xref: /openbmc/qemu/target/i386/kvm/kvm.c (revision f5dddb85)
1 /*
2  * QEMU KVM support
3  *
4  * Copyright (C) 2006-2008 Qumranet Technologies
5  * Copyright IBM, Corp. 2008
6  *
7  * Authors:
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2 or later.
11  * See the COPYING file in the top-level directory.
12  *
13  */
14 
15 #include "qemu/osdep.h"
16 #include "qapi/qapi-events-run-state.h"
17 #include "qapi/error.h"
18 #include "qapi/visitor.h"
19 #include <sys/ioctl.h>
20 #include <sys/utsname.h>
21 #include <sys/syscall.h>
22 
23 #include <linux/kvm.h>
24 #include "standard-headers/asm-x86/kvm_para.h"
25 #include "hw/xen/interface/arch-x86/cpuid.h"
26 
27 #include "cpu.h"
28 #include "host-cpu.h"
29 #include "sysemu/sysemu.h"
30 #include "sysemu/hw_accel.h"
31 #include "sysemu/kvm_int.h"
32 #include "sysemu/runstate.h"
33 #include "kvm_i386.h"
34 #include "sev.h"
35 #include "xen-emu.h"
36 #include "hyperv.h"
37 #include "hyperv-proto.h"
38 
39 #include "exec/gdbstub.h"
40 #include "qemu/host-utils.h"
41 #include "qemu/main-loop.h"
42 #include "qemu/ratelimit.h"
43 #include "qemu/config-file.h"
44 #include "qemu/error-report.h"
45 #include "qemu/memalign.h"
46 #include "hw/i386/x86.h"
47 #include "hw/i386/kvm/xen_evtchn.h"
48 #include "hw/i386/pc.h"
49 #include "hw/i386/apic.h"
50 #include "hw/i386/apic_internal.h"
51 #include "hw/i386/apic-msidef.h"
52 #include "hw/i386/intel_iommu.h"
53 #include "hw/i386/x86-iommu.h"
54 #include "hw/i386/e820_memory_layout.h"
55 
56 #include "hw/xen/xen.h"
57 
58 #include "hw/pci/pci.h"
59 #include "hw/pci/msi.h"
60 #include "hw/pci/msix.h"
61 #include "migration/blocker.h"
62 #include "exec/memattrs.h"
63 #include "trace.h"
64 
65 #include CONFIG_DEVICES
66 
67 //#define DEBUG_KVM
68 
69 #ifdef DEBUG_KVM
70 #define DPRINTF(fmt, ...) \
71     do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
72 #else
73 #define DPRINTF(fmt, ...) \
74     do { } while (0)
75 #endif
76 
77 /* From arch/x86/kvm/lapic.h */
78 #define KVM_APIC_BUS_CYCLE_NS       1
79 #define KVM_APIC_BUS_FREQUENCY      (1000000000ULL / KVM_APIC_BUS_CYCLE_NS)
80 
81 #define MSR_KVM_WALL_CLOCK  0x11
82 #define MSR_KVM_SYSTEM_TIME 0x12
83 
84 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
85  * 255 kvm_msr_entry structs */
86 #define MSR_BUF_SIZE 4096
87 
88 static void kvm_init_msrs(X86CPU *cpu);
89 
90 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
91     KVM_CAP_INFO(SET_TSS_ADDR),
92     KVM_CAP_INFO(EXT_CPUID),
93     KVM_CAP_INFO(MP_STATE),
94     KVM_CAP_INFO(SIGNAL_MSI),
95     KVM_CAP_INFO(IRQ_ROUTING),
96     KVM_CAP_INFO(DEBUGREGS),
97     KVM_CAP_INFO(XSAVE),
98     KVM_CAP_INFO(VCPU_EVENTS),
99     KVM_CAP_INFO(X86_ROBUST_SINGLESTEP),
100     KVM_CAP_INFO(MCE),
101     KVM_CAP_INFO(ADJUST_CLOCK),
102     KVM_CAP_INFO(SET_IDENTITY_MAP_ADDR),
103     KVM_CAP_LAST_INFO
104 };
105 
106 static bool has_msr_star;
107 static bool has_msr_hsave_pa;
108 static bool has_msr_tsc_aux;
109 static bool has_msr_tsc_adjust;
110 static bool has_msr_tsc_deadline;
111 static bool has_msr_feature_control;
112 static bool has_msr_misc_enable;
113 static bool has_msr_smbase;
114 static bool has_msr_bndcfgs;
115 static int lm_capable_kernel;
116 static bool has_msr_hv_hypercall;
117 static bool has_msr_hv_crash;
118 static bool has_msr_hv_reset;
119 static bool has_msr_hv_vpindex;
120 static bool hv_vpindex_settable;
121 static bool has_msr_hv_runtime;
122 static bool has_msr_hv_synic;
123 static bool has_msr_hv_stimer;
124 static bool has_msr_hv_frequencies;
125 static bool has_msr_hv_reenlightenment;
126 static bool has_msr_hv_syndbg_options;
127 static bool has_msr_xss;
128 static bool has_msr_umwait;
129 static bool has_msr_spec_ctrl;
130 static bool has_tsc_scale_msr;
131 static bool has_msr_tsx_ctrl;
132 static bool has_msr_virt_ssbd;
133 static bool has_msr_smi_count;
134 static bool has_msr_arch_capabs;
135 static bool has_msr_core_capabs;
136 static bool has_msr_vmx_vmfunc;
137 static bool has_msr_ucode_rev;
138 static bool has_msr_vmx_procbased_ctls2;
139 static bool has_msr_perf_capabs;
140 static bool has_msr_pkrs;
141 
142 static uint32_t has_architectural_pmu_version;
143 static uint32_t num_architectural_pmu_gp_counters;
144 static uint32_t num_architectural_pmu_fixed_counters;
145 
146 static int has_xsave2;
147 static int has_xcrs;
148 static int has_sregs2;
149 static int has_exception_payload;
150 static int has_triple_fault_event;
151 
152 static bool has_msr_mcg_ext_ctl;
153 
154 static struct kvm_cpuid2 *cpuid_cache;
155 static struct kvm_cpuid2 *hv_cpuid_cache;
156 static struct kvm_msr_list *kvm_feature_msrs;
157 
158 static KVMMSRHandlers msr_handlers[KVM_MSR_FILTER_MAX_RANGES];
159 
160 #define BUS_LOCK_SLICE_TIME 1000000000ULL /* ns */
161 static RateLimit bus_lock_ratelimit_ctrl;
162 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value);
163 
kvm_has_smm(void)164 bool kvm_has_smm(void)
165 {
166     return kvm_vm_check_extension(kvm_state, KVM_CAP_X86_SMM);
167 }
168 
kvm_has_adjust_clock_stable(void)169 bool kvm_has_adjust_clock_stable(void)
170 {
171     int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
172 
173     return (ret & KVM_CLOCK_TSC_STABLE);
174 }
175 
kvm_has_exception_payload(void)176 bool kvm_has_exception_payload(void)
177 {
178     return has_exception_payload;
179 }
180 
kvm_x2apic_api_set_flags(uint64_t flags)181 static bool kvm_x2apic_api_set_flags(uint64_t flags)
182 {
183     KVMState *s = KVM_STATE(current_accel());
184 
185     return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
186 }
187 
188 #define MEMORIZE(fn, _result) \
189     ({ \
190         static bool _memorized; \
191         \
192         if (_memorized) { \
193             return _result; \
194         } \
195         _memorized = true; \
196         _result = fn; \
197     })
198 
199 static bool has_x2apic_api;
200 
kvm_has_x2apic_api(void)201 bool kvm_has_x2apic_api(void)
202 {
203     return has_x2apic_api;
204 }
205 
kvm_enable_x2apic(void)206 bool kvm_enable_x2apic(void)
207 {
208     return MEMORIZE(
209              kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
210                                       KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
211              has_x2apic_api);
212 }
213 
kvm_hv_vpindex_settable(void)214 bool kvm_hv_vpindex_settable(void)
215 {
216     return hv_vpindex_settable;
217 }
218 
kvm_get_tsc(CPUState * cs)219 static int kvm_get_tsc(CPUState *cs)
220 {
221     X86CPU *cpu = X86_CPU(cs);
222     CPUX86State *env = &cpu->env;
223     uint64_t value;
224     int ret;
225 
226     if (env->tsc_valid) {
227         return 0;
228     }
229 
230     env->tsc_valid = !runstate_is_running();
231 
232     ret = kvm_get_one_msr(cpu, MSR_IA32_TSC, &value);
233     if (ret < 0) {
234         return ret;
235     }
236 
237     env->tsc = value;
238     return 0;
239 }
240 
do_kvm_synchronize_tsc(CPUState * cpu,run_on_cpu_data arg)241 static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
242 {
243     kvm_get_tsc(cpu);
244 }
245 
kvm_synchronize_all_tsc(void)246 void kvm_synchronize_all_tsc(void)
247 {
248     CPUState *cpu;
249 
250     if (kvm_enabled()) {
251         CPU_FOREACH(cpu) {
252             run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
253         }
254     }
255 }
256 
try_get_cpuid(KVMState * s,int max)257 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
258 {
259     struct kvm_cpuid2 *cpuid;
260     int r, size;
261 
262     size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
263     cpuid = g_malloc0(size);
264     cpuid->nent = max;
265     r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
266     if (r == 0 && cpuid->nent >= max) {
267         r = -E2BIG;
268     }
269     if (r < 0) {
270         if (r == -E2BIG) {
271             g_free(cpuid);
272             return NULL;
273         } else {
274             fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
275                     strerror(-r));
276             exit(1);
277         }
278     }
279     return cpuid;
280 }
281 
282 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
283  * for all entries.
284  */
get_supported_cpuid(KVMState * s)285 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
286 {
287     struct kvm_cpuid2 *cpuid;
288     int max = 1;
289 
290     if (cpuid_cache != NULL) {
291         return cpuid_cache;
292     }
293     while ((cpuid = try_get_cpuid(s, max)) == NULL) {
294         max *= 2;
295     }
296     cpuid_cache = cpuid;
297     return cpuid;
298 }
299 
host_tsx_broken(void)300 static bool host_tsx_broken(void)
301 {
302     int family, model, stepping;\
303     char vendor[CPUID_VENDOR_SZ + 1];
304 
305     host_cpu_vendor_fms(vendor, &family, &model, &stepping);
306 
307     /* Check if we are running on a Haswell host known to have broken TSX */
308     return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
309            (family == 6) &&
310            ((model == 63 && stepping < 4) ||
311             model == 60 || model == 69 || model == 70);
312 }
313 
314 /* Returns the value for a specific register on the cpuid entry
315  */
cpuid_entry_get_reg(struct kvm_cpuid_entry2 * entry,int reg)316 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
317 {
318     uint32_t ret = 0;
319     switch (reg) {
320     case R_EAX:
321         ret = entry->eax;
322         break;
323     case R_EBX:
324         ret = entry->ebx;
325         break;
326     case R_ECX:
327         ret = entry->ecx;
328         break;
329     case R_EDX:
330         ret = entry->edx;
331         break;
332     }
333     return ret;
334 }
335 
336 /* Find matching entry for function/index on kvm_cpuid2 struct
337  */
cpuid_find_entry(struct kvm_cpuid2 * cpuid,uint32_t function,uint32_t index)338 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
339                                                  uint32_t function,
340                                                  uint32_t index)
341 {
342     int i;
343     for (i = 0; i < cpuid->nent; ++i) {
344         if (cpuid->entries[i].function == function &&
345             cpuid->entries[i].index == index) {
346             return &cpuid->entries[i];
347         }
348     }
349     /* not found: */
350     return NULL;
351 }
352 
kvm_arch_get_supported_cpuid(KVMState * s,uint32_t function,uint32_t index,int reg)353 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
354                                       uint32_t index, int reg)
355 {
356     struct kvm_cpuid2 *cpuid;
357     uint32_t ret = 0;
358     uint32_t cpuid_1_edx, unused;
359     uint64_t bitmask;
360 
361     cpuid = get_supported_cpuid(s);
362 
363     struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
364     if (entry) {
365         ret = cpuid_entry_get_reg(entry, reg);
366     }
367 
368     /* Fixups for the data returned by KVM, below */
369 
370     if (function == 1 && reg == R_EDX) {
371         /* KVM before 2.6.30 misreports the following features */
372         ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
373         /* KVM never reports CPUID_HT but QEMU can support when vcpus > 1 */
374         ret |= CPUID_HT;
375     } else if (function == 1 && reg == R_ECX) {
376         /* We can set the hypervisor flag, even if KVM does not return it on
377          * GET_SUPPORTED_CPUID
378          */
379         ret |= CPUID_EXT_HYPERVISOR;
380         /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
381          * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
382          * and the irqchip is in the kernel.
383          */
384         if (kvm_irqchip_in_kernel() &&
385                 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
386             ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
387         }
388 
389         /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
390          * without the in-kernel irqchip
391          */
392         if (!kvm_irqchip_in_kernel()) {
393             ret &= ~CPUID_EXT_X2APIC;
394         }
395 
396         if (enable_cpu_pm) {
397             int disable_exits = kvm_check_extension(s,
398                                                     KVM_CAP_X86_DISABLE_EXITS);
399 
400             if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
401                 ret |= CPUID_EXT_MONITOR;
402             }
403         }
404     } else if (function == 6 && reg == R_EAX) {
405         ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
406     } else if (function == 7 && index == 0 && reg == R_EBX) {
407         /* Not new instructions, just an optimization.  */
408         uint32_t ebx;
409         host_cpuid(7, 0, &unused, &ebx, &unused, &unused);
410         ret |= ebx & CPUID_7_0_EBX_ERMS;
411 
412         if (host_tsx_broken()) {
413             ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
414         }
415     } else if (function == 7 && index == 0 && reg == R_EDX) {
416         /* Not new instructions, just an optimization.  */
417         uint32_t edx;
418         host_cpuid(7, 0, &unused, &unused, &unused, &edx);
419         ret |= edx & CPUID_7_0_EDX_FSRM;
420 
421         /*
422          * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts.
423          * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is
424          * returned by KVM_GET_MSR_INDEX_LIST.
425          */
426         if (!has_msr_arch_capabs) {
427             ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES;
428         }
429     } else if (function == 7 && index == 1 && reg == R_EAX) {
430         /* Not new instructions, just an optimization.  */
431         uint32_t eax;
432         host_cpuid(7, 1, &eax, &unused, &unused, &unused);
433         ret |= eax & (CPUID_7_1_EAX_FZRM | CPUID_7_1_EAX_FSRS | CPUID_7_1_EAX_FSRC);
434     } else if (function == 7 && index == 2 && reg == R_EDX) {
435         uint32_t edx;
436         host_cpuid(7, 2, &unused, &unused, &unused, &edx);
437         ret |= edx & CPUID_7_2_EDX_MCDT_NO;
438     } else if (function == 0xd && index == 0 &&
439                (reg == R_EAX || reg == R_EDX)) {
440         /*
441          * The value returned by KVM_GET_SUPPORTED_CPUID does not include
442          * features that still have to be enabled with the arch_prctl
443          * system call.  QEMU needs the full value, which is retrieved
444          * with KVM_GET_DEVICE_ATTR.
445          */
446         struct kvm_device_attr attr = {
447             .group = 0,
448             .attr = KVM_X86_XCOMP_GUEST_SUPP,
449             .addr = (unsigned long) &bitmask
450         };
451 
452         bool sys_attr = kvm_check_extension(s, KVM_CAP_SYS_ATTRIBUTES);
453         if (!sys_attr) {
454             return ret;
455         }
456 
457         int rc = kvm_ioctl(s, KVM_GET_DEVICE_ATTR, &attr);
458         if (rc < 0) {
459             if (rc != -ENXIO) {
460                 warn_report("KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) "
461                             "error: %d", rc);
462             }
463             return ret;
464         }
465         ret = (reg == R_EAX) ? bitmask : bitmask >> 32;
466     } else if (function == 0x80000001 && reg == R_ECX) {
467         /*
468          * It's safe to enable TOPOEXT even if it's not returned by
469          * GET_SUPPORTED_CPUID.  Unconditionally enabling TOPOEXT here allows
470          * us to keep CPU models including TOPOEXT runnable on older kernels.
471          */
472         ret |= CPUID_EXT3_TOPOEXT;
473     } else if (function == 0x80000001 && reg == R_EDX) {
474         /* On Intel, kvm returns cpuid according to the Intel spec,
475          * so add missing bits according to the AMD spec:
476          */
477         cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
478         ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
479     } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
480         /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
481          * be enabled without the in-kernel irqchip
482          */
483         if (!kvm_irqchip_in_kernel()) {
484             ret &= ~(1U << KVM_FEATURE_PV_UNHALT);
485         }
486         if (kvm_irqchip_is_split()) {
487             ret |= 1U << KVM_FEATURE_MSI_EXT_DEST_ID;
488         }
489     } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
490         ret |= 1U << KVM_HINTS_REALTIME;
491     }
492 
493     return ret;
494 }
495 
kvm_arch_get_supported_msr_feature(KVMState * s,uint32_t index)496 uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index)
497 {
498     struct {
499         struct kvm_msrs info;
500         struct kvm_msr_entry entries[1];
501     } msr_data = {};
502     uint64_t value;
503     uint32_t ret, can_be_one, must_be_one;
504 
505     if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */
506         return 0;
507     }
508 
509     /* Check if requested MSR is supported feature MSR */
510     int i;
511     for (i = 0; i < kvm_feature_msrs->nmsrs; i++)
512         if (kvm_feature_msrs->indices[i] == index) {
513             break;
514         }
515     if (i == kvm_feature_msrs->nmsrs) {
516         return 0; /* if the feature MSR is not supported, simply return 0 */
517     }
518 
519     msr_data.info.nmsrs = 1;
520     msr_data.entries[0].index = index;
521 
522     ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data);
523     if (ret != 1) {
524         error_report("KVM get MSR (index=0x%x) feature failed, %s",
525             index, strerror(-ret));
526         exit(1);
527     }
528 
529     value = msr_data.entries[0].data;
530     switch (index) {
531     case MSR_IA32_VMX_PROCBASED_CTLS2:
532         if (!has_msr_vmx_procbased_ctls2) {
533             /* KVM forgot to add these bits for some time, do this ourselves. */
534             if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) &
535                 CPUID_XSAVE_XSAVES) {
536                 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32;
537             }
538             if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) &
539                 CPUID_EXT_RDRAND) {
540                 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32;
541             }
542             if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
543                 CPUID_7_0_EBX_INVPCID) {
544                 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32;
545             }
546             if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
547                 CPUID_7_0_EBX_RDSEED) {
548                 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32;
549             }
550             if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) &
551                 CPUID_EXT2_RDTSCP) {
552                 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32;
553             }
554         }
555         /* fall through */
556     case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
557     case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
558     case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
559     case MSR_IA32_VMX_TRUE_EXIT_CTLS:
560         /*
561          * Return true for bits that can be one, but do not have to be one.
562          * The SDM tells us which bits could have a "must be one" setting,
563          * so we can do the opposite transformation in make_vmx_msr_value.
564          */
565         must_be_one = (uint32_t)value;
566         can_be_one = (uint32_t)(value >> 32);
567         return can_be_one & ~must_be_one;
568 
569     default:
570         return value;
571     }
572 }
573 
kvm_get_mce_cap_supported(KVMState * s,uint64_t * mce_cap,int * max_banks)574 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
575                                      int *max_banks)
576 {
577     *max_banks = kvm_check_extension(s, KVM_CAP_MCE);
578     return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
579 }
580 
kvm_mce_inject(X86CPU * cpu,hwaddr paddr,int code)581 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
582 {
583     CPUState *cs = CPU(cpu);
584     CPUX86State *env = &cpu->env;
585     uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
586                       MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
587     uint64_t mcg_status = MCG_STATUS_MCIP;
588     int flags = 0;
589 
590     if (code == BUS_MCEERR_AR) {
591         status |= MCI_STATUS_AR | 0x134;
592         mcg_status |= MCG_STATUS_RIPV | MCG_STATUS_EIPV;
593     } else {
594         status |= 0xc0;
595         mcg_status |= MCG_STATUS_RIPV;
596     }
597 
598     flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
599     /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
600      * guest kernel back into env->mcg_ext_ctl.
601      */
602     cpu_synchronize_state(cs);
603     if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
604         mcg_status |= MCG_STATUS_LMCE;
605         flags = 0;
606     }
607 
608     cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
609                        (MCM_ADDR_PHYS << 6) | 0xc, flags);
610 }
611 
emit_hypervisor_memory_failure(MemoryFailureAction action,bool ar)612 static void emit_hypervisor_memory_failure(MemoryFailureAction action, bool ar)
613 {
614     MemoryFailureFlags mff = {.action_required = ar, .recursive = false};
615 
616     qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_HYPERVISOR, action,
617                                    &mff);
618 }
619 
hardware_memory_error(void * host_addr)620 static void hardware_memory_error(void *host_addr)
621 {
622     emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_FATAL, true);
623     error_report("QEMU got Hardware memory error at addr %p", host_addr);
624     exit(1);
625 }
626 
kvm_arch_on_sigbus_vcpu(CPUState * c,int code,void * addr)627 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
628 {
629     X86CPU *cpu = X86_CPU(c);
630     CPUX86State *env = &cpu->env;
631     ram_addr_t ram_addr;
632     hwaddr paddr;
633 
634     /* If we get an action required MCE, it has been injected by KVM
635      * while the VM was running.  An action optional MCE instead should
636      * be coming from the main thread, which qemu_init_sigbus identifies
637      * as the "early kill" thread.
638      */
639     assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
640 
641     if ((env->mcg_cap & MCG_SER_P) && addr) {
642         ram_addr = qemu_ram_addr_from_host(addr);
643         if (ram_addr != RAM_ADDR_INVALID &&
644             kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
645             kvm_hwpoison_page_add(ram_addr);
646             kvm_mce_inject(cpu, paddr, code);
647 
648             /*
649              * Use different logging severity based on error type.
650              * If there is additional MCE reporting on the hypervisor, QEMU VA
651              * could be another source to identify the PA and MCE details.
652              */
653             if (code == BUS_MCEERR_AR) {
654                 error_report("Guest MCE Memory Error at QEMU addr %p and "
655                     "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
656                     addr, paddr, "BUS_MCEERR_AR");
657             } else {
658                  warn_report("Guest MCE Memory Error at QEMU addr %p and "
659                      "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
660                      addr, paddr, "BUS_MCEERR_AO");
661             }
662 
663             return;
664         }
665 
666         if (code == BUS_MCEERR_AO) {
667             warn_report("Hardware memory error at addr %p of type %s "
668                 "for memory used by QEMU itself instead of guest system!",
669                  addr, "BUS_MCEERR_AO");
670         }
671     }
672 
673     if (code == BUS_MCEERR_AR) {
674         hardware_memory_error(addr);
675     }
676 
677     /* Hope we are lucky for AO MCE, just notify a event */
678     emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, false);
679 }
680 
kvm_queue_exception(CPUX86State * env,int32_t exception_nr,uint8_t exception_has_payload,uint64_t exception_payload)681 static void kvm_queue_exception(CPUX86State *env,
682                                 int32_t exception_nr,
683                                 uint8_t exception_has_payload,
684                                 uint64_t exception_payload)
685 {
686     assert(env->exception_nr == -1);
687     assert(!env->exception_pending);
688     assert(!env->exception_injected);
689     assert(!env->exception_has_payload);
690 
691     env->exception_nr = exception_nr;
692 
693     if (has_exception_payload) {
694         env->exception_pending = 1;
695 
696         env->exception_has_payload = exception_has_payload;
697         env->exception_payload = exception_payload;
698     } else {
699         env->exception_injected = 1;
700 
701         if (exception_nr == EXCP01_DB) {
702             assert(exception_has_payload);
703             env->dr[6] = exception_payload;
704         } else if (exception_nr == EXCP0E_PAGE) {
705             assert(exception_has_payload);
706             env->cr[2] = exception_payload;
707         } else {
708             assert(!exception_has_payload);
709         }
710     }
711 }
712 
cpu_update_state(void * opaque,bool running,RunState state)713 static void cpu_update_state(void *opaque, bool running, RunState state)
714 {
715     CPUX86State *env = opaque;
716 
717     if (running) {
718         env->tsc_valid = false;
719     }
720 }
721 
kvm_arch_vcpu_id(CPUState * cs)722 unsigned long kvm_arch_vcpu_id(CPUState *cs)
723 {
724     X86CPU *cpu = X86_CPU(cs);
725     return cpu->apic_id;
726 }
727 
728 #ifndef KVM_CPUID_SIGNATURE_NEXT
729 #define KVM_CPUID_SIGNATURE_NEXT                0x40000100
730 #endif
731 
hyperv_enabled(X86CPU * cpu)732 static bool hyperv_enabled(X86CPU *cpu)
733 {
734     return kvm_check_extension(kvm_state, KVM_CAP_HYPERV) > 0 &&
735         ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) ||
736          cpu->hyperv_features || cpu->hyperv_passthrough);
737 }
738 
739 /*
740  * Check whether target_freq is within conservative
741  * ntp correctable bounds (250ppm) of freq
742  */
freq_within_bounds(int freq,int target_freq)743 static inline bool freq_within_bounds(int freq, int target_freq)
744 {
745         int max_freq = freq + (freq * 250 / 1000000);
746         int min_freq = freq - (freq * 250 / 1000000);
747 
748         if (target_freq >= min_freq && target_freq <= max_freq) {
749                 return true;
750         }
751 
752         return false;
753 }
754 
kvm_arch_set_tsc_khz(CPUState * cs)755 static int kvm_arch_set_tsc_khz(CPUState *cs)
756 {
757     X86CPU *cpu = X86_CPU(cs);
758     CPUX86State *env = &cpu->env;
759     int r, cur_freq;
760     bool set_ioctl = false;
761 
762     if (!env->tsc_khz) {
763         return 0;
764     }
765 
766     cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
767                kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP;
768 
769     /*
770      * If TSC scaling is supported, attempt to set TSC frequency.
