1 /*
2 * QEMU PowerPC sPAPR XIVE interrupt controller model
3 *
4 * Copyright (c) 2017-2019, IBM Corporation.
5 *
6 * This code is licensed under the GPL version 2 or later. See the
7 * COPYING file in the top-level directory.
8 */
9
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qemu/error-report.h"
13 #include "qapi/error.h"
14 #include "target/ppc/cpu.h"
15 #include "sysemu/cpus.h"
16 #include "sysemu/kvm.h"
17 #include "sysemu/runstate.h"
18 #include "hw/ppc/spapr.h"
19 #include "hw/ppc/spapr_cpu_core.h"
20 #include "hw/ppc/spapr_xive.h"
21 #include "hw/ppc/xive.h"
22 #include "kvm_ppc.h"
23 #include "trace.h"
24
25 #include <sys/ioctl.h>
26
27 /*
28 * Helpers for CPU hotplug
29 *
30 * TODO: make a common KVMEnabledCPU layer for XICS and XIVE
31 */
32 typedef struct KVMEnabledCPU {
33 unsigned long vcpu_id;
34 QLIST_ENTRY(KVMEnabledCPU) node;
35 } KVMEnabledCPU;
36
37 static QLIST_HEAD(, KVMEnabledCPU)
38 kvm_enabled_cpus = QLIST_HEAD_INITIALIZER(&kvm_enabled_cpus);
39
kvm_cpu_is_enabled(CPUState * cs)40 static bool kvm_cpu_is_enabled(CPUState *cs)
41 {
42 KVMEnabledCPU *enabled_cpu;
43 unsigned long vcpu_id = kvm_arch_vcpu_id(cs);
44
45 QLIST_FOREACH(enabled_cpu, &kvm_enabled_cpus, node) {
46 if (enabled_cpu->vcpu_id == vcpu_id) {
47 return true;
48 }
49 }
50 return false;
51 }
52
kvm_cpu_enable(CPUState * cs)53 static void kvm_cpu_enable(CPUState *cs)
54 {
55 KVMEnabledCPU *enabled_cpu;
56 unsigned long vcpu_id = kvm_arch_vcpu_id(cs);
57
58 enabled_cpu = g_malloc(sizeof(*enabled_cpu));
59 enabled_cpu->vcpu_id = vcpu_id;
60 QLIST_INSERT_HEAD(&kvm_enabled_cpus, enabled_cpu, node);
61 }
62
kvm_cpu_disable_all(void)63 static void kvm_cpu_disable_all(void)
64 {
65 KVMEnabledCPU *enabled_cpu, *next;
66
67 QLIST_FOREACH_SAFE(enabled_cpu, &kvm_enabled_cpus, node, next) {
68 QLIST_REMOVE(enabled_cpu, node);
69 g_free(enabled_cpu);
70 }
71 }
72
73 /*
74 * XIVE Thread Interrupt Management context (KVM)
75 */
76
kvmppc_xive_cpu_set_state(XiveTCTX * tctx,Error ** errp)77 int kvmppc_xive_cpu_set_state(XiveTCTX *tctx, Error **errp)
78 {
79 SpaprXive *xive = SPAPR_XIVE(tctx->xptr);
80 uint64_t state[2];
81 int ret;
82
83 assert(xive->fd != -1);
84
85 /* word0 and word1 of the OS ring. */
86 state[0] = *((uint64_t *) &tctx->regs[TM_QW1_OS]);
87
88 ret = kvm_set_one_reg(tctx->cs, KVM_REG_PPC_VP_STATE, state);
89 if (ret != 0) {
90 error_setg_errno(errp, -ret,
91 "XIVE: could not restore KVM state of CPU %ld",
92 kvm_arch_vcpu_id(tctx->cs));
93 return ret;
94 }
95
96 return 0;
97 }
98
kvmppc_xive_cpu_get_state(XiveTCTX * tctx,Error ** errp)99 int kvmppc_xive_cpu_get_state(XiveTCTX *tctx, Error **errp)
100 {
101 SpaprXive *xive = SPAPR_XIVE(tctx->xptr);
102 uint64_t state[2] = { 0 };
103 int ret;
104
105 assert(xive->fd != -1);
106
107 ret = kvm_get_one_reg(tctx->cs, KVM_REG_PPC_VP_STATE, state);
108 if (ret != 0) {
109 error_setg_errno(errp, -ret,
110 "XIVE: could not capture KVM state of CPU %ld",
111 kvm_arch_vcpu_id(tctx->cs));
112 return ret;
113 }
114
115 /* word0 and word1 of the OS ring. */
116 *((uint64_t *) &tctx->regs[TM_QW1_OS]) = state[0];
117
118 return 0;
119 }
120
121 typedef struct {
122 XiveTCTX *tctx;
123 Error **errp;
124 int ret;
125 } XiveCpuGetState;
126
