
2432     /*
2433      * Reset SynIC after all other devices have been reset to let them remove
2434      * their SINT routes first.
2435      */
2436     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
2437         for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
2438             env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
2439         }
2440 
2441         hyperv_x86_synic_reset(cpu);
2442     }
2443 }
2444 
kvm_arch_reset_parked_vcpu(unsigned long vcpu_id,int kvm_fd)2445 void kvm_arch_reset_parked_vcpu(unsigned long vcpu_id, int kvm_fd)
2446 {
2447     g_autofree struct kvm_msrs *msrs = NULL;
2448 
2449     msrs = g_malloc0(sizeof(*msrs) + sizeof(msrs->entries[0]));
2450     msrs->entries[0].index = MSR_IA32_TSC;
2451     msrs->entries[0].data = 1; /* match the value in x86_cpu_reset() */
2452     msrs->nmsrs++;
2453 
2454     if (ioctl(kvm_fd, KVM_SET_MSRS, msrs) != 1) {
2455         warn_report("parked vCPU %lu TSC reset failed: %d",
2456                     vcpu_id, errno);
2457     }
2458 }
2459 
kvm_arch_do_init_vcpu(X86CPU * cpu)2460 void kvm_arch_do_init_vcpu(X86CPU *cpu)
2461 {
2462     CPUX86State *env = &cpu->env;
2463 
2464     /* APs get directly into wait-for-SIPI state.  */
2465     if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
2466         env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
2467     }
2468 }
2469 
kvm_get_supported_feature_msrs(KVMState * s)2470 static int kvm_get_supported_feature_msrs(KVMState *s)
2471 {
2472     int ret = 0;
2473 
2474     if (kvm_feature_msrs != NULL) {
2475         return 0;
2476     }
2477 
2478     if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) {
2479         return 0;
2480     }
2481 
2482     struct kvm_msr_list msr_list;
2483 
2484     msr_list.nmsrs = 0;
2485     ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list);
2486     if (ret < 0 && ret != -E2BIG) {
2487         error_report("Fetch KVM feature MSR list failed: %s",
2488             strerror(-ret));
2489         return ret;
2490     }
2491 
2492     assert(msr_list.nmsrs > 0);
2493     kvm_feature_msrs = g_malloc0(sizeof(msr_list) +
2494                  msr_list.nmsrs * sizeof(msr_list.indices[0]));
2495 
2496     kvm_feature_msrs->nmsrs = msr_list.nmsrs;
2497     ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs);
2498 
2499     if (ret < 0) {
2500         error_report("Fetch KVM feature MSR list failed: %s",
2501             strerror(-ret));
2502         g_free(kvm_feature_msrs);
2503         kvm_feature_msrs = NULL;
2504         return ret;
2505     }
2506 
2507     return 0;
2508 }
2509 
kvm_get_supported_msrs(KVMState * s)2510 static int kvm_get_supported_msrs(KVMState *s)
2511 {
2512     int ret = 0;
2513     struct kvm_msr_list msr_list, *kvm_msr_list;
2514 
2515     /*
2516      *  Obtain MSR list from KVM.  These are the MSRs that we must
2517      *  save/restore.
2518      */
2519     msr_list.nmsrs = 0;
2520     ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
2521     if (ret < 0 && ret != -E2BIG) {
2522         return ret;
2523     }
2524     /*
2525      * Old kernel modules had a bug and could write beyond the provided
2526      * memory. Allocate at least a safe amount of 1K.
2527      */
2528     kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
2529                                           msr_list.nmsrs *
2530                                           sizeof(msr_list.indices[0])));
2531 
2532     kvm_msr_list->nmsrs = msr_list.nmsrs;
2533     ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
2534     if (ret >= 0) {
2535         int i;
2536 
2537         for (i = 0; i < kvm_msr_list->nmsrs; i++) {
2538             switch (kvm_msr_list->indices[i]) {
2539             case MSR_STAR:
2540                 has_msr_star = true;
2541                 break;
2542             case MSR_VM_HSAVE_PA:
2543                 has_msr_hsave_pa = true;
2544                 break;
2545             case MSR_TSC_AUX:
2546                 has_msr_tsc_aux = true;
2547                 break;
2548             case MSR_TSC_ADJUST:
2549                 has_msr_tsc_adjust = true;
2550                 break;
2551             case MSR_IA32_TSCDEADLINE:
2552                 has_msr_tsc_deadline = true;
2553                 break;
2554             case MSR_IA32_SMBASE:
2555                 has_msr_smbase = true;
2556                 break;
2557             case MSR_SMI_COUNT:
2558                 has_msr_smi_count = true;
2559                 break;
2560             case MSR_IA32_MISC_ENABLE:
2561                 has_msr_misc_enable = true;
2562                 break;
2563             case MSR_IA32_BNDCFGS:
2564                 has_msr_bndcfgs = true;
2565                 break;
2566             case MSR_IA32_XSS:
2567                 has_msr_xss = true;
2568                 break;
2569             case MSR_IA32_UMWAIT_CONTROL:
2570                 has_msr_umwait = true;
2571                 break;
2572             case HV_X64_MSR_CRASH_CTL:
2573                 has_msr_hv_crash = true;
2574                 break;
2575             case HV_X64_MSR_RESET:
2576                 has_msr_hv_reset = true;
2577                 break;
2578             case HV_X64_MSR_VP_INDEX:
2579                 has_msr_hv_vpindex = true;
2580                 break;
2581             case HV_X64_MSR_VP_RUNTIME:
2582                 has_msr_hv_runtime = true;
2583                 break;
2584             case HV_X64_MSR_SCONTROL:
2585                 has_msr_hv_synic = true;
2586                 break;
2587             case HV_X64_MSR_STIMER0_CONFIG:
2588                 has_msr_hv_stimer = true;
2589                 break;
2590             case HV_X64_MSR_TSC_FREQUENCY:
2591                 has_msr_hv_frequencies = true;
2592                 break;
2593             case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2594                 has_msr_hv_reenlightenment = true;
2595                 break;
2596             case HV_X64_MSR_SYNDBG_OPTIONS:
2597                 has_msr_hv_syndbg_options = true;
2598                 break;
2599             case MSR_IA32_SPEC_CTRL:
2600                 has_msr_spec_ctrl = true;
2601                 break;
2602             case MSR_AMD64_TSC_RATIO:
2603                 has_tsc_scale_msr = true;
2604                 break;
2605             case MSR_IA32_TSX_CTRL:
2606                 has_msr_tsx_ctrl = true;
2607                 break;
2608             case MSR_VIRT_SSBD:
2609                 has_msr_virt_ssbd = true;
2610                 break;
2611             case MSR_IA32_ARCH_CAPABILITIES:
2612                 has_msr_arch_capabs = true;
2613                 break;
2614             case MSR_IA32_CORE_CAPABILITY:
2615                 has_msr_core_capabs = true;
2616                 break;
2617             case MSR_IA32_PERF_CAPABILITIES:
2618                 has_msr_perf_capabs = true;
2619                 break;
2620             case MSR_IA32_VMX_VMFUNC:
2621                 has_msr_vmx_vmfunc = true;
2622                 break;
2623             case MSR_IA32_UCODE_REV:
2624                 has_msr_ucode_rev = true;
2625                 break;
2626             case MSR_IA32_VMX_PROCBASED_CTLS2:
2627                 has_msr_vmx_procbased_ctls2 = true;
2628                 break;
2629             case MSR_IA32_PKRS:
2630                 has_msr_pkrs = true;
2631                 break;
2632             case MSR_K7_HWCR:
2633                 has_msr_hwcr = true;
2634             }
2635         }
2636     }
2637 
2638     g_free(kvm_msr_list);
2639 
2640     return ret;
2641 }
2642 
kvm_rdmsr_core_thread_count(X86CPU * cpu,uint32_t msr,uint64_t * val)2643 static bool kvm_rdmsr_core_thread_count(X86CPU *cpu,
2644                                         uint32_t msr,
2645                                         uint64_t *val)
2646 {
2647     *val = cpu_x86_get_msr_core_thread_count(cpu);
2648 
2649     return true;
2650 }
2651 
kvm_rdmsr_rapl_power_unit(X86CPU * cpu,uint32_t msr,uint64_t * val)2652 static bool kvm_rdmsr_rapl_power_unit(X86CPU *cpu,
2653                                       uint32_t msr,
2654                                       uint64_t *val)
2655 {
2656 
2657     CPUState *cs = CPU(cpu);
2658 
2659     *val = cs->kvm_state->msr_energy.msr_unit;
2660 
2661     return true;
2662 }
2663 
kvm_rdmsr_pkg_power_limit(X86CPU * cpu,uint32_t msr,uint64_t * val)2664 static bool kvm_rdmsr_pkg_power_limit(X86CPU *cpu,
2665                                       uint32_t msr,
2666                                       uint64_t *val)
2667 {
2668 
2669     CPUState *cs = CPU(cpu);
2670 
2671     *val = cs->kvm_state->msr_energy.msr_limit;
2672 
2673     return true;
2674 }
2675 
kvm_rdmsr_pkg_power_info(X86CPU * cpu,uint32_t msr,uint64_t * val)2676 static bool kvm_rdmsr_pkg_power_info(X86CPU *cpu,
2677                                      uint32_t msr,
2678                                      uint64_t *val)
2679 {
2680 
2681     CPUState *cs = CPU(cpu);
2682 
2683     *val = cs->kvm_state->msr_energy.msr_info;
2684 
2685     return true;
2686 }
2687 
kvm_rdmsr_pkg_energy_status(X86CPU * cpu,uint32_t msr,uint64_t * val)2688 static bool kvm_rdmsr_pkg_energy_status(X86CPU *cpu,
2689                                         uint32_t msr,
2690                                         uint64_t *val)
2691 {
2692 
2693     CPUState *cs = CPU(cpu);
2694     *val = cs->kvm_state->msr_energy.msr_value[cs->cpu_index];
2695 
2696     return true;
2697 }
2698 
2699 static Notifier smram_machine_done;
2700 static KVMMemoryListener smram_listener;
2701 static AddressSpace smram_address_space;
2702 static MemoryRegion smram_as_root;
2703 static MemoryRegion smram_as_mem;
2704 
register_smram_listener(Notifier * n,void * unused)2705 static void register_smram_listener(Notifier *n, void *unused)
2706 {
2707     MemoryRegion *smram =
2708         (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
2709 
2710     /* Outer container... */
2711     memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
2712     memory_region_set_enabled(&smram_as_root, true);
2713 
2714     /* ... with two regions inside: normal system memory with low
2715      * priority, and...
2716      */
2717     memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
2718                              get_system_memory(), 0, ~0ull);
2719     memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
2720     memory_region_set_enabled(&smram_as_mem, true);
2721 
2722     if (smram) {
2723         /* ... SMRAM with higher priority */
2724         memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
2725         memory_region_set_enabled(smram, true);
2726     }
2727 
2728     address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
2729     kvm_memory_listener_register(kvm_state, &smram_listener,
2730                                  &smram_address_space, 1, "kvm-smram");
2731 }
2732 
kvm_msr_energy_thread(void * data)2733 static void *kvm_msr_energy_thread(void *data)
2734 {
2735     KVMState *s = data;
2736     struct KVMMsrEnergy *vmsr = &s->msr_energy;
2737 
2738     g_autofree vmsr_package_energy_stat *pkg_stat = NULL;
2739     g_autofree vmsr_thread_stat *thd_stat = NULL;
2740     g_autofree CPUState *cpu = NULL;
2741     g_autofree unsigned int *vpkgs_energy_stat = NULL;
2742     unsigned int num_threads = 0;
2743 
2744     X86CPUTopoIDs topo_ids;
2745 
2746     rcu_register_thread();
2747 
2748     /* Allocate memory for each package energy status */
2749     pkg_stat = g_new0(vmsr_package_energy_stat, vmsr->host_topo.maxpkgs);
2750 
2751     /* Allocate memory for thread stats */
2752     thd_stat = g_new0(vmsr_thread_stat, 1);
2753 
2754     /* Allocate memory for holding virtual package energy counter */
2755     vpkgs_energy_stat = g_new0(unsigned int, vmsr->guest_vsockets);
2756 
2757     /* Populate the max tick of each packages */
2758     for (int i = 0; i < vmsr->host_topo.maxpkgs; i++) {
2759         /*
2760          * Max numbers of ticks per package
2761          * Time in second * Number of ticks/second * Number of cores/package
2762          * ex: 100 ticks/second/CPU, 12 CPUs per Package gives 1200 ticks max
2763          */
2764         vmsr->host_topo.maxticks[i] = (MSR_ENERGY_THREAD_SLEEP_US / 1000000)
2765                         * sysconf(_SC_CLK_TCK)
2766                         * vmsr->host_topo.pkg_cpu_count[i];
2767     }
2768 
2769     while (true) {
2770         /* Get all qemu threads id */
2771         g_autofree pid_t *thread_ids
2772             = vmsr_get_thread_ids(vmsr->pid, &num_threads);
2773 
2774         if (thread_ids == NULL) {
2775             goto clean;
2776         }
2777 
2778         thd_stat = g_renew(vmsr_thread_stat, thd_stat, num_threads);
2779         /* Unlike g_new0, g_renew0 function doesn't exist yet... */
2780         memset(thd_stat, 0, num_threads * sizeof(vmsr_thread_stat));
2781 
2782         /* Populate all the thread stats */
2783         for (int i = 0; i < num_threads; i++) {
2784             thd_stat[i].utime = g_new0(unsigned long long, 2);
2785             thd_stat[i].stime = g_new0(unsigned long long, 2);
2786             thd_stat[i].thread_id = thread_ids[i];
2787             vmsr_read_thread_stat(vmsr->pid,
2788                                   thd_stat[i].thread_id,
2789                                   &thd_stat[i].utime[0],
2790                                   &thd_stat[i].stime[0],
2791                                   &thd_stat[i].cpu_id);
2792             thd_stat[i].pkg_id =
2793                 vmsr_get_physical_package_id(thd_stat[i].cpu_id);
2794         }
2795 
2796         /* Retrieve all packages power plane energy counter */
2797         for (int i = 0; i < vmsr->host_topo.maxpkgs; i++) {
2798             for (int j = 0; j < num_threads; j++) {
2799                 /*
2800                  * Use the first thread we found that ran on the CPU
2801                  * of the package to read the packages energy counter
2802                  */
2803                 if (thd_stat[j].pkg_id == i) {
2804                     pkg_stat[i].e_start =
2805                     vmsr_read_msr(MSR_PKG_ENERGY_STATUS,
2806                                   thd_stat[j].cpu_id,
2807                                   thd_stat[j].thread_id,
2808                                   s->msr_energy.sioc);
2809                     break;
2810                 }
2811             }
2812         }
2813 
2814         /* Sleep a short period while the other threads are working */
2815         usleep(MSR_ENERGY_THREAD_SLEEP_US);
2816 
2817         /*
2818          * Retrieve all packages power plane energy counter
2819          * Calculate the delta of all packages
2820          */
2821         for (int i = 0; i < vmsr->host_topo.maxpkgs; i++) {
2822             for (int j = 0; j < num_threads; j++) {
2823                 /*
2824                  * Use the first thread we found that ran on the CPU
2825                  * of the package to read the packages energy counter
2826                  */
2827                 if (thd_stat[j].pkg_id == i) {
2828                     pkg_stat[i].e_end =
2829                     vmsr_read_msr(MSR_PKG_ENERGY_STATUS,
2830                                   thd_stat[j].cpu_id,
2831                                   thd_stat[j].thread_id,
2832                                   s->msr_energy.sioc);
2833                     /*
2834                      * Prevent the case we have migrate the VM
2835                      * during the sleep period or any other cases
2836                      * were energy counter might be lower after
2837                      * the sleep period.
2838                      */
2839                     if (pkg_stat[i].e_end > pkg_stat[i].e_start) {
2840                         pkg_stat[i].e_delta =
2841                             pkg_stat[i].e_end - pkg_stat[i].e_start;
2842                     } else {
2843                         pkg_stat[i].e_delta = 0;
2844                     }
2845                     break;
2846                 }
2847             }
2848         }
2849 
2850         /* Delta of ticks spend by each thread between the sample */
2851         for (int i = 0; i < num_threads; i++) {
2852             vmsr_read_thread_stat(vmsr->pid,
2853                                   thd_stat[i].thread_id,
2854                                   &thd_stat[i].utime[1],
2855                                   &thd_stat[i].stime[1],
2856                                   &thd_stat[i].cpu_id);
2857 
2858             if (vmsr->pid < 0) {
2859                 /*
2860                  * We don't count the dead thread
2861                  * i.e threads that existed before the sleep
2862                  * and not anymore
2863                  */
2864                 thd_stat[i].delta_ticks = 0;
2865             } else {
2866                 vmsr_delta_ticks(thd_stat, i);
2867             }
2868         }
2869 
2870         /*
2871          * Identify the vcpu threads
2872          * Calculate the number of vcpu per package
2873          */
2874         CPU_FOREACH(cpu) {
2875             for (int i = 0; i < num_threads; i++) {
2876                 if (cpu->thread_id == thd_stat[i].thread_id) {
2877                     thd_stat[i].is_vcpu = true;
2878                     thd_stat[i].vcpu_id = cpu->cpu_index;
2879                     pkg_stat[thd_stat[i].pkg_id].nb_vcpu++;
2880                     thd_stat[i].acpi_id = kvm_arch_vcpu_id(cpu);
2881                     break;
2882                 }
2883             }
2884         }
2885 
2886         /* Retrieve the virtual package number of each vCPU */
2887         for (int i = 0; i < vmsr->guest_cpu_list->len; i++) {
2888             for (int j = 0; j < num_threads; j++) {
2889                 if ((thd_stat[j].acpi_id ==
2890                         vmsr->guest_cpu_list->cpus[i].arch_id)
2891                     && (thd_stat[j].is_vcpu == true)) {
2892                     x86_topo_ids_from_apicid(thd_stat[j].acpi_id,
2893                         &vmsr->guest_topo_info, &topo_ids);
2894                     thd_stat[j].vpkg_id = topo_ids.pkg_id;
2895                 }
2896             }
2897         }
2898 
2899         /* Calculate the total energy of all non-vCPU thread */
2900         for (int i = 0; i < num_threads; i++) {
2901             if ((thd_stat[i].is_vcpu != true) &&
2902                 (thd_stat[i].delta_ticks > 0)) {
2903                 double temp;
2904                 temp = vmsr_get_ratio(pkg_stat[thd_stat[i].pkg_id].e_delta,
2905                     thd_stat[i].delta_ticks,
2906                     vmsr->host_topo.maxticks[thd_stat[i].pkg_id]);
2907                 pkg_stat[thd_stat[i].pkg_id].e_ratio
2908                     += (uint64_t)lround(temp);
2909             }
2910         }
2911 
2912         /* Calculate the ratio per non-vCPU thread of each package */
2913         for (int i = 0; i < vmsr->host_topo.maxpkgs; i++) {
2914             if (pkg_stat[i].nb_vcpu > 0) {
2915                 pkg_stat[i].e_ratio = pkg_stat[i].e_ratio / pkg_stat[i].nb_vcpu;
2916             }
2917         }
2918 
2919         /*
2920          * Calculate the energy for each Package:
2921          * Energy Package = sum of each vCPU energy that belongs to the package
2922          */
2923         for (int i = 0; i < num_threads; i++) {
2924             if ((thd_stat[i].is_vcpu == true) && \
2925                     (thd_stat[i].delta_ticks > 0)) {
2926                 double temp;
2927                 temp = vmsr_get_ratio(pkg_stat[thd_stat[i].pkg_id].e_delta,
2928                     thd_stat[i].delta_ticks,
2929                     vmsr->host_topo.maxticks[thd_stat[i].pkg_id]);
2930                 vpkgs_energy_stat[thd_stat[i].vpkg_id] +=
2931                     (uint64_t)lround(temp);
2932                 vpkgs_energy_stat[thd_stat[i].vpkg_id] +=
2933                     pkg_stat[thd_stat[i].pkg_id].e_ratio;
2934             }
2935         }
2936 
2937         /*
2938          * Finally populate the vmsr register of each vCPU with the total
2939          * package value to emulate the real hardware where each CPU return the
2940          * value of the package it belongs.
