1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2015 - ARM Ltd
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 */
6
7 #include <hyp/switch.h>
8 #include <hyp/sysreg-sr.h>
9
10 #include <linux/arm-smccc.h>
11 #include <linux/kvm_host.h>
12 #include <linux/types.h>
13 #include <linux/jump_label.h>
14 #include <uapi/linux/psci.h>
15
16 #include <kvm/arm_psci.h>
17
18 #include <asm/barrier.h>
19 #include <asm/cpufeature.h>
20 #include <asm/kprobes.h>
21 #include <asm/kvm_asm.h>
22 #include <asm/kvm_emulate.h>
23 #include <asm/kvm_hyp.h>
24 #include <asm/kvm_mmu.h>
25 #include <asm/fpsimd.h>
26 #include <asm/debug-monitors.h>
27 #include <asm/processor.h>
28
29 #include <nvhe/fixed_config.h>
30 #include <nvhe/mem_protect.h>
31
32 /* Non-VHE specific context */
33 DEFINE_PER_CPU(struct kvm_host_data, kvm_host_data);
34 DEFINE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
35 DEFINE_PER_CPU(unsigned long, kvm_hyp_vector);
36
37 extern void kvm_nvhe_prepare_backtrace(unsigned long fp, unsigned long pc);
38
__activate_cptr_traps(struct kvm_vcpu * vcpu)39 static void __activate_cptr_traps(struct kvm_vcpu *vcpu)
40 {
41 u64 val = CPTR_EL2_TAM; /* Same bit irrespective of E2H */
42
43 if (!guest_owns_fp_regs(vcpu))
44 __activate_traps_fpsimd32(vcpu);
45
46 if (has_hvhe()) {
47 val |= CPACR_ELx_TTA;
48
49 if (guest_owns_fp_regs(vcpu)) {
50 val |= CPACR_ELx_FPEN;
51 if (vcpu_has_sve(vcpu))
52 val |= CPACR_ELx_ZEN;
53 }
54
55 write_sysreg(val, cpacr_el1);
56 } else {
57 val |= CPTR_EL2_TTA | CPTR_NVHE_EL2_RES1;
58
59 /*
60 * Always trap SME since it's not supported in KVM.
61 * TSM is RES1 if SME isn't implemented.
62 */
63 val |= CPTR_EL2_TSM;
64
65 if (!vcpu_has_sve(vcpu) || !guest_owns_fp_regs(vcpu))
66 val |= CPTR_EL2_TZ;
67
68 if (!guest_owns_fp_regs(vcpu))
69 val |= CPTR_EL2_TFP;
70
71 write_sysreg(val, cptr_el2);
72 }
73 }
74
__deactivate_cptr_traps(struct kvm_vcpu * vcpu)75 static void __deactivate_cptr_traps(struct kvm_vcpu *vcpu)
76 {
77 if (has_hvhe()) {
78 u64 val = CPACR_ELx_FPEN;
79
80 if (cpus_have_final_cap(ARM64_SVE))
81 val |= CPACR_ELx_ZEN;
82 if (cpus_have_final_cap(ARM64_SME))
83 val |= CPACR_ELx_SMEN;
84
85 write_sysreg(val, cpacr_el1);
86 } else {
87 u64 val = CPTR_NVHE_EL2_RES1;
88
89 if (!cpus_have_final_cap(ARM64_SVE))
90 val |= CPTR_EL2_TZ;
91 if (!cpus_have_final_cap(ARM64_SME))
92 val |= CPTR_EL2_TSM;
93
94 write_sysreg(val, cptr_el2);
95 }
96 }
97
__activate_traps(struct kvm_vcpu * vcpu)98 static void __activate_traps(struct kvm_vcpu *vcpu)
99 {
100 ___activate_traps(vcpu);
101 __activate_traps_common(vcpu);
102 __activate_cptr_traps(vcpu);
103
104 write_sysreg(__this_cpu_read(kvm_hyp_vector), vbar_el2);
105
106 if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
107 struct kvm_cpu_context *ctxt = &vcpu->arch.ctxt;
108
109 isb();
110 /*
111 * At this stage, and thanks to the above isb(), S2 is
112 * configured and enabled. We can now restore the guest's S1
113 * configuration: SCTLR, and only then TCR.