771      */
772     if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) {
773         set_ioctl = true;
774     }
775 
776     /*
777      * If desired TSC frequency is within bounds of NTP correction,
778      * attempt to set TSC frequency.
779      */
780     if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) {
781         set_ioctl = true;
782     }
783 
784     r = set_ioctl ?
785         kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
786         -ENOTSUP;
787 
788     if (r < 0) {
789         /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
790          * TSC frequency doesn't match the one we want.
791          */
792         cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
793                    kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
794                    -ENOTSUP;
795         if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
796             warn_report("TSC frequency mismatch between "
797                         "VM (%" PRId64 " kHz) and host (%d kHz), "
798                         "and TSC scaling unavailable",
799                         env->tsc_khz, cur_freq);
800             return r;
801         }
802     }
803 
804     return 0;
805 }
806 
tsc_is_stable_and_known(CPUX86State * env)807 static bool tsc_is_stable_and_known(CPUX86State *env)
808 {
809     if (!env->tsc_khz) {
810         return false;
811     }
812     return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
813         || env->user_tsc_khz;
814 }
815 
816 #define DEFAULT_EVMCS_VERSION ((1 << 8) | 1)
817 
818 static struct {
819     const char *desc;
820     struct {
821         uint32_t func;
822         int reg;
823         uint32_t bits;
824     } flags[2];
825     uint64_t dependencies;
826 } kvm_hyperv_properties[] = {
827     [HYPERV_FEAT_RELAXED] = {
828         .desc = "relaxed timing (hv-relaxed)",
829         .flags = {
830             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
831              .bits = HV_RELAXED_TIMING_RECOMMENDED}
832         }
833     },
834     [HYPERV_FEAT_VAPIC] = {
835         .desc = "virtual APIC (hv-vapic)",
836         .flags = {
837             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
838              .bits = HV_APIC_ACCESS_AVAILABLE}
839         }
840     },
841     [HYPERV_FEAT_TIME] = {
842         .desc = "clocksources (hv-time)",
843         .flags = {
844             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
845              .bits = HV_TIME_REF_COUNT_AVAILABLE | HV_REFERENCE_TSC_AVAILABLE}
846         }
847     },
848     [HYPERV_FEAT_CRASH] = {
849         .desc = "crash MSRs (hv-crash)",
850         .flags = {
851             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
852              .bits = HV_GUEST_CRASH_MSR_AVAILABLE}
853         }
854     },
855     [HYPERV_FEAT_RESET] = {
856         .desc = "reset MSR (hv-reset)",
857         .flags = {
858             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
859              .bits = HV_RESET_AVAILABLE}
860         }
861     },
862     [HYPERV_FEAT_VPINDEX] = {
863         .desc = "VP_INDEX MSR (hv-vpindex)",
864         .flags = {
865             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
866              .bits = HV_VP_INDEX_AVAILABLE}
867         }
868     },
869     [HYPERV_FEAT_RUNTIME] = {
870         .desc = "VP_RUNTIME MSR (hv-runtime)",
871         .flags = {
872             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
873              .bits = HV_VP_RUNTIME_AVAILABLE}
874         }
875     },
876     [HYPERV_FEAT_SYNIC] = {
877         .desc = "synthetic interrupt controller (hv-synic)",
878         .flags = {
879             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
880              .bits = HV_SYNIC_AVAILABLE}
881         }
882     },
883     [HYPERV_FEAT_STIMER] = {
884         .desc = "synthetic timers (hv-stimer)",
885         .flags = {
886             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
887              .bits = HV_SYNTIMERS_AVAILABLE}
888         },
889         .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME)
890     },
891     [HYPERV_FEAT_FREQUENCIES] = {
892         .desc = "frequency MSRs (hv-frequencies)",
893         .flags = {
894             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
895              .bits = HV_ACCESS_FREQUENCY_MSRS},
896             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
897              .bits = HV_FREQUENCY_MSRS_AVAILABLE}
898         }
899     },
900     [HYPERV_FEAT_REENLIGHTENMENT] = {
901         .desc = "reenlightenment MSRs (hv-reenlightenment)",
902         .flags = {
903             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
904              .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL}
905         }
906     },
907     [HYPERV_FEAT_TLBFLUSH] = {
908         .desc = "paravirtualized TLB flush (hv-tlbflush)",
909         .flags = {
910             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
911              .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED |
912              HV_EX_PROCESSOR_MASKS_RECOMMENDED}
913         },
914         .dependencies = BIT(HYPERV_FEAT_VPINDEX)
915     },
916     [HYPERV_FEAT_EVMCS] = {
917         .desc = "enlightened VMCS (hv-evmcs)",
918         .flags = {
919             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
920              .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED}
921         },
922         .dependencies = BIT(HYPERV_FEAT_VAPIC)
923     },
924     [HYPERV_FEAT_IPI] = {
925         .desc = "paravirtualized IPI (hv-ipi)",
926         .flags = {
927             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
928              .bits = HV_CLUSTER_IPI_RECOMMENDED |
929              HV_EX_PROCESSOR_MASKS_RECOMMENDED}
930         },
931         .dependencies = BIT(HYPERV_FEAT_VPINDEX)
932     },
933     [HYPERV_FEAT_STIMER_DIRECT] = {
934         .desc = "direct mode synthetic timers (hv-stimer-direct)",
935         .flags = {
936             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
937              .bits = HV_STIMER_DIRECT_MODE_AVAILABLE}
938         },
939         .dependencies = BIT(HYPERV_FEAT_STIMER)
940     },
941     [HYPERV_FEAT_AVIC] = {
942         .desc = "AVIC/APICv support (hv-avic/hv-apicv)",
943         .flags = {
944             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
945              .bits = HV_DEPRECATING_AEOI_RECOMMENDED}
946         }
947     },
948 #ifdef CONFIG_SYNDBG
949     [HYPERV_FEAT_SYNDBG] = {
950         .desc = "Enable synthetic kernel debugger channel (hv-syndbg)",
951         .flags = {
952             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
953              .bits = HV_FEATURE_DEBUG_MSRS_AVAILABLE}
954         },
955         .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_RELAXED)
956     },
957 #endif
958     [HYPERV_FEAT_MSR_BITMAP] = {
959         .desc = "enlightened MSR-Bitmap (hv-emsr-bitmap)",
960         .flags = {
961             {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX,
962              .bits = HV_NESTED_MSR_BITMAP}
963         }
964     },
965     [HYPERV_FEAT_XMM_INPUT] = {
966         .desc = "XMM fast hypercall input (hv-xmm-input)",
967         .flags = {
968             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
969              .bits = HV_HYPERCALL_XMM_INPUT_AVAILABLE}
970         }
971     },
972     [HYPERV_FEAT_TLBFLUSH_EXT] = {
973         .desc = "Extended gva ranges for TLB flush hypercalls (hv-tlbflush-ext)",
974         .flags = {
975             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
976              .bits = HV_EXT_GVA_RANGES_FLUSH_AVAILABLE}
977         },
978         .dependencies = BIT(HYPERV_FEAT_TLBFLUSH)
979     },
980     [HYPERV_FEAT_TLBFLUSH_DIRECT] = {
981         .desc = "direct TLB flush (hv-tlbflush-direct)",
982         .flags = {
983             {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX,
984              .bits = HV_NESTED_DIRECT_FLUSH}
985         },
986         .dependencies = BIT(HYPERV_FEAT_VAPIC)
987     },
988 };
989 
try_get_hv_cpuid(CPUState * cs,int max,bool do_sys_ioctl)990 static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max,
991                                            bool do_sys_ioctl)
992 {
993     struct kvm_cpuid2 *cpuid;
994     int r, size;
995 
996     size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
997     cpuid = g_malloc0(size);
998     cpuid->nent = max;
999 
1000     if (do_sys_ioctl) {
1001         r = kvm_ioctl(kvm_state, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1002     } else {
1003         r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1004     }
1005     if (r == 0 && cpuid->nent >= max) {
1006         r = -E2BIG;
1007     }
1008     if (r < 0) {
1009         if (r == -E2BIG) {
1010             g_free(cpuid);
1011             return NULL;
1012         } else {
1013             fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n",
1014                     strerror(-r));
1015             exit(1);
1016         }
1017     }
1018     return cpuid;
1019 }
1020 
1021 /*
1022  * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough
1023  * for all entries.
1024  */
get_supported_hv_cpuid(CPUState * cs)1025 static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs)
1026 {
1027     struct kvm_cpuid2 *cpuid;
1028     /* 0x40000000..0x40000005, 0x4000000A, 0x40000080..0x40000082 leaves */
1029     int max = 11;
1030     int i;
1031     bool do_sys_ioctl;
1032 
1033     do_sys_ioctl =
1034         kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID) > 0;
1035 
1036     /*
1037      * Non-empty KVM context is needed when KVM_CAP_SYS_HYPERV_CPUID is
1038      * unsupported, kvm_hyperv_expand_features() checks for that.
1039      */
1040     assert(do_sys_ioctl || cs->kvm_state);
1041 
1042     /*
1043      * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with
1044      * -E2BIG, however, it doesn't report back the right size. Keep increasing
1045      * it and re-trying until we succeed.
1046      */
1047     while ((cpuid = try_get_hv_cpuid(cs, max, do_sys_ioctl)) == NULL) {
1048         max++;
1049     }
1050 
1051     /*
1052      * KVM_GET_SUPPORTED_HV_CPUID does not set EVMCS CPUID bit before
1053      * KVM_CAP_HYPERV_ENLIGHTENED_VMCS is enabled but we want to get the
1054      * information early, just check for the capability and set the bit
1055      * manually.
1056      */
1057     if (!do_sys_ioctl && kvm_check_extension(cs->kvm_state,
1058                             KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1059         for (i = 0; i < cpuid->nent; i++) {
1060             if (cpuid->entries[i].function == HV_CPUID_ENLIGHTMENT_INFO) {
1061                 cpuid->entries[i].eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1062             }
1063         }
1064     }
1065 
1066     return cpuid;
1067 }
1068 
1069 /*
1070  * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature
1071  * leaves from KVM_CAP_HYPERV* and present MSRs data.
1072  */
get_supported_hv_cpuid_legacy(CPUState * cs)1073 static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs)
1074 {
1075     X86CPU *cpu = X86_CPU(cs);
1076     struct kvm_cpuid2 *cpuid;
1077     struct kvm_cpuid_entry2 *entry_feat, *entry_recomm;
1078 
1079     /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */
1080     cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries));
1081     cpuid->nent = 2;
1082 
1083     /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */
1084     entry_feat = &cpuid->entries[0];
1085     entry_feat->function = HV_CPUID_FEATURES;
1086 
1087     entry_recomm = &cpuid->entries[1];
1088     entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO;
1089     entry_recomm->ebx = cpu->hyperv_spinlock_attempts;
1090 
1091     if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) {
1092         entry_feat->eax |= HV_HYPERCALL_AVAILABLE;
1093         entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE;
1094         entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1095         entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED;
1096         entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED;
1097     }
1098 
1099     if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
1100         entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE;
1101         entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE;
1102     }
1103 
1104     if (has_msr_hv_frequencies) {
1105         entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS;
1106         entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE;
1107     }
1108 
1109     if (has_msr_hv_crash) {
1110         entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE;
1111     }
1112 
1113     if (has_msr_hv_reenlightenment) {
1114         entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
1115     }
1116 
1117     if (has_msr_hv_reset) {
1118         entry_feat->eax |= HV_RESET_AVAILABLE;
1119     }
1120 
1121     if (has_msr_hv_vpindex) {
1122         entry_feat->eax |= HV_VP_INDEX_AVAILABLE;
1123     }
1124 
1125     if (has_msr_hv_runtime) {
1126         entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE;
1127     }
1128 
1129     if (has_msr_hv_synic) {
1130         unsigned int cap = cpu->hyperv_synic_kvm_only ?
1131             KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1132 
1133         if (kvm_check_extension(cs->kvm_state, cap) > 0) {
1134             entry_feat->eax |= HV_SYNIC_AVAILABLE;
1135         }
1136     }
1137 
1138     if (has_msr_hv_stimer) {
1139         entry_feat->eax |= HV_SYNTIMERS_AVAILABLE;
1140     }
1141 
1142     if (has_msr_hv_syndbg_options) {
1143         entry_feat->edx |= HV_GUEST_DEBUGGING_AVAILABLE;
1144         entry_feat->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE;
1145         entry_feat->ebx |= HV_PARTITION_DEBUGGING_ALLOWED;
1146     }
1147 
1148     if (kvm_check_extension(cs->kvm_state,
1149                             KVM_CAP_HYPERV_TLBFLUSH) > 0) {
1150         entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
1151         entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1152     }
1153 
1154     if (kvm_check_extension(cs->kvm_state,
1155                             KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1156         entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1157     }
1158 
1159     if (kvm_check_extension(cs->kvm_state,
1160                             KVM_CAP_HYPERV_SEND_IPI) > 0) {
1161         entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED;
1162         entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1163     }
1164 
1165     return cpuid;
1166 }
1167 
hv_cpuid_get_host(CPUState * cs,uint32_t func,int reg)1168 static uint32_t hv_cpuid_get_host(CPUState *cs, uint32_t func, int reg)
1169 {
1170     struct kvm_cpuid_entry2 *entry;
1171     struct kvm_cpuid2 *cpuid;
1172 
1173     if (hv_cpuid_cache) {
1174         cpuid = hv_cpuid_cache;
1175     } else {
1176         if (kvm_check_extension(kvm_state, KVM_CAP_HYPERV_CPUID) > 0) {
1177             cpuid = get_supported_hv_cpuid(cs);
1178         } else {
1179             /*
1180              * 'cs->kvm_state' may be NULL when Hyper-V features are expanded
1181              * before KVM context is created but this is only done when
1182              * KVM_CAP_SYS_HYPERV_CPUID is supported and it implies
1183              * KVM_CAP_HYPERV_CPUID.
1184              */
1185             assert(cs->kvm_state);
1186 
1187             cpuid = get_supported_hv_cpuid_legacy(cs);
1188         }
1189         hv_cpuid_cache = cpuid;
1190     }
1191 
1192     if (!cpuid) {
1193         return 0;
1194     }
1195 
1196     entry = cpuid_find_entry(cpuid, func, 0);
1197     if (!entry) {
1198         return 0;
1199     }
1200 
1201     return cpuid_entry_get_reg(entry, reg);
1202 }
1203 
hyperv_feature_supported(CPUState * cs,int feature)1204 static bool hyperv_feature_supported(CPUState *cs, int feature)
1205 {
1206     uint32_t func, bits;
1207     int i, reg;
1208 
1209     for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) {
1210 
1211         func = kvm_hyperv_properties[feature].flags[i].func;
1212         reg = kvm_hyperv_properties[feature].flags[i].reg;
1213         bits = kvm_hyperv_properties[feature].flags[i].bits;
1214 
1215         if (!func) {
1216             continue;
1217         }
1218 
1219         if ((hv_cpuid_get_host(cs, func, reg) & bits) != bits) {
1220             return false;
1221         }
1222     }
1223 
1224     return true;
1225 }
1226 
1227 /* Checks that all feature dependencies are enabled */
hv_feature_check_deps(X86CPU * cpu,int feature,Error ** errp)1228 static bool hv_feature_check_deps(X86CPU *cpu, int feature, Error **errp)
1229 {
1230     uint64_t deps;
1231     int dep_feat;
1232 
1233     deps = kvm_hyperv_properties[feature].dependencies;
1234     while (deps) {
1235         dep_feat = ctz64(deps);
1236         if (!(hyperv_feat_enabled(cpu, dep_feat))) {
1237             error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1238                        kvm_hyperv_properties[feature].desc,
1239                        kvm_hyperv_properties[dep_feat].desc);
1240             return false;
1241         }
1242         deps &= ~(1ull << dep_feat);
1243     }
1244 
1245     return true;
1246 }
1247 
hv_build_cpuid_leaf(CPUState * cs,uint32_t func,int reg)1248 static uint32_t hv_build_cpuid_leaf(CPUState *cs, uint32_t func, int reg)
1249 {
1250     X86CPU *cpu = X86_CPU(cs);
1251     uint32_t r = 0;
1252     int i, j;
1253 
1254     for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties); i++) {
1255         if (!hyperv_feat_enabled(cpu, i)) {
1256             continue;
1257         }
1258 
1259         for (j = 0; j < ARRAY_SIZE(kvm_hyperv_properties[i].flags); j++) {
1260             if (kvm_hyperv_properties[i].flags[j].func != func) {
1261                 continue;
1262             }
1263             if (kvm_hyperv_properties[i].flags[j].reg != reg) {
1264                 continue;
1265             }
1266 
1267             r |= kvm_hyperv_properties[i].flags[j].bits;
1268         }
1269     }
1270 
1271     /* HV_CPUID_NESTED_FEATURES.EAX also encodes the supported eVMCS range */
1272     if (func == HV_CPUID_NESTED_FEATURES && reg == R_EAX) {
1273         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1274             r |= DEFAULT_EVMCS_VERSION;
1275         }
1276     }
1277 
1278     return r;
1279 }
1280 
1281 /*
1282  * Expand Hyper-V CPU features. In partucular, check that all the requested
1283  * features are supported by the host and the sanity of the configuration
1284  * (that all the required dependencies are included). Also, this takes care
1285  * of 'hv_passthrough' mode and fills the environment with all supported
1286  * Hyper-V features.
1287  */
kvm_hyperv_expand_features(X86CPU * cpu,Error ** errp)1288 bool kvm_hyperv_expand_features(X86CPU *cpu, Error **errp)
1289 {
1290     CPUState *cs = CPU(cpu);
1291     Error *local_err = NULL;
1292     int feat;
1293 
1294     if (!hyperv_enabled(cpu))
1295         return true;
1296 
1297     /*
1298      * When kvm_hyperv_expand_features is called at CPU feature expansion
1299      * time per-CPU kvm_state is not available yet so we can only proceed
1300      * when KVM_CAP_SYS_HYPERV_CPUID is supported.
1301      */
1302     if (!cs->kvm_state &&
1303         !kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID))
1304         return true;
1305 
1306     if (cpu->hyperv_passthrough) {
1307         cpu->hyperv_vendor_id[0] =
1308             hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EBX);
1309         cpu->hyperv_vendor_id[1] =
1310             hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_ECX);
1311         cpu->hyperv_vendor_id[2] =
1312             hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EDX);
1313         cpu->hyperv_vendor = g_realloc(cpu->hyperv_vendor,
1314                                        sizeof(cpu->hyperv_vendor_id) + 1);
1315         memcpy(cpu->hyperv_vendor, cpu->hyperv_vendor_id,
1316                sizeof(cpu->hyperv_vendor_id));
1317         cpu->hyperv_vendor[sizeof(cpu->hyperv_vendor_id)] = 0;
1318 
1319         cpu->hyperv_interface_id[0] =
1320             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EAX);
1321         cpu->hyperv_interface_id[1] =
1322             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EBX);
1323         cpu->hyperv_interface_id[2] =
1324             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_ECX);
1325         cpu->hyperv_interface_id[3] =
1326             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EDX);
1327 
1328         cpu->hyperv_ver_id_build =
1329             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EAX);
1330         cpu->hyperv_ver_id_major =
1331             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) >> 16;
1332         cpu->hyperv_ver_id_minor =
1333             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) & 0xffff;
1334         cpu->hyperv_ver_id_sp =
1335             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_ECX);
1336         cpu->hyperv_ver_id_sb =
1337             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) >> 24;
1338         cpu->hyperv_ver_id_sn =
1339             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) & 0xffffff;
1340 
1341         cpu->hv_max_vps = hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS,
1342                                             R_EAX);
1343         cpu->hyperv_limits[0] =
1344             hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EBX);
1345         cpu->hyperv_limits[1] =
1346             hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_ECX);
1347         cpu->hyperv_limits[2] =
1348             hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EDX);
1349 
1350         cpu->hyperv_spinlock_attempts =
1351             hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EBX);
1352 
1353         /*
1354          * Mark feature as enabled in 'cpu->hyperv_features' as
1355          * hv_build_cpuid_leaf() uses this info to build guest CPUIDs.
1356          */
1357         for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1358             if (hyperv_feature_supported(cs, feat)) {
1359                 cpu->hyperv_features |= BIT(feat);
1360             }
1361         }
1362     } else {
1363         /* Check features availability and dependencies */
1364         for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1365             /* If the feature was not requested skip it. */
1366             if (!hyperv_feat_enabled(cpu, feat)) {
1367                 continue;
1368             }
1369 
1370             /* Check if the feature is supported by KVM */
1371             if (!hyperv_feature_supported(cs, feat)) {
1372                 error_setg(errp, "Hyper-V %s is not supported by kernel",
1373                            kvm_hyperv_properties[feat].desc);
1374                 return false;
1375             }
1376 
1377             /* Check dependencies */
1378             if (!hv_feature_check_deps(cpu, feat, &local_err)) {
1379                 error_propagate(errp, local_err);
1380                 return false;
1381             }
1382         }
1383     }
1384 
1385     /* Additional dependencies not covered by kvm_hyperv_properties[] */
1386     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1387         !cpu->hyperv_synic_kvm_only &&
1388         !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) {
1389         error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1390                    kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc,
1391                    kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc);
1392         return false;
1393     }
1394 
1395     return true;
1396 }
1397 
1398 /*
1399  * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent.