2941          */
2942         for (int i = 0; i < num_threads; i++) {
2943             if ((thd_stat[i].is_vcpu == true) && \
2944                     (thd_stat[i].delta_ticks > 0)) {
2945                 vmsr->msr_value[thd_stat[i].vcpu_id] = \
2946                                         vpkgs_energy_stat[thd_stat[i].vpkg_id];
2947           }
2948         }
2949 
2950         /* Freeing memory before zeroing the pointer */
2951         for (int i = 0; i < num_threads; i++) {
2952             g_free(thd_stat[i].utime);
2953             g_free(thd_stat[i].stime);
2954         }
2955    }
2956 
2957 clean:
2958     rcu_unregister_thread();
2959     return NULL;
2960 }
2961 
kvm_msr_energy_thread_init(KVMState * s,MachineState * ms)2962 static int kvm_msr_energy_thread_init(KVMState *s, MachineState *ms)
2963 {
2964     MachineClass *mc = MACHINE_GET_CLASS(ms);
2965     struct KVMMsrEnergy *r = &s->msr_energy;
2966 
2967     /*
2968      * Sanity check
2969      * 1. Host cpu must be Intel cpu
2970      * 2. RAPL must be enabled on the Host
2971      */
2972     if (!is_host_cpu_intel()) {
2973         error_report("The RAPL feature can only be enabled on hosts "
2974                      "with Intel CPU models");
2975         return -1;
2976     }
2977 
2978     if (!is_rapl_enabled()) {
2979         return -1;
2980     }
2981 
2982     /* Retrieve the virtual topology */
2983     vmsr_init_topo_info(&r->guest_topo_info, ms);
2984 
2985     /* Retrieve the number of vcpu */
2986     r->guest_vcpus = ms->smp.cpus;
2987 
2988     /* Retrieve the number of virtual sockets */
2989     r->guest_vsockets = ms->smp.sockets;
2990 
2991     /* Allocate register memory (MSR_PKG_STATUS) for each vcpu */
2992     r->msr_value = g_new0(uint64_t, r->guest_vcpus);
2993 
2994     /* Retrieve the CPUArchIDlist */
2995     r->guest_cpu_list = mc->possible_cpu_arch_ids(ms);
2996 
2997     /* Max number of cpus on the Host */
2998     r->host_topo.maxcpus = vmsr_get_maxcpus();
2999     if (r->host_topo.maxcpus == 0) {
3000         error_report("host max cpus = 0");
3001         return -1;
3002     }
3003 
3004     /* Max number of packages on the host */
3005     r->host_topo.maxpkgs = vmsr_get_max_physical_package(r->host_topo.maxcpus);
3006     if (r->host_topo.maxpkgs == 0) {
3007         error_report("host max pkgs = 0");
3008         return -1;
3009     }
3010 
3011     /* Allocate memory for each package on the host */
3012     r->host_topo.pkg_cpu_count = g_new0(unsigned int, r->host_topo.maxpkgs);
3013     r->host_topo.maxticks = g_new0(unsigned int, r->host_topo.maxpkgs);
3014 
3015     vmsr_count_cpus_per_package(r->host_topo.pkg_cpu_count,
3016                                 r->host_topo.maxpkgs);
3017     for (int i = 0; i < r->host_topo.maxpkgs; i++) {
3018         if (r->host_topo.pkg_cpu_count[i] == 0) {
3019             error_report("cpu per packages = 0 on package_%d", i);
3020             return -1;
3021         }
3022     }
3023 
3024     /* Get QEMU PID*/
3025     r->pid = getpid();
3026 
3027     /* Compute the socket path if necessary */
3028     if (s->msr_energy.socket_path == NULL) {
3029         s->msr_energy.socket_path = vmsr_compute_default_paths();
3030     }
3031 
3032     /* Open socket with vmsr helper */
3033     s->msr_energy.sioc = vmsr_open_socket(s->msr_energy.socket_path);
3034 
3035     if (s->msr_energy.sioc == NULL) {
3036         error_report("vmsr socket opening failed");
3037         return -1;
3038     }
3039 
3040     /* Those MSR values should not change */
3041     r->msr_unit  = vmsr_read_msr(MSR_RAPL_POWER_UNIT, 0, r->pid,
3042                                     s->msr_energy.sioc);
3043     r->msr_limit = vmsr_read_msr(MSR_PKG_POWER_LIMIT, 0, r->pid,
3044                                     s->msr_energy.sioc);
3045     r->msr_info  = vmsr_read_msr(MSR_PKG_POWER_INFO, 0, r->pid,
3046                                     s->msr_energy.sioc);
3047     if (r->msr_unit == 0 || r->msr_limit == 0 || r->msr_info == 0) {
3048         error_report("can't read any virtual msr");
3049         return -1;
3050     }
3051 
3052     qemu_thread_create(&r->msr_thr, "kvm-msr",
3053                        kvm_msr_energy_thread,
3054                        s, QEMU_THREAD_JOINABLE);
3055     return 0;
3056 }
3057 
kvm_arch_get_default_type(MachineState * ms)3058 int kvm_arch_get_default_type(MachineState *ms)
3059 {
3060     return 0;
3061 }
3062 
kvm_vm_enable_exception_payload(KVMState * s)3063 static int kvm_vm_enable_exception_payload(KVMState *s)
3064 {
3065     int ret = 0;
3066     has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD);
3067     if (has_exception_payload) {
3068         ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true);
3069         if (ret < 0) {
3070             error_report("kvm: Failed to enable exception payload cap: %s",
3071                          strerror(-ret));
3072         }
3073     }
3074 
3075     return ret;
3076 }
3077 
kvm_vm_enable_triple_fault_event(KVMState * s)3078 static int kvm_vm_enable_triple_fault_event(KVMState *s)
3079 {
3080     int ret = 0;
3081     has_triple_fault_event = \
3082         kvm_check_extension(s,
3083                             KVM_CAP_X86_TRIPLE_FAULT_EVENT);
3084     if (has_triple_fault_event) {
3085         ret = kvm_vm_enable_cap(s, KVM_CAP_X86_TRIPLE_FAULT_EVENT, 0, true);
3086         if (ret < 0) {
3087             error_report("kvm: Failed to enable triple fault event cap: %s",
3088                          strerror(-ret));
3089         }
3090     }
3091     return ret;
3092 }
3093 
kvm_vm_set_identity_map_addr(KVMState * s,uint64_t identity_base)3094 static int kvm_vm_set_identity_map_addr(KVMState *s, uint64_t identity_base)
3095 {
3096     return kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
3097 }
3098 
kvm_vm_set_nr_mmu_pages(KVMState * s)3099 static int kvm_vm_set_nr_mmu_pages(KVMState *s)
3100 {
3101     uint64_t shadow_mem;
3102     int ret = 0;
3103     shadow_mem = object_property_get_int(OBJECT(s),
3104                                          "kvm-shadow-mem",
3105                                          &error_abort);
3106     if (shadow_mem != -1) {
3107         shadow_mem /= 4096;
3108         ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
3109     }
3110     return ret;
3111 }
3112 
kvm_vm_set_tss_addr(KVMState * s,uint64_t tss_base)3113 static int kvm_vm_set_tss_addr(KVMState *s, uint64_t tss_base)
3114 {
3115     return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, tss_base);
3116 }
3117 
kvm_vm_enable_disable_exits(KVMState * s)3118 static int kvm_vm_enable_disable_exits(KVMState *s)
3119 {
3120     int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
3121 
3122     if (disable_exits) {
3123         disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
3124                           KVM_X86_DISABLE_EXITS_HLT |
3125                           KVM_X86_DISABLE_EXITS_PAUSE |
3126                           KVM_X86_DISABLE_EXITS_CSTATE);
3127     }
3128 
3129     return kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
3130                              disable_exits);
3131 }
3132 
kvm_vm_enable_bus_lock_exit(KVMState * s)3133 static int kvm_vm_enable_bus_lock_exit(KVMState *s)
3134 {
3135     int ret = 0;
3136     ret = kvm_check_extension(s, KVM_CAP_X86_BUS_LOCK_EXIT);
3137     if (!(ret & KVM_BUS_LOCK_DETECTION_EXIT)) {
3138         error_report("kvm: bus lock detection unsupported");
3139         return -ENOTSUP;
3140     }
3141     ret = kvm_vm_enable_cap(s, KVM_CAP_X86_BUS_LOCK_EXIT, 0,
3142                             KVM_BUS_LOCK_DETECTION_EXIT);
3143     if (ret < 0) {
3144         error_report("kvm: Failed to enable bus lock detection cap: %s",
3145                      strerror(-ret));
3146     }
3147 
3148     return ret;
3149 }
3150 
kvm_vm_enable_notify_vmexit(KVMState * s)3151 static int kvm_vm_enable_notify_vmexit(KVMState *s)
3152 {
3153     int ret = 0;
3154     if (s->notify_vmexit != NOTIFY_VMEXIT_OPTION_DISABLE) {
3155         uint64_t notify_window_flags =
3156             ((uint64_t)s->notify_window << 32) |
3157             KVM_X86_NOTIFY_VMEXIT_ENABLED |
3158             KVM_X86_NOTIFY_VMEXIT_USER;
3159         ret = kvm_vm_enable_cap(s, KVM_CAP_X86_NOTIFY_VMEXIT, 0,
3160                                 notify_window_flags);
3161         if (ret < 0) {
3162             error_report("kvm: Failed to enable notify vmexit cap: %s",
3163                          strerror(-ret));
3164         }
3165     }
3166     return ret;
3167 }
3168 
kvm_vm_enable_userspace_msr(KVMState * s)3169 static int kvm_vm_enable_userspace_msr(KVMState *s)
3170 {
3171     int ret;
3172 
3173     ret = kvm_vm_enable_cap(s, KVM_CAP_X86_USER_SPACE_MSR, 0,
3174                             KVM_MSR_EXIT_REASON_FILTER);
3175     if (ret < 0) {
3176         error_report("Could not enable user space MSRs: %s",
3177                      strerror(-ret));
3178         exit(1);
3179     }
3180 
3181     ret = kvm_filter_msr(s, MSR_CORE_THREAD_COUNT,
3182                          kvm_rdmsr_core_thread_count, NULL);
3183     if (ret < 0) {
3184         error_report("Could not install MSR_CORE_THREAD_COUNT handler: %s",
3185                      strerror(-ret));
3186         exit(1);
3187     }
3188 
3189     return 0;
3190 }
3191 
kvm_vm_enable_energy_msrs(KVMState * s)3192 static int kvm_vm_enable_energy_msrs(KVMState *s)
3193 {
3194     int ret;
3195 
3196     if (s->msr_energy.enable == true) {
3197         ret = kvm_filter_msr(s, MSR_RAPL_POWER_UNIT,
3198                              kvm_rdmsr_rapl_power_unit, NULL);
3199         if (ret < 0) {
3200             error_report("Could not install MSR_RAPL_POWER_UNIT handler: %s",
3201                          strerror(-ret));
3202             return ret;
3203         }
3204 
3205         ret = kvm_filter_msr(s, MSR_PKG_POWER_LIMIT,
3206                              kvm_rdmsr_pkg_power_limit, NULL);
3207         if (ret < 0) {
3208             error_report("Could not install MSR_PKG_POWER_LIMIT handler: %s",
3209                          strerror(-ret));
3210             return ret;
3211         }
3212 
3213         ret = kvm_filter_msr(s, MSR_PKG_POWER_INFO,
3214                              kvm_rdmsr_pkg_power_info, NULL);
3215         if (ret < 0) {
3216             error_report("Could not install MSR_PKG_POWER_INFO handler: %s",
3217                          strerror(-ret));
3218             return ret;
3219         }
3220         ret = kvm_filter_msr(s, MSR_PKG_ENERGY_STATUS,
3221                              kvm_rdmsr_pkg_energy_status, NULL);
3222         if (ret < 0) {
3223             error_report("Could not install MSR_PKG_ENERGY_STATUS handler: %s",
3224                          strerror(-ret));
3225             return ret;
3226         }
3227     }
3228     return 0;
3229 }
3230 
kvm_arch_init(MachineState * ms,KVMState * s)3231 int kvm_arch_init(MachineState *ms, KVMState *s)
3232 {
3233     int ret;
3234     struct utsname utsname;
3235     Error *local_err = NULL;
3236 
3237     /*
3238      * Initialize confidential guest (SEV/TDX) context, if required
3239      */
3240     if (ms->cgs) {
3241         ret = confidential_guest_kvm_init(ms->cgs, &local_err);
3242         if (ret < 0) {
3243             error_report_err(local_err);
3244             return ret;
3245         }
3246     }
3247 
3248     has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
3249     has_sregs2 = kvm_check_extension(s, KVM_CAP_SREGS2) > 0;
3250 
3251     hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
3252 
3253     ret = kvm_vm_enable_exception_payload(s);
3254     if (ret < 0) {
3255         return ret;
3256     }
3257 
3258     ret = kvm_vm_enable_triple_fault_event(s);
3259     if (ret < 0) {
3260         return ret;
3261     }
3262 
3263     if (s->xen_version) {
3264 #ifdef CONFIG_XEN_EMU
3265         if (!object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE)) {
3266             error_report("kvm: Xen support only available in PC machine");
3267             return -ENOTSUP;
3268         }
3269         /* hyperv_enabled() doesn't work yet. */
3270         uint32_t msr = XEN_HYPERCALL_MSR;
3271         ret = kvm_xen_init(s, msr);
3272         if (ret < 0) {
3273             return ret;
3274         }
3275 #else
3276         error_report("kvm: Xen support not enabled in qemu");
3277         return -ENOTSUP;
3278 #endif
3279     }
3280 
3281     ret = kvm_get_supported_msrs(s);
3282     if (ret < 0) {
3283         return ret;
3284     }
3285 
3286     ret = kvm_get_supported_feature_msrs(s);
3287     if (ret < 0) {
3288         return ret;
3289     }
3290 
3291     uname(&utsname);
3292     lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
3293 
3294     ret = kvm_vm_set_identity_map_addr(s, KVM_IDENTITY_BASE);
3295     if (ret < 0) {
3296         return ret;
3297     }
3298 
3299     /* Set TSS base one page after EPT identity map. */
3300     ret = kvm_vm_set_tss_addr(s, KVM_IDENTITY_BASE + 0x1000);
3301     if (ret < 0) {
3302         return ret;
3303     }
3304 
3305     /* Tell fw_cfg to notify the BIOS to reserve the range. */
3306     e820_add_entry(KVM_IDENTITY_BASE, 0x4000, E820_RESERVED);
3307 
3308     ret = kvm_vm_set_nr_mmu_pages(s);
3309     if (ret < 0) {
3310         return ret;
3311     }
3312 
3313     if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
3314         object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) &&
3315         x86_machine_is_smm_enabled(X86_MACHINE(ms))) {
3316         smram_machine_done.notify = register_smram_listener;
3317         qemu_add_machine_init_done_notifier(&smram_machine_done);
3318     }
3319 
3320     if (enable_cpu_pm) {
3321         ret = kvm_vm_enable_disable_exits(s);
3322         if (ret < 0) {
3323             error_report("kvm: guest stopping CPU not supported: %s",
3324                          strerror(-ret));
3325             return ret;
3326         }
3327     }
3328 
3329     if (object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE)) {
3330         X86MachineState *x86ms = X86_MACHINE(ms);
3331 
3332         if (x86ms->bus_lock_ratelimit > 0) {
3333             ret = kvm_vm_enable_bus_lock_exit(s);
3334             if (ret < 0) {
3335                 return ret;
3336             }
3337             ratelimit_init(&bus_lock_ratelimit_ctrl);
3338             ratelimit_set_speed(&bus_lock_ratelimit_ctrl,
3339                                 x86ms->bus_lock_ratelimit, BUS_LOCK_SLICE_TIME);
3340         }
3341     }
3342 
3343     if (kvm_check_extension(s, KVM_CAP_X86_NOTIFY_VMEXIT)) {
3344         ret = kvm_vm_enable_notify_vmexit(s);
3345         if (ret < 0) {
3346             return ret;
3347         }
3348     }
3349 
3350     if (kvm_vm_check_extension(s, KVM_CAP_X86_USER_SPACE_MSR)) {
3351         ret = kvm_vm_enable_userspace_msr(s);
3352         if (ret < 0) {
3353             return ret;
3354         }
3355 
3356         if (s->msr_energy.enable == true) {
3357             ret = kvm_vm_enable_energy_msrs(s);
3358             if (ret < 0) {
3359                 return ret;
3360             }
3361 
3362             ret = kvm_msr_energy_thread_init(s, ms);
3363             if (ret < 0) {
3364                 error_report("kvm : error RAPL feature requirement not met");
3365                 return ret;
3366             }
3367         }
3368     }
3369 
3370     return 0;
3371 }
3372 
set_v8086_seg(struct kvm_segment * lhs,const SegmentCache * rhs)3373 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
3374 {
3375     lhs->selector = rhs->selector;
3376     lhs->base = rhs->base;
3377     lhs->limit = rhs->limit;
3378     lhs->type = 3;
3379     lhs->present = 1;
3380     lhs->dpl = 3;
3381     lhs->db = 0;
3382     lhs->s = 1;
3383     lhs->l = 0;
3384     lhs->g = 0;
3385     lhs->avl = 0;
3386     lhs->unusable = 0;
3387 }
3388 
set_seg(struct kvm_segment * lhs,const SegmentCache * rhs)3389 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
3390 {
3391     unsigned flags = rhs->flags;
3392     lhs->selector = rhs->selector;
3393     lhs->base = rhs->base;
3394     lhs->limit = rhs->limit;
3395     lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
3396     lhs->present = (flags & DESC_P_MASK) != 0;
3397     lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
3398     lhs->db = (flags >> DESC_B_SHIFT) & 1;
3399     lhs->s = (flags & DESC_S_MASK) != 0;
3400     lhs->l = (flags >> DESC_L_SHIFT) & 1;
3401     lhs->g = (flags & DESC_G_MASK) != 0;
3402     lhs->avl = (flags & DESC_AVL_MASK) != 0;
3403     lhs->unusable = !lhs->present;
3404     lhs->padding = 0;
3405 }
3406 
get_seg(SegmentCache * lhs,const struct kvm_segment * rhs)3407 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
3408 {
3409     lhs->selector = rhs->selector;
3410     lhs->base = rhs->base;
3411     lhs->limit = rhs->limit;
3412     lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
3413                  ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
3414                  (rhs->dpl << DESC_DPL_SHIFT) |
3415                  (rhs->db << DESC_B_SHIFT) |
3416                  (rhs->s * DESC_S_MASK) |
3417                  (rhs->l << DESC_L_SHIFT) |
3418                  (rhs->g * DESC_G_MASK) |
3419                  (rhs->avl * DESC_AVL_MASK);
3420 }
3421 
kvm_getput_reg(__u64 * kvm_reg,target_ulong * qemu_reg,int set)3422 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
3423 {
3424     if (set) {
3425         *kvm_reg = *qemu_reg;
3426     } else {
3427         *qemu_reg = *kvm_reg;
3428     }
3429 }
3430 
kvm_getput_regs(X86CPU * cpu,int set)3431 static int kvm_getput_regs(X86CPU *cpu, int set)
3432 {
3433     CPUX86State *env = &cpu->env;
3434     struct kvm_regs regs;
3435     int ret = 0;
3436 
3437     if (!set) {
3438         ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
3439         if (ret < 0) {
3440             return ret;
3441         }
3442     }
3443 
3444     kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
3445     kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
3446     kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
3447     kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
3448     kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
3449     kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
3450     kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
3451     kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
3452 #ifdef TARGET_X86_64
3453     kvm_getput_reg(&regs.r8, &env->regs[8], set);
3454     kvm_getput_reg(&regs.r9, &env->regs[9], set);
3455     kvm_getput_reg(&regs.r10, &env->regs[10], set);
3456     kvm_getput_reg(&regs.r11, &env->regs[11], set);
3457     kvm_getput_reg(&regs.r12, &env->regs[12], set);
3458     kvm_getput_reg(&regs.r13, &env->regs[13], set);
3459     kvm_getput_reg(&regs.r14, &env->regs[14], set);
3460     kvm_getput_reg(&regs.r15, &env->regs[15], set);
3461 #endif
3462 
3463     kvm_getput_reg(&regs.rflags, &env->eflags, set);
3464     kvm_getput_reg(&regs.rip, &env->eip, set);
3465 
3466     if (set) {
3467         ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
3468     }
3469 
3470     return ret;
3471 }
3472 
kvm_put_xsave(X86CPU * cpu)3473 static int kvm_put_xsave(X86CPU *cpu)
3474 {
3475     CPUX86State *env = &cpu->env;
3476     void *xsave = env->xsave_buf;
3477 
3478     x86_cpu_xsave_all_areas(cpu, xsave, env->xsave_buf_len);
3479 
3480     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
3481 }
3482 
kvm_put_xcrs(X86CPU * cpu)3483 static int kvm_put_xcrs(X86CPU *cpu)
3484 {
3485     CPUX86State *env = &cpu->env;
3486     struct kvm_xcrs xcrs = {};
3487 
3488     if (!has_xcrs) {
3489         return 0;
3490     }
3491 
3492     xcrs.nr_xcrs = 1;
3493     xcrs.flags = 0;
3494     xcrs.xcrs[0].xcr = 0;
3495     xcrs.xcrs[0].value = env->xcr0;
3496     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
3497 }
3498 
kvm_put_sregs(X86CPU * cpu)3499 static int kvm_put_sregs(X86CPU *cpu)
3500 {
3501     CPUX86State *env = &cpu->env;
3502     struct kvm_sregs sregs;
3503 
3504     /*
3505      * The interrupt_bitmap is ignored because KVM_SET_SREGS is
3506      * always followed by KVM_SET_VCPU_EVENTS.