kvmppc_xive_cpu_do_synchronize_state(CPUState * cpu,run_on_cpu_data arg)127 static void kvmppc_xive_cpu_do_synchronize_state(CPUState *cpu,
128 run_on_cpu_data arg)
129 {
130 XiveCpuGetState *s = arg.host_ptr;
131
132 s->ret = kvmppc_xive_cpu_get_state(s->tctx, s->errp);
133 }
134
kvmppc_xive_cpu_synchronize_state(XiveTCTX * tctx,Error ** errp)135 int kvmppc_xive_cpu_synchronize_state(XiveTCTX *tctx, Error **errp)
136 {
137 XiveCpuGetState s = {
138 .tctx = tctx,
139 .errp = errp,
140 };
141
142 /*
143 * Kick the vCPU to make sure they are available for the KVM ioctl.
144 */
145 run_on_cpu(tctx->cs, kvmppc_xive_cpu_do_synchronize_state,
146 RUN_ON_CPU_HOST_PTR(&s));
147
148 return s.ret;
149 }
150
kvmppc_xive_cpu_connect(XiveTCTX * tctx,Error ** errp)151 int kvmppc_xive_cpu_connect(XiveTCTX *tctx, Error **errp)
152 {
153 ERRP_GUARD();
154 SpaprXive *xive = SPAPR_XIVE(tctx->xptr);
155 unsigned long vcpu_id;
156 int ret;
157
158 assert(xive->fd != -1);
159
160 /* Check if CPU was hot unplugged and replugged. */
161 if (kvm_cpu_is_enabled(tctx->cs)) {
162 return 0;
163 }
164
165 vcpu_id = kvm_arch_vcpu_id(tctx->cs);
166
167 trace_kvm_xive_cpu_connect(vcpu_id);
168
169 ret = kvm_vcpu_enable_cap(tctx->cs, KVM_CAP_PPC_IRQ_XIVE, 0, xive->fd,
170 vcpu_id, 0);
171 if (ret < 0) {
172 error_setg_errno(errp, -ret,
173 "XIVE: unable to connect CPU%ld to KVM device",
174 vcpu_id);
175 if (ret == -ENOSPC) {
176 error_append_hint(errp, "Try -smp maxcpus=N with N < %u\n",
177 MACHINE(qdev_get_machine())->smp.max_cpus);
178 }
179 return ret;
180 }
181
182 kvm_cpu_enable(tctx->cs);
183 return 0;
184 }
185
186 /*
187 * XIVE Interrupt Source (KVM)
188 */
189
kvmppc_xive_set_source_config(SpaprXive * xive,uint32_t lisn,XiveEAS * eas,Error ** errp)190 int kvmppc_xive_set_source_config(SpaprXive *xive, uint32_t lisn, XiveEAS *eas,
191 Error **errp)
192 {
193 uint32_t end_idx;
194 uint32_t end_blk;
195 uint8_t priority;
196 uint32_t server;
197 bool masked;
198 uint32_t eisn;
199 uint64_t kvm_src;
200
201 assert(xive_eas_is_valid(eas));
202
203 end_idx = xive_get_field64(EAS_END_INDEX, eas->w);
204 end_blk = xive_get_field64(EAS_END_BLOCK, eas->w);
205 eisn = xive_get_field64(EAS_END_DATA, eas->w);
206 masked = xive_eas_is_masked(eas);
207
208 spapr_xive_end_to_target(end_blk, end_idx, &server, &priority);
209
210 kvm_src = priority << KVM_XIVE_SOURCE_PRIORITY_SHIFT &
211 KVM_XIVE_SOURCE_PRIORITY_MASK;
212 kvm_src |= server << KVM_XIVE_SOURCE_SERVER_SHIFT &
213 KVM_XIVE_SOURCE_SERVER_MASK;
214 kvm_src |= ((uint64_t) masked << KVM_XIVE_SOURCE_MASKED_SHIFT) &
215 KVM_XIVE_SOURCE_MASKED_MASK;
216 kvm_src |= ((uint64_t)eisn << KVM_XIVE_SOURCE_EISN_SHIFT) &
217 KVM_XIVE_SOURCE_EISN_MASK;
218
219 return kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_SOURCE_CONFIG, lisn,
220 &kvm_src, true, errp);
221 }
222
kvmppc_xive_sync_source(SpaprXive * xive,uint32_t lisn,Error ** errp)223 void kvmppc_xive_sync_source(SpaprXive *xive, uint32_t lisn, Error **errp)
224 {
225 kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_SOURCE_SYNC, lisn,
226 NULL, true, errp);
227 }
228
229 /*
230 * At reset, the interrupt sources are simply created and MASKED. We
231 * only need to inform the KVM XIVE device about their type: LSI or
232 * MSI.
