xref: /openbmc/qemu/include/hw/core/cpu.h (revision dbbb444d72f7c7b251e9b88185d9b8fc2a468efa)
1 /*
2  * QEMU CPU model
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 #ifndef QEMU_CPU_H
21 #define QEMU_CPU_H
22 
23 #include "hw/qdev-core.h"
24 #include "disas/dis-asm.h"
25 #include "exec/breakpoint.h"
26 #include "exec/hwaddr.h"
27 #include "exec/vaddr.h"
28 #include "exec/memattrs.h"
29 #include "exec/mmu-access-type.h"
30 #include "exec/tlb-common.h"
31 #include "qapi/qapi-types-machine.h"
32 #include "qapi/qapi-types-run-state.h"
33 #include "qemu/bitmap.h"
34 #include "qemu/rcu_queue.h"
35 #include "qemu/queue.h"
36 #include "qemu/lockcnt.h"
37 #include "qemu/thread.h"
38 #include "qom/object.h"
39 
40 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size,
41                                      void *opaque);
42 
43 /**
44  * SECTION:cpu
45  * @section_id: QEMU-cpu
46  * @title: CPU Class
47  * @short_description: Base class for all CPUs
48  */
49 
50 #define TYPE_CPU "cpu"
51 
52 /* Since this macro is used a lot in hot code paths and in conjunction with
53  * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using
54  * an unchecked cast.
55  */
56 #define CPU(obj) ((CPUState *)(obj))
57 
58 /*
59  * The class checkers bring in CPU_GET_CLASS() which is potentially
60  * expensive given the eventual call to
61  * object_class_dynamic_cast_assert(). Because of this the CPUState
62  * has a cached value for the class in cs->cc which is set up in
63  * cpu_exec_realizefn() for use in hot code paths.
64  */
65 typedef struct CPUClass CPUClass;
66 DECLARE_CLASS_CHECKERS(CPUClass, CPU,
67                        TYPE_CPU)
68 
69 /**
70  * OBJECT_DECLARE_CPU_TYPE:
71  * @CpuInstanceType: instance struct name
72  * @CpuClassType: class struct name
73  * @CPU_MODULE_OBJ_NAME: the CPU name in uppercase with underscore separators
74  *
75  * This macro is typically used in "cpu-qom.h" header file, and will:
76  *
77  *   - create the typedefs for the CPU object and class structs
78  *   - register the type for use with g_autoptr
79  *   - provide three standard type cast functions
80  *
81  * The object struct and class struct need to be declared manually.
82  */
83 #define OBJECT_DECLARE_CPU_TYPE(CpuInstanceType, CpuClassType, CPU_MODULE_OBJ_NAME) \
84     typedef struct ArchCPU CpuInstanceType; \
85     OBJECT_DECLARE_TYPE(ArchCPU, CpuClassType, CPU_MODULE_OBJ_NAME);
86 
87 typedef struct CPUWatchpoint CPUWatchpoint;
88 
89 /* see physmem.c */
90 struct CPUAddressSpace;
91 
92 /* see accel/tcg/tb-jmp-cache.h */
93 struct CPUJumpCache;
94 
95 /* see accel-cpu.h */
96 struct AccelCPUClass;
97 
98 /* see sysemu-cpu-ops.h */
99 struct SysemuCPUOps;
100 
101 /**
102  * CPUClass:
103  * @class_by_name: Callback to map -cpu command line model name to an
104  *                 instantiatable CPU type.
105  * @parse_features: Callback to parse command line arguments.
106  * @reset_dump_flags: #CPUDumpFlags to use for reset logging.
107  * @mmu_index: Callback for choosing softmmu mmu index;
108  *       may be used internally by memory_rw_debug without TCG.
109  * @memory_rw_debug: Callback for GDB memory access.
110  * @dump_state: Callback for dumping state.
111  * @query_cpu_fast:
112  *       Fill in target specific information for the "query-cpus-fast"
113  *       QAPI call.
114  * @get_arch_id: Callback for getting architecture-dependent CPU ID.
115  * @set_pc: Callback for setting the Program Counter register. This
116  *       should have the semantics used by the target architecture when
117  *       setting the PC from a source such as an ELF file entry point;
118  *       for example on Arm it will also set the Thumb mode bit based
119  *       on the least significant bit of the new PC value.
120  *       If the target behaviour here is anything other than "set
121  *       the PC register to the value passed in" then the target must
122  *       also implement the synchronize_from_tb hook.
123  * @get_pc: Callback for getting the Program Counter register.
124  *       As above, with the semantics of the target architecture.
125  * @gdb_read_register: Callback for letting GDB read a register.
126  *                     No more than @gdb_num_core_regs registers can be read.
127  * @gdb_write_register: Callback for letting GDB write a register.
128  *                     No more than @gdb_num_core_regs registers can be written.
129  * @gdb_adjust_breakpoint: Callback for adjusting the address of a
130  *       breakpoint.  Used by AVR to handle a gdb mis-feature with
131  *       its Harvard architecture split code and data.
132  * @gdb_num_core_regs: Number of core registers accessible to GDB or 0 to infer
133  *                     from @gdb_core_xml_file.
134  * @gdb_core_xml_file: File name for core registers GDB XML description.
135  * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop
136  *           before the insn which triggers a watchpoint rather than after it.
137  * @gdb_arch_name: Optional callback that returns the architecture name known
138  * to GDB. The returned value is expected to be a simple constant string:
139  * the caller will not g_free() it.