3507      */
3508     memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
3509 
3510     if ((env->eflags & VM_MASK)) {
3511         set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
3512         set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
3513         set_v8086_seg(&sregs.es, &env->segs[R_ES]);
3514         set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
3515         set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
3516         set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
3517     } else {
3518         set_seg(&sregs.cs, &env->segs[R_CS]);
3519         set_seg(&sregs.ds, &env->segs[R_DS]);
3520         set_seg(&sregs.es, &env->segs[R_ES]);
3521         set_seg(&sregs.fs, &env->segs[R_FS]);
3522         set_seg(&sregs.gs, &env->segs[R_GS]);
3523         set_seg(&sregs.ss, &env->segs[R_SS]);
3524     }
3525 
3526     set_seg(&sregs.tr, &env->tr);
3527     set_seg(&sregs.ldt, &env->ldt);
3528 
3529     sregs.idt.limit = env->idt.limit;
3530     sregs.idt.base = env->idt.base;
3531     memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
3532     sregs.gdt.limit = env->gdt.limit;
3533     sregs.gdt.base = env->gdt.base;
3534     memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
3535 
3536     sregs.cr0 = env->cr[0];
3537     sregs.cr2 = env->cr[2];
3538     sregs.cr3 = env->cr[3];
3539     sregs.cr4 = env->cr[4];
3540 
3541     sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
3542     sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
3543 
3544     sregs.efer = env->efer;
3545 
3546     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
3547 }
3548 
kvm_put_sregs2(X86CPU * cpu)3549 static int kvm_put_sregs2(X86CPU *cpu)
3550 {
3551     CPUX86State *env = &cpu->env;
3552     struct kvm_sregs2 sregs;
3553     int i;
3554 
3555     sregs.flags = 0;
3556 
3557     if ((env->eflags & VM_MASK)) {
3558         set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
3559         set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
3560         set_v8086_seg(&sregs.es, &env->segs[R_ES]);
3561         set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
3562         set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
3563         set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
3564     } else {
3565         set_seg(&sregs.cs, &env->segs[R_CS]);
3566         set_seg(&sregs.ds, &env->segs[R_DS]);
3567         set_seg(&sregs.es, &env->segs[R_ES]);
3568         set_seg(&sregs.fs, &env->segs[R_FS]);
3569         set_seg(&sregs.gs, &env->segs[R_GS]);
3570         set_seg(&sregs.ss, &env->segs[R_SS]);
3571     }
3572 
3573     set_seg(&sregs.tr, &env->tr);
3574     set_seg(&sregs.ldt, &env->ldt);
3575 
3576     sregs.idt.limit = env->idt.limit;
3577     sregs.idt.base = env->idt.base;
3578     memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
3579     sregs.gdt.limit = env->gdt.limit;
3580     sregs.gdt.base = env->gdt.base;
3581     memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
3582 
3583     sregs.cr0 = env->cr[0];
3584     sregs.cr2 = env->cr[2];
3585     sregs.cr3 = env->cr[3];
3586     sregs.cr4 = env->cr[4];
3587 
3588     sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
3589     sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
3590 
3591     sregs.efer = env->efer;
3592 
3593     if (env->pdptrs_valid) {
3594         for (i = 0; i < 4; i++) {
3595             sregs.pdptrs[i] = env->pdptrs[i];
3596         }
3597         sregs.flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
3598     }
3599 
3600     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS2, &sregs);
3601 }
3602 
3603 
kvm_msr_buf_reset(X86CPU * cpu)3604 static void kvm_msr_buf_reset(X86CPU *cpu)
3605 {
3606     memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
3607 }
3608 
kvm_msr_entry_add(X86CPU * cpu,uint32_t index,uint64_t value)3609 static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
3610 {
3611     struct kvm_msrs *msrs = cpu->kvm_msr_buf;
3612     void *limit = ((void *)msrs) + MSR_BUF_SIZE;
3613     struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
3614 
3615     assert((void *)(entry + 1) <= limit);
3616 
3617     entry->index = index;
3618     entry->reserved = 0;
3619     entry->data = value;
3620     msrs->nmsrs++;
3621 }
3622 
kvm_put_one_msr(X86CPU * cpu,int index,uint64_t value)3623 static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
3624 {
3625     kvm_msr_buf_reset(cpu);
3626     kvm_msr_entry_add(cpu, index, value);
3627 
3628     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
3629 }
3630 
kvm_get_one_msr(X86CPU * cpu,int index,uint64_t * value)3631 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value)
3632 {
3633     int ret;
3634     struct {
3635         struct kvm_msrs info;
3636         struct kvm_msr_entry entries[1];
3637     } msr_data = {
3638         .info.nmsrs = 1,
3639         .entries[0].index = index,
3640     };
3641 
3642     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
3643     if (ret < 0) {
3644         return ret;
3645     }
3646     assert(ret == 1);
3647     *value = msr_data.entries[0].data;
3648     return ret;
3649 }
kvm_put_apicbase(X86CPU * cpu,uint64_t value)3650 void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
3651 {
3652     int ret;
3653 
3654     ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
3655     assert(ret == 1);
3656 }
3657 
kvm_put_tscdeadline_msr(X86CPU * cpu)3658 static int kvm_put_tscdeadline_msr(X86CPU *cpu)
3659 {
3660     CPUX86State *env = &cpu->env;
3661     int ret;
3662 
3663     if (!has_msr_tsc_deadline) {
3664         return 0;
3665     }
3666 
3667     ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
3668     if (ret < 0) {
3669         return ret;
3670     }
3671 
3672     assert(ret == 1);
3673     return 0;
3674 }
3675 
3676 /*
3677  * Provide a separate write service for the feature control MSR in order to
3678  * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
3679  * before writing any other state because forcibly leaving nested mode
3680  * invalidates the VCPU state.
3681  */
kvm_put_msr_feature_control(X86CPU * cpu)3682 static int kvm_put_msr_feature_control(X86CPU *cpu)
3683 {
3684     int ret;
3685 
3686     if (!has_msr_feature_control) {
3687         return 0;
3688     }
3689 
3690     ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
3691                           cpu->env.msr_ia32_feature_control);
3692     if (ret < 0) {
3693         return ret;
3694     }
3695 
3696     assert(ret == 1);
3697     return 0;
3698 }
3699 
make_vmx_msr_value(uint32_t index,uint32_t features)3700 static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features)
3701 {
3702     uint32_t default1, can_be_one, can_be_zero;
3703     uint32_t must_be_one;
3704 
3705     switch (index) {
3706     case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3707         default1 = 0x00000016;
3708         break;
3709     case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3710         default1 = 0x0401e172;
3711         break;
3712     case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3713         default1 = 0x000011ff;
3714         break;
3715     case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3716         default1 = 0x00036dff;
3717         break;
3718     case MSR_IA32_VMX_PROCBASED_CTLS2:
3719         default1 = 0;
3720         break;
3721     default:
3722         abort();
3723     }
3724 
3725     /* If a feature bit is set, the control can be either set or clear.
3726      * Otherwise the value is limited to either 0 or 1 by default1.
3727      */
3728     can_be_one = features | default1;
3729     can_be_zero = features | ~default1;
3730     must_be_one = ~can_be_zero;
3731 
3732     /*
3733      * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one).
3734      * Bit 32:63 -> 1 if the control bit can be one.
3735      */
3736     return must_be_one | (((uint64_t)can_be_one) << 32);
3737 }
3738 
kvm_msr_entry_add_vmx(X86CPU * cpu,FeatureWordArray f)3739 static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f)
3740 {
3741     uint64_t kvm_vmx_basic =
3742         kvm_arch_get_supported_msr_feature(kvm_state,
3743                                            MSR_IA32_VMX_BASIC);
3744 
3745     if (!kvm_vmx_basic) {
3746         /* If the kernel doesn't support VMX feature (kvm_intel.nested=0),
3747          * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail.
3748          */
3749         return;
3750     }
3751 
3752     uint64_t kvm_vmx_misc =
3753         kvm_arch_get_supported_msr_feature(kvm_state,
3754                                            MSR_IA32_VMX_MISC);
3755     uint64_t kvm_vmx_ept_vpid =
3756         kvm_arch_get_supported_msr_feature(kvm_state,
3757                                            MSR_IA32_VMX_EPT_VPID_CAP);
3758 
3759     /*
3760      * If the guest is 64-bit, a value of 1 is allowed for the host address
3761      * space size vmexit control.
3762      */
3763     uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM
3764         ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0;
3765 
3766     /*
3767      * Bits 0-30, 32-44 and 50-53 come from the host.  KVM should
3768      * not change them for backwards compatibility.
3769      */
3770     uint64_t fixed_vmx_basic = kvm_vmx_basic &
3771         (MSR_VMX_BASIC_VMCS_REVISION_MASK |
3772          MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK |
3773          MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK);
3774 
3775     /*
3776      * Same for bits 0-4 and 25-27.  Bits 16-24 (CR3 target count) can
3777      * change in the future but are always zero for now, clear them to be
3778      * future proof.  Bits 32-63 in theory could change, though KVM does
3779      * not support dual-monitor treatment and probably never will; mask
3780      * them out as well.
3781      */
3782     uint64_t fixed_vmx_misc = kvm_vmx_misc &
3783         (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK |
3784          MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK);
3785 
3786     /*
3787      * EPT memory types should not change either, so we do not bother
3788      * adding features for them.
3789      */
3790     uint64_t fixed_vmx_ept_mask =
3791             (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ?
3792              MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0);
3793     uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask;
3794 
3795     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3796                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3797                                          f[FEAT_VMX_PROCBASED_CTLS]));
3798     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3799                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3800                                          f[FEAT_VMX_PINBASED_CTLS]));
3801     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS,
3802                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS,
3803                                          f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit);
3804     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3805                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3806                                          f[FEAT_VMX_ENTRY_CTLS]));
3807     kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2,
3808                       make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2,
3809                                          f[FEAT_VMX_SECONDARY_CTLS]));
3810     kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP,
3811                       f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid);
3812     kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC,
3813                       f[FEAT_VMX_BASIC] | fixed_vmx_basic);
3814     kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC,
3815                       f[FEAT_VMX_MISC] | fixed_vmx_misc);
3816     if (has_msr_vmx_vmfunc) {
3817         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]);
3818     }
3819 
3820     /*
3821      * Just to be safe, write these with constant values.  The CRn_FIXED1
3822      * MSRs are generated by KVM based on the vCPU's CPUID.
3823      */
3824     kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0,
3825                       CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK);
3826     kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0,
3827                       CR4_VMXE_MASK);
3828 
3829     if (f[FEAT_7_1_EAX] & CPUID_7_1_EAX_FRED) {
3830         /* FRED injected-event data (0x2052).  */
3831         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x52);
3832     } else if (f[FEAT_VMX_EXIT_CTLS] &
3833                VMX_VM_EXIT_ACTIVATE_SECONDARY_CONTROLS) {
3834         /* Secondary VM-exit controls (0x2044).  */
3835         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x44);
3836     } else if (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_TSC_SCALING) {
3837         /* TSC multiplier (0x2032).  */
3838         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x32);
3839     } else {
3840         /* Preemption timer (0x482E).  */
3841         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x2E);
3842     }
3843 }
3844 
kvm_msr_entry_add_perf(X86CPU * cpu,FeatureWordArray f)3845 static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f)
3846 {
3847     uint64_t kvm_perf_cap =
3848         kvm_arch_get_supported_msr_feature(kvm_state,
3849                                            MSR_IA32_PERF_CAPABILITIES);
3850 
3851     if (kvm_perf_cap) {
3852         kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES,
3853                         kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]);
3854     }
3855 }
3856 
kvm_buf_set_msrs(X86CPU * cpu)3857 static int kvm_buf_set_msrs(X86CPU *cpu)
3858 {
3859     int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
3860     if (ret < 0) {
3861         return ret;
3862     }
3863 
3864     if (ret < cpu->kvm_msr_buf->nmsrs) {
3865         struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
3866         error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
3867                      (uint32_t)e->index, (uint64_t)e->data);
3868     }
3869 
3870     assert(ret == cpu->kvm_msr_buf->nmsrs);
3871     return 0;
3872 }
3873 
kvm_init_msrs(X86CPU * cpu)3874 static void kvm_init_msrs(X86CPU *cpu)
3875 {
3876     CPUX86State *env = &cpu->env;
3877 
3878     kvm_msr_buf_reset(cpu);
3879 
3880     if (!is_tdx_vm()) {
3881         if (has_msr_arch_capabs) {
3882             kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES,
3883                                 env->features[FEAT_ARCH_CAPABILITIES]);
3884         }
3885 
3886         if (has_msr_core_capabs) {
3887             kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY,
3888                                 env->features[FEAT_CORE_CAPABILITY]);
3889         }
3890 
3891         if (has_msr_perf_capabs && cpu->enable_pmu) {
3892             kvm_msr_entry_add_perf(cpu, env->features);
3893         }
3894 
3895         /*
3896          * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but
3897          * all kernels with MSR features should have them.