1400  */
hyperv_fill_cpuids(CPUState * cs,struct kvm_cpuid_entry2 * cpuid_ent)1401 static int hyperv_fill_cpuids(CPUState *cs,
1402                               struct kvm_cpuid_entry2 *cpuid_ent)
1403 {
1404     X86CPU *cpu = X86_CPU(cs);
1405     struct kvm_cpuid_entry2 *c;
1406     uint32_t signature[3];
1407     uint32_t cpuid_i = 0, max_cpuid_leaf = 0;
1408     uint32_t nested_eax =
1409         hv_build_cpuid_leaf(cs, HV_CPUID_NESTED_FEATURES, R_EAX);
1410 
1411     max_cpuid_leaf = nested_eax ? HV_CPUID_NESTED_FEATURES :
1412         HV_CPUID_IMPLEMENT_LIMITS;
1413 
1414     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) {
1415         max_cpuid_leaf =
1416             MAX(max_cpuid_leaf, HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES);
1417     }
1418 
1419     c = &cpuid_ent[cpuid_i++];
1420     c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
1421     c->eax = max_cpuid_leaf;
1422     c->ebx = cpu->hyperv_vendor_id[0];
1423     c->ecx = cpu->hyperv_vendor_id[1];
1424     c->edx = cpu->hyperv_vendor_id[2];
1425 
1426     c = &cpuid_ent[cpuid_i++];
1427     c->function = HV_CPUID_INTERFACE;
1428     c->eax = cpu->hyperv_interface_id[0];
1429     c->ebx = cpu->hyperv_interface_id[1];
1430     c->ecx = cpu->hyperv_interface_id[2];
1431     c->edx = cpu->hyperv_interface_id[3];
1432 
1433     c = &cpuid_ent[cpuid_i++];
1434     c->function = HV_CPUID_VERSION;
1435     c->eax = cpu->hyperv_ver_id_build;
1436     c->ebx = (uint32_t)cpu->hyperv_ver_id_major << 16 |
1437         cpu->hyperv_ver_id_minor;
1438     c->ecx = cpu->hyperv_ver_id_sp;
1439     c->edx = (uint32_t)cpu->hyperv_ver_id_sb << 24 |
1440         (cpu->hyperv_ver_id_sn & 0xffffff);
1441 
1442     c = &cpuid_ent[cpuid_i++];
1443     c->function = HV_CPUID_FEATURES;
1444     c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EAX);
1445     c->ebx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EBX);
1446     c->edx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EDX);
1447 
1448     /* Unconditionally required with any Hyper-V enlightenment */
1449     c->eax |= HV_HYPERCALL_AVAILABLE;
1450 
1451     /* SynIC and Vmbus devices require messages/signals hypercalls */
1452     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1453         !cpu->hyperv_synic_kvm_only) {
1454         c->ebx |= HV_POST_MESSAGES | HV_SIGNAL_EVENTS;
1455     }
1456 
1457 
1458     /* Not exposed by KVM but needed to make CPU hotplug in Windows work */
1459     c->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1460 
1461     c = &cpuid_ent[cpuid_i++];
1462     c->function = HV_CPUID_ENLIGHTMENT_INFO;
1463     c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX);
1464     c->ebx = cpu->hyperv_spinlock_attempts;
1465 
1466     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) &&
1467         !hyperv_feat_enabled(cpu, HYPERV_FEAT_AVIC)) {
1468         c->eax |= HV_APIC_ACCESS_RECOMMENDED;
1469     }
1470 
1471     if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) {
1472         c->eax |= HV_NO_NONARCH_CORESHARING;
1473     } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) {
1474         c->eax |= hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX) &
1475             HV_NO_NONARCH_CORESHARING;
1476     }
1477 
1478     c = &cpuid_ent[cpuid_i++];
1479     c->function = HV_CPUID_IMPLEMENT_LIMITS;
1480     c->eax = cpu->hv_max_vps;
1481     c->ebx = cpu->hyperv_limits[0];
1482     c->ecx = cpu->hyperv_limits[1];
1483     c->edx = cpu->hyperv_limits[2];
1484 
1485     if (nested_eax) {
1486         uint32_t function;
1487 
1488         /* Create zeroed 0x40000006..0x40000009 leaves */
1489         for (function = HV_CPUID_IMPLEMENT_LIMITS + 1;
1490              function < HV_CPUID_NESTED_FEATURES; function++) {
1491             c = &cpuid_ent[cpuid_i++];
1492             c->function = function;
1493         }
1494 
1495         c = &cpuid_ent[cpuid_i++];
1496         c->function = HV_CPUID_NESTED_FEATURES;
1497         c->eax = nested_eax;
1498     }
1499 
1500     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) {
1501         c = &cpuid_ent[cpuid_i++];
1502         c->function = HV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS;
1503         c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ?
1504             HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS;
1505         memcpy(signature, "Microsoft VS", 12);
1506         c->eax = 0;
1507         c->ebx = signature[0];
1508         c->ecx = signature[1];
1509         c->edx = signature[2];
1510 
1511         c = &cpuid_ent[cpuid_i++];
1512         c->function = HV_CPUID_SYNDBG_INTERFACE;
1513         memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12);
1514         c->eax = signature[0];
1515         c->ebx = 0;
1516         c->ecx = 0;
1517         c->edx = 0;
1518 
1519         c = &cpuid_ent[cpuid_i++];
1520         c->function = HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES;
1521         c->eax = HV_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
1522         c->ebx = 0;
1523         c->ecx = 0;
1524         c->edx = 0;
1525     }
1526 
1527     return cpuid_i;
1528 }
1529 
1530 static Error *hv_passthrough_mig_blocker;
1531 static Error *hv_no_nonarch_cs_mig_blocker;
1532 
1533 /* Checks that the exposed eVMCS version range is supported by KVM */
evmcs_version_supported(uint16_t evmcs_version,uint16_t supported_evmcs_version)1534 static bool evmcs_version_supported(uint16_t evmcs_version,
1535                                     uint16_t supported_evmcs_version)
1536 {
1537     uint8_t min_version = evmcs_version & 0xff;
1538     uint8_t max_version = evmcs_version >> 8;
1539     uint8_t min_supported_version = supported_evmcs_version & 0xff;
1540     uint8_t max_supported_version = supported_evmcs_version >> 8;
1541 
1542     return (min_version >= min_supported_version) &&
1543         (max_version <= max_supported_version);
1544 }
1545 
hyperv_init_vcpu(X86CPU * cpu)1546 static int hyperv_init_vcpu(X86CPU *cpu)
1547 {
1548     CPUState *cs = CPU(cpu);
1549     Error *local_err = NULL;
1550     int ret;
1551 
1552     if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) {
1553         error_setg(&hv_passthrough_mig_blocker,
1554                    "'hv-passthrough' CPU flag prevents migration, use explicit"
1555                    " set of hv-* flags instead");
1556         ret = migrate_add_blocker(&hv_passthrough_mig_blocker, &local_err);
1557         if (ret < 0) {
1558             error_report_err(local_err);
1559             return ret;
1560         }
1561     }
1562 
1563     if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO &&
1564         hv_no_nonarch_cs_mig_blocker == NULL) {
1565         error_setg(&hv_no_nonarch_cs_mig_blocker,
1566                    "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration"
1567                    " use explicit 'hv-no-nonarch-coresharing=on' instead (but"
1568                    " make sure SMT is disabled and/or that vCPUs are properly"
1569                    " pinned)");
1570         ret = migrate_add_blocker(&hv_no_nonarch_cs_mig_blocker, &local_err);
1571         if (ret < 0) {
1572             error_report_err(local_err);
1573             return ret;
1574         }
1575     }
1576 
1577     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) {
1578         /*
1579          * the kernel doesn't support setting vp_index; assert that its value
1580          * is in sync
1581          */
1582         uint64_t value;
1583 
1584         ret = kvm_get_one_msr(cpu, HV_X64_MSR_VP_INDEX, &value);
1585         if (ret < 0) {
1586             return ret;
1587         }
1588 
1589         if (value != hyperv_vp_index(CPU(cpu))) {
1590             error_report("kernel's vp_index != QEMU's vp_index");
1591             return -ENXIO;
1592         }
1593     }
1594 
1595     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
1596         uint32_t synic_cap = cpu->hyperv_synic_kvm_only ?
1597             KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1598         ret = kvm_vcpu_enable_cap(cs, synic_cap, 0);
1599         if (ret < 0) {
1600             error_report("failed to turn on HyperV SynIC in KVM: %s",
1601                          strerror(-ret));
1602             return ret;
1603         }
1604 
1605         if (!cpu->hyperv_synic_kvm_only) {
1606             ret = hyperv_x86_synic_add(cpu);
1607             if (ret < 0) {
1608                 error_report("failed to create HyperV SynIC: %s",
1609                              strerror(-ret));
1610                 return ret;
1611             }
1612         }
1613     }
1614 
1615     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1616         uint16_t evmcs_version = DEFAULT_EVMCS_VERSION;
1617         uint16_t supported_evmcs_version;
1618 
1619         ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0,
1620                                   (uintptr_t)&supported_evmcs_version);
1621 
1622         /*
1623          * KVM is required to support EVMCS ver.1. as that's what 'hv-evmcs'
1624          * option sets. Note: we hardcode the maximum supported eVMCS version
1625          * to '1' as well so 'hv-evmcs' feature is migratable even when (and if)
1626          * ver.2 is implemented. A new option (e.g. 'hv-evmcs=2') will then have
1627          * to be added.
1628          */
1629         if (ret < 0) {
1630             error_report("Hyper-V %s is not supported by kernel",
1631                          kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc);
1632             return ret;
1633         }
1634 
1635         if (!evmcs_version_supported(evmcs_version, supported_evmcs_version)) {
1636             error_report("eVMCS version range [%d..%d] is not supported by "
1637                          "kernel (supported: [%d..%d])", evmcs_version & 0xff,
1638                          evmcs_version >> 8, supported_evmcs_version & 0xff,
1639                          supported_evmcs_version >> 8);
1640             return -ENOTSUP;
1641         }
1642     }
1643 
1644     if (cpu->hyperv_enforce_cpuid) {
1645         ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENFORCE_CPUID, 0, 1);
1646         if (ret < 0) {
1647             error_report("failed to enable KVM_CAP_HYPERV_ENFORCE_CPUID: %s",
1648                          strerror(-ret));
1649             return ret;
1650         }
1651     }
1652 
1653     return 0;
1654 }
1655 
1656 static Error *invtsc_mig_blocker;
1657 
1658 #define KVM_MAX_CPUID_ENTRIES  100
1659 
kvm_init_xsave(CPUX86State * env)1660 static void kvm_init_xsave(CPUX86State *env)
1661 {
1662     if (has_xsave2) {
1663         env->xsave_buf_len = QEMU_ALIGN_UP(has_xsave2, 4096);
1664     } else {
1665         env->xsave_buf_len = sizeof(struct kvm_xsave);
1666     }
1667 
1668     env->xsave_buf = qemu_memalign(4096, env->xsave_buf_len);
1669     memset(env->xsave_buf, 0, env->xsave_buf_len);
1670     /*
1671      * The allocated storage must be large enough for all of the
1672      * possible XSAVE state components.
1673      */
1674     assert(kvm_arch_get_supported_cpuid(kvm_state, 0xd, 0, R_ECX) <=
1675            env->xsave_buf_len);
1676 }
1677 
kvm_init_nested_state(CPUX86State * env)1678 static void kvm_init_nested_state(CPUX86State *env)
1679 {
1680     struct kvm_vmx_nested_state_hdr *vmx_hdr;
1681     uint32_t size;
1682 
1683     if (!env->nested_state) {
1684         return;
1685     }
1686 
1687     size = env->nested_state->size;
1688 
1689     memset(env->nested_state, 0, size);
1690     env->nested_state->size = size;
1691 
1692     if (cpu_has_vmx(env)) {
1693         env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX;
1694         vmx_hdr = &env->nested_state->hdr.vmx;
1695         vmx_hdr->vmxon_pa = -1ull;
1696         vmx_hdr->vmcs12_pa = -1ull;
1697     } else if (cpu_has_svm(env)) {
1698         env->nested_state->format = KVM_STATE_NESTED_FORMAT_SVM;
1699     }
1700 }
1701 
kvm_arch_init_vcpu(CPUState * cs)1702 int kvm_arch_init_vcpu(CPUState *cs)
1703 {
1704     struct {
1705         struct kvm_cpuid2 cpuid;
1706         struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
1707     } cpuid_data;
1708     /*
1709      * The kernel defines these structs with padding fields so there
1710      * should be no extra padding in our cpuid_data struct.
1711      */
1712     QEMU_BUILD_BUG_ON(sizeof(cpuid_data) !=
1713                       sizeof(struct kvm_cpuid2) +
1714                       sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES);
1715 
1716     X86CPU *cpu = X86_CPU(cs);
1717     CPUX86State *env = &cpu->env;
1718     uint32_t limit, i, j, cpuid_i;
1719     uint32_t unused;
1720     struct kvm_cpuid_entry2 *c;
1721     uint32_t signature[3];
1722     int kvm_base = KVM_CPUID_SIGNATURE;
1723     int max_nested_state_len;
1724     int r;
1725     Error *local_err = NULL;
1726 
1727     memset(&cpuid_data, 0, sizeof(cpuid_data));
1728 
1729     cpuid_i = 0;
1730 
1731     has_xsave2 = kvm_check_extension(cs->kvm_state, KVM_CAP_XSAVE2);
1732 
1733     r = kvm_arch_set_tsc_khz(cs);
1734     if (r < 0) {
1735         return r;
1736     }
1737 
1738     /* vcpu's TSC frequency is either specified by user, or following
1739      * the value used by KVM if the former is not present. In the
1740      * latter case, we query it from KVM and record in env->tsc_khz,
1741      * so that vcpu's TSC frequency can be migrated later via this field.
1742      */
1743     if (!env->tsc_khz) {
1744         r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
1745             kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
1746             -ENOTSUP;
1747         if (r > 0) {
1748             env->tsc_khz = r;
1749         }
1750     }
1751 
1752     env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY;
1753 
1754     /*
1755      * kvm_hyperv_expand_features() is called here for the second time in case
1756      * KVM_CAP_SYS_HYPERV_CPUID is not supported. While we can't possibly handle
1757      * 'query-cpu-model-expansion' in this case as we don't have a KVM vCPU to
1758      * check which Hyper-V enlightenments are supported and which are not, we
1759      * can still proceed and check/expand Hyper-V enlightenments here so legacy
1760      * behavior is preserved.
1761      */
1762     if (!kvm_hyperv_expand_features(cpu, &local_err)) {
1763         error_report_err(local_err);
1764         return -ENOSYS;
1765     }
1766 
1767     if (hyperv_enabled(cpu)) {
1768         r = hyperv_init_vcpu(cpu);
1769         if (r) {
1770             return r;
1771         }
1772 
1773         cpuid_i = hyperv_fill_cpuids(cs, cpuid_data.entries);
1774         kvm_base = KVM_CPUID_SIGNATURE_NEXT;
1775         has_msr_hv_hypercall = true;
1776     }
1777 
1778     if (cs->kvm_state->xen_version) {
1779 #ifdef CONFIG_XEN_EMU
1780         struct kvm_cpuid_entry2 *xen_max_leaf;
1781 
1782         memcpy(signature, "XenVMMXenVMM", 12);
1783 
1784         xen_max_leaf = c = &cpuid_data.entries[cpuid_i++];
1785         c->function = kvm_base + XEN_CPUID_SIGNATURE;
1786         c->eax = kvm_base + XEN_CPUID_TIME;
1787         c->ebx = signature[0];
1788         c->ecx = signature[1];
1789         c->edx = signature[2];
1790 
1791         c = &cpuid_data.entries[cpuid_i++];
1792         c->function = kvm_base + XEN_CPUID_VENDOR;
1793         c->eax = cs->kvm_state->xen_version;
1794         c->ebx = 0;
1795         c->ecx = 0;
1796         c->edx = 0;
1797 
1798         c = &cpuid_data.entries[cpuid_i++];
1799         c->function = kvm_base + XEN_CPUID_HVM_MSR;
1800         /* Number of hypercall-transfer pages */
1801         c->eax = 1;
1802         /* Hypercall MSR base address */
1803         if (hyperv_enabled(cpu)) {
1804             c->ebx = XEN_HYPERCALL_MSR_HYPERV;
1805             kvm_xen_init(cs->kvm_state, c->ebx);
1806         } else {
1807             c->ebx = XEN_HYPERCALL_MSR;
1808         }
1809         c->ecx = 0;
1810         c->edx = 0;
1811 
1812         c = &cpuid_data.entries[cpuid_i++];
1813         c->function = kvm_base + XEN_CPUID_TIME;
1814         c->eax = ((!!tsc_is_stable_and_known(env) << 1) |
1815             (!!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP) << 2));
1816         /* default=0 (emulate if necessary) */
1817         c->ebx = 0;
1818         /* guest tsc frequency */
1819         c->ecx = env->user_tsc_khz;
1820         /* guest tsc incarnation (migration count) */
1821         c->edx = 0;
1822 
1823         c = &cpuid_data.entries[cpuid_i++];
1824         c->function = kvm_base + XEN_CPUID_HVM;
1825         xen_max_leaf->eax = kvm_base + XEN_CPUID_HVM;
1826         if (cs->kvm_state->xen_version >= XEN_VERSION(4, 5)) {
1827             c->function = kvm_base + XEN_CPUID_HVM;
1828 
1829             if (cpu->xen_vapic) {
1830                 c->eax |= XEN_HVM_CPUID_APIC_ACCESS_VIRT;
1831                 c->eax |= XEN_HVM_CPUID_X2APIC_VIRT;
1832             }
1833 
1834             c->eax |= XEN_HVM_CPUID_IOMMU_MAPPINGS;
1835 
1836             if (cs->kvm_state->xen_version >= XEN_VERSION(4, 6)) {
1837                 c->eax |= XEN_HVM_CPUID_VCPU_ID_PRESENT;
1838                 c->ebx = cs->cpu_index;
1839             }
1840 
1841             if (cs->kvm_state->xen_version >= XEN_VERSION(4, 17)) {
1842                 c->eax |= XEN_HVM_CPUID_UPCALL_VECTOR;
1843             }
1844         }
1845 
1846         r = kvm_xen_init_vcpu(cs);
1847         if (r) {
1848             return r;
1849         }
1850 
1851         kvm_base += 0x100;
1852 #else /* CONFIG_XEN_EMU */
1853         /* This should never happen as kvm_arch_init() would have died first. */
1854         fprintf(stderr, "Cannot enable Xen CPUID without Xen support\n");
1855         abort();
1856 #endif
1857     } else if (cpu->expose_kvm) {
1858         memcpy(signature, "KVMKVMKVM\0\0\0", 12);
1859         c = &cpuid_data.entries[cpuid_i++];
1860         c->function = KVM_CPUID_SIGNATURE | kvm_base;
1861         c->eax = KVM_CPUID_FEATURES | kvm_base;
1862         c->ebx = signature[0];
1863         c->ecx = signature[1];
1864         c->edx = signature[2];
1865 
1866         c = &cpuid_data.entries[cpuid_i++];
1867         c->function = KVM_CPUID_FEATURES | kvm_base;
1868         c->eax = env->features[FEAT_KVM];
1869         c->edx = env->features[FEAT_KVM_HINTS];
1870     }
1871 
1872     cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
1873 
1874     if (cpu->kvm_pv_enforce_cpuid) {
1875         r = kvm_vcpu_enable_cap(cs, KVM_CAP_ENFORCE_PV_FEATURE_CPUID, 0, 1);
1876         if (r < 0) {
1877             fprintf(stderr,
1878                     "failed to enable KVM_CAP_ENFORCE_PV_FEATURE_CPUID: %s",
1879                     strerror(-r));
1880             abort();
1881         }
1882     }
1883 
1884     for (i = 0; i <= limit; i++) {
1885         if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1886             fprintf(stderr, "unsupported level value: 0x%x\n", limit);
1887             abort();
1888         }
1889         c = &cpuid_data.entries[cpuid_i++];
1890 
1891         switch (i) {
1892         case 2: {
1893             /* Keep reading function 2 till all the input is received */
1894             int times;
1895 
1896             c->function = i;
1897             c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
1898                        KVM_CPUID_FLAG_STATE_READ_NEXT;
1899             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1900             times = c->eax & 0xff;
1901 
1902             for (j = 1; j < times; ++j) {
1903                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1904                     fprintf(stderr, "cpuid_data is full, no space for "
1905                             "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
1906                     abort();
1907                 }
1908                 c = &cpuid_data.entries[cpuid_i++];
1909                 c->function = i;
1910                 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
1911                 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1912             }
1913             break;
1914         }
1915         case 0x1f:
1916             if (env->nr_dies < 2) {
1917                 cpuid_i--;
1918                 break;
1919             }
1920             /* fallthrough */
1921         case 4:
1922         case 0xb:
1923         case 0xd:
1924             for (j = 0; ; j++) {
1925                 if (i == 0xd && j == 64) {
1926                     break;
1927                 }
1928 
1929                 if (i == 0x1f && j == 64) {
1930                     break;
1931                 }
1932 
1933                 c->function = i;
1934                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1935                 c->index = j;
1936                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1937 
1938                 if (i == 4 && c->eax == 0) {
1939                     break;
1940                 }
1941                 if (i == 0xb && !(c->ecx & 0xff00)) {
1942                     break;
1943                 }
1944                 if (i == 0x1f && !(c->ecx & 0xff00)) {
1945                     break;
1946                 }
1947                 if (i == 0xd && c->eax == 0) {
1948                     continue;
1949                 }
1950                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1951                     fprintf(stderr, "cpuid_data is full, no space for "
1952                             "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1953                     abort();
1954                 }
1955                 c = &cpuid_data.entries[cpuid_i++];
1956             }
1957             break;
1958         case 0x12:
1959             for (j = 0; ; j++) {
1960                 c->function = i;
1961                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1962                 c->index = j;
1963                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1964 
1965                 if (j > 1 && (c->eax & 0xf) != 1) {
1966                     break;
1967                 }
1968 
1969                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1970                     fprintf(stderr, "cpuid_data is full, no space for "
1971                                 "cpuid(eax:0x12,ecx:0x%x)\n", j);
1972                     abort();
1973                 }
1974                 c = &cpuid_data.entries[cpuid_i++];
1975             }
1976             break;
1977         case 0x7:
1978         case 0x14:
1979         case 0x1d:
1980         case 0x1e: {
1981             uint32_t times;
1982 
1983             c->function = i;
1984             c->index = 0;
1985             c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1986             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1987             times = c->eax;
1988 
1989             for (j = 1; j <= times; ++j) {
1990                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1991                     fprintf(stderr, "cpuid_data is full, no space for "
1992                                 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1993                     abort();
1994                 }
1995                 c = &cpuid_data.entries[cpuid_i++];
1996                 c->function = i;
1997                 c->index = j;
1998                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1999                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
2000             }
2001             break;
2002         }
2003         default:
2004             c->function = i;
2005             c->flags = 0;
2006             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
2007             if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
2008                 /*
2009                  * KVM already returns all zeroes if a CPUID entry is missing,
2010                  * so we can omit it and avoid hitting KVM's 80-entry limit.
2011                  */
2012                 cpuid_i--;
2013             }
2014             break;
2015         }
2016     }
2017 
2018     if (limit >= 0x0a) {
2019         uint32_t eax, edx;
2020 
2021         cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
2022 
2023         has_architectural_pmu_version = eax & 0xff;
2024         if (has_architectural_pmu_version > 0) {
2025             num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
2026 
2027             /* Shouldn't be more than 32, since that's the number of bits
2028              * available in EBX to tell us _which_ counters are available.
2029              * Play it safe.
2030              */
2031             if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
2032                 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
2033             }
2034 
2035             if (has_architectural_pmu_version > 1) {
2036                 num_architectural_pmu_fixed_counters = edx & 0x1f;
2037 
2038                 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
2039                     num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
2040                 }
2041             }
2042         }
2043     }
2044 
2045     cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
2046 
2047     for (i = 0x80000000; i <= limit; i++) {
2048         if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2049             fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
2050             abort();
2051         }
2052         c = &cpuid_data.entries[cpuid_i++];
2053 
2054         switch (i) {
2055         case 0x8000001d:
2056             /* Query for all AMD cache information leaves */
2057             for (j = 0; ; j++) {
2058                 c->function = i;
2059                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2060                 c->index = j;
2061                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
2062 
2063                 if (c->eax == 0) {
2064                     break;
2065                 }
2066                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2067                     fprintf(stderr, "cpuid_data is full, no space for "
2068                             "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
2069                     abort();
2070                 }
2071                 c = &cpuid_data.entries[cpuid_i++];
2072             }
2073             break;
2074         default:
2075             c->function = i;
2076             c->flags = 0;
2077             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
2078             if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
2079                 /*
2080                  * KVM already returns all zeroes if a CPUID entry is missing,
2081                  * so we can omit it and avoid hitting KVM's 80-entry limit.
