xref: /openbmc/linux/arch/x86/kvm/x86.c (revision 098c0a373cdd51d3a735da7394acd6e57fae45a0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/kvm_host.h>
21 #include "irq.h"
22 #include "ioapic.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "kvm_emulate.h"
28 #include "mmu/page_track.h"
29 #include "x86.h"
30 #include "cpuid.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33 #include "lapic.h"
34 #include "xen.h"
35 #include "smm.h"
36 
37 #include <linux/clocksource.h>
38 #include <linux/interrupt.h>
39 #include <linux/kvm.h>
40 #include <linux/fs.h>
41 #include <linux/vmalloc.h>
42 #include <linux/export.h>
43 #include <linux/moduleparam.h>
44 #include <linux/mman.h>
45 #include <linux/highmem.h>
46 #include <linux/iommu.h>
47 #include <linux/cpufreq.h>
48 #include <linux/user-return-notifier.h>
49 #include <linux/srcu.h>
50 #include <linux/slab.h>
51 #include <linux/perf_event.h>
52 #include <linux/uaccess.h>
53 #include <linux/hash.h>
54 #include <linux/pci.h>
55 #include <linux/timekeeper_internal.h>
56 #include <linux/pvclock_gtod.h>
57 #include <linux/kvm_irqfd.h>
58 #include <linux/irqbypass.h>
59 #include <linux/sched/stat.h>
60 #include <linux/sched/isolation.h>
61 #include <linux/mem_encrypt.h>
62 #include <linux/entry-kvm.h>
63 #include <linux/suspend.h>
64 #include <linux/smp.h>
65 
66 #include <trace/events/ipi.h>
67 #include <trace/events/kvm.h>
68 
69 #include <asm/debugreg.h>
70 #include <asm/msr.h>
71 #include <asm/desc.h>
72 #include <asm/mce.h>
73 #include <asm/pkru.h>
74 #include <linux/kernel_stat.h>
75 #include <asm/fpu/api.h>
76 #include <asm/fpu/xcr.h>
77 #include <asm/fpu/xstate.h>
78 #include <asm/pvclock.h>
79 #include <asm/div64.h>
80 #include <asm/irq_remapping.h>
81 #include <asm/mshyperv.h>
82 #include <asm/hypervisor.h>
83 #include <asm/tlbflush.h>
84 #include <asm/intel_pt.h>
85 #include <asm/emulate_prefix.h>
86 #include <asm/sgx.h>
87 #include <clocksource/hyperv_timer.h>
88 
89 #define CREATE_TRACE_POINTS
90 #include "trace.h"
91 
92 #define MAX_IO_MSRS 256
93 #define KVM_MAX_MCE_BANKS 32
94 
95 struct kvm_caps kvm_caps __read_mostly = {
96 	.supported_mce_cap = MCG_CTL_P | MCG_SER_P,
97 };
98 EXPORT_SYMBOL_GPL(kvm_caps);
99 
100 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
101 
102 #define emul_to_vcpu(ctxt) \
103 	((struct kvm_vcpu *)(ctxt)->vcpu)
104 
105 /* EFER defaults:
106  * - enable syscall per default because its emulated by KVM
107  * - enable LME and LMA per default on 64 bit KVM
108  */
109 #ifdef CONFIG_X86_64
110 static
111 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
112 #else
113 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
114 #endif
115 
116 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
117 
118 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
119 
120 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
121 
122 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
123                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
124 
125 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
126 static void process_nmi(struct kvm_vcpu *vcpu);
127 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
128 static void store_regs(struct kvm_vcpu *vcpu);
129 static int sync_regs(struct kvm_vcpu *vcpu);
130 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
131 
132 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
133 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
134 
135 static DEFINE_MUTEX(vendor_module_lock);
136 struct kvm_x86_ops kvm_x86_ops __read_mostly;
137 
138 #define KVM_X86_OP(func)					     \
139 	DEFINE_STATIC_CALL_NULL(kvm_x86_##func,			     \
140 				*(((struct kvm_x86_ops *)0)->func));
141 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
142 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
143 #include <asm/kvm-x86-ops.h>
144 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
145 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
146 
147 static bool __read_mostly ignore_msrs = 0;
148 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
149 
150 bool __read_mostly report_ignored_msrs = true;
151 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
152 EXPORT_SYMBOL_GPL(report_ignored_msrs);
153 
154 unsigned int min_timer_period_us = 200;
155 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
156 
157 static bool __read_mostly kvmclock_periodic_sync = true;
158 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
159 
160 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
161 static u32 __read_mostly tsc_tolerance_ppm = 250;
162 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
163 
164 /*
165  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
166  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
167  * advancement entirely.  Any other value is used as-is and disables adaptive
168  * tuning, i.e. allows privileged userspace to set an exact advancement time.
169  */
170 static int __read_mostly lapic_timer_advance_ns = -1;
171 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
172 
173 static bool __read_mostly vector_hashing = true;
174 module_param(vector_hashing, bool, S_IRUGO);
175 
176 bool __read_mostly enable_vmware_backdoor = false;
177 module_param(enable_vmware_backdoor, bool, S_IRUGO);
178 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
179 
180 /*
181  * Flags to manipulate forced emulation behavior (any non-zero value will
182  * enable forced emulation).
183  */
184 #define KVM_FEP_CLEAR_RFLAGS_RF	BIT(1)
185 static int __read_mostly force_emulation_prefix;
186 module_param(force_emulation_prefix, int, 0644);
187 
188 int __read_mostly pi_inject_timer = -1;
189 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
190 
191 /* Enable/disable PMU virtualization */
192 bool __read_mostly enable_pmu = true;
193 EXPORT_SYMBOL_GPL(enable_pmu);
194 module_param(enable_pmu, bool, 0444);
195 
196 bool __read_mostly eager_page_split = true;
197 module_param(eager_page_split, bool, 0644);
198 
199 /* Enable/disable SMT_RSB bug mitigation */
200 static bool __read_mostly mitigate_smt_rsb;
201 module_param(mitigate_smt_rsb, bool, 0444);
202 
203 /*
204  * Restoring the host value for MSRs that are only consumed when running in
205  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
206  * returns to userspace, i.e. the kernel can run with the guest's value.
207  */
208 #define KVM_MAX_NR_USER_RETURN_MSRS 16
209 
210 struct kvm_user_return_msrs {
211 	struct user_return_notifier urn;
212 	bool registered;
213 	struct kvm_user_return_msr_values {
214 		u64 host;
215 		u64 curr;
216 	} values[KVM_MAX_NR_USER_RETURN_MSRS];
217 };
218 
219 u32 __read_mostly kvm_nr_uret_msrs;
220 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
221 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
222 static struct kvm_user_return_msrs __percpu *user_return_msrs;
223 
224 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
225 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
226 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
227 				| XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
228 
229 u64 __read_mostly host_efer;
230 EXPORT_SYMBOL_GPL(host_efer);
231 
232 bool __read_mostly allow_smaller_maxphyaddr = 0;
233 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
234 
235 bool __read_mostly enable_apicv = true;
236 EXPORT_SYMBOL_GPL(enable_apicv);
237 
238 u64 __read_mostly host_xss;
239 EXPORT_SYMBOL_GPL(host_xss);
240 
241 u64 __read_mostly host_arch_capabilities;
242 EXPORT_SYMBOL_GPL(host_arch_capabilities);
243 
244 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
245 	KVM_GENERIC_VM_STATS(),
246 	STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
247 	STATS_DESC_COUNTER(VM, mmu_pte_write),
248 	STATS_DESC_COUNTER(VM, mmu_pde_zapped),
249 	STATS_DESC_COUNTER(VM, mmu_flooded),
250 	STATS_DESC_COUNTER(VM, mmu_recycled),
251 	STATS_DESC_COUNTER(VM, mmu_cache_miss),
252 	STATS_DESC_ICOUNTER(VM, mmu_unsync),
253 	STATS_DESC_ICOUNTER(VM, pages_4k),
254 	STATS_DESC_ICOUNTER(VM, pages_2m),
255 	STATS_DESC_ICOUNTER(VM, pages_1g),
256 	STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
257 	STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
258 	STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
259 };
260 
261 const struct kvm_stats_header kvm_vm_stats_header = {
262 	.name_size = KVM_STATS_NAME_SIZE,
263 	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
264 	.id_offset = sizeof(struct kvm_stats_header),
265 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
266 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
267 		       sizeof(kvm_vm_stats_desc),
268 };
269 
270 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
271 	KVM_GENERIC_VCPU_STATS(),
272 	STATS_DESC_COUNTER(VCPU, pf_taken),
273 	STATS_DESC_COUNTER(VCPU, pf_fixed),
274 	STATS_DESC_COUNTER(VCPU, pf_emulate),
275 	STATS_DESC_COUNTER(VCPU, pf_spurious),
276 	STATS_DESC_COUNTER(VCPU, pf_fast),
277 	STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
278 	STATS_DESC_COUNTER(VCPU, pf_guest),
279 	STATS_DESC_COUNTER(VCPU, tlb_flush),
280 	STATS_DESC_COUNTER(VCPU, invlpg),
281 	STATS_DESC_COUNTER(VCPU, exits),
282 	STATS_DESC_COUNTER(VCPU, io_exits),
283 	STATS_DESC_COUNTER(VCPU, mmio_exits),
284 	STATS_DESC_COUNTER(VCPU, signal_exits),
285 	STATS_DESC_COUNTER(VCPU, irq_window_exits),
286 	STATS_DESC_COUNTER(VCPU, nmi_window_exits),
287 	STATS_DESC_COUNTER(VCPU, l1d_flush),
288 	STATS_DESC_COUNTER(VCPU, halt_exits),
289 	STATS_DESC_COUNTER(VCPU, request_irq_exits),
290 	STATS_DESC_COUNTER(VCPU, irq_exits),
291 	STATS_DESC_COUNTER(VCPU, host_state_reload),
292 	STATS_DESC_COUNTER(VCPU, fpu_reload),
293 	STATS_DESC_COUNTER(VCPU, insn_emulation),
294 	STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
295 	STATS_DESC_COUNTER(VCPU, hypercalls),
296 	STATS_DESC_COUNTER(VCPU, irq_injections),
297 	STATS_DESC_COUNTER(VCPU, nmi_injections),
298 	STATS_DESC_COUNTER(VCPU, req_event),
299 	STATS_DESC_COUNTER(VCPU, nested_run),
300 	STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
301 	STATS_DESC_COUNTER(VCPU, directed_yield_successful),
302 	STATS_DESC_COUNTER(VCPU, preemption_reported),
303 	STATS_DESC_COUNTER(VCPU, preemption_other),
304 	STATS_DESC_IBOOLEAN(VCPU, guest_mode),
305 	STATS_DESC_COUNTER(VCPU, notify_window_exits),
306 };
307 
308 const struct kvm_stats_header kvm_vcpu_stats_header = {
309 	.name_size = KVM_STATS_NAME_SIZE,
310 	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
311 	.id_offset = sizeof(struct kvm_stats_header),
312 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
313 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
314 		       sizeof(kvm_vcpu_stats_desc),
315 };
316 
317 u64 __read_mostly host_xcr0;
318 
319 static struct kmem_cache *x86_emulator_cache;
320 
321 /*
322  * When called, it means the previous get/set msr reached an invalid msr.
323  * Return true if we want to ignore/silent this failed msr access.
324  */
kvm_msr_ignored_check(u32 msr,u64 data,bool write)325 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
326 {
327 	const char *op = write ? "wrmsr" : "rdmsr";
328 
329 	if (ignore_msrs) {
330 		if (report_ignored_msrs)
331 			kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
332 				      op, msr, data);
333 		/* Mask the error */
334 		return true;
335 	} else {
336 		kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
337 				      op, msr, data);
338 		return false;
339 	}
340 }
341 
kvm_alloc_emulator_cache(void)342 static struct kmem_cache *kvm_alloc_emulator_cache(void)
343 {
344 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
345 	unsigned int size = sizeof(struct x86_emulate_ctxt);
346 
347 	return kmem_cache_create_usercopy("x86_emulator", size,
348 					  __alignof__(struct x86_emulate_ctxt),
349 					  SLAB_ACCOUNT, useroffset,
350 					  size - useroffset, NULL);
351 }
352 
353 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
354 
kvm_async_pf_hash_reset(struct kvm_vcpu * vcpu)355 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
356 {
357 	int i;
358 	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
359 		vcpu->arch.apf.gfns[i] = ~0;
360 }
361 
kvm_on_user_return(struct user_return_notifier * urn)362 static void kvm_on_user_return(struct user_return_notifier *urn)
363 {
364 	unsigned slot;
365 	struct kvm_user_return_msrs *msrs
366 		= container_of(urn, struct kvm_user_return_msrs, urn);
367 	struct kvm_user_return_msr_values *values;
368 	unsigned long flags;
369 
370 	/*
371 	 * Disabling irqs at this point since the following code could be
372 	 * interrupted and executed through kvm_arch_hardware_disable()
373 	 */
374 	local_irq_save(flags);
375 	if (msrs->registered) {
376 		msrs->registered = false;
377 		user_return_notifier_unregister(urn);
378 	}
379 	local_irq_restore(flags);
380 	for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
381 		values = &msrs->values[slot];
382 		if (values->host != values->curr) {
383 			wrmsrl(kvm_uret_msrs_list[slot], values->host);
384 			values->curr = values->host;
385 		}
386 	}
387 }
388 
kvm_probe_user_return_msr(u32 msr)389 static int kvm_probe_user_return_msr(u32 msr)
390 {
391 	u64 val;
392 	int ret;
393 
394 	preempt_disable();
395 	ret = rdmsrl_safe(msr, &val);
396 	if (ret)
397 		goto out;
398 	ret = wrmsrl_safe(msr, val);
399 out:
400 	preempt_enable();
401 	return ret;
402 }
403 
kvm_add_user_return_msr(u32 msr)404 int kvm_add_user_return_msr(u32 msr)
405 {
406 	BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
407 
408 	if (kvm_probe_user_return_msr(msr))
409 		return -1;
410 
411 	kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
412 	return kvm_nr_uret_msrs++;
413 }
414 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
415 
kvm_find_user_return_msr(u32 msr)416 int kvm_find_user_return_msr(u32 msr)
417 {
418 	int i;
419 
420 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
421 		if (kvm_uret_msrs_list[i] == msr)
422 			return i;
423 	}
424 	return -1;
425 }
426 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
427 
kvm_user_return_msr_cpu_online(void)428 static void kvm_user_return_msr_cpu_online(void)
429 {
430 	unsigned int cpu = smp_processor_id();
431 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
432 	u64 value;
433 	int i;
434 
435 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
436 		rdmsrl_safe(kvm_uret_msrs_list[i], &value);
437 		msrs->values[i].host = value;
438 		msrs->values[i].curr = value;
439 	}
440 }
441 
kvm_set_user_return_msr(unsigned slot,u64 value,u64 mask)442 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
443 {
444 	unsigned int cpu = smp_processor_id();
445 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
446 	int err;
447 
448 	value = (value & mask) | (msrs->values[slot].host & ~mask);
449 	if (value == msrs->values[slot].curr)
450 		return 0;
451 	err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
452 	if (err)
453 		return 1;
454 
455 	msrs->values[slot].curr = value;
456 	if (!msrs->registered) {
457 		msrs->urn.on_user_return = kvm_on_user_return;
458 		user_return_notifier_register(&msrs->urn);
459 		msrs->registered = true;
460 	}
461 	return 0;
462 }
463 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
464 
drop_user_return_notifiers(void)465 static void drop_user_return_notifiers(void)
466 {
467 	unsigned int cpu = smp_processor_id();
468 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
469 
470 	if (msrs->registered)
471 		kvm_on_user_return(&msrs->urn);
472 }
473 
kvm_get_apic_base(struct kvm_vcpu * vcpu)474 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
475 {
476 	return vcpu->arch.apic_base;
477 }
478 
kvm_get_apic_mode(struct kvm_vcpu * vcpu)479 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
480 {
481 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
482 }
483 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
484 
kvm_set_apic_base(struct kvm_vcpu * vcpu,struct msr_data * msr_info)485 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
486 {
487 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
488 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
489 	u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
490 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
491 
492 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
493 		return 1;
494 	if (!msr_info->host_initiated) {
495 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
496 			return 1;
497 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
498 			return 1;
499 	}
500 
501 	kvm_lapic_set_base(vcpu, msr_info->data);
502 	kvm_recalculate_apic_map(vcpu->kvm);
503 	return 0;
504 }
505 
506 /*
507  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
508  *
509  * Hardware virtualization extension instructions may fault if a reboot turns
510  * off virtualization while processes are running.  Usually after catching the
511  * fault we just panic; during reboot instead the instruction is ignored.
512  */
kvm_spurious_fault(void)513 noinstr void kvm_spurious_fault(void)
514 {
515 	/* Fault while not rebooting.  We want the trace. */
516 	BUG_ON(!kvm_rebooting);
517 }
518 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
519 
520 #define EXCPT_BENIGN		0
521 #define EXCPT_CONTRIBUTORY	1
522 #define EXCPT_PF		2
523 
exception_class(int vector)524 static int exception_class(int vector)
525 {
526 	switch (vector) {
527 	case PF_VECTOR:
528 		return EXCPT_PF;
529 	case DE_VECTOR:
530 	case TS_VECTOR:
531 	case NP_VECTOR:
532 	case SS_VECTOR:
533 	case GP_VECTOR:
534 		return EXCPT_CONTRIBUTORY;
535 	default:
536 		break;
537 	}
538 	return EXCPT_BENIGN;
539 }
540 
541 #define EXCPT_FAULT		0
542 #define EXCPT_TRAP		1
543 #define EXCPT_ABORT		2
544 #define EXCPT_INTERRUPT		3
545 #define EXCPT_DB		4
546 
exception_type(int vector)547 static int exception_type(int vector)
548 {
549 	unsigned int mask;
550 
551 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
552 		return EXCPT_INTERRUPT;
553 
554 	mask = 1 << vector;
555 
556 	/*
557 	 * #DBs can be trap-like or fault-like, the caller must check other CPU
558 	 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
559 	 */
560 	if (mask & (1 << DB_VECTOR))
561 		return EXCPT_DB;
562 
563 	if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
564 		return EXCPT_TRAP;
565 
566 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
567 		return EXCPT_ABORT;
568 
569 	/* Reserved exceptions will result in fault */
570 	return EXCPT_FAULT;
571 }
572 
kvm_deliver_exception_payload(struct kvm_vcpu * vcpu,struct kvm_queued_exception * ex)573 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
574 				   struct kvm_queued_exception *ex)
575 {
576 	if (!ex->has_payload)
577 		return;
578 
579 	switch (ex->vector) {
580 	case DB_VECTOR:
581 		/*
582 		 * "Certain debug exceptions may clear bit 0-3.  The
583 		 * remaining contents of the DR6 register are never
584 		 * cleared by the processor".
585 		 */
586 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
587 		/*
588 		 * In order to reflect the #DB exception payload in guest
589 		 * dr6, three components need to be considered: active low
590 		 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
591 		 * DR6_BS and DR6_BT)
592 		 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
593 		 * In the target guest dr6:
594 		 * FIXED_1 bits should always be set.
595 		 * Active low bits should be cleared if 1-setting in payload.
596 		 * Active high bits should be set if 1-setting in payload.
597 		 *
598 		 * Note, the payload is compatible with the pending debug
599 		 * exceptions/exit qualification under VMX, that active_low bits
600 		 * are active high in payload.
601 		 * So they need to be flipped for DR6.
602 		 */
603 		vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
604 		vcpu->arch.dr6 |= ex->payload;
605 		vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
606 
607 		/*
608 		 * The #DB payload is defined as compatible with the 'pending
609 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
610 		 * defined in the 'pending debug exceptions' field (enabled
611 		 * breakpoint), it is reserved and must be zero in DR6.
612 		 */
613 		vcpu->arch.dr6 &= ~BIT(12);
614 		break;
615 	case PF_VECTOR:
616 		vcpu->arch.cr2 = ex->payload;
617 		break;
618 	}
619 
620 	ex->has_payload = false;
621 	ex->payload = 0;
622 }
623 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
624 
kvm_queue_exception_vmexit(struct kvm_vcpu * vcpu,unsigned int vector,bool has_error_code,u32 error_code,bool has_payload,unsigned long payload)625 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
626 				       bool has_error_code, u32 error_code,
627 				       bool has_payload, unsigned long payload)
628 {
629 	struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
630 
631 	ex->vector = vector;
632 	ex->injected = false;
633 	ex->pending = true;
634 	ex->has_error_code = has_error_code;
635 	ex->error_code = error_code;
636 	ex->has_payload = has_payload;
637 	ex->payload = payload;
638 }
639 
640 /* Forcibly leave the nested mode in cases like a vCPU reset */
kvm_leave_nested(struct kvm_vcpu * vcpu)641 static void kvm_leave_nested(struct kvm_vcpu *vcpu)
642 {
643 	kvm_x86_ops.nested_ops->leave_nested(vcpu);
644 }
645 
kvm_multiple_exception(struct kvm_vcpu * vcpu,unsigned nr,bool has_error,u32 error_code,bool has_payload,unsigned long payload,bool reinject)646 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
647 		unsigned nr, bool has_error, u32 error_code,
648 	        bool has_payload, unsigned long payload, bool reinject)
649 {
650 	u32 prev_nr;
651 	int class1, class2;
652 
653 	kvm_make_request(KVM_REQ_EVENT, vcpu);
654 
655 	/*
656 	 * If the exception is destined for L2 and isn't being reinjected,
657 	 * morph it to a VM-Exit if L1 wants to intercept the exception.  A
658 	 * previously injected exception is not checked because it was checked
659 	 * when it was original queued, and re-checking is incorrect if _L1_
660 	 * injected the exception, in which case it's exempt from interception.
661 	 */
662 	if (!reinject && is_guest_mode(vcpu) &&
663 	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
664 		kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
665 					   has_payload, payload);
666 		return;
667 	}
668 
669 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
670 	queue:
671 		if (reinject) {
672 			/*
673 			 * On VM-Entry, an exception can be pending if and only
674 			 * if event injection was blocked by nested_run_pending.
675 			 * In that case, however, vcpu_enter_guest() requests an
676 			 * immediate exit, and the guest shouldn't proceed far
677 			 * enough to need reinjection.
678 			 */
679 			WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
680 			vcpu->arch.exception.injected = true;
681 			if (WARN_ON_ONCE(has_payload)) {
682 				/*
683 				 * A reinjected event has already
684 				 * delivered its payload.
685 				 */
686 				has_payload = false;
687 				payload = 0;
688 			}
689 		} else {
690 			vcpu->arch.exception.pending = true;
691 			vcpu->arch.exception.injected = false;
692 		}
693 		vcpu->arch.exception.has_error_code = has_error;
694 		vcpu->arch.exception.vector = nr;
695 		vcpu->arch.exception.error_code = error_code;
696 		vcpu->arch.exception.has_payload = has_payload;
697 		vcpu->arch.exception.payload = payload;
698 		if (!is_guest_mode(vcpu))
699 			kvm_deliver_exception_payload(vcpu,
700 						      &vcpu->arch.exception);
701 		return;
702 	}
703 
704 	/* to check exception */
705 	prev_nr = vcpu->arch.exception.vector;
706 	if (prev_nr == DF_VECTOR) {
707 		/* triple fault -> shutdown */
708 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
709 		return;
710 	}
711 	class1 = exception_class(prev_nr);
712 	class2 = exception_class(nr);
713 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
714 	    (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
715 		/*
716 		 * Synthesize #DF.  Clear the previously injected or pending
717 		 * exception so as not to incorrectly trigger shutdown.
718 		 */
719 		vcpu->arch.exception.injected = false;
720 		vcpu->arch.exception.pending = false;
721 
722 		kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
723 	} else {
724 		/* replace previous exception with a new one in a hope
725 		   that instruction re-execution will regenerate lost
726 		   exception */
727 		goto queue;
728 	}
729 }
730 
kvm_queue_exception(struct kvm_vcpu * vcpu,unsigned nr)731 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
732 {
733 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
734 }
735 EXPORT_SYMBOL_GPL(kvm_queue_exception);
736 
kvm_requeue_exception(struct kvm_vcpu * vcpu,unsigned nr)737 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
738 {
739 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
740 }
741 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
742 
kvm_queue_exception_p(struct kvm_vcpu * vcpu,unsigned nr,unsigned long payload)743 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
744 			   unsigned long payload)
745 {
746 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
747 }
748 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
749 
kvm_queue_exception_e_p(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code,unsigned long payload)750 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
751 				    u32 error_code, unsigned long payload)
752 {
753 	kvm_multiple_exception(vcpu, nr, true, error_code,
754 			       true, payload, false);
755 }
756 
kvm_complete_insn_gp(struct kvm_vcpu * vcpu,int err)757 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
758 {
759 	if (err)
760 		kvm_inject_gp(vcpu, 0);
761 	else
762 		return kvm_skip_emulated_instruction(vcpu);
763 
764 	return 1;
765 }
766 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
767 
complete_emulated_insn_gp(struct kvm_vcpu * vcpu,int err)768 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
769 {
770 	if (err) {
771 		kvm_inject_gp(vcpu, 0);
772 		return 1;
773 	}
774 
775 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
776 				       EMULTYPE_COMPLETE_USER_EXIT);
777 }
778 
kvm_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)779 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
780 {
781 	++vcpu->stat.pf_guest;
782 
783 	/*
784 	 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
785 	 * whether or not L1 wants to intercept "regular" #PF.
786 	 */
787 	if (is_guest_mode(vcpu) && fault->async_page_fault)
788 		kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
789 					   true, fault->error_code,
790 					   true, fault->address);
791 	else
792 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
793 					fault->address);
794 }
795 
kvm_inject_emulated_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)796 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
797 				    struct x86_exception *fault)
798 {
799 	struct kvm_mmu *fault_mmu;
800 	WARN_ON_ONCE(fault->vector != PF_VECTOR);
801 
802 	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
803 					       vcpu->arch.walk_mmu;
804 
805 	/*
806 	 * Invalidate the TLB entry for the faulting address, if it exists,
807 	 * else the access will fault indefinitely (and to emulate hardware).
808 	 */
809 	if ((fault->error_code & PFERR_PRESENT_MASK) &&
810 	    !(fault->error_code & PFERR_RSVD_MASK))
811 		kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address,
812 					KVM_MMU_ROOT_CURRENT);
813 
814 	fault_mmu->inject_page_fault(vcpu, fault);
815 }
816 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
817 
kvm_inject_nmi(struct kvm_vcpu * vcpu)818 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
819 {
820 	atomic_inc(&vcpu->arch.nmi_queued);
821 	kvm_make_request(KVM_REQ_NMI, vcpu);
822 }
823 
kvm_queue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)824 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
825 {
826 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
827 }
828 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
829 
kvm_requeue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)830 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
831 {
832 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
833 }
834 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
835 
836 /*
837  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
838  * a #GP and return false.
839  */
kvm_require_cpl(struct kvm_vcpu * vcpu,int required_cpl)840 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
841 {
842 	if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
843 		return true;
844 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
845 	return false;
846 }
847 
kvm_require_dr(struct kvm_vcpu * vcpu,int dr)848 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
849 {
850 	if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE))
851 		return true;
852 
853 	kvm_queue_exception(vcpu, UD_VECTOR);
854 	return false;
855 }
856 EXPORT_SYMBOL_GPL(kvm_require_dr);
857 
pdptr_rsvd_bits(struct kvm_vcpu * vcpu)858 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
859 {
860 	return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
861 }
862 
863 /*
864  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
865  */
load_pdptrs(struct kvm_vcpu * vcpu,unsigned long cr3)866 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
867 {
868 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
869 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
870 	gpa_t real_gpa;
871 	int i;
872 	int ret;
873 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
874 
875 	/*
876 	 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
877 	 * to an L1 GPA.
878 	 */
879 	real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
880 				     PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
881 	if (real_gpa == INVALID_GPA)
882 		return 0;
883 
884 	/* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
885 	ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
886 				       cr3 & GENMASK(11, 5), sizeof(pdpte));
887 	if (ret < 0)
888 		return 0;
889 
890 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
891 		if ((pdpte[i] & PT_PRESENT_MASK) &&
892 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
893 			return 0;
894 		}
895 	}
896 
897 	/*
898 	 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
899 	 * Shadow page roots need to be reconstructed instead.
900 	 */
901 	if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
902 		kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
903 
904 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
905 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
906 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
907 	vcpu->arch.pdptrs_from_userspace = false;
908 
909 	return 1;
910 }
911 EXPORT_SYMBOL_GPL(load_pdptrs);
912 
kvm_is_valid_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)913 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
914 {
915 #ifdef CONFIG_X86_64
916 	if (cr0 & 0xffffffff00000000UL)
917 		return false;
918 #endif
919 
920 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
921 		return false;
922 
923 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
924 		return false;
925 
926 	return static_call(kvm_x86_is_valid_cr0)(vcpu, cr0);
927 }
928 
kvm_post_set_cr0(struct kvm_vcpu * vcpu,unsigned long old_cr0,unsigned long cr0)929 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
930 {
931 	/*
932 	 * CR0.WP is incorporated into the MMU role, but only for non-nested,
933 	 * indirect shadow MMUs.  If paging is disabled, no updates are needed
934 	 * as there are no permission bits to emulate.  If TDP is enabled, the
935 	 * MMU's metadata needs to be updated, e.g. so that emulating guest
936 	 * translations does the right thing, but there's no need to unload the
937 	 * root as CR0.WP doesn't affect SPTEs.
938 	 */
939 	if ((cr0 ^ old_cr0) == X86_CR0_WP) {
940 		if (!(cr0 & X86_CR0_PG))
941 			return;
942 
943 		if (tdp_enabled) {
944 			kvm_init_mmu(vcpu);
945 			return;
946 		}
947 	}
948 
949 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
950 		kvm_clear_async_pf_completion_queue(vcpu);
951 		kvm_async_pf_hash_reset(vcpu);
952 
953 		/*
954 		 * Clearing CR0.PG is defined to flush the TLB from the guest's
955 		 * perspective.
956 		 */
957 		if (!(cr0 & X86_CR0_PG))
958 			kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
959 	}
960 
961 	if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
962 		kvm_mmu_reset_context(vcpu);
963 
964 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
965 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
966 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
967 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
968 }
969 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
970 
kvm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)971 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
972 {
973 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
974 
975 	if (!kvm_is_valid_cr0(vcpu, cr0))
976 		return 1;
977 
978 	cr0 |= X86_CR0_ET;
979 
980 	/* Write to CR0 reserved bits are ignored, even on Intel. */
981 	cr0 &= ~CR0_RESERVED_BITS;
982 
983 #ifdef CONFIG_X86_64
984 	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
985 	    (cr0 & X86_CR0_PG)) {
986 		int cs_db, cs_l;
987 
988 		if (!is_pae(vcpu))
989 			return 1;
990 		static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
991 		if (cs_l)
992 			return 1;
993 	}
994 #endif
995 	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
996 	    is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
997 	    !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
998 		return 1;
999 
1000 	if (!(cr0 & X86_CR0_PG) &&
1001 	    (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)))
1002 		return 1;
1003 
1004 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
1005 
1006 	kvm_post_set_cr0(vcpu, old_cr0, cr0);
1007 
1008 	return 0;
1009 }
1010 EXPORT_SYMBOL_GPL(kvm_set_cr0);
1011 
kvm_lmsw(struct kvm_vcpu * vcpu,unsigned long msw)1012 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
1013 {
1014 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
1015 }
1016 EXPORT_SYMBOL_GPL(kvm_lmsw);
1017 
kvm_load_guest_xsave_state(struct kvm_vcpu * vcpu)1018 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
1019 {
1020 	if (vcpu->arch.guest_state_protected)
1021 		return;
1022 
1023 	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1024 
1025 		if (vcpu->arch.xcr0 != host_xcr0)
1026 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
1027 
1028 		if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1029 		    vcpu->arch.ia32_xss != host_xss)
1030 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
1031 	}
1032 
1033 	if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1034 	    vcpu->arch.pkru != vcpu->arch.host_pkru &&
1035 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1036 	     kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE)))
1037 		write_pkru(vcpu->arch.pkru);
1038 }
1039 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
1040 
kvm_load_host_xsave_state(struct kvm_vcpu * vcpu)1041 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1042 {
1043 	if (vcpu->arch.guest_state_protected)
1044 		return;
1045 
1046 	if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1047 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1048 	     kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) {
1049 		vcpu->arch.pkru = rdpkru();
1050 		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1051 			write_pkru(vcpu->arch.host_pkru);
1052 	}
1053 
1054 	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1055 
1056 		if (vcpu->arch.xcr0 != host_xcr0)
1057 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
1058 
1059 		if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1060 		    vcpu->arch.ia32_xss != host_xss)
1061 			wrmsrl(MSR_IA32_XSS, host_xss);
1062 	}
1063 
1064 }
1065 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1066 
1067 #ifdef CONFIG_X86_64
kvm_guest_supported_xfd(struct kvm_vcpu * vcpu)1068 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1069 {
1070 	return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1071 }
1072 #endif
1073 
__kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)1074 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1075 {
1076 	u64 xcr0 = xcr;
1077 	u64 old_xcr0 = vcpu->arch.xcr0;
1078 	u64 valid_bits;
1079 
1080 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1081 	if (index != XCR_XFEATURE_ENABLED_MASK)
1082 		return 1;
1083 	if (!(xcr0 & XFEATURE_MASK_FP))
1084 		return 1;
1085 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1086 		return 1;
1087 
1088 	/*
1089 	 * Do not allow the guest to set bits that we do not support
1090 	 * saving.  However, xcr0 bit 0 is always set, even if the
1091 	 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1092 	 */
1093 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1094 	if (xcr0 & ~valid_bits)
1095 		return 1;
1096 
1097 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1098 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1099 		return 1;
1100 
1101 	if (xcr0 & XFEATURE_MASK_AVX512) {
1102 		if (!(xcr0 & XFEATURE_MASK_YMM))
1103 			return 1;
1104 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1105 			return 1;
1106 	}
1107 
1108 	if ((xcr0 & XFEATURE_MASK_XTILE) &&
1109 	    ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1110 		return 1;
1111 
1112 	vcpu->arch.xcr0 = xcr0;
1113 
1114 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1115 		kvm_update_cpuid_runtime(vcpu);
1116 	return 0;
1117 }
1118 
kvm_emulate_xsetbv(struct kvm_vcpu * vcpu)1119 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1120 {
1121 	/* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1122 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1123 	    __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1124 		kvm_inject_gp(vcpu, 0);
1125 		return 1;
1126 	}
1127 
1128 	return kvm_skip_emulated_instruction(vcpu);
1129 }
1130 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1131 
__kvm_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1132 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1133 {
1134 	if (cr4 & cr4_reserved_bits)
1135 		return false;
1136 
1137 	if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1138 		return false;
1139 
1140 	return true;
1141 }
1142 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4);
1143 
kvm_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1144 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1145 {
1146 	return __kvm_is_valid_cr4(vcpu, cr4) &&
1147 	       static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1148 }
1149 
kvm_post_set_cr4(struct kvm_vcpu * vcpu,unsigned long old_cr4,unsigned long cr4)1150 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1151 {
1152 	if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1153 		kvm_mmu_reset_context(vcpu);
1154 
1155 	/*
1156 	 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1157 	 * according to the SDM; however, stale prev_roots could be reused
1158 	 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1159 	 * free them all.  This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1160 	 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1161 	 * so fall through.