140  * @disas_set_info: Setup architecture specific components of disassembly info
141  * @adjust_watchpoint_address: Perform a target-specific adjustment to an
142  * address before attempting to match it against watchpoints.
143  * @deprecation_note: If this CPUClass is deprecated, this field provides
144  *                    related information.
145  *
146  * Represents a CPU family or model.
147  */
148 struct CPUClass {
149     /*< private >*/
150     DeviceClass parent_class;
151     /*< public >*/
152 
153     ObjectClass *(*class_by_name)(const char *cpu_model);
154     void (*parse_features)(const char *typename, char *str, Error **errp);
155 
156     int (*mmu_index)(CPUState *cpu, bool ifetch);
157     int (*memory_rw_debug)(CPUState *cpu, vaddr addr,
158                            uint8_t *buf, size_t len, bool is_write);
159     void (*dump_state)(CPUState *cpu, FILE *, int flags);
160     void (*query_cpu_fast)(CPUState *cpu, CpuInfoFast *value);
161     int64_t (*get_arch_id)(CPUState *cpu);
162     void (*set_pc)(CPUState *cpu, vaddr value);
163     vaddr (*get_pc)(CPUState *cpu);
164     int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg);
165     int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg);
166     vaddr (*gdb_adjust_breakpoint)(CPUState *cpu, vaddr addr);
167 
168     const char *gdb_core_xml_file;
169     const gchar * (*gdb_arch_name)(CPUState *cpu);
170 
171     void (*disas_set_info)(CPUState *cpu, disassemble_info *info);
172 
173     const char *deprecation_note;
174     struct AccelCPUClass *accel_cpu;
175 
176     /* when system emulation is not available, this pointer is NULL */
177     const struct SysemuCPUOps *sysemu_ops;
178 
179     /* when TCG is not available, this pointer is NULL */
180     const TCGCPUOps *tcg_ops;
181 
182     /*
183      * if not NULL, this is called in order for the CPUClass to initialize
184      * class data that depends on the accelerator, see accel/accel-common.c.
185      */
186     void (*init_accel_cpu)(struct AccelCPUClass *accel_cpu, CPUClass *cc);
187 
188     /*
189      * Keep non-pointer data at the end to minimize holes.
190      */
191     int reset_dump_flags;
192     int gdb_num_core_regs;
193     bool gdb_stop_before_watchpoint;
194 };
195 
196 /*
197  * Fix the number of mmu modes to 16, which is also the maximum
198  * supported by the softmmu tlb api.
199  */
200 #define NB_MMU_MODES 16
201 
202 /* Use a fully associative victim tlb of 8 entries. */
203 #define CPU_VTLB_SIZE 8
204 
205 /*
206  * The full TLB entry, which is not accessed by generated TCG code,
207  * so the layout is not as critical as that of CPUTLBEntry. This is
208  * also why we don't want to combine the two structs.
209  */
210 struct CPUTLBEntryFull {
211     /*
212      * @xlat_section contains:
213      *  - in the lower TARGET_PAGE_BITS, a physical section number
214      *  - with the lower TARGET_PAGE_BITS masked off, an offset which
215      *    must be added to the virtual address to obtain:
216      *     + the ram_addr_t of the target RAM (if the physical section
217      *       number is PHYS_SECTION_NOTDIRTY or PHYS_SECTION_ROM)
218      *     + the offset within the target MemoryRegion (otherwise)
219      */
220     hwaddr xlat_section;
221 
222     /*
223      * @phys_addr contains the physical address in the address space
224      * given by cpu_asidx_from_attrs(cpu, @attrs).
225      */
226     hwaddr phys_addr;
227 
228     /* @attrs contains the memory transaction attributes for the page. */
229     MemTxAttrs attrs;
230 
231     /* @prot contains the complete protections for the page. */
232     uint8_t prot;
233 
234     /* @lg_page_size contains the log2 of the page size. */
235     uint8_t lg_page_size;
236 
237     /* Additional tlb flags requested by tlb_fill. */
238     uint8_t tlb_fill_flags;
239 
240     /*
241      * Additional tlb flags for use by the slow path. If non-zero,
242      * the corresponding CPUTLBEntry comparator must have TLB_FORCE_SLOW.
243      */
244     uint8_t slow_flags[MMU_ACCESS_COUNT];
245 
246     /*
247      * Allow target-specific additions to this structure.
248      * This may be used to cache items from the guest cpu
249      * page tables for later use by the implementation.
250      */
251     union {
252         /*
253          * Cache the attrs and shareability fields from the page table entry.
254          *
255          * For ARMMMUIdx_Stage2*, pte_attrs is the S2 descriptor bits [5:2].
256          * Otherwise, pte_attrs is the same as the MAIR_EL1 8-bit format.
257          * For shareability and guarded, as in the SH and GP fields respectively
258          * of the VMSAv8-64 PTEs.
259          */
260         struct {
261             uint8_t pte_attrs;
262             uint8_t shareability;
263             bool guarded;
264         } arm;
265     } extra;
266 };
267 
268 /*
269  * Data elements that are per MMU mode, minus the bits accessed by
270  * the TCG fast path.
271  */
272 typedef struct CPUTLBDesc {
273     /*
274      * Describe a region covering all of the large pages allocated
275      * into the tlb.  When any page within this region is flushed,
276      * we must flush the entire tlb.  The region is matched if
277      * (addr & large_page_mask) == large_page_addr.