233 */
kvmppc_xive_source_reset_one(XiveSource * xsrc,int srcno,Error ** errp)234 int kvmppc_xive_source_reset_one(XiveSource *xsrc, int srcno, Error **errp)
235 {
236 SpaprXive *xive = SPAPR_XIVE(xsrc->xive);
237 uint64_t state = 0;
238
239 trace_kvm_xive_source_reset(srcno);
240
241 assert(xive->fd != -1);
242
243 if (xive_source_irq_is_lsi(xsrc, srcno)) {
244 state |= KVM_XIVE_LEVEL_SENSITIVE;
245 if (xive_source_is_asserted(xsrc, srcno)) {
246 state |= KVM_XIVE_LEVEL_ASSERTED;
247 }
248 }
249
250 return kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_SOURCE, srcno, &state,
251 true, errp);
252 }
253
kvmppc_xive_source_reset(XiveSource * xsrc,Error ** errp)254 static int kvmppc_xive_source_reset(XiveSource *xsrc, Error **errp)
255 {
256 SpaprXive *xive = SPAPR_XIVE(xsrc->xive);
257 int i;
258
259 for (i = 0; i < xsrc->nr_irqs; i++) {
260 int ret;
261
262 if (!xive_eas_is_valid(&xive->eat[i])) {
263 continue;
264 }
265
266 ret = kvmppc_xive_source_reset_one(xsrc, i, errp);
267 if (ret < 0) {
268 return ret;
269 }
270 }
271
272 return 0;
273 }
274
275 /*
276 * This is used to perform the magic loads on the ESB pages, described
277 * in xive.h.
278 *
279 * Memory barriers should not be needed for loads (no store for now).
280 */
xive_esb_rw(XiveSource * xsrc,int srcno,uint32_t offset,uint64_t data,bool write)281 static uint64_t xive_esb_rw(XiveSource *xsrc, int srcno, uint32_t offset,
282 uint64_t data, bool write)
283 {
284 uint64_t *addr = xsrc->esb_mmap + xive_source_esb_mgmt(xsrc, srcno) +
285 offset;
286
287 if (write) {
288 *addr = cpu_to_be64(data);
289 return -1;
290 } else {
291 /* Prevent the compiler from optimizing away the load */
292 volatile uint64_t value = be64_to_cpu(*addr);
293 return value;
294 }
295 }
296
xive_esb_read(XiveSource * xsrc,int srcno,uint32_t offset)297 static uint8_t xive_esb_read(XiveSource *xsrc, int srcno, uint32_t offset)
298 {
299 return xive_esb_rw(xsrc, srcno, offset, 0, 0) & 0x3;
300 }
301
kvmppc_xive_esb_trigger(XiveSource * xsrc,int srcno)302 static void kvmppc_xive_esb_trigger(XiveSource *xsrc, int srcno)
303 {
304 xive_esb_rw(xsrc, srcno, 0, 0, true);
305 }
306
kvmppc_xive_esb_rw(XiveSource * xsrc,int srcno,uint32_t offset,uint64_t data,bool write)307 uint64_t kvmppc_xive_esb_rw(XiveSource *xsrc, int srcno, uint32_t offset,
308 uint64_t data, bool write)
309 {
310 if (write) {
311 return xive_esb_rw(xsrc, srcno, offset, data, 1);
312 }
313
314 /*
315 * Special Load EOI handling for LSI sources. Q bit is never set
316 * and the interrupt should be re-triggered if the level is still
317 * asserted.