1162 	 */
1163 	if (!tdp_enabled &&
1164 	    (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1165 		kvm_mmu_unload(vcpu);
1166 
1167 	/*
1168 	 * The TLB has to be flushed for all PCIDs if any of the following
1169 	 * (architecturally required) changes happen:
1170 	 * - CR4.PCIDE is changed from 1 to 0
1171 	 * - CR4.PGE is toggled
1172 	 *
1173 	 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1174 	 */
1175 	if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1176 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1177 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1178 
1179 	/*
1180 	 * The TLB has to be flushed for the current PCID if any of the
1181 	 * following (architecturally required) changes happen:
1182 	 * - CR4.SMEP is changed from 0 to 1
1183 	 * - CR4.PAE is toggled
1184 	 */
1185 	else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1186 		 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1187 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1188 
1189 }
1190 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1191 
kvm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1192 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1193 {
1194 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
1195 
1196 	if (!kvm_is_valid_cr4(vcpu, cr4))
1197 		return 1;
1198 
1199 	if (is_long_mode(vcpu)) {
1200 		if (!(cr4 & X86_CR4_PAE))
1201 			return 1;
1202 		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1203 			return 1;
1204 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1205 		   && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1206 		   && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1207 		return 1;
1208 
1209 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1210 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1211 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1212 			return 1;
1213 	}
1214 
1215 	static_call(kvm_x86_set_cr4)(vcpu, cr4);
1216 
1217 	kvm_post_set_cr4(vcpu, old_cr4, cr4);
1218 
1219 	return 0;
1220 }
1221 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1222 
kvm_invalidate_pcid(struct kvm_vcpu * vcpu,unsigned long pcid)1223 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1224 {
1225 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1226 	unsigned long roots_to_free = 0;
1227 	int i;
1228 
1229 	/*
1230 	 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1231 	 * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1232 	 * also via the emulator.  KVM's TDP page tables are not in the scope of
1233 	 * the invalidation, but the guest's TLB entries need to be flushed as
1234 	 * the CPU may have cached entries in its TLB for the target PCID.
1235 	 */
1236 	if (unlikely(tdp_enabled)) {
1237 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1238 		return;
1239 	}
1240 
1241 	/*
1242 	 * If neither the current CR3 nor any of the prev_roots use the given
1243 	 * PCID, then nothing needs to be done here because a resync will
1244 	 * happen anyway before switching to any other CR3.
1245 	 */
1246 	if (kvm_get_active_pcid(vcpu) == pcid) {
1247 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1248 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1249 	}
1250 
1251 	/*
1252 	 * If PCID is disabled, there is no need to free prev_roots even if the
1253 	 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1254 	 * with PCIDE=0.
1255 	 */
1256 	if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))
1257 		return;
1258 
1259 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1260 		if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1261 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1262 
1263 	kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1264 }
1265 
kvm_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)1266 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1267 {
1268 	bool skip_tlb_flush = false;
1269 	unsigned long pcid = 0;
1270 #ifdef CONFIG_X86_64
1271 	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) {
1272 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1273 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1274 		pcid = cr3 & X86_CR3_PCID_MASK;
1275 	}
1276 #endif
1277 
1278 	/* PDPTRs are always reloaded for PAE paging. */
1279 	if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1280 		goto handle_tlb_flush;
1281 
1282 	/*
1283 	 * Do not condition the GPA check on long mode, this helper is used to
1284 	 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1285 	 * the current vCPU mode is accurate.
1286 	 */
1287 	if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1288 		return 1;
1289 
1290 	if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1291 		return 1;
1292 
1293 	if (cr3 != kvm_read_cr3(vcpu))
1294 		kvm_mmu_new_pgd(vcpu, cr3);
1295 
1296 	vcpu->arch.cr3 = cr3;
1297 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1298 	/* Do not call post_set_cr3, we do not get here for confidential guests.  */
1299 
1300 handle_tlb_flush:
1301 	/*
1302 	 * A load of CR3 that flushes the TLB flushes only the current PCID,
1303 	 * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1304 	 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1305 	 * and it's impossible to use a non-zero PCID when PCID is disabled,
1306 	 * i.e. only PCID=0 can be relevant.
1307 	 */
1308 	if (!skip_tlb_flush)
1309 		kvm_invalidate_pcid(vcpu, pcid);
1310 
1311 	return 0;
1312 }
1313 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1314 
kvm_set_cr8(struct kvm_vcpu * vcpu,unsigned long cr8)1315 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1316 {
1317 	if (cr8 & CR8_RESERVED_BITS)
1318 		return 1;
1319 	if (lapic_in_kernel(vcpu))
1320 		kvm_lapic_set_tpr(vcpu, cr8);
1321 	else
1322 		vcpu->arch.cr8 = cr8;
1323 	return 0;
1324 }
1325 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1326 
kvm_get_cr8(struct kvm_vcpu * vcpu)1327 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1328 {
1329 	if (lapic_in_kernel(vcpu))
1330 		return kvm_lapic_get_cr8(vcpu);
1331 	else
1332 		return vcpu->arch.cr8;
1333 }
1334 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1335 
kvm_update_dr0123(struct kvm_vcpu * vcpu)1336 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1337 {
1338 	int i;
1339 
1340 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1341 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1342 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1343 	}
1344 }
1345 
kvm_update_dr7(struct kvm_vcpu * vcpu)1346 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1347 {
1348 	unsigned long dr7;
1349 
1350 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1351 		dr7 = vcpu->arch.guest_debug_dr7;
1352 	else
1353 		dr7 = vcpu->arch.dr7;
1354 	static_call(kvm_x86_set_dr7)(vcpu, dr7);
1355 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1356 	if (dr7 & DR7_BP_EN_MASK)
1357 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1358 }
1359 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1360 
kvm_dr6_fixed(struct kvm_vcpu * vcpu)1361 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1362 {
1363 	u64 fixed = DR6_FIXED_1;
1364 
1365 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1366 		fixed |= DR6_RTM;
1367 
1368 	if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1369 		fixed |= DR6_BUS_LOCK;
1370 	return fixed;
1371 }
1372 
kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)1373 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1374 {
1375 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1376 
1377 	switch (dr) {
1378 	case 0 ... 3:
1379 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1380 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1381 			vcpu->arch.eff_db[dr] = val;
1382 		break;
1383 	case 4:
1384 	case 6:
1385 		if (!kvm_dr6_valid(val))
1386 			return 1; /* #GP */
1387 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1388 		break;
1389 	case 5:
1390 	default: /* 7 */
1391 		if (!kvm_dr7_valid(val))
1392 			return 1; /* #GP */
1393 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1394 		kvm_update_dr7(vcpu);
1395 		break;
1396 	}
1397 
1398 	return 0;
1399 }
1400 EXPORT_SYMBOL_GPL(kvm_set_dr);
1401 
kvm_get_dr(struct kvm_vcpu * vcpu,int dr,unsigned long * val)1402 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1403 {
1404 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1405 
1406 	switch (dr) {
1407 	case 0 ... 3:
1408 		*val = vcpu->arch.db[array_index_nospec(dr, size)];
1409 		break;
1410 	case 4:
1411 	case 6:
1412 		*val = vcpu->arch.dr6;
1413 		break;
1414 	case 5:
1415 	default: /* 7 */
1416 		*val = vcpu->arch.dr7;
1417 		break;
1418 	}
1419 }
1420 EXPORT_SYMBOL_GPL(kvm_get_dr);
1421 
kvm_emulate_rdpmc(struct kvm_vcpu * vcpu)1422 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1423 {
1424 	u32 ecx = kvm_rcx_read(vcpu);
1425 	u64 data;
1426 
1427 	if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1428 		kvm_inject_gp(vcpu, 0);
1429 		return 1;
1430 	}
1431 
1432 	kvm_rax_write(vcpu, (u32)data);
1433 	kvm_rdx_write(vcpu, data >> 32);
1434 	return kvm_skip_emulated_instruction(vcpu);
1435 }
1436 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1437 
1438 /*
1439  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track
1440  * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS,
1441  * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.  msrs_to_save holds MSRs that
1442  * require host support, i.e. should be probed via RDMSR.  emulated_msrs holds
1443  * MSRs that KVM emulates without strictly requiring host support.
1444  * msr_based_features holds MSRs that enumerate features, i.e. are effectively
1445  * CPUID leafs.  Note, msr_based_features isn't mutually exclusive with
1446  * msrs_to_save and emulated_msrs.
1447  */
1448 
1449 static const u32 msrs_to_save_base[] = {
1450 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1451 	MSR_STAR,
1452 #ifdef CONFIG_X86_64
1453 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1454 #endif
1455 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1456 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1457 	MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL,
1458 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1459 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1460 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1461 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1462 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1463 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1464 	MSR_IA32_UMWAIT_CONTROL,
1465 
1466 	MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1467 };
1468 
1469 static const u32 msrs_to_save_pmu[] = {
1470 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1471 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1472 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1473 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1474 	MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
1475 
1476 	/* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */
1477 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1478 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1479 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1480 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1481 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1482 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1483 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1484 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1485 
1486 	MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1487 	MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1488 
1489 	/* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */
1490 	MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1491 	MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1492 	MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1493 	MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1494 
1495 	MSR_AMD64_PERF_CNTR_GLOBAL_CTL,
1496 	MSR_AMD64_PERF_CNTR_GLOBAL_STATUS,
1497 	MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
1498 };
1499 
1500 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) +
1501 			ARRAY_SIZE(msrs_to_save_pmu)];
1502 static unsigned num_msrs_to_save;
1503 
1504 static const u32 emulated_msrs_all[] = {
1505 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1506 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1507 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1508 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1509 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1510 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1511 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1512 	HV_X64_MSR_RESET,
1513 	HV_X64_MSR_VP_INDEX,
1514 	HV_X64_MSR_VP_RUNTIME,
1515 	HV_X64_MSR_SCONTROL,
1516 	HV_X64_MSR_STIMER0_CONFIG,
1517 	HV_X64_MSR_VP_ASSIST_PAGE,
1518 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1519 	HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL,
1520 	HV_X64_MSR_SYNDBG_OPTIONS,
1521 	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1522 	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1523 	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1524 
1525 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1526 	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1527 
1528 	MSR_IA32_TSC_ADJUST,
1529 	MSR_IA32_TSC_DEADLINE,
1530 	MSR_IA32_ARCH_CAPABILITIES,
1531 	MSR_IA32_PERF_CAPABILITIES,
1532 	MSR_IA32_MISC_ENABLE,
1533 	MSR_IA32_MCG_STATUS,
1534 	MSR_IA32_MCG_CTL,
1535 	MSR_IA32_MCG_EXT_CTL,
1536 	MSR_IA32_SMBASE,
1537 	MSR_SMI_COUNT,
1538 	MSR_PLATFORM_INFO,
1539 	MSR_MISC_FEATURES_ENABLES,
1540 	MSR_AMD64_VIRT_SPEC_CTRL,
1541 	MSR_AMD64_TSC_RATIO,
1542 	MSR_IA32_POWER_CTL,
1543 	MSR_IA32_UCODE_REV,
1544 
1545 	/*
1546 	 * KVM always supports the "true" VMX control MSRs, even if the host
1547 	 * does not.  The VMX MSRs as a whole are considered "emulated" as KVM
1548 	 * doesn't strictly require them to exist in the host (ignoring that
1549 	 * KVM would refuse to load in the first place if the core set of MSRs
1550 	 * aren't supported).
1551 	 */
1552 	MSR_IA32_VMX_BASIC,
1553 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1554 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1555 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1556 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1557 	MSR_IA32_VMX_MISC,
1558 	MSR_IA32_VMX_CR0_FIXED0,
1559 	MSR_IA32_VMX_CR4_FIXED0,
1560 	MSR_IA32_VMX_VMCS_ENUM,
1561 	MSR_IA32_VMX_PROCBASED_CTLS2,
1562 	MSR_IA32_VMX_EPT_VPID_CAP,
1563 	MSR_IA32_VMX_VMFUNC,
1564 
1565 	MSR_K7_HWCR,
1566 	MSR_KVM_POLL_CONTROL,
1567 };
1568 
1569 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1570 static unsigned num_emulated_msrs;
1571 
1572 /*
1573  * List of MSRs that control the existence of MSR-based features, i.e. MSRs
1574  * that are effectively CPUID leafs.  VMX MSRs are also included in the set of
1575  * feature MSRs, but are handled separately to allow expedited lookups.
1576  */
1577 static const u32 msr_based_features_all_except_vmx[] = {
1578 	MSR_AMD64_DE_CFG,
1579 	MSR_IA32_UCODE_REV,
1580 	MSR_IA32_ARCH_CAPABILITIES,
1581 	MSR_IA32_PERF_CAPABILITIES,
1582 };
1583 
1584 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) +
1585 			      (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)];
1586 static unsigned int num_msr_based_features;
1587 
1588 /*
1589  * All feature MSRs except uCode revID, which tracks the currently loaded uCode
1590  * patch, are immutable once the vCPU model is defined.
1591  */
kvm_is_immutable_feature_msr(u32 msr)1592 static bool kvm_is_immutable_feature_msr(u32 msr)
1593 {
1594 	int i;
1595 
1596 	if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR)
1597 		return true;
1598 
1599 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) {
1600 		if (msr == msr_based_features_all_except_vmx[i])
1601 			return msr != MSR_IA32_UCODE_REV;
1602 	}
1603 
1604 	return false;
1605 }
1606 
1607 /*
1608  * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1609  * does not yet virtualize. These include:
1610  *   10 - MISC_PACKAGE_CTRLS
1611  *   11 - ENERGY_FILTERING_CTL
1612  *   12 - DOITM
1613  *   18 - FB_CLEAR_CTRL
1614  *   21 - XAPIC_DISABLE_STATUS
1615  *   23 - OVERCLOCKING_STATUS
1616  */
1617 
1618 #define KVM_SUPPORTED_ARCH_CAP \
1619 	(ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1620 	 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1621 	 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1622 	 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1623 	 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO | \
1624 	 ARCH_CAP_RFDS_NO | ARCH_CAP_RFDS_CLEAR | ARCH_CAP_BHI_NO | ARCH_CAP_ITS_NO)
1625 
kvm_get_arch_capabilities(void)1626 static u64 kvm_get_arch_capabilities(void)
1627 {
1628 	u64 data = host_arch_capabilities & KVM_SUPPORTED_ARCH_CAP;
1629 
1630 	/*
1631 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1632 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1633 	 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1634 	 * L1 guests, so it need not worry about its own (L2) guests.
1635 	 */
1636 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1637 
1638 	/*
1639 	 * If we're doing cache flushes (either "always" or "cond")
1640 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1641 	 * If an outer hypervisor is doing the cache flush for us
1642 	 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that
1643 	 * capability to the guest too, and if EPT is disabled we're not
1644 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1645 	 * require a nested hypervisor to do a flush of its own.
1646 	 */
1647 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1648 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1649 
1650 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1651 		data |= ARCH_CAP_RDCL_NO;
1652 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1653 		data |= ARCH_CAP_SSB_NO;
1654 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1655 		data |= ARCH_CAP_MDS_NO;
1656 	if (!boot_cpu_has_bug(X86_BUG_RFDS))
1657 		data |= ARCH_CAP_RFDS_NO;
1658 	if (!boot_cpu_has_bug(X86_BUG_ITS))
1659 		data |= ARCH_CAP_ITS_NO;
1660 
1661 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
1662 		/*
1663 		 * If RTM=0 because the kernel has disabled TSX, the host might
1664 		 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1665 		 * and therefore knows that there cannot be TAA) but keep
1666 		 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1667 		 * and we want to allow migrating those guests to tsx=off hosts.
1668 		 */
1669 		data &= ~ARCH_CAP_TAA_NO;
1670 	} else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1671 		data |= ARCH_CAP_TAA_NO;
1672 	} else {
1673 		/*
1674 		 * Nothing to do here; we emulate TSX_CTRL if present on the
1675 		 * host so the guest can choose between disabling TSX or
1676 		 * using VERW to clear CPU buffers.
1677 		 */
1678 	}
1679 
1680 	if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated())
1681 		data |= ARCH_CAP_GDS_NO;
1682 
1683 	return data;
1684 }
1685 
kvm_get_msr_feature(struct kvm_msr_entry * msr)1686 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1687 {
1688 	switch (msr->index) {
1689 	case MSR_IA32_ARCH_CAPABILITIES:
1690 		msr->data = kvm_get_arch_capabilities();
1691 		break;
1692 	case MSR_IA32_PERF_CAPABILITIES:
1693 		msr->data = kvm_caps.supported_perf_cap;
1694 		break;
1695 	case MSR_IA32_UCODE_REV:
1696 		rdmsrl_safe(msr->index, &msr->data);
1697 		break;
1698 	default:
1699 		return static_call(kvm_x86_get_msr_feature)(msr);
1700 	}
1701 	return 0;
1702 }
1703 
do_get_msr_feature(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1704 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1705 {
1706 	struct kvm_msr_entry msr;
1707 	int r;
1708 
1709 	msr.index = index;
1710 	r = kvm_get_msr_feature(&msr);
1711 
1712 	if (r == KVM_MSR_RET_INVALID) {
1713 		/* Unconditionally clear the output for simplicity */
1714 		*data = 0;
1715 		if (kvm_msr_ignored_check(index, 0, false))
1716 			r = 0;
1717 	}
1718 
1719 	if (r)
1720 		return r;
1721 
1722 	*data = msr.data;
1723 
1724 	return 0;
1725 }
1726 
__kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1727 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1728 {
1729 	if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS))
1730 		return false;
1731 
1732 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1733 		return false;
1734 
1735 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1736 		return false;
1737 
1738 	if (efer & (EFER_LME | EFER_LMA) &&
1739 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1740 		return false;
1741 
1742 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1743 		return false;
1744 
1745 	return true;
1746 
1747 }
kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1748 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1749 {
1750 	if (efer & efer_reserved_bits)
1751 		return false;
1752 
1753 	return __kvm_valid_efer(vcpu, efer);
1754 }
1755 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1756 
set_efer(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1757 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1758 {
1759 	u64 old_efer = vcpu->arch.efer;
1760 	u64 efer = msr_info->data;
1761 	int r;
1762 
1763 	if (efer & efer_reserved_bits)
1764 		return 1;
1765 
1766 	if (!msr_info->host_initiated) {
1767 		if (!__kvm_valid_efer(vcpu, efer))
1768 			return 1;
1769 
1770 		if (is_paging(vcpu) &&
1771 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1772 			return 1;
1773 	}
1774 
1775 	efer &= ~EFER_LMA;
1776 	efer |= vcpu->arch.efer & EFER_LMA;
1777 
1778 	r = static_call(kvm_x86_set_efer)(vcpu, efer);
1779 	if (r) {
1780 		WARN_ON(r > 0);
1781 		return r;
1782 	}
1783 
1784 	if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1785 		kvm_mmu_reset_context(vcpu);
1786 
1787 	return 0;
1788 }
1789 
kvm_enable_efer_bits(u64 mask)1790 void kvm_enable_efer_bits(u64 mask)
1791 {
1792        efer_reserved_bits &= ~mask;
1793 }
1794 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1795 
kvm_msr_allowed(struct kvm_vcpu * vcpu,u32 index,u32 type)1796 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1797 {
1798 	struct kvm_x86_msr_filter *msr_filter;
1799 	struct msr_bitmap_range *ranges;
1800 	struct kvm *kvm = vcpu->kvm;
1801 	bool allowed;
1802 	int idx;
1803 	u32 i;
1804 
1805 	/* x2APIC MSRs do not support filtering. */
1806 	if (index >= 0x800 && index <= 0x8ff)
1807 		return true;
1808 
1809 	idx = srcu_read_lock(&kvm->srcu);
1810 
1811 	msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1812 	if (!msr_filter) {
1813 		allowed = true;
1814 		goto out;
1815 	}
1816 
1817 	allowed = msr_filter->default_allow;
1818 	ranges = msr_filter->ranges;
1819 
1820 	for (i = 0; i < msr_filter->count; i++) {
1821 		u32 start = ranges[i].base;
1822 		u32 end = start + ranges[i].nmsrs;
1823 		u32 flags = ranges[i].flags;
1824 		unsigned long *bitmap = ranges[i].bitmap;
1825 
1826 		if ((index >= start) && (index < end) && (flags & type)) {
1827 			allowed = test_bit(index - start, bitmap);
1828 			break;
1829 		}
1830 	}
1831 
1832 out:
1833 	srcu_read_unlock(&kvm->srcu, idx);
1834 
1835 	return allowed;
1836 }
1837 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1838 
1839 /*
1840  * Write @data into the MSR specified by @index.  Select MSR specific fault
1841  * checks are bypassed if @host_initiated is %true.
1842  * Returns 0 on success, non-0 otherwise.
1843  * Assumes vcpu_load() was already called.
1844  */
__kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1845 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1846 			 bool host_initiated)
1847 {
1848 	struct msr_data msr;
1849 
1850 	switch (index) {
1851 	case MSR_FS_BASE:
1852 	case MSR_GS_BASE:
1853 	case MSR_KERNEL_GS_BASE:
1854 	case MSR_CSTAR:
1855 	case MSR_LSTAR:
1856 		if (is_noncanonical_address(data, vcpu))
1857 			return 1;
1858 		break;
1859 	case MSR_IA32_SYSENTER_EIP:
1860 	case MSR_IA32_SYSENTER_ESP:
1861 		/*
1862 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1863 		 * non-canonical address is written on Intel but not on
1864 		 * AMD (which ignores the top 32-bits, because it does
1865 		 * not implement 64-bit SYSENTER).
1866 		 *
1867 		 * 64-bit code should hence be able to write a non-canonical
1868 		 * value on AMD.  Making the address canonical ensures that
1869 		 * vmentry does not fail on Intel after writing a non-canonical
1870 		 * value, and that something deterministic happens if the guest
1871 		 * invokes 64-bit SYSENTER.
1872 		 */
1873 		data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1874 		break;
1875 	case MSR_TSC_AUX:
1876 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1877 			return 1;
1878 
1879 		if (!host_initiated &&
1880 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1881 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1882 			return 1;
1883 
1884 		/*
1885 		 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1886 		 * incomplete and conflicting architectural behavior.  Current
1887 		 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1888 		 * reserved and always read as zeros.  Enforce Intel's reserved
1889 		 * bits check if and only if the guest CPU is Intel, and clear
1890 		 * the bits in all other cases.  This ensures cross-vendor
1891 		 * migration will provide consistent behavior for the guest.
1892 		 */
1893 		if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1894 			return 1;
1895 
1896 		data = (u32)data;
1897 		break;
1898 	}
1899 
1900 	msr.data = data;
1901 	msr.index = index;
1902 	msr.host_initiated = host_initiated;
1903 
1904 	return static_call(kvm_x86_set_msr)(vcpu, &msr);
1905 }
1906 
kvm_set_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1907 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1908 				     u32 index, u64 data, bool host_initiated)
1909 {
1910 	int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1911 
1912 	if (ret == KVM_MSR_RET_INVALID)
1913 		if (kvm_msr_ignored_check(index, data, true))
1914 			ret = 0;
1915 
1916 	return ret;
1917 }
1918 
1919 /*
1920  * Read the MSR specified by @index into @data.  Select MSR specific fault
1921  * checks are bypassed if @host_initiated is %true.
1922  * Returns 0 on success, non-0 otherwise.
1923  * Assumes vcpu_load() was already called.
1924  */
__kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1925 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1926 		  bool host_initiated)
1927 {
1928 	struct msr_data msr;
1929 	int ret;
1930 
1931 	switch (index) {
1932 	case MSR_TSC_AUX:
1933 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1934 			return 1;
1935 
1936 		if (!host_initiated &&
1937 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1938 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1939 			return 1;
1940 		break;
1941 	}
1942 
1943 	msr.index = index;
1944 	msr.host_initiated = host_initiated;
1945 
1946 	ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1947 	if (!ret)
1948 		*data = msr.data;
1949 	return ret;
1950 }
1951 
kvm_get_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1952 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1953 				     u32 index, u64 *data, bool host_initiated)
1954 {
1955 	int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1956 
1957 	if (ret == KVM_MSR_RET_INVALID) {
1958 		/* Unconditionally clear *data for simplicity */
1959 		*data = 0;
1960 		if (kvm_msr_ignored_check(index, 0, false))
1961 			ret = 0;
1962 	}
1963 
1964 	return ret;
1965 }
1966 
kvm_get_msr_with_filter(struct kvm_vcpu * vcpu,u32 index,u64 * data)1967 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1968 {
1969 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1970 		return KVM_MSR_RET_FILTERED;
1971 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1972 }
1973 
kvm_set_msr_with_filter(struct kvm_vcpu * vcpu,u32 index,u64 data)1974 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1975 {
1976 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1977 		return KVM_MSR_RET_FILTERED;
1978 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1979 }
1980 
kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data)1981 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1982 {
1983 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1984 }
1985 EXPORT_SYMBOL_GPL(kvm_get_msr);
1986 
kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data)1987 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1988 {
1989 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1990 }
1991 EXPORT_SYMBOL_GPL(kvm_set_msr);
1992 
complete_userspace_rdmsr(struct kvm_vcpu * vcpu)1993 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1994 {
1995 	if (!vcpu->run->msr.error) {
1996 		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1997 		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1998 	}
1999 }
2000 
complete_emulated_msr_access(struct kvm_vcpu * vcpu)2001 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
2002 {
2003 	return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
2004 }
2005 
complete_emulated_rdmsr(struct kvm_vcpu * vcpu)2006 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
2007 {
2008 	complete_userspace_rdmsr(vcpu);
2009 	return complete_emulated_msr_access(vcpu);
2010 }
2011 
complete_fast_msr_access(struct kvm_vcpu * vcpu)2012 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
2013 {
2014 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
2015 }
2016 
complete_fast_rdmsr(struct kvm_vcpu * vcpu)2017 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
2018 {
2019 	complete_userspace_rdmsr(vcpu);
2020 	return complete_fast_msr_access(vcpu);
2021 }
2022 
kvm_msr_reason(int r)2023 static u64 kvm_msr_reason(int r)
2024 {
2025 	switch (r) {
2026 	case KVM_MSR_RET_INVALID:
2027 		return KVM_MSR_EXIT_REASON_UNKNOWN;
2028 	case KVM_MSR_RET_FILTERED:
2029 		return KVM_MSR_EXIT_REASON_FILTER;
2030 	default:
2031 		return KVM_MSR_EXIT_REASON_INVAL;
2032 	}
2033 }
2034 
kvm_msr_user_space(struct kvm_vcpu * vcpu,u32 index,u32 exit_reason,u64 data,int (* completion)(struct kvm_vcpu * vcpu),int r)2035 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
2036 			      u32 exit_reason, u64 data,
2037 			      int (*completion)(struct kvm_vcpu *vcpu),
2038 			      int r)
2039 {
2040 	u64 msr_reason = kvm_msr_reason(r);
2041 
2042 	/* Check if the user wanted to know about this MSR fault */
2043 	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
2044 		return 0;
2045 
2046 	vcpu->run->exit_reason = exit_reason;
2047 	vcpu->run->msr.error = 0;
2048 	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2049 	vcpu->run->msr.reason = msr_reason;
2050 	vcpu->run->msr.index = index;
2051 	vcpu->run->msr.data = data;
2052 	vcpu->arch.complete_userspace_io = completion;
2053 
2054 	return 1;
2055 }
2056 
kvm_emulate_rdmsr(struct kvm_vcpu * vcpu)2057 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2058 {
2059 	u32 ecx = kvm_rcx_read(vcpu);
2060 	u64 data;
2061 	int r;
2062 
2063 	r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2064 
2065 	if (!r) {
2066 		trace_kvm_msr_read(ecx, data);
2067 
2068 		kvm_rax_write(vcpu, data & -1u);
2069 		kvm_rdx_write(vcpu, (data >> 32) & -1u);
2070 	} else {
2071 		/* MSR read failed? See if we should ask user space */
2072 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2073 				       complete_fast_rdmsr, r))
2074 			return 0;
2075 		trace_kvm_msr_read_ex(ecx);
2076 	}
2077 
2078 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2079 }
2080 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2081 
kvm_emulate_wrmsr(struct kvm_vcpu * vcpu)2082 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2083 {
2084 	u32 ecx = kvm_rcx_read(vcpu);
2085 	u64 data = kvm_read_edx_eax(vcpu);
2086 	int r;
2087 
2088 	r = kvm_set_msr_with_filter(vcpu, ecx, data);
2089 
2090 	if (!r) {
2091 		trace_kvm_msr_write(ecx, data);
2092 	} else {
2093 		/* MSR write failed? See if we should ask user space */
2094 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2095 				       complete_fast_msr_access, r))
2096 			return 0;
2097 		/* Signal all other negative errors to userspace */
2098 		if (r < 0)
2099 			return r;
2100 		trace_kvm_msr_write_ex(ecx, data);
2101 	}
2102 
2103 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2104 }
2105 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2106 
kvm_emulate_as_nop(struct kvm_vcpu * vcpu)2107 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2108 {
2109 	return kvm_skip_emulated_instruction(vcpu);
2110 }
2111 
kvm_emulate_invd(struct kvm_vcpu * vcpu)2112 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2113 {
2114 	/* Treat an INVD instruction as a NOP and just skip it. */
2115 	return kvm_emulate_as_nop(vcpu);
2116 }
2117 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2118 
kvm_handle_invalid_op(struct kvm_vcpu * vcpu)2119 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2120 {
2121 	kvm_queue_exception(vcpu, UD_VECTOR);
2122 	return 1;
2123 }
2124 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2125 
2126 
kvm_emulate_monitor_mwait(struct kvm_vcpu * vcpu,const char * insn)2127 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2128 {
2129 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) &&
2130 	    !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT))
2131 		return kvm_handle_invalid_op(vcpu);
2132 
2133 	pr_warn_once("%s instruction emulated as NOP!\n", insn);
2134 	return kvm_emulate_as_nop(vcpu);
2135 }
kvm_emulate_mwait(struct kvm_vcpu * vcpu)2136 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2137 {
2138 	return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2139 }
2140 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2141 
kvm_emulate_monitor(struct kvm_vcpu * vcpu)2142 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2143 {
2144 	return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2145 }
2146 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2147 
kvm_vcpu_exit_request(struct kvm_vcpu * vcpu)2148 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2149 {
2150 	xfer_to_guest_mode_prepare();
2151 	return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2152 		xfer_to_guest_mode_work_pending();
2153 }
2154 
2155 /*
2156  * The fast path for frequent and performance sensitive wrmsr emulation,
2157  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2158  * the latency of virtual IPI by avoiding the expensive bits of transitioning
2159  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2160  * other cases which must be called after interrupts are enabled on the host.
2161  */
handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu * vcpu,u64 data)2162 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2163 {
2164 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2165 		return 1;
2166 
2167 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2168 	    ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2169 	    ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2170 	    ((u32)(data >> 32) != X2APIC_BROADCAST))
2171 		return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2172 
2173 	return 1;
2174 }
2175 
handle_fastpath_set_tscdeadline(struct kvm_vcpu * vcpu,u64 data)2176 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2177 {
2178 	if (!kvm_can_use_hv_timer(vcpu))
2179 		return 1;
2180 
2181 	kvm_set_lapic_tscdeadline_msr(vcpu, data);
2182 	return 0;
2183 }
2184 
handle_fastpath_set_msr_irqoff(struct kvm_vcpu * vcpu)2185 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2186 {
2187 	u32 msr = kvm_rcx_read(vcpu);
2188 	u64 data;
2189 	fastpath_t ret = EXIT_FASTPATH_NONE;
2190 
2191 	kvm_vcpu_srcu_read_lock(vcpu);
2192 
2193 	switch (msr) {
2194 	case APIC_BASE_MSR + (APIC_ICR >> 4):
2195 		data = kvm_read_edx_eax(vcpu);
2196 		if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2197 			kvm_skip_emulated_instruction(vcpu);
2198 			ret = EXIT_FASTPATH_EXIT_HANDLED;
2199 		}
2200 		break;
2201 	case MSR_IA32_TSC_DEADLINE:
2202 		data = kvm_read_edx_eax(vcpu);
2203 		if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2204 			kvm_skip_emulated_instruction(vcpu);
2205 			ret = EXIT_FASTPATH_REENTER_GUEST;
2206 		}
2207 		break;
2208 	default:
2209 		break;
2210 	}
2211 
2212 	if (ret != EXIT_FASTPATH_NONE)
2213 		trace_kvm_msr_write(msr, data);
2214 
2215 	kvm_vcpu_srcu_read_unlock(vcpu);
2216 
2217 	return ret;
2218 }
2219 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2220 
2221 /*
2222  * Adapt set_msr() to msr_io()'s calling convention
2223  */
do_get_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)2224 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2225 {
2226 	return kvm_get_msr_ignored_check(vcpu, index, data, true);
2227 }
2228 
do_set_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)2229 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2230 {
2231 	u64 val;
2232 
2233 	/*
2234 	 * Disallow writes to immutable feature MSRs after KVM_RUN.  KVM does
2235 	 * not support modifying the guest vCPU model on the fly, e.g. changing
2236 	 * the nVMX capabilities while L2 is running is nonsensical.  Ignore
2237 	 * writes of the same value, e.g. to allow userspace to blindly stuff
2238 	 * all MSRs when emulating RESET.
2239 	 */
2240 	if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index)) {
2241 		if (do_get_msr(vcpu, index, &val) || *data != val)
2242 			return -EINVAL;
2243 
2244 		return 0;
2245 	}
2246 
2247 	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2248 }
2249 
2250 #ifdef CONFIG_X86_64
2251 struct pvclock_clock {
2252 	int vclock_mode;
2253 	u64 cycle_last;
2254 	u64 mask;
2255 	u32 mult;
2256 	u32 shift;
2257 	u64 base_cycles;
2258 	u64 offset;
2259 };
2260 
2261 struct pvclock_gtod_data {
2262 	seqcount_t	seq;
2263 
2264 	struct pvclock_clock clock; /* extract of a clocksource struct */
2265 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2266 
2267 	ktime_t		offs_boot;
2268 	u64		wall_time_sec;
2269 };
2270 
2271 static struct pvclock_gtod_data pvclock_gtod_data;
2272 
update_pvclock_gtod(struct timekeeper * tk)2273 static void update_pvclock_gtod(struct timekeeper *tk)
2274 {
2275 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2276 
2277 	write_seqcount_begin(&vdata->seq);
2278 
2279 	/* copy pvclock gtod data */
2280 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
2281 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
2282 	vdata->clock.mask		= tk->tkr_mono.mask;
2283 	vdata->clock.mult		= tk->tkr_mono.mult;
2284 	vdata->clock.shift		= tk->tkr_mono.shift;
2285 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
2286 	vdata->clock.offset		= tk->tkr_mono.base;
2287 
2288 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
2289 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
2290 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
2291 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
2292 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
2293 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
2294 	vdata->raw_clock.offset		= tk->tkr_raw.base;
2295 
2296 	vdata->wall_time_sec            = tk->xtime_sec;
2297 
2298 	vdata->offs_boot		= tk->offs_boot;
2299 
2300 	write_seqcount_end(&vdata->seq);
2301 }
2302 
get_kvmclock_base_ns(void)2303 static s64 get_kvmclock_base_ns(void)
2304 {
2305 	/* Count up from boot time, but with the frequency of the raw clock.  */
2306 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2307 }
2308 #else
get_kvmclock_base_ns(void)2309 static s64 get_kvmclock_base_ns(void)
2310 {
2311 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2312 	return ktime_get_boottime_ns();
2313 }
2314 #endif
2315 
kvm_write_wall_clock(struct kvm * kvm,gpa_t wall_clock,int sec_hi_ofs)2316 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2317 {
2318 	int version;
2319 	int r;
2320 	struct pvclock_wall_clock wc;
2321 	u32 wc_sec_hi;
2322 	u64 wall_nsec;
2323 
2324 	if (!wall_clock)
2325 		return;
2326 
2327 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2328 	if (r)
2329 		return;
2330 
2331 	if (version & 1)
2332 		++version;  /* first time write, random junk */
2333 
2334 	++version;
2335 
2336 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2337 		return;
2338 
2339 	/*
2340 	 * The guest calculates current wall clock time by adding
2341 	 * system time (updated by kvm_guest_time_update below) to the
2342 	 * wall clock specified here.  We do the reverse here.