278      */
279     vaddr large_page_addr;
280     vaddr large_page_mask;
281     /* host time (in ns) at the beginning of the time window */
282     int64_t window_begin_ns;
283     /* maximum number of entries observed in the window */
284     size_t window_max_entries;
285     size_t n_used_entries;
286     /* The next index to use in the tlb victim table.  */
287     size_t vindex;
288     /* The tlb victim table, in two parts.  */
289     CPUTLBEntry vtable[CPU_VTLB_SIZE];
290     CPUTLBEntryFull vfulltlb[CPU_VTLB_SIZE];
291     CPUTLBEntryFull *fulltlb;
292 } CPUTLBDesc;
293 
294 /*
295  * Data elements that are shared between all MMU modes.
296  */
297 typedef struct CPUTLBCommon {
298     /* Serialize updates to f.table and d.vtable, and others as noted. */
299     QemuSpin lock;
300     /*
301      * Within dirty, for each bit N, modifications have been made to
302      * mmu_idx N since the last time that mmu_idx was flushed.
303      * Protected by tlb_c.lock.
304      */
305     uint16_t dirty;
306     /*
307      * Statistics.  These are not lock protected, but are read and
308      * written atomically.  This allows the monitor to print a snapshot
309      * of the stats without interfering with the cpu.
310      */
311     size_t full_flush_count;
312     size_t part_flush_count;
313     size_t elide_flush_count;
314 } CPUTLBCommon;
315 
316 /*
317  * The entire softmmu tlb, for all MMU modes.
318  * The meaning of each of the MMU modes is defined in the target code.
319  * Since this is placed within CPUNegativeOffsetState, the smallest
320  * negative offsets are at the end of the struct.
321  */
322 typedef struct CPUTLB {
323 #ifdef CONFIG_TCG
324     CPUTLBCommon c;
325     CPUTLBDesc d[NB_MMU_MODES];
326     CPUTLBDescFast f[NB_MMU_MODES];
327 #endif
328 } CPUTLB;
329 
330 /*
331  * Low 16 bits: number of cycles left, used only in icount mode.
332  * High 16 bits: Set to -1 to force TCG to stop executing linked TBs
333  * for this CPU and return to its top level loop (even in non-icount mode).
334  * This allows a single read-compare-cbranch-write sequence to test
335  * for both decrementer underflow and exceptions.
336  */
337 typedef union IcountDecr {
338     uint32_t u32;
339     struct {
340 #if HOST_BIG_ENDIAN
341         uint16_t high;
342         uint16_t low;
343 #else
344         uint16_t low;
345         uint16_t high;
346 #endif
347     } u16;
348 } IcountDecr;
349 
350 /**
351  * CPUNegativeOffsetState: Elements of CPUState most efficiently accessed
352  *                         from CPUArchState, via small negative offsets.
353  * @can_do_io: True if memory-mapped IO is allowed.
354  * @plugin_mem_cbs: active plugin memory callbacks
355  * @plugin_mem_value_low: 64 lower bits of latest accessed mem value.
356  * @plugin_mem_value_high: 64 higher bits of latest accessed mem value.
357  */
358 typedef struct CPUNegativeOffsetState {
359     CPUTLB tlb;
360 #ifdef CONFIG_PLUGIN
361     /*
362      * The callback pointer are accessed via TCG (see gen_empty_mem_helper).
363      */
364     GArray *plugin_mem_cbs;
365     uint64_t plugin_mem_value_low;
366     uint64_t plugin_mem_value_high;
367 #endif
368     IcountDecr icount_decr;
369     bool can_do_io;
370 } CPUNegativeOffsetState;
371 
372 struct KVMState;
373 struct kvm_run;
374 
375 /* work queue */
376 
377 /* The union type allows passing of 64 bit target pointers on 32 bit
378  * hosts in a single parameter
379  */
380 typedef union {
381     int           host_int;
382     unsigned long host_ulong;
383     void         *host_ptr;
384     vaddr         target_ptr;
385 } run_on_cpu_data;
386 
387 #define RUN_ON_CPU_HOST_PTR(p)    ((run_on_cpu_data){.host_ptr = (p)})
388 #define RUN_ON_CPU_HOST_INT(i)    ((run_on_cpu_data){.host_int = (i)})
389 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)})
390 #define RUN_ON_CPU_TARGET_PTR(v)  ((run_on_cpu_data){.target_ptr = (v)})
391 #define RUN_ON_CPU_NULL           RUN_ON_CPU_HOST_PTR(NULL)
392 
393 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data);
394 
395 struct qemu_work_item;
396 
397 #define CPU_UNSET_NUMA_NODE_ID -1
398 
399 /**
400  * struct CPUState - common state of one CPU core or thread.
401  *
402  * @cpu_index: CPU index (informative).
403  * @cluster_index: Identifies which cluster this CPU is in.
404  *   For boards which don't define clusters or for "loose" CPUs not assigned
405  *   to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will
406  *   be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER
407  *   QOM parent.
408  *   Under TCG this value is propagated to @tcg_cflags.
409  *   See TranslationBlock::TCG CF_CLUSTER_MASK.
410  * @tcg_cflags: Pre-computed cflags for this cpu.
411  * @nr_threads: Number of threads within this CPU core.
412  * @thread: Host thread details, only live once @created is #true
413  * @sem: WIN32 only semaphore used only for qtest
414  * @thread_id: native thread id of vCPU, only live once @created is #true
415  * @running: #true if CPU is currently running (lockless).