318 */
319 if (xive_source_irq_is_lsi(xsrc, srcno) &&
320 offset == XIVE_ESB_LOAD_EOI) {
321 xive_esb_read(xsrc, srcno, XIVE_ESB_SET_PQ_00);
322 if (xive_source_is_asserted(xsrc, srcno)) {
323 kvmppc_xive_esb_trigger(xsrc, srcno);
324 }
325 return 0;
326 } else {
327 return xive_esb_rw(xsrc, srcno, offset, 0, 0);
328 }
329 }
330
kvmppc_xive_source_get_state(XiveSource * xsrc)331 static void kvmppc_xive_source_get_state(XiveSource *xsrc)
332 {
333 SpaprXive *xive = SPAPR_XIVE(xsrc->xive);
334 int i;
335
336 for (i = 0; i < xsrc->nr_irqs; i++) {
337 uint8_t pq;
338
339 if (!xive_eas_is_valid(&xive->eat[i])) {
340 continue;
341 }
342
343 /* Perform a load without side effect to retrieve the PQ bits */
344 pq = xive_esb_read(xsrc, i, XIVE_ESB_GET);
345
346 /* and save PQ locally */
347 xive_source_esb_set(xsrc, i, pq);
348 }
349 }
350
kvmppc_xive_source_set_irq(void * opaque,int srcno,int val)351 void kvmppc_xive_source_set_irq(void *opaque, int srcno, int val)
352 {
353 XiveSource *xsrc = opaque;
354
355 if (!xive_source_irq_is_lsi(xsrc, srcno)) {
356 if (!val) {
357 return;
358 }
359 } else {
360 xive_source_set_asserted(xsrc, srcno, val);
361 }
362
363 kvmppc_xive_esb_trigger(xsrc, srcno);
364 }
365
366 /*
367 * sPAPR XIVE interrupt controller (KVM)
368 */
kvmppc_xive_get_queue_config(SpaprXive * xive,uint8_t end_blk,uint32_t end_idx,XiveEND * end,Error ** errp)369 int kvmppc_xive_get_queue_config(SpaprXive *xive, uint8_t end_blk,
370 uint32_t end_idx, XiveEND *end,
371 Error **errp)
372 {
373 struct kvm_ppc_xive_eq kvm_eq = { 0 };
374 uint64_t kvm_eq_idx;
375 uint8_t priority;
376 uint32_t server;
377 int ret;
378
379 assert(xive_end_is_valid(end));
380
381 /* Encode the tuple (server, prio) as a KVM EQ index */
382 spapr_xive_end_to_target(end_blk, end_idx, &server, &priority);
383
384 kvm_eq_idx = priority << KVM_XIVE_EQ_PRIORITY_SHIFT &
385 KVM_XIVE_EQ_PRIORITY_MASK;
386 kvm_eq_idx |= server << KVM_XIVE_EQ_SERVER_SHIFT &
387 KVM_XIVE_EQ_SERVER_MASK;
388
389 ret = kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_EQ_CONFIG, kvm_eq_idx,
390 &kvm_eq, false, errp);
391 if (ret < 0) {
392 return ret;
393 }
394
395 /*
396 * The EQ index and toggle bit are updated by HW. These are the
397 * only fields from KVM we want to update QEMU with. The other END
398 * fields should already be in the QEMU END table.
399 */
400 end->w1 = xive_set_field32(END_W1_GENERATION, 0ul, kvm_eq.qtoggle) |
401 xive_set_field32(END_W1_PAGE_OFF, 0ul, kvm_eq.qindex);
402
403 return 0;
404 }
405
kvmppc_xive_set_queue_config(SpaprXive * xive,uint8_t end_blk,uint32_t end_idx,XiveEND * end,Error ** errp)406 int kvmppc_xive_set_queue_config(SpaprXive *xive, uint8_t end_blk,
407 uint32_t end_idx, XiveEND *end,
408 Error **errp)
409 {
410 struct kvm_ppc_xive_eq kvm_eq = { 0 };
411 uint64_t kvm_eq_idx;
412 uint8_t priority;
413 uint32_t server;
414
415 /*
416 * Build the KVM state from the local END structure.