2343 	 */
2344 	wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2345 
2346 	wc.nsec = do_div(wall_nsec, 1000000000);
2347 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2348 	wc.version = version;
2349 
2350 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2351 
2352 	if (sec_hi_ofs) {
2353 		wc_sec_hi = wall_nsec >> 32;
2354 		kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2355 				&wc_sec_hi, sizeof(wc_sec_hi));
2356 	}
2357 
2358 	version++;
2359 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2360 }
2361 
kvm_write_system_time(struct kvm_vcpu * vcpu,gpa_t system_time,bool old_msr,bool host_initiated)2362 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2363 				  bool old_msr, bool host_initiated)
2364 {
2365 	struct kvm_arch *ka = &vcpu->kvm->arch;
2366 
2367 	if (vcpu->vcpu_id == 0 && !host_initiated) {
2368 		if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2369 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2370 
2371 		ka->boot_vcpu_runs_old_kvmclock = old_msr;
2372 	}
2373 
2374 	vcpu->arch.time = system_time;
2375 	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2376 
2377 	/* we verify if the enable bit is set... */
2378 	if (system_time & 1)
2379 		kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
2380 				 sizeof(struct pvclock_vcpu_time_info));
2381 	else
2382 		kvm_gpc_deactivate(&vcpu->arch.pv_time);
2383 
2384 	return;
2385 }
2386 
div_frac(uint32_t dividend,uint32_t divisor)2387 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2388 {
2389 	do_shl32_div32(dividend, divisor);
2390 	return dividend;
2391 }
2392 
kvm_get_time_scale(uint64_t scaled_hz,uint64_t base_hz,s8 * pshift,u32 * pmultiplier)2393 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2394 			       s8 *pshift, u32 *pmultiplier)
2395 {
2396 	uint64_t scaled64;
2397 	int32_t  shift = 0;
2398 	uint64_t tps64;
2399 	uint32_t tps32;
2400 
2401 	tps64 = base_hz;
2402 	scaled64 = scaled_hz;
2403 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2404 		tps64 >>= 1;
2405 		shift--;
2406 	}
2407 
2408 	tps32 = (uint32_t)tps64;
2409 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2410 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2411 			scaled64 >>= 1;
2412 		else
2413 			tps32 <<= 1;
2414 		shift++;
2415 	}
2416 
2417 	*pshift = shift;
2418 	*pmultiplier = div_frac(scaled64, tps32);
2419 }
2420 
2421 #ifdef CONFIG_X86_64
2422 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2423 #endif
2424 
2425 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2426 static unsigned long max_tsc_khz;
2427 
adjust_tsc_khz(u32 khz,s32 ppm)2428 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2429 {
2430 	u64 v = (u64)khz * (1000000 + ppm);
2431 	do_div(v, 1000000);
2432 	return v;
2433 }
2434 
2435 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2436 
set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz,bool scale)2437 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2438 {
2439 	u64 ratio;
2440 
2441 	/* Guest TSC same frequency as host TSC? */
2442 	if (!scale) {
2443 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2444 		return 0;
2445 	}
2446 
2447 	/* TSC scaling supported? */
2448 	if (!kvm_caps.has_tsc_control) {
2449 		if (user_tsc_khz > tsc_khz) {
2450 			vcpu->arch.tsc_catchup = 1;
2451 			vcpu->arch.tsc_always_catchup = 1;
2452 			return 0;
2453 		} else {
2454 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2455 			return -1;
2456 		}
2457 	}
2458 
2459 	/* TSC scaling required  - calculate ratio */
2460 	ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2461 				user_tsc_khz, tsc_khz);
2462 
2463 	if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2464 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2465 			            user_tsc_khz);
2466 		return -1;
2467 	}
2468 
2469 	kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2470 	return 0;
2471 }
2472 
kvm_set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz)2473 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2474 {
2475 	u32 thresh_lo, thresh_hi;
2476 	int use_scaling = 0;
2477 
2478 	/* tsc_khz can be zero if TSC calibration fails */
2479 	if (user_tsc_khz == 0) {
2480 		/* set tsc_scaling_ratio to a safe value */
2481 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2482 		return -1;
2483 	}
2484 
2485 	/* Compute a scale to convert nanoseconds in TSC cycles */
2486 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2487 			   &vcpu->arch.virtual_tsc_shift,
2488 			   &vcpu->arch.virtual_tsc_mult);
2489 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2490 
2491 	/*
2492 	 * Compute the variation in TSC rate which is acceptable
2493 	 * within the range of tolerance and decide if the
2494 	 * rate being applied is within that bounds of the hardware
2495 	 * rate.  If so, no scaling or compensation need be done.
2496 	 */
2497 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2498 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2499 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2500 		pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
2501 			 user_tsc_khz, thresh_lo, thresh_hi);
2502 		use_scaling = 1;
2503 	}
2504 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2505 }
2506 
compute_guest_tsc(struct kvm_vcpu * vcpu,s64 kernel_ns)2507 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2508 {
2509 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2510 				      vcpu->arch.virtual_tsc_mult,
2511 				      vcpu->arch.virtual_tsc_shift);
2512 	tsc += vcpu->arch.this_tsc_write;
2513 	return tsc;
2514 }
2515 
2516 #ifdef CONFIG_X86_64
gtod_is_based_on_tsc(int mode)2517 static inline int gtod_is_based_on_tsc(int mode)
2518 {
2519 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2520 }
2521 #endif
2522 
kvm_track_tsc_matching(struct kvm_vcpu * vcpu)2523 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2524 {
2525 #ifdef CONFIG_X86_64
2526 	bool vcpus_matched;
2527 	struct kvm_arch *ka = &vcpu->kvm->arch;
2528 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2529 
2530 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2531 			 atomic_read(&vcpu->kvm->online_vcpus));
2532 
2533 	/*
2534 	 * Once the masterclock is enabled, always perform request in
2535 	 * order to update it.
2536 	 *
2537 	 * In order to enable masterclock, the host clocksource must be TSC
2538 	 * and the vcpus need to have matched TSCs.  When that happens,
2539 	 * perform request to enable masterclock.
2540 	 */
2541 	if (ka->use_master_clock ||
2542 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2543 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2544 
2545 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2546 			    atomic_read(&vcpu->kvm->online_vcpus),
2547 		            ka->use_master_clock, gtod->clock.vclock_mode);
2548 #endif
2549 }
2550 
2551 /*
2552  * Multiply tsc by a fixed point number represented by ratio.
2553  *
2554  * The most significant 64-N bits (mult) of ratio represent the
2555  * integral part of the fixed point number; the remaining N bits
2556  * (frac) represent the fractional part, ie. ratio represents a fixed
2557  * point number (mult + frac * 2^(-N)).
2558  *
2559  * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2560  */
__scale_tsc(u64 ratio,u64 tsc)2561 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2562 {
2563 	return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2564 }
2565 
kvm_scale_tsc(u64 tsc,u64 ratio)2566 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2567 {
2568 	u64 _tsc = tsc;
2569 
2570 	if (ratio != kvm_caps.default_tsc_scaling_ratio)
2571 		_tsc = __scale_tsc(ratio, tsc);
2572 
2573 	return _tsc;
2574 }
2575 
kvm_compute_l1_tsc_offset(struct kvm_vcpu * vcpu,u64 target_tsc)2576 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2577 {
2578 	u64 tsc;
2579 
2580 	tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2581 
2582 	return target_tsc - tsc;
2583 }
2584 
kvm_read_l1_tsc(struct kvm_vcpu * vcpu,u64 host_tsc)2585 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2586 {
2587 	return vcpu->arch.l1_tsc_offset +
2588 		kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2589 }
2590 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2591 
kvm_calc_nested_tsc_offset(u64 l1_offset,u64 l2_offset,u64 l2_multiplier)2592 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2593 {
2594 	u64 nested_offset;
2595 
2596 	if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2597 		nested_offset = l1_offset;
2598 	else
2599 		nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2600 						kvm_caps.tsc_scaling_ratio_frac_bits);
2601 
2602 	nested_offset += l2_offset;
2603 	return nested_offset;
2604 }
2605 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2606 
kvm_calc_nested_tsc_multiplier(u64 l1_multiplier,u64 l2_multiplier)2607 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2608 {
2609 	if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2610 		return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2611 				       kvm_caps.tsc_scaling_ratio_frac_bits);
2612 
2613 	return l1_multiplier;
2614 }
2615 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2616 
kvm_vcpu_write_tsc_offset(struct kvm_vcpu * vcpu,u64 l1_offset)2617 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2618 {
2619 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2620 				   vcpu->arch.l1_tsc_offset,
2621 				   l1_offset);
2622 
2623 	vcpu->arch.l1_tsc_offset = l1_offset;
2624 
2625 	/*
2626 	 * If we are here because L1 chose not to trap WRMSR to TSC then
2627 	 * according to the spec this should set L1's TSC (as opposed to
2628 	 * setting L1's offset for L2).
2629 	 */
2630 	if (is_guest_mode(vcpu))
2631 		vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2632 			l1_offset,
2633 			static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2634 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2635 	else
2636 		vcpu->arch.tsc_offset = l1_offset;
2637 
2638 	static_call(kvm_x86_write_tsc_offset)(vcpu);
2639 }
2640 
kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu * vcpu,u64 l1_multiplier)2641 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2642 {
2643 	vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2644 
2645 	/* Userspace is changing the multiplier while L2 is active */
2646 	if (is_guest_mode(vcpu))
2647 		vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2648 			l1_multiplier,
2649 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2650 	else
2651 		vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2652 
2653 	if (kvm_caps.has_tsc_control)
2654 		static_call(kvm_x86_write_tsc_multiplier)(vcpu);
2655 }
2656 
kvm_check_tsc_unstable(void)2657 static inline bool kvm_check_tsc_unstable(void)
2658 {
2659 #ifdef CONFIG_X86_64
2660 	/*
2661 	 * TSC is marked unstable when we're running on Hyper-V,
2662 	 * 'TSC page' clocksource is good.
2663 	 */
2664 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2665 		return false;
2666 #endif
2667 	return check_tsc_unstable();
2668 }
2669 
2670 /*
2671  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2672  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2673  * participates in.
2674  */
__kvm_synchronize_tsc(struct kvm_vcpu * vcpu,u64 offset,u64 tsc,u64 ns,bool matched)2675 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2676 				  u64 ns, bool matched)
2677 {
2678 	struct kvm *kvm = vcpu->kvm;
2679 
2680 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2681 
2682 	/*
2683 	 * We also track th most recent recorded KHZ, write and time to
2684 	 * allow the matching interval to be extended at each write.
2685 	 */
2686 	kvm->arch.last_tsc_nsec = ns;
2687 	kvm->arch.last_tsc_write = tsc;
2688 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2689 	kvm->arch.last_tsc_offset = offset;
2690 
2691 	vcpu->arch.last_guest_tsc = tsc;
2692 
2693 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2694 
2695 	if (!matched) {
2696 		/*
2697 		 * We split periods of matched TSC writes into generations.
2698 		 * For each generation, we track the original measured
2699 		 * nanosecond time, offset, and write, so if TSCs are in
2700 		 * sync, we can match exact offset, and if not, we can match
2701 		 * exact software computation in compute_guest_tsc()
2702 		 *
2703 		 * These values are tracked in kvm->arch.cur_xxx variables.
2704 		 */
2705 		kvm->arch.cur_tsc_generation++;
2706 		kvm->arch.cur_tsc_nsec = ns;
2707 		kvm->arch.cur_tsc_write = tsc;
2708 		kvm->arch.cur_tsc_offset = offset;
2709 		kvm->arch.nr_vcpus_matched_tsc = 0;
2710 	} else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2711 		kvm->arch.nr_vcpus_matched_tsc++;
2712 	}
2713 
2714 	/* Keep track of which generation this VCPU has synchronized to */
2715 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2716 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2717 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2718 
2719 	kvm_track_tsc_matching(vcpu);
2720 }
2721 
kvm_synchronize_tsc(struct kvm_vcpu * vcpu,u64 data)2722 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2723 {
2724 	struct kvm *kvm = vcpu->kvm;
2725 	u64 offset, ns, elapsed;
2726 	unsigned long flags;
2727 	bool matched = false;
2728 	bool synchronizing = false;
2729 
2730 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2731 	offset = kvm_compute_l1_tsc_offset(vcpu, data);
2732 	ns = get_kvmclock_base_ns();
2733 	elapsed = ns - kvm->arch.last_tsc_nsec;
2734 
2735 	if (vcpu->arch.virtual_tsc_khz) {
2736 		if (data == 0) {
2737 			/*
2738 			 * detection of vcpu initialization -- need to sync
2739 			 * with other vCPUs. This particularly helps to keep
2740 			 * kvm_clock stable after CPU hotplug
2741 			 */
2742 			synchronizing = true;
2743 		} else {
2744 			u64 tsc_exp = kvm->arch.last_tsc_write +
2745 						nsec_to_cycles(vcpu, elapsed);
2746 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2747 			/*
2748 			 * Special case: TSC write with a small delta (1 second)
2749 			 * of virtual cycle time against real time is
2750 			 * interpreted as an attempt to synchronize the CPU.
2751 			 */
2752 			synchronizing = data < tsc_exp + tsc_hz &&
2753 					data + tsc_hz > tsc_exp;
2754 		}
2755 	}
2756 
2757 	/*
2758 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2759 	 * TSC, we add elapsed time in this computation.  We could let the
2760 	 * compensation code attempt to catch up if we fall behind, but
2761 	 * it's better to try to match offsets from the beginning.
2762          */
2763 	if (synchronizing &&
2764 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2765 		if (!kvm_check_tsc_unstable()) {
2766 			offset = kvm->arch.cur_tsc_offset;
2767 		} else {
2768 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2769 			data += delta;
2770 			offset = kvm_compute_l1_tsc_offset(vcpu, data);
2771 		}
2772 		matched = true;
2773 	}
2774 
2775 	__kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2776 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2777 }
2778 
adjust_tsc_offset_guest(struct kvm_vcpu * vcpu,s64 adjustment)2779 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2780 					   s64 adjustment)
2781 {
2782 	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2783 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2784 }
2785 
adjust_tsc_offset_host(struct kvm_vcpu * vcpu,s64 adjustment)2786 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2787 {
2788 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2789 		WARN_ON(adjustment < 0);
2790 	adjustment = kvm_scale_tsc((u64) adjustment,
2791 				   vcpu->arch.l1_tsc_scaling_ratio);
2792 	adjust_tsc_offset_guest(vcpu, adjustment);
2793 }
2794 
2795 #ifdef CONFIG_X86_64
2796 
read_tsc(void)2797 static u64 read_tsc(void)
2798 {
2799 	u64 ret = (u64)rdtsc_ordered();
2800 	u64 last = pvclock_gtod_data.clock.cycle_last;
2801 
2802 	if (likely(ret >= last))
2803 		return ret;
2804 
2805 	/*
2806 	 * GCC likes to generate cmov here, but this branch is extremely
2807 	 * predictable (it's just a function of time and the likely is
2808 	 * very likely) and there's a data dependence, so force GCC
2809 	 * to generate a branch instead.  I don't barrier() because
2810 	 * we don't actually need a barrier, and if this function
2811 	 * ever gets inlined it will generate worse code.
2812 	 */
2813 	asm volatile ("");
2814 	return last;
2815 }
2816 
vgettsc(struct pvclock_clock * clock,u64 * tsc_timestamp,int * mode)2817 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2818 			  int *mode)
2819 {
2820 	u64 tsc_pg_val;
2821 	long v;
2822 
2823 	switch (clock->vclock_mode) {
2824 	case VDSO_CLOCKMODE_HVCLOCK:
2825 		if (hv_read_tsc_page_tsc(hv_get_tsc_page(),
2826 					 tsc_timestamp, &tsc_pg_val)) {
2827 			/* TSC page valid */
2828 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2829 			v = (tsc_pg_val - clock->cycle_last) &
2830 				clock->mask;
2831 		} else {
2832 			/* TSC page invalid */
2833 			*mode = VDSO_CLOCKMODE_NONE;
2834 		}
2835 		break;
2836 	case VDSO_CLOCKMODE_TSC:
2837 		*mode = VDSO_CLOCKMODE_TSC;
2838 		*tsc_timestamp = read_tsc();
2839 		v = (*tsc_timestamp - clock->cycle_last) &
2840 			clock->mask;
2841 		break;
2842 	default:
2843 		*mode = VDSO_CLOCKMODE_NONE;
2844 	}
2845 
2846 	if (*mode == VDSO_CLOCKMODE_NONE)
2847 		*tsc_timestamp = v = 0;
2848 
2849 	return v * clock->mult;
2850 }
2851 
do_monotonic_raw(s64 * t,u64 * tsc_timestamp)2852 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2853 {
2854 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2855 	unsigned long seq;
2856 	int mode;
2857 	u64 ns;
2858 
2859 	do {
2860 		seq = read_seqcount_begin(&gtod->seq);
2861 		ns = gtod->raw_clock.base_cycles;
2862 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2863 		ns >>= gtod->raw_clock.shift;
2864 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2865 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2866 	*t = ns;
2867 
2868 	return mode;
2869 }
2870 
do_realtime(struct timespec64 * ts,u64 * tsc_timestamp)2871 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2872 {
2873 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2874 	unsigned long seq;
2875 	int mode;
2876 	u64 ns;
2877 
2878 	do {
2879 		seq = read_seqcount_begin(&gtod->seq);
2880 		ts->tv_sec = gtod->wall_time_sec;
2881 		ns = gtod->clock.base_cycles;
2882 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2883 		ns >>= gtod->clock.shift;
2884 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2885 
2886 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2887 	ts->tv_nsec = ns;
2888 
2889 	return mode;
2890 }
2891 
2892 /* returns true if host is using TSC based clocksource */
kvm_get_time_and_clockread(s64 * kernel_ns,u64 * tsc_timestamp)2893 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2894 {
2895 	/* checked again under seqlock below */
2896 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2897 		return false;
2898 
2899 	return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2900 						      tsc_timestamp));
2901 }
2902 
2903 /* returns true if host is using TSC based clocksource */
kvm_get_walltime_and_clockread(struct timespec64 * ts,u64 * tsc_timestamp)2904 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2905 					   u64 *tsc_timestamp)
2906 {
2907 	/* checked again under seqlock below */
2908 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2909 		return false;
2910 
2911 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2912 }
2913 #endif
2914 
2915 /*
2916  *
2917  * Assuming a stable TSC across physical CPUS, and a stable TSC
2918  * across virtual CPUs, the following condition is possible.
2919  * Each numbered line represents an event visible to both
2920  * CPUs at the next numbered event.
2921  *
2922  * "timespecX" represents host monotonic time. "tscX" represents
2923  * RDTSC value.
2924  *
2925  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2926  *
2927  * 1.  read timespec0,tsc0
2928  * 2.					| timespec1 = timespec0 + N
2929  * 					| tsc1 = tsc0 + M
2930  * 3. transition to guest		| transition to guest
2931  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2932  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2933  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2934  *
2935  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2936  *
2937  * 	- ret0 < ret1
2938  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2939  *		...
2940  *	- 0 < N - M => M < N
2941  *
2942  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2943  * always the case (the difference between two distinct xtime instances
2944  * might be smaller then the difference between corresponding TSC reads,
2945  * when updating guest vcpus pvclock areas).
2946  *
2947  * To avoid that problem, do not allow visibility of distinct
2948  * system_timestamp/tsc_timestamp values simultaneously: use a master
2949  * copy of host monotonic time values. Update that master copy
2950  * in lockstep.
2951  *
2952  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2953  *
2954  */
2955 
pvclock_update_vm_gtod_copy(struct kvm * kvm)2956 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2957 {
2958 #ifdef CONFIG_X86_64
2959 	struct kvm_arch *ka = &kvm->arch;
2960 	int vclock_mode;
2961 	bool host_tsc_clocksource, vcpus_matched;
2962 
2963 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2964 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2965 			atomic_read(&kvm->online_vcpus));
2966 
2967 	/*
2968 	 * If the host uses TSC clock, then passthrough TSC as stable
2969 	 * to the guest.
2970 	 */
2971 	host_tsc_clocksource = kvm_get_time_and_clockread(
2972 					&ka->master_kernel_ns,
2973 					&ka->master_cycle_now);
2974 
2975 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2976 				&& !ka->backwards_tsc_observed
2977 				&& !ka->boot_vcpu_runs_old_kvmclock;
2978 
2979 	if (ka->use_master_clock)
2980 		atomic_set(&kvm_guest_has_master_clock, 1);
2981 
2982 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2983 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2984 					vcpus_matched);
2985 #endif
2986 }
2987 
kvm_make_mclock_inprogress_request(struct kvm * kvm)2988 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2989 {
2990 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2991 }
2992 
__kvm_start_pvclock_update(struct kvm * kvm)2993 static void __kvm_start_pvclock_update(struct kvm *kvm)
2994 {
2995 	raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2996 	write_seqcount_begin(&kvm->arch.pvclock_sc);
2997 }
2998 
kvm_start_pvclock_update(struct kvm * kvm)2999 static void kvm_start_pvclock_update(struct kvm *kvm)
3000 {
3001 	kvm_make_mclock_inprogress_request(kvm);
3002 
3003 	/* no guest entries from this point */
3004 	__kvm_start_pvclock_update(kvm);
3005 }
3006 
kvm_end_pvclock_update(struct kvm * kvm)3007 static void kvm_end_pvclock_update(struct kvm *kvm)
3008 {
3009 	struct kvm_arch *ka = &kvm->arch;
3010 	struct kvm_vcpu *vcpu;
3011 	unsigned long i;
3012 
3013 	write_seqcount_end(&ka->pvclock_sc);
3014 	raw_spin_unlock_irq(&ka->tsc_write_lock);
3015 	kvm_for_each_vcpu(i, vcpu, kvm)
3016 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3017 
3018 	/* guest entries allowed */
3019 	kvm_for_each_vcpu(i, vcpu, kvm)
3020 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
3021 }
3022 
kvm_update_masterclock(struct kvm * kvm)3023 static void kvm_update_masterclock(struct kvm *kvm)
3024 {
3025 	kvm_hv_request_tsc_page_update(kvm);
3026 	kvm_start_pvclock_update(kvm);
3027 	pvclock_update_vm_gtod_copy(kvm);
3028 	kvm_end_pvclock_update(kvm);
3029 }
3030 
3031 /*
3032  * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
3033  * per-CPU value (which may be zero if a CPU is going offline).  Note, tsc_khz
3034  * can change during boot even if the TSC is constant, as it's possible for KVM
3035  * to be loaded before TSC calibration completes.  Ideally, KVM would get a
3036  * notification when calibration completes, but practically speaking calibration
3037  * will complete before userspace is alive enough to create VMs.
3038  */
get_cpu_tsc_khz(void)3039 static unsigned long get_cpu_tsc_khz(void)
3040 {
3041 	if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
3042 		return tsc_khz;
3043 	else
3044 		return __this_cpu_read(cpu_tsc_khz);
3045 }
3046 
3047 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
__get_kvmclock(struct kvm * kvm,struct kvm_clock_data * data)3048 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3049 {
3050 	struct kvm_arch *ka = &kvm->arch;
3051 	struct pvclock_vcpu_time_info hv_clock;
3052 
3053 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
3054 	get_cpu();
3055 
3056 	data->flags = 0;
3057 	if (ka->use_master_clock &&
3058 	    (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
3059 #ifdef CONFIG_X86_64
3060 		struct timespec64 ts;
3061 
3062 		if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3063 			data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3064 			data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3065 		} else
3066 #endif
3067 		data->host_tsc = rdtsc();
3068 
3069 		data->flags |= KVM_CLOCK_TSC_STABLE;
3070 		hv_clock.tsc_timestamp = ka->master_cycle_now;
3071 		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3072 		kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
3073 				   &hv_clock.tsc_shift,
3074 				   &hv_clock.tsc_to_system_mul);
3075 		data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3076 	} else {
3077 		data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3078 	}
3079 
3080 	put_cpu();
3081 }
3082 
get_kvmclock(struct kvm * kvm,struct kvm_clock_data * data)3083 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3084 {
3085 	struct kvm_arch *ka = &kvm->arch;
3086 	unsigned seq;
3087 
3088 	do {
3089 		seq = read_seqcount_begin(&ka->pvclock_sc);
3090 		__get_kvmclock(kvm, data);
3091 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3092 }
3093 
get_kvmclock_ns(struct kvm * kvm)3094 u64 get_kvmclock_ns(struct kvm *kvm)
3095 {
3096 	struct kvm_clock_data data;
3097 
3098 	get_kvmclock(kvm, &data);
3099 	return data.clock;
3100 }
3101 
kvm_setup_guest_pvclock(struct kvm_vcpu * v,struct gfn_to_pfn_cache * gpc,unsigned int offset)3102 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
3103 				    struct gfn_to_pfn_cache *gpc,
3104 				    unsigned int offset)
3105 {
3106 	struct kvm_vcpu_arch *vcpu = &v->arch;
3107 	struct pvclock_vcpu_time_info *guest_hv_clock;
3108 	unsigned long flags;
3109 
3110 	read_lock_irqsave(&gpc->lock, flags);
3111 	while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
3112 		read_unlock_irqrestore(&gpc->lock, flags);
3113 
3114 		if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
3115 			return;
3116 
3117 		read_lock_irqsave(&gpc->lock, flags);
3118 	}
3119 
3120 	guest_hv_clock = (void *)(gpc->khva + offset);
3121 
3122 	/*
3123 	 * This VCPU is paused, but it's legal for a guest to read another
3124 	 * VCPU's kvmclock, so we really have to follow the specification where
3125 	 * it says that version is odd if data is being modified, and even after
3126 	 * it is consistent.
3127 	 */
3128 
3129 	guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3130 	smp_wmb();
3131 
3132 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3133 	vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3134 
3135 	if (vcpu->pvclock_set_guest_stopped_request) {
3136 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3137 		vcpu->pvclock_set_guest_stopped_request = false;
3138 	}
3139 
3140 	memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3141 	smp_wmb();
3142 
3143 	guest_hv_clock->version = ++vcpu->hv_clock.version;
3144 
3145 	mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
3146 	read_unlock_irqrestore(&gpc->lock, flags);
3147 
3148 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3149 }
3150 
kvm_guest_time_update(struct kvm_vcpu * v)3151 static int kvm_guest_time_update(struct kvm_vcpu *v)
3152 {
3153 	unsigned long flags, tgt_tsc_khz;
3154 	unsigned seq;
3155 	struct kvm_vcpu_arch *vcpu = &v->arch;
3156 	struct kvm_arch *ka = &v->kvm->arch;
3157 	s64 kernel_ns;
3158 	u64 tsc_timestamp, host_tsc;
3159 	u8 pvclock_flags;
3160 	bool use_master_clock;
3161 
3162 	kernel_ns = 0;
3163 	host_tsc = 0;
3164 
3165 	/*
3166 	 * If the host uses TSC clock, then passthrough TSC as stable
3167 	 * to the guest.
3168 	 */
3169 	do {
3170 		seq = read_seqcount_begin(&ka->pvclock_sc);
3171 		use_master_clock = ka->use_master_clock;
3172 		if (use_master_clock) {
3173 			host_tsc = ka->master_cycle_now;
3174 			kernel_ns = ka->master_kernel_ns;
3175 		}
3176 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3177 
3178 	/* Keep irq disabled to prevent changes to the clock */
3179 	local_irq_save(flags);
3180 	tgt_tsc_khz = get_cpu_tsc_khz();
3181 	if (unlikely(tgt_tsc_khz == 0)) {
3182 		local_irq_restore(flags);
3183 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3184 		return 1;
3185 	}
3186 	if (!use_master_clock) {
3187 		host_tsc = rdtsc();
3188 		kernel_ns = get_kvmclock_base_ns();
3189 	}
3190 
3191 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3192 
3193 	/*
3194 	 * We may have to catch up the TSC to match elapsed wall clock
3195 	 * time for two reasons, even if kvmclock is used.
3196 	 *   1) CPU could have been running below the maximum TSC rate
3197 	 *   2) Broken TSC compensation resets the base at each VCPU
3198 	 *      entry to avoid unknown leaps of TSC even when running
3199 	 *      again on the same CPU.  This may cause apparent elapsed
3200 	 *      time to disappear, and the guest to stand still or run
3201 	 *	very slowly.
3202 	 */
3203 	if (vcpu->tsc_catchup) {
3204 		u64 tsc = compute_guest_tsc(v, kernel_ns);
3205 		if (tsc > tsc_timestamp) {
3206 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3207 			tsc_timestamp = tsc;
3208 		}
3209 	}
3210 
3211 	local_irq_restore(flags);
3212 
3213 	/* With all the info we got, fill in the values */
3214 
3215 	if (kvm_caps.has_tsc_control)
3216 		tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3217 					    v->arch.l1_tsc_scaling_ratio);
3218 
3219 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3220 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3221 				   &vcpu->hv_clock.tsc_shift,
3222 				   &vcpu->hv_clock.tsc_to_system_mul);
3223 		vcpu->hw_tsc_khz = tgt_tsc_khz;
3224 		kvm_xen_update_tsc_info(v);
3225 	}
3226 
3227 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3228 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3229 	vcpu->last_guest_tsc = tsc_timestamp;
3230 
3231 	/* If the host uses TSC clocksource, then it is stable */
3232 	pvclock_flags = 0;
3233 	if (use_master_clock)
3234 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3235 
3236 	vcpu->hv_clock.flags = pvclock_flags;
3237 
3238 	if (vcpu->pv_time.active)
3239 		kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0);
3240 	if (vcpu->xen.vcpu_info_cache.active)
3241 		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3242 					offsetof(struct compat_vcpu_info, time));
3243 	if (vcpu->xen.vcpu_time_info_cache.active)
3244 		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0);
3245 	kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3246 	return 0;
3247 }
3248 
3249 /*
3250  * kvmclock updates which are isolated to a given vcpu, such as
3251  * vcpu->cpu migration, should not allow system_timestamp from
3252  * the rest of the vcpus to remain static. Otherwise ntp frequency
3253  * correction applies to one vcpu's system_timestamp but not
3254  * the others.
3255  *
3256  * So in those cases, request a kvmclock update for all vcpus.
3257  * We need to rate-limit these requests though, as they can
3258  * considerably slow guests that have a large number of vcpus.
3259  * The time for a remote vcpu to update its kvmclock is bound
3260  * by the delay we use to rate-limit the updates.
3261  */
3262 
3263 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3264 
kvmclock_update_fn(struct work_struct * work)3265 static void kvmclock_update_fn(struct work_struct *work)
3266 {
3267 	unsigned long i;
3268 	struct delayed_work *dwork = to_delayed_work(work);
3269 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3270 					   kvmclock_update_work);
3271 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3272 	struct kvm_vcpu *vcpu;
3273 
3274 	kvm_for_each_vcpu(i, vcpu, kvm) {
3275 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3276 		kvm_vcpu_kick(vcpu);
3277 	}
3278 }
3279 
kvm_gen_kvmclock_update(struct kvm_vcpu * v)3280 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3281 {
3282 	struct kvm *kvm = v->kvm;
3283 
3284 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3285 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3286 					KVMCLOCK_UPDATE_DELAY);
3287 }
3288 
3289 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3290 
kvmclock_sync_fn(struct work_struct * work)3291 static void kvmclock_sync_fn(struct work_struct *work)
3292 {
3293 	struct delayed_work *dwork = to_delayed_work(work);
3294 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3295 					   kvmclock_sync_work);
3296 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3297 
3298 	if (!kvmclock_periodic_sync)
3299 		return;
3300 
3301 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3302 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3303 					KVMCLOCK_SYNC_PERIOD);
3304 }
3305 
3306 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
is_mci_control_msr(u32 msr)3307 static bool is_mci_control_msr(u32 msr)
3308 {
3309 	return (msr & 3) == 0;
3310 }
is_mci_status_msr(u32 msr)3311 static bool is_mci_status_msr(u32 msr)
3312 {
3313 	return (msr & 3) == 1;
3314 }
3315 
3316 /*
3317  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3318  */
can_set_mci_status(struct kvm_vcpu * vcpu)3319 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3320 {
3321 	/* McStatusWrEn enabled? */
3322 	if (guest_cpuid_is_amd_compatible(vcpu))
3323 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3324 
3325 	return false;
3326 }
3327 
set_msr_mce(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3328 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3329 {
3330 	u64 mcg_cap = vcpu->arch.mcg_cap;
3331 	unsigned bank_num = mcg_cap & 0xff;
3332 	u32 msr = msr_info->index;
3333 	u64 data = msr_info->data;
3334 	u32 offset, last_msr;
3335 
3336 	switch (msr) {
3337 	case MSR_IA32_MCG_STATUS:
3338 		vcpu->arch.mcg_status = data;
3339 		break;
3340 	case MSR_IA32_MCG_CTL:
3341 		if (!(mcg_cap & MCG_CTL_P) &&
3342 		    (data || !msr_info->host_initiated))
3343 			return 1;
3344 		if (data != 0 && data != ~(u64)0)
3345 			return 1;
3346 		vcpu->arch.mcg_ctl = data;
3347 		break;
3348 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3349 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3350 		if (msr > last_msr)
3351 			return 1;
3352 
3353 		if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3354 			return 1;
3355 		/* An attempt to write a 1 to a reserved bit raises #GP */
3356 		if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3357 			return 1;
3358 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3359 					    last_msr + 1 - MSR_IA32_MC0_CTL2);
3360 		vcpu->arch.mci_ctl2_banks[offset] = data;
3361 		break;
3362 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3363 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3364 		if (msr > last_msr)
3365 			return 1;
3366 
3367 		/*
3368 		 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3369 		 * values are architecturally undefined.  But, some Linux
3370 		 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3371 		 * issue on AMD K8s, allow bit 10 to be clear when setting all
3372 		 * other bits in order to avoid an uncaught #GP in the guest.
3373 		 *
3374 		 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3375 		 * single-bit ECC data errors.
3376 		 */
3377 		if (is_mci_control_msr(msr) &&
3378 		    data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3379 			return 1;
3380 
3381 		/*
3382 		 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3383 		 * AMD-based CPUs allow non-zero values, but if and only if
3384 		 * HWCR[McStatusWrEn] is set.
3385 		 */
3386 		if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3387 		    data != 0 && !can_set_mci_status(vcpu))
3388 			return 1;
3389 
3390 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3391 					    last_msr + 1 - MSR_IA32_MC0_CTL);
3392 		vcpu->arch.mce_banks[offset] = data;
3393 		break;
3394 	default:
3395 		return 1;
3396 	}
3397 	return 0;
3398 }
3399 
kvm_pv_async_pf_enabled(struct kvm_vcpu * vcpu)3400 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3401 {
3402 	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3403 
3404 	return (vcpu->arch.apf.msr_en_val & mask) == mask;
3405 }
3406 
kvm_pv_enable_async_pf(struct kvm_vcpu * vcpu,u64 data)3407 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3408 {
3409 	gpa_t gpa = data & ~0x3f;
3410 
3411 	/* Bits 4:5 are reserved, Should be zero */
3412 	if (data & 0x30)
3413 		return 1;
3414 
3415 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3416 	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3417 		return 1;
3418 
3419 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3420 	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3421 		return 1;
3422 
3423 	if (!lapic_in_kernel(vcpu))
3424 		return data ? 1 : 0;
3425 
3426 	vcpu->arch.apf.msr_en_val = data;
3427 
3428 	if (!kvm_pv_async_pf_enabled(vcpu)) {
3429 		kvm_clear_async_pf_completion_queue(vcpu);
3430 		kvm_async_pf_hash_reset(vcpu);
3431 		return 0;
3432 	}
3433 
3434 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3435 					sizeof(u64)))
3436 		return 1;
3437 
3438 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3439 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3440 
3441 	kvm_async_pf_wakeup_all(vcpu);
3442 
3443 	return 0;
3444 }
3445 
kvm_pv_enable_async_pf_int(struct kvm_vcpu * vcpu,u64 data)3446 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3447 {
3448 	/* Bits 8-63 are reserved */
3449 	if (data >> 8)
3450 		return 1;
3451 
3452 	if (!lapic_in_kernel(vcpu))
3453 		return 1;
3454 
3455 	vcpu->arch.apf.msr_int_val = data;
3456 
3457 	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3458 
3459 	return 0;
3460 }
3461 
kvmclock_reset(struct kvm_vcpu * vcpu)3462 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3463 {
3464 	kvm_gpc_deactivate(&vcpu->arch.pv_time);
3465 	vcpu->arch.time = 0;
3466 }
3467 
kvm_vcpu_flush_tlb_all(struct kvm_vcpu * vcpu)3468 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3469 {
3470 	++vcpu->stat.tlb_flush;
3471 	static_call(kvm_x86_flush_tlb_all)(vcpu);
3472 
3473 	/* Flushing all ASIDs flushes the current ASID... */
3474 	kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3475 }
3476 
kvm_vcpu_flush_tlb_guest(struct kvm_vcpu * vcpu)3477 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3478 {
3479 	++vcpu->stat.tlb_flush;
3480 
3481 	if (!tdp_enabled) {
3482 		/*
3483 		 * A TLB flush on behalf of the guest is equivalent to
3484 		 * INVPCID(all), toggling CR4.PGE, etc., which requires
3485 		 * a forced sync of the shadow page tables.  Ensure all the
3486 		 * roots are synced and the guest TLB in hardware is clean.