416  * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end;
417  * valid under cpu_list_lock.
418  * @created: Indicates whether the CPU thread has been successfully created.
419  * @halt_cond: condition variable sleeping threads can wait on.
420  * @interrupt_request: Indicates a pending interrupt request.
421  * @halted: Nonzero if the CPU is in suspended state.
422  * @stop: Indicates a pending stop request.
423  * @stopped: Indicates the CPU has been artificially stopped.
424  * @unplug: Indicates a pending CPU unplug request.
425  * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU
426  * @singlestep_enabled: Flags for single-stepping.
427  * @icount_extra: Instructions until next timer event.
428  * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the
429  *            AddressSpaces this CPU has)
430  * @num_ases: number of CPUAddressSpaces in @cpu_ases
431  * @as: Pointer to the first AddressSpace, for the convenience of targets which
432  *      only have a single AddressSpace
433  * @gdb_regs: Additional GDB registers.
434  * @gdb_num_regs: Number of total registers accessible to GDB.
435  * @gdb_num_g_regs: Number of registers in GDB 'g' packets.
436  * @node: QTAILQ of CPUs sharing TB cache.
437  * @opaque: User data.
438  * @mem_io_pc: Host Program Counter at which the memory was accessed.
439  * @accel: Pointer to accelerator specific state.
440  * @kvm_fd: vCPU file descriptor for KVM.
441  * @work_mutex: Lock to prevent multiple access to @work_list.
442  * @work_list: List of pending asynchronous work.
443  * @plugin_state: per-CPU plugin state
444  * @ignore_memory_transaction_failures: Cached copy of the MachineState
445  *    flag of the same name: allows the board to suppress calling of the
446  *    CPU do_transaction_failed hook function.
447  * @kvm_dirty_gfns: Points to the KVM dirty ring for this CPU when KVM dirty
448  *    ring is enabled.
449  * @kvm_fetch_index: Keeps the index that we last fetched from the per-vCPU
450  *    dirty ring structure.
451  *
452  * @neg_align: The CPUState is the common part of a concrete ArchCPU
453  * which is allocated when an individual CPU instance is created. As
454  * such care is taken is ensure there is no gap between between
455  * CPUState and CPUArchState within ArchCPU.
456  *
457  * @neg: The architectural register state ("cpu_env") immediately follows
458  * CPUState in ArchCPU and is passed to TCG code. The @neg structure holds
459  * some common TCG CPU variables which are accessed with a negative offset
460  * from cpu_env.
461  */
462 struct CPUState {
463     /*< private >*/
464     DeviceState parent_obj;
465     /* cache to avoid expensive CPU_GET_CLASS */
466     CPUClass *cc;
467     /*< public >*/
468 
469     int nr_threads;
470 
471     struct QemuThread *thread;
472 #ifdef _WIN32
473     QemuSemaphore sem;
474 #endif
475     int thread_id;
476     bool running, has_waiter;
477     struct QemuCond *halt_cond;
478     bool thread_kicked;
479     bool created;
480     bool stop;
481     bool stopped;
482 
483     /* Should CPU start in powered-off state? */
484     bool start_powered_off;
485 
486     bool unplug;
487     bool crash_occurred;
488     bool exit_request;
489     int exclusive_context_count;
490     uint32_t cflags_next_tb;
491     /* updates protected by BQL */
492     uint32_t interrupt_request;
493     int singlestep_enabled;
494     int64_t icount_budget;
495     int64_t icount_extra;
496     uint64_t random_seed;
497     sigjmp_buf jmp_env;
498 
499     QemuMutex work_mutex;
500     QSIMPLEQ_HEAD(, qemu_work_item) work_list;
501 
502     struct CPUAddressSpace *cpu_ases;
503     int cpu_ases_count;
504     int num_ases;
505     AddressSpace *as;
506     MemoryRegion *memory;
507 
508     struct CPUJumpCache *tb_jmp_cache;
509 
510     GArray *gdb_regs;
511     int gdb_num_regs;
512     int gdb_num_g_regs;
513     QTAILQ_ENTRY(CPUState) node;
514 
515     /* ice debug support */
516     QTAILQ_HEAD(, CPUBreakpoint) breakpoints;
517 
518     QTAILQ_HEAD(, CPUWatchpoint) watchpoints;
519     CPUWatchpoint *watchpoint_hit;
520 
521     void *opaque;
522 
523     /* In order to avoid passing too many arguments to the MMIO helpers,
524      * we store some rarely used information in the CPU context.
525      */
526     uintptr_t mem_io_pc;
527 
528     /* Only used in KVM */
529     int kvm_fd;
530     struct KVMState *kvm_state;
531     struct kvm_run *kvm_run;
532     struct kvm_dirty_gfn *kvm_dirty_gfns;
533     uint32_t kvm_fetch_index;
534     uint64_t dirty_pages;
535     int kvm_vcpu_stats_fd;
536     bool vcpu_dirty;
537 
538     /* Use by accel-block: CPU is executing an ioctl() */
539     QemuLockCnt in_ioctl_lock;
540 
541 #ifdef CONFIG_PLUGIN
542     CPUPluginState *plugin_state;
543 #endif
544 
545     /* TODO Move common fields from CPUArchState here. */
546     int cpu_index;
547     int cluster_index;
548     uint32_t tcg_cflags;
549     uint32_t halted;
550     int32_t exception_index;
551 
552     AccelCPUState *accel;
553 
554     /* Used to keep track of an outstanding cpu throttle thread for migration
555      * autoconverge
556      */
557     bool throttle_thread_scheduled;
558 
559     /*
560      * Sleep throttle_us_per_full microseconds once dirty ring is full
561      * if dirty page rate limit is enabled.