417 */
418
419 kvm_eq.flags = 0;
420 if (xive_get_field32(END_W0_UCOND_NOTIFY, end->w0)) {
421 kvm_eq.flags |= KVM_XIVE_EQ_ALWAYS_NOTIFY;
422 }
423
424 /*
425 * If the hcall is disabling the EQ, set the size and page address
426 * to zero. When migrating, only valid ENDs are taken into
427 * account.
428 */
429 if (xive_end_is_valid(end)) {
430 kvm_eq.qshift = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
431 kvm_eq.qaddr = xive_end_qaddr(end);
432 /*
433 * The EQ toggle bit and index should only be relevant when
434 * restoring the EQ state
435 */
436 kvm_eq.qtoggle = xive_get_field32(END_W1_GENERATION, end->w1);
437 kvm_eq.qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
438 } else {
439 kvm_eq.qshift = 0;
440 kvm_eq.qaddr = 0;
441 }
442
443 /* Encode the tuple (server, prio) as a KVM EQ index */
444 spapr_xive_end_to_target(end_blk, end_idx, &server, &priority);
445
446 kvm_eq_idx = priority << KVM_XIVE_EQ_PRIORITY_SHIFT &
447 KVM_XIVE_EQ_PRIORITY_MASK;
448 kvm_eq_idx |= server << KVM_XIVE_EQ_SERVER_SHIFT &
449 KVM_XIVE_EQ_SERVER_MASK;
450
451 return
452 kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_EQ_CONFIG, kvm_eq_idx,
453 &kvm_eq, true, errp);
454 }
455
kvmppc_xive_reset(SpaprXive * xive,Error ** errp)456 void kvmppc_xive_reset(SpaprXive *xive, Error **errp)
457 {
458 kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_CTRL, KVM_DEV_XIVE_RESET,
459 NULL, true, errp);
460 }
461
kvmppc_xive_get_queues(SpaprXive * xive,Error ** errp)462 static int kvmppc_xive_get_queues(SpaprXive *xive, Error **errp)
463 {
464 int i;
465 int ret;
466
467 for (i = 0; i < xive->nr_ends; i++) {
468 if (!xive_end_is_valid(&xive->endt[i])) {
469 continue;
470 }
471
472 ret = kvmppc_xive_get_queue_config(xive, SPAPR_XIVE_BLOCK_ID, i,
473 &xive->endt[i], errp);
474 if (ret < 0) {
475 return ret;
476 }
477 }
478
479 return 0;
480 }
481
482 /*
483 * The primary goal of the XIVE VM change handler is to mark the EQ
484 * pages dirty when all XIVE event notifications have stopped.
485 *
486 * Whenever the VM is stopped, the VM change handler sets the source
487 * PQs to PENDING to stop the flow of events and to possibly catch a
488 * triggered interrupt occurring while the VM is stopped. The previous
489 * state is saved in anticipation of a migration. The XIVE controller
490 * is then synced through KVM to flush any in-flight event
491 * notification and stabilize the EQs.
492 *
493 * At this stage, we can mark the EQ page dirty and let a migration
494 * sequence transfer the EQ pages to the destination, which is done
495 * just after the stop state.
496 *
497 * The previous configuration of the sources is restored when the VM
498 * runs again. If an interrupt was queued while the VM was stopped,
499 * simply generate a trigger.
500 */
kvmppc_xive_change_state_handler(void * opaque,bool running,RunState state)501 static void kvmppc_xive_change_state_handler(void *opaque, bool running,
502 RunState state)
503 {
504 SpaprXive *xive = opaque;
505 XiveSource *xsrc = &xive->source;
506 Error *local_err = NULL;
507 int i;
508
509 /*
510 * Restore the sources to their initial state. This is called when
511 * the VM resumes after a stop or a migration.