2082                  */
2083                 cpuid_i--;
2084             }
2085             break;
2086         }
2087     }
2088 
2089     /* Call Centaur's CPUID instructions they are supported. */
2090     if (env->cpuid_xlevel2 > 0) {
2091         cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
2092 
2093         for (i = 0xC0000000; i <= limit; i++) {
2094             if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2095                 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
2096                 abort();
2097             }
2098             c = &cpuid_data.entries[cpuid_i++];
2099 
2100             c->function = i;
2101             c->flags = 0;
2102             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
2103         }
2104     }
2105 
2106     cpuid_data.cpuid.nent = cpuid_i;
2107 
2108     if (((env->cpuid_version >> 8)&0xF) >= 6
2109         && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
2110            (CPUID_MCE | CPUID_MCA)) {
2111         uint64_t mcg_cap, unsupported_caps;
2112         int banks;
2113         int ret;
2114 
2115         ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
2116         if (ret < 0) {
2117             fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
2118             return ret;
2119         }
2120 
2121         if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
2122             error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
2123                          (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
2124             return -ENOTSUP;
2125         }
2126 
2127         unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
2128         if (unsupported_caps) {
2129             if (unsupported_caps & MCG_LMCE_P) {
2130                 error_report("kvm: LMCE not supported");
2131                 return -ENOTSUP;
2132             }
2133             warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
2134                         unsupported_caps);
2135         }
2136 
2137         env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
2138         ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
2139         if (ret < 0) {
2140             fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
2141             return ret;
2142         }
2143     }
2144 
2145     cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env);
2146 
2147     c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
2148     if (c) {
2149         has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
2150                                   !!(c->ecx & CPUID_EXT_SMX);
2151     }
2152 
2153     c = cpuid_find_entry(&cpuid_data.cpuid, 7, 0);
2154     if (c && (c->ebx & CPUID_7_0_EBX_SGX)) {
2155         has_msr_feature_control = true;
2156     }
2157 
2158     if (env->mcg_cap & MCG_LMCE_P) {
2159         has_msr_mcg_ext_ctl = has_msr_feature_control = true;
2160     }
2161 
2162     if (!env->user_tsc_khz) {
2163         if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
2164             invtsc_mig_blocker == NULL) {
2165             error_setg(&invtsc_mig_blocker,
2166                        "State blocked by non-migratable CPU device"
2167                        " (invtsc flag)");
2168             r = migrate_add_blocker(&invtsc_mig_blocker, &local_err);
2169             if (r < 0) {
2170                 error_report_err(local_err);
2171                 return r;
2172             }
2173         }
2174     }
2175 
2176     if (cpu->vmware_cpuid_freq
2177         /* Guests depend on 0x40000000 to detect this feature, so only expose
2178          * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
2179         && cpu->expose_kvm
2180         && kvm_base == KVM_CPUID_SIGNATURE
2181         /* TSC clock must be stable and known for this feature. */
2182         && tsc_is_stable_and_known(env)) {
2183 
2184         c = &cpuid_data.entries[cpuid_i++];
2185         c->function = KVM_CPUID_SIGNATURE | 0x10;
2186         c->eax = env->tsc_khz;
2187         c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */
2188         c->ecx = c->edx = 0;
2189 
2190         c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
2191         c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
2192     }
2193 
2194     cpuid_data.cpuid.nent = cpuid_i;
2195 
2196     cpuid_data.cpuid.padding = 0;
2197     r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
2198     if (r) {
2199         goto fail;
2200     }
2201     kvm_init_xsave(env);
2202 
2203     max_nested_state_len = kvm_max_nested_state_length();
2204     if (max_nested_state_len > 0) {
2205         assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data));
2206 
2207         if (cpu_has_vmx(env) || cpu_has_svm(env)) {
2208             env->nested_state = g_malloc0(max_nested_state_len);
2209             env->nested_state->size = max_nested_state_len;
2210 
2211             kvm_init_nested_state(env);
2212         }
2213     }
2214 
2215     cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
2216 
2217     if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
2218         has_msr_tsc_aux = false;
2219     }
2220 
2221     kvm_init_msrs(cpu);
2222 
2223     return 0;
2224 
2225  fail:
2226     migrate_del_blocker(&invtsc_mig_blocker);
2227 
2228     return r;
2229 }
2230 
kvm_arch_destroy_vcpu(CPUState * cs)2231 int kvm_arch_destroy_vcpu(CPUState *cs)
2232 {
2233     X86CPU *cpu = X86_CPU(cs);
2234     CPUX86State *env = &cpu->env;
2235 
2236     g_free(env->xsave_buf);
2237 
2238     g_free(cpu->kvm_msr_buf);
2239     cpu->kvm_msr_buf = NULL;
2240 
2241     g_free(env->nested_state);
2242     env->nested_state = NULL;
2243 
2244     qemu_del_vm_change_state_handler(cpu->vmsentry);
2245 
2246     return 0;
2247 }
2248 
kvm_arch_reset_vcpu(X86CPU * cpu)2249 void kvm_arch_reset_vcpu(X86CPU *cpu)
2250 {
2251     CPUX86State *env = &cpu->env;
2252 
2253     env->xcr0 = 1;
2254     if (kvm_irqchip_in_kernel()) {
2255         env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
2256                                           KVM_MP_STATE_UNINITIALIZED;
2257     } else {
2258         env->mp_state = KVM_MP_STATE_RUNNABLE;
2259     }
2260 
2261     /* enabled by default */
2262     env->poll_control_msr = 1;
2263 
2264     kvm_init_nested_state(env);
2265 
2266     sev_es_set_reset_vector(CPU(cpu));
2267 }
2268 
kvm_arch_after_reset_vcpu(X86CPU * cpu)2269 void kvm_arch_after_reset_vcpu(X86CPU *cpu)
2270 {
2271     CPUX86State *env = &cpu->env;
2272     int i;
2273 
2274     /*
2275      * Reset SynIC after all other devices have been reset to let them remove
2276      * their SINT routes first.
2277      */
2278     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
2279         for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
2280             env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
2281         }
2282 
2283         hyperv_x86_synic_reset(cpu);
2284     }
2285 }
2286 
kvm_arch_do_init_vcpu(X86CPU * cpu)2287 void kvm_arch_do_init_vcpu(X86CPU *cpu)
2288 {
2289     CPUX86State *env = &cpu->env;
2290 
2291     /* APs get directly into wait-for-SIPI state.  */
2292     if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
2293         env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
2294     }
2295 }
2296 
kvm_get_supported_feature_msrs(KVMState * s)2297 static int kvm_get_supported_feature_msrs(KVMState *s)
2298 {
2299     int ret = 0;
2300 
2301     if (kvm_feature_msrs != NULL) {
2302         return 0;
2303     }
2304 
2305     if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) {
2306         return 0;
2307     }
2308 
2309     struct kvm_msr_list msr_list;
2310 
2311     msr_list.nmsrs = 0;
2312     ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list);
2313     if (ret < 0 && ret != -E2BIG) {
2314         error_report("Fetch KVM feature MSR list failed: %s",
2315             strerror(-ret));
2316         return ret;
2317     }
2318 
2319     assert(msr_list.nmsrs > 0);
2320     kvm_feature_msrs = g_malloc0(sizeof(msr_list) +
2321                  msr_list.nmsrs * sizeof(msr_list.indices[0]));
2322 
2323     kvm_feature_msrs->nmsrs = msr_list.nmsrs;
2324     ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs);
2325 
2326     if (ret < 0) {
2327         error_report("Fetch KVM feature MSR list failed: %s",
2328             strerror(-ret));
2329         g_free(kvm_feature_msrs);
2330         kvm_feature_msrs = NULL;
2331         return ret;
2332     }
2333 
2334     return 0;
2335 }
2336 
kvm_get_supported_msrs(KVMState * s)2337 static int kvm_get_supported_msrs(KVMState *s)
2338 {
2339     int ret = 0;
2340     struct kvm_msr_list msr_list, *kvm_msr_list;
2341 
2342     /*
2343      *  Obtain MSR list from KVM.  These are the MSRs that we must
2344      *  save/restore.
2345      */
2346     msr_list.nmsrs = 0;
2347     ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
2348     if (ret < 0 && ret != -E2BIG) {
2349         return ret;
2350     }
2351     /*
2352      * Old kernel modules had a bug and could write beyond the provided
2353      * memory. Allocate at least a safe amount of 1K.
2354      */
2355     kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
2356                                           msr_list.nmsrs *
2357                                           sizeof(msr_list.indices[0])));
2358 
2359     kvm_msr_list->nmsrs = msr_list.nmsrs;
2360     ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
2361     if (ret >= 0) {
2362         int i;
2363 
2364         for (i = 0; i < kvm_msr_list->nmsrs; i++) {
2365             switch (kvm_msr_list->indices[i]) {
2366             case MSR_STAR:
2367                 has_msr_star = true;
2368                 break;
2369             case MSR_VM_HSAVE_PA:
2370                 has_msr_hsave_pa = true;
2371                 break;
2372             case MSR_TSC_AUX:
2373                 has_msr_tsc_aux = true;
2374                 break;
2375             case MSR_TSC_ADJUST:
2376                 has_msr_tsc_adjust = true;
2377                 break;
2378             case MSR_IA32_TSCDEADLINE:
2379                 has_msr_tsc_deadline = true;
2380                 break;
2381             case MSR_IA32_SMBASE:
2382                 has_msr_smbase = true;
2383                 break;
2384             case MSR_SMI_COUNT:
2385                 has_msr_smi_count = true;
2386                 break;
2387             case MSR_IA32_MISC_ENABLE:
2388                 has_msr_misc_enable = true;
2389                 break;
2390             case MSR_IA32_BNDCFGS:
2391                 has_msr_bndcfgs = true;
2392                 break;
2393             case MSR_IA32_XSS:
2394                 has_msr_xss = true;
2395                 break;
2396             case MSR_IA32_UMWAIT_CONTROL:
2397                 has_msr_umwait = true;
2398                 break;
2399             case HV_X64_MSR_CRASH_CTL:
2400                 has_msr_hv_crash = true;
2401                 break;
2402             case HV_X64_MSR_RESET:
2403                 has_msr_hv_reset = true;
2404                 break;
2405             case HV_X64_MSR_VP_INDEX:
2406                 has_msr_hv_vpindex = true;
2407                 break;
2408             case HV_X64_MSR_VP_RUNTIME:
2409                 has_msr_hv_runtime = true;
2410                 break;
2411             case HV_X64_MSR_SCONTROL:
2412                 has_msr_hv_synic = true;
2413                 break;
2414             case HV_X64_MSR_STIMER0_CONFIG:
2415                 has_msr_hv_stimer = true;
2416                 break;
2417             case HV_X64_MSR_TSC_FREQUENCY:
2418                 has_msr_hv_frequencies = true;
2419                 break;
2420             case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2421                 has_msr_hv_reenlightenment = true;
2422                 break;
2423             case HV_X64_MSR_SYNDBG_OPTIONS:
2424                 has_msr_hv_syndbg_options = true;
2425                 break;
2426             case MSR_IA32_SPEC_CTRL:
2427                 has_msr_spec_ctrl = true;
2428                 break;
2429             case MSR_AMD64_TSC_RATIO:
2430                 has_tsc_scale_msr = true;
2431                 break;
2432             case MSR_IA32_TSX_CTRL:
2433                 has_msr_tsx_ctrl = true;
2434                 break;
2435             case MSR_VIRT_SSBD:
2436                 has_msr_virt_ssbd = true;
2437                 break;
2438             case MSR_IA32_ARCH_CAPABILITIES:
2439                 has_msr_arch_capabs = true;
2440                 break;
2441             case MSR_IA32_CORE_CAPABILITY:
2442                 has_msr_core_capabs = true;
2443                 break;
2444             case MSR_IA32_PERF_CAPABILITIES:
2445                 has_msr_perf_capabs = true;
2446                 break;
2447             case MSR_IA32_VMX_VMFUNC:
2448                 has_msr_vmx_vmfunc = true;
2449                 break;
2450             case MSR_IA32_UCODE_REV:
2451                 has_msr_ucode_rev = true;
2452                 break;
2453             case MSR_IA32_VMX_PROCBASED_CTLS2:
2454                 has_msr_vmx_procbased_ctls2 = true;
2455                 break;
2456             case MSR_IA32_PKRS:
2457                 has_msr_pkrs = true;
2458                 break;
2459             }
2460         }
2461     }
2462 
2463     g_free(kvm_msr_list);
2464 
2465     return ret;
2466 }
2467 
kvm_rdmsr_core_thread_count(X86CPU * cpu,uint32_t msr,uint64_t * val)2468 static bool kvm_rdmsr_core_thread_count(X86CPU *cpu, uint32_t msr,
2469                                         uint64_t *val)
2470 {
2471     CPUState *cs = CPU(cpu);
2472 
2473     *val = cs->nr_threads * cs->nr_cores; /* thread count, bits 15..0 */
2474     *val |= ((uint32_t)cs->nr_cores << 16); /* core count, bits 31..16 */
2475 
2476     return true;
2477 }
2478 
2479 static Notifier smram_machine_done;
2480 static KVMMemoryListener smram_listener;
2481 static AddressSpace smram_address_space;
2482 static MemoryRegion smram_as_root;
2483 static MemoryRegion smram_as_mem;
2484 
register_smram_listener(Notifier * n,void * unused)2485 static void register_smram_listener(Notifier *n, void *unused)
2486 {
2487     MemoryRegion *smram =
2488         (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
2489 
2490     /* Outer container... */
2491     memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
2492     memory_region_set_enabled(&smram_as_root, true);
2493 
2494     /* ... with two regions inside: normal system memory with low
2495      * priority, and...
2496      */
2497     memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
2498                              get_system_memory(), 0, ~0ull);
2499     memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
2500     memory_region_set_enabled(&smram_as_mem, true);
2501 
2502     if (smram) {
2503         /* ... SMRAM with higher priority */
2504         memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
2505         memory_region_set_enabled(smram, true);
2506     }
2507 
2508     address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
2509     kvm_memory_listener_register(kvm_state, &smram_listener,
2510                                  &smram_address_space, 1, "kvm-smram");
2511 }
2512 
kvm_arch_get_default_type(MachineState * ms)2513 int kvm_arch_get_default_type(MachineState *ms)
2514 {
2515     return 0;
2516 }
2517 
kvm_arch_init(MachineState * ms,KVMState * s)2518 int kvm_arch_init(MachineState *ms, KVMState *s)
2519 {
2520     uint64_t identity_base = 0xfffbc000;
2521     uint64_t shadow_mem;
2522     int ret;
2523     struct utsname utsname;
2524     Error *local_err = NULL;
2525 
2526     /*
2527      * Initialize SEV context, if required
2528      *
2529      * If no memory encryption is requested (ms->cgs == NULL) this is
2530      * a no-op.
2531      *
2532      * It's also a no-op if a non-SEV confidential guest support
2533      * mechanism is selected.  SEV is the only mechanism available to
2534      * select on x86 at present, so this doesn't arise, but if new
2535      * mechanisms are supported in future (e.g. TDX), they'll need
2536      * their own initialization either here or elsewhere.
2537      */
2538     ret = sev_kvm_init(ms->cgs, &local_err);
2539     if (ret < 0) {
2540         error_report_err(local_err);
2541         return ret;
2542     }
2543 
2544     has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
2545     has_sregs2 = kvm_check_extension(s, KVM_CAP_SREGS2) > 0;
2546 
2547     hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
2548 
2549     has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD);
2550     if (has_exception_payload) {
2551         ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true);
2552         if (ret < 0) {
2553             error_report("kvm: Failed to enable exception payload cap: %s",
2554                          strerror(-ret));
2555             return ret;
2556         }
2557     }
2558 
2559     has_triple_fault_event = kvm_check_extension(s, KVM_CAP_X86_TRIPLE_FAULT_EVENT);
2560     if (has_triple_fault_event) {
2561         ret = kvm_vm_enable_cap(s, KVM_CAP_X86_TRIPLE_FAULT_EVENT, 0, true);
2562         if (ret < 0) {
2563             error_report("kvm: Failed to enable triple fault event cap: %s",
2564                          strerror(-ret));
2565             return ret;
2566         }
2567     }
2568 
2569     if (s->xen_version) {
2570 #ifdef CONFIG_XEN_EMU
2571         if (!object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE)) {
2572             error_report("kvm: Xen support only available in PC machine");
2573             return -ENOTSUP;
2574         }
2575         /* hyperv_enabled() doesn't work yet. */
2576         uint32_t msr = XEN_HYPERCALL_MSR;
2577         ret = kvm_xen_init(s, msr);
2578         if (ret < 0) {
2579             return ret;
2580         }
2581 #else
2582         error_report("kvm: Xen support not enabled in qemu");
2583         return -ENOTSUP;
2584 #endif
2585     }
2586 
2587     ret = kvm_get_supported_msrs(s);
2588     if (ret < 0) {
2589         return ret;
2590     }
2591 
2592     kvm_get_supported_feature_msrs(s);
2593 
2594     uname(&utsname);
2595     lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
2596 
2597     /*
2598      * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
2599      * In order to use vm86 mode, an EPT identity map and a TSS  are needed.
2600      * Since these must be part of guest physical memory, we need to allocate
2601      * them, both by setting their start addresses in the kernel and by
2602      * creating a corresponding e820 entry. We need 4 pages before the BIOS,
2603      * so this value allows up to 16M BIOSes.
2604      */
2605     identity_base = 0xfeffc000;
2606     ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
2607     if (ret < 0) {
2608         return ret;
2609     }
2610 
2611     /* Set TSS base one page after EPT identity map. */
2612     ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
2613     if (ret < 0) {
2614         return ret;
2615     }
2616 
2617     /* Tell fw_cfg to notify the BIOS to reserve the range. */
2618     ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
2619     if (ret < 0) {
2620         fprintf(stderr, "e820_add_entry() table is full\n");
2621         return ret;
2622     }
2623 
2624     shadow_mem = object_property_get_int(OBJECT(s), "kvm-shadow-mem", &error_abort);
2625     if (shadow_mem != -1) {
2626         shadow_mem /= 4096;
2627         ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
2628         if (ret < 0) {
2629             return ret;
2630         }
2631     }
2632 
2633     if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
2634         object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) &&
2635         x86_machine_is_smm_enabled(X86_MACHINE(ms))) {
2636         smram_machine_done.notify = register_smram_listener;
2637         qemu_add_machine_init_done_notifier(&smram_machine_done);
2638     }
2639 
2640     if (enable_cpu_pm) {
2641         int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
2642 /* Work around for kernel header with a typo. TODO: fix header and drop. */
2643 #if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT)
2644 #define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL
2645 #endif
2646         if (disable_exits) {
2647             disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
2648                               KVM_X86_DISABLE_EXITS_HLT |
2649                               KVM_X86_DISABLE_EXITS_PAUSE |
2650                               KVM_X86_DISABLE_EXITS_CSTATE);
2651         }
2652 
2653         ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
2654                                 disable_exits);
2655         if (ret < 0) {
2656             error_report("kvm: guest stopping CPU not supported: %s",
2657                          strerror(-ret));
2658         }
2659     }
2660 
2661     if (object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE)) {
2662         X86MachineState *x86ms = X86_MACHINE(ms);
2663 
2664         if (x86ms->bus_lock_ratelimit > 0) {
2665             ret = kvm_check_extension(s, KVM_CAP_X86_BUS_LOCK_EXIT);
2666             if (!(ret & KVM_BUS_LOCK_DETECTION_EXIT)) {
2667                 error_report("kvm: bus lock detection unsupported");
2668                 return -ENOTSUP;
2669             }
2670             ret = kvm_vm_enable_cap(s, KVM_CAP_X86_BUS_LOCK_EXIT, 0,
2671                                     KVM_BUS_LOCK_DETECTION_EXIT);
2672             if (ret < 0) {
2673                 error_report("kvm: Failed to enable bus lock detection cap: %s",
2674                              strerror(-ret));
2675                 return ret;
2676             }
2677             ratelimit_init(&bus_lock_ratelimit_ctrl);
2678             ratelimit_set_speed(&bus_lock_ratelimit_ctrl,
2679                                 x86ms->bus_lock_ratelimit, BUS_LOCK_SLICE_TIME);
2680         }
2681     }
2682 
2683     if (s->notify_vmexit != NOTIFY_VMEXIT_OPTION_DISABLE &&
2684         kvm_check_extension(s, KVM_CAP_X86_NOTIFY_VMEXIT)) {
2685             uint64_t notify_window_flags =
2686                 ((uint64_t)s->notify_window << 32) |
2687                 KVM_X86_NOTIFY_VMEXIT_ENABLED |
2688                 KVM_X86_NOTIFY_VMEXIT_USER;
2689             ret = kvm_vm_enable_cap(s, KVM_CAP_X86_NOTIFY_VMEXIT, 0,
2690                                     notify_window_flags);
2691             if (ret < 0) {
2692                 error_report("kvm: Failed to enable notify vmexit cap: %s",
2693                              strerror(-ret));
2694                 return ret;
2695             }
2696     }
2697     if (kvm_vm_check_extension(s, KVM_CAP_X86_USER_SPACE_MSR)) {
2698         bool r;
2699 
2700         ret = kvm_vm_enable_cap(s, KVM_CAP_X86_USER_SPACE_MSR, 0,
2701                                 KVM_MSR_EXIT_REASON_FILTER);
2702         if (ret) {
2703             error_report("Could not enable user space MSRs: %s",
2704                          strerror(-ret));
2705             exit(1);
2706         }
2707 
2708         r = kvm_filter_msr(s, MSR_CORE_THREAD_COUNT,
2709                            kvm_rdmsr_core_thread_count, NULL);
2710         if (!r) {
2711             error_report("Could not install MSR_CORE_THREAD_COUNT handler: %s",
2712                          strerror(-ret));
2713             exit(1);
2714         }
2715     }
2716 
2717     return 0;
2718 }
2719 
set_v8086_seg(struct kvm_segment * lhs,const SegmentCache * rhs)2720 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2721 {
2722     lhs->selector = rhs->selector;
2723     lhs->base = rhs->base;
2724     lhs->limit = rhs->limit;
2725     lhs->type = 3;
2726     lhs->present = 1;
2727     lhs->dpl = 3;
2728     lhs->db = 0;
2729     lhs->s = 1;
2730     lhs->l = 0;
2731     lhs->g = 0;
2732     lhs->avl = 0;
2733     lhs->unusable = 0;
2734 }
2735 
set_seg(struct kvm_segment * lhs,const SegmentCache * rhs)2736 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2737 {
2738     unsigned flags = rhs->flags;
2739     lhs->selector = rhs->selector;
2740     lhs->base = rhs->base;
2741     lhs->limit = rhs->limit;
2742     lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
2743     lhs->present = (flags & DESC_P_MASK) != 0;
2744     lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
2745     lhs->db = (flags >> DESC_B_SHIFT) & 1;
2746     lhs->s = (flags & DESC_S_MASK) != 0;
2747     lhs->l = (flags >> DESC_L_SHIFT) & 1;
2748     lhs->g = (flags & DESC_G_MASK) != 0;
2749     lhs->avl = (flags & DESC_AVL_MASK) != 0;
2750     lhs->unusable = !lhs->present;
2751     lhs->padding = 0;
2752 }
2753 
get_seg(SegmentCache * lhs,const struct kvm_segment * rhs)2754 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
2755 {
2756     lhs->selector = rhs->selector;
2757     lhs->base = rhs->base;
2758     lhs->limit = rhs->limit;
2759     lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
2760                  ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
2761                  (rhs->dpl << DESC_DPL_SHIFT) |
2762                  (rhs->db << DESC_B_SHIFT) |
2763                  (rhs->s * DESC_S_MASK) |
2764                  (rhs->l << DESC_L_SHIFT) |
2765                  (rhs->g * DESC_G_MASK) |
2766                  (rhs->avl * DESC_AVL_MASK);
2767 }
2768 
kvm_getput_reg(__u64 * kvm_reg,target_ulong * qemu_reg,int set)2769 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
2770 {
2771     if (set) {
2772         *kvm_reg = *qemu_reg;
2773     } else {
2774         *qemu_reg = *kvm_reg;
2775     }
2776 }
2777 
kvm_getput_regs(X86CPU * cpu,int set)2778 static int kvm_getput_regs(X86CPU *cpu, int set)
2779 {
2780     CPUX86State *env = &cpu->env;
2781     struct kvm_regs regs;
2782     int ret = 0;
2783 
2784     if (!set) {
2785         ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
2786         if (ret < 0) {
2787             return ret;
2788         }
2789     }
2790 
2791     kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
2792     kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
2793     kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
2794     kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
2795     kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
2796     kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
2797     kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
2798     kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
2799 #ifdef TARGET_X86_64
2800     kvm_getput_reg(&regs.r8, &env->regs[8], set);
2801     kvm_getput_reg(&regs.r9, &env->regs[9], set);
2802     kvm_getput_reg(&regs.r10, &env->regs[10], set);
2803     kvm_getput_reg(&regs.r11, &env->regs[11], set);
2804     kvm_getput_reg(&regs.r12, &env->regs[12], set);
2805     kvm_getput_reg(&regs.r13, &env->regs[13], set);
2806     kvm_getput_reg(&regs.r14, &env->regs[14], set);
2807     kvm_getput_reg(&regs.r15, &env->regs[15], set);
2808 #endif
2809 
2810     kvm_getput_reg(&regs.rflags, &env->eflags, set);
2811     kvm_getput_reg(&regs.rip, &env->eip, set);
2812 
2813     if (set) {
2814         ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
2815     }
2816 
2817     return ret;
2818 }
2819 
kvm_put_xsave(X86CPU * cpu)2820 static int kvm_put_xsave(X86CPU *cpu)
2821 {
2822     CPUX86State *env = &cpu->env;
2823     void *xsave = env->xsave_buf;
2824 
2825     x86_cpu_xsave_all_areas(cpu, xsave, env->xsave_buf_len);
2826 
2827     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
2828 }
2829 
kvm_put_xcrs(X86CPU * cpu)2830 static int kvm_put_xcrs(X86CPU *cpu)
2831 {
2832     CPUX86State *env = &cpu->env;
2833     struct kvm_xcrs xcrs = {};
2834 
2835     if (!has_xcrs) {
2836         return 0;
2837     }
2838 
2839     xcrs.nr_xcrs = 1;
2840     xcrs.flags = 0;
2841     xcrs.xcrs[0].xcr = 0;
2842     xcrs.xcrs[0].value = env->xcr0;
2843     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
2844 }
2845 
kvm_put_sregs(X86CPU * cpu)2846 static int kvm_put_sregs(X86CPU *cpu)
2847 {
2848     CPUX86State *env = &cpu->env;
2849     struct kvm_sregs sregs;
2850 
2851     /*
2852      * The interrupt_bitmap is ignored because KVM_SET_SREGS is
2853      * always followed by KVM_SET_VCPU_EVENTS.