3487 		 */
3488 		kvm_mmu_sync_roots(vcpu);
3489 		kvm_mmu_sync_prev_roots(vcpu);
3490 	}
3491 
3492 	static_call(kvm_x86_flush_tlb_guest)(vcpu);
3493 
3494 	/*
3495 	 * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3496 	 * grained flushing.
3497 	 */
3498 	kvm_hv_vcpu_purge_flush_tlb(vcpu);
3499 }
3500 
3501 
kvm_vcpu_flush_tlb_current(struct kvm_vcpu * vcpu)3502 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3503 {
3504 	++vcpu->stat.tlb_flush;
3505 	static_call(kvm_x86_flush_tlb_current)(vcpu);
3506 }
3507 
3508 /*
3509  * Service "local" TLB flush requests, which are specific to the current MMU
3510  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3511  * TLB flushes that are targeted at an MMU context also need to be serviced
3512  * prior before nested VM-Enter/VM-Exit.
3513  */
kvm_service_local_tlb_flush_requests(struct kvm_vcpu * vcpu)3514 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3515 {
3516 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3517 		kvm_vcpu_flush_tlb_current(vcpu);
3518 
3519 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3520 		kvm_vcpu_flush_tlb_guest(vcpu);
3521 }
3522 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3523 
record_steal_time(struct kvm_vcpu * vcpu)3524 static void record_steal_time(struct kvm_vcpu *vcpu)
3525 {
3526 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3527 	struct kvm_steal_time __user *st;
3528 	struct kvm_memslots *slots;
3529 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3530 	u64 steal;
3531 	u32 version;
3532 
3533 	if (kvm_xen_msr_enabled(vcpu->kvm)) {
3534 		kvm_xen_runstate_set_running(vcpu);
3535 		return;
3536 	}
3537 
3538 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3539 		return;
3540 
3541 	if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3542 		return;
3543 
3544 	slots = kvm_memslots(vcpu->kvm);
3545 
3546 	if (unlikely(slots->generation != ghc->generation ||
3547 		     gpa != ghc->gpa ||
3548 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3549 		/* We rely on the fact that it fits in a single page. */
3550 		BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3551 
3552 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3553 		    kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3554 			return;
3555 	}
3556 
3557 	st = (struct kvm_steal_time __user *)ghc->hva;
3558 	/*
3559 	 * Doing a TLB flush here, on the guest's behalf, can avoid
3560 	 * expensive IPIs.
3561 	 */
3562 	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3563 		u8 st_preempted = 0;
3564 		int err = -EFAULT;
3565 
3566 		if (!user_access_begin(st, sizeof(*st)))
3567 			return;
3568 
3569 		asm volatile("1: xchgb %0, %2\n"
3570 			     "xor %1, %1\n"
3571 			     "2:\n"
3572 			     _ASM_EXTABLE_UA(1b, 2b)
3573 			     : "+q" (st_preempted),
3574 			       "+&r" (err),
3575 			       "+m" (st->preempted));
3576 		if (err)
3577 			goto out;
3578 
3579 		user_access_end();
3580 
3581 		vcpu->arch.st.preempted = 0;
3582 
3583 		trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3584 				       st_preempted & KVM_VCPU_FLUSH_TLB);
3585 		if (st_preempted & KVM_VCPU_FLUSH_TLB)
3586 			kvm_vcpu_flush_tlb_guest(vcpu);
3587 
3588 		if (!user_access_begin(st, sizeof(*st)))
3589 			goto dirty;
3590 	} else {
3591 		if (!user_access_begin(st, sizeof(*st)))
3592 			return;
3593 
3594 		unsafe_put_user(0, &st->preempted, out);
3595 		vcpu->arch.st.preempted = 0;
3596 	}
3597 
3598 	unsafe_get_user(version, &st->version, out);
3599 	if (version & 1)
3600 		version += 1;  /* first time write, random junk */
3601 
3602 	version += 1;
3603 	unsafe_put_user(version, &st->version, out);
3604 
3605 	smp_wmb();
3606 
3607 	unsafe_get_user(steal, &st->steal, out);
3608 	steal += current->sched_info.run_delay -
3609 		vcpu->arch.st.last_steal;
3610 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
3611 	unsafe_put_user(steal, &st->steal, out);
3612 
3613 	version += 1;
3614 	unsafe_put_user(version, &st->version, out);
3615 
3616  out:
3617 	user_access_end();
3618  dirty:
3619 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3620 }
3621 
kvm_is_msr_to_save(u32 msr_index)3622 static bool kvm_is_msr_to_save(u32 msr_index)
3623 {
3624 	unsigned int i;
3625 
3626 	for (i = 0; i < num_msrs_to_save; i++) {
3627 		if (msrs_to_save[i] == msr_index)
3628 			return true;
3629 	}
3630 
3631 	return false;
3632 }
3633 
kvm_set_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3634 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3635 {
3636 	u32 msr = msr_info->index;
3637 	u64 data = msr_info->data;
3638 
3639 	if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3640 		return kvm_xen_write_hypercall_page(vcpu, data);
3641 
3642 	switch (msr) {
3643 	case MSR_AMD64_NB_CFG:
3644 	case MSR_IA32_UCODE_WRITE:
3645 	case MSR_VM_HSAVE_PA:
3646 	case MSR_AMD64_PATCH_LOADER:
3647 	case MSR_AMD64_BU_CFG2:
3648 	case MSR_AMD64_DC_CFG:
3649 	case MSR_AMD64_TW_CFG:
3650 	case MSR_F15H_EX_CFG:
3651 		break;
3652 
3653 	case MSR_IA32_UCODE_REV:
3654 		if (msr_info->host_initiated)
3655 			vcpu->arch.microcode_version = data;
3656 		break;
3657 	case MSR_IA32_ARCH_CAPABILITIES:
3658 		if (!msr_info->host_initiated)
3659 			return 1;
3660 		vcpu->arch.arch_capabilities = data;
3661 		break;
3662 	case MSR_IA32_PERF_CAPABILITIES:
3663 		if (!msr_info->host_initiated)
3664 			return 1;
3665 		if (data & ~kvm_caps.supported_perf_cap)
3666 			return 1;
3667 
3668 		/*
3669 		 * Note, this is not just a performance optimization!  KVM
3670 		 * disallows changing feature MSRs after the vCPU has run; PMU
3671 		 * refresh will bug the VM if called after the vCPU has run.
3672 		 */
3673 		if (vcpu->arch.perf_capabilities == data)
3674 			break;
3675 
3676 		vcpu->arch.perf_capabilities = data;
3677 		kvm_pmu_refresh(vcpu);
3678 		break;
3679 	case MSR_IA32_PRED_CMD:
3680 		if (!msr_info->host_initiated && !guest_has_pred_cmd_msr(vcpu))
3681 			return 1;
3682 
3683 		if (!boot_cpu_has(X86_FEATURE_IBPB) || (data & ~PRED_CMD_IBPB))
3684 			return 1;
3685 		if (!data)
3686 			break;
3687 
3688 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
3689 		break;
3690 	case MSR_IA32_FLUSH_CMD:
3691 		if (!msr_info->host_initiated &&
3692 		    !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D))
3693 			return 1;
3694 
3695 		if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH))
3696 			return 1;
3697 		if (!data)
3698 			break;
3699 
3700 		wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
3701 		break;
3702 	case MSR_EFER:
3703 		return set_efer(vcpu, msr_info);
3704 	case MSR_K7_HWCR:
3705 		data &= ~(u64)0x40;	/* ignore flush filter disable */
3706 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
3707 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
3708 
3709 		/* Handle McStatusWrEn */
3710 		if (data == BIT_ULL(18)) {
3711 			vcpu->arch.msr_hwcr = data;
3712 		} else if (data != 0) {
3713 			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3714 			return 1;
3715 		}
3716 		break;
3717 	case MSR_FAM10H_MMIO_CONF_BASE:
3718 		if (data != 0) {
3719 			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3720 			return 1;
3721 		}
3722 		break;
3723 	case MSR_IA32_CR_PAT:
3724 		if (!kvm_pat_valid(data))
3725 			return 1;
3726 
3727 		vcpu->arch.pat = data;
3728 		break;
3729 	case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
3730 	case MSR_MTRRdefType:
3731 		return kvm_mtrr_set_msr(vcpu, msr, data);
3732 	case MSR_IA32_APICBASE:
3733 		return kvm_set_apic_base(vcpu, msr_info);
3734 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3735 		return kvm_x2apic_msr_write(vcpu, msr, data);
3736 	case MSR_IA32_TSC_DEADLINE:
3737 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
3738 		break;
3739 	case MSR_IA32_TSC_ADJUST:
3740 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3741 			if (!msr_info->host_initiated) {
3742 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3743 				adjust_tsc_offset_guest(vcpu, adj);
3744 				/* Before back to guest, tsc_timestamp must be adjusted
3745 				 * as well, otherwise guest's percpu pvclock time could jump.
3746 				 */
3747 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3748 			}
3749 			vcpu->arch.ia32_tsc_adjust_msr = data;
3750 		}
3751 		break;
3752 	case MSR_IA32_MISC_ENABLE: {
3753 		u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3754 
3755 		if (!msr_info->host_initiated) {
3756 			/* RO bits */
3757 			if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3758 				return 1;
3759 
3760 			/* R bits, i.e. writes are ignored, but don't fault. */
3761 			data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3762 			data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3763 		}
3764 
3765 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3766 		    ((old_val ^ data)  & MSR_IA32_MISC_ENABLE_MWAIT)) {
3767 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3768 				return 1;
3769 			vcpu->arch.ia32_misc_enable_msr = data;
3770 			kvm_update_cpuid_runtime(vcpu);
3771 		} else {
3772 			vcpu->arch.ia32_misc_enable_msr = data;
3773 		}
3774 		break;
3775 	}
3776 	case MSR_IA32_SMBASE:
3777 		if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
3778 			return 1;
3779 		vcpu->arch.smbase = data;
3780 		break;
3781 	case MSR_IA32_POWER_CTL:
3782 		vcpu->arch.msr_ia32_power_ctl = data;
3783 		break;
3784 	case MSR_IA32_TSC:
3785 		if (msr_info->host_initiated) {
3786 			kvm_synchronize_tsc(vcpu, data);
3787 		} else {
3788 			u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3789 			adjust_tsc_offset_guest(vcpu, adj);
3790 			vcpu->arch.ia32_tsc_adjust_msr += adj;
3791 		}
3792 		break;
3793 	case MSR_IA32_XSS:
3794 		if (!msr_info->host_initiated &&
3795 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3796 			return 1;
3797 		/*
3798 		 * KVM supports exposing PT to the guest, but does not support
3799 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3800 		 * XSAVES/XRSTORS to save/restore PT MSRs.
3801 		 */
3802 		if (data & ~kvm_caps.supported_xss)
3803 			return 1;
3804 		vcpu->arch.ia32_xss = data;
3805 		kvm_update_cpuid_runtime(vcpu);
3806 		break;
3807 	case MSR_SMI_COUNT:
3808 		if (!msr_info->host_initiated)
3809 			return 1;
3810 		vcpu->arch.smi_count = data;
3811 		break;
3812 	case MSR_KVM_WALL_CLOCK_NEW:
3813 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3814 			return 1;
3815 
3816 		vcpu->kvm->arch.wall_clock = data;
3817 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3818 		break;
3819 	case MSR_KVM_WALL_CLOCK:
3820 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3821 			return 1;
3822 
3823 		vcpu->kvm->arch.wall_clock = data;
3824 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3825 		break;
3826 	case MSR_KVM_SYSTEM_TIME_NEW:
3827 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3828 			return 1;
3829 
3830 		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3831 		break;
3832 	case MSR_KVM_SYSTEM_TIME:
3833 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3834 			return 1;
3835 
3836 		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3837 		break;
3838 	case MSR_KVM_ASYNC_PF_EN:
3839 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3840 			return 1;
3841 
3842 		if (kvm_pv_enable_async_pf(vcpu, data))
3843 			return 1;
3844 		break;
3845 	case MSR_KVM_ASYNC_PF_INT:
3846 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3847 			return 1;
3848 
3849 		if (kvm_pv_enable_async_pf_int(vcpu, data))
3850 			return 1;
3851 		break;
3852 	case MSR_KVM_ASYNC_PF_ACK:
3853 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3854 			return 1;
3855 		if (data & 0x1) {
3856 			vcpu->arch.apf.pageready_pending = false;
3857 			kvm_check_async_pf_completion(vcpu);
3858 		}
3859 		break;
3860 	case MSR_KVM_STEAL_TIME:
3861 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3862 			return 1;
3863 
3864 		if (unlikely(!sched_info_on()))
3865 			return 1;
3866 
3867 		if (data & KVM_STEAL_RESERVED_MASK)
3868 			return 1;
3869 
3870 		vcpu->arch.st.msr_val = data;
3871 
3872 		if (!(data & KVM_MSR_ENABLED))
3873 			break;
3874 
3875 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3876 
3877 		break;
3878 	case MSR_KVM_PV_EOI_EN:
3879 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3880 			return 1;
3881 
3882 		if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3883 			return 1;
3884 		break;
3885 
3886 	case MSR_KVM_POLL_CONTROL:
3887 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3888 			return 1;
3889 
3890 		/* only enable bit supported */
3891 		if (data & (-1ULL << 1))
3892 			return 1;
3893 
3894 		vcpu->arch.msr_kvm_poll_control = data;
3895 		break;
3896 
3897 	case MSR_IA32_MCG_CTL:
3898 	case MSR_IA32_MCG_STATUS:
3899 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3900 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3901 		return set_msr_mce(vcpu, msr_info);
3902 
3903 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3904 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3905 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3906 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3907 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3908 			return kvm_pmu_set_msr(vcpu, msr_info);
3909 
3910 		if (data)
3911 			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3912 		break;
3913 	case MSR_K7_CLK_CTL:
3914 		/*
3915 		 * Ignore all writes to this no longer documented MSR.
3916 		 * Writes are only relevant for old K7 processors,
3917 		 * all pre-dating SVM, but a recommended workaround from
3918 		 * AMD for these chips. It is possible to specify the
3919 		 * affected processor models on the command line, hence
3920 		 * the need to ignore the workaround.
3921 		 */
3922 		break;
3923 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3924 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3925 	case HV_X64_MSR_SYNDBG_OPTIONS:
3926 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3927 	case HV_X64_MSR_CRASH_CTL:
3928 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3929 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3930 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3931 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3932 	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
3933 		return kvm_hv_set_msr_common(vcpu, msr, data,
3934 					     msr_info->host_initiated);
3935 	case MSR_IA32_BBL_CR_CTL3:
3936 		/* Drop writes to this legacy MSR -- see rdmsr
3937 		 * counterpart for further detail.
3938 		 */
3939 		kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3940 		break;
3941 	case MSR_AMD64_OSVW_ID_LENGTH:
3942 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3943 			return 1;
3944 		vcpu->arch.osvw.length = data;
3945 		break;
3946 	case MSR_AMD64_OSVW_STATUS:
3947 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3948 			return 1;
3949 		vcpu->arch.osvw.status = data;
3950 		break;
3951 	case MSR_PLATFORM_INFO:
3952 		if (!msr_info->host_initiated ||
3953 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3954 		     cpuid_fault_enabled(vcpu)))
3955 			return 1;
3956 		vcpu->arch.msr_platform_info = data;
3957 		break;
3958 	case MSR_MISC_FEATURES_ENABLES:
3959 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3960 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3961 		     !supports_cpuid_fault(vcpu)))
3962 			return 1;
3963 		vcpu->arch.msr_misc_features_enables = data;
3964 		break;
3965 #ifdef CONFIG_X86_64
3966 	case MSR_IA32_XFD:
3967 		if (!msr_info->host_initiated &&
3968 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3969 			return 1;
3970 
3971 		if (data & ~kvm_guest_supported_xfd(vcpu))
3972 			return 1;
3973 
3974 		fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
3975 		break;
3976 	case MSR_IA32_XFD_ERR:
3977 		if (!msr_info->host_initiated &&
3978 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3979 			return 1;
3980 
3981 		if (data & ~kvm_guest_supported_xfd(vcpu))
3982 			return 1;
3983 
3984 		vcpu->arch.guest_fpu.xfd_err = data;
3985 		break;
3986 #endif
3987 	default:
3988 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3989 			return kvm_pmu_set_msr(vcpu, msr_info);
3990 
3991 		/*
3992 		 * Userspace is allowed to write '0' to MSRs that KVM reports
3993 		 * as to-be-saved, even if an MSRs isn't fully supported.
3994 		 */
3995 		if (msr_info->host_initiated && !data &&
3996 		    kvm_is_msr_to_save(msr))
3997 			break;
3998 
3999 		return KVM_MSR_RET_INVALID;
4000 	}
4001 	return 0;
4002 }
4003 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
4004 
get_msr_mce(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)4005 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
4006 {
4007 	u64 data;
4008 	u64 mcg_cap = vcpu->arch.mcg_cap;
4009 	unsigned bank_num = mcg_cap & 0xff;
4010 	u32 offset, last_msr;
4011 
4012 	switch (msr) {
4013 	case MSR_IA32_P5_MC_ADDR:
4014 	case MSR_IA32_P5_MC_TYPE:
4015 		data = 0;
4016 		break;
4017 	case MSR_IA32_MCG_CAP:
4018 		data = vcpu->arch.mcg_cap;
4019 		break;
4020 	case MSR_IA32_MCG_CTL:
4021 		if (!(mcg_cap & MCG_CTL_P) && !host)
4022 			return 1;
4023 		data = vcpu->arch.mcg_ctl;
4024 		break;
4025 	case MSR_IA32_MCG_STATUS:
4026 		data = vcpu->arch.mcg_status;
4027 		break;
4028 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4029 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
4030 		if (msr > last_msr)
4031 			return 1;
4032 
4033 		if (!(mcg_cap & MCG_CMCI_P) && !host)
4034 			return 1;
4035 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
4036 					    last_msr + 1 - MSR_IA32_MC0_CTL2);
4037 		data = vcpu->arch.mci_ctl2_banks[offset];
4038 		break;
4039 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4040 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
4041 		if (msr > last_msr)
4042 			return 1;
4043 
4044 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
4045 					    last_msr + 1 - MSR_IA32_MC0_CTL);
4046 		data = vcpu->arch.mce_banks[offset];
4047 		break;
4048 	default:
4049 		return 1;
4050 	}
4051 	*pdata = data;
4052 	return 0;
4053 }
4054 
kvm_get_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)4055 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4056 {
4057 	switch (msr_info->index) {
4058 	case MSR_IA32_PLATFORM_ID:
4059 	case MSR_IA32_EBL_CR_POWERON:
4060 	case MSR_IA32_LASTBRANCHFROMIP:
4061 	case MSR_IA32_LASTBRANCHTOIP:
4062 	case MSR_IA32_LASTINTFROMIP:
4063 	case MSR_IA32_LASTINTTOIP:
4064 	case MSR_AMD64_SYSCFG:
4065 	case MSR_K8_TSEG_ADDR:
4066 	case MSR_K8_TSEG_MASK:
4067 	case MSR_VM_HSAVE_PA:
4068 	case MSR_K8_INT_PENDING_MSG:
4069 	case MSR_AMD64_NB_CFG:
4070 	case MSR_FAM10H_MMIO_CONF_BASE:
4071 	case MSR_AMD64_BU_CFG2:
4072 	case MSR_IA32_PERF_CTL:
4073 	case MSR_AMD64_DC_CFG:
4074 	case MSR_AMD64_TW_CFG:
4075 	case MSR_F15H_EX_CFG:
4076 	/*
4077 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
4078 	 * limit) MSRs. Just return 0, as we do not want to expose the host
4079 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
4080 	 * so for existing CPU-specific MSRs.
4081 	 */
4082 	case MSR_RAPL_POWER_UNIT:
4083 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
4084 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
4085 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
4086 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
4087 		msr_info->data = 0;
4088 		break;
4089 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4090 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4091 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4092 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4093 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4094 			return kvm_pmu_get_msr(vcpu, msr_info);
4095 		msr_info->data = 0;
4096 		break;
4097 	case MSR_IA32_UCODE_REV:
4098 		msr_info->data = vcpu->arch.microcode_version;
4099 		break;
4100 	case MSR_IA32_ARCH_CAPABILITIES:
4101 		if (!msr_info->host_initiated &&
4102 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4103 			return 1;
4104 		msr_info->data = vcpu->arch.arch_capabilities;
4105 		break;
4106 	case MSR_IA32_PERF_CAPABILITIES:
4107 		if (!msr_info->host_initiated &&
4108 		    !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
4109 			return 1;
4110 		msr_info->data = vcpu->arch.perf_capabilities;
4111 		break;
4112 	case MSR_IA32_POWER_CTL:
4113 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4114 		break;
4115 	case MSR_IA32_TSC: {
4116 		/*
4117 		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4118 		 * even when not intercepted. AMD manual doesn't explicitly
4119 		 * state this but appears to behave the same.
4120 		 *
4121 		 * On userspace reads and writes, however, we unconditionally
4122 		 * return L1's TSC value to ensure backwards-compatible
4123 		 * behavior for migration.
4124 		 */
4125 		u64 offset, ratio;
4126 
4127 		if (msr_info->host_initiated) {
4128 			offset = vcpu->arch.l1_tsc_offset;
4129 			ratio = vcpu->arch.l1_tsc_scaling_ratio;
4130 		} else {
4131 			offset = vcpu->arch.tsc_offset;
4132 			ratio = vcpu->arch.tsc_scaling_ratio;
4133 		}
4134 
4135 		msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4136 		break;
4137 	}
4138 	case MSR_IA32_CR_PAT:
4139 		msr_info->data = vcpu->arch.pat;
4140 		break;
4141 	case MSR_MTRRcap:
4142 	case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
4143 	case MSR_MTRRdefType:
4144 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4145 	case 0xcd: /* fsb frequency */
4146 		msr_info->data = 3;
4147 		break;
4148 		/*
4149 		 * MSR_EBC_FREQUENCY_ID
4150 		 * Conservative value valid for even the basic CPU models.
4151 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4152 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4153 		 * and 266MHz for model 3, or 4. Set Core Clock
4154 		 * Frequency to System Bus Frequency Ratio to 1 (bits
4155 		 * 31:24) even though these are only valid for CPU
4156 		 * models > 2, however guests may end up dividing or
4157 		 * multiplying by zero otherwise.
4158 		 */
4159 	case MSR_EBC_FREQUENCY_ID:
4160 		msr_info->data = 1 << 24;
4161 		break;
4162 	case MSR_IA32_APICBASE:
4163 		msr_info->data = kvm_get_apic_base(vcpu);
4164 		break;
4165 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4166 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4167 	case MSR_IA32_TSC_DEADLINE:
4168 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4169 		break;
4170 	case MSR_IA32_TSC_ADJUST:
4171 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4172 		break;
4173 	case MSR_IA32_MISC_ENABLE:
4174 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4175 		break;
4176 	case MSR_IA32_SMBASE:
4177 		if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4178 			return 1;
4179 		msr_info->data = vcpu->arch.smbase;
4180 		break;
4181 	case MSR_SMI_COUNT:
4182 		msr_info->data = vcpu->arch.smi_count;
4183 		break;
4184 	case MSR_IA32_PERF_STATUS:
4185 		/* TSC increment by tick */
4186 		msr_info->data = 1000ULL;
4187 		/* CPU multiplier */
4188 		msr_info->data |= (((uint64_t)4ULL) << 40);
4189 		break;
4190 	case MSR_EFER:
4191 		msr_info->data = vcpu->arch.efer;
4192 		break;
4193 	case MSR_KVM_WALL_CLOCK:
4194 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4195 			return 1;
4196 
4197 		msr_info->data = vcpu->kvm->arch.wall_clock;
4198 		break;
4199 	case MSR_KVM_WALL_CLOCK_NEW:
4200 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4201 			return 1;
4202 
4203 		msr_info->data = vcpu->kvm->arch.wall_clock;
4204 		break;
4205 	case MSR_KVM_SYSTEM_TIME:
4206 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4207 			return 1;
4208 
4209 		msr_info->data = vcpu->arch.time;
4210 		break;
4211 	case MSR_KVM_SYSTEM_TIME_NEW:
4212 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4213 			return 1;
4214 
4215 		msr_info->data = vcpu->arch.time;
4216 		break;
4217 	case MSR_KVM_ASYNC_PF_EN:
4218 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4219 			return 1;
4220 
4221 		msr_info->data = vcpu->arch.apf.msr_en_val;
4222 		break;
4223 	case MSR_KVM_ASYNC_PF_INT:
4224 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4225 			return 1;
4226 
4227 		msr_info->data = vcpu->arch.apf.msr_int_val;
4228 		break;
4229 	case MSR_KVM_ASYNC_PF_ACK:
4230 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4231 			return 1;
4232 
4233 		msr_info->data = 0;
4234 		break;
4235 	case MSR_KVM_STEAL_TIME:
4236 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4237 			return 1;
4238 
4239 		msr_info->data = vcpu->arch.st.msr_val;
4240 		break;
4241 	case MSR_KVM_PV_EOI_EN:
4242 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4243 			return 1;
4244 
4245 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
4246 		break;
4247 	case MSR_KVM_POLL_CONTROL:
4248 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4249 			return 1;
4250 
4251 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
4252 		break;
4253 	case MSR_IA32_P5_MC_ADDR:
4254 	case MSR_IA32_P5_MC_TYPE:
4255 	case MSR_IA32_MCG_CAP:
4256 	case MSR_IA32_MCG_CTL:
4257 	case MSR_IA32_MCG_STATUS:
4258 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4259 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4260 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4261 				   msr_info->host_initiated);
4262 	case MSR_IA32_XSS:
4263 		if (!msr_info->host_initiated &&
4264 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4265 			return 1;
4266 		msr_info->data = vcpu->arch.ia32_xss;
4267 		break;
4268 	case MSR_K7_CLK_CTL:
4269 		/*
4270 		 * Provide expected ramp-up count for K7. All other
4271 		 * are set to zero, indicating minimum divisors for
4272 		 * every field.
4273 		 *
4274 		 * This prevents guest kernels on AMD host with CPU
4275 		 * type 6, model 8 and higher from exploding due to
4276 		 * the rdmsr failing.
4277 		 */
4278 		msr_info->data = 0x20000000;
4279 		break;
4280 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4281 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4282 	case HV_X64_MSR_SYNDBG_OPTIONS:
4283 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4284 	case HV_X64_MSR_CRASH_CTL:
4285 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4286 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4287 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
4288 	case HV_X64_MSR_TSC_EMULATION_STATUS:
4289 	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4290 		return kvm_hv_get_msr_common(vcpu,
4291 					     msr_info->index, &msr_info->data,
4292 					     msr_info->host_initiated);
4293 	case MSR_IA32_BBL_CR_CTL3:
4294 		/* This legacy MSR exists but isn't fully documented in current
4295 		 * silicon.  It is however accessed by winxp in very narrow
4296 		 * scenarios where it sets bit #19, itself documented as
4297 		 * a "reserved" bit.  Best effort attempt to source coherent
4298 		 * read data here should the balance of the register be
4299 		 * interpreted by the guest:
4300 		 *
4301 		 * L2 cache control register 3: 64GB range, 256KB size,
4302 		 * enabled, latency 0x1, configured
4303 		 */
4304 		msr_info->data = 0xbe702111;
4305 		break;
4306 	case MSR_AMD64_OSVW_ID_LENGTH:
4307 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4308 			return 1;
4309 		msr_info->data = vcpu->arch.osvw.length;
4310 		break;
4311 	case MSR_AMD64_OSVW_STATUS:
4312 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4313 			return 1;
4314 		msr_info->data = vcpu->arch.osvw.status;
4315 		break;
4316 	case MSR_PLATFORM_INFO:
4317 		if (!msr_info->host_initiated &&
4318 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4319 			return 1;
4320 		msr_info->data = vcpu->arch.msr_platform_info;
4321 		break;
4322 	case MSR_MISC_FEATURES_ENABLES:
4323 		msr_info->data = vcpu->arch.msr_misc_features_enables;
4324 		break;
4325 	case MSR_K7_HWCR:
4326 		msr_info->data = vcpu->arch.msr_hwcr;
4327 		break;
4328 #ifdef CONFIG_X86_64
4329 	case MSR_IA32_XFD:
4330 		if (!msr_info->host_initiated &&
4331 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4332 			return 1;
4333 
4334 		msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4335 		break;
4336 	case MSR_IA32_XFD_ERR:
4337 		if (!msr_info->host_initiated &&
4338 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4339 			return 1;
4340 
4341 		msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4342 		break;
4343 #endif
4344 	default:
4345 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4346 			return kvm_pmu_get_msr(vcpu, msr_info);
4347 
4348 		/*
4349 		 * Userspace is allowed to read MSRs that KVM reports as
4350 		 * to-be-saved, even if an MSR isn't fully supported.
4351 		 */
4352 		if (msr_info->host_initiated &&
4353 		    kvm_is_msr_to_save(msr_info->index)) {
4354 			msr_info->data = 0;
4355 			break;
4356 		}
4357 
4358 		return KVM_MSR_RET_INVALID;
4359 	}
4360 	return 0;
4361 }
4362 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4363 
4364 /*
4365  * Read or write a bunch of msrs. All parameters are kernel addresses.
4366  *
4367  * @return number of msrs set successfully.
4368  */
__msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs,struct kvm_msr_entry * entries,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data))4369 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4370 		    struct kvm_msr_entry *entries,
4371 		    int (*do_msr)(struct kvm_vcpu *vcpu,
4372 				  unsigned index, u64 *data))
4373 {
4374 	int i;
4375 
4376 	for (i = 0; i < msrs->nmsrs; ++i)
4377 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
4378 			break;
4379 
4380 	return i;
4381 }
4382 
4383 /*
4384  * Read or write a bunch of msrs. Parameters are user addresses.
4385  *
4386  * @return number of msrs set successfully.
4387  */
msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs __user * user_msrs,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data),int writeback)4388 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4389 		  int (*do_msr)(struct kvm_vcpu *vcpu,
4390 				unsigned index, u64 *data),
4391 		  int writeback)
4392 {
4393 	struct kvm_msrs msrs;
4394 	struct kvm_msr_entry *entries;
4395 	unsigned size;
4396 	int r;
4397 
4398 	r = -EFAULT;
4399 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4400 		goto out;
4401 
4402 	r = -E2BIG;
4403 	if (msrs.nmsrs >= MAX_IO_MSRS)
4404 		goto out;
4405 
4406 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4407 	entries = memdup_user(user_msrs->entries, size);
4408 	if (IS_ERR(entries)) {
4409 		r = PTR_ERR(entries);
4410 		goto out;
4411 	}
4412 
4413 	r = __msr_io(vcpu, &msrs, entries, do_msr);
4414 
4415 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
4416 		r = -EFAULT;
4417 
4418 	kfree(entries);
4419 out:
4420 	return r;
4421 }
4422 
kvm_can_mwait_in_guest(void)4423 static inline bool kvm_can_mwait_in_guest(void)
4424 {
4425 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
4426 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
4427 		boot_cpu_has(X86_FEATURE_ARAT);
4428 }
4429 
kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu * vcpu,struct kvm_cpuid2 __user * cpuid_arg)4430 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4431 					    struct kvm_cpuid2 __user *cpuid_arg)
4432 {
4433 	struct kvm_cpuid2 cpuid;
4434 	int r;
4435 
4436 	r = -EFAULT;
4437 	if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4438 		return r;
4439 
4440 	r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4441 	if (r)
4442 		return r;
4443 
4444 	r = -EFAULT;
4445 	if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4446 		return r;
4447 
4448 	return 0;
4449 }
4450 
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)4451 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4452 {
4453 	int r = 0;
4454 
4455 	switch (ext) {
4456 	case KVM_CAP_IRQCHIP:
4457 	case KVM_CAP_HLT:
4458 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4459 	case KVM_CAP_SET_TSS_ADDR:
4460 	case KVM_CAP_EXT_CPUID:
4461 	case KVM_CAP_EXT_EMUL_CPUID:
4462 	case KVM_CAP_CLOCKSOURCE:
4463 	case KVM_CAP_PIT:
4464 	case KVM_CAP_NOP_IO_DELAY:
4465 	case KVM_CAP_MP_STATE:
4466 	case KVM_CAP_SYNC_MMU:
4467 	case KVM_CAP_USER_NMI:
4468 	case KVM_CAP_REINJECT_CONTROL:
4469 	case KVM_CAP_IRQ_INJECT_STATUS:
4470 	case KVM_CAP_IOEVENTFD:
4471 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
4472 	case KVM_CAP_PIT2:
4473 	case KVM_CAP_PIT_STATE2:
4474 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4475 	case KVM_CAP_VCPU_EVENTS:
4476 	case KVM_CAP_HYPERV:
4477 	case KVM_CAP_HYPERV_VAPIC:
4478 	case KVM_CAP_HYPERV_SPIN:
4479 	case KVM_CAP_HYPERV_SYNIC:
4480 	case KVM_CAP_HYPERV_SYNIC2:
4481 	case KVM_CAP_HYPERV_VP_INDEX:
4482 	case KVM_CAP_HYPERV_EVENTFD:
4483 	case KVM_CAP_HYPERV_TLBFLUSH:
4484 	case KVM_CAP_HYPERV_SEND_IPI:
4485 	case KVM_CAP_HYPERV_CPUID:
4486 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
4487 	case KVM_CAP_SYS_HYPERV_CPUID:
4488 	case KVM_CAP_PCI_SEGMENT:
4489 	case KVM_CAP_DEBUGREGS:
4490 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
4491 	case KVM_CAP_XSAVE:
4492 	case KVM_CAP_ASYNC_PF:
4493 	case KVM_CAP_ASYNC_PF_INT:
4494 	case KVM_CAP_GET_TSC_KHZ:
4495 	case KVM_CAP_KVMCLOCK_CTRL:
4496 	case KVM_CAP_READONLY_MEM:
4497 	case KVM_CAP_HYPERV_TIME:
4498 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4499 	case KVM_CAP_TSC_DEADLINE_TIMER:
4500 	case KVM_CAP_DISABLE_QUIRKS:
4501 	case KVM_CAP_SET_BOOT_CPU_ID:
4502  	case KVM_CAP_SPLIT_IRQCHIP:
4503 	case KVM_CAP_IMMEDIATE_EXIT:
4504 	case KVM_CAP_PMU_EVENT_FILTER:
4505 	case KVM_CAP_PMU_EVENT_MASKED_EVENTS:
4506 	case KVM_CAP_GET_MSR_FEATURES:
4507 	case KVM_CAP_MSR_PLATFORM_INFO:
4508 	case KVM_CAP_EXCEPTION_PAYLOAD:
4509 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4510 	case KVM_CAP_SET_GUEST_DEBUG:
4511 	case KVM_CAP_LAST_CPU:
4512 	case KVM_CAP_X86_USER_SPACE_MSR:
4513 	case KVM_CAP_X86_MSR_FILTER:
4514 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4515 #ifdef CONFIG_X86_SGX_KVM
4516 	case KVM_CAP_SGX_ATTRIBUTE:
4517 #endif
4518 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4519 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4520 	case KVM_CAP_SREGS2:
4521 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4522 	case KVM_CAP_VCPU_ATTRIBUTES:
4523 	case KVM_CAP_SYS_ATTRIBUTES:
4524 	case KVM_CAP_VAPIC:
4525 	case KVM_CAP_ENABLE_CAP:
4526 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4527 	case KVM_CAP_IRQFD_RESAMPLE:
4528 		r = 1;
4529 		break;
4530 	case KVM_CAP_EXIT_HYPERCALL:
4531 		r = KVM_EXIT_HYPERCALL_VALID_MASK;
4532 		break;
4533 	case KVM_CAP_SET_GUEST_DEBUG2:
4534 		return KVM_GUESTDBG_VALID_MASK;
4535 #ifdef CONFIG_KVM_XEN
4536 	case KVM_CAP_XEN_HVM:
4537 		r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4538 		    KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4539 		    KVM_XEN_HVM_CONFIG_SHARED_INFO |
4540 		    KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4541 		    KVM_XEN_HVM_CONFIG_EVTCHN_SEND;
4542 		if (sched_info_on())
4543 			r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4544 			     KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4545 		break;
4546 #endif
4547 	case KVM_CAP_SYNC_REGS:
4548 		r = KVM_SYNC_X86_VALID_FIELDS;
4549 		break;
4550 	case KVM_CAP_ADJUST_CLOCK:
4551 		r = KVM_CLOCK_VALID_FLAGS;
4552 		break;
4553 	case KVM_CAP_X86_DISABLE_EXITS:
4554 		r = KVM_X86_DISABLE_EXITS_PAUSE;
4555 
4556 		if (!mitigate_smt_rsb) {
4557 			r |= KVM_X86_DISABLE_EXITS_HLT |
4558 			     KVM_X86_DISABLE_EXITS_CSTATE;
4559 
4560 			if (kvm_can_mwait_in_guest())
4561 				r |= KVM_X86_DISABLE_EXITS_MWAIT;
4562 		}
4563 		break;
4564 	case KVM_CAP_X86_SMM:
4565 		if (!IS_ENABLED(CONFIG_KVM_SMM))
4566 			break;
4567 
4568 		/* SMBASE is usually relocated above 1M on modern chipsets,
4569 		 * and SMM handlers might indeed rely on 4G segment limits,
4570 		 * so do not report SMM to be available if real mode is
4571 		 * emulated via vm86 mode.  Still, do not go to great lengths
4572 		 * to avoid userspace's usage of the feature, because it is a
4573 		 * fringe case that is not enabled except via specific settings
4574 		 * of the module parameters.