562      */
563     int64_t throttle_us_per_full;
564 
565     bool ignore_memory_transaction_failures;
566 
567     /* Used for user-only emulation of prctl(PR_SET_UNALIGN). */
568     bool prctl_unalign_sigbus;
569 
570     /* track IOMMUs whose translations we've cached in the TCG TLB */
571     GArray *iommu_notifiers;
572 
573     /*
574      * MUST BE LAST in order to minimize the displacement to CPUArchState.
575      */
576     char neg_align[-sizeof(CPUNegativeOffsetState) % 16] QEMU_ALIGNED(16);
577     CPUNegativeOffsetState neg;
578 };
579 
580 /* Validate placement of CPUNegativeOffsetState. */
581 QEMU_BUILD_BUG_ON(offsetof(CPUState, neg) !=
582                   sizeof(CPUState) - sizeof(CPUNegativeOffsetState));
583 
cpu_env(CPUState * cpu)584 static inline CPUArchState *cpu_env(CPUState *cpu)
585 {
586     /* We validate that CPUArchState follows CPUState in cpu-all.h. */
587     return (CPUArchState *)(cpu + 1);
588 }
589 
590 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ;
591 extern CPUTailQ cpus_queue;
592 
593 #define first_cpu        QTAILQ_FIRST_RCU(&cpus_queue)
594 #define CPU_NEXT(cpu)    QTAILQ_NEXT_RCU(cpu, node)
595 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus_queue, node)
596 #define CPU_FOREACH_SAFE(cpu, next_cpu) \
597     QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus_queue, node, next_cpu)
598 
599 extern __thread CPUState *current_cpu;
600 
601 /**
602  * qemu_tcg_mttcg_enabled:
603  * Check whether we are running MultiThread TCG or not.
604  *
605  * Returns: %true if we are in MTTCG mode %false otherwise.
606  */
607 extern bool mttcg_enabled;
608 #define qemu_tcg_mttcg_enabled() (mttcg_enabled)
609 
610 /**
611  * cpu_paging_enabled:
612  * @cpu: The CPU whose state is to be inspected.
613  *
614  * Returns: %true if paging is enabled, %false otherwise.
615  */
616 bool cpu_paging_enabled(const CPUState *cpu);
617 
618 #if !defined(CONFIG_USER_ONLY)
619 
620 /**
621  * cpu_get_memory_mapping:
622  * @cpu: The CPU whose memory mappings are to be obtained.
623  * @list: Where to write the memory mappings to.
624  * @errp: Pointer for reporting an #Error.
625  *
626  * Returns: %true on success, %false otherwise.
627  */
628 bool cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list,
629                             Error **errp);
630 
631 /**
632  * cpu_write_elf64_note:
633  * @f: pointer to a function that writes memory to a file
634  * @cpu: The CPU whose memory is to be dumped
635  * @cpuid: ID number of the CPU
636  * @opaque: pointer to the CPUState struct
637  */
638 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu,
639                          int cpuid, void *opaque);
640 
641 /**
642  * cpu_write_elf64_qemunote:
643  * @f: pointer to a function that writes memory to a file
644  * @cpu: The CPU whose memory is to be dumped
645  * @cpuid: ID number of the CPU
646  * @opaque: pointer to the CPUState struct
647  */
648 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
649                              void *opaque);
650 
651 /**
652  * cpu_write_elf32_note:
653  * @f: pointer to a function that writes memory to a file
654  * @cpu: The CPU whose memory is to be dumped
655  * @cpuid: ID number of the CPU
656  * @opaque: pointer to the CPUState struct
657  */
658 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu,
659                          int cpuid, void *opaque);
660 
661 /**
662  * cpu_write_elf32_qemunote:
663  * @f: pointer to a function that writes memory to a file
664  * @cpu: The CPU whose memory is to be dumped
665  * @cpuid: ID number of the CPU
666  * @opaque: pointer to the CPUState struct
667  */
668 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
669                              void *opaque);
670 
671 /**
672  * cpu_get_crash_info:
673  * @cpu: The CPU to get crash information for
674  *
675  * Gets the previously saved crash information.
676  * Caller is responsible for freeing the data.
677  */
678 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu);
679 
680 #endif /* !CONFIG_USER_ONLY */
681 
682 /**
683  * CPUDumpFlags:
684  * @CPU_DUMP_CODE:
685  * @CPU_DUMP_FPU: dump FPU register state, not just integer
686  * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state
687  * @CPU_DUMP_VPU: dump VPU registers
688  */
689 enum CPUDumpFlags {
690     CPU_DUMP_CODE = 0x00010000,
691     CPU_DUMP_FPU  = 0x00020000,
692     CPU_DUMP_CCOP = 0x00040000,
693     CPU_DUMP_VPU  = 0x00080000,
694 };
695 
696 /**
697  * cpu_dump_state:
698  * @cpu: The CPU whose state is to be dumped.
699  * @f: If non-null, dump to this stream, else to current print sink.
700  *
701  * Dumps CPU state.