2854      */
2855     memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
2856 
2857     if ((env->eflags & VM_MASK)) {
2858         set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2859         set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2860         set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2861         set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2862         set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2863         set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
2864     } else {
2865         set_seg(&sregs.cs, &env->segs[R_CS]);
2866         set_seg(&sregs.ds, &env->segs[R_DS]);
2867         set_seg(&sregs.es, &env->segs[R_ES]);
2868         set_seg(&sregs.fs, &env->segs[R_FS]);
2869         set_seg(&sregs.gs, &env->segs[R_GS]);
2870         set_seg(&sregs.ss, &env->segs[R_SS]);
2871     }
2872 
2873     set_seg(&sregs.tr, &env->tr);
2874     set_seg(&sregs.ldt, &env->ldt);
2875 
2876     sregs.idt.limit = env->idt.limit;
2877     sregs.idt.base = env->idt.base;
2878     memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
2879     sregs.gdt.limit = env->gdt.limit;
2880     sregs.gdt.base = env->gdt.base;
2881     memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
2882 
2883     sregs.cr0 = env->cr[0];
2884     sregs.cr2 = env->cr[2];
2885     sregs.cr3 = env->cr[3];
2886     sregs.cr4 = env->cr[4];
2887 
2888     sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2889     sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
2890 
2891     sregs.efer = env->efer;
2892 
2893     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
2894 }
2895 
kvm_put_sregs2(X86CPU * cpu)2896 static int kvm_put_sregs2(X86CPU *cpu)
2897 {
2898     CPUX86State *env = &cpu->env;
2899     struct kvm_sregs2 sregs;
2900     int i;
2901 
2902     sregs.flags = 0;
2903 
2904     if ((env->eflags & VM_MASK)) {
2905         set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2906         set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2907         set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2908         set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2909         set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2910         set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
2911     } else {
2912         set_seg(&sregs.cs, &env->segs[R_CS]);
2913         set_seg(&sregs.ds, &env->segs[R_DS]);
2914         set_seg(&sregs.es, &env->segs[R_ES]);
2915         set_seg(&sregs.fs, &env->segs[R_FS]);
2916         set_seg(&sregs.gs, &env->segs[R_GS]);
2917         set_seg(&sregs.ss, &env->segs[R_SS]);
2918     }
2919 
2920     set_seg(&sregs.tr, &env->tr);
2921     set_seg(&sregs.ldt, &env->ldt);
2922 
2923     sregs.idt.limit = env->idt.limit;
2924     sregs.idt.base = env->idt.base;
2925     memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
2926     sregs.gdt.limit = env->gdt.limit;
2927     sregs.gdt.base = env->gdt.base;
2928     memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
2929 
2930     sregs.cr0 = env->cr[0];
2931     sregs.cr2 = env->cr[2];
2932     sregs.cr3 = env->cr[3];
2933     sregs.cr4 = env->cr[4];
2934 
2935     sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2936     sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
2937 
2938     sregs.efer = env->efer;
2939 
2940     if (env->pdptrs_valid) {
2941         for (i = 0; i < 4; i++) {
2942             sregs.pdptrs[i] = env->pdptrs[i];
2943         }
2944         sregs.flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
2945     }
2946 
2947     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS2, &sregs);
2948 }
2949 
2950 
kvm_msr_buf_reset(X86CPU * cpu)2951 static void kvm_msr_buf_reset(X86CPU *cpu)
2952 {
2953     memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
2954 }
2955 
kvm_msr_entry_add(X86CPU * cpu,uint32_t index,uint64_t value)2956 static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
2957 {
2958     struct kvm_msrs *msrs = cpu->kvm_msr_buf;
2959     void *limit = ((void *)msrs) + MSR_BUF_SIZE;
2960     struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
2961 
2962     assert((void *)(entry + 1) <= limit);
2963 
2964     entry->index = index;
2965     entry->reserved = 0;
2966     entry->data = value;
2967     msrs->nmsrs++;
2968 }
2969 
kvm_put_one_msr(X86CPU * cpu,int index,uint64_t value)2970 static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
2971 {
2972     kvm_msr_buf_reset(cpu);
2973     kvm_msr_entry_add(cpu, index, value);
2974 
2975     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2976 }
2977 
kvm_get_one_msr(X86CPU * cpu,int index,uint64_t * value)2978 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value)
2979 {
2980     int ret;
2981     struct {
2982         struct kvm_msrs info;
2983         struct kvm_msr_entry entries[1];
2984     } msr_data = {
2985         .info.nmsrs = 1,
2986         .entries[0].index = index,
2987     };
2988 
2989     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
2990     if (ret < 0) {
2991         return ret;
2992     }
2993     assert(ret == 1);
2994     *value = msr_data.entries[0].data;
2995     return ret;
2996 }
kvm_put_apicbase(X86CPU * cpu,uint64_t value)2997 void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
2998 {
2999     int ret;
3000 
3001     ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
3002     assert(ret == 1);
3003 }
3004 
kvm_put_tscdeadline_msr(X86CPU * cpu)3005 static int kvm_put_tscdeadline_msr(X86CPU *cpu)
3006 {
3007     CPUX86State *env = &cpu->env;
3008     int ret;
3009 
3010     if (!has_msr_tsc_deadline) {
3011         return 0;
3012     }
3013 
3014     ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
3015     if (ret < 0) {
3016         return ret;
3017     }
3018 
3019     assert(ret == 1);
3020     return 0;
3021 }
3022 
3023 /*
3024  * Provide a separate write service for the feature control MSR in order to
3025  * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
3026  * before writing any other state because forcibly leaving nested mode
3027  * invalidates the VCPU state.
3028  */
kvm_put_msr_feature_control(X86CPU * cpu)3029 static int kvm_put_msr_feature_control(X86CPU *cpu)
3030 {
3031     int ret;
3032 
3033     if (!has_msr_feature_control) {
3034         return 0;
3035     }
3036 
3037     ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
3038                           cpu->env.msr_ia32_feature_control);
3039     if (ret < 0) {
3040         return ret;
3041     }
3042 
3043     assert(ret == 1);
3044     return 0;
3045 }
3046 
make_vmx_msr_value(uint32_t index,uint32_t features)3047 static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features)
3048 {
3049     uint32_t default1, can_be_one, can_be_zero;
3050     uint32_t must_be_one;
3051 
3052     switch (index) {
3053     case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3054         default1 = 0x00000016;
3055         break;
3056     case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3057         default1 = 0x0401e172;
3058         break;
3059     case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3060         default1 = 0x000011ff;
3061         break;
3062     case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3063         default1 = 0x00036dff;
3064         break;
3065     case MSR_IA32_VMX_PROCBASED_CTLS2:
3066         default1 = 0;
3067         break;
3068     default:
3069         abort();
3070     }
3071 
3072     /* If a feature bit is set, the control can be either set or clear.
3073      * Otherwise the value is limited to either 0 or 1 by default1.
3074      */
3075     can_be_one = features | default1;
3076     can_be_zero = features | ~default1;
3077     must_be_one = ~can_be_zero;
3078 
3079     /*
3080      * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one).
3081      * Bit 32:63 -> 1 if the control bit can be one.
3082      */
3083     return must_be_one | (((uint64_t)can_be_one) << 32);
3084 }
3085 
kvm_msr_entry_add_vmx(X86CPU * cpu,FeatureWordArray f)3086 static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f)
3087 {
3088     uint64_t kvm_vmx_basic =
3089         kvm_arch_get_supported_msr_feature(kvm_state,
3090                                            MSR_IA32_VMX_BASIC);
3091 
3092     if (!kvm_vmx_basic) {
3093         /* If the kernel doesn't support VMX feature (kvm_intel.nested=0),
3094          * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail.
3095          */
3096         return;
3097     }
3098 
3099     uint64_t kvm_vmx_misc =
3100         kvm_arch_get_supported_msr_feature(kvm_state,
3101                                            MSR_IA32_VMX_MISC);
3102     uint64_t kvm_vmx_ept_vpid =
3103         kvm_arch_get_supported_msr_feature(kvm_state,
3104                                            MSR_IA32_VMX_EPT_VPID_CAP);
3105 
3106     /*
3107      * If the guest is 64-bit, a value of 1 is allowed for the host address
3108      * space size vmexit control.
3109      */
3110     uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM
3111         ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0;
3112 
3113     /*
3114      * Bits 0-30, 32-44 and 50-53 come from the host.  KVM should
3115      * not change them for backwards compatibility.
3116      */
3117     uint64_t fixed_vmx_basic = kvm_vmx_basic &
3118         (MSR_VMX_BASIC_VMCS_REVISION_MASK |
3119          MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK |
3120          MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK);
3121 
3122     /*
3123      * Same for bits 0-4 and 25-27.  Bits 16-24 (CR3 target count) can
3124      * change in the future but are always zero for now, clear them to be
3125      * future proof.  Bits 32-63 in theory could change, though KVM does
3126      * not support dual-monitor treatment and probably never will; mask
3127      * them out as well.
3128      */
3129     uint64_t fixed_vmx_misc = kvm_vmx_misc &
3130         (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK |
3131          MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK);
3132 
3133     /*
3134      * EPT memory types should not change either, so we do not bother
3135      * adding features for them.
3136      */
3137     uint64_t fixed_vmx_ept_mask =
3138             (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ?
3139              MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0);
3140     uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask;
3141 
3142     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3143                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3144                                          f[FEAT_VMX_PROCBASED_CTLS]));
3145     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3146                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3147                                          f[FEAT_VMX_PINBASED_CTLS]));
3148     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS,
3149                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS,
3150                                          f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit);
3151     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3152                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3153                                          f[FEAT_VMX_ENTRY_CTLS]));
3154     kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2,
3155                       make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2,
3156                                          f[FEAT_VMX_SECONDARY_CTLS]));
3157     kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP,
3158                       f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid);
3159     kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC,
3160                       f[FEAT_VMX_BASIC] | fixed_vmx_basic);
3161     kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC,
3162                       f[FEAT_VMX_MISC] | fixed_vmx_misc);
3163     if (has_msr_vmx_vmfunc) {
3164         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]);
3165     }
3166 
3167     /*
3168      * Just to be safe, write these with constant values.  The CRn_FIXED1
3169      * MSRs are generated by KVM based on the vCPU's CPUID.
3170      */
3171     kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0,
3172                       CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK);
3173     kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0,
3174                       CR4_VMXE_MASK);
3175 
3176     if (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_TSC_SCALING) {
3177         /* TSC multiplier (0x2032).  */
3178         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x32);
3179     } else {
3180         /* Preemption timer (0x482E).  */
3181         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x2E);
3182     }
3183 }
3184 
kvm_msr_entry_add_perf(X86CPU * cpu,FeatureWordArray f)3185 static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f)
3186 {
3187     uint64_t kvm_perf_cap =
3188         kvm_arch_get_supported_msr_feature(kvm_state,
3189                                            MSR_IA32_PERF_CAPABILITIES);
3190 
3191     if (kvm_perf_cap) {
3192         kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES,
3193                         kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]);
3194     }
3195 }
3196 
kvm_buf_set_msrs(X86CPU * cpu)3197 static int kvm_buf_set_msrs(X86CPU *cpu)
3198 {
3199     int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
3200     if (ret < 0) {
3201         return ret;
3202     }
3203 
3204     if (ret < cpu->kvm_msr_buf->nmsrs) {
3205         struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
3206         error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
3207                      (uint32_t)e->index, (uint64_t)e->data);
3208     }
3209 
3210     assert(ret == cpu->kvm_msr_buf->nmsrs);
3211     return 0;
3212 }
3213 
kvm_init_msrs(X86CPU * cpu)3214 static void kvm_init_msrs(X86CPU *cpu)
3215 {
3216     CPUX86State *env = &cpu->env;
3217 
3218     kvm_msr_buf_reset(cpu);
3219     if (has_msr_arch_capabs) {
3220         kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES,
3221                           env->features[FEAT_ARCH_CAPABILITIES]);
3222     }
3223 
3224     if (has_msr_core_capabs) {
3225         kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY,
3226                           env->features[FEAT_CORE_CAPABILITY]);
3227     }
3228 
3229     if (has_msr_perf_capabs && cpu->enable_pmu) {
3230         kvm_msr_entry_add_perf(cpu, env->features);
3231     }
3232 
3233     if (has_msr_ucode_rev) {
3234         kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev);
3235     }
3236 
3237     /*
3238      * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but
3239      * all kernels with MSR features should have them.
3240      */
3241     if (kvm_feature_msrs && cpu_has_vmx(env)) {
3242         kvm_msr_entry_add_vmx(cpu, env->features);
3243     }
3244 
3245     assert(kvm_buf_set_msrs(cpu) == 0);
3246 }
3247 
kvm_put_msrs(X86CPU * cpu,int level)3248 static int kvm_put_msrs(X86CPU *cpu, int level)
3249 {
3250     CPUX86State *env = &cpu->env;
3251     int i;
3252 
3253     kvm_msr_buf_reset(cpu);
3254 
3255     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
3256     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
3257     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
3258     kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
3259     if (has_msr_star) {
3260         kvm_msr_entry_add(cpu, MSR_STAR, env->star);
3261     }
3262     if (has_msr_hsave_pa) {
3263         kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
3264     }
3265     if (has_msr_tsc_aux) {
3266         kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
3267     }
3268     if (has_msr_tsc_adjust) {
3269         kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
3270     }
3271     if (has_msr_misc_enable) {
3272         kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
3273                           env->msr_ia32_misc_enable);
3274     }
3275     if (has_msr_smbase) {
3276         kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
3277     }
3278     if (has_msr_smi_count) {
3279         kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
3280     }
3281     if (has_msr_pkrs) {
3282         kvm_msr_entry_add(cpu, MSR_IA32_PKRS, env->pkrs);
3283     }
3284     if (has_msr_bndcfgs) {
3285         kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
3286     }
3287     if (has_msr_xss) {
3288         kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
3289     }
3290     if (has_msr_umwait) {
3291         kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait);
3292     }
3293     if (has_msr_spec_ctrl) {
3294         kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
3295     }
3296     if (has_tsc_scale_msr) {
3297         kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, env->amd_tsc_scale_msr);
3298     }
3299 
3300     if (has_msr_tsx_ctrl) {
3301         kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl);
3302     }
3303     if (has_msr_virt_ssbd) {
3304         kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
3305     }
3306 
3307 #ifdef TARGET_X86_64
3308     if (lm_capable_kernel) {
3309         kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
3310         kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
3311         kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
3312         kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
3313     }
3314 #endif
3315 
3316     /*
3317      * The following MSRs have side effects on the guest or are too heavy
3318      * for normal writeback. Limit them to reset or full state updates.
3319      */
3320     if (level >= KVM_PUT_RESET_STATE) {
3321         kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
3322         kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
3323         kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
3324         if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
3325             kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, env->async_pf_int_msr);
3326         }
3327         if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
3328             kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
3329         }
3330         if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
3331             kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
3332         }
3333         if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
3334             kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
3335         }
3336 
3337         if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3338             kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr);
3339         }
3340 
3341         if (has_architectural_pmu_version > 0) {
3342             if (has_architectural_pmu_version > 1) {
3343                 /* Stop the counter.  */
3344                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3345                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3346             }
3347 
3348             /* Set the counter values.  */
3349             for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
3350                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
3351                                   env->msr_fixed_counters[i]);
3352             }
3353             for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
3354                 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
3355                                   env->msr_gp_counters[i]);
3356                 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
3357                                   env->msr_gp_evtsel[i]);
3358             }
3359             if (has_architectural_pmu_version > 1) {
3360                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
3361                                   env->msr_global_status);
3362                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
3363                                   env->msr_global_ovf_ctrl);
3364 
3365                 /* Now start the PMU.  */
3366                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
3367                                   env->msr_fixed_ctr_ctrl);
3368                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
3369                                   env->msr_global_ctrl);
3370             }
3371         }
3372         /*
3373          * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
3374          * only sync them to KVM on the first cpu
3375          */
3376         if (current_cpu == first_cpu) {
3377             if (has_msr_hv_hypercall) {
3378                 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
3379                                   env->msr_hv_guest_os_id);
3380                 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
3381                                   env->msr_hv_hypercall);
3382             }
3383             if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
3384                 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
3385                                   env->msr_hv_tsc);
3386             }
3387             if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
3388                 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
3389                                   env->msr_hv_reenlightenment_control);
3390                 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
3391                                   env->msr_hv_tsc_emulation_control);
3392                 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
3393                                   env->msr_hv_tsc_emulation_status);
3394             }
3395 #ifdef CONFIG_SYNDBG
3396             if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG) &&
3397                 has_msr_hv_syndbg_options) {
3398                 kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS,
3399                                   hyperv_syndbg_query_options());
3400             }
3401 #endif
3402         }
3403         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
3404             kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
3405                               env->msr_hv_vapic);
3406         }
3407         if (has_msr_hv_crash) {
3408             int j;
3409 
3410             for (j = 0; j < HV_CRASH_PARAMS; j++)
3411                 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
3412                                   env->msr_hv_crash_params[j]);
3413 
3414             kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
3415         }
3416         if (has_msr_hv_runtime) {
3417             kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
3418         }
3419         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)
3420             && hv_vpindex_settable) {
3421             kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
3422                               hyperv_vp_index(CPU(cpu)));
3423         }
3424         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
3425             int j;
3426 
3427             kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
3428 
3429             kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
3430                               env->msr_hv_synic_control);
3431             kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
3432                               env->msr_hv_synic_evt_page);
3433             kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
3434                               env->msr_hv_synic_msg_page);
3435 
3436             for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
3437                 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
3438                                   env->msr_hv_synic_sint[j]);
3439             }
3440         }
3441         if (has_msr_hv_stimer) {
3442             int j;
3443 
3444             for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
3445                 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
3446                                 env->msr_hv_stimer_config[j]);
3447             }
3448 
3449             for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
3450                 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
3451                                 env->msr_hv_stimer_count[j]);
3452             }
3453         }
3454         if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
3455             uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
3456 
3457             kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
3458             kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
3459             kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
3460             kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
3461             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
3462             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
3463             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
3464             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
3465             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
3466             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
3467             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
3468             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
3469             for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
3470                 /* The CPU GPs if we write to a bit above the physical limit of
3471                  * the host CPU (and KVM emulates that)
3472                  */
3473                 uint64_t mask = env->mtrr_var[i].mask;
3474                 mask &= phys_mask;
3475 
3476                 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
3477                                   env->mtrr_var[i].base);
3478                 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
3479             }
3480         }
3481         if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3482             int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
3483                                                     0x14, 1, R_EAX) & 0x7;
3484 
3485             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
3486                             env->msr_rtit_ctrl);
3487             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
3488                             env->msr_rtit_status);
3489             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
3490                             env->msr_rtit_output_base);
3491             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
3492                             env->msr_rtit_output_mask);
3493             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
3494                             env->msr_rtit_cr3_match);
3495             for (i = 0; i < addr_num; i++) {
3496                 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
3497                             env->msr_rtit_addrs[i]);
3498             }
3499         }
3500 
3501         if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
3502             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0,
3503                               env->msr_ia32_sgxlepubkeyhash[0]);
3504             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1,
3505                               env->msr_ia32_sgxlepubkeyhash[1]);
3506             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2,
3507                               env->msr_ia32_sgxlepubkeyhash[2]);
3508             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3,
3509                               env->msr_ia32_sgxlepubkeyhash[3]);
3510         }
3511 
3512         if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) {
3513             kvm_msr_entry_add(cpu, MSR_IA32_XFD,
3514                               env->msr_xfd);
3515             kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR,
3516                               env->msr_xfd_err);
3517         }
3518 
3519         if (kvm_enabled() && cpu->enable_pmu &&
3520             (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) {
3521             uint64_t depth;
3522             int ret;
3523 
3524             /*
3525              * Only migrate Arch LBR states when the host Arch LBR depth
3526              * equals that of source guest's, this is to avoid mismatch
3527              * of guest/host config for the msr hence avoid unexpected
3528              * misbehavior.
3529              */
3530             ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth);
3531 
3532             if (ret == 1 && !!depth && depth == env->msr_lbr_depth) {
3533                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, env->msr_lbr_ctl);
3534                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, env->msr_lbr_depth);
3535 
3536                 for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) {
3537                     if (!env->lbr_records[i].from) {
3538                         continue;
3539                     }
3540                     kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i,
3541                                       env->lbr_records[i].from);
3542                     kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i,
3543                                       env->lbr_records[i].to);
3544                     kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i,
3545                                       env->lbr_records[i].info);
3546                 }
3547             }
3548         }
3549 
3550         /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
3551          *       kvm_put_msr_feature_control. */
3552     }
3553 
3554     if (env->mcg_cap) {
3555         kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
3556         kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
3557         if (has_msr_mcg_ext_ctl) {
3558             kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
3559         }
3560         for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
3561             kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
3562         }
3563     }
3564 
3565     return kvm_buf_set_msrs(cpu);
3566 }
3567 
3568 
kvm_get_xsave(X86CPU * cpu)3569 static int kvm_get_xsave(X86CPU *cpu)
3570 {
3571     CPUX86State *env = &cpu->env;
3572     void *xsave = env->xsave_buf;
3573     int type, ret;
3574 
3575     type = has_xsave2 ? KVM_GET_XSAVE2 : KVM_GET_XSAVE;
3576     ret = kvm_vcpu_ioctl(CPU(cpu), type, xsave);
3577     if (ret < 0) {
3578         return ret;
3579     }
3580     x86_cpu_xrstor_all_areas(cpu, xsave, env->xsave_buf_len);
3581 
3582     return 0;
3583 }
3584 
kvm_get_xcrs(X86CPU * cpu)3585 static int kvm_get_xcrs(X86CPU *cpu)
3586 {
3587     CPUX86State *env = &cpu->env;
3588     int i, ret;
3589     struct kvm_xcrs xcrs;
3590 
3591     if (!has_xcrs) {
3592         return 0;
3593     }
3594 
3595     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
3596     if (ret < 0) {
3597         return ret;
3598     }
3599 
3600     for (i = 0; i < xcrs.nr_xcrs; i++) {
3601         /* Only support xcr0 now */
3602         if (xcrs.xcrs[i].xcr == 0) {
3603             env->xcr0 = xcrs.xcrs[i].value;
3604             break;
3605         }
3606     }
3607     return 0;
3608 }
3609 
kvm_get_sregs(X86CPU * cpu)3610 static int kvm_get_sregs(X86CPU *cpu)
3611 {
3612     CPUX86State *env = &cpu->env;
3613     struct kvm_sregs sregs;
3614     int ret;
3615 
3616     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
3617     if (ret < 0) {
3618         return ret;
3619     }
3620 
3621     /*
3622      * The interrupt_bitmap is ignored because KVM_GET_SREGS is
3623      * always preceded by KVM_GET_VCPU_EVENTS.