4575 		 */
4576 		r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4577 		break;
4578 	case KVM_CAP_NR_VCPUS:
4579 		r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4580 		break;
4581 	case KVM_CAP_MAX_VCPUS:
4582 		r = KVM_MAX_VCPUS;
4583 		break;
4584 	case KVM_CAP_MAX_VCPU_ID:
4585 		r = KVM_MAX_VCPU_IDS;
4586 		break;
4587 	case KVM_CAP_PV_MMU:	/* obsolete */
4588 		r = 0;
4589 		break;
4590 	case KVM_CAP_MCE:
4591 		r = KVM_MAX_MCE_BANKS;
4592 		break;
4593 	case KVM_CAP_XCRS:
4594 		r = boot_cpu_has(X86_FEATURE_XSAVE);
4595 		break;
4596 	case KVM_CAP_TSC_CONTROL:
4597 	case KVM_CAP_VM_TSC_CONTROL:
4598 		r = kvm_caps.has_tsc_control;
4599 		break;
4600 	case KVM_CAP_X2APIC_API:
4601 		r = KVM_X2APIC_API_VALID_FLAGS;
4602 		break;
4603 	case KVM_CAP_NESTED_STATE:
4604 		r = kvm_x86_ops.nested_ops->get_state ?
4605 			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4606 		break;
4607 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4608 		r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4609 		break;
4610 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4611 		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4612 		break;
4613 	case KVM_CAP_SMALLER_MAXPHYADDR:
4614 		r = (int) allow_smaller_maxphyaddr;
4615 		break;
4616 	case KVM_CAP_STEAL_TIME:
4617 		r = sched_info_on();
4618 		break;
4619 	case KVM_CAP_X86_BUS_LOCK_EXIT:
4620 		if (kvm_caps.has_bus_lock_exit)
4621 			r = KVM_BUS_LOCK_DETECTION_OFF |
4622 			    KVM_BUS_LOCK_DETECTION_EXIT;
4623 		else
4624 			r = 0;
4625 		break;
4626 	case KVM_CAP_XSAVE2: {
4627 		r = xstate_required_size(kvm_get_filtered_xcr0(), false);
4628 		if (r < sizeof(struct kvm_xsave))
4629 			r = sizeof(struct kvm_xsave);
4630 		break;
4631 	}
4632 	case KVM_CAP_PMU_CAPABILITY:
4633 		r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4634 		break;
4635 	case KVM_CAP_DISABLE_QUIRKS2:
4636 		r = KVM_X86_VALID_QUIRKS;
4637 		break;
4638 	case KVM_CAP_X86_NOTIFY_VMEXIT:
4639 		r = kvm_caps.has_notify_vmexit;
4640 		break;
4641 	default:
4642 		break;
4643 	}
4644 	return r;
4645 }
4646 
kvm_get_attr_addr(struct kvm_device_attr * attr)4647 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4648 {
4649 	void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4650 
4651 	if ((u64)(unsigned long)uaddr != attr->addr)
4652 		return ERR_PTR_USR(-EFAULT);
4653 	return uaddr;
4654 }
4655 
kvm_x86_dev_get_attr(struct kvm_device_attr * attr)4656 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4657 {
4658 	u64 __user *uaddr = kvm_get_attr_addr(attr);
4659 
4660 	if (attr->group)
4661 		return -ENXIO;
4662 
4663 	if (IS_ERR(uaddr))
4664 		return PTR_ERR(uaddr);
4665 
4666 	switch (attr->attr) {
4667 	case KVM_X86_XCOMP_GUEST_SUPP:
4668 		if (put_user(kvm_caps.supported_xcr0, uaddr))
4669 			return -EFAULT;
4670 		return 0;
4671 	default:
4672 		return -ENXIO;
4673 	}
4674 }
4675 
kvm_x86_dev_has_attr(struct kvm_device_attr * attr)4676 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4677 {
4678 	if (attr->group)
4679 		return -ENXIO;
4680 
4681 	switch (attr->attr) {
4682 	case KVM_X86_XCOMP_GUEST_SUPP:
4683 		return 0;
4684 	default:
4685 		return -ENXIO;
4686 	}
4687 }
4688 
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4689 long kvm_arch_dev_ioctl(struct file *filp,
4690 			unsigned int ioctl, unsigned long arg)
4691 {
4692 	void __user *argp = (void __user *)arg;
4693 	long r;
4694 
4695 	switch (ioctl) {
4696 	case KVM_GET_MSR_INDEX_LIST: {
4697 		struct kvm_msr_list __user *user_msr_list = argp;
4698 		struct kvm_msr_list msr_list;
4699 		unsigned n;
4700 
4701 		r = -EFAULT;
4702 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4703 			goto out;
4704 		n = msr_list.nmsrs;
4705 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4706 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4707 			goto out;
4708 		r = -E2BIG;
4709 		if (n < msr_list.nmsrs)
4710 			goto out;
4711 		r = -EFAULT;
4712 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4713 				 num_msrs_to_save * sizeof(u32)))
4714 			goto out;
4715 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4716 				 &emulated_msrs,
4717 				 num_emulated_msrs * sizeof(u32)))
4718 			goto out;
4719 		r = 0;
4720 		break;
4721 	}
4722 	case KVM_GET_SUPPORTED_CPUID:
4723 	case KVM_GET_EMULATED_CPUID: {
4724 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4725 		struct kvm_cpuid2 cpuid;
4726 
4727 		r = -EFAULT;
4728 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4729 			goto out;
4730 
4731 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4732 					    ioctl);
4733 		if (r)
4734 			goto out;
4735 
4736 		r = -EFAULT;
4737 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4738 			goto out;
4739 		r = 0;
4740 		break;
4741 	}
4742 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
4743 		r = -EFAULT;
4744 		if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4745 				 sizeof(kvm_caps.supported_mce_cap)))
4746 			goto out;
4747 		r = 0;
4748 		break;
4749 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4750 		struct kvm_msr_list __user *user_msr_list = argp;
4751 		struct kvm_msr_list msr_list;
4752 		unsigned int n;
4753 
4754 		r = -EFAULT;
4755 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4756 			goto out;
4757 		n = msr_list.nmsrs;
4758 		msr_list.nmsrs = num_msr_based_features;
4759 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4760 			goto out;
4761 		r = -E2BIG;
4762 		if (n < msr_list.nmsrs)
4763 			goto out;
4764 		r = -EFAULT;
4765 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
4766 				 num_msr_based_features * sizeof(u32)))
4767 			goto out;
4768 		r = 0;
4769 		break;
4770 	}
4771 	case KVM_GET_MSRS:
4772 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
4773 		break;
4774 	case KVM_GET_SUPPORTED_HV_CPUID:
4775 		r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4776 		break;
4777 	case KVM_GET_DEVICE_ATTR: {
4778 		struct kvm_device_attr attr;
4779 		r = -EFAULT;
4780 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4781 			break;
4782 		r = kvm_x86_dev_get_attr(&attr);
4783 		break;
4784 	}
4785 	case KVM_HAS_DEVICE_ATTR: {
4786 		struct kvm_device_attr attr;
4787 		r = -EFAULT;
4788 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4789 			break;
4790 		r = kvm_x86_dev_has_attr(&attr);
4791 		break;
4792 	}
4793 	default:
4794 		r = -EINVAL;
4795 		break;
4796 	}
4797 out:
4798 	return r;
4799 }
4800 
wbinvd_ipi(void * garbage)4801 static void wbinvd_ipi(void *garbage)
4802 {
4803 	wbinvd();
4804 }
4805 
need_emulate_wbinvd(struct kvm_vcpu * vcpu)4806 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4807 {
4808 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4809 }
4810 
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)4811 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4812 {
4813 	/* Address WBINVD may be executed by guest */
4814 	if (need_emulate_wbinvd(vcpu)) {
4815 		if (static_call(kvm_x86_has_wbinvd_exit)())
4816 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4817 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4818 			smp_call_function_single(vcpu->cpu,
4819 					wbinvd_ipi, NULL, 1);
4820 	}
4821 
4822 	static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4823 
4824 	/* Save host pkru register if supported */
4825 	vcpu->arch.host_pkru = read_pkru();
4826 
4827 	/* Apply any externally detected TSC adjustments (due to suspend) */
4828 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4829 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4830 		vcpu->arch.tsc_offset_adjustment = 0;
4831 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4832 	}
4833 
4834 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4835 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4836 				rdtsc() - vcpu->arch.last_host_tsc;
4837 		if (tsc_delta < 0)
4838 			mark_tsc_unstable("KVM discovered backwards TSC");
4839 
4840 		if (kvm_check_tsc_unstable()) {
4841 			u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4842 						vcpu->arch.last_guest_tsc);
4843 			kvm_vcpu_write_tsc_offset(vcpu, offset);
4844 			vcpu->arch.tsc_catchup = 1;
4845 		}
4846 
4847 		if (kvm_lapic_hv_timer_in_use(vcpu))
4848 			kvm_lapic_restart_hv_timer(vcpu);
4849 
4850 		/*
4851 		 * On a host with synchronized TSC, there is no need to update
4852 		 * kvmclock on vcpu->cpu migration
4853 		 */
4854 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4855 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4856 		if (vcpu->cpu != cpu)
4857 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4858 		vcpu->cpu = cpu;
4859 	}
4860 
4861 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4862 }
4863 
kvm_steal_time_set_preempted(struct kvm_vcpu * vcpu)4864 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4865 {
4866 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4867 	struct kvm_steal_time __user *st;
4868 	struct kvm_memslots *slots;
4869 	static const u8 preempted = KVM_VCPU_PREEMPTED;
4870 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
4871 
4872 	/*
4873 	 * The vCPU can be marked preempted if and only if the VM-Exit was on
4874 	 * an instruction boundary and will not trigger guest emulation of any
4875 	 * kind (see vcpu_run).  Vendor specific code controls (conservatively)
4876 	 * when this is true, for example allowing the vCPU to be marked
4877 	 * preempted if and only if the VM-Exit was due to a host interrupt.
4878 	 */
4879 	if (!vcpu->arch.at_instruction_boundary) {
4880 		vcpu->stat.preemption_other++;
4881 		return;
4882 	}
4883 
4884 	vcpu->stat.preemption_reported++;
4885 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4886 		return;
4887 
4888 	if (vcpu->arch.st.preempted)
4889 		return;
4890 
4891 	/* This happens on process exit */
4892 	if (unlikely(current->mm != vcpu->kvm->mm))
4893 		return;
4894 
4895 	slots = kvm_memslots(vcpu->kvm);
4896 
4897 	if (unlikely(slots->generation != ghc->generation ||
4898 		     gpa != ghc->gpa ||
4899 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4900 		return;
4901 
4902 	st = (struct kvm_steal_time __user *)ghc->hva;
4903 	BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4904 
4905 	if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4906 		vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4907 
4908 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4909 }
4910 
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)4911 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4912 {
4913 	int idx;
4914 
4915 	if (vcpu->preempted) {
4916 		if (!vcpu->arch.guest_state_protected)
4917 			vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4918 
4919 		/*
4920 		 * Take the srcu lock as memslots will be accessed to check the gfn
4921 		 * cache generation against the memslots generation.
4922 		 */
4923 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4924 		if (kvm_xen_msr_enabled(vcpu->kvm))
4925 			kvm_xen_runstate_set_preempted(vcpu);
4926 		else
4927 			kvm_steal_time_set_preempted(vcpu);
4928 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4929 	}
4930 
4931 	static_call(kvm_x86_vcpu_put)(vcpu);
4932 	vcpu->arch.last_host_tsc = rdtsc();
4933 }
4934 
kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)4935 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4936 				    struct kvm_lapic_state *s)
4937 {
4938 	static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4939 
4940 	return kvm_apic_get_state(vcpu, s);
4941 }
4942 
kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)4943 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4944 				    struct kvm_lapic_state *s)
4945 {
4946 	int r;
4947 
4948 	r = kvm_apic_set_state(vcpu, s);
4949 	if (r)
4950 		return r;
4951 	update_cr8_intercept(vcpu);
4952 
4953 	return 0;
4954 }
4955 
kvm_cpu_accept_dm_intr(struct kvm_vcpu * vcpu)4956 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4957 {
4958 	/*
4959 	 * We can accept userspace's request for interrupt injection
4960 	 * as long as we have a place to store the interrupt number.
4961 	 * The actual injection will happen when the CPU is able to
4962 	 * deliver the interrupt.
4963 	 */
4964 	if (kvm_cpu_has_extint(vcpu))
4965 		return false;
4966 
4967 	/* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4968 	return (!lapic_in_kernel(vcpu) ||
4969 		kvm_apic_accept_pic_intr(vcpu));
4970 }
4971 
kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu * vcpu)4972 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4973 {
4974 	/*
4975 	 * Do not cause an interrupt window exit if an exception
4976 	 * is pending or an event needs reinjection; userspace
4977 	 * might want to inject the interrupt manually using KVM_SET_REGS
4978 	 * or KVM_SET_SREGS.  For that to work, we must be at an
4979 	 * instruction boundary and with no events half-injected.
4980 	 */
4981 	return (kvm_arch_interrupt_allowed(vcpu) &&
4982 		kvm_cpu_accept_dm_intr(vcpu) &&
4983 		!kvm_event_needs_reinjection(vcpu) &&
4984 		!kvm_is_exception_pending(vcpu));
4985 }
4986 
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_interrupt * irq)4987 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4988 				    struct kvm_interrupt *irq)
4989 {
4990 	if (irq->irq >= KVM_NR_INTERRUPTS)
4991 		return -EINVAL;
4992 
4993 	if (!irqchip_in_kernel(vcpu->kvm)) {
4994 		kvm_queue_interrupt(vcpu, irq->irq, false);
4995 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4996 		return 0;
4997 	}
4998 
4999 	/*
5000 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
5001 	 * fail for in-kernel 8259.
5002 	 */
5003 	if (pic_in_kernel(vcpu->kvm))
5004 		return -ENXIO;
5005 
5006 	if (vcpu->arch.pending_external_vector != -1)
5007 		return -EEXIST;
5008 
5009 	vcpu->arch.pending_external_vector = irq->irq;
5010 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5011 	return 0;
5012 }
5013 
kvm_vcpu_ioctl_nmi(struct kvm_vcpu * vcpu)5014 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
5015 {
5016 	kvm_inject_nmi(vcpu);
5017 
5018 	return 0;
5019 }
5020 
vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu * vcpu,struct kvm_tpr_access_ctl * tac)5021 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
5022 					   struct kvm_tpr_access_ctl *tac)
5023 {
5024 	if (tac->flags)
5025 		return -EINVAL;
5026 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
5027 	return 0;
5028 }
5029 
kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu * vcpu,u64 mcg_cap)5030 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
5031 					u64 mcg_cap)
5032 {
5033 	int r;
5034 	unsigned bank_num = mcg_cap & 0xff, bank;
5035 
5036 	r = -EINVAL;
5037 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
5038 		goto out;
5039 	if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
5040 		goto out;
5041 	r = 0;
5042 	vcpu->arch.mcg_cap = mcg_cap;
5043 	/* Init IA32_MCG_CTL to all 1s */
5044 	if (mcg_cap & MCG_CTL_P)
5045 		vcpu->arch.mcg_ctl = ~(u64)0;
5046 	/* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
5047 	for (bank = 0; bank < bank_num; bank++) {
5048 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
5049 		if (mcg_cap & MCG_CMCI_P)
5050 			vcpu->arch.mci_ctl2_banks[bank] = 0;
5051 	}
5052 
5053 	kvm_apic_after_set_mcg_cap(vcpu);
5054 
5055 	static_call(kvm_x86_setup_mce)(vcpu);
5056 out:
5057 	return r;
5058 }
5059 
5060 /*
5061  * Validate this is an UCNA (uncorrectable no action) error by checking the
5062  * MCG_STATUS and MCi_STATUS registers:
5063  * - none of the bits for Machine Check Exceptions are set
5064  * - both the VAL (valid) and UC (uncorrectable) bits are set
5065  * MCI_STATUS_PCC - Processor Context Corrupted
5066  * MCI_STATUS_S - Signaled as a Machine Check Exception
5067  * MCI_STATUS_AR - Software recoverable Action Required
5068  */
is_ucna(struct kvm_x86_mce * mce)5069 static bool is_ucna(struct kvm_x86_mce *mce)
5070 {
5071 	return	!mce->mcg_status &&
5072 		!(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
5073 		(mce->status & MCI_STATUS_VAL) &&
5074 		(mce->status & MCI_STATUS_UC);
5075 }
5076 
kvm_vcpu_x86_set_ucna(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce,u64 * banks)5077 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
5078 {
5079 	u64 mcg_cap = vcpu->arch.mcg_cap;
5080 
5081 	banks[1] = mce->status;
5082 	banks[2] = mce->addr;
5083 	banks[3] = mce->misc;
5084 	vcpu->arch.mcg_status = mce->mcg_status;
5085 
5086 	if (!(mcg_cap & MCG_CMCI_P) ||
5087 	    !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
5088 		return 0;
5089 
5090 	if (lapic_in_kernel(vcpu))
5091 		kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
5092 
5093 	return 0;
5094 }
5095 
kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce)5096 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
5097 				      struct kvm_x86_mce *mce)
5098 {
5099 	u64 mcg_cap = vcpu->arch.mcg_cap;
5100 	unsigned bank_num = mcg_cap & 0xff;
5101 	u64 *banks = vcpu->arch.mce_banks;
5102 
5103 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
5104 		return -EINVAL;
5105 
5106 	banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5107 
5108 	if (is_ucna(mce))
5109 		return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5110 
5111 	/*
5112 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
5113 	 * reporting is disabled
5114 	 */
5115 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5116 	    vcpu->arch.mcg_ctl != ~(u64)0)
5117 		return 0;
5118 	/*
5119 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
5120 	 * reporting is disabled for the bank
5121 	 */
5122 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5123 		return 0;
5124 	if (mce->status & MCI_STATUS_UC) {
5125 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5126 		    !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) {
5127 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5128 			return 0;
5129 		}
5130 		if (banks[1] & MCI_STATUS_VAL)
5131 			mce->status |= MCI_STATUS_OVER;
5132 		banks[2] = mce->addr;
5133 		banks[3] = mce->misc;
5134 		vcpu->arch.mcg_status = mce->mcg_status;
5135 		banks[1] = mce->status;
5136 		kvm_queue_exception(vcpu, MC_VECTOR);
5137 	} else if (!(banks[1] & MCI_STATUS_VAL)
5138 		   || !(banks[1] & MCI_STATUS_UC)) {
5139 		if (banks[1] & MCI_STATUS_VAL)
5140 			mce->status |= MCI_STATUS_OVER;
5141 		banks[2] = mce->addr;
5142 		banks[3] = mce->misc;
5143 		banks[1] = mce->status;
5144 	} else
5145 		banks[1] |= MCI_STATUS_OVER;
5146 	return 0;
5147 }
5148 
kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)5149 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5150 					       struct kvm_vcpu_events *events)
5151 {
5152 	struct kvm_queued_exception *ex;
5153 
5154 	process_nmi(vcpu);
5155 
5156 #ifdef CONFIG_KVM_SMM
5157 	if (kvm_check_request(KVM_REQ_SMI, vcpu))
5158 		process_smi(vcpu);
5159 #endif
5160 
5161 	/*
5162 	 * KVM's ABI only allows for one exception to be migrated.  Luckily,
5163 	 * the only time there can be two queued exceptions is if there's a
5164 	 * non-exiting _injected_ exception, and a pending exiting exception.
5165 	 * In that case, ignore the VM-Exiting exception as it's an extension
5166 	 * of the injected exception.
5167 	 */
5168 	if (vcpu->arch.exception_vmexit.pending &&
5169 	    !vcpu->arch.exception.pending &&
5170 	    !vcpu->arch.exception.injected)
5171 		ex = &vcpu->arch.exception_vmexit;
5172 	else
5173 		ex = &vcpu->arch.exception;
5174 
5175 	/*
5176 	 * In guest mode, payload delivery should be deferred if the exception
5177 	 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5178 	 * intercepts #PF, ditto for DR6 and #DBs.  If the per-VM capability,
5179 	 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5180 	 * propagate the payload and so it cannot be safely deferred.  Deliver
5181 	 * the payload if the capability hasn't been requested.
5182 	 */
5183 	if (!vcpu->kvm->arch.exception_payload_enabled &&
5184 	    ex->pending && ex->has_payload)
5185 		kvm_deliver_exception_payload(vcpu, ex);
5186 
5187 	memset(events, 0, sizeof(*events));
5188 
5189 	/*
5190 	 * The API doesn't provide the instruction length for software
5191 	 * exceptions, so don't report them. As long as the guest RIP
5192 	 * isn't advanced, we should expect to encounter the exception
5193 	 * again.
5194 	 */
5195 	if (!kvm_exception_is_soft(ex->vector)) {
5196 		events->exception.injected = ex->injected;
5197 		events->exception.pending = ex->pending;
5198 		/*
5199 		 * For ABI compatibility, deliberately conflate
5200 		 * pending and injected exceptions when
5201 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5202 		 */
5203 		if (!vcpu->kvm->arch.exception_payload_enabled)
5204 			events->exception.injected |= ex->pending;
5205 	}
5206 	events->exception.nr = ex->vector;
5207 	events->exception.has_error_code = ex->has_error_code;
5208 	events->exception.error_code = ex->error_code;
5209 	events->exception_has_payload = ex->has_payload;
5210 	events->exception_payload = ex->payload;
5211 
5212 	events->interrupt.injected =
5213 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5214 	events->interrupt.nr = vcpu->arch.interrupt.nr;
5215 	events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
5216 
5217 	events->nmi.injected = vcpu->arch.nmi_injected;
5218 	events->nmi.pending = kvm_get_nr_pending_nmis(vcpu);
5219 	events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
5220 
5221 	/* events->sipi_vector is never valid when reporting to user space */
5222 
5223 #ifdef CONFIG_KVM_SMM
5224 	events->smi.smm = is_smm(vcpu);
5225 	events->smi.pending = vcpu->arch.smi_pending;
5226 	events->smi.smm_inside_nmi =
5227 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5228 #endif
5229 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5230 
5231 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5232 			 | KVM_VCPUEVENT_VALID_SHADOW
5233 			 | KVM_VCPUEVENT_VALID_SMM);
5234 	if (vcpu->kvm->arch.exception_payload_enabled)
5235 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5236 	if (vcpu->kvm->arch.triple_fault_event) {
5237 		events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5238 		events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5239 	}
5240 }
5241 
kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)5242 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5243 					      struct kvm_vcpu_events *events)
5244 {
5245 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5246 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5247 			      | KVM_VCPUEVENT_VALID_SHADOW
5248 			      | KVM_VCPUEVENT_VALID_SMM
5249 			      | KVM_VCPUEVENT_VALID_PAYLOAD
5250 			      | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5251 		return -EINVAL;
5252 
5253 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5254 		if (!vcpu->kvm->arch.exception_payload_enabled)
5255 			return -EINVAL;
5256 		if (events->exception.pending)
5257 			events->exception.injected = 0;
5258 		else
5259 			events->exception_has_payload = 0;
5260 	} else {
5261 		events->exception.pending = 0;
5262 		events->exception_has_payload = 0;
5263 	}
5264 
5265 	if ((events->exception.injected || events->exception.pending) &&
5266 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5267 		return -EINVAL;
5268 
5269 	/* INITs are latched while in SMM */
5270 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5271 	    (events->smi.smm || events->smi.pending) &&
5272 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5273 		return -EINVAL;
5274 
5275 	process_nmi(vcpu);
5276 
5277 	/*
5278 	 * Flag that userspace is stuffing an exception, the next KVM_RUN will
5279 	 * morph the exception to a VM-Exit if appropriate.  Do this only for
5280 	 * pending exceptions, already-injected exceptions are not subject to
5281 	 * intercpetion.  Note, userspace that conflates pending and injected
5282 	 * is hosed, and will incorrectly convert an injected exception into a
5283 	 * pending exception, which in turn may cause a spurious VM-Exit.
5284 	 */
5285 	vcpu->arch.exception_from_userspace = events->exception.pending;
5286 
5287 	vcpu->arch.exception_vmexit.pending = false;
5288 
5289 	vcpu->arch.exception.injected = events->exception.injected;
5290 	vcpu->arch.exception.pending = events->exception.pending;
5291 	vcpu->arch.exception.vector = events->exception.nr;
5292 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5293 	vcpu->arch.exception.error_code = events->exception.error_code;
5294 	vcpu->arch.exception.has_payload = events->exception_has_payload;
5295 	vcpu->arch.exception.payload = events->exception_payload;
5296 
5297 	vcpu->arch.interrupt.injected = events->interrupt.injected;
5298 	vcpu->arch.interrupt.nr = events->interrupt.nr;
5299 	vcpu->arch.interrupt.soft = events->interrupt.soft;
5300 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5301 		static_call(kvm_x86_set_interrupt_shadow)(vcpu,
5302 						events->interrupt.shadow);
5303 
5304 	vcpu->arch.nmi_injected = events->nmi.injected;
5305 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) {
5306 		vcpu->arch.nmi_pending = 0;
5307 		atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending);
5308 		if (events->nmi.pending)
5309 			kvm_make_request(KVM_REQ_NMI, vcpu);
5310 	}
5311 	static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
5312 
5313 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5314 	    lapic_in_kernel(vcpu))
5315 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
5316 
5317 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5318 #ifdef CONFIG_KVM_SMM
5319 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5320 			kvm_leave_nested(vcpu);
5321 			kvm_smm_changed(vcpu, events->smi.smm);
5322 		}
5323 
5324 		vcpu->arch.smi_pending = events->smi.pending;
5325 
5326 		if (events->smi.smm) {
5327 			if (events->smi.smm_inside_nmi)
5328 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5329 			else
5330 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5331 		}
5332 
5333 #else
5334 		if (events->smi.smm || events->smi.pending ||
5335 		    events->smi.smm_inside_nmi)
5336 			return -EINVAL;
5337 #endif
5338 
5339 		if (lapic_in_kernel(vcpu)) {
5340 			if (events->smi.latched_init)
5341 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5342 			else
5343 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5344 		}
5345 	}
5346 
5347 	if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5348 		if (!vcpu->kvm->arch.triple_fault_event)
5349 			return -EINVAL;
5350 		if (events->triple_fault.pending)
5351 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5352 		else
5353 			kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5354 	}
5355 
5356 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5357 
5358 	return 0;
5359 }
5360 
kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)5361 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5362 					     struct kvm_debugregs *dbgregs)
5363 {
5364 	unsigned long val;
5365 
5366 	memset(dbgregs, 0, sizeof(*dbgregs));
5367 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
5368 	kvm_get_dr(vcpu, 6, &val);
5369 	dbgregs->dr6 = val;
5370 	dbgregs->dr7 = vcpu->arch.dr7;
5371 }
5372 
kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)5373 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5374 					    struct kvm_debugregs *dbgregs)
5375 {
5376 	if (dbgregs->flags)
5377 		return -EINVAL;
5378 
5379 	if (!kvm_dr6_valid(dbgregs->dr6))
5380 		return -EINVAL;
5381 	if (!kvm_dr7_valid(dbgregs->dr7))
5382 		return -EINVAL;
5383 
5384 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
5385 	kvm_update_dr0123(vcpu);
5386 	vcpu->arch.dr6 = dbgregs->dr6;
5387 	vcpu->arch.dr7 = dbgregs->dr7;
5388 	kvm_update_dr7(vcpu);
5389 
5390 	return 0;
5391 }
5392 
5393 
kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu * vcpu,u8 * state,unsigned int size)5394 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5395 					  u8 *state, unsigned int size)
5396 {
5397 	/*
5398 	 * Only copy state for features that are enabled for the guest.  The
5399 	 * state itself isn't problematic, but setting bits in the header for
5400 	 * features that are supported in *this* host but not exposed to the
5401 	 * guest can result in KVM_SET_XSAVE failing when live migrating to a
5402 	 * compatible host without the features that are NOT exposed to the
5403 	 * guest.
5404 	 *
5405 	 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if
5406 	 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't
5407 	 * supported by the host.
5408 	 */
5409 	u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 |
5410 			     XFEATURE_MASK_FPSSE;
5411 
5412 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5413 		return;
5414 
5415 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size,
5416 				       supported_xcr0, vcpu->arch.pkru);
5417 }
5418 
kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)5419 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5420 					 struct kvm_xsave *guest_xsave)
5421 {
5422 	return kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region,
5423 					     sizeof(guest_xsave->region));
5424 }
5425 
kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)5426 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5427 					struct kvm_xsave *guest_xsave)
5428 {
5429 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5430 		return 0;
5431 
5432 	return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5433 					      guest_xsave->region,
5434 					      kvm_caps.supported_xcr0,
5435 					      &vcpu->arch.pkru);
5436 }
5437 
kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)5438 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5439 					struct kvm_xcrs *guest_xcrs)
5440 {
5441 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5442 		guest_xcrs->nr_xcrs = 0;
5443 		return;
5444 	}
5445 
5446 	guest_xcrs->nr_xcrs = 1;
5447 	guest_xcrs->flags = 0;
5448 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5449 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5450 }
5451 
kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)5452 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5453 				       struct kvm_xcrs *guest_xcrs)
5454 {
5455 	int i, r = 0;
5456 
5457 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
5458 		return -EINVAL;
5459 
5460 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5461 		return -EINVAL;
5462 
5463 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5464 		/* Only support XCR0 currently */
5465 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5466 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5467 				guest_xcrs->xcrs[i].value);
5468 			break;
5469 		}
5470 	if (r)
5471 		r = -EINVAL;
5472 	return r;
5473 }
5474 
5475 /*
5476  * kvm_set_guest_paused() indicates to the guest kernel that it has been
5477  * stopped by the hypervisor.  This function will be called from the host only.
5478  * EINVAL is returned when the host attempts to set the flag for a guest that
5479  * does not support pv clocks.