702  */
703 void cpu_dump_state(CPUState *cpu, FILE *f, int flags);
704 
705 #ifndef CONFIG_USER_ONLY
706 /**
707  * cpu_get_phys_page_attrs_debug:
708  * @cpu: The CPU to obtain the physical page address for.
709  * @addr: The virtual address.
710  * @attrs: Updated on return with the memory transaction attributes to use
711  *         for this access.
712  *
713  * Obtains the physical page corresponding to a virtual one, together
714  * with the corresponding memory transaction attributes to use for the access.
715  * Use it only for debugging because no protection checks are done.
716  *
717  * Returns: Corresponding physical page address or -1 if no page found.
718  */
719 hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
720                                      MemTxAttrs *attrs);
721 
722 /**
723  * cpu_get_phys_page_debug:
724  * @cpu: The CPU to obtain the physical page address for.
725  * @addr: The virtual address.
726  *
727  * Obtains the physical page corresponding to a virtual one.
728  * Use it only for debugging because no protection checks are done.
729  *
730  * Returns: Corresponding physical page address or -1 if no page found.
731  */
732 hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
733 
734 /** cpu_asidx_from_attrs:
735  * @cpu: CPU
736  * @attrs: memory transaction attributes
737  *
738  * Returns the address space index specifying the CPU AddressSpace
739  * to use for a memory access with the given transaction attributes.
740  */
741 int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs);
742 
743 /**
744  * cpu_virtio_is_big_endian:
745  * @cpu: CPU
746 
747  * Returns %true if a CPU which supports runtime configurable endianness
748  * is currently big-endian.
749  */
750 bool cpu_virtio_is_big_endian(CPUState *cpu);
751 
752 /**
753  * cpu_has_work:
754  * @cpu: The vCPU to check.
755  *
756  * Checks whether the CPU has work to do.
757  *
758  * Returns: %true if the CPU has work, %false otherwise.
759  */
760 bool cpu_has_work(CPUState *cpu);
761 
762 #endif /* CONFIG_USER_ONLY */
763 
764 /**
765  * cpu_list_add:
766  * @cpu: The CPU to be added to the list of CPUs.
767  */
768 void cpu_list_add(CPUState *cpu);
769 
770 /**
771  * cpu_list_remove:
772  * @cpu: The CPU to be removed from the list of CPUs.
773  */
774 void cpu_list_remove(CPUState *cpu);
775 
776 /**
777  * cpu_reset:
778  * @cpu: The CPU whose state is to be reset.
779  */
780 void cpu_reset(CPUState *cpu);
781 
782 /**
783  * cpu_class_by_name:
784  * @typename: The CPU base type.
785  * @cpu_model: The model string without any parameters.
786  *
787  * Looks up a concrete CPU #ObjectClass matching name @cpu_model.
788  *
789  * Returns: A concrete #CPUClass or %NULL if no matching class is found
790  *          or if the matching class is abstract.
791  */
792 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model);
793 
794 /**
795  * cpu_model_from_type:
796  * @typename: The CPU type name
797  *
798  * Extract the CPU model name from the CPU type name. The
799  * CPU type name is either the combination of the CPU model
800  * name and suffix, or same to the CPU model name.
801  *
802  * Returns: CPU model name or NULL if the CPU class doesn't exist
803  *          The user should g_free() the string once no longer needed.
804  */
805 char *cpu_model_from_type(const char *typename);
806 
807 /**
808  * cpu_create:
809  * @typename: The CPU type.
810  *
811  * Instantiates a CPU and realizes the CPU.
812  *
813  * Returns: A #CPUState or %NULL if an error occurred.
814  */
815 CPUState *cpu_create(const char *typename);
816 
817 /**
818  * parse_cpu_option:
819  * @cpu_option: The -cpu option including optional parameters.
820  *
821  * processes optional parameters and registers them as global properties
822  *
823  * Returns: type of CPU to create or prints error and terminates process
824  *          if an error occurred.
825  */
826 const char *parse_cpu_option(const char *cpu_option);
827 
828 /**
829  * qemu_cpu_is_self:
830  * @cpu: The vCPU to check against.
831  *
832  * Checks whether the caller is executing on the vCPU thread.
833  *
834  * Returns: %true if called from @cpu's thread, %false otherwise.
835  */
836 bool qemu_cpu_is_self(CPUState *cpu);
837 
838 /**
839  * qemu_cpu_kick:
840  * @cpu: The vCPU to kick.
841  *
842  * Kicks @cpu's thread.
843  */
844 void qemu_cpu_kick(CPUState *cpu);
845 
846 /**
847  * cpu_is_stopped:
848  * @cpu: The CPU to check.
849  *
850  * Checks whether the CPU is stopped.
851  *
852  * Returns: %true if run state is not running or if artificially stopped;
853  * %false otherwise.
854  */
855 bool cpu_is_stopped(CPUState *cpu);
856 
857 /**
858  * do_run_on_cpu:
859  * @cpu: The vCPU to run on.
860  * @func: The function to be executed.
861  * @data: Data to pass to the function.
862  * @mutex: Mutex to release while waiting for @func to run.
863  *
864  * Used internally in the implementation of run_on_cpu.
865  */
866 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data,
867                    QemuMutex *mutex);
868 
869 /**
870  * run_on_cpu:
871  * @cpu: The vCPU to run on.
872  * @func: The function to be executed.
873  * @data: Data to pass to the function.
874  *
875  * Schedules the function @func for execution on the vCPU @cpu.