3624      */
3625 
3626     get_seg(&env->segs[R_CS], &sregs.cs);
3627     get_seg(&env->segs[R_DS], &sregs.ds);
3628     get_seg(&env->segs[R_ES], &sregs.es);
3629     get_seg(&env->segs[R_FS], &sregs.fs);
3630     get_seg(&env->segs[R_GS], &sregs.gs);
3631     get_seg(&env->segs[R_SS], &sregs.ss);
3632 
3633     get_seg(&env->tr, &sregs.tr);
3634     get_seg(&env->ldt, &sregs.ldt);
3635 
3636     env->idt.limit = sregs.idt.limit;
3637     env->idt.base = sregs.idt.base;
3638     env->gdt.limit = sregs.gdt.limit;
3639     env->gdt.base = sregs.gdt.base;
3640 
3641     env->cr[0] = sregs.cr0;
3642     env->cr[2] = sregs.cr2;
3643     env->cr[3] = sregs.cr3;
3644     env->cr[4] = sregs.cr4;
3645 
3646     env->efer = sregs.efer;
3647     if (sev_es_enabled() && env->efer & MSR_EFER_LME &&
3648         env->cr[0] & CR0_PG_MASK) {
3649         env->efer |= MSR_EFER_LMA;
3650     }
3651 
3652     /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
3653     x86_update_hflags(env);
3654 
3655     return 0;
3656 }
3657 
kvm_get_sregs2(X86CPU * cpu)3658 static int kvm_get_sregs2(X86CPU *cpu)
3659 {
3660     CPUX86State *env = &cpu->env;
3661     struct kvm_sregs2 sregs;
3662     int i, ret;
3663 
3664     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS2, &sregs);
3665     if (ret < 0) {
3666         return ret;
3667     }
3668 
3669     get_seg(&env->segs[R_CS], &sregs.cs);
3670     get_seg(&env->segs[R_DS], &sregs.ds);
3671     get_seg(&env->segs[R_ES], &sregs.es);
3672     get_seg(&env->segs[R_FS], &sregs.fs);
3673     get_seg(&env->segs[R_GS], &sregs.gs);
3674     get_seg(&env->segs[R_SS], &sregs.ss);
3675 
3676     get_seg(&env->tr, &sregs.tr);
3677     get_seg(&env->ldt, &sregs.ldt);
3678 
3679     env->idt.limit = sregs.idt.limit;
3680     env->idt.base = sregs.idt.base;
3681     env->gdt.limit = sregs.gdt.limit;
3682     env->gdt.base = sregs.gdt.base;
3683 
3684     env->cr[0] = sregs.cr0;
3685     env->cr[2] = sregs.cr2;
3686     env->cr[3] = sregs.cr3;
3687     env->cr[4] = sregs.cr4;
3688 
3689     env->efer = sregs.efer;
3690     if (sev_es_enabled() && env->efer & MSR_EFER_LME &&
3691         env->cr[0] & CR0_PG_MASK) {
3692         env->efer |= MSR_EFER_LMA;
3693     }
3694 
3695     env->pdptrs_valid = sregs.flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
3696 
3697     if (env->pdptrs_valid) {
3698         for (i = 0; i < 4; i++) {
3699             env->pdptrs[i] = sregs.pdptrs[i];
3700         }
3701     }
3702 
3703     /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
3704     x86_update_hflags(env);
3705 
3706     return 0;
3707 }
3708 
kvm_get_msrs(X86CPU * cpu)3709 static int kvm_get_msrs(X86CPU *cpu)
3710 {
3711     CPUX86State *env = &cpu->env;
3712     struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
3713     int ret, i;
3714     uint64_t mtrr_top_bits;
3715 
3716     kvm_msr_buf_reset(cpu);
3717 
3718     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
3719     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
3720     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
3721     kvm_msr_entry_add(cpu, MSR_PAT, 0);
3722     if (has_msr_star) {
3723         kvm_msr_entry_add(cpu, MSR_STAR, 0);
3724     }
3725     if (has_msr_hsave_pa) {
3726         kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
3727     }
3728     if (has_msr_tsc_aux) {
3729         kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
3730     }
3731     if (has_msr_tsc_adjust) {
3732         kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
3733     }
3734     if (has_msr_tsc_deadline) {
3735         kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
3736     }
3737     if (has_msr_misc_enable) {
3738         kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
3739     }
3740     if (has_msr_smbase) {
3741         kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
3742     }
3743     if (has_msr_smi_count) {
3744         kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
3745     }
3746     if (has_msr_feature_control) {
3747         kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
3748     }
3749     if (has_msr_pkrs) {
3750         kvm_msr_entry_add(cpu, MSR_IA32_PKRS, 0);
3751     }
3752     if (has_msr_bndcfgs) {
3753         kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
3754     }
3755     if (has_msr_xss) {
3756         kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
3757     }
3758     if (has_msr_umwait) {
3759         kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0);
3760     }
3761     if (has_msr_spec_ctrl) {
3762         kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
3763     }
3764     if (has_tsc_scale_msr) {
3765         kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, 0);
3766     }
3767 
3768     if (has_msr_tsx_ctrl) {
3769         kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0);
3770     }
3771     if (has_msr_virt_ssbd) {
3772         kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
3773     }
3774     if (!env->tsc_valid) {
3775         kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
3776         env->tsc_valid = !runstate_is_running();
3777     }
3778 
3779 #ifdef TARGET_X86_64
3780     if (lm_capable_kernel) {
3781         kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
3782         kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
3783         kvm_msr_entry_add(cpu, MSR_FMASK, 0);
3784         kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
3785     }
3786 #endif
3787     kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
3788     kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
3789     if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
3790         kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, 0);
3791     }
3792     if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
3793         kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
3794     }
3795     if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
3796         kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
3797     }
3798     if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
3799         kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
3800     }
3801     if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3802         kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1);
3803     }
3804     if (has_architectural_pmu_version > 0) {
3805         if (has_architectural_pmu_version > 1) {
3806             kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3807             kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3808             kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
3809             kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
3810         }
3811         for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
3812             kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
3813         }
3814         for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
3815             kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
3816             kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
3817         }
3818     }
3819 
3820     if (env->mcg_cap) {
3821         kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
3822         kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
3823         if (has_msr_mcg_ext_ctl) {
3824             kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
3825         }
3826         for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
3827             kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
3828         }
3829     }
3830 
3831     if (has_msr_hv_hypercall) {
3832         kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
3833         kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
3834     }
3835     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
3836         kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
3837     }
3838     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
3839         kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
3840     }
3841     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
3842         kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
3843         kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
3844         kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
3845     }
3846     if (has_msr_hv_syndbg_options) {
3847         kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS, 0);
3848     }
3849     if (has_msr_hv_crash) {
3850         int j;
3851 
3852         for (j = 0; j < HV_CRASH_PARAMS; j++) {
3853             kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
3854         }
3855     }
3856     if (has_msr_hv_runtime) {
3857         kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
3858     }
3859     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
3860         uint32_t msr;
3861 
3862         kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
3863         kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
3864         kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
3865         for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
3866             kvm_msr_entry_add(cpu, msr, 0);
3867         }
3868     }
3869     if (has_msr_hv_stimer) {
3870         uint32_t msr;
3871 
3872         for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
3873              msr++) {
3874             kvm_msr_entry_add(cpu, msr, 0);
3875         }
3876     }
3877     if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
3878         kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
3879         kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
3880         kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
3881         kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
3882         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
3883         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
3884         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
3885         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
3886         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
3887         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
3888         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
3889         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
3890         for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
3891             kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
3892             kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
3893         }
3894     }
3895 
3896     if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3897         int addr_num =
3898             kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
3899 
3900         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
3901         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
3902         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
3903         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
3904         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
3905         for (i = 0; i < addr_num; i++) {
3906             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
3907         }
3908     }
3909 
3910     if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
3911         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 0);
3912         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 0);
3913         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 0);
3914         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 0);
3915     }
3916 
3917     if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) {
3918         kvm_msr_entry_add(cpu, MSR_IA32_XFD, 0);
3919         kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR, 0);
3920     }
3921 
3922     if (kvm_enabled() && cpu->enable_pmu &&
3923         (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) {
3924         uint64_t depth;
3925 
3926         ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth);
3927         if (ret == 1 && depth == ARCH_LBR_NR_ENTRIES) {
3928             kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, 0);
3929             kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, 0);
3930 
3931             for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) {
3932                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i, 0);
3933                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i, 0);
3934                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i, 0);
3935             }
3936         }
3937     }
3938 
3939     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
3940     if (ret < 0) {
3941         return ret;
3942     }
3943 
3944     if (ret < cpu->kvm_msr_buf->nmsrs) {
3945         struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
3946         error_report("error: failed to get MSR 0x%" PRIx32,
3947                      (uint32_t)e->index);
3948     }
3949 
3950     assert(ret == cpu->kvm_msr_buf->nmsrs);
3951     /*
3952      * MTRR masks: Each mask consists of 5 parts
3953      * a  10..0: must be zero
3954      * b  11   : valid bit
3955      * c n-1.12: actual mask bits
3956      * d  51..n: reserved must be zero
3957      * e  63.52: reserved must be zero
3958      *
3959      * 'n' is the number of physical bits supported by the CPU and is
3960      * apparently always <= 52.   We know our 'n' but don't know what
3961      * the destinations 'n' is; it might be smaller, in which case
3962      * it masks (c) on loading. It might be larger, in which case
3963      * we fill 'd' so that d..c is consistent irrespetive of the 'n'
3964      * we're migrating to.
3965      */
3966 
3967     if (cpu->fill_mtrr_mask) {
3968         QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
3969         assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
3970         mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
3971     } else {
3972         mtrr_top_bits = 0;
3973     }
3974 
3975     for (i = 0; i < ret; i++) {
3976         uint32_t index = msrs[i].index;
3977         switch (index) {
3978         case MSR_IA32_SYSENTER_CS:
3979             env->sysenter_cs = msrs[i].data;
3980             break;
3981         case MSR_IA32_SYSENTER_ESP:
3982             env->sysenter_esp = msrs[i].data;
3983             break;
3984         case MSR_IA32_SYSENTER_EIP:
3985             env->sysenter_eip = msrs[i].data;
3986             break;
3987         case MSR_PAT:
3988             env->pat = msrs[i].data;
3989             break;
3990         case MSR_STAR:
3991             env->star = msrs[i].data;
3992             break;
3993 #ifdef TARGET_X86_64
3994         case MSR_CSTAR:
3995             env->cstar = msrs[i].data;
3996             break;
3997         case MSR_KERNELGSBASE:
3998             env->kernelgsbase = msrs[i].data;
3999             break;
4000         case MSR_FMASK:
4001             env->fmask = msrs[i].data;
4002             break;
4003         case MSR_LSTAR:
4004             env->lstar = msrs[i].data;
4005             break;
4006 #endif
4007         case MSR_IA32_TSC:
4008             env->tsc = msrs[i].data;
4009             break;
4010         case MSR_TSC_AUX:
4011             env->tsc_aux = msrs[i].data;
4012             break;
4013         case MSR_TSC_ADJUST:
4014             env->tsc_adjust = msrs[i].data;
4015             break;
4016         case MSR_IA32_TSCDEADLINE:
4017             env->tsc_deadline = msrs[i].data;
4018             break;
4019         case MSR_VM_HSAVE_PA:
4020             env->vm_hsave = msrs[i].data;
4021             break;
4022         case MSR_KVM_SYSTEM_TIME:
4023             env->system_time_msr = msrs[i].data;
4024             break;
4025         case MSR_KVM_WALL_CLOCK:
4026             env->wall_clock_msr = msrs[i].data;
4027             break;
4028         case MSR_MCG_STATUS:
4029             env->mcg_status = msrs[i].data;
4030             break;
4031         case MSR_MCG_CTL:
4032             env->mcg_ctl = msrs[i].data;
4033             break;
4034         case MSR_MCG_EXT_CTL:
4035             env->mcg_ext_ctl = msrs[i].data;
4036             break;
4037         case MSR_IA32_MISC_ENABLE:
4038             env->msr_ia32_misc_enable = msrs[i].data;
4039             break;
4040         case MSR_IA32_SMBASE:
4041             env->smbase = msrs[i].data;
4042             break;
4043         case MSR_SMI_COUNT:
4044             env->msr_smi_count = msrs[i].data;
4045             break;
4046         case MSR_IA32_FEATURE_CONTROL:
4047             env->msr_ia32_feature_control = msrs[i].data;
4048             break;
4049         case MSR_IA32_BNDCFGS:
4050             env->msr_bndcfgs = msrs[i].data;
4051             break;
4052         case MSR_IA32_XSS:
4053             env->xss = msrs[i].data;
4054             break;
4055         case MSR_IA32_UMWAIT_CONTROL:
4056             env->umwait = msrs[i].data;
4057             break;
4058         case MSR_IA32_PKRS:
4059             env->pkrs = msrs[i].data;
4060             break;
4061         default:
4062             if (msrs[i].index >= MSR_MC0_CTL &&
4063                 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
4064                 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
4065             }
4066             break;
4067         case MSR_KVM_ASYNC_PF_EN:
4068             env->async_pf_en_msr = msrs[i].data;
4069             break;
4070         case MSR_KVM_ASYNC_PF_INT:
4071             env->async_pf_int_msr = msrs[i].data;
4072             break;
4073         case MSR_KVM_PV_EOI_EN:
4074             env->pv_eoi_en_msr = msrs[i].data;
4075             break;
4076         case MSR_KVM_STEAL_TIME:
4077             env->steal_time_msr = msrs[i].data;
4078             break;
4079         case MSR_KVM_POLL_CONTROL: {
4080             env->poll_control_msr = msrs[i].data;
4081             break;
4082         }
4083         case MSR_CORE_PERF_FIXED_CTR_CTRL:
4084             env->msr_fixed_ctr_ctrl = msrs[i].data;
4085             break;
4086         case MSR_CORE_PERF_GLOBAL_CTRL:
4087             env->msr_global_ctrl = msrs[i].data;
4088             break;
4089         case MSR_CORE_PERF_GLOBAL_STATUS:
4090             env->msr_global_status = msrs[i].data;
4091             break;
4092         case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
4093             env->msr_global_ovf_ctrl = msrs[i].data;
4094             break;
4095         case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
4096             env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
4097             break;
4098         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
4099             env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
4100             break;
4101         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
4102             env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
4103             break;
4104         case HV_X64_MSR_HYPERCALL:
4105             env->msr_hv_hypercall = msrs[i].data;
4106             break;
4107         case HV_X64_MSR_GUEST_OS_ID:
4108             env->msr_hv_guest_os_id = msrs[i].data;
4109             break;
4110         case HV_X64_MSR_APIC_ASSIST_PAGE:
4111             env->msr_hv_vapic = msrs[i].data;
4112             break;
4113         case HV_X64_MSR_REFERENCE_TSC:
4114             env->msr_hv_tsc = msrs[i].data;
4115             break;
4116         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4117             env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
4118             break;
4119         case HV_X64_MSR_VP_RUNTIME:
4120             env->msr_hv_runtime = msrs[i].data;
4121             break;
4122         case HV_X64_MSR_SCONTROL:
4123             env->msr_hv_synic_control = msrs[i].data;
4124             break;
4125         case HV_X64_MSR_SIEFP:
4126             env->msr_hv_synic_evt_page = msrs[i].data;
4127             break;
4128         case HV_X64_MSR_SIMP:
4129             env->msr_hv_synic_msg_page = msrs[i].data;
4130             break;
4131         case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
4132             env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
4133             break;
4134         case HV_X64_MSR_STIMER0_CONFIG:
4135         case HV_X64_MSR_STIMER1_CONFIG:
4136         case HV_X64_MSR_STIMER2_CONFIG:
4137         case HV_X64_MSR_STIMER3_CONFIG:
4138             env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
4139                                 msrs[i].data;
4140             break;
4141         case HV_X64_MSR_STIMER0_COUNT:
4142         case HV_X64_MSR_STIMER1_COUNT:
4143         case HV_X64_MSR_STIMER2_COUNT:
4144         case HV_X64_MSR_STIMER3_COUNT:
4145             env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
4146                                 msrs[i].data;
4147             break;
4148         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4149             env->msr_hv_reenlightenment_control = msrs[i].data;
4150             break;
4151         case HV_X64_MSR_TSC_EMULATION_CONTROL:
4152             env->msr_hv_tsc_emulation_control = msrs[i].data;
4153             break;
4154         case HV_X64_MSR_TSC_EMULATION_STATUS:
4155             env->msr_hv_tsc_emulation_status = msrs[i].data;
4156             break;
4157         case HV_X64_MSR_SYNDBG_OPTIONS:
4158             env->msr_hv_syndbg_options = msrs[i].data;
4159             break;
4160         case MSR_MTRRdefType:
4161             env->mtrr_deftype = msrs[i].data;
4162             break;
4163         case MSR_MTRRfix64K_00000:
4164             env->mtrr_fixed[0] = msrs[i].data;
4165             break;
4166         case MSR_MTRRfix16K_80000:
4167             env->mtrr_fixed[1] = msrs[i].data;
4168             break;
4169         case MSR_MTRRfix16K_A0000:
4170             env->mtrr_fixed[2] = msrs[i].data;
4171             break;
4172         case MSR_MTRRfix4K_C0000:
4173             env->mtrr_fixed[3] = msrs[i].data;
4174             break;
4175         case MSR_MTRRfix4K_C8000:
4176             env->mtrr_fixed[4] = msrs[i].data;
4177             break;
4178         case MSR_MTRRfix4K_D0000:
4179             env->mtrr_fixed[5] = msrs[i].data;
4180             break;
4181         case MSR_MTRRfix4K_D8000:
4182             env->mtrr_fixed[6] = msrs[i].data;
4183             break;
4184         case MSR_MTRRfix4K_E0000:
4185             env->mtrr_fixed[7] = msrs[i].data;
4186             break;
4187         case MSR_MTRRfix4K_E8000:
4188             env->mtrr_fixed[8] = msrs[i].data;
4189             break;
4190         case MSR_MTRRfix4K_F0000:
4191             env->mtrr_fixed[9] = msrs[i].data;
4192             break;
4193         case MSR_MTRRfix4K_F8000:
4194             env->mtrr_fixed[10] = msrs[i].data;
4195             break;
4196         case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
4197             if (index & 1) {
4198                 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
4199                                                                mtrr_top_bits;
4200             } else {
4201                 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
4202             }
4203             break;
4204         case MSR_IA32_SPEC_CTRL:
4205             env->spec_ctrl = msrs[i].data;
4206             break;
4207         case MSR_AMD64_TSC_RATIO:
4208             env->amd_tsc_scale_msr = msrs[i].data;
4209             break;
4210         case MSR_IA32_TSX_CTRL:
4211             env->tsx_ctrl = msrs[i].data;
4212             break;
4213         case MSR_VIRT_SSBD:
4214             env->virt_ssbd = msrs[i].data;
4215             break;
4216         case MSR_IA32_RTIT_CTL:
4217             env->msr_rtit_ctrl = msrs[i].data;
4218             break;
4219         case MSR_IA32_RTIT_STATUS:
4220             env->msr_rtit_status = msrs[i].data;
4221             break;
4222         case MSR_IA32_RTIT_OUTPUT_BASE:
4223             env->msr_rtit_output_base = msrs[i].data;
4224             break;
4225         case MSR_IA32_RTIT_OUTPUT_MASK:
4226             env->msr_rtit_output_mask = msrs[i].data;
4227             break;
4228         case MSR_IA32_RTIT_CR3_MATCH:
4229             env->msr_rtit_cr3_match = msrs[i].data;
4230             break;
4231         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
4232             env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
4233             break;
4234         case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
4235             env->msr_ia32_sgxlepubkeyhash[index - MSR_IA32_SGXLEPUBKEYHASH0] =
4236                            msrs[i].data;
4237             break;
4238         case MSR_IA32_XFD:
4239             env->msr_xfd = msrs[i].data;
4240             break;
4241         case MSR_IA32_XFD_ERR:
4242             env->msr_xfd_err = msrs[i].data;
4243             break;
4244         case MSR_ARCH_LBR_CTL:
4245             env->msr_lbr_ctl = msrs[i].data;
4246             break;
4247         case MSR_ARCH_LBR_DEPTH:
4248             env->msr_lbr_depth = msrs[i].data;
4249             break;
4250         case MSR_ARCH_LBR_FROM_0 ... MSR_ARCH_LBR_FROM_0 + 31:
4251             env->lbr_records[index - MSR_ARCH_LBR_FROM_0].from = msrs[i].data;
4252             break;
4253         case MSR_ARCH_LBR_TO_0 ... MSR_ARCH_LBR_TO_0 + 31:
4254             env->lbr_records[index - MSR_ARCH_LBR_TO_0].to = msrs[i].data;
4255             break;
4256         case MSR_ARCH_LBR_INFO_0 ... MSR_ARCH_LBR_INFO_0 + 31:
4257             env->lbr_records[index - MSR_ARCH_LBR_INFO_0].info = msrs[i].data;
4258             break;
4259         }
4260     }
4261 
4262     return 0;
4263 }
4264 
kvm_put_mp_state(X86CPU * cpu)4265 static int kvm_put_mp_state(X86CPU *cpu)
4266 {
4267     struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
4268 
4269     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
4270 }
4271 
kvm_get_mp_state(X86CPU * cpu)4272 static int kvm_get_mp_state(X86CPU *cpu)
4273 {
4274     CPUState *cs = CPU(cpu);
4275     CPUX86State *env = &cpu->env;
4276     struct kvm_mp_state mp_state;
4277     int ret;
4278 
4279     ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
4280     if (ret < 0) {
4281         return ret;
4282     }
4283     env->mp_state = mp_state.mp_state;
4284     if (kvm_irqchip_in_kernel()) {
4285         cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
4286     }
4287     return 0;
4288 }
4289 
kvm_get_apic(X86CPU * cpu)4290 static int kvm_get_apic(X86CPU *cpu)
4291 {
4292     DeviceState *apic = cpu->apic_state;
4293     struct kvm_lapic_state kapic;
4294     int ret;
4295 
4296     if (apic && kvm_irqchip_in_kernel()) {
4297         ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
4298         if (ret < 0) {
4299             return ret;
4300         }
4301 
4302         kvm_get_apic_state(apic, &kapic);
4303     }
4304     return 0;
4305 }
4306 
kvm_put_vcpu_events(X86CPU * cpu,int level)4307 static int kvm_put_vcpu_events(X86CPU *cpu, int level)
4308 {
4309     CPUState *cs = CPU(cpu);
4310     CPUX86State *env = &cpu->env;
4311     struct kvm_vcpu_events events = {};
4312 
4313     events.flags = 0;
4314 
4315     if (has_exception_payload) {
4316         events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4317         events.exception.pending = env->exception_pending;
4318         events.exception_has_payload = env->exception_has_payload;
4319         events.exception_payload = env->exception_payload;
4320     }
4321     events.exception.nr = env->exception_nr;
4322     events.exception.injected = env->exception_injected;
4323     events.exception.has_error_code = env->has_error_code;
4324     events.exception.error_code = env->error_code;
4325 
4326     events.interrupt.injected = (env->interrupt_injected >= 0);
4327     events.interrupt.nr = env->interrupt_injected;
4328     events.interrupt.soft = env->soft_interrupt;
4329 
4330     events.nmi.injected = env->nmi_injected;
4331     events.nmi.pending = env->nmi_pending;
4332     events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
4333 
4334     events.sipi_vector = env->sipi_vector;
4335 
4336     if (has_msr_smbase) {
4337         events.smi.smm = !!(env->hflags & HF_SMM_MASK);
4338         events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
4339         if (kvm_irqchip_in_kernel()) {
4340             /* As soon as these are moved to the kernel, remove them
4341              * from cs->interrupt_request.
4342              */
4343             events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
4344             events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
4345             cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
4346         } else {
4347             /* Keep these in cs->interrupt_request.  */
4348             events.smi.pending = 0;
4349             events.smi.latched_init = 0;
4350         }
4351         /* Stop SMI delivery on old machine types to avoid a reboot
4352          * on an inward migration of an old VM.
4353          */
4354         if (!cpu->kvm_no_smi_migration) {
4355             events.flags |= KVM_VCPUEVENT_VALID_SMM;
4356         }
4357     }
4358 
4359     if (level >= KVM_PUT_RESET_STATE) {
4360         events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
4361         if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
4362             events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
4363         }
4364     }
4365 
4366     if (has_triple_fault_event) {
4367         events.flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
4368         events.triple_fault.pending = env->triple_fault_pending;
4369     }
4370 
4371     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
4372 }
4373 
kvm_get_vcpu_events(X86CPU * cpu)4374 static int kvm_get_vcpu_events(X86CPU *cpu)
4375 {
4376     CPUX86State *env = &cpu->env;
4377     struct kvm_vcpu_events events;
4378     int ret;
4379 
4380     memset(&events, 0, sizeof(events));
4381     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
4382     if (ret < 0) {
4383        return ret;
4384     }
4385 
4386     if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4387         env->exception_pending = events.exception.pending;
4388         env->exception_has_payload = events.exception_has_payload;
4389         env->exception_payload = events.exception_payload;
4390     } else {
4391         env->exception_pending = 0;
4392         env->exception_has_payload = false;
4393     }
4394     env->exception_injected = events.exception.injected;
4395     env->exception_nr =
4396         (env->exception_pending || env->exception_injected) ?