114 */
115 write_sysreg_el1(ctxt_sys_reg(ctxt, SCTLR_EL1), SYS_SCTLR);
116 isb();
117 write_sysreg_el1(ctxt_sys_reg(ctxt, TCR_EL1), SYS_TCR);
118 }
119 }
120
__deactivate_traps(struct kvm_vcpu * vcpu)121 static void __deactivate_traps(struct kvm_vcpu *vcpu)
122 {
123 extern char __kvm_hyp_host_vector[];
124
125 ___deactivate_traps(vcpu);
126
127 if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
128 u64 val;
129
130 /*
131 * Set the TCR and SCTLR registers in the exact opposite
132 * sequence as __activate_traps (first prevent walks,
133 * then force the MMU on). A generous sprinkling of isb()
134 * ensure that things happen in this exact order.
135 */
136 val = read_sysreg_el1(SYS_TCR);
137 write_sysreg_el1(val | TCR_EPD1_MASK | TCR_EPD0_MASK, SYS_TCR);
138 isb();
139 val = read_sysreg_el1(SYS_SCTLR);
140 write_sysreg_el1(val | SCTLR_ELx_M, SYS_SCTLR);
141 isb();
142 }
143
144 __deactivate_traps_common(vcpu);
145
146 write_sysreg(this_cpu_ptr(&kvm_init_params)->hcr_el2, hcr_el2);
147
148 __deactivate_cptr_traps(vcpu);
149 write_sysreg(__kvm_hyp_host_vector, vbar_el2);
150 }
151
152 /* Save VGICv3 state on non-VHE systems */
__hyp_vgic_save_state(struct kvm_vcpu * vcpu)153 static void __hyp_vgic_save_state(struct kvm_vcpu *vcpu)
154 {
155 if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
156 __vgic_v3_save_state(&vcpu->arch.vgic_cpu.vgic_v3);
157 __vgic_v3_deactivate_traps(&vcpu->arch.vgic_cpu.vgic_v3);
158 }
159 }
160
161 /* Restore VGICv3 state on non-VHE systems */
__hyp_vgic_restore_state(struct kvm_vcpu * vcpu)162 static void __hyp_vgic_restore_state(struct kvm_vcpu *vcpu)
163 {
164 if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
165 __vgic_v3_activate_traps(&vcpu->arch.vgic_cpu.vgic_v3);
166 __vgic_v3_restore_state(&vcpu->arch.vgic_cpu.vgic_v3);
167 }
168 }
169
170 /*
171 * Disable host events, enable guest events
172 */
173 #ifdef CONFIG_HW_PERF_EVENTS
__pmu_switch_to_guest(struct kvm_vcpu * vcpu)174 static bool __pmu_switch_to_guest(struct kvm_vcpu *vcpu)
175 {
176 struct kvm_pmu_events *pmu = &vcpu->arch.pmu.events;
177
178 if (pmu->events_host)
179 write_sysreg(pmu->events_host, pmcntenclr_el0);
180
181 if (pmu->events_guest)
182 write_sysreg(pmu->events_guest, pmcntenset_el0);
183
184 return (pmu->events_host || pmu->events_guest);
185 }
186
187 /*
188 * Disable guest events, enable host events
189 */
__pmu_switch_to_host(struct kvm_vcpu * vcpu)190 static void __pmu_switch_to_host(struct kvm_vcpu *vcpu)
191 {
192 struct kvm_pmu_events *pmu = &vcpu->arch.pmu.events;
193
194 if (pmu->events_guest)
195 write_sysreg(pmu->events_guest, pmcntenclr_el0);
196
197 if (pmu->events_host)
198 write_sysreg(pmu->events_host, pmcntenset_el0);
199 }
200 #else
201 #define __pmu_switch_to_guest(v) ({ false; })
202 #define __pmu_switch_to_host(v) do {} while (0)
203 #endif
204
205 /*
206 * Handler for protected VM MSR, MRS or System instruction execution in AArch64.
207 *
208 * Returns true if the hypervisor has handled the exit, and control should go
209 * back to the guest, or false if it hasn't.
210 */
kvm_handle_pvm_sys64(struct kvm_vcpu * vcpu,u64 * exit_code)211 static bool kvm_handle_pvm_sys64(struct kvm_vcpu *vcpu, u64 *exit_code)
212 {
213 /*
214 * Make sure we handle the exit for workarounds and ptrauth
215 * before the pKVM handling, as the latter could decide to
216 * UNDEF.