876  */
877 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
878 
879 /**
880  * async_run_on_cpu:
881  * @cpu: The vCPU to run on.
882  * @func: The function to be executed.
883  * @data: Data to pass to the function.
884  *
885  * Schedules the function @func for execution on the vCPU @cpu asynchronously.
886  */
887 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
888 
889 /**
890  * async_safe_run_on_cpu:
891  * @cpu: The vCPU to run on.
892  * @func: The function to be executed.
893  * @data: Data to pass to the function.
894  *
895  * Schedules the function @func for execution on the vCPU @cpu asynchronously,
896  * while all other vCPUs are sleeping.
897  *
898  * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the
899  * BQL.
900  */
901 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
902 
903 /**
904  * cpu_in_exclusive_context()
905  * @cpu: The vCPU to check
906  *
907  * Returns true if @cpu is an exclusive context, for example running
908  * something which has previously been queued via async_safe_run_on_cpu().
909  */
cpu_in_exclusive_context(const CPUState * cpu)910 static inline bool cpu_in_exclusive_context(const CPUState *cpu)
911 {
912     return cpu->exclusive_context_count;
913 }
914 
915 /**
916  * qemu_get_cpu:
917  * @index: The CPUState@cpu_index value of the CPU to obtain.
918  *
919  * Gets a CPU matching @index.
920  *
921  * Returns: The CPU or %NULL if there is no matching CPU.
922  */
923 CPUState *qemu_get_cpu(int index);
924 
925 /**
926  * cpu_exists:
927  * @id: Guest-exposed CPU ID to lookup.
928  *
929  * Search for CPU with specified ID.
930  *
931  * Returns: %true - CPU is found, %false - CPU isn't found.
932  */
933 bool cpu_exists(int64_t id);
934 
935 /**
936  * cpu_by_arch_id:
937  * @id: Guest-exposed CPU ID of the CPU to obtain.
938  *
939  * Get a CPU with matching @id.
940  *
941  * Returns: The CPU or %NULL if there is no matching CPU.
942  */
943 CPUState *cpu_by_arch_id(int64_t id);
944 
945 /**
946  * cpu_interrupt:
947  * @cpu: The CPU to set an interrupt on.
948  * @mask: The interrupts to set.
949  *
950  * Invokes the interrupt handler.
951  */
952 
953 void cpu_interrupt(CPUState *cpu, int mask);
954 
955 /**
956  * cpu_set_pc:
957  * @cpu: The CPU to set the program counter for.
958  * @addr: Program counter value.
959  *
960  * Sets the program counter for a CPU.
961  */
cpu_set_pc(CPUState * cpu,vaddr addr)962 static inline void cpu_set_pc(CPUState *cpu, vaddr addr)
963 {
964     cpu->cc->set_pc(cpu, addr);
965 }
966 
967 /**
968  * cpu_reset_interrupt:
969  * @cpu: The CPU to clear the interrupt on.
970  * @mask: The interrupt mask to clear.
971  *
972  * Resets interrupts on the vCPU @cpu.
973  */
974 void cpu_reset_interrupt(CPUState *cpu, int mask);
975 
976 /**
977  * cpu_exit:
978  * @cpu: The CPU to exit.
979  *
980  * Requests the CPU @cpu to exit execution.
981  */
982 void cpu_exit(CPUState *cpu);
983 
984 /**
985  * cpu_pause:
986  * @cpu: The CPU to pause.
987  *
988  * Pauses CPU, i.e. puts CPU into stopped state.
989  */
990 void cpu_pause(CPUState *cpu);
991 
992 /**
993  * cpu_resume:
994  * @cpu: The CPU to resume.
995  *
996  * Resumes CPU, i.e. puts CPU into runnable state.
997  */
998 void cpu_resume(CPUState *cpu);
999 
1000 /**
1001  * cpu_remove_sync:
1002  * @cpu: The CPU to remove.
1003  *
1004  * Requests the CPU to be removed and waits till it is removed.
1005  */
1006 void cpu_remove_sync(CPUState *cpu);
1007 
1008 /**
1009  * free_queued_cpu_work() - free all items on CPU work queue
1010  * @cpu: The CPU which work queue to free.
1011  */
1012 void free_queued_cpu_work(CPUState *cpu);
1013 
1014 /**
1015  * process_queued_cpu_work() - process all items on CPU work queue
1016  * @cpu: The CPU which work queue to process.
1017  */
1018 void process_queued_cpu_work(CPUState *cpu);
1019 
1020 /**
1021  * cpu_exec_start:
1022  * @cpu: The CPU for the current thread.
1023  *
1024  * Record that a CPU has started execution and can be interrupted with
1025  * cpu_exit.
1026  */
1027 void cpu_exec_start(CPUState *cpu);
1028 
1029 /**
1030  * cpu_exec_end:
1031  * @cpu: The CPU for the current thread.
1032  *
1033  * Record that a CPU has stopped execution and exclusive sections
1034  * can be executed without interrupting it.
1035  */
1036 void cpu_exec_end(CPUState *cpu);
1037 
1038 /**
1039  * start_exclusive:
1040  *
1041  * Wait for a concurrent exclusive section to end, and then start
1042  * a section of work that is run while other CPUs are not running
1043  * between cpu_exec_start and cpu_exec_end.  CPUs that are running
1044  * cpu_exec are exited immediately.  CPUs that call cpu_exec_start
1045  * during the exclusive section go to sleep until this CPU calls
1046  * end_exclusive.