4397         events.exception.nr : -1;
4398     env->has_error_code = events.exception.has_error_code;
4399     env->error_code = events.exception.error_code;
4400 
4401     env->interrupt_injected =
4402         events.interrupt.injected ? events.interrupt.nr : -1;
4403     env->soft_interrupt = events.interrupt.soft;
4404 
4405     env->nmi_injected = events.nmi.injected;
4406     env->nmi_pending = events.nmi.pending;
4407     if (events.nmi.masked) {
4408         env->hflags2 |= HF2_NMI_MASK;
4409     } else {
4410         env->hflags2 &= ~HF2_NMI_MASK;
4411     }
4412 
4413     if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
4414         if (events.smi.smm) {
4415             env->hflags |= HF_SMM_MASK;
4416         } else {
4417             env->hflags &= ~HF_SMM_MASK;
4418         }
4419         if (events.smi.pending) {
4420             cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
4421         } else {
4422             cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
4423         }
4424         if (events.smi.smm_inside_nmi) {
4425             env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
4426         } else {
4427             env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
4428         }
4429         if (events.smi.latched_init) {
4430             cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
4431         } else {
4432             cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
4433         }
4434     }
4435 
4436     if (events.flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
4437         env->triple_fault_pending = events.triple_fault.pending;
4438     }
4439 
4440     env->sipi_vector = events.sipi_vector;
4441 
4442     return 0;
4443 }
4444 
kvm_put_debugregs(X86CPU * cpu)4445 static int kvm_put_debugregs(X86CPU *cpu)
4446 {
4447     CPUX86State *env = &cpu->env;
4448     struct kvm_debugregs dbgregs;
4449     int i;
4450 
4451     memset(&dbgregs, 0, sizeof(dbgregs));
4452     for (i = 0; i < 4; i++) {
4453         dbgregs.db[i] = env->dr[i];
4454     }
4455     dbgregs.dr6 = env->dr[6];
4456     dbgregs.dr7 = env->dr[7];
4457     dbgregs.flags = 0;
4458 
4459     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
4460 }
4461 
kvm_get_debugregs(X86CPU * cpu)4462 static int kvm_get_debugregs(X86CPU *cpu)
4463 {
4464     CPUX86State *env = &cpu->env;
4465     struct kvm_debugregs dbgregs;
4466     int i, ret;
4467 
4468     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
4469     if (ret < 0) {
4470         return ret;
4471     }
4472     for (i = 0; i < 4; i++) {
4473         env->dr[i] = dbgregs.db[i];
4474     }
4475     env->dr[4] = env->dr[6] = dbgregs.dr6;
4476     env->dr[5] = env->dr[7] = dbgregs.dr7;
4477 
4478     return 0;
4479 }
4480 
kvm_put_nested_state(X86CPU * cpu)4481 static int kvm_put_nested_state(X86CPU *cpu)
4482 {
4483     CPUX86State *env = &cpu->env;
4484     int max_nested_state_len = kvm_max_nested_state_length();
4485 
4486     if (!env->nested_state) {
4487         return 0;
4488     }
4489 
4490     /*
4491      * Copy flags that are affected by reset from env->hflags and env->hflags2.
4492      */
4493     if (env->hflags & HF_GUEST_MASK) {
4494         env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE;
4495     } else {
4496         env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE;
4497     }
4498 
4499     /* Don't set KVM_STATE_NESTED_GIF_SET on VMX as it is illegal */
4500     if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) {
4501         env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET;
4502     } else {
4503         env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET;
4504     }
4505 
4506     assert(env->nested_state->size <= max_nested_state_len);
4507     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state);
4508 }
4509 
kvm_get_nested_state(X86CPU * cpu)4510 static int kvm_get_nested_state(X86CPU *cpu)
4511 {
4512     CPUX86State *env = &cpu->env;
4513     int max_nested_state_len = kvm_max_nested_state_length();
4514     int ret;
4515 
4516     if (!env->nested_state) {
4517         return 0;
4518     }
4519 
4520     /*
4521      * It is possible that migration restored a smaller size into
4522      * nested_state->hdr.size than what our kernel support.
4523      * We preserve migration origin nested_state->hdr.size for
4524      * call to KVM_SET_NESTED_STATE but wish that our next call
4525      * to KVM_GET_NESTED_STATE will use max size our kernel support.
4526      */
4527     env->nested_state->size = max_nested_state_len;
4528 
4529     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state);
4530     if (ret < 0) {
4531         return ret;
4532     }
4533 
4534     /*
4535      * Copy flags that are affected by reset to env->hflags and env->hflags2.
4536      */
4537     if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) {
4538         env->hflags |= HF_GUEST_MASK;
4539     } else {
4540         env->hflags &= ~HF_GUEST_MASK;
4541     }
4542 
4543     /* Keep HF2_GIF_MASK set on !SVM as x86_cpu_pending_interrupt() needs it */
4544     if (cpu_has_svm(env)) {
4545         if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) {
4546             env->hflags2 |= HF2_GIF_MASK;
4547         } else {
4548             env->hflags2 &= ~HF2_GIF_MASK;
4549         }
4550     }
4551 
4552     return ret;
4553 }
4554 
kvm_arch_put_registers(CPUState * cpu,int level)4555 int kvm_arch_put_registers(CPUState *cpu, int level)
4556 {
4557     X86CPU *x86_cpu = X86_CPU(cpu);
4558     int ret;
4559 
4560     assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
4561 
4562     /*
4563      * Put MSR_IA32_FEATURE_CONTROL first, this ensures the VM gets out of VMX
4564      * root operation upon vCPU reset. kvm_put_msr_feature_control() should also
4565      * precede kvm_put_nested_state() when 'real' nested state is set.
4566      */
4567     if (level >= KVM_PUT_RESET_STATE) {
4568         ret = kvm_put_msr_feature_control(x86_cpu);
4569         if (ret < 0) {
4570             return ret;
4571         }
4572     }
4573 
4574     /* must be before kvm_put_nested_state so that EFER.SVME is set */
4575     ret = has_sregs2 ? kvm_put_sregs2(x86_cpu) : kvm_put_sregs(x86_cpu);
4576     if (ret < 0) {
4577         return ret;
4578     }
4579 
4580     if (level >= KVM_PUT_RESET_STATE) {
4581         ret = kvm_put_nested_state(x86_cpu);
4582         if (ret < 0) {
4583             return ret;
4584         }
4585     }
4586 
4587     if (level == KVM_PUT_FULL_STATE) {
4588         /* We don't check for kvm_arch_set_tsc_khz() errors here,
4589          * because TSC frequency mismatch shouldn't abort migration,
4590          * unless the user explicitly asked for a more strict TSC
4591          * setting (e.g. using an explicit "tsc-freq" option).
4592          */
4593         kvm_arch_set_tsc_khz(cpu);
4594     }
4595 
4596 #ifdef CONFIG_XEN_EMU
4597     if (xen_mode == XEN_EMULATE && level == KVM_PUT_FULL_STATE) {
4598         ret = kvm_put_xen_state(cpu);
4599         if (ret < 0) {
4600             return ret;
4601         }
4602     }
4603 #endif
4604 
4605     ret = kvm_getput_regs(x86_cpu, 1);
4606     if (ret < 0) {
4607         return ret;
4608     }
4609     ret = kvm_put_xsave(x86_cpu);
4610     if (ret < 0) {
4611         return ret;
4612     }
4613     ret = kvm_put_xcrs(x86_cpu);
4614     if (ret < 0) {
4615         return ret;
4616     }
4617     ret = kvm_put_msrs(x86_cpu, level);
4618     if (ret < 0) {
4619         return ret;
4620     }
4621     ret = kvm_put_vcpu_events(x86_cpu, level);
4622     if (ret < 0) {
4623         return ret;
4624     }
4625     if (level >= KVM_PUT_RESET_STATE) {
4626         ret = kvm_put_mp_state(x86_cpu);
4627         if (ret < 0) {
4628             return ret;
4629         }
4630     }
4631 
4632     ret = kvm_put_tscdeadline_msr(x86_cpu);
4633     if (ret < 0) {
4634         return ret;
4635     }
4636     ret = kvm_put_debugregs(x86_cpu);
4637     if (ret < 0) {
4638         return ret;
4639     }
4640     return 0;
4641 }
4642 
kvm_arch_get_registers(CPUState * cs)4643 int kvm_arch_get_registers(CPUState *cs)
4644 {
4645     X86CPU *cpu = X86_CPU(cs);
4646     int ret;
4647 
4648     assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
4649 
4650     ret = kvm_get_vcpu_events(cpu);
4651     if (ret < 0) {
4652         goto out;
4653     }
4654     /*
4655      * KVM_GET_MPSTATE can modify CS and RIP, call it before
4656      * KVM_GET_REGS and KVM_GET_SREGS.
4657      */
4658     ret = kvm_get_mp_state(cpu);
4659     if (ret < 0) {
4660         goto out;
4661     }
4662     ret = kvm_getput_regs(cpu, 0);
4663     if (ret < 0) {
4664         goto out;
4665     }
4666     ret = kvm_get_xsave(cpu);
4667     if (ret < 0) {
4668         goto out;
4669     }
4670     ret = kvm_get_xcrs(cpu);
4671     if (ret < 0) {
4672         goto out;
4673     }
4674     ret = has_sregs2 ? kvm_get_sregs2(cpu) : kvm_get_sregs(cpu);
4675     if (ret < 0) {
4676         goto out;
4677     }
4678     ret = kvm_get_msrs(cpu);
4679     if (ret < 0) {
4680         goto out;
4681     }
4682     ret = kvm_get_apic(cpu);
4683     if (ret < 0) {
4684         goto out;
4685     }
4686     ret = kvm_get_debugregs(cpu);
4687     if (ret < 0) {
4688         goto out;
4689     }
4690     ret = kvm_get_nested_state(cpu);
4691     if (ret < 0) {
4692         goto out;
4693     }
4694 #ifdef CONFIG_XEN_EMU
4695     if (xen_mode == XEN_EMULATE) {
4696         ret = kvm_get_xen_state(cs);
4697         if (ret < 0) {
4698             goto out;
4699         }
4700     }
4701 #endif
4702     ret = 0;
4703  out:
4704     cpu_sync_bndcs_hflags(&cpu->env);
4705     return ret;
4706 }
4707 
kvm_arch_pre_run(CPUState * cpu,struct kvm_run * run)4708 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
4709 {
4710     X86CPU *x86_cpu = X86_CPU(cpu);
4711     CPUX86State *env = &x86_cpu->env;
4712     int ret;
4713 
4714     /* Inject NMI */
4715     if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
4716         if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
4717             qemu_mutex_lock_iothread();
4718             cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
4719             qemu_mutex_unlock_iothread();
4720             DPRINTF("injected NMI\n");
4721             ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
4722             if (ret < 0) {
4723                 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
4724                         strerror(-ret));
4725             }
4726         }
4727         if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
4728             qemu_mutex_lock_iothread();
4729             cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
4730             qemu_mutex_unlock_iothread();
4731             DPRINTF("injected SMI\n");
4732             ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
4733             if (ret < 0) {
4734                 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
4735                         strerror(-ret));
4736             }
4737         }
4738     }
4739 
4740     if (!kvm_pic_in_kernel()) {
4741         qemu_mutex_lock_iothread();
4742     }
4743 
4744     /* Force the VCPU out of its inner loop to process any INIT requests
4745      * or (for userspace APIC, but it is cheap to combine the checks here)
4746      * pending TPR access reports.
4747      */
4748     if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
4749         if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
4750             !(env->hflags & HF_SMM_MASK)) {
4751             cpu->exit_request = 1;
4752         }
4753         if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
4754             cpu->exit_request = 1;
4755         }
4756     }
4757 
4758     if (!kvm_pic_in_kernel()) {
4759         /* Try to inject an interrupt if the guest can accept it */
4760         if (run->ready_for_interrupt_injection &&
4761             (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
4762             (env->eflags & IF_MASK)) {
4763             int irq;
4764 
4765             cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
4766             irq = cpu_get_pic_interrupt(env);
4767             if (irq >= 0) {
4768                 struct kvm_interrupt intr;
4769 
4770                 intr.irq = irq;
4771                 DPRINTF("injected interrupt %d\n", irq);
4772                 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
4773                 if (ret < 0) {
4774                     fprintf(stderr,
4775                             "KVM: injection failed, interrupt lost (%s)\n",
4776                             strerror(-ret));
4777                 }
4778             }
4779         }
4780 
4781         /* If we have an interrupt but the guest is not ready to receive an
4782          * interrupt, request an interrupt window exit.  This will
4783          * cause a return to userspace as soon as the guest is ready to
4784          * receive interrupts. */
4785         if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
4786             run->request_interrupt_window = 1;
4787         } else {
4788             run->request_interrupt_window = 0;
4789         }
4790 
4791         DPRINTF("setting tpr\n");
4792         run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
4793 
4794         qemu_mutex_unlock_iothread();
4795     }
4796 }
4797 
kvm_rate_limit_on_bus_lock(void)4798 static void kvm_rate_limit_on_bus_lock(void)
4799 {
4800     uint64_t delay_ns = ratelimit_calculate_delay(&bus_lock_ratelimit_ctrl, 1);
4801 
4802     if (delay_ns) {
4803         g_usleep(delay_ns / SCALE_US);
4804     }
4805 }
4806 
kvm_arch_post_run(CPUState * cpu,struct kvm_run * run)4807 MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
4808 {
4809     X86CPU *x86_cpu = X86_CPU(cpu);
4810     CPUX86State *env = &x86_cpu->env;
4811 
4812     if (run->flags & KVM_RUN_X86_SMM) {
4813         env->hflags |= HF_SMM_MASK;
4814     } else {
4815         env->hflags &= ~HF_SMM_MASK;
4816     }
4817     if (run->if_flag) {
4818         env->eflags |= IF_MASK;
4819     } else {
4820         env->eflags &= ~IF_MASK;
4821     }
4822     if (run->flags & KVM_RUN_X86_BUS_LOCK) {
4823         kvm_rate_limit_on_bus_lock();
4824     }
4825 
4826 #ifdef CONFIG_XEN_EMU
4827     /*
4828      * If the callback is asserted as a GSI (or PCI INTx) then check if
4829      * vcpu_info->evtchn_upcall_pending has been cleared, and deassert
4830      * the callback IRQ if so. Ideally we could hook into the PIC/IOAPIC
4831      * EOI and only resample then, exactly how the VFIO eventfd pairs
4832      * are designed to work for level triggered interrupts.
4833      */
4834     if (x86_cpu->env.xen_callback_asserted) {
4835         kvm_xen_maybe_deassert_callback(cpu);
4836     }
4837 #endif
4838 
4839     /* We need to protect the apic state against concurrent accesses from
4840      * different threads in case the userspace irqchip is used. */
4841     if (!kvm_irqchip_in_kernel()) {
4842         qemu_mutex_lock_iothread();
4843     }
4844     cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
4845     cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
4846     if (!kvm_irqchip_in_kernel()) {
4847         qemu_mutex_unlock_iothread();
4848     }
4849     return cpu_get_mem_attrs(env);
4850 }
4851 
kvm_arch_process_async_events(CPUState * cs)4852 int kvm_arch_process_async_events(CPUState *cs)
4853 {
4854     X86CPU *cpu = X86_CPU(cs);
4855     CPUX86State *env = &cpu->env;
4856 
4857     if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
4858         /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
4859         assert(env->mcg_cap);
4860 
4861         cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
4862 
4863         kvm_cpu_synchronize_state(cs);
4864 
4865         if (env->exception_nr == EXCP08_DBLE) {
4866             /* this means triple fault */
4867             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
4868             cs->exit_request = 1;
4869             return 0;
4870         }
4871         kvm_queue_exception(env, EXCP12_MCHK, 0, 0);
4872         env->has_error_code = 0;
4873 
4874         cs->halted = 0;
4875         if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
4876             env->mp_state = KVM_MP_STATE_RUNNABLE;
4877         }
4878     }
4879 
4880     if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
4881         !(env->hflags & HF_SMM_MASK)) {
4882         kvm_cpu_synchronize_state(cs);
4883         do_cpu_init(cpu);
4884     }
4885 
4886     if (kvm_irqchip_in_kernel()) {
4887         return 0;
4888     }
4889 
4890     if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
4891         cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
4892         apic_poll_irq(cpu->apic_state);
4893     }
4894     if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4895          (env->eflags & IF_MASK)) ||
4896         (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4897         cs->halted = 0;
4898     }
4899     if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
4900         kvm_cpu_synchronize_state(cs);
4901         do_cpu_sipi(cpu);
4902     }
4903     if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
4904         cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
4905         kvm_cpu_synchronize_state(cs);
4906         apic_handle_tpr_access_report(cpu->apic_state, env->eip,
4907                                       env->tpr_access_type);
4908     }
4909 
4910     return cs->halted;
4911 }
4912 
kvm_handle_halt(X86CPU * cpu)4913 static int kvm_handle_halt(X86CPU *cpu)
4914 {
4915     CPUState *cs = CPU(cpu);
4916     CPUX86State *env = &cpu->env;
4917 
4918     if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4919           (env->eflags & IF_MASK)) &&
4920         !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4921         cs->halted = 1;
4922         return EXCP_HLT;
4923     }
4924 
4925     return 0;
4926 }
4927 
kvm_handle_tpr_access(X86CPU * cpu)4928 static int kvm_handle_tpr_access(X86CPU *cpu)
4929 {
4930     CPUState *cs = CPU(cpu);
4931     struct kvm_run *run = cs->kvm_run;
4932 
4933     apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
4934                                   run->tpr_access.is_write ? TPR_ACCESS_WRITE
4935                                                            : TPR_ACCESS_READ);
4936     return 1;
4937 }
4938 
kvm_arch_insert_sw_breakpoint(CPUState * cs,struct kvm_sw_breakpoint * bp)4939 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
4940 {
4941     static const uint8_t int3 = 0xcc;
4942 
4943     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
4944         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
4945         return -EINVAL;
4946     }
4947     return 0;
4948 }
4949 
kvm_arch_remove_sw_breakpoint(CPUState * cs,struct kvm_sw_breakpoint * bp)4950 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
4951 {
4952     uint8_t int3;
4953 
4954     if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0)) {
4955         return -EINVAL;
4956     }
4957     if (int3 != 0xcc) {
4958         return 0;
4959     }
4960     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
4961         return -EINVAL;
4962     }
4963     return 0;
4964 }
4965 
4966 static struct {
4967     target_ulong addr;
4968     int len;
4969     int type;
4970 } hw_breakpoint[4];
4971 
4972 static int nb_hw_breakpoint;
4973 
find_hw_breakpoint(target_ulong addr,int len,int type)4974 static int find_hw_breakpoint(target_ulong addr, int len, int type)
4975 {
4976     int n;
4977 
4978     for (n = 0; n < nb_hw_breakpoint; n++) {
4979         if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
4980             (hw_breakpoint[n].len == len || len == -1)) {
4981             return n;
4982         }
4983     }
4984     return -1;
4985 }
4986 
kvm_arch_insert_hw_breakpoint(vaddr addr,vaddr len,int type)4987 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
4988 {
4989     switch (type) {
4990     case GDB_BREAKPOINT_HW:
4991         len = 1;
4992         break;
4993     case GDB_WATCHPOINT_WRITE:
4994     case GDB_WATCHPOINT_ACCESS:
4995         switch (len) {
4996         case 1:
4997             break;
4998         case 2:
4999         case 4:
5000         case 8:
5001             if (addr & (len - 1)) {
5002                 return -EINVAL;
5003             }
5004             break;
5005         default:
5006             return -EINVAL;
5007         }
5008         break;
5009     default:
5010         return -ENOSYS;
5011     }
5012 
5013     if (nb_hw_breakpoint == 4) {
5014         return -ENOBUFS;
5015     }
5016     if (find_hw_breakpoint(addr, len, type) >= 0) {
5017         return -EEXIST;
5018     }
5019     hw_breakpoint[nb_hw_breakpoint].addr = addr;
5020     hw_breakpoint[nb_hw_breakpoint].len = len;
5021     hw_breakpoint[nb_hw_breakpoint].type = type;
5022     nb_hw_breakpoint++;
5023 
5024     return 0;
5025 }
5026 
kvm_arch_remove_hw_breakpoint(vaddr addr,vaddr len,int type)5027 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
5028 {
5029     int n;
5030 
5031     n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
5032     if (n < 0) {
5033         return -ENOENT;
5034     }
5035     nb_hw_breakpoint--;
5036     hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
5037 
5038     return 0;
5039 }
5040 
kvm_arch_remove_all_hw_breakpoints(void)5041 void kvm_arch_remove_all_hw_breakpoints(void)
5042 {
5043     nb_hw_breakpoint = 0;
5044 }
5045 
5046 static CPUWatchpoint hw_watchpoint;
5047 
kvm_handle_debug(X86CPU * cpu,struct kvm_debug_exit_arch * arch_info)5048 static int kvm_handle_debug(X86CPU *cpu,
5049                             struct kvm_debug_exit_arch *arch_info)
5050 {
5051     CPUState *cs = CPU(cpu);
5052     CPUX86State *env = &cpu->env;
5053     int ret = 0;
5054     int n;
5055 
5056     if (arch_info->exception == EXCP01_DB) {
5057         if (arch_info->dr6 & DR6_BS) {
5058             if (cs->singlestep_enabled) {
5059                 ret = EXCP_DEBUG;
5060             }
5061         } else {
5062             for (n = 0; n < 4; n++) {
5063                 if (arch_info->dr6 & (1 << n)) {
5064                     switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
5065                     case 0x0:
5066                         ret = EXCP_DEBUG;
5067                         break;
5068                     case 0x1:
5069                         ret = EXCP_DEBUG;
5070                         cs->watchpoint_hit = &hw_watchpoint;
5071                         hw_watchpoint.vaddr = hw_breakpoint[n].addr;
5072                         hw_watchpoint.flags = BP_MEM_WRITE;
5073                         break;
5074                     case 0x3:
5075                         ret = EXCP_DEBUG;
5076                         cs->watchpoint_hit = &hw_watchpoint;
5077                         hw_watchpoint.vaddr = hw_breakpoint[n].addr;
5078                         hw_watchpoint.flags = BP_MEM_ACCESS;
5079                         break;
5080                     }
5081                 }
5082             }
5083         }
5084     } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
5085         ret = EXCP_DEBUG;
5086     }
5087     if (ret == 0) {
5088         cpu_synchronize_state(cs);
5089         assert(env->exception_nr == -1);
5090 
5091         /* pass to guest */
5092         kvm_queue_exception(env, arch_info->exception,
5093                             arch_info->exception == EXCP01_DB,
5094                             arch_info->dr6);
5095         env->has_error_code = 0;
5096     }
5097 
5098     return ret;
5099 }
5100 
kvm_arch_update_guest_debug(CPUState * cpu,struct kvm_guest_debug * dbg)5101 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
5102 {
5103     const uint8_t type_code[] = {
5104         [GDB_BREAKPOINT_HW] = 0x0,
5105         [GDB_WATCHPOINT_WRITE] = 0x1,
5106         [GDB_WATCHPOINT_ACCESS] = 0x3
5107     };
5108     const uint8_t len_code[] = {
5109         [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
5110     };
5111     int n;
5112 
5113     if (kvm_sw_breakpoints_active(cpu)) {
5114         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
5115     }
5116     if (nb_hw_breakpoint > 0) {
5117         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
5118         dbg->arch.debugreg[7] = 0x0600;
5119         for (n = 0; n < nb_hw_breakpoint; n++) {
5120             dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
5121             dbg->arch.debugreg[7] |= (2 << (n * 2)) |
5122                 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
5123                 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
5124         }
5125     }
5126 }
5127 
kvm_install_msr_filters(KVMState * s)5128 static bool kvm_install_msr_filters(KVMState *s)
5129 {
5130     uint64_t zero = 0;
5131     struct kvm_msr_filter filter = {
5132         .flags = KVM_MSR_FILTER_DEFAULT_ALLOW,
5133     };
5134     int r, i, j = 0;
5135 
5136     for (i = 0; i < KVM_MSR_FILTER_MAX_RANGES; i++) {
5137         KVMMSRHandlers *handler = &msr_handlers[i];
5138         if (handler->msr) {
5139             struct kvm_msr_filter_range *range = &filter.ranges[j++];
5140 
5141             *range = (struct kvm_msr_filter_range) {
5142                 .flags = 0,
5143                 .nmsrs = 1,
5144                 .base = handler->msr,
5145                 .bitmap = (__u8 *)&zero,
5146             };
5147 
5148             if (handler->rdmsr) {
5149                 range->flags |= KVM_MSR_FILTER_READ;
5150             }
5151 
5152             if (handler->wrmsr) {
5153                 range->flags |= KVM_MSR_FILTER_WRITE;
5154             }
5155         }
5156     }
5157 
5158     r = kvm_vm_ioctl(s, KVM_X86_SET_MSR_FILTER, &filter);
5159     if (r) {
5160         return false;
5161     }
5162 
5163     return true;
5164 }
5165 
kvm_filter_msr(KVMState * s,uint32_t msr,QEMURDMSRHandler * rdmsr,QEMUWRMSRHandler * wrmsr)5166 bool kvm_filter_msr(KVMState *s, uint32_t msr, QEMURDMSRHandler *rdmsr,
5167                     QEMUWRMSRHandler *wrmsr)
5168 {
5169     int i;
5170 
5171     for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5172         if (!msr_handlers[i].msr) {
5173             msr_handlers[i] = (KVMMSRHandlers) {
5174                 .msr = msr,
5175                 .rdmsr = rdmsr,
5176                 .wrmsr = wrmsr,
5177             };
5178 
5179             if (!kvm_install_msr_filters(s)) {
5180                 msr_handlers[i] = (KVMMSRHandlers) { };
5181                 return false;
5182             }
5183 
5184             return true;
5185         }
5186     }
5187 
5188     return false;
5189 }
5190 
kvm_handle_rdmsr(X86CPU * cpu,struct kvm_run * run)5191 static int kvm_handle_rdmsr(X86CPU *cpu, struct kvm_run *run)
5192 {
5193     int i;
5194     bool r;
5195 
5196     for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5197         KVMMSRHandlers *handler = &msr_handlers[i];
5198         if (run->msr.index == handler->msr) {
5199             if (handler->rdmsr) {
5200                 r = handler->rdmsr(cpu, handler->msr,
5201                                    (uint64_t *)&run->msr.data);
5202                 run->msr.error = r ? 0 : 1;
5203                 return 0;
5204             }
5205         }
5206     }
5207 
5208     assert(false);
5209 }
5210 
kvm_handle_wrmsr(X86CPU * cpu,struct kvm_run * run)5211 static int kvm_handle_wrmsr(X86CPU *cpu, struct kvm_run *run)
5212 {
5213     int i;
5214     bool r;
5215 
5216     for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5217         KVMMSRHandlers *handler = &msr_handlers[i];
5218         if (run->msr.index == handler->msr) {
5219             if (handler->wrmsr) {
5220                 r = handler->wrmsr(cpu, handler->msr, run->msr.data);
5221                 run->msr.error = r ? 0 : 1;
5222                 return 0;
5223             }
5224         }
5225     }
5226 
5227     assert(false);
5228 }
5229 
5230 static bool has_sgx_provisioning;
5231 
__kvm_enable_sgx_provisioning(KVMState * s)5232 static bool __kvm_enable_sgx_provisioning(KVMState *s)
5233 {
5234     int fd, ret;
5235 
5236     if (!kvm_vm_check_extension(s, KVM_CAP_SGX_ATTRIBUTE)) {
5237         return false;
5238     }
5239 
5240     fd = qemu_open_old("/dev/sgx_provision", O_RDONLY);
5241     if (fd < 0) {
5242         return false;
5243     }
5244 
5245     ret = kvm_vm_enable_cap(s, KVM_CAP_SGX_ATTRIBUTE, 0, fd);
5246     if (ret) {
5247         error_report("Could not enable SGX PROVISIONKEY: %s", strerror(-ret));
5248         exit(1);
5249     }
5250     close(fd);
5251     return true;
5252 }
5253 
kvm_enable_sgx_provisioning(KVMState * s)5254 bool kvm_enable_sgx_provisioning(KVMState *s)
5255 {
5256     return MEMORIZE(__kvm_enable_sgx_provisioning(s), has_sgx_provisioning);
5257 }
5258 
host_supports_vmx(void)5259 static bool host_supports_vmx(void)
5260 {
5261     uint32_t ecx, unused;
5262 
5263     host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
5264     return ecx & CPUID_EXT_VMX;
5265 }
5266 
5267 #define VMX_INVALID_GUEST_STATE 0x80000021
5268 
kvm_arch_handle_exit(CPUState * cs,struct kvm_run * run)5269 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
5270 {
5271     X86CPU *cpu = X86_CPU(cs);
5272     uint64_t code;
5273     int ret;
5274     bool ctx_invalid;
5275     char str[256];
5276     KVMState *state;
5277 
5278     switch (run->exit_reason) {
5279     case KVM_EXIT_HLT:
5280         DPRINTF("handle_hlt\n");
5281         qemu_mutex_lock_iothread();
5282         ret = kvm_handle_halt(cpu);
5283         qemu_mutex_unlock_iothread();
5284         break;
5285     case KVM_EXIT_SET_TPR:
5286         ret = 0;
5287         break;
5288     case KVM_EXIT_TPR_ACCESS:
5289         qemu_mutex_lock_iothread();
5290         ret = kvm_handle_tpr_access(cpu);
5291         qemu_mutex_unlock_iothread();
5292         break;
5293     case KVM_EXIT_FAIL_ENTRY:
5294         code = run->fail_entry.hardware_entry_failure_reason;
5295         fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
5296                 code);
5297         if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
5298             fprintf(stderr,
5299                     "\nIf you're running a guest on an Intel machine without "
5300                         "unrestricted mode\n"
5301                     "support, the failure can be most likely due to the guest "
5302                         "entering an invalid\n"
5303                     "state for Intel VT. For example, the guest maybe running "
5304                         "in big real mode\n"
5305                     "which is not supported on less recent Intel processors."