3898          */
3899         if (kvm_feature_msrs && cpu_has_vmx(env)) {
3900             kvm_msr_entry_add_vmx(cpu, env->features);
3901         }
3902     }
3903 
3904     if (has_msr_ucode_rev) {
3905         kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev);
3906     }
3907     assert(kvm_buf_set_msrs(cpu) == 0);
3908 }
3909 
kvm_put_msrs(X86CPU * cpu,int level)3910 static int kvm_put_msrs(X86CPU *cpu, int level)
3911 {
3912     CPUX86State *env = &cpu->env;
3913     int i;
3914 
3915     kvm_msr_buf_reset(cpu);
3916 
3917     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
3918     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
3919     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
3920     kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
3921     if (has_msr_star) {
3922         kvm_msr_entry_add(cpu, MSR_STAR, env->star);
3923     }
3924     if (has_msr_hsave_pa) {
3925         kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
3926     }
3927     if (has_msr_tsc_aux) {
3928         kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
3929     }
3930     if (has_msr_tsc_adjust) {
3931         kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
3932     }
3933     if (has_msr_misc_enable) {
3934         kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
3935                           env->msr_ia32_misc_enable);
3936     }
3937     if (has_msr_smbase) {
3938         kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
3939     }
3940     if (has_msr_smi_count) {
3941         kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
3942     }
3943     if (has_msr_pkrs) {
3944         kvm_msr_entry_add(cpu, MSR_IA32_PKRS, env->pkrs);
3945     }
3946     if (has_msr_bndcfgs) {
3947         kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
3948     }
3949     if (has_msr_xss) {
3950         kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
3951     }
3952     if (has_msr_umwait) {
3953         kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait);
3954     }
3955     if (has_msr_spec_ctrl) {
3956         kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
3957     }
3958     if (has_tsc_scale_msr) {
3959         kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, env->amd_tsc_scale_msr);
3960     }
3961 
3962     if (has_msr_tsx_ctrl) {
3963         kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl);
3964     }
3965     if (has_msr_virt_ssbd) {
3966         kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
3967     }
3968     if (has_msr_hwcr) {
3969         kvm_msr_entry_add(cpu, MSR_K7_HWCR, env->msr_hwcr);
3970     }
3971 
3972 #ifdef TARGET_X86_64
3973     if (lm_capable_kernel) {
3974         kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
3975         kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
3976         kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
3977         kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
3978         if (env->features[FEAT_7_1_EAX] & CPUID_7_1_EAX_FRED) {
3979             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP0, env->fred_rsp0);
3980             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP1, env->fred_rsp1);
3981             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP2, env->fred_rsp2);
3982             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP3, env->fred_rsp3);
3983             kvm_msr_entry_add(cpu, MSR_IA32_FRED_STKLVLS, env->fred_stklvls);
3984             kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP1, env->fred_ssp1);
3985             kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP2, env->fred_ssp2);
3986             kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP3, env->fred_ssp3);
3987             kvm_msr_entry_add(cpu, MSR_IA32_FRED_CONFIG, env->fred_config);
3988         }
3989     }
3990 #endif
3991 
3992     /*
3993      * The following MSRs have side effects on the guest or are too heavy
3994      * for normal writeback. Limit them to reset or full state updates.
3995      */
3996     if (level >= KVM_PUT_RESET_STATE) {
3997         kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
3998         if (env->features[FEAT_KVM] & (CPUID_KVM_CLOCK | CPUID_KVM_CLOCK2)) {
3999             kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
4000             kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
4001         }
4002         if (env->features[FEAT_KVM] & CPUID_KVM_ASYNCPF_INT) {
4003             kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, env->async_pf_int_msr);
4004         }
4005         if (env->features[FEAT_KVM] & CPUID_KVM_ASYNCPF) {
4006             kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
4007         }
4008         if (env->features[FEAT_KVM] & CPUID_KVM_PV_EOI) {
4009             kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
4010         }
4011         if (env->features[FEAT_KVM] & CPUID_KVM_STEAL_TIME) {
4012             kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
4013         }
4014 
4015         if (env->features[FEAT_KVM] & CPUID_KVM_POLL_CONTROL) {
4016             kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr);
4017         }
4018 
4019         if (has_architectural_pmu_version > 0) {
4020             if (has_architectural_pmu_version > 1) {
4021                 /* Stop the counter.  */
4022                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
4023                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
4024             }
4025 
4026             /* Set the counter values.  */
4027             for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
4028                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
4029                                   env->msr_fixed_counters[i]);
4030             }
4031             for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
4032                 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
4033                                   env->msr_gp_counters[i]);
4034                 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
4035                                   env->msr_gp_evtsel[i]);
4036             }
4037             if (has_architectural_pmu_version > 1) {
4038                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
4039                                   env->msr_global_status);
4040                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
4041                                   env->msr_global_ovf_ctrl);
4042 
4043                 /* Now start the PMU.  */
4044                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
4045                                   env->msr_fixed_ctr_ctrl);
4046                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
4047                                   env->msr_global_ctrl);
4048             }
4049         }
4050         /*
4051          * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
4052          * only sync them to KVM on the first cpu
4053          */
4054         if (current_cpu == first_cpu) {
4055             if (has_msr_hv_hypercall) {
4056                 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
4057                                   env->msr_hv_guest_os_id);
4058                 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
4059                                   env->msr_hv_hypercall);
4060             }
4061             if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
4062                 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
4063                                   env->msr_hv_tsc);
4064             }
4065             if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
4066                 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
4067                                   env->msr_hv_reenlightenment_control);
4068                 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
4069                                   env->msr_hv_tsc_emulation_control);
4070                 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
4071                                   env->msr_hv_tsc_emulation_status);
4072             }
4073             if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG) &&
4074                 has_msr_hv_syndbg_options) {
4075                 kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS,
4076                                   hyperv_syndbg_query_options());
4077             }
4078         }
4079         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
4080             kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
4081                               env->msr_hv_vapic);
4082         }
4083         if (has_msr_hv_crash) {
4084             int j;
4085 
4086             for (j = 0; j < HV_CRASH_PARAMS; j++)
4087                 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
4088                                   env->msr_hv_crash_params[j]);
4089 
4090             kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
4091         }
4092         if (has_msr_hv_runtime) {
4093             kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
4094         }
4095         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)
4096             && hv_vpindex_settable) {
4097             kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
4098                               hyperv_vp_index(CPU(cpu)));
4099         }
4100         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
4101             int j;
4102 
4103             kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
4104 
4105             kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
4106                               env->msr_hv_synic_control);
4107             kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
4108                               env->msr_hv_synic_evt_page);
4109             kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
4110                               env->msr_hv_synic_msg_page);
4111 
4112             for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
4113                 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
4114                                   env->msr_hv_synic_sint[j]);
4115             }
4116         }
4117         if (has_msr_hv_stimer) {
4118             int j;
4119 
4120             for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
4121                 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
4122                                 env->msr_hv_stimer_config[j]);
4123             }
4124 
4125             for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
4126                 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
4127                                 env->msr_hv_stimer_count[j]);
4128             }
4129         }
4130         if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
4131             uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
4132 
4133             kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
4134             kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
4135             kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
4136             kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
4137             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
4138             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
4139             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
4140             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
4141             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
4142             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
4143             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
4144             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
4145             for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
4146                 /* The CPU GPs if we write to a bit above the physical limit of
4147                  * the host CPU (and KVM emulates that)
4148                  */
4149                 uint64_t mask = env->mtrr_var[i].mask;
4150                 mask &= phys_mask;
4151 
4152                 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
4153                                   env->mtrr_var[i].base);
4154                 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
4155             }
4156         }
4157         if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
4158             int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
4159                                                     0x14, 1, R_EAX) & 0x7;
4160 
4161             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
4162                             env->msr_rtit_ctrl);
4163             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
4164                             env->msr_rtit_status);
4165             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
4166                             env->msr_rtit_output_base);
4167             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
4168                             env->msr_rtit_output_mask);
4169             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
4170                             env->msr_rtit_cr3_match);
4171             for (i = 0; i < addr_num; i++) {
4172                 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
4173                             env->msr_rtit_addrs[i]);
4174             }
4175         }
4176 
4177         if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
4178             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0,
4179                               env->msr_ia32_sgxlepubkeyhash[0]);
4180             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1,
4181                               env->msr_ia32_sgxlepubkeyhash[1]);
4182             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2,
4183                               env->msr_ia32_sgxlepubkeyhash[2]);
4184             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3,
4185                               env->msr_ia32_sgxlepubkeyhash[3]);
4186         }
4187 
4188         if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) {
4189             kvm_msr_entry_add(cpu, MSR_IA32_XFD,
4190                               env->msr_xfd);
4191             kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR,
4192                               env->msr_xfd_err);
4193         }
4194 
4195         if (kvm_enabled() && cpu->enable_pmu &&
4196             (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) {
4197             uint64_t depth;
4198             int ret;
4199 
4200             /*
4201              * Only migrate Arch LBR states when the host Arch LBR depth
4202              * equals that of source guest's, this is to avoid mismatch
4203              * of guest/host config for the msr hence avoid unexpected
4204              * misbehavior.
4205              */
4206             ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth);
4207 
4208             if (ret == 1 && !!depth && depth == env->msr_lbr_depth) {
4209                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, env->msr_lbr_ctl);
4210                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, env->msr_lbr_depth);
4211 
4212                 for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) {
4213                     if (!env->lbr_records[i].from) {
4214                         continue;
4215                     }
4216                     kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i,
4217                                       env->lbr_records[i].from);
4218                     kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i,
4219                                       env->lbr_records[i].to);
4220                     kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i,
4221                                       env->lbr_records[i].info);
4222                 }
4223             }
4224         }
4225 
4226         /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
4227          *       kvm_put_msr_feature_control. */
4228     }
4229 
4230     if (env->mcg_cap) {
4231         kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
4232         kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
4233         if (has_msr_mcg_ext_ctl) {
4234             kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
4235         }
4236         for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
4237             kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
4238         }
4239     }
4240 
4241     return kvm_buf_set_msrs(cpu);
4242 }
4243 
4244 
kvm_get_xsave(X86CPU * cpu)4245 static int kvm_get_xsave(X86CPU *cpu)
4246 {
4247     CPUX86State *env = &cpu->env;
4248     void *xsave = env->xsave_buf;
4249     unsigned long type;
4250     int ret;
4251 
4252     type = has_xsave2 ? KVM_GET_XSAVE2 : KVM_GET_XSAVE;
4253     ret = kvm_vcpu_ioctl(CPU(cpu), type, xsave);
4254     if (ret < 0) {
4255         return ret;
4256     }
4257     x86_cpu_xrstor_all_areas(cpu, xsave, env->xsave_buf_len);
4258 
4259     return 0;
4260 }
4261 
kvm_get_xcrs(X86CPU * cpu)4262 static int kvm_get_xcrs(X86CPU *cpu)
4263 {
4264     CPUX86State *env = &cpu->env;
4265     int i, ret;
4266     struct kvm_xcrs xcrs;
4267 
4268     if (!has_xcrs) {
4269         return 0;
4270     }
4271 
4272     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
4273     if (ret < 0) {
4274         return ret;
4275     }
4276 
4277     for (i = 0; i < xcrs.nr_xcrs; i++) {
4278         /* Only support xcr0 now */
4279         if (xcrs.xcrs[i].xcr == 0) {
4280             env->xcr0 = xcrs.xcrs[i].value;
4281             break;
4282         }
4283     }
4284     return 0;
4285 }
4286 
kvm_get_sregs(X86CPU * cpu)4287 static int kvm_get_sregs(X86CPU *cpu)
4288 {
4289     CPUX86State *env = &cpu->env;
4290     struct kvm_sregs sregs;
4291     int ret;
4292 
4293     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
4294     if (ret < 0) {
4295         return ret;
4296     }
4297 
4298     /*
4299      * The interrupt_bitmap is ignored because KVM_GET_SREGS is
4300      * always preceded by KVM_GET_VCPU_EVENTS.
4301      */
4302 
4303     get_seg(&env->segs[R_CS], &sregs.cs);
4304     get_seg(&env->segs[R_DS], &sregs.ds);
4305     get_seg(&env->segs[R_ES], &sregs.es);
4306     get_seg(&env->segs[R_FS], &sregs.fs);
4307     get_seg(&env->segs[R_GS], &sregs.gs);
4308     get_seg(&env->segs[R_SS], &sregs.ss);
4309 
4310     get_seg(&env->tr, &sregs.tr);
4311     get_seg(&env->ldt, &sregs.ldt);
4312 
4313     env->idt.limit = sregs.idt.limit;
4314     env->idt.base = sregs.idt.base;
4315     env->gdt.limit = sregs.gdt.limit;
4316     env->gdt.base = sregs.gdt.base;
4317 
4318     env->cr[0] = sregs.cr0;
4319     env->cr[2] = sregs.cr2;
4320     env->cr[3] = sregs.cr3;
4321     env->cr[4] = sregs.cr4;
4322 
4323     env->efer = sregs.efer;
4324     if (sev_es_enabled() && env->efer & MSR_EFER_LME &&
4325         env->cr[0] & CR0_PG_MASK) {
4326         env->efer |= MSR_EFER_LMA;
4327     }
4328 
4329     /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
4330     x86_update_hflags(env);
4331 
4332     return 0;
4333 }
4334 
kvm_get_sregs2(X86CPU * cpu)4335 static int kvm_get_sregs2(X86CPU *cpu)
4336 {
4337     CPUX86State *env = &cpu->env;
4338     struct kvm_sregs2 sregs;
4339     int i, ret;
4340 
4341     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS2, &sregs);
4342     if (ret < 0) {
4343         return ret;
4344     }
4345 
4346     get_seg(&env->segs[R_CS], &sregs.cs);
4347     get_seg(&env->segs[R_DS], &sregs.ds);
4348     get_seg(&env->segs[R_ES], &sregs.es);
4349     get_seg(&env->segs[R_FS], &sregs.fs);
4350     get_seg(&env->segs[R_GS], &sregs.gs);
4351     get_seg(&env->segs[R_SS], &sregs.ss);
4352 
4353     get_seg(&env->tr, &sregs.tr);
4354     get_seg(&env->ldt, &sregs.ldt);
4355 
4356     env->idt.limit = sregs.idt.limit;
4357     env->idt.base = sregs.idt.base;
4358     env->gdt.limit = sregs.gdt.limit;
4359     env->gdt.base = sregs.gdt.base;
4360 
4361     env->cr[0] = sregs.cr0;
4362     env->cr[2] = sregs.cr2;
4363     env->cr[3] = sregs.cr3;
4364     env->cr[4] = sregs.cr4;
4365 
4366     env->efer = sregs.efer;
4367     if (sev_es_enabled() && env->efer & MSR_EFER_LME &&
4368         env->cr[0] & CR0_PG_MASK) {
4369         env->efer |= MSR_EFER_LMA;
4370     }
4371 
4372     env->pdptrs_valid = sregs.flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
4373 
4374     if (env->pdptrs_valid) {
4375         for (i = 0; i < 4; i++) {
4376             env->pdptrs[i] = sregs.pdptrs[i];
4377         }
4378     }
4379 
4380     /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
4381     x86_update_hflags(env);
4382 
4383     return 0;
4384 }
4385 
kvm_get_msrs(X86CPU * cpu)4386 static int kvm_get_msrs(X86CPU *cpu)
4387 {
4388     CPUX86State *env = &cpu->env;
4389     struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
4390     int ret, i;
4391     uint64_t mtrr_top_bits;
4392 
4393     kvm_msr_buf_reset(cpu);
4394 
4395     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
4396     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
4397     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
4398     kvm_msr_entry_add(cpu, MSR_PAT, 0);
4399     if (has_msr_star) {
4400         kvm_msr_entry_add(cpu, MSR_STAR, 0);
4401     }
4402     if (has_msr_hsave_pa) {
4403         kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
4404     }
4405     if (has_msr_tsc_aux) {
4406         kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
4407     }
4408     if (has_msr_tsc_adjust) {
4409         kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
4410     }
4411     if (has_msr_tsc_deadline) {
4412         kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
4413     }
4414     if (has_msr_misc_enable) {
4415         kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
4416     }
4417     if (has_msr_smbase) {
4418         kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
4419     }
4420     if (has_msr_smi_count) {
4421         kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
4422     }
4423     if (has_msr_feature_control) {
4424         kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
4425     }
4426     if (has_msr_pkrs) {
4427         kvm_msr_entry_add(cpu, MSR_IA32_PKRS, 0);
4428     }
4429     if (has_msr_bndcfgs) {
4430         kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
4431     }
4432     if (has_msr_xss) {
4433         kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
4434     }
4435     if (has_msr_umwait) {
4436         kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0);
4437     }
4438     if (has_msr_spec_ctrl) {
4439         kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
4440     }
4441     if (has_tsc_scale_msr) {
4442         kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, 0);
4443     }
4444 
4445     if (has_msr_tsx_ctrl) {
4446         kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0);
4447     }
4448     if (has_msr_virt_ssbd) {
4449         kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
4450     }
4451     if (!env->tsc_valid) {
4452         kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
4453         env->tsc_valid = !runstate_is_running();
4454     }
4455     if (has_msr_hwcr) {
4456         kvm_msr_entry_add(cpu, MSR_K7_HWCR, 0);
4457     }
4458 
4459 #ifdef TARGET_X86_64
4460     if (lm_capable_kernel) {
4461         kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
4462         kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
4463         kvm_msr_entry_add(cpu, MSR_FMASK, 0);
4464         kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
4465         if (env->features[FEAT_7_1_EAX] & CPUID_7_1_EAX_FRED) {
4466             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP0, 0);
4467             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP1, 0);
4468             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP2, 0);
4469             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP3, 0);
4470             kvm_msr_entry_add(cpu, MSR_IA32_FRED_STKLVLS, 0);
4471             kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP1, 0);
4472             kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP2, 0);
4473             kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP3, 0);
4474             kvm_msr_entry_add(cpu, MSR_IA32_FRED_CONFIG, 0);
4475         }
4476     }
4477 #endif
4478     if (env->features[FEAT_KVM] & (CPUID_KVM_CLOCK | CPUID_KVM_CLOCK2)) {
4479         kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
4480         kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
4481     }
4482     if (env->features[FEAT_KVM] & CPUID_KVM_ASYNCPF_INT) {
4483         kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, 0);
4484     }
4485     if (env->features[FEAT_KVM] & CPUID_KVM_ASYNCPF) {
4486         kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
4487     }
4488     if (env->features[FEAT_KVM] & CPUID_KVM_PV_EOI) {
4489         kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
4490     }
4491     if (env->features[FEAT_KVM] & CPUID_KVM_STEAL_TIME) {
4492         kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
4493     }
4494     if (env->features[FEAT_KVM] & CPUID_KVM_POLL_CONTROL) {
4495         kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1);
4496     }
4497     if (has_architectural_pmu_version > 0) {
4498         if (has_architectural_pmu_version > 1) {
4499             kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
4500             kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
4501             kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
4502             kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
4503         }
4504         for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
4505             kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
4506         }
4507         for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
4508             kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
4509             kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
4510         }
4511     }
4512 
4513     if (env->mcg_cap) {
4514         kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
4515         kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
4516         if (has_msr_mcg_ext_ctl) {
4517             kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
4518         }
4519         for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
4520             kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
4521         }
4522     }
4523 
4524     if (has_msr_hv_hypercall) {
4525         kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
4526         kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
4527     }
4528     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
4529         kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
4530     }
4531     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
4532         kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
4533     }
4534     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
4535         kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
4536         kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
4537         kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
4538     }
4539     if (has_msr_hv_syndbg_options) {
4540         kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS, 0);
4541     }
4542     if (has_msr_hv_crash) {
4543         int j;
4544 
4545         for (j = 0; j < HV_CRASH_PARAMS; j++) {
4546             kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
4547         }
4548     }
4549     if (has_msr_hv_runtime) {
4550         kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
4551     }
4552     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
4553         uint32_t msr;
4554 
4555         kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
4556         kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
4557         kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
4558         for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
4559             kvm_msr_entry_add(cpu, msr, 0);
4560         }
4561     }
4562     if (has_msr_hv_stimer) {
4563         uint32_t msr;
4564 
4565         for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
4566              msr++) {
4567             kvm_msr_entry_add(cpu, msr, 0);
4568         }
4569     }
4570     if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
4571         kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
4572         kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
4573         kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
4574         kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
4575         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
4576         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
4577         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
4578         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
4579         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
4580         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
4581         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
4582         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
4583         for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
4584             kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
4585             kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
4586         }
4587     }
4588 
4589     if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
4590         int addr_num =
4591             kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
4592 
4593         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
4594         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
4595         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
4596         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
4597         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
4598         for (i = 0; i < addr_num; i++) {
4599             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
4600         }
4601     }
4602 
4603     if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
4604         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 0);
4605         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 0);
4606         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 0);
4607         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 0);
4608     }
4609 
4610     if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) {
4611         kvm_msr_entry_add(cpu, MSR_IA32_XFD, 0);
4612         kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR, 0);
4613     }
4614 
4615     if (kvm_enabled() && cpu->enable_pmu &&
4616         (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) {
4617         uint64_t depth;
4618 
4619         ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth);
4620         if (ret == 1 && depth == ARCH_LBR_NR_ENTRIES) {
4621             kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, 0);
4622             kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, 0);
4623 
4624             for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) {
4625                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i, 0);
4626                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i, 0);
4627                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i, 0);
4628             }
4629         }
4630     }
4631 
4632     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
4633     if (ret < 0) {
4634         return ret;
4635     }
4636 
4637     if (ret < cpu->kvm_msr_buf->nmsrs) {
4638         struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
4639         error_report("error: failed to get MSR 0x%" PRIx32,
4640                      (uint32_t)e->index);
4641     }
4642 
4643     assert(ret == cpu->kvm_msr_buf->nmsrs);
4644     /*
4645      * MTRR masks: Each mask consists of 5 parts
4646      * a  10..0: must be zero
4647      * b  11   : valid bit
4648      * c n-1.12: actual mask bits
4649      * d  51..n: reserved must be zero
4650      * e  63.52: reserved must be zero
4651      *
4652      * 'n' is the number of physical bits supported by the CPU and is
4653      * apparently always <= 52.   We know our 'n' but don't know what
4654      * the destinations 'n' is; it might be smaller, in which case
4655      * it masks (c) on loading. It might be larger, in which case
4656      * we fill 'd' so that d..c is consistent irrespetive of the 'n'
4657      * we're migrating to.