1047  */
1048 void start_exclusive(void);
1049 
1050 /**
1051  * end_exclusive:
1052  *
1053  * Concludes an exclusive execution section started by start_exclusive.
1054  */
1055 void end_exclusive(void);
1056 
1057 /**
1058  * qemu_init_vcpu:
1059  * @cpu: The vCPU to initialize.
1060  *
1061  * Initializes a vCPU.
1062  */
1063 void qemu_init_vcpu(CPUState *cpu);
1064 
1065 #define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
1066 #define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
1067 #define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
1068 
1069 /**
1070  * cpu_single_step:
1071  * @cpu: CPU to the flags for.
1072  * @enabled: Flags to enable.
1073  *
1074  * Enables or disables single-stepping for @cpu.
1075  */
1076 void cpu_single_step(CPUState *cpu, int enabled);
1077 
1078 /* Breakpoint/watchpoint flags */
1079 #define BP_MEM_READ           0x01
1080 #define BP_MEM_WRITE          0x02
1081 #define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE)
1082 #define BP_STOP_BEFORE_ACCESS 0x04
1083 /* 0x08 currently unused */
1084 #define BP_GDB                0x10
1085 #define BP_CPU                0x20
1086 #define BP_ANY                (BP_GDB | BP_CPU)
1087 #define BP_HIT_SHIFT          6
1088 #define BP_WATCHPOINT_HIT_READ  (BP_MEM_READ << BP_HIT_SHIFT)
1089 #define BP_WATCHPOINT_HIT_WRITE (BP_MEM_WRITE << BP_HIT_SHIFT)
1090 #define BP_WATCHPOINT_HIT       (BP_MEM_ACCESS << BP_HIT_SHIFT)
1091 
1092 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1093                           CPUBreakpoint **breakpoint);
1094 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags);
1095 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint);
1096 void cpu_breakpoint_remove_all(CPUState *cpu, int mask);
1097 
1098 /* Return true if PC matches an installed breakpoint.  */
cpu_breakpoint_test(CPUState * cpu,vaddr pc,int mask)1099 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask)
1100 {
1101     CPUBreakpoint *bp;
1102 
1103     if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) {
1104         QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1105             if (bp->pc == pc && (bp->flags & mask)) {
1106                 return true;
1107             }
1108         }
1109     }
1110     return false;
1111 }
1112 
1113 #if defined(CONFIG_USER_ONLY)
cpu_watchpoint_insert(CPUState * cpu,vaddr addr,vaddr len,int flags,CPUWatchpoint ** watchpoint)1114 static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1115                                         int flags, CPUWatchpoint **watchpoint)
1116 {
1117     return -ENOSYS;
1118 }
1119 
cpu_watchpoint_remove(CPUState * cpu,vaddr addr,vaddr len,int flags)1120 static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
1121                                         vaddr len, int flags)
1122 {
1123     return -ENOSYS;
1124 }
1125 
cpu_watchpoint_remove_by_ref(CPUState * cpu,CPUWatchpoint * wp)1126 static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu,
1127                                                 CPUWatchpoint *wp)
1128 {
1129 }
1130 
cpu_watchpoint_remove_all(CPUState * cpu,int mask)1131 static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1132 {
1133 }
1134 #else
1135 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1136                           int flags, CPUWatchpoint **watchpoint);
1137 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
1138                           vaddr len, int flags);
1139 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint);
1140 void cpu_watchpoint_remove_all(CPUState *cpu, int mask);
1141 #endif
1142 
1143 /**
1144  * cpu_get_address_space:
1145  * @cpu: CPU to get address space from
1146  * @asidx: index identifying which address space to get
1147  *
1148  * Return the requested address space of this CPU. @asidx
1149  * specifies which address space to read.
1150  */
1151 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx);
1152 
1153 G_NORETURN void cpu_abort(CPUState *cpu, const char *fmt, ...)
1154     G_GNUC_PRINTF(2, 3);
1155 
1156 /* $(top_srcdir)/cpu.c */
1157 void cpu_class_init_props(DeviceClass *dc);
1158 void cpu_exec_class_post_init(CPUClass *cc);
1159 void cpu_exec_initfn(CPUState *cpu);
1160 void cpu_vmstate_register(CPUState *cpu);
1161 void cpu_vmstate_unregister(CPUState *cpu);
1162 bool cpu_exec_realizefn(CPUState *cpu, Error **errp);
1163 void cpu_exec_unrealizefn(CPUState *cpu);
1164 void cpu_exec_reset_hold(CPUState *cpu);
1165 
1166 const char *target_name(void);
1167 
1168 #ifdef COMPILING_PER_TARGET
1169 
1170 #ifndef CONFIG_USER_ONLY
1171 
1172 extern const VMStateDescription vmstate_cpu_common;
1173 
1174 #define VMSTATE_CPU() {                                                     \
1175     .name = "parent_obj",                                                   \
1176     .size = sizeof(CPUState),                                               \
1177     .vmsd = &vmstate_cpu_common,                                            \
1178     .flags = VMS_STRUCT,                                                    \
1179     .offset = 0,                                                            \
1180 }
1181 #endif /* !CONFIG_USER_ONLY */
1182 
1183 #endif /* COMPILING_PER_TARGET */
1184 
1185 #define UNASSIGNED_CPU_INDEX -1
1186 #define UNASSIGNED_CLUSTER_INDEX -1
1187 
1188 #endif
1189