512 */
513 if (running) {
514 for (i = 0; i < xsrc->nr_irqs; i++) {
515 uint8_t pq;
516 uint8_t old_pq;
517
518 if (!xive_eas_is_valid(&xive->eat[i])) {
519 continue;
520 }
521
522 pq = xive_source_esb_get(xsrc, i);
523 old_pq = xive_esb_read(xsrc, i, XIVE_ESB_SET_PQ_00 + (pq << 8));
524
525 /*
526 * An interrupt was queued while the VM was stopped,
527 * generate a trigger.
528 */
529 if (pq == XIVE_ESB_RESET && old_pq == XIVE_ESB_QUEUED) {
530 kvmppc_xive_esb_trigger(xsrc, i);
531 }
532 }
533
534 return;
535 }
536
537 /*
538 * Mask the sources, to stop the flow of event notifications, and
539 * save the PQs locally in the XiveSource object. The XiveSource
540 * state will be collected later on by its vmstate handler if a
541 * migration is in progress.
542 */
543 for (i = 0; i < xsrc->nr_irqs; i++) {
544 uint8_t pq;
545
546 if (!xive_eas_is_valid(&xive->eat[i])) {
547 continue;
548 }
549
550 pq = xive_esb_read(xsrc, i, XIVE_ESB_GET);
551
552 /*
553 * PQ is set to PENDING to possibly catch a triggered
554 * interrupt occurring while the VM is stopped (hotplug event
555 * for instance) .
556 */
557 if (pq != XIVE_ESB_OFF) {
558 pq = xive_esb_read(xsrc, i, XIVE_ESB_SET_PQ_10);
559 }
560 xive_source_esb_set(xsrc, i, pq);
561 }
562
563 /*
564 * Sync the XIVE controller in KVM, to flush in-flight event
565 * notification that should be enqueued in the EQs and mark the
566 * XIVE EQ pages dirty to collect all updates.
567 */
568 kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_CTRL,
569 KVM_DEV_XIVE_EQ_SYNC, NULL, true, &local_err);
570 if (local_err) {
571 error_report_err(local_err);
572 return;
573 }
574 }
575
kvmppc_xive_synchronize_state(SpaprXive * xive,Error ** errp)576 void kvmppc_xive_synchronize_state(SpaprXive *xive, Error **errp)
577 {
578 assert(xive->fd != -1);
579
580 /*
581 * When the VM is stopped, the sources are masked and the previous
582 * state is saved in anticipation of a migration. We should not
583 * synchronize the source state in that case else we will override
584 * the saved state.
585 */
586 if (runstate_is_running()) {
587 kvmppc_xive_source_get_state(&xive->source);
588 }
589
590 /* EAT: there is no extra state to query from KVM */
591
592 /* ENDT */
593 kvmppc_xive_get_queues(xive, errp);
594 }
595
596 /*
597 * The SpaprXive 'pre_save' method is called by the vmstate handler of
598 * the SpaprXive model, after the XIVE controller is synced in the VM
599 * change handler.
600 */
kvmppc_xive_pre_save(SpaprXive * xive)601 int kvmppc_xive_pre_save(SpaprXive *xive)
602 {
603 Error *local_err = NULL;
604 int ret;
605
606 assert(xive->fd != -1);
607
608 /* EAT: there is no extra state to query from KVM */
609
610 /* ENDT */
611 ret = kvmppc_xive_get_queues(xive, &local_err);
612 if (ret < 0) {
613 error_report_err(local_err);
614 return ret;
615 }
616
617 return 0;
618 }
619
620 /*
621 * The SpaprXive 'post_load' method is not called by a vmstate
622 * handler. It is called at the sPAPR machine level at the end of the
623 * migration sequence by the sPAPR IRQ backend 'post_load' method,
624 * when all XIVE states have been transferred and loaded.
625 */
kvmppc_xive_post_load(SpaprXive * xive,int version_id)626 int kvmppc_xive_post_load(SpaprXive *xive, int version_id)
627 {
628 Error *local_err = NULL;
629 CPUState *cs;
630 int i;
631 int ret;
632
633 /* The KVM XIVE device should be in use */
634 assert(xive->fd != -1);
635
636 /* Restore the ENDT first. The targeting depends on it. */
637 for (i = 0; i < xive->nr_ends; i++) {
638 if (!xive_end_is_valid(&xive->endt[i])) {
639 continue;
640 }
641
642 ret = kvmppc_xive_set_queue_config(xive, SPAPR_XIVE_BLOCK_ID, i,
643 &xive->endt[i], &local_err);
644 if (ret < 0) {
645 goto fail;
646 }
647 }
648
649 /* Restore the EAT */
650 for (i = 0; i < xive->nr_irqs; i++) {
651 if (!xive_eas_is_valid(&xive->eat[i])) {
652 continue;
653 }
654
655 /*
656 * We can only restore the source config if the source has been
657 * previously set in KVM. Since we don't do that for all interrupts
658 * at reset time anymore, let's do it now.