4658      */
4659 
4660     if (cpu->fill_mtrr_mask) {
4661         QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
4662         assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
4663         mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
4664     } else {
4665         mtrr_top_bits = 0;
4666     }
4667 
4668     for (i = 0; i < ret; i++) {
4669         uint32_t index = msrs[i].index;
4670         switch (index) {
4671         case MSR_IA32_SYSENTER_CS:
4672             env->sysenter_cs = msrs[i].data;
4673             break;
4674         case MSR_IA32_SYSENTER_ESP:
4675             env->sysenter_esp = msrs[i].data;
4676             break;
4677         case MSR_IA32_SYSENTER_EIP:
4678             env->sysenter_eip = msrs[i].data;
4679             break;
4680         case MSR_PAT:
4681             env->pat = msrs[i].data;
4682             break;
4683         case MSR_STAR:
4684             env->star = msrs[i].data;
4685             break;
4686 #ifdef TARGET_X86_64
4687         case MSR_CSTAR:
4688             env->cstar = msrs[i].data;
4689             break;
4690         case MSR_KERNELGSBASE:
4691             env->kernelgsbase = msrs[i].data;
4692             break;
4693         case MSR_FMASK:
4694             env->fmask = msrs[i].data;
4695             break;
4696         case MSR_LSTAR:
4697             env->lstar = msrs[i].data;
4698             break;
4699         case MSR_IA32_FRED_RSP0:
4700             env->fred_rsp0 = msrs[i].data;
4701             break;
4702         case MSR_IA32_FRED_RSP1:
4703             env->fred_rsp1 = msrs[i].data;
4704             break;
4705         case MSR_IA32_FRED_RSP2:
4706             env->fred_rsp2 = msrs[i].data;
4707             break;
4708         case MSR_IA32_FRED_RSP3:
4709             env->fred_rsp3 = msrs[i].data;
4710             break;
4711         case MSR_IA32_FRED_STKLVLS:
4712             env->fred_stklvls = msrs[i].data;
4713             break;
4714         case MSR_IA32_FRED_SSP1:
4715             env->fred_ssp1 = msrs[i].data;
4716             break;
4717         case MSR_IA32_FRED_SSP2:
4718             env->fred_ssp2 = msrs[i].data;
4719             break;
4720         case MSR_IA32_FRED_SSP3:
4721             env->fred_ssp3 = msrs[i].data;
4722             break;
4723         case MSR_IA32_FRED_CONFIG:
4724             env->fred_config = msrs[i].data;
4725             break;
4726 #endif
4727         case MSR_IA32_TSC:
4728             env->tsc = msrs[i].data;
4729             break;
4730         case MSR_TSC_AUX:
4731             env->tsc_aux = msrs[i].data;
4732             break;
4733         case MSR_TSC_ADJUST:
4734             env->tsc_adjust = msrs[i].data;
4735             break;
4736         case MSR_IA32_TSCDEADLINE:
4737             env->tsc_deadline = msrs[i].data;
4738             break;
4739         case MSR_VM_HSAVE_PA:
4740             env->vm_hsave = msrs[i].data;
4741             break;
4742         case MSR_KVM_SYSTEM_TIME:
4743             env->system_time_msr = msrs[i].data;
4744             break;
4745         case MSR_KVM_WALL_CLOCK:
4746             env->wall_clock_msr = msrs[i].data;
4747             break;
4748         case MSR_MCG_STATUS:
4749             env->mcg_status = msrs[i].data;
4750             break;
4751         case MSR_MCG_CTL:
4752             env->mcg_ctl = msrs[i].data;
4753             break;
4754         case MSR_MCG_EXT_CTL:
4755             env->mcg_ext_ctl = msrs[i].data;
4756             break;
4757         case MSR_IA32_MISC_ENABLE:
4758             env->msr_ia32_misc_enable = msrs[i].data;
4759             break;
4760         case MSR_IA32_SMBASE:
4761             env->smbase = msrs[i].data;
4762             break;
4763         case MSR_SMI_COUNT:
4764             env->msr_smi_count = msrs[i].data;
4765             break;
4766         case MSR_IA32_FEATURE_CONTROL:
4767             env->msr_ia32_feature_control = msrs[i].data;
4768             break;
4769         case MSR_IA32_BNDCFGS:
4770             env->msr_bndcfgs = msrs[i].data;
4771             break;
4772         case MSR_IA32_XSS:
4773             env->xss = msrs[i].data;
4774             break;
4775         case MSR_IA32_UMWAIT_CONTROL:
4776             env->umwait = msrs[i].data;
4777             break;
4778         case MSR_IA32_PKRS:
4779             env->pkrs = msrs[i].data;
4780             break;
4781         default:
4782             if (msrs[i].index >= MSR_MC0_CTL &&
4783                 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
4784                 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
4785             }
4786             break;
4787         case MSR_KVM_ASYNC_PF_EN:
4788             env->async_pf_en_msr = msrs[i].data;
4789             break;
4790         case MSR_KVM_ASYNC_PF_INT:
4791             env->async_pf_int_msr = msrs[i].data;
4792             break;
4793         case MSR_KVM_PV_EOI_EN:
4794             env->pv_eoi_en_msr = msrs[i].data;
4795             break;
4796         case MSR_KVM_STEAL_TIME:
4797             env->steal_time_msr = msrs[i].data;
4798             break;
4799         case MSR_KVM_POLL_CONTROL: {
4800             env->poll_control_msr = msrs[i].data;
4801             break;
4802         }
4803         case MSR_CORE_PERF_FIXED_CTR_CTRL:
4804             env->msr_fixed_ctr_ctrl = msrs[i].data;
4805             break;
4806         case MSR_CORE_PERF_GLOBAL_CTRL:
4807             env->msr_global_ctrl = msrs[i].data;
4808             break;
4809         case MSR_CORE_PERF_GLOBAL_STATUS:
4810             env->msr_global_status = msrs[i].data;
4811             break;
4812         case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
4813             env->msr_global_ovf_ctrl = msrs[i].data;
4814             break;
4815         case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
4816             env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
4817             break;
4818         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
4819             env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
4820             break;
4821         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
4822             env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
4823             break;
4824         case HV_X64_MSR_HYPERCALL:
4825             env->msr_hv_hypercall = msrs[i].data;
4826             break;
4827         case HV_X64_MSR_GUEST_OS_ID:
4828             env->msr_hv_guest_os_id = msrs[i].data;
4829             break;
4830         case HV_X64_MSR_APIC_ASSIST_PAGE:
4831             env->msr_hv_vapic = msrs[i].data;
4832             break;
4833         case HV_X64_MSR_REFERENCE_TSC:
4834             env->msr_hv_tsc = msrs[i].data;
4835             break;
4836         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4837             env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
4838             break;
4839         case HV_X64_MSR_VP_RUNTIME:
4840             env->msr_hv_runtime = msrs[i].data;
4841             break;
4842         case HV_X64_MSR_SCONTROL:
4843             env->msr_hv_synic_control = msrs[i].data;
4844             break;
4845         case HV_X64_MSR_SIEFP:
4846             env->msr_hv_synic_evt_page = msrs[i].data;
4847             break;
4848         case HV_X64_MSR_SIMP:
4849             env->msr_hv_synic_msg_page = msrs[i].data;
4850             break;
4851         case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
4852             env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
4853             break;
4854         case HV_X64_MSR_STIMER0_CONFIG:
4855         case HV_X64_MSR_STIMER1_CONFIG:
4856         case HV_X64_MSR_STIMER2_CONFIG:
4857         case HV_X64_MSR_STIMER3_CONFIG:
4858             env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
4859                                 msrs[i].data;
4860             break;
4861         case HV_X64_MSR_STIMER0_COUNT:
4862         case HV_X64_MSR_STIMER1_COUNT:
4863         case HV_X64_MSR_STIMER2_COUNT:
4864         case HV_X64_MSR_STIMER3_COUNT:
4865             env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
4866                                 msrs[i].data;
4867             break;
4868         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4869             env->msr_hv_reenlightenment_control = msrs[i].data;
4870             break;
4871         case HV_X64_MSR_TSC_EMULATION_CONTROL:
4872             env->msr_hv_tsc_emulation_control = msrs[i].data;
4873             break;
4874         case HV_X64_MSR_TSC_EMULATION_STATUS:
4875             env->msr_hv_tsc_emulation_status = msrs[i].data;
4876             break;
4877         case HV_X64_MSR_SYNDBG_OPTIONS:
4878             env->msr_hv_syndbg_options = msrs[i].data;
4879             break;
4880         case MSR_MTRRdefType:
4881             env->mtrr_deftype = msrs[i].data;
4882             break;
4883         case MSR_MTRRfix64K_00000:
4884             env->mtrr_fixed[0] = msrs[i].data;
4885             break;
4886         case MSR_MTRRfix16K_80000:
4887             env->mtrr_fixed[1] = msrs[i].data;
4888             break;
4889         case MSR_MTRRfix16K_A0000:
4890             env->mtrr_fixed[2] = msrs[i].data;
4891             break;
4892         case MSR_MTRRfix4K_C0000:
4893             env->mtrr_fixed[3] = msrs[i].data;
4894             break;
4895         case MSR_MTRRfix4K_C8000:
4896             env->mtrr_fixed[4] = msrs[i].data;
4897             break;
4898         case MSR_MTRRfix4K_D0000:
4899             env->mtrr_fixed[5] = msrs[i].data;
4900             break;
4901         case MSR_MTRRfix4K_D8000:
4902             env->mtrr_fixed[6] = msrs[i].data;
4903             break;
4904         case MSR_MTRRfix4K_E0000:
4905             env->mtrr_fixed[7] = msrs[i].data;
4906             break;
4907         case MSR_MTRRfix4K_E8000:
4908             env->mtrr_fixed[8] = msrs[i].data;
4909             break;
4910         case MSR_MTRRfix4K_F0000:
4911             env->mtrr_fixed[9] = msrs[i].data;
4912             break;
4913         case MSR_MTRRfix4K_F8000:
4914             env->mtrr_fixed[10] = msrs[i].data;
4915             break;
4916         case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
4917             if (index & 1) {
4918                 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
4919                                                                mtrr_top_bits;
4920             } else {
4921                 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
4922             }
4923             break;
4924         case MSR_IA32_SPEC_CTRL:
4925             env->spec_ctrl = msrs[i].data;
4926             break;
4927         case MSR_AMD64_TSC_RATIO:
4928             env->amd_tsc_scale_msr = msrs[i].data;
4929             break;
4930         case MSR_IA32_TSX_CTRL:
4931             env->tsx_ctrl = msrs[i].data;
4932             break;
4933         case MSR_VIRT_SSBD:
4934             env->virt_ssbd = msrs[i].data;
4935             break;
4936         case MSR_IA32_RTIT_CTL:
4937             env->msr_rtit_ctrl = msrs[i].data;
4938             break;
4939         case MSR_IA32_RTIT_STATUS:
4940             env->msr_rtit_status = msrs[i].data;
4941             break;
4942         case MSR_IA32_RTIT_OUTPUT_BASE:
4943             env->msr_rtit_output_base = msrs[i].data;
4944             break;
4945         case MSR_IA32_RTIT_OUTPUT_MASK:
4946             env->msr_rtit_output_mask = msrs[i].data;
4947             break;
4948         case MSR_IA32_RTIT_CR3_MATCH:
4949             env->msr_rtit_cr3_match = msrs[i].data;
4950             break;
4951         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
4952             env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
4953             break;
4954         case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
4955             env->msr_ia32_sgxlepubkeyhash[index - MSR_IA32_SGXLEPUBKEYHASH0] =
4956                            msrs[i].data;
4957             break;
4958         case MSR_IA32_XFD:
4959             env->msr_xfd = msrs[i].data;
4960             break;
4961         case MSR_IA32_XFD_ERR:
4962             env->msr_xfd_err = msrs[i].data;
4963             break;
4964         case MSR_ARCH_LBR_CTL:
4965             env->msr_lbr_ctl = msrs[i].data;
4966             break;
4967         case MSR_ARCH_LBR_DEPTH:
4968             env->msr_lbr_depth = msrs[i].data;
4969             break;
4970         case MSR_ARCH_LBR_FROM_0 ... MSR_ARCH_LBR_FROM_0 + 31:
4971             env->lbr_records[index - MSR_ARCH_LBR_FROM_0].from = msrs[i].data;
4972             break;
4973         case MSR_ARCH_LBR_TO_0 ... MSR_ARCH_LBR_TO_0 + 31:
4974             env->lbr_records[index - MSR_ARCH_LBR_TO_0].to = msrs[i].data;
4975             break;
4976         case MSR_ARCH_LBR_INFO_0 ... MSR_ARCH_LBR_INFO_0 + 31:
4977             env->lbr_records[index - MSR_ARCH_LBR_INFO_0].info = msrs[i].data;
4978             break;
4979         case MSR_K7_HWCR:
4980             env->msr_hwcr = msrs[i].data;
4981             break;
4982         }
4983     }
4984 
4985     return 0;
4986 }
4987 
kvm_put_mp_state(X86CPU * cpu)4988 static int kvm_put_mp_state(X86CPU *cpu)
4989 {
4990     struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
4991 
4992     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
4993 }
4994 
kvm_get_mp_state(X86CPU * cpu)4995 static int kvm_get_mp_state(X86CPU *cpu)
4996 {
4997     CPUState *cs = CPU(cpu);
4998     CPUX86State *env = &cpu->env;
4999     struct kvm_mp_state mp_state;
5000     int ret;
5001 
5002     ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
5003     if (ret < 0) {
5004         return ret;
5005     }
5006     env->mp_state = mp_state.mp_state;
5007     if (kvm_irqchip_in_kernel()) {
5008         cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
5009     }
5010     return 0;
5011 }
5012 
kvm_get_apic(X86CPU * cpu)5013 static int kvm_get_apic(X86CPU *cpu)
5014 {
5015     DeviceState *apic = cpu->apic_state;
5016     struct kvm_lapic_state kapic;
5017     int ret;
5018 
5019     if (apic && kvm_irqchip_in_kernel()) {
5020         ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
5021         if (ret < 0) {
5022             return ret;
5023         }
5024 
5025         kvm_get_apic_state(apic, &kapic);
5026     }
5027     return 0;
5028 }
5029 
kvm_put_vcpu_events(X86CPU * cpu,int level)5030 static int kvm_put_vcpu_events(X86CPU *cpu, int level)
5031 {
5032     CPUState *cs = CPU(cpu);
5033     CPUX86State *env = &cpu->env;
5034     struct kvm_vcpu_events events = {};
5035 
5036     events.flags = 0;
5037 
5038     if (has_exception_payload) {
5039         events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5040         events.exception.pending = env->exception_pending;
5041         events.exception_has_payload = env->exception_has_payload;
5042         events.exception_payload = env->exception_payload;
5043     }
5044     events.exception.nr = env->exception_nr;
5045     events.exception.injected = env->exception_injected;
5046     events.exception.has_error_code = env->has_error_code;
5047     events.exception.error_code = env->error_code;
5048 
5049     events.interrupt.injected = (env->interrupt_injected >= 0);
5050     events.interrupt.nr = env->interrupt_injected;
5051     events.interrupt.soft = env->soft_interrupt;
5052 
5053     events.nmi.injected = env->nmi_injected;
5054     events.nmi.pending = env->nmi_pending;
5055     events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
5056 
5057     events.sipi_vector = env->sipi_vector;
5058 
5059     if (has_msr_smbase) {
5060         events.flags |= KVM_VCPUEVENT_VALID_SMM;
5061         events.smi.smm = !!(env->hflags & HF_SMM_MASK);
5062         events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
5063         if (kvm_irqchip_in_kernel()) {
5064             /* As soon as these are moved to the kernel, remove them
5065              * from cs->interrupt_request.
5066              */
5067             events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
5068             events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
5069             cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
5070         } else {
5071             /* Keep these in cs->interrupt_request.  */
5072             events.smi.pending = 0;
5073             events.smi.latched_init = 0;
5074         }
5075     }
5076 
5077     if (level >= KVM_PUT_RESET_STATE) {
5078         events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
5079         if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
5080             events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
5081         }
5082     }
5083 
5084     if (has_triple_fault_event) {
5085         events.flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5086         events.triple_fault.pending = env->triple_fault_pending;
5087     }
5088 
5089     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
5090 }
5091 
kvm_get_vcpu_events(X86CPU * cpu)5092 static int kvm_get_vcpu_events(X86CPU *cpu)
5093 {
5094     CPUX86State *env = &cpu->env;
5095     struct kvm_vcpu_events events;
5096     int ret;
5097 
5098     memset(&events, 0, sizeof(events));
5099     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
5100     if (ret < 0) {
5101        return ret;
5102     }
5103 
5104     if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5105         env->exception_pending = events.exception.pending;
5106         env->exception_has_payload = events.exception_has_payload;
5107         env->exception_payload = events.exception_payload;
5108     } else {
5109         env->exception_pending = 0;
5110         env->exception_has_payload = false;
5111     }
5112     env->exception_injected = events.exception.injected;
5113     env->exception_nr =
5114         (env->exception_pending || env->exception_injected) ?