5480  */
kvm_set_guest_paused(struct kvm_vcpu * vcpu)5481 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5482 {
5483 	if (!vcpu->arch.pv_time.active)
5484 		return -EINVAL;
5485 	vcpu->arch.pvclock_set_guest_stopped_request = true;
5486 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5487 	return 0;
5488 }
5489 
kvm_arch_tsc_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5490 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5491 				 struct kvm_device_attr *attr)
5492 {
5493 	int r;
5494 
5495 	switch (attr->attr) {
5496 	case KVM_VCPU_TSC_OFFSET:
5497 		r = 0;
5498 		break;
5499 	default:
5500 		r = -ENXIO;
5501 	}
5502 
5503 	return r;
5504 }
5505 
kvm_arch_tsc_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5506 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5507 				 struct kvm_device_attr *attr)
5508 {
5509 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5510 	int r;
5511 
5512 	if (IS_ERR(uaddr))
5513 		return PTR_ERR(uaddr);
5514 
5515 	switch (attr->attr) {
5516 	case KVM_VCPU_TSC_OFFSET:
5517 		r = -EFAULT;
5518 		if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5519 			break;
5520 		r = 0;
5521 		break;
5522 	default:
5523 		r = -ENXIO;
5524 	}
5525 
5526 	return r;
5527 }
5528 
kvm_arch_tsc_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5529 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5530 				 struct kvm_device_attr *attr)
5531 {
5532 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5533 	struct kvm *kvm = vcpu->kvm;
5534 	int r;
5535 
5536 	if (IS_ERR(uaddr))
5537 		return PTR_ERR(uaddr);
5538 
5539 	switch (attr->attr) {
5540 	case KVM_VCPU_TSC_OFFSET: {
5541 		u64 offset, tsc, ns;
5542 		unsigned long flags;
5543 		bool matched;
5544 
5545 		r = -EFAULT;
5546 		if (get_user(offset, uaddr))
5547 			break;
5548 
5549 		raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5550 
5551 		matched = (vcpu->arch.virtual_tsc_khz &&
5552 			   kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5553 			   kvm->arch.last_tsc_offset == offset);
5554 
5555 		tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5556 		ns = get_kvmclock_base_ns();
5557 
5558 		__kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5559 		raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5560 
5561 		r = 0;
5562 		break;
5563 	}
5564 	default:
5565 		r = -ENXIO;
5566 	}
5567 
5568 	return r;
5569 }
5570 
kvm_vcpu_ioctl_device_attr(struct kvm_vcpu * vcpu,unsigned int ioctl,void __user * argp)5571 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5572 				      unsigned int ioctl,
5573 				      void __user *argp)
5574 {
5575 	struct kvm_device_attr attr;
5576 	int r;
5577 
5578 	if (copy_from_user(&attr, argp, sizeof(attr)))
5579 		return -EFAULT;
5580 
5581 	if (attr.group != KVM_VCPU_TSC_CTRL)
5582 		return -ENXIO;
5583 
5584 	switch (ioctl) {
5585 	case KVM_HAS_DEVICE_ATTR:
5586 		r = kvm_arch_tsc_has_attr(vcpu, &attr);
5587 		break;
5588 	case KVM_GET_DEVICE_ATTR:
5589 		r = kvm_arch_tsc_get_attr(vcpu, &attr);
5590 		break;
5591 	case KVM_SET_DEVICE_ATTR:
5592 		r = kvm_arch_tsc_set_attr(vcpu, &attr);
5593 		break;
5594 	}
5595 
5596 	return r;
5597 }
5598 
kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu * vcpu,struct kvm_enable_cap * cap)5599 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5600 				     struct kvm_enable_cap *cap)
5601 {
5602 	int r;
5603 	uint16_t vmcs_version;
5604 	void __user *user_ptr;
5605 
5606 	if (cap->flags)
5607 		return -EINVAL;
5608 
5609 	switch (cap->cap) {
5610 	case KVM_CAP_HYPERV_SYNIC2:
5611 		if (cap->args[0])
5612 			return -EINVAL;
5613 		fallthrough;
5614 
5615 	case KVM_CAP_HYPERV_SYNIC:
5616 		if (!irqchip_in_kernel(vcpu->kvm))
5617 			return -EINVAL;
5618 		return kvm_hv_activate_synic(vcpu, cap->cap ==
5619 					     KVM_CAP_HYPERV_SYNIC2);
5620 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5621 		if (!kvm_x86_ops.nested_ops->enable_evmcs)
5622 			return -ENOTTY;
5623 		r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5624 		if (!r) {
5625 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
5626 			if (copy_to_user(user_ptr, &vmcs_version,
5627 					 sizeof(vmcs_version)))
5628 				r = -EFAULT;
5629 		}
5630 		return r;
5631 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5632 		if (!kvm_x86_ops.enable_l2_tlb_flush)
5633 			return -ENOTTY;
5634 
5635 		return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu);
5636 
5637 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
5638 		return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5639 
5640 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5641 		vcpu->arch.pv_cpuid.enforce = cap->args[0];
5642 		if (vcpu->arch.pv_cpuid.enforce)
5643 			kvm_update_pv_runtime(vcpu);
5644 
5645 		return 0;
5646 	default:
5647 		return -EINVAL;
5648 	}
5649 }
5650 
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5651 long kvm_arch_vcpu_ioctl(struct file *filp,
5652 			 unsigned int ioctl, unsigned long arg)
5653 {
5654 	struct kvm_vcpu *vcpu = filp->private_data;
5655 	void __user *argp = (void __user *)arg;
5656 	int r;
5657 	union {
5658 		struct kvm_sregs2 *sregs2;
5659 		struct kvm_lapic_state *lapic;
5660 		struct kvm_xsave *xsave;
5661 		struct kvm_xcrs *xcrs;
5662 		void *buffer;
5663 	} u;
5664 
5665 	vcpu_load(vcpu);
5666 
5667 	u.buffer = NULL;
5668 	switch (ioctl) {
5669 	case KVM_GET_LAPIC: {
5670 		r = -EINVAL;
5671 		if (!lapic_in_kernel(vcpu))
5672 			goto out;
5673 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5674 				GFP_KERNEL_ACCOUNT);
5675 
5676 		r = -ENOMEM;
5677 		if (!u.lapic)
5678 			goto out;
5679 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5680 		if (r)
5681 			goto out;
5682 		r = -EFAULT;
5683 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5684 			goto out;
5685 		r = 0;
5686 		break;
5687 	}
5688 	case KVM_SET_LAPIC: {
5689 		r = -EINVAL;
5690 		if (!lapic_in_kernel(vcpu))
5691 			goto out;
5692 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
5693 		if (IS_ERR(u.lapic)) {
5694 			r = PTR_ERR(u.lapic);
5695 			goto out_nofree;
5696 		}
5697 
5698 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5699 		break;
5700 	}
5701 	case KVM_INTERRUPT: {
5702 		struct kvm_interrupt irq;
5703 
5704 		r = -EFAULT;
5705 		if (copy_from_user(&irq, argp, sizeof(irq)))
5706 			goto out;
5707 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5708 		break;
5709 	}
5710 	case KVM_NMI: {
5711 		r = kvm_vcpu_ioctl_nmi(vcpu);
5712 		break;
5713 	}
5714 	case KVM_SMI: {
5715 		r = kvm_inject_smi(vcpu);
5716 		break;
5717 	}
5718 	case KVM_SET_CPUID: {
5719 		struct kvm_cpuid __user *cpuid_arg = argp;
5720 		struct kvm_cpuid cpuid;
5721 
5722 		r = -EFAULT;
5723 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5724 			goto out;
5725 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5726 		break;
5727 	}
5728 	case KVM_SET_CPUID2: {
5729 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5730 		struct kvm_cpuid2 cpuid;
5731 
5732 		r = -EFAULT;
5733 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5734 			goto out;
5735 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5736 					      cpuid_arg->entries);
5737 		break;
5738 	}
5739 	case KVM_GET_CPUID2: {
5740 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5741 		struct kvm_cpuid2 cpuid;
5742 
5743 		r = -EFAULT;
5744 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5745 			goto out;
5746 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5747 					      cpuid_arg->entries);
5748 		if (r)
5749 			goto out;
5750 		r = -EFAULT;
5751 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5752 			goto out;
5753 		r = 0;
5754 		break;
5755 	}
5756 	case KVM_GET_MSRS: {
5757 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5758 		r = msr_io(vcpu, argp, do_get_msr, 1);
5759 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5760 		break;
5761 	}
5762 	case KVM_SET_MSRS: {
5763 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5764 		r = msr_io(vcpu, argp, do_set_msr, 0);
5765 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5766 		break;
5767 	}
5768 	case KVM_TPR_ACCESS_REPORTING: {
5769 		struct kvm_tpr_access_ctl tac;
5770 
5771 		r = -EFAULT;
5772 		if (copy_from_user(&tac, argp, sizeof(tac)))
5773 			goto out;
5774 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5775 		if (r)
5776 			goto out;
5777 		r = -EFAULT;
5778 		if (copy_to_user(argp, &tac, sizeof(tac)))
5779 			goto out;
5780 		r = 0;
5781 		break;
5782 	};
5783 	case KVM_SET_VAPIC_ADDR: {
5784 		struct kvm_vapic_addr va;
5785 		int idx;
5786 
5787 		r = -EINVAL;
5788 		if (!lapic_in_kernel(vcpu))
5789 			goto out;
5790 		r = -EFAULT;
5791 		if (copy_from_user(&va, argp, sizeof(va)))
5792 			goto out;
5793 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5794 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5795 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5796 		break;
5797 	}
5798 	case KVM_X86_SETUP_MCE: {
5799 		u64 mcg_cap;
5800 
5801 		r = -EFAULT;
5802 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5803 			goto out;
5804 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5805 		break;
5806 	}
5807 	case KVM_X86_SET_MCE: {
5808 		struct kvm_x86_mce mce;
5809 
5810 		r = -EFAULT;
5811 		if (copy_from_user(&mce, argp, sizeof(mce)))
5812 			goto out;
5813 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5814 		break;
5815 	}
5816 	case KVM_GET_VCPU_EVENTS: {
5817 		struct kvm_vcpu_events events;
5818 
5819 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5820 
5821 		r = -EFAULT;
5822 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5823 			break;
5824 		r = 0;
5825 		break;
5826 	}
5827 	case KVM_SET_VCPU_EVENTS: {
5828 		struct kvm_vcpu_events events;
5829 
5830 		r = -EFAULT;
5831 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5832 			break;
5833 
5834 		kvm_vcpu_srcu_read_lock(vcpu);
5835 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5836 		kvm_vcpu_srcu_read_unlock(vcpu);
5837 		break;
5838 	}
5839 	case KVM_GET_DEBUGREGS: {
5840 		struct kvm_debugregs dbgregs;
5841 
5842 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5843 
5844 		r = -EFAULT;
5845 		if (copy_to_user(argp, &dbgregs,
5846 				 sizeof(struct kvm_debugregs)))
5847 			break;
5848 		r = 0;
5849 		break;
5850 	}
5851 	case KVM_SET_DEBUGREGS: {
5852 		struct kvm_debugregs dbgregs;
5853 
5854 		r = -EFAULT;
5855 		if (copy_from_user(&dbgregs, argp,
5856 				   sizeof(struct kvm_debugregs)))
5857 			break;
5858 
5859 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5860 		break;
5861 	}
5862 	case KVM_GET_XSAVE: {
5863 		r = -EINVAL;
5864 		if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
5865 			break;
5866 
5867 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5868 		r = -ENOMEM;
5869 		if (!u.xsave)
5870 			break;
5871 
5872 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5873 
5874 		r = -EFAULT;
5875 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5876 			break;
5877 		r = 0;
5878 		break;
5879 	}
5880 	case KVM_SET_XSAVE: {
5881 		int size = vcpu->arch.guest_fpu.uabi_size;
5882 
5883 		u.xsave = memdup_user(argp, size);
5884 		if (IS_ERR(u.xsave)) {
5885 			r = PTR_ERR(u.xsave);
5886 			goto out_nofree;
5887 		}
5888 
5889 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5890 		break;
5891 	}
5892 
5893 	case KVM_GET_XSAVE2: {
5894 		int size = vcpu->arch.guest_fpu.uabi_size;
5895 
5896 		u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
5897 		r = -ENOMEM;
5898 		if (!u.xsave)
5899 			break;
5900 
5901 		kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
5902 
5903 		r = -EFAULT;
5904 		if (copy_to_user(argp, u.xsave, size))
5905 			break;
5906 
5907 		r = 0;
5908 		break;
5909 	}
5910 
5911 	case KVM_GET_XCRS: {
5912 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5913 		r = -ENOMEM;
5914 		if (!u.xcrs)
5915 			break;
5916 
5917 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5918 
5919 		r = -EFAULT;
5920 		if (copy_to_user(argp, u.xcrs,
5921 				 sizeof(struct kvm_xcrs)))
5922 			break;
5923 		r = 0;
5924 		break;
5925 	}
5926 	case KVM_SET_XCRS: {
5927 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5928 		if (IS_ERR(u.xcrs)) {
5929 			r = PTR_ERR(u.xcrs);
5930 			goto out_nofree;
5931 		}
5932 
5933 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5934 		break;
5935 	}
5936 	case KVM_SET_TSC_KHZ: {
5937 		u32 user_tsc_khz;
5938 
5939 		r = -EINVAL;
5940 		user_tsc_khz = (u32)arg;
5941 
5942 		if (kvm_caps.has_tsc_control &&
5943 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
5944 			goto out;
5945 
5946 		if (user_tsc_khz == 0)
5947 			user_tsc_khz = tsc_khz;
5948 
5949 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5950 			r = 0;
5951 
5952 		goto out;
5953 	}
5954 	case KVM_GET_TSC_KHZ: {
5955 		r = vcpu->arch.virtual_tsc_khz;
5956 		goto out;
5957 	}
5958 	case KVM_KVMCLOCK_CTRL: {
5959 		r = kvm_set_guest_paused(vcpu);
5960 		goto out;
5961 	}
5962 	case KVM_ENABLE_CAP: {
5963 		struct kvm_enable_cap cap;
5964 
5965 		r = -EFAULT;
5966 		if (copy_from_user(&cap, argp, sizeof(cap)))
5967 			goto out;
5968 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5969 		break;
5970 	}
5971 	case KVM_GET_NESTED_STATE: {
5972 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5973 		u32 user_data_size;
5974 
5975 		r = -EINVAL;
5976 		if (!kvm_x86_ops.nested_ops->get_state)
5977 			break;
5978 
5979 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5980 		r = -EFAULT;
5981 		if (get_user(user_data_size, &user_kvm_nested_state->size))
5982 			break;
5983 
5984 		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5985 						     user_data_size);
5986 		if (r < 0)
5987 			break;
5988 
5989 		if (r > user_data_size) {
5990 			if (put_user(r, &user_kvm_nested_state->size))
5991 				r = -EFAULT;
5992 			else
5993 				r = -E2BIG;
5994 			break;
5995 		}
5996 
5997 		r = 0;
5998 		break;
5999 	}
6000 	case KVM_SET_NESTED_STATE: {
6001 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
6002 		struct kvm_nested_state kvm_state;
6003 		int idx;
6004 
6005 		r = -EINVAL;
6006 		if (!kvm_x86_ops.nested_ops->set_state)
6007 			break;
6008 
6009 		r = -EFAULT;
6010 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
6011 			break;
6012 
6013 		r = -EINVAL;
6014 		if (kvm_state.size < sizeof(kvm_state))
6015 			break;
6016 
6017 		if (kvm_state.flags &
6018 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
6019 		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
6020 		      | KVM_STATE_NESTED_GIF_SET))
6021 			break;
6022 
6023 		/* nested_run_pending implies guest_mode.  */
6024 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
6025 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
6026 			break;
6027 
6028 		idx = srcu_read_lock(&vcpu->kvm->srcu);
6029 		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
6030 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
6031 		break;
6032 	}
6033 	case KVM_GET_SUPPORTED_HV_CPUID:
6034 		r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
6035 		break;
6036 #ifdef CONFIG_KVM_XEN
6037 	case KVM_XEN_VCPU_GET_ATTR: {
6038 		struct kvm_xen_vcpu_attr xva;
6039 
6040 		r = -EFAULT;
6041 		if (copy_from_user(&xva, argp, sizeof(xva)))
6042 			goto out;
6043 		r = kvm_xen_vcpu_get_attr(vcpu, &xva);
6044 		if (!r && copy_to_user(argp, &xva, sizeof(xva)))
6045 			r = -EFAULT;
6046 		break;
6047 	}
6048 	case KVM_XEN_VCPU_SET_ATTR: {
6049 		struct kvm_xen_vcpu_attr xva;
6050 
6051 		r = -EFAULT;
6052 		if (copy_from_user(&xva, argp, sizeof(xva)))
6053 			goto out;
6054 		r = kvm_xen_vcpu_set_attr(vcpu, &xva);
6055 		break;
6056 	}
6057 #endif
6058 	case KVM_GET_SREGS2: {
6059 		u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
6060 		r = -ENOMEM;
6061 		if (!u.sregs2)
6062 			goto out;
6063 		__get_sregs2(vcpu, u.sregs2);
6064 		r = -EFAULT;
6065 		if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
6066 			goto out;
6067 		r = 0;
6068 		break;
6069 	}
6070 	case KVM_SET_SREGS2: {
6071 		u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
6072 		if (IS_ERR(u.sregs2)) {
6073 			r = PTR_ERR(u.sregs2);
6074 			u.sregs2 = NULL;
6075 			goto out;
6076 		}
6077 		r = __set_sregs2(vcpu, u.sregs2);
6078 		break;
6079 	}
6080 	case KVM_HAS_DEVICE_ATTR:
6081 	case KVM_GET_DEVICE_ATTR:
6082 	case KVM_SET_DEVICE_ATTR:
6083 		r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
6084 		break;
6085 	default:
6086 		r = -EINVAL;
6087 	}
6088 out:
6089 	kfree(u.buffer);
6090 out_nofree:
6091 	vcpu_put(vcpu);
6092 	return r;
6093 }
6094 
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)6095 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
6096 {
6097 	return VM_FAULT_SIGBUS;
6098 }
6099 
kvm_vm_ioctl_set_tss_addr(struct kvm * kvm,unsigned long addr)6100 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
6101 {
6102 	int ret;
6103 
6104 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
6105 		return -EINVAL;
6106 	ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
6107 	return ret;
6108 }
6109 
kvm_vm_ioctl_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)6110 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
6111 					      u64 ident_addr)
6112 {
6113 	return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
6114 }
6115 
kvm_vm_ioctl_set_nr_mmu_pages(struct kvm * kvm,unsigned long kvm_nr_mmu_pages)6116 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
6117 					 unsigned long kvm_nr_mmu_pages)
6118 {
6119 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
6120 		return -EINVAL;
6121 
6122 	mutex_lock(&kvm->slots_lock);
6123 
6124 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6125 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6126 
6127 	mutex_unlock(&kvm->slots_lock);
6128 	return 0;
6129 }
6130 
kvm_vm_ioctl_get_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)6131 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6132 {
6133 	struct kvm_pic *pic = kvm->arch.vpic;
6134 	int r;
6135 
6136 	r = 0;
6137 	switch (chip->chip_id) {
6138 	case KVM_IRQCHIP_PIC_MASTER:
6139 		memcpy(&chip->chip.pic, &pic->pics[0],
6140 			sizeof(struct kvm_pic_state));
6141 		break;
6142 	case KVM_IRQCHIP_PIC_SLAVE:
6143 		memcpy(&chip->chip.pic, &pic->pics[1],
6144 			sizeof(struct kvm_pic_state));
6145 		break;
6146 	case KVM_IRQCHIP_IOAPIC:
6147 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
6148 		break;
6149 	default:
6150 		r = -EINVAL;
6151 		break;
6152 	}
6153 	return r;
6154 }
6155 
kvm_vm_ioctl_set_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)6156 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6157 {
6158 	struct kvm_pic *pic = kvm->arch.vpic;
6159 	int r;
6160 
6161 	r = 0;
6162 	switch (chip->chip_id) {
6163 	case KVM_IRQCHIP_PIC_MASTER:
6164 		spin_lock(&pic->lock);
6165 		memcpy(&pic->pics[0], &chip->chip.pic,
6166 			sizeof(struct kvm_pic_state));
6167 		spin_unlock(&pic->lock);
6168 		break;
6169 	case KVM_IRQCHIP_PIC_SLAVE:
6170 		spin_lock(&pic->lock);
6171 		memcpy(&pic->pics[1], &chip->chip.pic,
6172 			sizeof(struct kvm_pic_state));
6173 		spin_unlock(&pic->lock);
6174 		break;
6175 	case KVM_IRQCHIP_IOAPIC:
6176 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
6177 		break;
6178 	default:
6179 		r = -EINVAL;
6180 		break;
6181 	}
6182 	kvm_pic_update_irq(pic);
6183 	return r;
6184 }
6185 
kvm_vm_ioctl_get_pit(struct kvm * kvm,struct kvm_pit_state * ps)6186 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6187 {
6188 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6189 
6190 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6191 
6192 	mutex_lock(&kps->lock);
6193 	memcpy(ps, &kps->channels, sizeof(*ps));
6194 	mutex_unlock(&kps->lock);
6195 	return 0;
6196 }
6197 
kvm_vm_ioctl_set_pit(struct kvm * kvm,struct kvm_pit_state * ps)6198 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6199 {
6200 	int i;
6201 	struct kvm_pit *pit = kvm->arch.vpit;
6202 
6203 	mutex_lock(&pit->pit_state.lock);
6204 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6205 	for (i = 0; i < 3; i++)
6206 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6207 	mutex_unlock(&pit->pit_state.lock);
6208 	return 0;
6209 }
6210 
kvm_vm_ioctl_get_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)6211 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6212 {
6213 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
6214 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6215 		sizeof(ps->channels));
6216 	ps->flags = kvm->arch.vpit->pit_state.flags;
6217 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6218 	memset(&ps->reserved, 0, sizeof(ps->reserved));
6219 	return 0;
6220 }
6221 
kvm_vm_ioctl_set_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)6222 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6223 {
6224 	int start = 0;
6225 	int i;
6226 	u32 prev_legacy, cur_legacy;
6227 	struct kvm_pit *pit = kvm->arch.vpit;
6228 
6229 	mutex_lock(&pit->pit_state.lock);
6230 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6231 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6232 	if (!prev_legacy && cur_legacy)
6233 		start = 1;
6234 	memcpy(&pit->pit_state.channels, &ps->channels,
6235 	       sizeof(pit->pit_state.channels));
6236 	pit->pit_state.flags = ps->flags;
6237 	for (i = 0; i < 3; i++)
6238 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6239 				   start && i == 0);
6240 	mutex_unlock(&pit->pit_state.lock);
6241 	return 0;
6242 }
6243 
kvm_vm_ioctl_reinject(struct kvm * kvm,struct kvm_reinject_control * control)6244 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6245 				 struct kvm_reinject_control *control)
6246 {
6247 	struct kvm_pit *pit = kvm->arch.vpit;
6248 
6249 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
6250 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6251 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
6252 	 */
6253 	mutex_lock(&pit->pit_state.lock);
6254 	kvm_pit_set_reinject(pit, control->pit_reinject);
6255 	mutex_unlock(&pit->pit_state.lock);
6256 
6257 	return 0;
6258 }
6259 
kvm_arch_sync_dirty_log(struct kvm * kvm,struct kvm_memory_slot * memslot)6260 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6261 {
6262 
6263 	/*
6264 	 * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
6265 	 * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
6266 	 * on all VM-Exits, thus we only need to kick running vCPUs to force a
6267 	 * VM-Exit.
6268 	 */
6269 	struct kvm_vcpu *vcpu;
6270 	unsigned long i;
6271 
6272 	kvm_for_each_vcpu(i, vcpu, kvm)
6273 		kvm_vcpu_kick(vcpu);
6274 }
6275 
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_event,bool line_status)6276 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6277 			bool line_status)
6278 {
6279 	if (!irqchip_in_kernel(kvm))
6280 		return -ENXIO;
6281 
6282 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6283 					irq_event->irq, irq_event->level,
6284 					line_status);
6285 	return 0;
6286 }
6287 
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)6288 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6289 			    struct kvm_enable_cap *cap)
6290 {
6291 	int r;
6292 
6293 	if (cap->flags)
6294 		return -EINVAL;
6295 
6296 	switch (cap->cap) {
6297 	case KVM_CAP_DISABLE_QUIRKS2:
6298 		r = -EINVAL;
6299 		if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6300 			break;
6301 		fallthrough;
6302 	case KVM_CAP_DISABLE_QUIRKS:
6303 		kvm->arch.disabled_quirks = cap->args[0];
6304 		r = 0;
6305 		break;
6306 	case KVM_CAP_SPLIT_IRQCHIP: {
6307 		mutex_lock(&kvm->lock);
6308 		r = -EINVAL;
6309 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6310 			goto split_irqchip_unlock;
6311 		r = -EEXIST;
6312 		if (irqchip_in_kernel(kvm))
6313 			goto split_irqchip_unlock;
6314 		if (kvm->created_vcpus)
6315 			goto split_irqchip_unlock;
6316 		r = kvm_setup_empty_irq_routing(kvm);
6317 		if (r)
6318 			goto split_irqchip_unlock;
6319 		/* Pairs with irqchip_in_kernel. */
6320 		smp_wmb();
6321 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6322 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6323 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6324 		r = 0;
6325 split_irqchip_unlock:
6326 		mutex_unlock(&kvm->lock);
6327 		break;
6328 	}
6329 	case KVM_CAP_X2APIC_API:
6330 		r = -EINVAL;
6331 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6332 			break;
6333 
6334 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6335 			kvm->arch.x2apic_format = true;
6336 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6337 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
6338 
6339 		r = 0;
6340 		break;
6341 	case KVM_CAP_X86_DISABLE_EXITS:
6342 		r = -EINVAL;
6343 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6344 			break;
6345 
6346 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6347 			kvm->arch.pause_in_guest = true;
6348 
6349 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
6350 		    "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
6351 
6352 		if (!mitigate_smt_rsb) {
6353 			if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() &&
6354 			    (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE))
6355 				pr_warn_once(SMT_RSB_MSG);
6356 
6357 			if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6358 			    kvm_can_mwait_in_guest())
6359 				kvm->arch.mwait_in_guest = true;
6360 			if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6361 				kvm->arch.hlt_in_guest = true;
6362 			if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6363 				kvm->arch.cstate_in_guest = true;
6364 		}
6365 
6366 		r = 0;
6367 		break;
6368 	case KVM_CAP_MSR_PLATFORM_INFO:
6369 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6370 		r = 0;
6371 		break;
6372 	case KVM_CAP_EXCEPTION_PAYLOAD:
6373 		kvm->arch.exception_payload_enabled = cap->args[0];
6374 		r = 0;
6375 		break;
6376 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6377 		kvm->arch.triple_fault_event = cap->args[0];
6378 		r = 0;
6379 		break;
6380 	case KVM_CAP_X86_USER_SPACE_MSR:
6381 		r = -EINVAL;
6382 		if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6383 			break;
6384 		kvm->arch.user_space_msr_mask = cap->args[0];
6385 		r = 0;
6386 		break;
6387 	case KVM_CAP_X86_BUS_LOCK_EXIT:
6388 		r = -EINVAL;
6389 		if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6390 			break;
6391 
6392 		if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6393 		    (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6394 			break;
6395 
6396 		if (kvm_caps.has_bus_lock_exit &&
6397 		    cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6398 			kvm->arch.bus_lock_detection_enabled = true;
6399 		r = 0;
6400 		break;
6401 #ifdef CONFIG_X86_SGX_KVM
6402 	case KVM_CAP_SGX_ATTRIBUTE: {
6403 		unsigned long allowed_attributes = 0;
6404 
6405 		r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6406 		if (r)
6407 			break;
6408 
6409 		/* KVM only supports the PROVISIONKEY privileged attribute. */
6410 		if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6411 		    !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6412 			kvm->arch.sgx_provisioning_allowed = true;
6413 		else
6414 			r = -EINVAL;
6415 		break;
6416 	}
6417 #endif
6418 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6419 		r = -EINVAL;
6420 		if (!kvm_x86_ops.vm_copy_enc_context_from)
6421 			break;
6422 
6423 		r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6424 		break;
6425 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6426 		r = -EINVAL;
6427 		if (!kvm_x86_ops.vm_move_enc_context_from)
6428 			break;
6429 
6430 		r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6431 		break;
6432 	case KVM_CAP_EXIT_HYPERCALL:
6433 		if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6434 			r = -EINVAL;
6435 			break;
6436 		}
6437 		kvm->arch.hypercall_exit_enabled = cap->args[0];
6438 		r = 0;
6439 		break;
6440 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6441 		r = -EINVAL;
6442 		if (cap->args[0] & ~1)
6443 			break;
6444 		kvm->arch.exit_on_emulation_error = cap->args[0];
6445 		r = 0;
6446 		break;
6447 	case KVM_CAP_PMU_CAPABILITY:
6448 		r = -EINVAL;
6449 		if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6450 			break;
6451 
6452 		mutex_lock(&kvm->lock);
6453 		if (!kvm->created_vcpus) {
6454 			kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6455 			r = 0;
6456 		}
6457 		mutex_unlock(&kvm->lock);
6458 		break;
6459 	case KVM_CAP_MAX_VCPU_ID:
6460 		r = -EINVAL;
6461 		if (cap->args[0] > KVM_MAX_VCPU_IDS)
6462 			break;
6463 
6464 		mutex_lock(&kvm->lock);
6465 		if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6466 			r = 0;
6467 		} else if (!kvm->arch.max_vcpu_ids) {
6468 			kvm->arch.max_vcpu_ids = cap->args[0];
6469 			r = 0;
6470 		}
6471 		mutex_unlock(&kvm->lock);
6472 		break;
6473 	case KVM_CAP_X86_NOTIFY_VMEXIT:
6474 		r = -EINVAL;
6475 		if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6476 			break;
6477 		if (!kvm_caps.has_notify_vmexit)
6478 			break;
6479 		if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6480 			break;
6481 		mutex_lock(&kvm->lock);
6482 		if (!kvm->created_vcpus) {
6483 			kvm->arch.notify_window = cap->args[0] >> 32;
6484 			kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6485 			r = 0;
6486 		}
6487 		mutex_unlock(&kvm->lock);
6488 		break;
6489 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6490 		r = -EINVAL;
6491 
6492 		/*
6493 		 * Since the risk of disabling NX hugepages is a guest crashing
6494 		 * the system, ensure the userspace process has permission to
6495 		 * reboot the system.
6496 		 *
6497 		 * Note that unlike the reboot() syscall, the process must have
6498 		 * this capability in the root namespace because exposing
6499 		 * /dev/kvm into a container does not limit the scope of the
6500 		 * iTLB multihit bug to that container. In other words,
6501 		 * this must use capable(), not ns_capable().
6502 		 */
6503 		if (!capable(CAP_SYS_BOOT)) {
6504 			r = -EPERM;
6505 			break;
6506 		}
6507 
6508 		if (cap->args[0])
6509 			break;
6510 
6511 		mutex_lock(&kvm->lock);
6512 		if (!kvm->created_vcpus) {
6513 			kvm->arch.disable_nx_huge_pages = true;
6514 			r = 0;
6515 		}
6516 		mutex_unlock(&kvm->lock);
6517 		break;
6518 	default:
6519 		r = -EINVAL;
6520 		break;
6521 	}
6522 	return r;
6523 }
6524 
kvm_alloc_msr_filter(bool default_allow)6525 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6526 {
6527 	struct kvm_x86_msr_filter *msr_filter;
6528 
6529 	msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6530 	if (!msr_filter)
6531 		return NULL;
6532 
6533 	msr_filter->default_allow = default_allow;
6534 	return msr_filter;
6535 }
6536 
kvm_free_msr_filter(struct kvm_x86_msr_filter * msr_filter)6537 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6538 {
6539 	u32 i;
6540 
6541 	if (!msr_filter)
6542 		return;
6543 
6544 	for (i = 0; i < msr_filter->count; i++)
6545 		kfree(msr_filter->ranges[i].bitmap);
6546 
6547 	kfree(msr_filter);
6548 }
6549 
kvm_add_msr_filter(struct kvm_x86_msr_filter * msr_filter,struct kvm_msr_filter_range * user_range)6550 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6551 			      struct kvm_msr_filter_range *user_range)
6552 {
6553 	unsigned long *bitmap;
6554 	size_t bitmap_size;
6555 
6556 	if (!user_range->nmsrs)
6557 		return 0;
6558 
6559 	if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
6560 		return -EINVAL;
6561 
6562 	if (!user_range->flags)
6563 		return -EINVAL;
6564 
6565 	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6566 	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6567 		return -EINVAL;
6568 
6569 	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6570 	if (IS_ERR(bitmap))
6571 		return PTR_ERR(bitmap);
6572 
6573 	msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6574 		.flags = user_range->flags,
6575 		.base = user_range->base,
6576 		.nmsrs = user_range->nmsrs,
6577 		.bitmap = bitmap,
6578 	};
6579 
6580 	msr_filter->count++;
6581 	return 0;
6582 }
6583 
kvm_vm_ioctl_set_msr_filter(struct kvm * kvm,struct kvm_msr_filter * filter)6584 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
6585 				       struct kvm_msr_filter *filter)
6586 {
6587 	struct kvm_x86_msr_filter *new_filter, *old_filter;
6588 	bool default_allow;
6589 	bool empty = true;
6590 	int r;
6591 	u32 i;
6592 
6593 	if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
6594 		return -EINVAL;
6595 
6596 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
6597 		empty &= !filter->ranges[i].nmsrs;
6598 
6599 	default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
6600 	if (empty && !default_allow)
6601 		return -EINVAL;
6602 
6603 	new_filter = kvm_alloc_msr_filter(default_allow);
6604 	if (!new_filter)
6605 		return -ENOMEM;
6606 
6607 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
6608 		r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
6609 		if (r) {
6610 			kvm_free_msr_filter(new_filter);
6611 			return r;
6612 		}
6613 	}
6614 
6615 	mutex_lock(&kvm->lock);
6616 	old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter,
6617 					 mutex_is_locked(&kvm->lock));
6618 	mutex_unlock(&kvm->lock);
6619 	synchronize_srcu(&kvm->srcu);
6620 
6621 	kvm_free_msr_filter(old_filter);
6622 
6623 	kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6624 
6625 	return 0;
6626 }
6627 
6628 #ifdef CONFIG_KVM_COMPAT
6629 /* for KVM_X86_SET_MSR_FILTER */
6630 struct kvm_msr_filter_range_compat {
6631 	__u32 flags;
6632 	__u32 nmsrs;
6633 	__u32 base;
6634 	__u32 bitmap;
6635 };
6636 
6637 struct kvm_msr_filter_compat {
6638 	__u32 flags;
6639 	struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
6640 };
6641 
6642 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
6643 
kvm_arch_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)6644 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
6645 			      unsigned long arg)
6646 {
6647 	void __user *argp = (void __user *)arg;
6648 	struct kvm *kvm = filp->private_data;
6649 	long r = -ENOTTY;
6650 
6651 	switch (ioctl) {
6652 	case KVM_X86_SET_MSR_FILTER_COMPAT: {
6653 		struct kvm_msr_filter __user *user_msr_filter = argp;
6654 		struct kvm_msr_filter_compat filter_compat;
6655 		struct kvm_msr_filter filter;
6656 		int i;
6657 
6658 		if (copy_from_user(&filter_compat, user_msr_filter,
6659 				   sizeof(filter_compat)))
6660 			return -EFAULT;
6661 
6662 		filter.flags = filter_compat.flags;
6663 		for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6664 			struct kvm_msr_filter_range_compat *cr;
6665 
6666 			cr = &filter_compat.ranges[i];
6667 			filter.ranges[i] = (struct kvm_msr_filter_range) {
6668 				.flags = cr->flags,
6669 				.nmsrs = cr->nmsrs,
6670 				.base = cr->base,
6671 				.bitmap = (__u8 *)(ulong)cr->bitmap,
6672 			};
6673 		}
6674 
6675 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6676 		break;
6677 	}
6678 	}
6679 
6680 	return r;
6681 }
6682 #endif
6683 
6684 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
kvm_arch_suspend_notifier(struct kvm * kvm)6685 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6686 {
6687 	struct kvm_vcpu *vcpu;
6688 	unsigned long i;
6689 	int ret = 0;
6690 
6691 	mutex_lock(&kvm->lock);
6692 	kvm_for_each_vcpu(i, vcpu, kvm) {
6693 		if (!vcpu->arch.pv_time.active)
6694 			continue;
6695 
6696 		ret = kvm_set_guest_paused(vcpu);
6697 		if (ret) {
6698 			kvm_err("Failed to pause guest VCPU%d: %d\n",
6699 				vcpu->vcpu_id, ret);
6700 			break;
6701 		}
6702 	}
6703 	mutex_unlock(&kvm->lock);
6704 
6705 	return ret ? NOTIFY_BAD : NOTIFY_DONE;
6706 }
6707 
kvm_arch_pm_notifier(struct kvm * kvm,unsigned long state)6708 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6709 {
6710 	switch (state) {
6711 	case PM_HIBERNATION_PREPARE:
6712 	case PM_SUSPEND_PREPARE:
6713 		return kvm_arch_suspend_notifier(kvm);
6714 	}
6715 
6716 	return NOTIFY_DONE;
6717 }
6718 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6719 
kvm_vm_ioctl_get_clock(struct kvm * kvm,void __user * argp)6720 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6721 {
6722 	struct kvm_clock_data data = { 0 };
6723 
6724 	get_kvmclock(kvm, &data);
6725 	if (copy_to_user(argp, &data, sizeof(data)))
6726 		return -EFAULT;
6727 
6728 	return 0;
6729 }
6730 
kvm_vm_ioctl_set_clock(struct kvm * kvm,void __user * argp)6731 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6732 {
6733 	struct kvm_arch *ka = &kvm->arch;
6734 	struct kvm_clock_data data;
6735 	u64 now_raw_ns;
6736 
6737 	if (copy_from_user(&data, argp, sizeof(data)))
6738 		return -EFAULT;
6739 
6740 	/*
6741 	 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6742 	 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6743 	 */
6744 	if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6745 		return -EINVAL;
6746 
6747 	kvm_hv_request_tsc_page_update(kvm);
6748 	kvm_start_pvclock_update(kvm);
6749 	pvclock_update_vm_gtod_copy(kvm);
6750 
6751 	/*
6752 	 * This pairs with kvm_guest_time_update(): when masterclock is
6753 	 * in use, we use master_kernel_ns + kvmclock_offset to set
6754 	 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6755 	 * is slightly ahead) here we risk going negative on unsigned
6756 	 * 'system_time' when 'data.clock' is very small.
6757 	 */
6758 	if (data.flags & KVM_CLOCK_REALTIME) {
6759 		u64 now_real_ns = ktime_get_real_ns();
6760 
6761 		/*
6762 		 * Avoid stepping the kvmclock backwards.
6763 		 */
6764 		if (now_real_ns > data.realtime)
6765 			data.clock += now_real_ns - data.realtime;
6766 	}
6767 
6768 	if (ka->use_master_clock)
6769 		now_raw_ns = ka->master_kernel_ns;
6770 	else
6771 		now_raw_ns = get_kvmclock_base_ns();
6772 	ka->kvmclock_offset = data.clock - now_raw_ns;
6773 	kvm_end_pvclock_update(kvm);
6774 	return 0;
6775 }
6776 
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)6777 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
6778 {
6779 	struct kvm *kvm = filp->private_data;
6780 	void __user *argp = (void __user *)arg;
6781 	int r = -ENOTTY;
6782 	/*
6783 	 * This union makes it completely explicit to gcc-3.x
6784 	 * that these two variables' stack usage should be
6785 	 * combined, not added together.