217 */
218 return (kvm_hyp_handle_sysreg(vcpu, exit_code) ||
219 kvm_handle_pvm_sysreg(vcpu, exit_code));
220 }
221
222 static const exit_handler_fn hyp_exit_handlers[] = {
223 [0 ... ESR_ELx_EC_MAX] = NULL,
224 [ESR_ELx_EC_CP15_32] = kvm_hyp_handle_cp15_32,
225 [ESR_ELx_EC_SYS64] = kvm_hyp_handle_sysreg,
226 [ESR_ELx_EC_SVE] = kvm_hyp_handle_fpsimd,
227 [ESR_ELx_EC_FP_ASIMD] = kvm_hyp_handle_fpsimd,
228 [ESR_ELx_EC_IABT_LOW] = kvm_hyp_handle_iabt_low,
229 [ESR_ELx_EC_DABT_LOW] = kvm_hyp_handle_dabt_low,
230 [ESR_ELx_EC_WATCHPT_LOW] = kvm_hyp_handle_watchpt_low,
231 [ESR_ELx_EC_PAC] = kvm_hyp_handle_ptrauth,
232 };
233
234 static const exit_handler_fn pvm_exit_handlers[] = {
235 [0 ... ESR_ELx_EC_MAX] = NULL,
236 [ESR_ELx_EC_SYS64] = kvm_handle_pvm_sys64,
237 [ESR_ELx_EC_SVE] = kvm_handle_pvm_restricted,
238 [ESR_ELx_EC_FP_ASIMD] = kvm_hyp_handle_fpsimd,
239 [ESR_ELx_EC_IABT_LOW] = kvm_hyp_handle_iabt_low,
240 [ESR_ELx_EC_DABT_LOW] = kvm_hyp_handle_dabt_low,
241 [ESR_ELx_EC_WATCHPT_LOW] = kvm_hyp_handle_watchpt_low,
242 [ESR_ELx_EC_PAC] = kvm_hyp_handle_ptrauth,
243 };
244
kvm_get_exit_handler_array(struct kvm_vcpu * vcpu)245 static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu)
246 {
247 if (unlikely(kvm_vm_is_protected(kern_hyp_va(vcpu->kvm))))
248 return pvm_exit_handlers;
249
250 return hyp_exit_handlers;
251 }
252
fixup_guest_exit(struct kvm_vcpu * vcpu,u64 * exit_code)253 static inline bool fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
254 {
255 const exit_handler_fn *handlers = kvm_get_exit_handler_array(vcpu);
256 struct kvm *kvm = kern_hyp_va(vcpu->kvm);
257
258 synchronize_vcpu_pstate(vcpu, exit_code);
259
260 /*
261 * Some guests (e.g., protected VMs) are not be allowed to run in
262 * AArch32. The ARMv8 architecture does not give the hypervisor a
263 * mechanism to prevent a guest from dropping to AArch32 EL0 if
264 * implemented by the CPU. If the hypervisor spots a guest in such a
265 * state ensure it is handled, and don't trust the host to spot or fix
266 * it. The check below is based on the one in
267 * kvm_arch_vcpu_ioctl_run().
268 */
269 if (kvm_vm_is_protected(kvm) && vcpu_mode_is_32bit(vcpu)) {
270 /*
271 * As we have caught the guest red-handed, decide that it isn't
272 * fit for purpose anymore by making the vcpu invalid. The VMM
273 * can try and fix it by re-initializing the vcpu with
274 * KVM_ARM_VCPU_INIT, however, this is likely not possible for
275 * protected VMs.
276 */
277 vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
278 *exit_code &= BIT(ARM_EXIT_WITH_SERROR_BIT);
279 *exit_code |= ARM_EXCEPTION_IL;
280 }
281
282 return __fixup_guest_exit(vcpu, exit_code, handlers);
283 }
284
285 /* Switch to the guest for legacy non-VHE systems */
__kvm_vcpu_run(struct kvm_vcpu * vcpu)286 int __kvm_vcpu_run(struct kvm_vcpu *vcpu)
287 {
288 struct kvm_cpu_context *host_ctxt;
289 struct kvm_cpu_context *guest_ctxt;
290 struct kvm_s2_mmu *mmu;
291 bool pmu_switch_needed;
292 u64 exit_code;
293
294 /*
295 * Having IRQs masked via PMR when entering the guest means the GIC
296 * will not signal the CPU of interrupts of lower priority, and the
297 * only way to get out will be via guest exceptions.
298 * Naturally, we want to avoid this.
299 */
300 if (system_uses_irq_prio_masking()) {
301 gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
302 pmr_sync();
303 }
304
305 host_ctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt;
306 host_ctxt->__hyp_running_vcpu = vcpu;
307 guest_ctxt = &vcpu->arch.ctxt;
308
309 pmu_switch_needed = __pmu_switch_to_guest(vcpu);
310
311 __sysreg_save_state_nvhe(host_ctxt);
312 /*
313 * We must flush and disable the SPE buffer for nVHE, as
314 * the translation regime(EL1&0) is going to be loaded with
315 * that of the guest. And we must do this before we change the
316 * translation regime to EL2 (via MDCR_EL2_E2PB == 0) and
317 * before we load guest Stage1.