5306                         "\n\n");
5307         }
5308         ret = -1;
5309         break;
5310     case KVM_EXIT_EXCEPTION:
5311         fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
5312                 run->ex.exception, run->ex.error_code);
5313         ret = -1;
5314         break;
5315     case KVM_EXIT_DEBUG:
5316         DPRINTF("kvm_exit_debug\n");
5317         qemu_mutex_lock_iothread();
5318         ret = kvm_handle_debug(cpu, &run->debug.arch);
5319         qemu_mutex_unlock_iothread();
5320         break;
5321     case KVM_EXIT_HYPERV:
5322         ret = kvm_hv_handle_exit(cpu, &run->hyperv);
5323         break;
5324     case KVM_EXIT_IOAPIC_EOI:
5325         ioapic_eoi_broadcast(run->eoi.vector);
5326         ret = 0;
5327         break;
5328     case KVM_EXIT_X86_BUS_LOCK:
5329         /* already handled in kvm_arch_post_run */
5330         ret = 0;
5331         break;
5332     case KVM_EXIT_NOTIFY:
5333         ctx_invalid = !!(run->notify.flags & KVM_NOTIFY_CONTEXT_INVALID);
5334         state = KVM_STATE(current_accel());
5335         sprintf(str, "Encounter a notify exit with %svalid context in"
5336                      " guest. There can be possible misbehaves in guest."
5337                      " Please have a look.", ctx_invalid ? "in" : "");
5338         if (ctx_invalid ||
5339             state->notify_vmexit == NOTIFY_VMEXIT_OPTION_INTERNAL_ERROR) {
5340             warn_report("KVM internal error: %s", str);
5341             ret = -1;
5342         } else {
5343             warn_report_once("KVM: %s", str);
5344             ret = 0;
5345         }
5346         break;
5347     case KVM_EXIT_X86_RDMSR:
5348         /* We only enable MSR filtering, any other exit is bogus */
5349         assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER);
5350         ret = kvm_handle_rdmsr(cpu, run);
5351         break;
5352     case KVM_EXIT_X86_WRMSR:
5353         /* We only enable MSR filtering, any other exit is bogus */
5354         assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER);
5355         ret = kvm_handle_wrmsr(cpu, run);
5356         break;
5357 #ifdef CONFIG_XEN_EMU
5358     case KVM_EXIT_XEN:
5359         ret = kvm_xen_handle_exit(cpu, &run->xen);
5360         break;
5361 #endif
5362     default:
5363         fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
5364         ret = -1;
5365         break;
5366     }
5367 
5368     return ret;
5369 }
5370 
kvm_arch_stop_on_emulation_error(CPUState * cs)5371 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
5372 {
5373     X86CPU *cpu = X86_CPU(cs);
5374     CPUX86State *env = &cpu->env;
5375 
5376     kvm_cpu_synchronize_state(cs);
5377     return !(env->cr[0] & CR0_PE_MASK) ||
5378            ((env->segs[R_CS].selector  & 3) != 3);
5379 }
5380 
kvm_arch_init_irq_routing(KVMState * s)5381 void kvm_arch_init_irq_routing(KVMState *s)
5382 {
5383     /* We know at this point that we're using the in-kernel
5384      * irqchip, so we can use irqfds, and on x86 we know
5385      * we can use msi via irqfd and GSI routing.
5386      */
5387     kvm_msi_via_irqfd_allowed = true;
5388     kvm_gsi_routing_allowed = true;
5389 
5390     if (kvm_irqchip_is_split()) {
5391         KVMRouteChange c = kvm_irqchip_begin_route_changes(s);
5392         int i;
5393 
5394         /* If the ioapic is in QEMU and the lapics are in KVM, reserve
5395            MSI routes for signaling interrupts to the local apics. */
5396         for (i = 0; i < IOAPIC_NUM_PINS; i++) {
5397             if (kvm_irqchip_add_msi_route(&c, 0, NULL) < 0) {
5398                 error_report("Could not enable split IRQ mode.");
5399                 exit(1);
5400             }
5401         }
5402         kvm_irqchip_commit_route_changes(&c);
5403     }
5404 }
5405 
kvm_arch_irqchip_create(KVMState * s)5406 int kvm_arch_irqchip_create(KVMState *s)
5407 {
5408     int ret;
5409     if (kvm_kernel_irqchip_split()) {
5410         ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
5411         if (ret) {
5412             error_report("Could not enable split irqchip mode: %s",
5413                          strerror(-ret));
5414             exit(1);
5415         } else {
5416             DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
5417             kvm_split_irqchip = true;
5418             return 1;
5419         }
5420     } else {
5421         return 0;
5422     }
5423 }
5424 
kvm_swizzle_msi_ext_dest_id(uint64_t address)5425 uint64_t kvm_swizzle_msi_ext_dest_id(uint64_t address)
5426 {
5427     CPUX86State *env;
5428     uint64_t ext_id;
5429 
5430     if (!first_cpu) {
5431         return address;
5432     }
5433     env = &X86_CPU(first_cpu)->env;
5434     if (!(env->features[FEAT_KVM] & (1 << KVM_FEATURE_MSI_EXT_DEST_ID))) {
5435         return address;
5436     }
5437 
5438     /*
5439      * If the remappable format bit is set, or the upper bits are
5440      * already set in address_hi, or the low extended bits aren't
5441      * there anyway, do nothing.
5442      */
5443     ext_id = address & (0xff << MSI_ADDR_DEST_IDX_SHIFT);
5444     if (!ext_id || (ext_id & (1 << MSI_ADDR_DEST_IDX_SHIFT)) || (address >> 32)) {
5445         return address;
5446     }
5447 
5448     address &= ~ext_id;
5449     address |= ext_id << 35;
5450     return address;
5451 }
5452 
kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry * route,uint64_t address,uint32_t data,PCIDevice * dev)5453 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
5454                              uint64_t address, uint32_t data, PCIDevice *dev)
5455 {
5456     X86IOMMUState *iommu = x86_iommu_get_default();
5457 
5458     if (iommu) {
5459         X86IOMMUClass *class = X86_IOMMU_DEVICE_GET_CLASS(iommu);
5460 
5461         if (class->int_remap) {
5462             int ret;
5463             MSIMessage src, dst;
5464 
5465             src.address = route->u.msi.address_hi;
5466             src.address <<= VTD_MSI_ADDR_HI_SHIFT;
5467             src.address |= route->u.msi.address_lo;
5468             src.data = route->u.msi.data;
5469 
5470             ret = class->int_remap(iommu, &src, &dst, dev ?     \
5471                                    pci_requester_id(dev) :      \
5472                                    X86_IOMMU_SID_INVALID);
5473             if (ret) {
5474                 trace_kvm_x86_fixup_msi_error(route->gsi);
5475                 return 1;
5476             }
5477 
5478             /*
5479              * Handled untranslated compatibility format interrupt with
5480              * extended destination ID in the low bits 11-5. */
5481             dst.address = kvm_swizzle_msi_ext_dest_id(dst.address);
5482 
5483             route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
5484             route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
5485             route->u.msi.data = dst.data;
5486             return 0;
5487         }
5488     }
5489 
5490 #ifdef CONFIG_XEN_EMU
5491     if (xen_mode == XEN_EMULATE) {
5492         int handled = xen_evtchn_translate_pirq_msi(route, address, data);
5493 
5494         /*
5495          * If it was a PIRQ and successfully routed (handled == 0) or it was
5496          * an error (handled < 0), return. If it wasn't a PIRQ, keep going.
5497          */
5498         if (handled <= 0) {
5499             return handled;
5500         }
5501     }
5502 #endif
5503 
5504     address = kvm_swizzle_msi_ext_dest_id(address);
5505     route->u.msi.address_hi = address >> VTD_MSI_ADDR_HI_SHIFT;
5506     route->u.msi.address_lo = address & VTD_MSI_ADDR_LO_MASK;
5507     return 0;
5508 }
5509 
5510 typedef struct MSIRouteEntry MSIRouteEntry;
5511 
5512 struct MSIRouteEntry {
5513     PCIDevice *dev;             /* Device pointer */
5514     int vector;                 /* MSI/MSIX vector index */
5515     int virq;                   /* Virtual IRQ index */
5516     QLIST_ENTRY(MSIRouteEntry) list;
5517 };
5518 
5519 /* List of used GSI routes */
5520 static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
5521     QLIST_HEAD_INITIALIZER(msi_route_list);
5522 
kvm_update_msi_routes_all(void * private,bool global,uint32_t index,uint32_t mask)5523 void kvm_update_msi_routes_all(void *private, bool global,
5524                                uint32_t index, uint32_t mask)
5525 {
5526     int cnt = 0, vector;
5527     MSIRouteEntry *entry;
5528     MSIMessage msg;
5529     PCIDevice *dev;
5530 
5531     /* TODO: explicit route update */
5532     QLIST_FOREACH(entry, &msi_route_list, list) {
5533         cnt++;
5534         vector = entry->vector;
5535         dev = entry->dev;
5536         if (msix_enabled(dev) && !msix_is_masked(dev, vector)) {
5537             msg = msix_get_message(dev, vector);
5538         } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) {
5539             msg = msi_get_message(dev, vector);
5540         } else {
5541             /*
5542              * Either MSI/MSIX is disabled for the device, or the
5543              * specific message was masked out.  Skip this one.
5544              */
5545             continue;
5546         }
5547         kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
5548     }
5549     kvm_irqchip_commit_routes(kvm_state);
5550     trace_kvm_x86_update_msi_routes(cnt);
5551 }
5552 
kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry * route,int vector,PCIDevice * dev)5553 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
5554                                 int vector, PCIDevice *dev)
5555 {
5556     static bool notify_list_inited = false;
5557     MSIRouteEntry *entry;
5558 
5559     if (!dev) {
5560         /* These are (possibly) IOAPIC routes only used for split
5561          * kernel irqchip mode, while what we are housekeeping are
5562          * PCI devices only. */
5563         return 0;
5564     }
5565 
5566     entry = g_new0(MSIRouteEntry, 1);
5567     entry->dev = dev;
5568     entry->vector = vector;
5569     entry->virq = route->gsi;
5570     QLIST_INSERT_HEAD(&msi_route_list, entry, list);
5571 
5572     trace_kvm_x86_add_msi_route(route->gsi);
5573 
5574     if (!notify_list_inited) {
5575         /* For the first time we do add route, add ourselves into
5576          * IOMMU's IEC notify list if needed. */
5577         X86IOMMUState *iommu = x86_iommu_get_default();
5578         if (iommu) {
5579             x86_iommu_iec_register_notifier(iommu,
5580                                             kvm_update_msi_routes_all,
5581                                             NULL);
5582         }
5583         notify_list_inited = true;
5584     }
5585     return 0;
5586 }
5587 
kvm_arch_release_virq_post(int virq)5588 int kvm_arch_release_virq_post(int virq)
5589 {
5590     MSIRouteEntry *entry, *next;
5591     QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
5592         if (entry->virq == virq) {
5593             trace_kvm_x86_remove_msi_route(virq);
5594             QLIST_REMOVE(entry, list);
5595             g_free(entry);
5596             break;
5597         }
5598     }
5599     return 0;
5600 }
5601 
kvm_arch_msi_data_to_gsi(uint32_t data)5602 int kvm_arch_msi_data_to_gsi(uint32_t data)
5603 {
5604     abort();
5605 }
5606 
kvm_has_waitpkg(void)5607 bool kvm_has_waitpkg(void)
5608 {
5609     return has_msr_umwait;
5610 }
5611 
kvm_arch_cpu_check_are_resettable(void)5612 bool kvm_arch_cpu_check_are_resettable(void)
5613 {
5614     return !sev_es_enabled();
5615 }
5616 
5617 #define ARCH_REQ_XCOMP_GUEST_PERM       0x1025
5618 
kvm_request_xsave_components(X86CPU * cpu,uint64_t mask)5619 void kvm_request_xsave_components(X86CPU *cpu, uint64_t mask)
5620 {
5621     KVMState *s = kvm_state;
5622     uint64_t supported;
5623 
5624     mask &= XSTATE_DYNAMIC_MASK;
5625     if (!mask) {
5626         return;
5627     }
5628     /*
5629      * Just ignore bits that are not in CPUID[EAX=0xD,ECX=0].
5630      * ARCH_REQ_XCOMP_GUEST_PERM would fail, and QEMU has warned
5631      * about them already because they are not supported features.
5632      */
5633     supported = kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EAX);
5634     supported |= (uint64_t)kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EDX) << 32;
5635     mask &= supported;
5636 
5637     while (mask) {
5638         int bit = ctz64(mask);
5639         int rc = syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, bit);
5640         if (rc) {
5641             /*
5642              * Older kernel version (<5.17) do not support
5643              * ARCH_REQ_XCOMP_GUEST_PERM, but also do not return
5644              * any dynamic feature from kvm_arch_get_supported_cpuid.
5645              */
5646             warn_report("prctl(ARCH_REQ_XCOMP_GUEST_PERM) failure "
5647                         "for feature bit %d", bit);
5648         }
5649         mask &= ~BIT_ULL(bit);
5650     }
5651 }
5652 
kvm_arch_get_notify_vmexit(Object * obj,Error ** errp)5653 static int kvm_arch_get_notify_vmexit(Object *obj, Error **errp)
5654 {
5655     KVMState *s = KVM_STATE(obj);
5656     return s->notify_vmexit;
5657 }
5658 
kvm_arch_set_notify_vmexit(Object * obj,int value,Error ** errp)5659 static void kvm_arch_set_notify_vmexit(Object *obj, int value, Error **errp)
5660 {
5661     KVMState *s = KVM_STATE(obj);
5662 
5663     if (s->fd != -1) {
5664         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
5665         return;
5666     }
5667 
5668     s->notify_vmexit = value;
5669 }
5670 
kvm_arch_get_notify_window(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)5671 static void kvm_arch_get_notify_window(Object *obj, Visitor *v,
5672                                        const char *name, void *opaque,
5673                                        Error **errp)
5674 {
5675     KVMState *s = KVM_STATE(obj);
5676     uint32_t value = s->notify_window;
5677 
5678     visit_type_uint32(v, name, &value, errp);
5679 }
5680 
kvm_arch_set_notify_window(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)5681 static void kvm_arch_set_notify_window(Object *obj, Visitor *v,
5682                                        const char *name, void *opaque,
5683                                        Error **errp)
5684 {
5685     KVMState *s = KVM_STATE(obj);
5686     uint32_t value;
5687 
5688     if (s->fd != -1) {
5689         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
5690         return;
5691     }
5692 
5693     if (!visit_type_uint32(v, name, &value, errp)) {
5694         return;
5695     }
5696 
5697     s->notify_window = value;
5698 }
5699 
kvm_arch_get_xen_version(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)5700 static void kvm_arch_get_xen_version(Object *obj, Visitor *v,
5701                                      const char *name, void *opaque,
5702                                      Error **errp)
5703 {
5704     KVMState *s = KVM_STATE(obj);
5705     uint32_t value = s->xen_version;
5706 
5707     visit_type_uint32(v, name, &value, errp);
5708 }
5709 
kvm_arch_set_xen_version(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)5710 static void kvm_arch_set_xen_version(Object *obj, Visitor *v,
5711                                      const char *name, void *opaque,
5712                                      Error **errp)
5713 {
5714     KVMState *s = KVM_STATE(obj);
5715     Error *error = NULL;
5716     uint32_t value;
5717 
5718     visit_type_uint32(v, name, &value, &error);
5719     if (error) {
5720         error_propagate(errp, error);
5721         return;
5722     }
5723 
5724     s->xen_version = value;
5725     if (value && xen_mode == XEN_DISABLED) {
5726         xen_mode = XEN_EMULATE;
5727     }
5728 }
5729 
kvm_arch_get_xen_gnttab_max_frames(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)5730 static void kvm_arch_get_xen_gnttab_max_frames(Object *obj, Visitor *v,
5731                                                const char *name, void *opaque,
5732                                                Error **errp)
5733 {
5734     KVMState *s = KVM_STATE(obj);
5735     uint16_t value = s->xen_gnttab_max_frames;
5736 
5737     visit_type_uint16(v, name, &value, errp);
5738 }
5739 
kvm_arch_set_xen_gnttab_max_frames(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)5740 static void kvm_arch_set_xen_gnttab_max_frames(Object *obj, Visitor *v,
5741                                                const char *name, void *opaque,
5742                                                Error **errp)
5743 {
5744     KVMState *s = KVM_STATE(obj);
5745     Error *error = NULL;
5746     uint16_t value;
5747 
5748     visit_type_uint16(v, name, &value, &error);
5749     if (error) {
5750         error_propagate(errp, error);
5751         return;
5752     }
5753 
5754     s->xen_gnttab_max_frames = value;
5755 }
5756 
kvm_arch_get_xen_evtchn_max_pirq(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)5757 static void kvm_arch_get_xen_evtchn_max_pirq(Object *obj, Visitor *v,
5758                                              const char *name, void *opaque,
5759                                              Error **errp)
5760 {
5761     KVMState *s = KVM_STATE(obj);
5762     uint16_t value = s->xen_evtchn_max_pirq;
5763 
5764     visit_type_uint16(v, name, &value, errp);
5765 }
5766 
kvm_arch_set_xen_evtchn_max_pirq(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)5767 static void kvm_arch_set_xen_evtchn_max_pirq(Object *obj, Visitor *v,
5768                                              const char *name, void *opaque,
5769                                              Error **errp)
5770 {
5771     KVMState *s = KVM_STATE(obj);
5772     Error *error = NULL;
5773     uint16_t value;
5774 
5775     visit_type_uint16(v, name, &value, &error);
5776     if (error) {
5777         error_propagate(errp, error);
5778         return;
5779     }
5780 
5781     s->xen_evtchn_max_pirq = value;
5782 }
5783 
kvm_arch_accel_class_init(ObjectClass * oc)5784 void kvm_arch_accel_class_init(ObjectClass *oc)
5785 {
5786     object_class_property_add_enum(oc, "notify-vmexit", "NotifyVMexitOption",
5787                                    &NotifyVmexitOption_lookup,
5788                                    kvm_arch_get_notify_vmexit,
5789                                    kvm_arch_set_notify_vmexit);
5790     object_class_property_set_description(oc, "notify-vmexit",
5791                                           "Enable notify VM exit");
5792 
5793     object_class_property_add(oc, "notify-window", "uint32",
5794                               kvm_arch_get_notify_window,
5795                               kvm_arch_set_notify_window,
5796                               NULL, NULL);
5797     object_class_property_set_description(oc, "notify-window",
5798                                           "Clock cycles without an event window "
5799                                           "after which a notification VM exit occurs");
5800 
5801     object_class_property_add(oc, "xen-version", "uint32",
5802                               kvm_arch_get_xen_version,
5803                               kvm_arch_set_xen_version,
5804                               NULL, NULL);
5805     object_class_property_set_description(oc, "xen-version",
5806                                           "Xen version to be emulated "
5807                                           "(in XENVER_version form "
5808                                           "e.g. 0x4000a for 4.10)");
5809 
5810     object_class_property_add(oc, "xen-gnttab-max-frames", "uint16",
5811                               kvm_arch_get_xen_gnttab_max_frames,
5812                               kvm_arch_set_xen_gnttab_max_frames,
5813                               NULL, NULL);
5814     object_class_property_set_description(oc, "xen-gnttab-max-frames",
5815                                           "Maximum number of grant table frames");
5816 
5817     object_class_property_add(oc, "xen-evtchn-max-pirq", "uint16",
5818                               kvm_arch_get_xen_evtchn_max_pirq,
5819                               kvm_arch_set_xen_evtchn_max_pirq,
5820                               NULL, NULL);
5821     object_class_property_set_description(oc, "xen-evtchn-max-pirq",
5822                                           "Maximum number of Xen PIRQs");
5823 }
5824 
kvm_set_max_apic_id(uint32_t max_apic_id)5825 void kvm_set_max_apic_id(uint32_t max_apic_id)
5826 {
5827     kvm_vm_enable_cap(kvm_state, KVM_CAP_MAX_VCPU_ID, 0, max_apic_id);
5828 }
5829