6786 	 */
6787 	union {
6788 		struct kvm_pit_state ps;
6789 		struct kvm_pit_state2 ps2;
6790 		struct kvm_pit_config pit_config;
6791 	} u;
6792 
6793 	switch (ioctl) {
6794 	case KVM_SET_TSS_ADDR:
6795 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6796 		break;
6797 	case KVM_SET_IDENTITY_MAP_ADDR: {
6798 		u64 ident_addr;
6799 
6800 		mutex_lock(&kvm->lock);
6801 		r = -EINVAL;
6802 		if (kvm->created_vcpus)
6803 			goto set_identity_unlock;
6804 		r = -EFAULT;
6805 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6806 			goto set_identity_unlock;
6807 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6808 set_identity_unlock:
6809 		mutex_unlock(&kvm->lock);
6810 		break;
6811 	}
6812 	case KVM_SET_NR_MMU_PAGES:
6813 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6814 		break;
6815 	case KVM_CREATE_IRQCHIP: {
6816 		mutex_lock(&kvm->lock);
6817 
6818 		r = -EEXIST;
6819 		if (irqchip_in_kernel(kvm))
6820 			goto create_irqchip_unlock;
6821 
6822 		r = -EINVAL;
6823 		if (kvm->created_vcpus)
6824 			goto create_irqchip_unlock;
6825 
6826 		r = kvm_pic_init(kvm);
6827 		if (r)
6828 			goto create_irqchip_unlock;
6829 
6830 		r = kvm_ioapic_init(kvm);
6831 		if (r) {
6832 			kvm_pic_destroy(kvm);
6833 			goto create_irqchip_unlock;
6834 		}
6835 
6836 		r = kvm_setup_default_irq_routing(kvm);
6837 		if (r) {
6838 			kvm_ioapic_destroy(kvm);
6839 			kvm_pic_destroy(kvm);
6840 			goto create_irqchip_unlock;
6841 		}
6842 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6843 		smp_wmb();
6844 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6845 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6846 	create_irqchip_unlock:
6847 		mutex_unlock(&kvm->lock);
6848 		break;
6849 	}
6850 	case KVM_CREATE_PIT:
6851 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6852 		goto create_pit;
6853 	case KVM_CREATE_PIT2:
6854 		r = -EFAULT;
6855 		if (copy_from_user(&u.pit_config, argp,
6856 				   sizeof(struct kvm_pit_config)))
6857 			goto out;
6858 	create_pit:
6859 		mutex_lock(&kvm->lock);
6860 		r = -EEXIST;
6861 		if (kvm->arch.vpit)
6862 			goto create_pit_unlock;
6863 		r = -ENOMEM;
6864 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6865 		if (kvm->arch.vpit)
6866 			r = 0;
6867 	create_pit_unlock:
6868 		mutex_unlock(&kvm->lock);
6869 		break;
6870 	case KVM_GET_IRQCHIP: {
6871 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6872 		struct kvm_irqchip *chip;
6873 
6874 		chip = memdup_user(argp, sizeof(*chip));
6875 		if (IS_ERR(chip)) {
6876 			r = PTR_ERR(chip);
6877 			goto out;
6878 		}
6879 
6880 		r = -ENXIO;
6881 		if (!irqchip_kernel(kvm))
6882 			goto get_irqchip_out;
6883 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6884 		if (r)
6885 			goto get_irqchip_out;
6886 		r = -EFAULT;
6887 		if (copy_to_user(argp, chip, sizeof(*chip)))
6888 			goto get_irqchip_out;
6889 		r = 0;
6890 	get_irqchip_out:
6891 		kfree(chip);
6892 		break;
6893 	}
6894 	case KVM_SET_IRQCHIP: {
6895 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6896 		struct kvm_irqchip *chip;
6897 
6898 		chip = memdup_user(argp, sizeof(*chip));
6899 		if (IS_ERR(chip)) {
6900 			r = PTR_ERR(chip);
6901 			goto out;
6902 		}
6903 
6904 		r = -ENXIO;
6905 		if (!irqchip_kernel(kvm))
6906 			goto set_irqchip_out;
6907 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6908 	set_irqchip_out:
6909 		kfree(chip);
6910 		break;
6911 	}
6912 	case KVM_GET_PIT: {
6913 		r = -EFAULT;
6914 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6915 			goto out;
6916 		r = -ENXIO;
6917 		if (!kvm->arch.vpit)
6918 			goto out;
6919 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6920 		if (r)
6921 			goto out;
6922 		r = -EFAULT;
6923 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6924 			goto out;
6925 		r = 0;
6926 		break;
6927 	}
6928 	case KVM_SET_PIT: {
6929 		r = -EFAULT;
6930 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6931 			goto out;
6932 		mutex_lock(&kvm->lock);
6933 		r = -ENXIO;
6934 		if (!kvm->arch.vpit)
6935 			goto set_pit_out;
6936 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6937 set_pit_out:
6938 		mutex_unlock(&kvm->lock);
6939 		break;
6940 	}
6941 	case KVM_GET_PIT2: {
6942 		r = -ENXIO;
6943 		if (!kvm->arch.vpit)
6944 			goto out;
6945 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6946 		if (r)
6947 			goto out;
6948 		r = -EFAULT;
6949 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6950 			goto out;
6951 		r = 0;
6952 		break;
6953 	}
6954 	case KVM_SET_PIT2: {
6955 		r = -EFAULT;
6956 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6957 			goto out;
6958 		mutex_lock(&kvm->lock);
6959 		r = -ENXIO;
6960 		if (!kvm->arch.vpit)
6961 			goto set_pit2_out;
6962 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6963 set_pit2_out:
6964 		mutex_unlock(&kvm->lock);
6965 		break;
6966 	}
6967 	case KVM_REINJECT_CONTROL: {
6968 		struct kvm_reinject_control control;
6969 		r =  -EFAULT;
6970 		if (copy_from_user(&control, argp, sizeof(control)))
6971 			goto out;
6972 		r = -ENXIO;
6973 		if (!kvm->arch.vpit)
6974 			goto out;
6975 		r = kvm_vm_ioctl_reinject(kvm, &control);
6976 		break;
6977 	}
6978 	case KVM_SET_BOOT_CPU_ID:
6979 		r = 0;
6980 		mutex_lock(&kvm->lock);
6981 		if (kvm->created_vcpus)
6982 			r = -EBUSY;
6983 		else
6984 			kvm->arch.bsp_vcpu_id = arg;
6985 		mutex_unlock(&kvm->lock);
6986 		break;
6987 #ifdef CONFIG_KVM_XEN
6988 	case KVM_XEN_HVM_CONFIG: {
6989 		struct kvm_xen_hvm_config xhc;
6990 		r = -EFAULT;
6991 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
6992 			goto out;
6993 		r = kvm_xen_hvm_config(kvm, &xhc);
6994 		break;
6995 	}
6996 	case KVM_XEN_HVM_GET_ATTR: {
6997 		struct kvm_xen_hvm_attr xha;
6998 
6999 		r = -EFAULT;
7000 		if (copy_from_user(&xha, argp, sizeof(xha)))
7001 			goto out;
7002 		r = kvm_xen_hvm_get_attr(kvm, &xha);
7003 		if (!r && copy_to_user(argp, &xha, sizeof(xha)))
7004 			r = -EFAULT;
7005 		break;
7006 	}
7007 	case KVM_XEN_HVM_SET_ATTR: {
7008 		struct kvm_xen_hvm_attr xha;
7009 
7010 		r = -EFAULT;
7011 		if (copy_from_user(&xha, argp, sizeof(xha)))
7012 			goto out;
7013 		r = kvm_xen_hvm_set_attr(kvm, &xha);
7014 		break;
7015 	}
7016 	case KVM_XEN_HVM_EVTCHN_SEND: {
7017 		struct kvm_irq_routing_xen_evtchn uxe;
7018 
7019 		r = -EFAULT;
7020 		if (copy_from_user(&uxe, argp, sizeof(uxe)))
7021 			goto out;
7022 		r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
7023 		break;
7024 	}
7025 #endif
7026 	case KVM_SET_CLOCK:
7027 		r = kvm_vm_ioctl_set_clock(kvm, argp);
7028 		break;
7029 	case KVM_GET_CLOCK:
7030 		r = kvm_vm_ioctl_get_clock(kvm, argp);
7031 		break;
7032 	case KVM_SET_TSC_KHZ: {
7033 		u32 user_tsc_khz;
7034 
7035 		r = -EINVAL;
7036 		user_tsc_khz = (u32)arg;
7037 
7038 		if (kvm_caps.has_tsc_control &&
7039 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
7040 			goto out;
7041 
7042 		if (user_tsc_khz == 0)
7043 			user_tsc_khz = tsc_khz;
7044 
7045 		WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
7046 		r = 0;
7047 
7048 		goto out;
7049 	}
7050 	case KVM_GET_TSC_KHZ: {
7051 		r = READ_ONCE(kvm->arch.default_tsc_khz);
7052 		goto out;
7053 	}
7054 	case KVM_MEMORY_ENCRYPT_OP: {
7055 		r = -ENOTTY;
7056 		if (!kvm_x86_ops.mem_enc_ioctl)
7057 			goto out;
7058 
7059 		r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
7060 		break;
7061 	}
7062 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
7063 		struct kvm_enc_region region;
7064 
7065 		r = -EFAULT;
7066 		if (copy_from_user(&region, argp, sizeof(region)))
7067 			goto out;
7068 
7069 		r = -ENOTTY;
7070 		if (!kvm_x86_ops.mem_enc_register_region)
7071 			goto out;
7072 
7073 		r = static_call(kvm_x86_mem_enc_register_region)(kvm, &region);
7074 		break;
7075 	}
7076 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
7077 		struct kvm_enc_region region;
7078 
7079 		r = -EFAULT;
7080 		if (copy_from_user(&region, argp, sizeof(region)))
7081 			goto out;
7082 
7083 		r = -ENOTTY;
7084 		if (!kvm_x86_ops.mem_enc_unregister_region)
7085 			goto out;
7086 
7087 		r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, &region);
7088 		break;
7089 	}
7090 	case KVM_HYPERV_EVENTFD: {
7091 		struct kvm_hyperv_eventfd hvevfd;
7092 
7093 		r = -EFAULT;
7094 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
7095 			goto out;
7096 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
7097 		break;
7098 	}
7099 	case KVM_SET_PMU_EVENT_FILTER:
7100 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
7101 		break;
7102 	case KVM_X86_SET_MSR_FILTER: {
7103 		struct kvm_msr_filter __user *user_msr_filter = argp;
7104 		struct kvm_msr_filter filter;
7105 
7106 		if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
7107 			return -EFAULT;
7108 
7109 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7110 		break;
7111 	}
7112 	default:
7113 		r = -ENOTTY;
7114 	}
7115 out:
7116 	return r;
7117 }
7118 
kvm_probe_feature_msr(u32 msr_index)7119 static void kvm_probe_feature_msr(u32 msr_index)
7120 {
7121 	struct kvm_msr_entry msr = {
7122 		.index = msr_index,
7123 	};
7124 
7125 	if (kvm_get_msr_feature(&msr))
7126 		return;
7127 
7128 	msr_based_features[num_msr_based_features++] = msr_index;
7129 }
7130 
kvm_probe_msr_to_save(u32 msr_index)7131 static void kvm_probe_msr_to_save(u32 msr_index)
7132 {
7133 	u32 dummy[2];
7134 
7135 	if (rdmsr_safe(msr_index, &dummy[0], &dummy[1]))
7136 		return;
7137 
7138 	/*
7139 	 * Even MSRs that are valid in the host may not be exposed to guests in
7140 	 * some cases.
7141 	 */
7142 	switch (msr_index) {
7143 	case MSR_IA32_BNDCFGS:
7144 		if (!kvm_mpx_supported())
7145 			return;
7146 		break;
7147 	case MSR_TSC_AUX:
7148 		if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7149 		    !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7150 			return;
7151 		break;
7152 	case MSR_IA32_UMWAIT_CONTROL:
7153 		if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7154 			return;
7155 		break;
7156 	case MSR_IA32_RTIT_CTL:
7157 	case MSR_IA32_RTIT_STATUS:
7158 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7159 			return;
7160 		break;
7161 	case MSR_IA32_RTIT_CR3_MATCH:
7162 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7163 		    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7164 			return;
7165 		break;
7166 	case MSR_IA32_RTIT_OUTPUT_BASE:
7167 	case MSR_IA32_RTIT_OUTPUT_MASK:
7168 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7169 		    (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7170 		     !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7171 			return;
7172 		break;
7173 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7174 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7175 		    (msr_index - MSR_IA32_RTIT_ADDR0_A >=
7176 		     intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2))
7177 			return;
7178 		break;
7179 	case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX:
7180 		if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >=
7181 		    kvm_pmu_cap.num_counters_gp)
7182 			return;
7183 		break;
7184 	case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX:
7185 		if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >=
7186 		    kvm_pmu_cap.num_counters_gp)
7187 			return;
7188 		break;
7189 	case MSR_ARCH_PERFMON_FIXED_CTR0 ... MSR_ARCH_PERFMON_FIXED_CTR_MAX:
7190 		if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >=
7191 		    kvm_pmu_cap.num_counters_fixed)
7192 			return;
7193 		break;
7194 	case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
7195 	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
7196 	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
7197 		if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
7198 			return;
7199 		break;
7200 	case MSR_IA32_XFD:
7201 	case MSR_IA32_XFD_ERR:
7202 		if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7203 			return;
7204 		break;
7205 	case MSR_IA32_TSX_CTRL:
7206 		if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR))
7207 			return;
7208 		break;
7209 	default:
7210 		break;
7211 	}
7212 
7213 	msrs_to_save[num_msrs_to_save++] = msr_index;
7214 }
7215 
kvm_init_msr_lists(void)7216 static void kvm_init_msr_lists(void)
7217 {
7218 	unsigned i;
7219 
7220 	BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
7221 			 "Please update the fixed PMCs in msrs_to_save_pmu[]");
7222 
7223 	num_msrs_to_save = 0;
7224 	num_emulated_msrs = 0;
7225 	num_msr_based_features = 0;
7226 
7227 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++)
7228 		kvm_probe_msr_to_save(msrs_to_save_base[i]);
7229 
7230 	if (enable_pmu) {
7231 		for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++)
7232 			kvm_probe_msr_to_save(msrs_to_save_pmu[i]);
7233 	}
7234 
7235 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7236 		if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
7237 			continue;
7238 
7239 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7240 	}
7241 
7242 	for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++)
7243 		kvm_probe_feature_msr(i);
7244 
7245 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++)
7246 		kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]);
7247 }
7248 
vcpu_mmio_write(struct kvm_vcpu * vcpu,gpa_t addr,int len,const void * v)7249 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7250 			   const void *v)
7251 {
7252 	int handled = 0;
7253 	int n;
7254 
7255 	do {
7256 		n = min(len, 8);
7257 		if (!(lapic_in_kernel(vcpu) &&
7258 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7259 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7260 			break;
7261 		handled += n;
7262 		addr += n;
7263 		len -= n;
7264 		v += n;
7265 	} while (len);
7266 
7267 	return handled;
7268 }
7269 
vcpu_mmio_read(struct kvm_vcpu * vcpu,gpa_t addr,int len,void * v)7270 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7271 {
7272 	int handled = 0;
7273 	int n;
7274 
7275 	do {
7276 		n = min(len, 8);
7277 		if (!(lapic_in_kernel(vcpu) &&
7278 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7279 					 addr, n, v))
7280 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7281 			break;
7282 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7283 		handled += n;
7284 		addr += n;
7285 		len -= n;
7286 		v += n;
7287 	} while (len);
7288 
7289 	return handled;
7290 }
7291 
kvm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)7292 void kvm_set_segment(struct kvm_vcpu *vcpu,
7293 		     struct kvm_segment *var, int seg)
7294 {
7295 	static_call(kvm_x86_set_segment)(vcpu, var, seg);
7296 }
7297 
kvm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)7298 void kvm_get_segment(struct kvm_vcpu *vcpu,
7299 		     struct kvm_segment *var, int seg)
7300 {
7301 	static_call(kvm_x86_get_segment)(vcpu, var, seg);
7302 }
7303 
translate_nested_gpa(struct kvm_vcpu * vcpu,gpa_t gpa,u64 access,struct x86_exception * exception)7304 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7305 			   struct x86_exception *exception)
7306 {
7307 	struct kvm_mmu *mmu = vcpu->arch.mmu;
7308 	gpa_t t_gpa;
7309 
7310 	BUG_ON(!mmu_is_nested(vcpu));
7311 
7312 	/* NPT walks are always user-walks */
7313 	access |= PFERR_USER_MASK;
7314 	t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7315 
7316 	return t_gpa;
7317 }
7318 
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7319 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7320 			      struct x86_exception *exception)
7321 {
7322 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7323 
7324 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7325 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7326 }
7327 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7328 
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7329 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7330 			       struct x86_exception *exception)
7331 {
7332 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7333 
7334 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7335 	access |= PFERR_WRITE_MASK;
7336 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7337 }
7338 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7339 
7340 /* uses this to access any guest's mapped memory without checking CPL */
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7341 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7342 				struct x86_exception *exception)
7343 {
7344 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7345 
7346 	return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7347 }
7348 
kvm_read_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u64 access,struct x86_exception * exception)7349 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7350 				      struct kvm_vcpu *vcpu, u64 access,
7351 				      struct x86_exception *exception)
7352 {
7353 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7354 	void *data = val;
7355 	int r = X86EMUL_CONTINUE;
7356 
7357 	while (bytes) {
7358 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7359 		unsigned offset = addr & (PAGE_SIZE-1);
7360 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7361 		int ret;
7362 
7363 		if (gpa == INVALID_GPA)
7364 			return X86EMUL_PROPAGATE_FAULT;
7365 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7366 					       offset, toread);
7367 		if (ret < 0) {
7368 			r = X86EMUL_IO_NEEDED;
7369 			goto out;
7370 		}
7371 
7372 		bytes -= toread;
7373 		data += toread;
7374 		addr += toread;
7375 	}
7376 out:
7377 	return r;
7378 }
7379 
7380 /* used for instruction fetching */
kvm_fetch_guest_virt(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7381 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7382 				gva_t addr, void *val, unsigned int bytes,
7383 				struct x86_exception *exception)
7384 {
7385 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7386 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7387 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7388 	unsigned offset;
7389 	int ret;
7390 
7391 	/* Inline kvm_read_guest_virt_helper for speed.  */
7392 	gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7393 				    exception);
7394 	if (unlikely(gpa == INVALID_GPA))
7395 		return X86EMUL_PROPAGATE_FAULT;
7396 
7397 	offset = addr & (PAGE_SIZE-1);
7398 	if (WARN_ON(offset + bytes > PAGE_SIZE))
7399 		bytes = (unsigned)PAGE_SIZE - offset;
7400 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7401 				       offset, bytes);
7402 	if (unlikely(ret < 0))
7403 		return X86EMUL_IO_NEEDED;
7404 
7405 	return X86EMUL_CONTINUE;
7406 }
7407 
kvm_read_guest_virt(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7408 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7409 			       gva_t addr, void *val, unsigned int bytes,
7410 			       struct x86_exception *exception)
7411 {
7412 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7413 
7414 	/*
7415 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7416 	 * is returned, but our callers are not ready for that and they blindly
7417 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
7418 	 * uninitialized kernel stack memory into cr2 and error code.
7419 	 */
7420 	memset(exception, 0, sizeof(*exception));
7421 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7422 					  exception);
7423 }
7424 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7425 
emulator_read_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)7426 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7427 			     gva_t addr, void *val, unsigned int bytes,
7428 			     struct x86_exception *exception, bool system)
7429 {
7430 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7431 	u64 access = 0;
7432 
7433 	if (system)
7434 		access |= PFERR_IMPLICIT_ACCESS;
7435 	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7436 		access |= PFERR_USER_MASK;
7437 
7438 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7439 }
7440 
kvm_write_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u64 access,struct x86_exception * exception)7441 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7442 				      struct kvm_vcpu *vcpu, u64 access,
7443 				      struct x86_exception *exception)
7444 {
7445 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7446 	void *data = val;
7447 	int r = X86EMUL_CONTINUE;
7448 
7449 	while (bytes) {
7450 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7451 		unsigned offset = addr & (PAGE_SIZE-1);
7452 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7453 		int ret;
7454 
7455 		if (gpa == INVALID_GPA)
7456 			return X86EMUL_PROPAGATE_FAULT;
7457 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7458 		if (ret < 0) {
7459 			r = X86EMUL_IO_NEEDED;
7460 			goto out;
7461 		}
7462 
7463 		bytes -= towrite;
7464 		data += towrite;
7465 		addr += towrite;
7466 	}
7467 out:
7468 	return r;
7469 }
7470 
emulator_write_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)7471 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7472 			      unsigned int bytes, struct x86_exception *exception,
7473 			      bool system)
7474 {
7475 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7476 	u64 access = PFERR_WRITE_MASK;
7477 
7478 	if (system)
7479 		access |= PFERR_IMPLICIT_ACCESS;
7480 	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7481 		access |= PFERR_USER_MASK;
7482 
7483 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7484 					   access, exception);
7485 }
7486 
kvm_write_guest_virt_system(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7487 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7488 				unsigned int bytes, struct x86_exception *exception)
7489 {
7490 	/* kvm_write_guest_virt_system can pull in tons of pages. */
7491 	vcpu->arch.l1tf_flush_l1d = true;
7492 
7493 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7494 					   PFERR_WRITE_MASK, exception);
7495 }
7496 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7497 
kvm_can_emulate_insn(struct kvm_vcpu * vcpu,int emul_type,void * insn,int insn_len)7498 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7499 				void *insn, int insn_len)
7500 {
7501 	return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type,
7502 							    insn, insn_len);
7503 }
7504 
handle_ud(struct kvm_vcpu * vcpu)7505 int handle_ud(struct kvm_vcpu *vcpu)
7506 {
7507 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7508 	int fep_flags = READ_ONCE(force_emulation_prefix);
7509 	int emul_type = EMULTYPE_TRAP_UD;
7510 	char sig[5]; /* ud2; .ascii "kvm" */
7511 	struct x86_exception e;
7512 
7513 	if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0)))
7514 		return 1;
7515 
7516 	if (fep_flags &&
7517 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7518 				sig, sizeof(sig), &e) == 0 &&
7519 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7520 		if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
7521 			kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
7522 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7523 		emul_type = EMULTYPE_TRAP_UD_FORCED;
7524 	}
7525 
7526 	return kvm_emulate_instruction(vcpu, emul_type);
7527 }
7528 EXPORT_SYMBOL_GPL(handle_ud);
7529 
vcpu_is_mmio_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t gpa,bool write)7530 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7531 			    gpa_t gpa, bool write)
7532 {
7533 	/* For APIC access vmexit */
7534 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7535 		return 1;
7536 
7537 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7538 		trace_vcpu_match_mmio(gva, gpa, write, true);
7539 		return 1;
7540 	}
7541 
7542 	return 0;
7543 }
7544 
vcpu_mmio_gva_to_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t * gpa,struct x86_exception * exception,bool write)7545 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7546 				gpa_t *gpa, struct x86_exception *exception,
7547 				bool write)
7548 {
7549 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7550 	u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7551 		| (write ? PFERR_WRITE_MASK : 0);
7552 
7553 	/*
7554 	 * currently PKRU is only applied to ept enabled guest so
7555 	 * there is no pkey in EPT page table for L1 guest or EPT
7556 	 * shadow page table for L2 guest.
7557 	 */
7558 	if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7559 	    !permission_fault(vcpu, vcpu->arch.walk_mmu,
7560 			      vcpu->arch.mmio_access, 0, access))) {
7561 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7562 					(gva & (PAGE_SIZE - 1));
7563 		trace_vcpu_match_mmio(gva, *gpa, write, false);
7564 		return 1;
7565 	}
7566 
7567 	*gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7568 
7569 	if (*gpa == INVALID_GPA)
7570 		return -1;
7571 
7572 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7573 }
7574 
emulator_write_phys(struct kvm_vcpu * vcpu,gpa_t gpa,const void * val,int bytes)7575 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7576 			const void *val, int bytes)
7577 {
7578 	int ret;
7579 
7580 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7581 	if (ret < 0)
7582 		return 0;
7583 	kvm_page_track_write(vcpu, gpa, val, bytes);
7584 	return 1;
7585 }
7586 
7587 struct read_write_emulator_ops {
7588 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7589 				  int bytes);
7590 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7591 				  void *val, int bytes);
7592 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7593 			       int bytes, void *val);
7594 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7595 				    void *val, int bytes);
7596 	bool write;
7597 };
7598 
read_prepare(struct kvm_vcpu * vcpu,void * val,int bytes)7599 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7600 {
7601 	if (vcpu->mmio_read_completed) {
7602 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7603 			       vcpu->mmio_fragments[0].gpa, val);
7604 		vcpu->mmio_read_completed = 0;
7605 		return 1;
7606 	}
7607 
7608 	return 0;
7609 }
7610 
read_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7611 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7612 			void *val, int bytes)
7613 {
7614 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7615 }
7616 
write_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7617 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7618 			 void *val, int bytes)
7619 {
7620 	return emulator_write_phys(vcpu, gpa, val, bytes);
7621 }
7622 
write_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,int bytes,void * val)7623 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7624 {
7625 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7626 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
7627 }
7628 
read_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7629 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7630 			  void *val, int bytes)
7631 {
7632 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7633 	return X86EMUL_IO_NEEDED;
7634 }
7635 
write_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7636 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7637 			   void *val, int bytes)
7638 {
7639 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7640 
7641 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7642 	return X86EMUL_CONTINUE;
7643 }
7644 
7645 static const struct read_write_emulator_ops read_emultor = {
7646 	.read_write_prepare = read_prepare,
7647 	.read_write_emulate = read_emulate,
7648 	.read_write_mmio = vcpu_mmio_read,
7649 	.read_write_exit_mmio = read_exit_mmio,
7650 };
7651 
7652 static const struct read_write_emulator_ops write_emultor = {
7653 	.read_write_emulate = write_emulate,
7654 	.read_write_mmio = write_mmio,
7655 	.read_write_exit_mmio = write_exit_mmio,
7656 	.write = true,
7657 };
7658 
emulator_read_write_onepage(unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,struct kvm_vcpu * vcpu,const struct read_write_emulator_ops * ops)7659 static int emulator_read_write_onepage(unsigned long addr, void *val,
7660 				       unsigned int bytes,
7661 				       struct x86_exception *exception,
7662 				       struct kvm_vcpu *vcpu,
7663 				       const struct read_write_emulator_ops *ops)
7664 {
7665 	gpa_t gpa;
7666 	int handled, ret;
7667 	bool write = ops->write;
7668 	struct kvm_mmio_fragment *frag;
7669 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7670 
7671 	/*
7672 	 * If the exit was due to a NPF we may already have a GPA.
7673 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7674 	 * Note, this cannot be used on string operations since string
7675 	 * operation using rep will only have the initial GPA from the NPF
7676 	 * occurred.
7677 	 */
7678 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7679 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7680 		gpa = ctxt->gpa_val;
7681 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7682 	} else {
7683 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7684 		if (ret < 0)
7685 			return X86EMUL_PROPAGATE_FAULT;
7686 	}
7687 
7688 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7689 		return X86EMUL_CONTINUE;
7690 
7691 	/*
7692 	 * Is this MMIO handled locally?
7693 	 */
7694 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7695 	if (handled == bytes)
7696 		return X86EMUL_CONTINUE;
7697 
7698 	gpa += handled;
7699 	bytes -= handled;
7700 	val += handled;
7701 
7702 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7703 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7704 	frag->gpa = gpa;
7705 	frag->data = val;
7706 	frag->len = bytes;
7707 	return X86EMUL_CONTINUE;
7708 }
7709 
emulator_read_write(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,const struct read_write_emulator_ops * ops)7710 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7711 			unsigned long addr,
7712 			void *val, unsigned int bytes,
7713 			struct x86_exception *exception,
7714 			const struct read_write_emulator_ops *ops)
7715 {
7716 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7717 	gpa_t gpa;
7718 	int rc;
7719 
7720 	if (ops->read_write_prepare &&
7721 		  ops->read_write_prepare(vcpu, val, bytes))
7722 		return X86EMUL_CONTINUE;
7723 
7724 	vcpu->mmio_nr_fragments = 0;
7725 
7726 	/* Crossing a page boundary? */
7727 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7728 		int now;
7729 
7730 		now = -addr & ~PAGE_MASK;
7731 		rc = emulator_read_write_onepage(addr, val, now, exception,
7732 						 vcpu, ops);
7733 
7734 		if (rc != X86EMUL_CONTINUE)
7735 			return rc;
7736 		addr += now;
7737 		if (ctxt->mode != X86EMUL_MODE_PROT64)
7738 			addr = (u32)addr;
7739 		val += now;
7740 		bytes -= now;
7741 	}
7742 
7743 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
7744 					 vcpu, ops);
7745 	if (rc != X86EMUL_CONTINUE)
7746 		return rc;
7747 
7748 	if (!vcpu->mmio_nr_fragments)
7749 		return rc;
7750 
7751 	gpa = vcpu->mmio_fragments[0].gpa;
7752 
7753 	vcpu->mmio_needed = 1;
7754 	vcpu->mmio_cur_fragment = 0;
7755 
7756 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7757 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7758 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
7759 	vcpu->run->mmio.phys_addr = gpa;
7760 
7761 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7762 }
7763 
emulator_read_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception)7764 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7765 				  unsigned long addr,
7766 				  void *val,
7767 				  unsigned int bytes,
7768 				  struct x86_exception *exception)
7769 {
7770 	return emulator_read_write(ctxt, addr, val, bytes,
7771 				   exception, &read_emultor);
7772 }
7773 
emulator_write_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * val,unsigned int bytes,struct x86_exception * exception)7774 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7775 			    unsigned long addr,
7776 			    const void *val,
7777 			    unsigned int bytes,
7778 			    struct x86_exception *exception)
7779 {
7780 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
7781 				   exception, &write_emultor);
7782 }
7783 
7784 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
7785 	(__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
7786 
emulator_cmpxchg_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * old,const void * new,unsigned int bytes,struct x86_exception * exception)7787 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7788 				     unsigned long addr,
7789 				     const void *old,
7790 				     const void *new,
7791 				     unsigned int bytes,
7792 				     struct x86_exception *exception)
7793 {
7794 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7795 	u64 page_line_mask;
7796 	unsigned long hva;
7797 	gpa_t gpa;
7798 	int r;
7799 
7800 	/* guests cmpxchg8b have to be emulated atomically */
7801 	if (bytes > 8 || (bytes & (bytes - 1)))
7802 		goto emul_write;
7803 
7804 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7805 
7806 	if (gpa == INVALID_GPA ||
7807 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7808 		goto emul_write;
7809 
7810 	/*
7811 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
7812 	 * enabled in the host and the access splits a cache line.
7813 	 */
7814 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7815 		page_line_mask = ~(cache_line_size() - 1);
7816 	else
7817 		page_line_mask = PAGE_MASK;
7818 
7819 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7820 		goto emul_write;
7821 
7822 	hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
7823 	if (kvm_is_error_hva(hva))
7824 		goto emul_write;
7825 
7826 	hva += offset_in_page(gpa);
7827 
7828 	switch (bytes) {
7829 	case 1:
7830 		r = emulator_try_cmpxchg_user(u8, hva, old, new);
7831 		break;
7832 	case 2:
7833 		r = emulator_try_cmpxchg_user(u16, hva, old, new);
7834 		break;
7835 	case 4:
7836 		r = emulator_try_cmpxchg_user(u32, hva, old, new);
7837 		break;
7838 	case 8:
7839 		r = emulator_try_cmpxchg_user(u64, hva, old, new);
7840 		break;
7841 	default:
7842 		BUG();
7843 	}
7844 
7845 	if (r < 0)
7846 		return X86EMUL_UNHANDLEABLE;
7847 
7848 	/*
7849 	 * Mark the page dirty _before_ checking whether or not the CMPXCHG was
7850 	 * successful, as the old value is written back on failure.  Note, for
7851 	 * live migration, this is unnecessarily conservative as CMPXCHG writes
7852 	 * back the original value and the access is atomic, but KVM's ABI is
7853 	 * that all writes are dirty logged, regardless of the value written.
7854 	 */
7855 	kvm_vcpu_mark_page_dirty(vcpu, gpa_to_gfn(gpa));
7856 
7857 	if (r)
7858 		return X86EMUL_CMPXCHG_FAILED;
7859 
7860 	kvm_page_track_write(vcpu, gpa, new, bytes);
7861 
7862 	return X86EMUL_CONTINUE;
7863 
7864 emul_write:
7865 	pr_warn_once("emulating exchange as write\n");
7866 
7867 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7868 }
7869 
emulator_pio_in_out(struct kvm_vcpu * vcpu,int size,unsigned short port,void * data,unsigned int count,bool in)7870 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7871 			       unsigned short port, void *data,
7872 			       unsigned int count, bool in)
7873 {
7874 	unsigned i;
7875 	int r;
7876 
7877 	WARN_ON_ONCE(vcpu->arch.pio.count);
7878 	for (i = 0; i < count; i++) {
7879 		if (in)
7880 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
7881 		else
7882 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
7883 
7884 		if (r) {
7885 			if (i == 0)
7886 				goto userspace_io;
7887 
7888 			/*
7889 			 * Userspace must have unregistered the device while PIO
7890 			 * was running.  Drop writes / read as 0.
7891 			 */
7892 			if (in)
7893 				memset(data, 0, size * (count - i));
7894 			break;
7895 		}
7896 
7897 		data += size;
7898 	}
7899 	return 1;
7900 
7901 userspace_io:
7902 	vcpu->arch.pio.port = port;
7903 	vcpu->arch.pio.in = in;
7904 	vcpu->arch.pio.count = count;
7905 	vcpu->arch.pio.size = size;
7906 
7907 	if (in)
7908 		memset(vcpu->arch.pio_data, 0, size * count);
7909 	else
7910 		memcpy(vcpu->arch.pio_data, data, size * count);
7911 
7912 	vcpu->run->exit_reason = KVM_EXIT_IO;
7913 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7914 	vcpu->run->io.size = size;
7915 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7916 	vcpu->run->io.count = count;
7917 	vcpu->run->io.port = port;
7918 	return 0;
7919 }
7920 
emulator_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port,void * val,unsigned int count)7921 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7922       			   unsigned short port, void *val, unsigned int count)
7923 {
7924 	int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
7925 	if (r)
7926 		trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
7927 
7928 	return r;
7929 }
7930 
complete_emulator_pio_in(struct kvm_vcpu * vcpu,void * val)7931 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7932 {
7933 	int size = vcpu->arch.pio.size;
7934 	unsigned int count = vcpu->arch.pio.count;
7935 	memcpy(val, vcpu->arch.pio_data, size * count);
7936 	trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7937 	vcpu->arch.pio.count = 0;
7938 }
7939 
emulator_pio_in_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,void * val,unsigned int count)7940 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7941 				    int size, unsigned short port, void *val,
7942 				    unsigned int count)
7943 {
7944 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7945 	if (vcpu->arch.pio.count) {
7946 		/*
7947 		 * Complete a previous iteration that required userspace I/O.
7948 		 * Note, @count isn't guaranteed to match pio.count as userspace
7949 		 * can modify ECX before rerunning the vCPU.  Ignore any such
7950 		 * shenanigans as KVM doesn't support modifying the rep count,
7951 		 * and the emulator ensures @count doesn't overflow the buffer.