318 */
319 __debug_save_host_buffers_nvhe(vcpu);
320
321 /*
322 * We're about to restore some new MMU state. Make sure
323 * ongoing page-table walks that have started before we
324 * trapped to EL2 have completed. This also synchronises the
325 * above disabling of SPE and TRBE.
326 *
327 * See DDI0487I.a D8.1.5 "Out-of-context translation regimes",
328 * rule R_LFHQG and subsequent information statements.
329 */
330 dsb(nsh);
331
332 __kvm_adjust_pc(vcpu);
333
334 /*
335 * We must restore the 32-bit state before the sysregs, thanks
336 * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
337 *
338 * Also, and in order to be able to deal with erratum #1319537 (A57)
339 * and #1319367 (A72), we must ensure that all VM-related sysreg are
340 * restored before we enable S2 translation.
341 */
342 __sysreg32_restore_state(vcpu);
343 __sysreg_restore_state_nvhe(guest_ctxt);
344
345 mmu = kern_hyp_va(vcpu->arch.hw_mmu);
346 __load_stage2(mmu, kern_hyp_va(mmu->arch));
347 __activate_traps(vcpu);
348
349 __hyp_vgic_restore_state(vcpu);
350 __timer_enable_traps(vcpu);
351
352 __debug_switch_to_guest(vcpu);
353
354 do {
355 /* Jump in the fire! */
356 exit_code = __guest_enter(vcpu);
357
358 /* And we're baaack! */
359 } while (fixup_guest_exit(vcpu, &exit_code));
360
361 __sysreg_save_state_nvhe(guest_ctxt);
362 __sysreg32_save_state(vcpu);
363 __timer_disable_traps(vcpu);
364 __hyp_vgic_save_state(vcpu);
365
366 /*
367 * Same thing as before the guest run: we're about to switch
368 * the MMU context, so let's make sure we don't have any
369 * ongoing EL1&0 translations.
370 */
371 dsb(nsh);
372
373 __deactivate_traps(vcpu);
374 __load_host_stage2();
375
376 __sysreg_restore_state_nvhe(host_ctxt);
377
378 if (vcpu->arch.fp_state == FP_STATE_GUEST_OWNED)
379 __fpsimd_save_fpexc32(vcpu);
380
381 __debug_switch_to_host(vcpu);
382 /*
383 * This must come after restoring the host sysregs, since a non-VHE
384 * system may enable SPE here and make use of the TTBRs.
385 */
386 __debug_restore_host_buffers_nvhe(vcpu);
387
388 if (pmu_switch_needed)
389 __pmu_switch_to_host(vcpu);
390
391 /* Returning to host will clear PSR.I, remask PMR if needed */
392 if (system_uses_irq_prio_masking())
393 gic_write_pmr(GIC_PRIO_IRQOFF);
394
395 host_ctxt->__hyp_running_vcpu = NULL;
396
397 return exit_code;
398 }
399
hyp_panic(void)400 asmlinkage void __noreturn hyp_panic(void)
401 {
402 u64 spsr = read_sysreg_el2(SYS_SPSR);
403 u64 elr = read_sysreg_el2(SYS_ELR);
404 u64 par = read_sysreg_par();
405 struct kvm_cpu_context *host_ctxt;
406 struct kvm_vcpu *vcpu;
407
408 host_ctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt;
409 vcpu = host_ctxt->__hyp_running_vcpu;
410
411 if (vcpu) {
412 __timer_disable_traps(vcpu);
413 __deactivate_traps(vcpu);
414 __load_host_stage2();
415 __sysreg_restore_state_nvhe(host_ctxt);
416 }
417
418 /* Prepare to dump kvm nvhe hyp stacktrace */
419 kvm_nvhe_prepare_backtrace((unsigned long)__builtin_frame_address(0),
420 _THIS_IP_);
421
422 __hyp_do_panic(host_ctxt, spsr, elr, par);
423 unreachable();
424 }
425
hyp_panic_bad_stack(void)426 asmlinkage void __noreturn hyp_panic_bad_stack(void)
427 {
428 hyp_panic();
429 }
430
kvm_unexpected_el2_exception(void)431 asmlinkage void kvm_unexpected_el2_exception(void)
432 {
433 __kvm_unexpected_el2_exception();
434 }
435