659 */
660 ret = kvmppc_xive_source_reset_one(&xive->source, i, &local_err);
661 if (ret < 0) {
662 goto fail;
663 }
664
665 ret = kvmppc_xive_set_source_config(xive, i, &xive->eat[i], &local_err);
666 if (ret < 0) {
667 goto fail;
668 }
669 }
670
671 /*
672 * Restore the thread interrupt contexts of initial CPUs.
673 *
674 * The context of hotplugged CPUs is restored later, by the
675 * 'post_load' handler of the XiveTCTX model because they are not
676 * available at the time the SpaprXive 'post_load' method is
677 * called. We can not restore the context of all CPUs in the
678 * 'post_load' handler of XiveTCTX because the machine is not
679 * necessarily connected to the KVM device at that time.
680 */
681 CPU_FOREACH(cs) {
682 PowerPCCPU *cpu = POWERPC_CPU(cs);
683
684 ret = kvmppc_xive_cpu_set_state(spapr_cpu_state(cpu)->tctx, &local_err);
685 if (ret < 0) {
686 goto fail;
687 }
688 }
689
690 /* The source states will be restored when the machine starts running */
691 return 0;
692
693 fail:
694 error_report_err(local_err);
695 return ret;
696 }
697
698 /* Returns MAP_FAILED on error and sets errno */
kvmppc_xive_mmap(SpaprXive * xive,int pgoff,size_t len,Error ** errp)699 static void *kvmppc_xive_mmap(SpaprXive *xive, int pgoff, size_t len,
700 Error **errp)
701 {
702 void *addr;
703 uint32_t page_shift = 16; /* TODO: fix page_shift */
704
705 addr = mmap(NULL, len, PROT_WRITE | PROT_READ, MAP_SHARED, xive->fd,
706 pgoff << page_shift);
707 if (addr == MAP_FAILED) {
708 error_setg_errno(errp, errno, "XIVE: unable to set memory mapping");
709 }
710
711 return addr;
712 }
713
714 /*
715 * All the XIVE memory regions are now backed by mappings from the KVM
716 * XIVE device.
717 */
kvmppc_xive_connect(SpaprInterruptController * intc,uint32_t nr_servers,Error ** errp)718 int kvmppc_xive_connect(SpaprInterruptController *intc, uint32_t nr_servers,
719 Error **errp)
720 {
721 SpaprXive *xive = SPAPR_XIVE(intc);
722 XiveSource *xsrc = &xive->source;
723 uint64_t esb_len = xive_source_esb_len(xsrc);
724 size_t tima_len = 4ull << TM_SHIFT;
725 CPUState *cs;
726 int fd;
727 void *addr;
728 int ret;
729
730 /*
731 * The KVM XIVE device already in use. This is the case when
732 * rebooting under the XIVE-only interrupt mode.