5115         events.exception.nr : -1;
5116     env->has_error_code = events.exception.has_error_code;
5117     env->error_code = events.exception.error_code;
5118 
5119     env->interrupt_injected =
5120         events.interrupt.injected ? events.interrupt.nr : -1;
5121     env->soft_interrupt = events.interrupt.soft;
5122 
5123     env->nmi_injected = events.nmi.injected;
5124     env->nmi_pending = events.nmi.pending;
5125     if (events.nmi.masked) {
5126         env->hflags2 |= HF2_NMI_MASK;
5127     } else {
5128         env->hflags2 &= ~HF2_NMI_MASK;
5129     }
5130 
5131     if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
5132         if (events.smi.smm) {
5133             env->hflags |= HF_SMM_MASK;
5134         } else {
5135             env->hflags &= ~HF_SMM_MASK;
5136         }
5137         if (events.smi.pending) {
5138             cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
5139         } else {
5140             cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
5141         }
5142         if (events.smi.smm_inside_nmi) {
5143             env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
5144         } else {
5145             env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
5146         }
5147         if (events.smi.latched_init) {
5148             cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
5149         } else {
5150             cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
5151         }
5152     }
5153 
5154     if (events.flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5155         env->triple_fault_pending = events.triple_fault.pending;
5156     }
5157 
5158     env->sipi_vector = events.sipi_vector;
5159 
5160     return 0;
5161 }
5162 
kvm_put_debugregs(X86CPU * cpu)5163 static int kvm_put_debugregs(X86CPU *cpu)
5164 {
5165     CPUX86State *env = &cpu->env;
5166     struct kvm_debugregs dbgregs;
5167     int i;
5168 
5169     memset(&dbgregs, 0, sizeof(dbgregs));
5170     for (i = 0; i < 4; i++) {
5171         dbgregs.db[i] = env->dr[i];
5172     }
5173     dbgregs.dr6 = env->dr[6];
5174     dbgregs.dr7 = env->dr[7];
5175     dbgregs.flags = 0;
5176 
5177     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
5178 }
5179 
kvm_get_debugregs(X86CPU * cpu)5180 static int kvm_get_debugregs(X86CPU *cpu)
5181 {
5182     CPUX86State *env = &cpu->env;
5183     struct kvm_debugregs dbgregs;
5184     int i, ret;
5185 
5186     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
5187     if (ret < 0) {
5188         return ret;
5189     }
5190     for (i = 0; i < 4; i++) {
5191         env->dr[i] = dbgregs.db[i];
5192     }
5193     env->dr[4] = env->dr[6] = dbgregs.dr6;
5194     env->dr[5] = env->dr[7] = dbgregs.dr7;
5195 
5196     return 0;
5197 }
5198 
kvm_put_nested_state(X86CPU * cpu)5199 static int kvm_put_nested_state(X86CPU *cpu)
5200 {
5201     CPUX86State *env = &cpu->env;
5202     int max_nested_state_len = kvm_max_nested_state_length();
5203 
5204     if (!env->nested_state) {
5205         return 0;
5206     }
5207 
5208     /*
5209      * Copy flags that are affected by reset from env->hflags and env->hflags2.
5210      */
5211     if (env->hflags & HF_GUEST_MASK) {
5212         env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE;
5213     } else {
5214         env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE;
5215     }
5216 
5217     /* Don't set KVM_STATE_NESTED_GIF_SET on VMX as it is illegal */
5218     if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) {
5219         env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET;
5220     } else {
5221         env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET;
5222     }
5223 
5224     assert(env->nested_state->size <= max_nested_state_len);
5225     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state);
5226 }
5227 
kvm_get_nested_state(X86CPU * cpu)5228 static int kvm_get_nested_state(X86CPU *cpu)
5229 {
5230     CPUX86State *env = &cpu->env;
5231     int max_nested_state_len = kvm_max_nested_state_length();
5232     int ret;
5233 
5234     if (!env->nested_state) {
5235         return 0;
5236     }
5237 
5238     /*
5239      * It is possible that migration restored a smaller size into
5240      * nested_state->hdr.size than what our kernel support.
5241      * We preserve migration origin nested_state->hdr.size for
5242      * call to KVM_SET_NESTED_STATE but wish that our next call
5243      * to KVM_GET_NESTED_STATE will use max size our kernel support.
5244      */
5245     env->nested_state->size = max_nested_state_len;
5246 
5247     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state);
5248     if (ret < 0) {
5249         return ret;
5250     }
5251 
5252     /*
5253      * Copy flags that are affected by reset to env->hflags and env->hflags2.
5254      */
5255     if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) {
5256         env->hflags |= HF_GUEST_MASK;
5257     } else {
5258         env->hflags &= ~HF_GUEST_MASK;
5259     }
5260 
5261     /* Keep HF2_GIF_MASK set on !SVM as x86_cpu_pending_interrupt() needs it */
5262     if (cpu_has_svm(env)) {
5263         if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) {
5264             env->hflags2 |= HF2_GIF_MASK;
5265         } else {
5266             env->hflags2 &= ~HF2_GIF_MASK;
5267         }
5268     }
5269 
5270     return ret;
5271 }
5272 
kvm_arch_put_registers(CPUState * cpu,int level,Error ** errp)5273 int kvm_arch_put_registers(CPUState *cpu, int level, Error **errp)
5274 {
5275     X86CPU *x86_cpu = X86_CPU(cpu);
5276     int ret;
5277 
5278     assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
5279 
5280     /*
5281      * Put MSR_IA32_FEATURE_CONTROL first, this ensures the VM gets out of VMX
5282      * root operation upon vCPU reset. kvm_put_msr_feature_control() should also
5283      * precede kvm_put_nested_state() when 'real' nested state is set.
5284      */
5285     if (level >= KVM_PUT_RESET_STATE) {
5286         ret = kvm_put_msr_feature_control(x86_cpu);
5287         if (ret < 0) {
5288             error_setg_errno(errp, -ret, "Failed to set feature control MSR");
5289             return ret;
5290         }
5291     }
5292 
5293     /* must be before kvm_put_nested_state so that EFER.SVME is set */
5294     ret = has_sregs2 ? kvm_put_sregs2(x86_cpu) : kvm_put_sregs(x86_cpu);
5295     if (ret < 0) {
5296         error_setg_errno(errp, -ret, "Failed to set special registers");
5297         return ret;
5298     }
5299 
5300     if (level >= KVM_PUT_RESET_STATE) {
5301         ret = kvm_put_nested_state(x86_cpu);
5302         if (ret < 0) {
5303             error_setg_errno(errp, -ret, "Failed to set nested state");
5304             return ret;
5305         }
5306     }
5307 
5308     if (level == KVM_PUT_FULL_STATE) {
5309         /* We don't check for kvm_arch_set_tsc_khz() errors here,
5310          * because TSC frequency mismatch shouldn't abort migration,
5311          * unless the user explicitly asked for a more strict TSC
5312          * setting (e.g. using an explicit "tsc-freq" option).
5313          */
5314         kvm_arch_set_tsc_khz(cpu);
5315     }
5316 
5317 #ifdef CONFIG_XEN_EMU
5318     if (xen_mode == XEN_EMULATE && level == KVM_PUT_FULL_STATE) {
5319         ret = kvm_put_xen_state(cpu);
5320         if (ret < 0) {
5321             error_setg_errno(errp, -ret, "Failed to set Xen state");
5322             return ret;
5323         }
5324     }
5325 #endif
5326 
5327     ret = kvm_getput_regs(x86_cpu, 1);
5328     if (ret < 0) {
5329         error_setg_errno(errp, -ret, "Failed to set general purpose registers");
5330         return ret;
5331     }
5332     ret = kvm_put_xsave(x86_cpu);
5333     if (ret < 0) {
5334         error_setg_errno(errp, -ret, "Failed to set XSAVE");
5335         return ret;
5336     }
5337     ret = kvm_put_xcrs(x86_cpu);
5338     if (ret < 0) {
5339         error_setg_errno(errp, -ret, "Failed to set XCRs");
5340         return ret;
5341     }
5342     ret = kvm_put_msrs(x86_cpu, level);
5343     if (ret < 0) {
5344         error_setg_errno(errp, -ret, "Failed to set MSRs");
5345         return ret;
5346     }
5347     ret = kvm_put_vcpu_events(x86_cpu, level);
5348     if (ret < 0) {
5349         error_setg_errno(errp, -ret, "Failed to set vCPU events");
5350         return ret;
5351     }
5352     if (level >= KVM_PUT_RESET_STATE) {
5353         ret = kvm_put_mp_state(x86_cpu);
5354         if (ret < 0) {
5355             error_setg_errno(errp, -ret, "Failed to set MP state");
5356             return ret;
5357         }
5358     }
5359 
5360     ret = kvm_put_tscdeadline_msr(x86_cpu);
5361     if (ret < 0) {
5362         error_setg_errno(errp, -ret, "Failed to set TSC deadline MSR");
5363         return ret;
5364     }
5365     ret = kvm_put_debugregs(x86_cpu);
5366     if (ret < 0) {
5367         error_setg_errno(errp, -ret, "Failed to set debug registers");
5368         return ret;
5369     }
5370     return 0;
5371 }
5372 
kvm_arch_get_registers(CPUState * cs,Error ** errp)5373 int kvm_arch_get_registers(CPUState *cs, Error **errp)
5374 {
5375     X86CPU *cpu = X86_CPU(cs);
5376     int ret;
5377 
5378     assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
5379 
5380     ret = kvm_get_vcpu_events(cpu);
5381     if (ret < 0) {
5382         error_setg_errno(errp, -ret, "Failed to get vCPU events");
5383         goto out;
5384     }
5385     /*
5386      * KVM_GET_MPSTATE can modify CS and RIP, call it before
5387      * KVM_GET_REGS and KVM_GET_SREGS.
5388      */
5389     ret = kvm_get_mp_state(cpu);
5390     if (ret < 0) {
5391         error_setg_errno(errp, -ret, "Failed to get MP state");
5392         goto out;
5393     }
5394     ret = kvm_getput_regs(cpu, 0);
5395     if (ret < 0) {
5396         error_setg_errno(errp, -ret, "Failed to get general purpose registers");
5397         goto out;
5398     }
5399     ret = kvm_get_xsave(cpu);
5400     if (ret < 0) {
5401         error_setg_errno(errp, -ret, "Failed to get XSAVE");
5402         goto out;
5403     }
5404     ret = kvm_get_xcrs(cpu);
5405     if (ret < 0) {
5406         error_setg_errno(errp, -ret, "Failed to get XCRs");
5407         goto out;
5408     }
5409     ret = has_sregs2 ? kvm_get_sregs2(cpu) : kvm_get_sregs(cpu);
5410     if (ret < 0) {
5411         error_setg_errno(errp, -ret, "Failed to get special registers");
5412         goto out;
5413     }
5414     ret = kvm_get_msrs(cpu);
5415     if (ret < 0) {
5416         error_setg_errno(errp, -ret, "Failed to get MSRs");
5417         goto out;
5418     }
5419     ret = kvm_get_apic(cpu);
5420     if (ret < 0) {
5421         error_setg_errno(errp, -ret, "Failed to get APIC");
5422         goto out;
5423     }
5424     ret = kvm_get_debugregs(cpu);
5425     if (ret < 0) {
5426         error_setg_errno(errp, -ret, "Failed to get debug registers");
5427         goto out;
5428     }
5429     ret = kvm_get_nested_state(cpu);
5430     if (ret < 0) {
5431         error_setg_errno(errp, -ret, "Failed to get nested state");
5432         goto out;
5433     }
5434 #ifdef CONFIG_XEN_EMU
5435     if (xen_mode == XEN_EMULATE) {
5436         ret = kvm_get_xen_state(cs);
5437         if (ret < 0) {
5438             error_setg_errno(errp, -ret, "Failed to get Xen state");
5439             goto out;
5440         }
5441     }
5442 #endif
5443     ret = 0;
5444  out:
5445     cpu_sync_bndcs_hflags(&cpu->env);
5446     return ret;
5447 }
5448 
kvm_arch_pre_run(CPUState * cpu,struct kvm_run * run)5449 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
5450 {
5451     X86CPU *x86_cpu = X86_CPU(cpu);
5452     CPUX86State *env = &x86_cpu->env;
5453     int ret;
5454 
5455     /* Inject NMI */
5456     if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
5457         if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
5458             bql_lock();
5459             cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
5460             bql_unlock();
5461             DPRINTF("injected NMI\n");
5462             ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
5463             if (ret < 0) {
5464                 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
5465                         strerror(-ret));
5466             }
5467         }
5468         if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
5469             bql_lock();
5470             cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
5471             bql_unlock();
5472             DPRINTF("injected SMI\n");
5473             ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
5474             if (ret < 0) {
5475                 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
5476                         strerror(-ret));
5477             }
5478         }
5479     }
5480 
5481     if (!kvm_pic_in_kernel()) {
5482         bql_lock();
5483     }
5484 
5485     /* Force the VCPU out of its inner loop to process any INIT requests
5486      * or (for userspace APIC, but it is cheap to combine the checks here)
5487      * pending TPR access reports.
5488      */
5489     if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
5490         if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
5491             !(env->hflags & HF_SMM_MASK)) {
5492             cpu->exit_request = 1;
5493         }
5494         if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
5495             cpu->exit_request = 1;
5496         }
5497     }
5498 
5499     if (!kvm_pic_in_kernel()) {
5500         /* Try to inject an interrupt if the guest can accept it */
5501         if (run->ready_for_interrupt_injection &&
5502             (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
5503             (env->eflags & IF_MASK)) {
5504             int irq;
5505 
5506             cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
5507             irq = cpu_get_pic_interrupt(env);
5508             if (irq >= 0) {
5509                 struct kvm_interrupt intr;
5510 
5511                 intr.irq = irq;
5512                 DPRINTF("injected interrupt %d\n", irq);
5513                 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
5514                 if (ret < 0) {
5515                     fprintf(stderr,
5516                             "KVM: injection failed, interrupt lost (%s)\n",
5517                             strerror(-ret));
5518                 }
5519             }
5520         }
5521 
5522         /* If we have an interrupt but the guest is not ready to receive an
5523          * interrupt, request an interrupt window exit.  This will
5524          * cause a return to userspace as soon as the guest is ready to
5525          * receive interrupts. */
5526         if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
5527             run->request_interrupt_window = 1;
5528         } else {
5529             run->request_interrupt_window = 0;
5530         }
5531 
5532         DPRINTF("setting tpr\n");
5533         run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
5534 
5535         bql_unlock();
5536     }
5537 }
5538 
kvm_rate_limit_on_bus_lock(void)5539 static void kvm_rate_limit_on_bus_lock(void)
5540 {
5541     uint64_t delay_ns = ratelimit_calculate_delay(&bus_lock_ratelimit_ctrl, 1);
5542 
5543     if (delay_ns) {
5544         g_usleep(delay_ns / SCALE_US);
5545     }
5546 }
5547 
kvm_arch_post_run(CPUState * cpu,struct kvm_run * run)5548 MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
5549 {
5550     X86CPU *x86_cpu = X86_CPU(cpu);
5551     CPUX86State *env = &x86_cpu->env;
5552 
5553     if (run->flags & KVM_RUN_X86_SMM) {
5554         env->hflags |= HF_SMM_MASK;
5555     } else {
5556         env->hflags &= ~HF_SMM_MASK;
5557     }
5558     if (run->if_flag) {
5559         env->eflags |= IF_MASK;
5560     } else {
5561         env->eflags &= ~IF_MASK;
5562     }
5563     if (run->flags & KVM_RUN_X86_BUS_LOCK) {
5564         kvm_rate_limit_on_bus_lock();
5565     }
5566 
5567 #ifdef CONFIG_XEN_EMU
5568     /*
5569      * If the callback is asserted as a GSI (or PCI INTx) then check if
5570      * vcpu_info->evtchn_upcall_pending has been cleared, and deassert
5571      * the callback IRQ if so. Ideally we could hook into the PIC/IOAPIC
5572      * EOI and only resample then, exactly how the VFIO eventfd pairs
5573      * are designed to work for level triggered interrupts.