733 */
734 if (xive->fd != -1) {
735 return 0;
736 }
737
738 if (!kvmppc_has_cap_xive()) {
739 error_setg(errp, "IRQ_XIVE capability must be present for KVM");
740 return -1;
741 }
742
743 /* First, create the KVM XIVE device */
744 fd = kvm_create_device(kvm_state, KVM_DEV_TYPE_XIVE, false);
745 if (fd < 0) {
746 error_setg_errno(errp, -fd, "XIVE: error creating KVM device");
747 return -1;
748 }
749 xive->fd = fd;
750
751 /* Tell KVM about the # of VCPUs we may have */
752 if (kvm_device_check_attr(xive->fd, KVM_DEV_XIVE_GRP_CTRL,
753 KVM_DEV_XIVE_NR_SERVERS)) {
754 ret = kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_CTRL,
755 KVM_DEV_XIVE_NR_SERVERS, &nr_servers, true,
756 errp);
757 if (ret < 0) {
758 goto fail;
759 }
760 }
761
762 /*
763 * 1. Source ESB pages - KVM mapping
764 */
765 addr = kvmppc_xive_mmap(xive, KVM_XIVE_ESB_PAGE_OFFSET, esb_len, errp);
766 if (addr == MAP_FAILED) {
767 goto fail;
768 }
769 xsrc->esb_mmap = addr;
770
771 memory_region_init_ram_device_ptr(&xsrc->esb_mmio_kvm, OBJECT(xsrc),
772 "xive.esb-kvm", esb_len, xsrc->esb_mmap);
773 memory_region_add_subregion_overlap(&xsrc->esb_mmio, 0,
774 &xsrc->esb_mmio_kvm, 1);
775
776 /*
777 * 2. END ESB pages (No KVM support yet)
778 */
779
780 /*
781 * 3. TIMA pages - KVM mapping
782 */
783 addr = kvmppc_xive_mmap(xive, KVM_XIVE_TIMA_PAGE_OFFSET, tima_len, errp);
784 if (addr == MAP_FAILED) {
785 goto fail;
786 }
787 xive->tm_mmap = addr;
788
789 memory_region_init_ram_device_ptr(&xive->tm_mmio_kvm, OBJECT(xive),
790 "xive.tima", tima_len, xive->tm_mmap);
791 memory_region_add_subregion_overlap(&xive->tm_mmio, 0,
792 &xive->tm_mmio_kvm, 1);
793
794 xive->change = qemu_add_vm_change_state_handler(
795 kvmppc_xive_change_state_handler, xive);
796
797 /* Connect the presenters to the initial VCPUs of the machine */
798 CPU_FOREACH(cs) {
799 PowerPCCPU *cpu = POWERPC_CPU(cs);
800
801 ret = kvmppc_xive_cpu_connect(spapr_cpu_state(cpu)->tctx, errp);
802 if (ret < 0) {
803 goto fail;
804 }
805 }
806
807 /* Update the KVM sources */
808 ret = kvmppc_xive_source_reset(xsrc, errp);
809 if (ret < 0) {
810 goto fail;
811 }
812
813 kvm_kernel_irqchip = true;
814 kvm_msi_via_irqfd_allowed = true;
815 kvm_gsi_direct_mapping = true;
816 return 0;
817
818 fail:
819 kvmppc_xive_disconnect(intc);
820 return -1;
821 }
822
kvmppc_xive_disconnect(SpaprInterruptController * intc)823 void kvmppc_xive_disconnect(SpaprInterruptController *intc)
824 {
825 SpaprXive *xive = SPAPR_XIVE(intc);
826 XiveSource *xsrc;
827 uint64_t esb_len;
828
829 assert(xive->fd != -1);
830
831 /* Clear the KVM mapping */
832 xsrc = &xive->source;
833 esb_len = xive_source_esb_len(xsrc);
834
835 if (xsrc->esb_mmap) {
836 memory_region_del_subregion(&xsrc->esb_mmio, &xsrc->esb_mmio_kvm);
837 object_unparent(OBJECT(&xsrc->esb_mmio_kvm));
838 munmap(xsrc->esb_mmap, esb_len);
839 xsrc->esb_mmap = NULL;
840 }
841
842 if (xive->tm_mmap) {
843 memory_region_del_subregion(&xive->tm_mmio, &xive->tm_mmio_kvm);
844 object_unparent(OBJECT(&xive->tm_mmio_kvm));
845 munmap(xive->tm_mmap, 4ull << TM_SHIFT);
846 xive->tm_mmap = NULL;
847 }
848
849 /*
850 * When the KVM device fd is closed, the KVM device is destroyed
851 * and removed from the list of devices of the VM. The VCPU
852 * presenters are also detached from the device.
853 */
854 close(xive->fd);
855 xive->fd = -1;
856
857 kvm_kernel_irqchip = false;
858 kvm_msi_via_irqfd_allowed = false;
859 kvm_gsi_direct_mapping = false;
860
861 /* Clear the local list of presenter (hotplug) */
862 kvm_cpu_disable_all();
863
864 /* VM Change state handler is not needed anymore */
865 if (xive->change) {
866 qemu_del_vm_change_state_handler(xive->change);
867 xive->change = NULL;
868 }
869 }
870