5574      */
5575     if (x86_cpu->env.xen_callback_asserted) {
5576         kvm_xen_maybe_deassert_callback(cpu);
5577     }
5578 #endif
5579 
5580     /* We need to protect the apic state against concurrent accesses from
5581      * different threads in case the userspace irqchip is used. */
5582     if (!kvm_irqchip_in_kernel()) {
5583         bql_lock();
5584     }
5585     cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
5586     cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
5587     if (!kvm_irqchip_in_kernel()) {
5588         bql_unlock();
5589     }
5590     return cpu_get_mem_attrs(env);
5591 }
5592 
kvm_arch_process_async_events(CPUState * cs)5593 int kvm_arch_process_async_events(CPUState *cs)
5594 {
5595     X86CPU *cpu = X86_CPU(cs);
5596     CPUX86State *env = &cpu->env;
5597 
5598     if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
5599         /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
5600         assert(env->mcg_cap);
5601 
5602         cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
5603 
5604         kvm_cpu_synchronize_state(cs);
5605 
5606         if (env->exception_nr == EXCP08_DBLE) {
5607             /* this means triple fault */
5608             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
5609             cs->exit_request = 1;
5610             return 0;
5611         }
5612         kvm_queue_exception(env, EXCP12_MCHK, 0, 0);
5613         env->has_error_code = 0;
5614 
5615         cs->halted = 0;
5616         if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
5617             env->mp_state = KVM_MP_STATE_RUNNABLE;
5618         }
5619     }
5620 
5621     if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
5622         !(env->hflags & HF_SMM_MASK)) {
5623         kvm_cpu_synchronize_state(cs);
5624         do_cpu_init(cpu);
5625     }
5626 
5627     if (kvm_irqchip_in_kernel()) {
5628         return 0;
5629     }
5630 
5631     if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
5632         cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
5633         apic_poll_irq(cpu->apic_state);
5634     }
5635     if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
5636          (env->eflags & IF_MASK)) ||
5637         (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
5638         cs->halted = 0;
5639     }
5640     if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
5641         kvm_cpu_synchronize_state(cs);
5642         do_cpu_sipi(cpu);
5643     }
5644     if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
5645         cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
5646         kvm_cpu_synchronize_state(cs);
5647         apic_handle_tpr_access_report(cpu->apic_state, env->eip,
5648                                       env->tpr_access_type);
5649     }
5650 
5651     return cs->halted;
5652 }
5653 
kvm_handle_halt(X86CPU * cpu)5654 static int kvm_handle_halt(X86CPU *cpu)
5655 {
5656     CPUState *cs = CPU(cpu);
5657     CPUX86State *env = &cpu->env;
5658 
5659     if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
5660           (env->eflags & IF_MASK)) &&
5661         !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
5662         cs->halted = 1;
5663         return EXCP_HLT;
5664     }
5665 
5666     return 0;
5667 }
5668 
kvm_handle_tpr_access(X86CPU * cpu)5669 static int kvm_handle_tpr_access(X86CPU *cpu)
5670 {
5671     CPUState *cs = CPU(cpu);
5672     struct kvm_run *run = cs->kvm_run;
5673 
5674     apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
5675                                   run->tpr_access.is_write ? TPR_ACCESS_WRITE
5676                                                            : TPR_ACCESS_READ);
5677     return 1;
5678 }
5679 
kvm_arch_insert_sw_breakpoint(CPUState * cs,struct kvm_sw_breakpoint * bp)5680 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
5681 {
5682     static const uint8_t int3 = 0xcc;
5683 
5684     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
5685         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
5686         return -EINVAL;
5687     }
5688     return 0;
5689 }
5690 
kvm_arch_remove_sw_breakpoint(CPUState * cs,struct kvm_sw_breakpoint * bp)5691 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
5692 {
5693     uint8_t int3;
5694 
5695     if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0)) {
5696         return -EINVAL;
5697     }
5698     if (int3 != 0xcc) {
5699         return 0;
5700     }
5701     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
5702         return -EINVAL;
5703     }
5704     return 0;
5705 }
5706 
5707 static struct {
5708     target_ulong addr;
5709     int len;
5710     int type;
5711 } hw_breakpoint[4];
5712 
5713 static int nb_hw_breakpoint;
5714 
find_hw_breakpoint(target_ulong addr,int len,int type)5715 static int find_hw_breakpoint(target_ulong addr, int len, int type)
5716 {
5717     int n;
5718 
5719     for (n = 0; n < nb_hw_breakpoint; n++) {
5720         if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
5721             (hw_breakpoint[n].len == len || len == -1)) {
5722             return n;
5723         }
5724     }
5725     return -1;
5726 }
5727 
kvm_arch_insert_hw_breakpoint(vaddr addr,vaddr len,int type)5728 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
5729 {
5730     switch (type) {
5731     case GDB_BREAKPOINT_HW:
5732         len = 1;
5733         break;
5734     case GDB_WATCHPOINT_WRITE:
5735     case GDB_WATCHPOINT_ACCESS:
5736         switch (len) {
5737         case 1:
5738             break;
5739         case 2:
5740         case 4:
5741         case 8:
5742             if (addr & (len - 1)) {
5743                 return -EINVAL;
5744             }
5745             break;
5746         default:
5747             return -EINVAL;
5748         }
5749         break;
5750     default:
5751         return -ENOSYS;
5752     }
5753 
5754     if (nb_hw_breakpoint == 4) {
5755         return -ENOBUFS;
5756     }
5757     if (find_hw_breakpoint(addr, len, type) >= 0) {
5758         return -EEXIST;
5759     }
5760     hw_breakpoint[nb_hw_breakpoint].addr = addr;
5761     hw_breakpoint[nb_hw_breakpoint].len = len;
5762     hw_breakpoint[nb_hw_breakpoint].type = type;
5763     nb_hw_breakpoint++;
5764 
5765     return 0;
5766 }
5767 
kvm_arch_remove_hw_breakpoint(vaddr addr,vaddr len,int type)5768 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
5769 {
5770     int n;
5771 
5772     n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
5773     if (n < 0) {
5774         return -ENOENT;
5775     }
5776     nb_hw_breakpoint--;
5777     hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
5778 
5779     return 0;
5780 }
5781 
kvm_arch_remove_all_hw_breakpoints(void)5782 void kvm_arch_remove_all_hw_breakpoints(void)
5783 {
5784     nb_hw_breakpoint = 0;
5785 }
5786 
5787 static CPUWatchpoint hw_watchpoint;
5788 
kvm_handle_debug(X86CPU * cpu,struct kvm_debug_exit_arch * arch_info)5789 static int kvm_handle_debug(X86CPU *cpu,
5790                             struct kvm_debug_exit_arch *arch_info)
5791 {
5792     CPUState *cs = CPU(cpu);
5793     CPUX86State *env = &cpu->env;
5794     int ret = 0;
5795     int n;
5796 
5797     if (arch_info->exception == EXCP01_DB) {
5798         if (arch_info->dr6 & DR6_BS) {
5799             if (cs->singlestep_enabled) {
5800                 ret = EXCP_DEBUG;
5801             }
5802         } else {
5803             for (n = 0; n < 4; n++) {
5804                 if (arch_info->dr6 & (1 << n)) {
5805                     switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
5806                     case 0x0:
5807                         ret = EXCP_DEBUG;
5808                         break;
5809                     case 0x1:
5810                         ret = EXCP_DEBUG;
5811                         cs->watchpoint_hit = &hw_watchpoint;
5812                         hw_watchpoint.vaddr = hw_breakpoint[n].addr;
5813                         hw_watchpoint.flags = BP_MEM_WRITE;
5814                         break;
5815                     case 0x3:
5816                         ret = EXCP_DEBUG;
5817                         cs->watchpoint_hit = &hw_watchpoint;
5818                         hw_watchpoint.vaddr = hw_breakpoint[n].addr;
5819                         hw_watchpoint.flags = BP_MEM_ACCESS;
5820                         break;
5821                     }
5822                 }
5823             }
5824         }
5825     } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
5826         ret = EXCP_DEBUG;
5827     }
5828     if (ret == 0) {
5829         cpu_synchronize_state(cs);
5830         assert(env->exception_nr == -1);
5831 
5832         /* pass to guest */
5833         kvm_queue_exception(env, arch_info->exception,
5834                             arch_info->exception == EXCP01_DB,
5835                             arch_info->dr6);
5836         env->has_error_code = 0;
5837     }
5838 
5839     return ret;
5840 }
5841 
kvm_arch_update_guest_debug(CPUState * cpu,struct kvm_guest_debug * dbg)5842 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
5843 {
5844     const uint8_t type_code[] = {
5845         [GDB_BREAKPOINT_HW] = 0x0,
5846         [GDB_WATCHPOINT_WRITE] = 0x1,
5847         [GDB_WATCHPOINT_ACCESS] = 0x3
5848     };
5849     const uint8_t len_code[] = {
5850         [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
5851     };
5852     int n;
5853 
5854     if (kvm_sw_breakpoints_active(cpu)) {
5855         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
5856     }
5857     if (nb_hw_breakpoint > 0) {
5858         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
5859         dbg->arch.debugreg[7] = 0x0600;
5860         for (n = 0; n < nb_hw_breakpoint; n++) {
5861             dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
5862             dbg->arch.debugreg[7] |= (2 << (n * 2)) |
5863                 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
5864                 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
5865         }
5866     }
5867 }
5868 
kvm_install_msr_filters(KVMState * s)5869 static int kvm_install_msr_filters(KVMState *s)
5870 {
5871     uint64_t zero = 0;
5872     struct kvm_msr_filter filter = {
5873         .flags = KVM_MSR_FILTER_DEFAULT_ALLOW,
5874     };
5875     int i, j = 0;
5876 
5877     QEMU_BUILD_BUG_ON(ARRAY_SIZE(msr_handlers) != ARRAY_SIZE(filter.ranges));
5878     for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5879         KVMMSRHandlers *handler = &msr_handlers[i];
5880         if (handler->msr) {
5881             struct kvm_msr_filter_range *range = &filter.ranges[j++];
5882 
5883             *range = (struct kvm_msr_filter_range) {
5884                 .flags = 0,
5885                 .nmsrs = 1,
5886                 .base = handler->msr,
5887                 .bitmap = (__u8 *)&zero,
5888             };
5889 
5890             if (handler->rdmsr) {
5891                 range->flags |= KVM_MSR_FILTER_READ;
5892             }
5893 
5894             if (handler->wrmsr) {
5895                 range->flags |= KVM_MSR_FILTER_WRITE;
5896             }
5897         }
5898     }
5899 
5900     return kvm_vm_ioctl(s, KVM_X86_SET_MSR_FILTER, &filter);
5901 }
5902 
kvm_filter_msr(KVMState * s,uint32_t msr,QEMURDMSRHandler * rdmsr,QEMUWRMSRHandler * wrmsr)5903 static int kvm_filter_msr(KVMState *s, uint32_t msr, QEMURDMSRHandler *rdmsr,
5904                           QEMUWRMSRHandler *wrmsr)
5905 {
5906     int i, ret;
5907 
5908     for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5909         if (!msr_handlers[i].msr) {
5910             msr_handlers[i] = (KVMMSRHandlers) {
5911                 .msr = msr,
5912                 .rdmsr = rdmsr,
5913                 .wrmsr = wrmsr,
5914             };
5915 
5916             ret = kvm_install_msr_filters(s);
5917             if (ret) {
5918                 msr_handlers[i] = (KVMMSRHandlers) { };
5919                 return ret;
5920             }
5921 
5922             return 0;
5923         }
5924     }
5925 
5926     return -EINVAL;
5927 }
5928 
kvm_handle_rdmsr(X86CPU * cpu,struct kvm_run * run)5929 static int kvm_handle_rdmsr(X86CPU *cpu, struct kvm_run *run)
5930 {
5931     int i;
5932     bool r;
5933 
5934     for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5935         KVMMSRHandlers *handler = &msr_handlers[i];
5936         if (run->msr.index == handler->msr) {
5937             if (handler->rdmsr) {
5938                 r = handler->rdmsr(cpu, handler->msr,
5939                                    (uint64_t *)&run->msr.data);
5940                 run->msr.error = r ? 0 : 1;
5941                 return 0;
5942             }
5943         }
5944     }
5945 
5946     g_assert_not_reached();
5947 }
5948 
kvm_handle_wrmsr(X86CPU * cpu,struct kvm_run * run)5949 static int kvm_handle_wrmsr(X86CPU *cpu, struct kvm_run *run)
5950 {
5951     int i;
5952     bool r;
5953 
5954     for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5955         KVMMSRHandlers *handler = &msr_handlers[i];
5956         if (run->msr.index == handler->msr) {
5957             if (handler->wrmsr) {
5958                 r = handler->wrmsr(cpu, handler->msr, run->msr.data);
5959                 run->msr.error = r ? 0 : 1;
5960                 return 0;
5961             }
5962         }
5963     }
5964 
5965     g_assert_not_reached();
5966 }
5967 
5968 static bool has_sgx_provisioning;
5969 
__kvm_enable_sgx_provisioning(KVMState * s)5970 static bool __kvm_enable_sgx_provisioning(KVMState *s)
5971 {
5972     int fd, ret;
5973 
5974     if (!kvm_vm_check_extension(s, KVM_CAP_SGX_ATTRIBUTE)) {
5975         return false;
5976     }
5977 
5978     fd = qemu_open_old("/dev/sgx_provision", O_RDONLY);
5979     if (fd < 0) {
5980         return false;
5981     }
5982 
5983     ret = kvm_vm_enable_cap(s, KVM_CAP_SGX_ATTRIBUTE, 0, fd);
5984     if (ret) {
5985         error_report("Could not enable SGX PROVISIONKEY: %s", strerror(-ret));
5986         exit(1);
5987     }
5988     close(fd);
5989     return true;
5990 }
5991 
kvm_enable_sgx_provisioning(KVMState * s)5992 bool kvm_enable_sgx_provisioning(KVMState *s)
5993 {
5994     return MEMORIZE(__kvm_enable_sgx_provisioning(s), has_sgx_provisioning);
5995 }
5996 
host_supports_vmx(void)5997 static bool host_supports_vmx(void)
5998 {
5999     uint32_t ecx, unused;
6000 
6001     host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
6002     return ecx & CPUID_EXT_VMX;
6003 }
6004 
6005 /*
6006  * Currently the handling here only supports use of KVM_HC_MAP_GPA_RANGE
6007  * to service guest-initiated memory attribute update requests so that
6008  * KVM_SET_MEMORY_ATTRIBUTES can update whether or not a page should be
6009  * backed by the private memory pool provided by guest_memfd, and as such
6010  * is only applicable to guest_memfd-backed guests (e.g. SNP/TDX).
6011  *
6012  * Other other use-cases for KVM_HC_MAP_GPA_RANGE, such as for SEV live
6013  * migration, are not implemented here currently.
6014  *
6015  * For the guest_memfd use-case, these exits will generally be synthesized
6016  * by KVM based on platform-specific hypercalls, like GHCB requests in the
6017  * case of SEV-SNP, and not issued directly within the guest though the
6018  * KVM_HC_MAP_GPA_RANGE hypercall. So in this case, KVM_HC_MAP_GPA_RANGE is
6019  * not actually advertised to guests via the KVM CPUID feature bit, as
6020  * opposed to SEV live migration where it would be. Since it is unlikely the
6021  * SEV live migration use-case would be useful for guest-memfd backed guests,
6022  * because private/shared page tracking is already provided through other
6023  * means, these 2 use-cases should be treated as being mutually-exclusive.
6024  */
kvm_handle_hc_map_gpa_range(X86CPU * cpu,struct kvm_run * run)6025 static int kvm_handle_hc_map_gpa_range(X86CPU *cpu, struct kvm_run *run)
6026 {
6027     struct kvm_pre_fault_memory mem;
6028     uint64_t gpa, size, attributes;
6029     int ret;
6030 
6031     if (!machine_require_guest_memfd(current_machine))
6032         return -EINVAL;
6033 
6034     gpa = run->hypercall.args[0];
6035     size = run->hypercall.args[1] * TARGET_PAGE_SIZE;
6036     attributes = run->hypercall.args[2];
6037 
6038     trace_kvm_hc_map_gpa_range(gpa, size, attributes, run->hypercall.flags);
6039 
6040     ret = kvm_convert_memory(gpa, size, attributes & KVM_MAP_GPA_RANGE_ENCRYPTED);
6041     if (ret || !kvm_pre_fault_memory_supported) {
6042         return ret;
6043     }
6044 
6045     /*
6046      * Opportunistically pre-fault memory in. Failures are ignored so that any
6047      * errors in faulting in the memory will get captured in KVM page fault
6048      * path when the guest first accesses the page.
6049      */
6050     memset(&mem, 0, sizeof(mem));
6051     mem.gpa = gpa;
6052     mem.size = size;
6053     while (mem.size) {
6054         if (kvm_vcpu_ioctl(CPU(cpu), KVM_PRE_FAULT_MEMORY, &mem)) {
6055             break;
6056         }
6057     }
6058 
6059     return 0;
6060 }
6061 
kvm_handle_hypercall(X86CPU * cpu,struct kvm_run * run)6062 static int kvm_handle_hypercall(X86CPU *cpu, struct kvm_run *run)
6063 {
6064     if (run->hypercall.nr == KVM_HC_MAP_GPA_RANGE)
6065         return kvm_handle_hc_map_gpa_range(cpu, run);
6066 
6067     return -EINVAL;
6068 }
6069 
6070 #define VMX_INVALID_GUEST_STATE 0x80000021
6071 
kvm_arch_handle_exit(CPUState * cs,struct kvm_run * run)6072 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
6073 {
6074     X86CPU *cpu = X86_CPU(cs);
6075     uint64_t code;
6076     int ret;
6077     bool ctx_invalid;
6078     KVMState *state;
6079 
6080     switch (run->exit_reason) {
6081     case KVM_EXIT_HLT:
6082         DPRINTF("handle_hlt\n");
6083         bql_lock();
6084         ret = kvm_handle_halt(cpu);
6085         bql_unlock();
6086         break;
6087     case KVM_EXIT_SET_TPR:
6088         ret = 0;
6089         break;
6090     case KVM_EXIT_TPR_ACCESS:
6091         bql_lock();
6092         ret = kvm_handle_tpr_access(cpu);
6093         bql_unlock();
6094         break;
6095     case KVM_EXIT_FAIL_ENTRY:
6096         code = run->fail_entry.hardware_entry_failure_reason;
6097         fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
6098                 code);
6099         if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
6100             fprintf(stderr,
6101                     "\nIf you're running a guest on an Intel machine without "
6102                         "unrestricted mode\n"
6103                     "support, the failure can be most likely due to the guest "
6104                         "entering an invalid\n"
6105                     "state for Intel VT. For example, the guest maybe running "
6106                         "in big real mode\n"
6107                     "which is not supported on less recent Intel processors."
6108                         "\n\n");
6109         }
6110         ret = -1;
6111         break;
6112     case KVM_EXIT_EXCEPTION:
6113         fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
6114                 run->ex.exception, run->ex.error_code);
6115         ret = -1;
6116         break;
6117     case KVM_EXIT_DEBUG:
6118         DPRINTF("kvm_exit_debug\n");
6119         bql_lock();
6120         ret = kvm_handle_debug(cpu, &run->debug.arch);
6121         bql_unlock();
6122         break;
6123     case KVM_EXIT_HYPERV:
6124         ret = kvm_hv_handle_exit(cpu, &run->hyperv);
6125         break;
6126     case KVM_EXIT_IOAPIC_EOI:
6127         ioapic_eoi_broadcast(run->eoi.vector);
6128         ret = 0;
6129         break;
6130     case KVM_EXIT_X86_BUS_LOCK:
6131         /* already handled in kvm_arch_post_run */
6132         ret = 0;
6133         break;
6134     case KVM_EXIT_NOTIFY:
6135         ctx_invalid = !!(run->notify.flags & KVM_NOTIFY_CONTEXT_INVALID);
6136         state = KVM_STATE(current_accel());
6137         if (ctx_invalid ||
6138             state->notify_vmexit == NOTIFY_VMEXIT_OPTION_INTERNAL_ERROR) {
6139             warn_report("KVM internal error: Encountered a notify exit "
6140                         "with invalid context in guest.");
6141             ret = -1;
6142         } else {
6143             warn_report_once("KVM: Encountered a notify exit with valid "
6144                              "context in guest. "
6145                              "The guest could be misbehaving.");
6146             ret = 0;
6147         }
6148         break;
6149     case KVM_EXIT_X86_RDMSR:
6150         /* We only enable MSR filtering, any other exit is bogus */
6151         assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER);
6152         ret = kvm_handle_rdmsr(cpu, run);
6153         break;
6154     case KVM_EXIT_X86_WRMSR:
6155         /* We only enable MSR filtering, any other exit is bogus */
6156         assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER);
6157         ret = kvm_handle_wrmsr(cpu, run);
6158         break;
6159 #ifdef CONFIG_XEN_EMU
6160     case KVM_EXIT_XEN:
6161         ret = kvm_xen_handle_exit(cpu, &run->xen);
6162         break;
6163 #endif
6164     case KVM_EXIT_HYPERCALL:
6165         ret = kvm_handle_hypercall(cpu, run);
6166         break;
6167     case KVM_EXIT_SYSTEM_EVENT:
6168         switch (run->system_event.type) {
6169         case KVM_SYSTEM_EVENT_TDX_FATAL:
6170             ret = tdx_handle_report_fatal_error(cpu, run);
6171             break;
6172         default:
6173             ret = -1;
6174             break;
6175         }
6176         break;
6177     case KVM_EXIT_TDX:
6178         /*
6179          * run->tdx is already set up for the case where userspace
6180          * does not handle the TDVMCALL.
6181          */
6182         switch (run->tdx.nr) {
6183         case TDVMCALL_GET_QUOTE:
6184             tdx_handle_get_quote(cpu, run);
6185             break;
6186         case TDVMCALL_GET_TD_VM_CALL_INFO:
6187             tdx_handle_get_tdvmcall_info(cpu, run);
6188             break;
6189         case TDVMCALL_SETUP_EVENT_NOTIFY_INTERRUPT:
6190             tdx_handle_setup_event_notify_interrupt(cpu, run);
6191             break;
6192         }
6193         ret = 0;
6194         break;
6195     default:
6196         fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
6197         ret = -1;
6198         break;
6199     }
6200 
6201     return ret;
6202 }
6203 
kvm_arch_stop_on_emulation_error(CPUState * cs)6204 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
6205 {
6206     X86CPU *cpu = X86_CPU(cs);
6207     CPUX86State *env = &cpu->env;
6208 
6209     kvm_cpu_synchronize_state(cs);
6210     return !(env->cr[0] & CR0_PE_MASK) ||
6211            ((env->segs[R_CS].selector  & 3) != 3);
6212 }
6213 
kvm_arch_init_irq_routing(KVMState * s)6214 void kvm_arch_init_irq_routing(KVMState *s)
6215 {
6216     /* We know at this point that we're using the in-kernel
6217      * irqchip, so we can use irqfds, and on x86 we know
6218      * we can use msi via irqfd and GSI routing.
6219      */
6220     kvm_msi_via_irqfd_allowed = true;
6221     kvm_gsi_routing_allowed = true;
6222 
6223     if (kvm_irqchip_is_split()) {
6224         KVMRouteChange c = kvm_irqchip_begin_route_changes(s);
6225         int i;
6226 
6227         /* If the ioapic is in QEMU and the lapics are in KVM, reserve
6228            MSI routes for signaling interrupts to the local apics. */
6229         for (i = 0; i < IOAPIC_NUM_PINS; i++) {
6230             if (kvm_irqchip_add_msi_route(&c, 0, NULL) < 0) {
6231                 error_report("Could not enable split IRQ mode.");
6232                 exit(1);
6233             }
6234         }
6235         kvm_irqchip_commit_route_changes(&c);
6236     }
6237 }
6238 
kvm_arch_irqchip_create(KVMState * s)6239 int kvm_arch_irqchip_create(KVMState *s)
6240 {
6241     int ret;
6242     if (kvm_kernel_irqchip_split()) {
6243         ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
6244         if (ret) {
6245             error_report("Could not enable split irqchip mode: %s",
6246                          strerror(-ret));
6247             exit(1);
6248         } else {
6249             DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
6250             kvm_split_irqchip = true;
6251             return 1;
6252         }
6253     } else {
6254         return 0;
6255     }
6256 }
6257 
kvm_swizzle_msi_ext_dest_id(uint64_t address)6258 uint64_t kvm_swizzle_msi_ext_dest_id(uint64_t address)
6259 {
6260     CPUX86State *env;
6261     uint64_t ext_id;
6262 
6263     if (!first_cpu) {
6264         return address;
6265     }
6266     env = &X86_CPU(first_cpu)->env;
6267     if (!(env->features[FEAT_KVM] & CPUID_KVM_MSI_EXT_DEST_ID)) {
6268         return address;
6269     }
6270 
6271     /*
6272      * If the remappable format bit is set, or the upper bits are
6273      * already set in address_hi, or the low extended bits aren't
6274      * there anyway, do nothing.
6275      */
6276     ext_id = address & (0xff << MSI_ADDR_DEST_IDX_SHIFT);
6277     if (!ext_id || (ext_id & (1 << MSI_ADDR_DEST_IDX_SHIFT)) || (address >> 32)) {
6278         return address;
6279     }
6280 
6281     address &= ~ext_id;
6282     address |= ext_id << 35;
6283     return address;
6284 }
6285 
kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry * route,uint64_t address,uint32_t data,PCIDevice * dev)6286 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
6287                              uint64_t address, uint32_t data, PCIDevice *dev)
6288 {
6289     X86IOMMUState *iommu = x86_iommu_get_default();
6290 
6291     if (iommu) {
6292         X86IOMMUClass *class = X86_IOMMU_DEVICE_GET_CLASS(iommu);
6293 
6294         if (class->int_remap) {
6295             int ret;
6296             MSIMessage src, dst;
6297 
6298             src.address = route->u.msi.address_hi;
6299             src.address <<= VTD_MSI_ADDR_HI_SHIFT;
6300             src.address |= route->u.msi.address_lo;
6301             src.data = route->u.msi.data;
6302 
6303             ret = class->int_remap(iommu, &src, &dst, dev ?     \
6304                                    pci_requester_id(dev) :      \
6305                                    X86_IOMMU_SID_INVALID);
6306             if (ret) {
6307                 trace_kvm_x86_fixup_msi_error(route->gsi);
6308                 return 1;
6309             }
6310 
6311             /*
6312              * Handled untranslated compatibility format interrupt with
6313              * extended destination ID in the low bits 11-5. */
6314             dst.address = kvm_swizzle_msi_ext_dest_id(dst.address);
6315 
6316             route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
6317             route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
6318             route->u.msi.data = dst.data;
6319             return 0;
6320         }
6321     }
6322 
6323 #ifdef CONFIG_XEN_EMU
6324     if (xen_mode == XEN_EMULATE) {
6325         int handled = xen_evtchn_translate_pirq_msi(route, address, data);
6326 
6327         /*
6328          * If it was a PIRQ and successfully routed (handled == 0) or it was
6329          * an error (handled < 0), return. If it wasn't a PIRQ, keep going.
6330          */
6331         if (handled <= 0) {
6332             return handled;
6333         }
6334     }
6335 #endif
6336 
6337     address = kvm_swizzle_msi_ext_dest_id(address);
6338     route->u.msi.address_hi = address >> VTD_MSI_ADDR_HI_SHIFT;
6339     route->u.msi.address_lo = address & VTD_MSI_ADDR_LO_MASK;
6340     return 0;
6341 }
6342 
6343 typedef struct MSIRouteEntry MSIRouteEntry;
6344 
6345 struct MSIRouteEntry {
6346     PCIDevice *dev;             /* Device pointer */
6347     int vector;                 /* MSI/MSIX vector index */
6348     int virq;                   /* Virtual IRQ index */
6349     QLIST_ENTRY(MSIRouteEntry) list;
6350 };
6351 
6352 /* List of used GSI routes */
6353 static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
6354     QLIST_HEAD_INITIALIZER(msi_route_list);
6355 
kvm_update_msi_routes_all(void * private,bool global,uint32_t index,uint32_t mask)6356 void kvm_update_msi_routes_all(void *private, bool global,
6357                                uint32_t index, uint32_t mask)
6358 {
6359     int cnt = 0, vector;
6360     MSIRouteEntry *entry;
6361     MSIMessage msg;
6362     PCIDevice *dev;
6363 
6364     /* TODO: explicit route update */
6365     QLIST_FOREACH(entry, &msi_route_list, list) {
6366         cnt++;
6367         vector = entry->vector;
6368         dev = entry->dev;
6369         if (msix_enabled(dev) && !msix_is_masked(dev, vector)) {
6370             msg = msix_get_message(dev, vector);
6371         } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) {
6372             msg = msi_get_message(dev, vector);
6373         } else {
6374             /*
6375              * Either MSI/MSIX is disabled for the device, or the
6376              * specific message was masked out.  Skip this one.
6377              */
6378             continue;
6379         }
6380         kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
6381     }
6382     kvm_irqchip_commit_routes(kvm_state);
6383     trace_kvm_x86_update_msi_routes(cnt);
6384 }
6385 
kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry * route,int vector,PCIDevice * dev)6386 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
6387                                 int vector, PCIDevice *dev)
6388 {
6389     static bool notify_list_inited = false;
6390     MSIRouteEntry *entry;
6391 
6392     if (!dev) {
6393         /* These are (possibly) IOAPIC routes only used for split
6394          * kernel irqchip mode, while what we are housekeeping are
6395          * PCI devices only. */
6396         return 0;
6397     }
6398 
6399     entry = g_new0(MSIRouteEntry, 1);
6400     entry->dev = dev;
6401     entry->vector = vector;
6402     entry->virq = route->gsi;
6403     QLIST_INSERT_HEAD(&msi_route_list, entry, list);
6404 
6405     trace_kvm_x86_add_msi_route(route->gsi);
6406 
6407     if (!notify_list_inited) {
6408         /* For the first time we do add route, add ourselves into
6409          * IOMMU's IEC notify list if needed. */
6410         X86IOMMUState *iommu = x86_iommu_get_default();
6411         if (iommu) {
6412             x86_iommu_iec_register_notifier(iommu,
6413                                             kvm_update_msi_routes_all,
6414                                             NULL);
6415         }
6416         notify_list_inited = true;
6417     }
6418     return 0;
6419 }
6420 
kvm_arch_release_virq_post(int virq)6421 int kvm_arch_release_virq_post(int virq)
6422 {
6423     MSIRouteEntry *entry, *next;
6424     QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
6425         if (entry->virq == virq) {
6426             trace_kvm_x86_remove_msi_route(virq);
6427             QLIST_REMOVE(entry, list);
6428             g_free(entry);
6429             break;
6430         }
6431     }
6432     return 0;
6433 }
6434 
kvm_arch_msi_data_to_gsi(uint32_t data)6435 int kvm_arch_msi_data_to_gsi(uint32_t data)
6436 {
6437     abort();
6438 }
6439 
kvm_has_waitpkg(void)6440 bool kvm_has_waitpkg(void)
6441 {
6442     return has_msr_umwait;
6443 }
6444 
6445 #define ARCH_REQ_XCOMP_GUEST_PERM       0x1025
6446 
kvm_request_xsave_components(X86CPU * cpu,uint64_t mask)6447 void kvm_request_xsave_components(X86CPU *cpu, uint64_t mask)
6448 {
6449     KVMState *s = kvm_state;
6450     uint64_t supported;
6451 
6452     mask &= XSTATE_DYNAMIC_MASK;
6453     if (!mask) {
6454         return;
6455     }
6456     /*
6457      * Just ignore bits that are not in CPUID[EAX=0xD,ECX=0].
6458      * ARCH_REQ_XCOMP_GUEST_PERM would fail, and QEMU has warned
6459      * about them already because they are not supported features.
6460      */
6461     supported = kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EAX);
6462     supported |= (uint64_t)kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EDX) << 32;
6463     mask &= supported;
6464 
6465     while (mask) {
6466         int bit = ctz64(mask);
6467         int rc = syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, bit);
6468         if (rc) {
6469             /*
6470              * Older kernel version (<5.17) do not support
6471              * ARCH_REQ_XCOMP_GUEST_PERM, but also do not return
6472              * any dynamic feature from kvm_arch_get_supported_cpuid.
6473              */
6474             warn_report("prctl(ARCH_REQ_XCOMP_GUEST_PERM) failure "
6475                         "for feature bit %d", bit);
6476         }
6477         mask &= ~BIT_ULL(bit);
6478     }
6479 }
6480 
kvm_arch_get_notify_vmexit(Object * obj,Error ** errp)6481 static int kvm_arch_get_notify_vmexit(Object *obj, Error **errp)
6482 {
6483     KVMState *s = KVM_STATE(obj);
6484     return s->notify_vmexit;
6485 }
6486 
kvm_arch_set_notify_vmexit(Object * obj,int value,Error ** errp)6487 static void kvm_arch_set_notify_vmexit(Object *obj, int value, Error **errp)
6488 {
6489     KVMState *s = KVM_STATE(obj);
6490 
6491     if (s->fd != -1) {
6492         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
6493         return;
6494     }
6495 
6496     s->notify_vmexit = value;
6497 }
6498 
kvm_arch_get_notify_window(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)6499 static void kvm_arch_get_notify_window(Object *obj, Visitor *v,
6500                                        const char *name, void *opaque,
6501                                        Error **errp)
6502 {
6503     KVMState *s = KVM_STATE(obj);
6504     uint32_t value = s->notify_window;
6505 
6506     visit_type_uint32(v, name, &value, errp);
6507 }
6508 
kvm_arch_set_notify_window(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)6509 static void kvm_arch_set_notify_window(Object *obj, Visitor *v,
6510                                        const char *name, void *opaque,
6511                                        Error **errp)
6512 {
6513     KVMState *s = KVM_STATE(obj);
6514     uint32_t value;
6515 
6516     if (s->fd != -1) {
6517         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
6518         return;
6519     }
6520 
6521     if (!visit_type_uint32(v, name, &value, errp)) {
6522         return;
6523     }
6524 
6525     s->notify_window = value;
6526 }
6527 
kvm_arch_get_xen_version(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)6528 static void kvm_arch_get_xen_version(Object *obj, Visitor *v,
6529                                      const char *name, void *opaque,
6530                                      Error **errp)
6531 {
6532     KVMState *s = KVM_STATE(obj);
6533     uint32_t value = s->xen_version;
6534 
6535     visit_type_uint32(v, name, &value, errp);
6536 }
6537 
kvm_arch_set_xen_version(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)6538 static void kvm_arch_set_xen_version(Object *obj, Visitor *v,
6539                                      const char *name, void *opaque,
6540                                      Error **errp)
6541 {
6542     KVMState *s = KVM_STATE(obj);
6543     Error *error = NULL;
6544     uint32_t value;
6545 
6546     visit_type_uint32(v, name, &value, &error);
6547     if (error) {
6548         error_propagate(errp, error);
6549         return;
6550     }
6551 
6552     s->xen_version = value;
6553     if (value && xen_mode == XEN_DISABLED) {
6554         xen_mode = XEN_EMULATE;
6555     }
6556 }
6557 
kvm_arch_get_xen_gnttab_max_frames(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)6558 static void kvm_arch_get_xen_gnttab_max_frames(Object *obj, Visitor *v,
6559                                                const char *name, void *opaque,
6560                                                Error **errp)
6561 {
6562     KVMState *s = KVM_STATE(obj);
6563     uint16_t value = s->xen_gnttab_max_frames;
6564 
6565     visit_type_uint16(v, name, &value, errp);
6566 }
6567 
kvm_arch_set_xen_gnttab_max_frames(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)6568 static void kvm_arch_set_xen_gnttab_max_frames(Object *obj, Visitor *v,
6569                                                const char *name, void *opaque,
6570                                                Error **errp)
6571 {
6572     KVMState *s = KVM_STATE(obj);
6573     Error *error = NULL;
6574     uint16_t value;
6575 
6576     visit_type_uint16(v, name, &value, &error);
6577     if (error) {
6578         error_propagate(errp, error);
6579         return;
6580     }
6581 
6582     s->xen_gnttab_max_frames = value;
6583 }
6584 
kvm_arch_get_xen_evtchn_max_pirq(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)6585 static void kvm_arch_get_xen_evtchn_max_pirq(Object *obj, Visitor *v,
6586                                              const char *name, void *opaque,
6587                                              Error **errp)
6588 {
6589     KVMState *s = KVM_STATE(obj);
6590     uint16_t value = s->xen_evtchn_max_pirq;
6591 
6592     visit_type_uint16(v, name, &value, errp);
6593 }
6594 
kvm_arch_set_xen_evtchn_max_pirq(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)6595 static void kvm_arch_set_xen_evtchn_max_pirq(Object *obj, Visitor *v,
6596                                              const char *name, void *opaque,
6597                                              Error **errp)
6598 {
6599     KVMState *s = KVM_STATE(obj);
6600     Error *error = NULL;
6601     uint16_t value;
6602 
6603     visit_type_uint16(v, name, &value, &error);
6604     if (error) {
6605         error_propagate(errp, error);
6606         return;
6607     }
6608 
6609     s->xen_evtchn_max_pirq = value;
6610 }
6611 
kvm_arch_accel_class_init(ObjectClass * oc)6612 void kvm_arch_accel_class_init(ObjectClass *oc)
6613 {
6614     object_class_property_add_enum(oc, "notify-vmexit", "NotifyVMexitOption",
6615                                    &NotifyVmexitOption_lookup,
6616                                    kvm_arch_get_notify_vmexit,
6617                                    kvm_arch_set_notify_vmexit);
6618     object_class_property_set_description(oc, "notify-vmexit",
6619                                           "Enable notify VM exit");
6620 
6621     object_class_property_add(oc, "notify-window", "uint32",
6622                               kvm_arch_get_notify_window,
6623                               kvm_arch_set_notify_window,
6624                               NULL, NULL);
6625     object_class_property_set_description(oc, "notify-window",
6626                                           "Clock cycles without an event window "
6627                                           "after which a notification VM exit occurs");
6628 
6629     object_class_property_add(oc, "xen-version", "uint32",
6630                               kvm_arch_get_xen_version,
6631                               kvm_arch_set_xen_version,
6632                               NULL, NULL);
6633     object_class_property_set_description(oc, "xen-version",
6634                                           "Xen version to be emulated "
6635                                           "(in XENVER_version form "
6636                                           "e.g. 0x4000a for 4.10)");
6637 
6638     object_class_property_add(oc, "xen-gnttab-max-frames", "uint16",
6639                               kvm_arch_get_xen_gnttab_max_frames,
6640                               kvm_arch_set_xen_gnttab_max_frames,
6641                               NULL, NULL);
6642     object_class_property_set_description(oc, "xen-gnttab-max-frames",
6643                                           "Maximum number of grant table frames");
6644 
6645     object_class_property_add(oc, "xen-evtchn-max-pirq", "uint16",
6646                               kvm_arch_get_xen_evtchn_max_pirq,
6647                               kvm_arch_set_xen_evtchn_max_pirq,
6648                               NULL, NULL);
6649     object_class_property_set_description(oc, "xen-evtchn-max-pirq",
6650                                           "Maximum number of Xen PIRQs");
6651 }
6652 
kvm_set_max_apic_id(uint32_t max_apic_id)6653 void kvm_set_max_apic_id(uint32_t max_apic_id)
6654 {
6655     kvm_vm_enable_cap(kvm_state, KVM_CAP_MAX_VCPU_ID, 0, max_apic_id);
6656 }
6657