7952 		 */
7953 		complete_emulator_pio_in(vcpu, val);
7954 		return 1;
7955 	}
7956 
7957 	return emulator_pio_in(vcpu, size, port, val, count);
7958 }
7959 
emulator_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port,const void * val,unsigned int count)7960 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7961 			    unsigned short port, const void *val,
7962 			    unsigned int count)
7963 {
7964 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
7965 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
7966 }
7967 
emulator_pio_out_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,const void * val,unsigned int count)7968 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7969 				     int size, unsigned short port,
7970 				     const void *val, unsigned int count)
7971 {
7972 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7973 }
7974 
get_segment_base(struct kvm_vcpu * vcpu,int seg)7975 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7976 {
7977 	return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7978 }
7979 
emulator_invlpg(struct x86_emulate_ctxt * ctxt,ulong address)7980 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7981 {
7982 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7983 }
7984 
kvm_emulate_wbinvd_noskip(struct kvm_vcpu * vcpu)7985 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7986 {
7987 	if (!need_emulate_wbinvd(vcpu))
7988 		return X86EMUL_CONTINUE;
7989 
7990 	if (static_call(kvm_x86_has_wbinvd_exit)()) {
7991 		int cpu = get_cpu();
7992 
7993 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7994 		on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7995 				wbinvd_ipi, NULL, 1);
7996 		put_cpu();
7997 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7998 	} else
7999 		wbinvd();
8000 	return X86EMUL_CONTINUE;
8001 }
8002 
kvm_emulate_wbinvd(struct kvm_vcpu * vcpu)8003 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
8004 {
8005 	kvm_emulate_wbinvd_noskip(vcpu);
8006 	return kvm_skip_emulated_instruction(vcpu);
8007 }
8008 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
8009 
8010 
8011 
emulator_wbinvd(struct x86_emulate_ctxt * ctxt)8012 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
8013 {
8014 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
8015 }
8016 
emulator_get_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long * dest)8017 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
8018 			    unsigned long *dest)
8019 {
8020 	kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
8021 }
8022 
emulator_set_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long value)8023 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
8024 			   unsigned long value)
8025 {
8026 
8027 	return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
8028 }
8029 
mk_cr_64(u64 curr_cr,u32 new_val)8030 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
8031 {
8032 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
8033 }
8034 
emulator_get_cr(struct x86_emulate_ctxt * ctxt,int cr)8035 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
8036 {
8037 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8038 	unsigned long value;
8039 
8040 	switch (cr) {
8041 	case 0:
8042 		value = kvm_read_cr0(vcpu);
8043 		break;
8044 	case 2:
8045 		value = vcpu->arch.cr2;
8046 		break;
8047 	case 3:
8048 		value = kvm_read_cr3(vcpu);
8049 		break;
8050 	case 4:
8051 		value = kvm_read_cr4(vcpu);
8052 		break;
8053 	case 8:
8054 		value = kvm_get_cr8(vcpu);
8055 		break;
8056 	default:
8057 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
8058 		return 0;
8059 	}
8060 
8061 	return value;
8062 }
8063 
emulator_set_cr(struct x86_emulate_ctxt * ctxt,int cr,ulong val)8064 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
8065 {
8066 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8067 	int res = 0;
8068 
8069 	switch (cr) {
8070 	case 0:
8071 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
8072 		break;
8073 	case 2:
8074 		vcpu->arch.cr2 = val;
8075 		break;
8076 	case 3:
8077 		res = kvm_set_cr3(vcpu, val);
8078 		break;
8079 	case 4:
8080 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
8081 		break;
8082 	case 8:
8083 		res = kvm_set_cr8(vcpu, val);
8084 		break;
8085 	default:
8086 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
8087 		res = -1;
8088 	}
8089 
8090 	return res;
8091 }
8092 
emulator_get_cpl(struct x86_emulate_ctxt * ctxt)8093 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
8094 {
8095 	return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
8096 }
8097 
emulator_get_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8098 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8099 {
8100 	static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
8101 }
8102 
emulator_get_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8103 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8104 {
8105 	static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
8106 }
8107 
emulator_set_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8108 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8109 {
8110 	static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
8111 }
8112 
emulator_set_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8113 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8114 {
8115 	static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
8116 }
8117 
emulator_get_cached_segment_base(struct x86_emulate_ctxt * ctxt,int seg)8118 static unsigned long emulator_get_cached_segment_base(
8119 	struct x86_emulate_ctxt *ctxt, int seg)
8120 {
8121 	return get_segment_base(emul_to_vcpu(ctxt), seg);
8122 }
8123 
emulator_get_segment(struct x86_emulate_ctxt * ctxt,u16 * selector,struct desc_struct * desc,u32 * base3,int seg)8124 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
8125 				 struct desc_struct *desc, u32 *base3,
8126 				 int seg)
8127 {
8128 	struct kvm_segment var;
8129 
8130 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
8131 	*selector = var.selector;
8132 
8133 	if (var.unusable) {
8134 		memset(desc, 0, sizeof(*desc));
8135 		if (base3)
8136 			*base3 = 0;
8137 		return false;
8138 	}
8139 
8140 	if (var.g)
8141 		var.limit >>= 12;
8142 	set_desc_limit(desc, var.limit);
8143 	set_desc_base(desc, (unsigned long)var.base);
8144 #ifdef CONFIG_X86_64
8145 	if (base3)
8146 		*base3 = var.base >> 32;
8147 #endif
8148 	desc->type = var.type;
8149 	desc->s = var.s;
8150 	desc->dpl = var.dpl;
8151 	desc->p = var.present;
8152 	desc->avl = var.avl;
8153 	desc->l = var.l;
8154 	desc->d = var.db;
8155 	desc->g = var.g;
8156 
8157 	return true;
8158 }
8159 
emulator_set_segment(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_struct * desc,u32 base3,int seg)8160 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8161 				 struct desc_struct *desc, u32 base3,
8162 				 int seg)
8163 {
8164 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8165 	struct kvm_segment var;
8166 
8167 	var.selector = selector;
8168 	var.base = get_desc_base(desc);
8169 #ifdef CONFIG_X86_64
8170 	var.base |= ((u64)base3) << 32;
8171 #endif
8172 	var.limit = get_desc_limit(desc);
8173 	if (desc->g)
8174 		var.limit = (var.limit << 12) | 0xfff;
8175 	var.type = desc->type;
8176 	var.dpl = desc->dpl;
8177 	var.db = desc->d;
8178 	var.s = desc->s;
8179 	var.l = desc->l;
8180 	var.g = desc->g;
8181 	var.avl = desc->avl;
8182 	var.present = desc->p;
8183 	var.unusable = !var.present;
8184 	var.padding = 0;
8185 
8186 	kvm_set_segment(vcpu, &var, seg);
8187 	return;
8188 }
8189 
emulator_get_msr_with_filter(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)8190 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8191 					u32 msr_index, u64 *pdata)
8192 {
8193 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8194 	int r;
8195 
8196 	r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
8197 	if (r < 0)
8198 		return X86EMUL_UNHANDLEABLE;
8199 
8200 	if (r) {
8201 		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8202 				       complete_emulated_rdmsr, r))
8203 			return X86EMUL_IO_NEEDED;
8204 
8205 		trace_kvm_msr_read_ex(msr_index);
8206 		return X86EMUL_PROPAGATE_FAULT;
8207 	}
8208 
8209 	trace_kvm_msr_read(msr_index, *pdata);
8210 	return X86EMUL_CONTINUE;
8211 }
8212 
emulator_set_msr_with_filter(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 data)8213 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8214 					u32 msr_index, u64 data)
8215 {
8216 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8217 	int r;
8218 
8219 	r = kvm_set_msr_with_filter(vcpu, msr_index, data);
8220 	if (r < 0)
8221 		return X86EMUL_UNHANDLEABLE;
8222 
8223 	if (r) {
8224 		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8225 				       complete_emulated_msr_access, r))
8226 			return X86EMUL_IO_NEEDED;
8227 
8228 		trace_kvm_msr_write_ex(msr_index, data);
8229 		return X86EMUL_PROPAGATE_FAULT;
8230 	}
8231 
8232 	trace_kvm_msr_write(msr_index, data);
8233 	return X86EMUL_CONTINUE;
8234 }
8235 
emulator_get_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)8236 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8237 			    u32 msr_index, u64 *pdata)
8238 {
8239 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
8240 }
8241 
emulator_check_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc)8242 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
8243 			      u32 pmc)
8244 {
8245 	if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
8246 		return 0;
8247 	return -EINVAL;
8248 }
8249 
emulator_read_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc,u64 * pdata)8250 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8251 			     u32 pmc, u64 *pdata)
8252 {
8253 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8254 }
8255 
emulator_halt(struct x86_emulate_ctxt * ctxt)8256 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8257 {
8258 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
8259 }
8260 
emulator_intercept(struct x86_emulate_ctxt * ctxt,struct x86_instruction_info * info,enum x86_intercept_stage stage)8261 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8262 			      struct x86_instruction_info *info,
8263 			      enum x86_intercept_stage stage)
8264 {
8265 	return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
8266 					    &ctxt->exception);
8267 }
8268 
emulator_get_cpuid(struct x86_emulate_ctxt * ctxt,u32 * eax,u32 * ebx,u32 * ecx,u32 * edx,bool exact_only)8269 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8270 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8271 			      bool exact_only)
8272 {
8273 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8274 }
8275 
emulator_guest_has_movbe(struct x86_emulate_ctxt * ctxt)8276 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8277 {
8278 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8279 }
8280 
emulator_guest_has_fxsr(struct x86_emulate_ctxt * ctxt)8281 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8282 {
8283 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8284 }
8285 
emulator_guest_has_rdpid(struct x86_emulate_ctxt * ctxt)8286 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8287 {
8288 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8289 }
8290 
emulator_read_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg)8291 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8292 {
8293 	return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8294 }
8295 
emulator_write_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg,ulong val)8296 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8297 {
8298 	kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8299 }
8300 
emulator_set_nmi_mask(struct x86_emulate_ctxt * ctxt,bool masked)8301 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8302 {
8303 	static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8304 }
8305 
emulator_is_smm(struct x86_emulate_ctxt * ctxt)8306 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt)
8307 {
8308 	return is_smm(emul_to_vcpu(ctxt));
8309 }
8310 
emulator_is_guest_mode(struct x86_emulate_ctxt * ctxt)8311 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt)
8312 {
8313 	return is_guest_mode(emul_to_vcpu(ctxt));
8314 }
8315 
8316 #ifndef CONFIG_KVM_SMM
emulator_leave_smm(struct x86_emulate_ctxt * ctxt)8317 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8318 {
8319 	WARN_ON_ONCE(1);
8320 	return X86EMUL_UNHANDLEABLE;
8321 }
8322 #endif
8323 
emulator_triple_fault(struct x86_emulate_ctxt * ctxt)8324 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8325 {
8326 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8327 }
8328 
emulator_set_xcr(struct x86_emulate_ctxt * ctxt,u32 index,u64 xcr)8329 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8330 {
8331 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8332 }
8333 
emulator_vm_bugged(struct x86_emulate_ctxt * ctxt)8334 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8335 {
8336 	struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8337 
8338 	if (!kvm->vm_bugged)
8339 		kvm_vm_bugged(kvm);
8340 }
8341 
8342 static const struct x86_emulate_ops emulate_ops = {
8343 	.vm_bugged           = emulator_vm_bugged,
8344 	.read_gpr            = emulator_read_gpr,
8345 	.write_gpr           = emulator_write_gpr,
8346 	.read_std            = emulator_read_std,
8347 	.write_std           = emulator_write_std,
8348 	.fetch               = kvm_fetch_guest_virt,
8349 	.read_emulated       = emulator_read_emulated,
8350 	.write_emulated      = emulator_write_emulated,
8351 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
8352 	.invlpg              = emulator_invlpg,
8353 	.pio_in_emulated     = emulator_pio_in_emulated,
8354 	.pio_out_emulated    = emulator_pio_out_emulated,
8355 	.get_segment         = emulator_get_segment,
8356 	.set_segment         = emulator_set_segment,
8357 	.get_cached_segment_base = emulator_get_cached_segment_base,
8358 	.get_gdt             = emulator_get_gdt,
8359 	.get_idt	     = emulator_get_idt,
8360 	.set_gdt             = emulator_set_gdt,
8361 	.set_idt	     = emulator_set_idt,
8362 	.get_cr              = emulator_get_cr,
8363 	.set_cr              = emulator_set_cr,
8364 	.cpl                 = emulator_get_cpl,
8365 	.get_dr              = emulator_get_dr,
8366 	.set_dr              = emulator_set_dr,
8367 	.set_msr_with_filter = emulator_set_msr_with_filter,
8368 	.get_msr_with_filter = emulator_get_msr_with_filter,
8369 	.get_msr             = emulator_get_msr,
8370 	.check_pmc	     = emulator_check_pmc,
8371 	.read_pmc            = emulator_read_pmc,
8372 	.halt                = emulator_halt,
8373 	.wbinvd              = emulator_wbinvd,
8374 	.fix_hypercall       = emulator_fix_hypercall,
8375 	.intercept           = emulator_intercept,
8376 	.get_cpuid           = emulator_get_cpuid,
8377 	.guest_has_movbe     = emulator_guest_has_movbe,
8378 	.guest_has_fxsr      = emulator_guest_has_fxsr,
8379 	.guest_has_rdpid     = emulator_guest_has_rdpid,
8380 	.set_nmi_mask        = emulator_set_nmi_mask,
8381 	.is_smm              = emulator_is_smm,
8382 	.is_guest_mode       = emulator_is_guest_mode,
8383 	.leave_smm           = emulator_leave_smm,
8384 	.triple_fault        = emulator_triple_fault,
8385 	.set_xcr             = emulator_set_xcr,
8386 };
8387 
toggle_interruptibility(struct kvm_vcpu * vcpu,u32 mask)8388 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8389 {
8390 	u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8391 	/*
8392 	 * an sti; sti; sequence only disable interrupts for the first
8393 	 * instruction. So, if the last instruction, be it emulated or
8394 	 * not, left the system with the INT_STI flag enabled, it
8395 	 * means that the last instruction is an sti. We should not
8396 	 * leave the flag on in this case. The same goes for mov ss
8397 	 */
8398 	if (int_shadow & mask)
8399 		mask = 0;
8400 	if (unlikely(int_shadow || mask)) {
8401 		static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
8402 		if (!mask)
8403 			kvm_make_request(KVM_REQ_EVENT, vcpu);
8404 	}
8405 }
8406 
inject_emulated_exception(struct kvm_vcpu * vcpu)8407 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8408 {
8409 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8410 
8411 	if (ctxt->exception.vector == PF_VECTOR)
8412 		kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8413 	else if (ctxt->exception.error_code_valid)
8414 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8415 				      ctxt->exception.error_code);
8416 	else
8417 		kvm_queue_exception(vcpu, ctxt->exception.vector);
8418 }
8419 
alloc_emulate_ctxt(struct kvm_vcpu * vcpu)8420 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8421 {
8422 	struct x86_emulate_ctxt *ctxt;
8423 
8424 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8425 	if (!ctxt) {
8426 		pr_err("failed to allocate vcpu's emulator\n");
8427 		return NULL;
8428 	}
8429 
8430 	ctxt->vcpu = vcpu;
8431 	ctxt->ops = &emulate_ops;
8432 	vcpu->arch.emulate_ctxt = ctxt;
8433 
8434 	return ctxt;
8435 }
8436 
init_emulate_ctxt(struct kvm_vcpu * vcpu)8437 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8438 {
8439 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8440 	int cs_db, cs_l;
8441 
8442 	static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8443 
8444 	ctxt->gpa_available = false;
8445 	ctxt->eflags = kvm_get_rflags(vcpu);
8446 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8447 
8448 	ctxt->eip = kvm_rip_read(vcpu);
8449 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
8450 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
8451 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
8452 		     cs_db				? X86EMUL_MODE_PROT32 :
8453 							  X86EMUL_MODE_PROT16;
8454 	ctxt->interruptibility = 0;
8455 	ctxt->have_exception = false;
8456 	ctxt->exception.vector = -1;
8457 	ctxt->perm_ok = false;
8458 
8459 	init_decode_cache(ctxt);
8460 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8461 }
8462 
kvm_inject_realmode_interrupt(struct kvm_vcpu * vcpu,int irq,int inc_eip)8463 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8464 {
8465 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8466 	int ret;
8467 
8468 	init_emulate_ctxt(vcpu);
8469 
8470 	ctxt->op_bytes = 2;
8471 	ctxt->ad_bytes = 2;
8472 	ctxt->_eip = ctxt->eip + inc_eip;
8473 	ret = emulate_int_real(ctxt, irq);
8474 
8475 	if (ret != X86EMUL_CONTINUE) {
8476 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8477 	} else {
8478 		ctxt->eip = ctxt->_eip;
8479 		kvm_rip_write(vcpu, ctxt->eip);
8480 		kvm_set_rflags(vcpu, ctxt->eflags);
8481 	}
8482 }
8483 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8484 
prepare_emulation_failure_exit(struct kvm_vcpu * vcpu,u64 * data,u8 ndata,u8 * insn_bytes,u8 insn_size)8485 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8486 					   u8 ndata, u8 *insn_bytes, u8 insn_size)
8487 {
8488 	struct kvm_run *run = vcpu->run;
8489 	u64 info[5];
8490 	u8 info_start;
8491 
8492 	/*
8493 	 * Zero the whole array used to retrieve the exit info, as casting to
8494 	 * u32 for select entries will leave some chunks uninitialized.
8495 	 */
8496 	memset(&info, 0, sizeof(info));
8497 
8498 	static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
8499 					   &info[2], (u32 *)&info[3],
8500 					   (u32 *)&info[4]);
8501 
8502 	run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8503 	run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8504 
8505 	/*
8506 	 * There's currently space for 13 entries, but 5 are used for the exit
8507 	 * reason and info.  Restrict to 4 to reduce the maintenance burden
8508 	 * when expanding kvm_run.emulation_failure in the future.
8509 	 */
8510 	if (WARN_ON_ONCE(ndata > 4))
8511 		ndata = 4;
8512 
8513 	/* Always include the flags as a 'data' entry. */
8514 	info_start = 1;
8515 	run->emulation_failure.flags = 0;
8516 
8517 	if (insn_size) {
8518 		BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8519 			      sizeof(run->emulation_failure.insn_bytes) != 16));
8520 		info_start += 2;
8521 		run->emulation_failure.flags |=
8522 			KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8523 		run->emulation_failure.insn_size = insn_size;
8524 		memset(run->emulation_failure.insn_bytes, 0x90,
8525 		       sizeof(run->emulation_failure.insn_bytes));
8526 		memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8527 	}
8528 
8529 	memcpy(&run->internal.data[info_start], info, sizeof(info));
8530 	memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8531 	       ndata * sizeof(data[0]));
8532 
8533 	run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8534 }
8535 
prepare_emulation_ctxt_failure_exit(struct kvm_vcpu * vcpu)8536 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8537 {
8538 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8539 
8540 	prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8541 				       ctxt->fetch.end - ctxt->fetch.data);
8542 }
8543 
__kvm_prepare_emulation_failure_exit(struct kvm_vcpu * vcpu,u64 * data,u8 ndata)8544 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8545 					  u8 ndata)
8546 {
8547 	prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8548 }
8549 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8550 
kvm_prepare_emulation_failure_exit(struct kvm_vcpu * vcpu)8551 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8552 {
8553 	__kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8554 }
8555 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8556 
handle_emulation_failure(struct kvm_vcpu * vcpu,int emulation_type)8557 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8558 {
8559 	struct kvm *kvm = vcpu->kvm;
8560 
8561 	++vcpu->stat.insn_emulation_fail;
8562 	trace_kvm_emulate_insn_failed(vcpu);
8563 
8564 	if (emulation_type & EMULTYPE_VMWARE_GP) {
8565 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8566 		return 1;
8567 	}
8568 
8569 	if (kvm->arch.exit_on_emulation_error ||
8570 	    (emulation_type & EMULTYPE_SKIP)) {
8571 		prepare_emulation_ctxt_failure_exit(vcpu);
8572 		return 0;
8573 	}
8574 
8575 	kvm_queue_exception(vcpu, UD_VECTOR);
8576 
8577 	if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8578 		prepare_emulation_ctxt_failure_exit(vcpu);
8579 		return 0;
8580 	}
8581 
8582 	return 1;
8583 }
8584 
reexecute_instruction(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,int emulation_type)8585 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8586 				  int emulation_type)
8587 {
8588 	gpa_t gpa = cr2_or_gpa;
8589 	kvm_pfn_t pfn;
8590 
8591 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8592 		return false;
8593 
8594 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8595 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8596 		return false;
8597 
8598 	if (!vcpu->arch.mmu->root_role.direct) {
8599 		/*
8600 		 * Write permission should be allowed since only
8601 		 * write access need to be emulated.
8602 		 */
8603 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8604 
8605 		/*
8606 		 * If the mapping is invalid in guest, let cpu retry
8607 		 * it to generate fault.
8608 		 */
8609 		if (gpa == INVALID_GPA)
8610 			return true;
8611 	}
8612 
8613 	/*
8614 	 * Do not retry the unhandleable instruction if it faults on the
8615 	 * readonly host memory, otherwise it will goto a infinite loop:
8616 	 * retry instruction -> write #PF -> emulation fail -> retry
8617 	 * instruction -> ...
8618 	 */
8619 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8620 
8621 	/*
8622 	 * If the instruction failed on the error pfn, it can not be fixed,
8623 	 * report the error to userspace.
8624 	 */
8625 	if (is_error_noslot_pfn(pfn))
8626 		return false;
8627 
8628 	kvm_release_pfn_clean(pfn);
8629 
8630 	/* The instructions are well-emulated on direct mmu. */
8631 	if (vcpu->arch.mmu->root_role.direct) {
8632 		unsigned int indirect_shadow_pages;
8633 
8634 		write_lock(&vcpu->kvm->mmu_lock);
8635 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8636 		write_unlock(&vcpu->kvm->mmu_lock);
8637 
8638 		if (indirect_shadow_pages)
8639 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8640 
8641 		return true;
8642 	}
8643 
8644 	/*
8645 	 * if emulation was due to access to shadowed page table
8646 	 * and it failed try to unshadow page and re-enter the
8647 	 * guest to let CPU execute the instruction.
8648 	 */
8649 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8650 
8651 	/*
8652 	 * If the access faults on its page table, it can not
8653 	 * be fixed by unprotecting shadow page and it should
8654 	 * be reported to userspace.
8655 	 */
8656 	return !(emulation_type & EMULTYPE_WRITE_PF_TO_SP);
8657 }
8658 
retry_instruction(struct x86_emulate_ctxt * ctxt,gpa_t cr2_or_gpa,int emulation_type)8659 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8660 			      gpa_t cr2_or_gpa,  int emulation_type)
8661 {
8662 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8663 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8664 
8665 	last_retry_eip = vcpu->arch.last_retry_eip;
8666 	last_retry_addr = vcpu->arch.last_retry_addr;
8667 
8668 	/*
8669 	 * If the emulation is caused by #PF and it is non-page_table
8670 	 * writing instruction, it means the VM-EXIT is caused by shadow
8671 	 * page protected, we can zap the shadow page and retry this
8672 	 * instruction directly.
8673 	 *
8674 	 * Note: if the guest uses a non-page-table modifying instruction
8675 	 * on the PDE that points to the instruction, then we will unmap
8676 	 * the instruction and go to an infinite loop. So, we cache the
8677 	 * last retried eip and the last fault address, if we meet the eip
8678 	 * and the address again, we can break out of the potential infinite
8679 	 * loop.
8680 	 */
8681 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8682 
8683 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8684 		return false;
8685 
8686 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8687 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8688 		return false;
8689 
8690 	if (x86_page_table_writing_insn(ctxt))
8691 		return false;
8692 
8693 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8694 		return false;
8695 
8696 	vcpu->arch.last_retry_eip = ctxt->eip;
8697 	vcpu->arch.last_retry_addr = cr2_or_gpa;
8698 
8699 	if (!vcpu->arch.mmu->root_role.direct)
8700 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8701 
8702 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8703 
8704 	return true;
8705 }
8706 
8707 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8708 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8709 
kvm_vcpu_check_hw_bp(unsigned long addr,u32 type,u32 dr7,unsigned long * db)8710 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8711 				unsigned long *db)
8712 {
8713 	u32 dr6 = 0;
8714 	int i;
8715 	u32 enable, rwlen;
8716 
8717 	enable = dr7;
8718 	rwlen = dr7 >> 16;
8719 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8720 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8721 			dr6 |= (1 << i);
8722 	return dr6;
8723 }
8724 
kvm_vcpu_do_singlestep(struct kvm_vcpu * vcpu)8725 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8726 {
8727 	struct kvm_run *kvm_run = vcpu->run;
8728 
8729 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8730 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8731 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8732 		kvm_run->debug.arch.exception = DB_VECTOR;
8733 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
8734 		return 0;
8735 	}
8736 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8737 	return 1;
8738 }
8739 
kvm_skip_emulated_instruction(struct kvm_vcpu * vcpu)8740 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8741 {
8742 	unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8743 	int r;
8744 
8745 	r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8746 	if (unlikely(!r))
8747 		return 0;
8748 
8749 	kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8750 
8751 	/*
8752 	 * rflags is the old, "raw" value of the flags.  The new value has
8753 	 * not been saved yet.
8754 	 *
8755 	 * This is correct even for TF set by the guest, because "the
8756 	 * processor will not generate this exception after the instruction
8757 	 * that sets the TF flag".
8758 	 */
8759 	if (unlikely(rflags & X86_EFLAGS_TF))
8760 		r = kvm_vcpu_do_singlestep(vcpu);
8761 	return r;
8762 }
8763 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8764 
kvm_is_code_breakpoint_inhibited(struct kvm_vcpu * vcpu)8765 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
8766 {
8767 	u32 shadow;
8768 
8769 	if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
8770 		return true;
8771 
8772 	/*
8773 	 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active,
8774 	 * but AMD CPUs do not.  MOV/POP SS blocking is rare, check that first
8775 	 * to avoid the relatively expensive CPUID lookup.
8776 	 */
8777 	shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8778 	return (shadow & KVM_X86_SHADOW_INT_MOV_SS) &&
8779 	       guest_cpuid_is_intel(vcpu);
8780 }
8781 
kvm_vcpu_check_code_breakpoint(struct kvm_vcpu * vcpu,int emulation_type,int * r)8782 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
8783 					   int emulation_type, int *r)
8784 {
8785 	WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
8786 
8787 	/*
8788 	 * Do not check for code breakpoints if hardware has already done the
8789 	 * checks, as inferred from the emulation type.  On NO_DECODE and SKIP,
8790 	 * the instruction has passed all exception checks, and all intercepted
8791 	 * exceptions that trigger emulation have lower priority than code
8792 	 * breakpoints, i.e. the fact that the intercepted exception occurred
8793 	 * means any code breakpoints have already been serviced.
8794 	 *
8795 	 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
8796 	 * hardware has checked the RIP of the magic prefix, but not the RIP of
8797 	 * the instruction being emulated.  The intent of forced emulation is
8798 	 * to behave as if KVM intercepted the instruction without an exception
8799 	 * and without a prefix.
8800 	 */
8801 	if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
8802 			      EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
8803 		return false;
8804 
8805 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8806 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8807 		struct kvm_run *kvm_run = vcpu->run;
8808 		unsigned long eip = kvm_get_linear_rip(vcpu);
8809 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8810 					   vcpu->arch.guest_debug_dr7,
8811 					   vcpu->arch.eff_db);
8812 
8813 		if (dr6 != 0) {
8814 			kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8815 			kvm_run->debug.arch.pc = eip;
8816 			kvm_run->debug.arch.exception = DB_VECTOR;
8817 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
8818 			*r = 0;
8819 			return true;
8820 		}
8821 	}
8822 
8823 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8824 	    !kvm_is_code_breakpoint_inhibited(vcpu)) {
8825 		unsigned long eip = kvm_get_linear_rip(vcpu);
8826 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8827 					   vcpu->arch.dr7,
8828 					   vcpu->arch.db);
8829 
8830 		if (dr6 != 0) {
8831 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8832 			*r = 1;
8833 			return true;
8834 		}
8835 	}
8836 
8837 	return false;
8838 }
8839 
is_vmware_backdoor_opcode(struct x86_emulate_ctxt * ctxt)8840 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8841 {
8842 	switch (ctxt->opcode_len) {
8843 	case 1:
8844 		switch (ctxt->b) {
8845 		case 0xe4:	/* IN */
8846 		case 0xe5:
8847 		case 0xec:
8848 		case 0xed:
8849 		case 0xe6:	/* OUT */
8850 		case 0xe7:
8851 		case 0xee:
8852 		case 0xef:
8853 		case 0x6c:	/* INS */
8854 		case 0x6d:
8855 		case 0x6e:	/* OUTS */
8856 		case 0x6f:
8857 			return true;
8858 		}
8859 		break;
8860 	case 2:
8861 		switch (ctxt->b) {
8862 		case 0x33:	/* RDPMC */
8863 			return true;
8864 		}
8865 		break;
8866 	}
8867 
8868 	return false;
8869 }
8870 
8871 /*
8872  * Decode an instruction for emulation.  The caller is responsible for handling
8873  * code breakpoints.  Note, manually detecting code breakpoints is unnecessary
8874  * (and wrong) when emulating on an intercepted fault-like exception[*], as
8875  * code breakpoints have higher priority and thus have already been done by
8876  * hardware.
8877  *
8878  * [*] Except #MC, which is higher priority, but KVM should never emulate in
8879  *     response to a machine check.
8880  */
x86_decode_emulated_instruction(struct kvm_vcpu * vcpu,int emulation_type,void * insn,int insn_len)8881 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8882 				    void *insn, int insn_len)
8883 {
8884 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8885 	int r;
8886 
8887 	init_emulate_ctxt(vcpu);
8888 
8889 	r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8890 
8891 	trace_kvm_emulate_insn_start(vcpu);
8892 	++vcpu->stat.insn_emulation;
8893 
8894 	return r;
8895 }
8896 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8897 
x86_emulate_instruction(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,int emulation_type,void * insn,int insn_len)8898 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8899 			    int emulation_type, void *insn, int insn_len)
8900 {
8901 	int r;
8902 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8903 	bool writeback = true;
8904 
8905 	if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len)))
8906 		return 1;
8907 
8908 	vcpu->arch.l1tf_flush_l1d = true;
8909 
8910 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8911 		kvm_clear_exception_queue(vcpu);
8912 
8913 		/*
8914 		 * Return immediately if RIP hits a code breakpoint, such #DBs
8915 		 * are fault-like and are higher priority than any faults on
8916 		 * the code fetch itself.
8917 		 */
8918 		if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
8919 			return r;
8920 
8921 		r = x86_decode_emulated_instruction(vcpu, emulation_type,
8922 						    insn, insn_len);
8923 		if (r != EMULATION_OK)  {
8924 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
8925 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8926 				kvm_queue_exception(vcpu, UD_VECTOR);
8927 				return 1;
8928 			}
8929 			if (reexecute_instruction(vcpu, cr2_or_gpa,
8930 						  emulation_type))
8931 				return 1;
8932 
8933 			if (ctxt->have_exception &&
8934 			    !(emulation_type & EMULTYPE_SKIP)) {
8935 				/*
8936 				 * #UD should result in just EMULATION_FAILED, and trap-like
8937 				 * exception should not be encountered during decode.
8938 				 */
8939 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8940 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8941 				inject_emulated_exception(vcpu);
8942 				return 1;
8943 			}
8944 			return handle_emulation_failure(vcpu, emulation_type);
8945 		}
8946 	}
8947 
8948 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8949 	    !is_vmware_backdoor_opcode(ctxt)) {
8950 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8951 		return 1;
8952 	}
8953 
8954 	/*
8955 	 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
8956 	 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
8957 	 * The caller is responsible for updating interruptibility state and
8958 	 * injecting single-step #DBs.
8959 	 */
8960 	if (emulation_type & EMULTYPE_SKIP) {
8961 		if (ctxt->mode != X86EMUL_MODE_PROT64)
8962 			ctxt->eip = (u32)ctxt->_eip;
8963 		else
8964 			ctxt->eip = ctxt->_eip;
8965 
8966 		if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
8967 			r = 1;
8968 			goto writeback;
8969 		}
8970 
8971 		kvm_rip_write(vcpu, ctxt->eip);
8972 		if (ctxt->eflags & X86_EFLAGS_RF)
8973 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8974 		return 1;
8975 	}
8976 
8977 	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8978 		return 1;
8979 
8980 	/* this is needed for vmware backdoor interface to work since it
8981 	   changes registers values  during IO operation */
8982 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8983 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8984 		emulator_invalidate_register_cache(ctxt);
8985 	}
8986 
8987 restart:
8988 	if (emulation_type & EMULTYPE_PF) {
8989 		/* Save the faulting GPA (cr2) in the address field */
8990 		ctxt->exception.address = cr2_or_gpa;
8991 
8992 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
8993 		if (vcpu->arch.mmu->root_role.direct) {
8994 			ctxt->gpa_available = true;
8995 			ctxt->gpa_val = cr2_or_gpa;
8996 		}
8997 	} else {
8998 		/* Sanitize the address out of an abundance of paranoia. */
8999 		ctxt->exception.address = 0;
9000 	}
9001 
9002 	r = x86_emulate_insn(ctxt);
9003 
9004 	if (r == EMULATION_INTERCEPTED)
9005 		return 1;
9006 
9007 	if (r == EMULATION_FAILED) {
9008 		if (reexecute_instruction(vcpu, cr2_or_gpa, emulation_type))
9009 			return 1;
9010 
9011 		return handle_emulation_failure(vcpu, emulation_type);
9012 	}
9013 
9014 	if (ctxt->have_exception) {
9015 		WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write);
9016 		vcpu->mmio_needed = false;
9017 		r = 1;
9018 		inject_emulated_exception(vcpu);
9019 	} else if (vcpu->arch.pio.count) {
9020 		if (!vcpu->arch.pio.in) {
9021 			/* FIXME: return into emulator if single-stepping.  */
9022 			vcpu->arch.pio.count = 0;
9023 		} else {
9024 			writeback = false;
9025 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
9026 		}
9027 		r = 0;
9028 	} else if (vcpu->mmio_needed) {
9029 		++vcpu->stat.mmio_exits;
9030 
9031 		if (!vcpu->mmio_is_write)
9032 			writeback = false;
9033 		r = 0;
9034 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9035 	} else if (vcpu->arch.complete_userspace_io) {
9036 		writeback = false;
9037 		r = 0;
9038 	} else if (r == EMULATION_RESTART)
9039 		goto restart;
9040 	else
9041 		r = 1;
9042 
9043 writeback:
9044 	if (writeback) {
9045 		unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
9046 		toggle_interruptibility(vcpu, ctxt->interruptibility);
9047 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9048 
9049 		/*
9050 		 * Note, EXCPT_DB is assumed to be fault-like as the emulator
9051 		 * only supports code breakpoints and general detect #DB, both
9052 		 * of which are fault-like.
9053 		 */
9054 		if (!ctxt->have_exception ||
9055 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
9056 			kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
9057 			if (ctxt->is_branch)
9058 				kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
9059 			kvm_rip_write(vcpu, ctxt->eip);
9060 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
9061 				r = kvm_vcpu_do_singlestep(vcpu);
9062 			static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
9063 			__kvm_set_rflags(vcpu, ctxt->eflags);
9064 		}
9065 
9066 		/*
9067 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
9068 		 * do nothing, and it will be requested again as soon as
9069 		 * the shadow expires.  But we still need to check here,
9070 		 * because POPF has no interrupt shadow.
9071 		 */
9072 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
9073 			kvm_make_request(KVM_REQ_EVENT, vcpu);
9074 	} else
9075 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
9076 
9077 	return r;
9078 }
9079 
kvm_emulate_instruction(struct kvm_vcpu * vcpu,int emulation_type)9080 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
9081 {
9082 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
9083 }
9084 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
9085 
kvm_emulate_instruction_from_buffer(struct kvm_vcpu * vcpu,void * insn,int insn_len)9086 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
9087 					void *insn, int insn_len)
9088 {
9089 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
9090 }
9091 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
9092 
complete_fast_pio_out_port_0x7e(struct kvm_vcpu * vcpu)9093 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
9094 {
9095 	vcpu->arch.pio.count = 0;
9096 	return 1;
9097 }
9098 
complete_fast_pio_out(struct kvm_vcpu * vcpu)9099 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
9100 {
9101 	vcpu->arch.pio.count = 0;
9102 
9103 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
9104 		return 1;
9105 
9106 	return kvm_skip_emulated_instruction(vcpu);
9107 }
9108 
kvm_fast_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port)9109 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
9110 			    unsigned short port)
9111 {
9112 	unsigned long val = kvm_rax_read(vcpu);
9113 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
9114 
9115 	if (ret)
9116 		return ret;
9117 
9118 	/*
9119 	 * Workaround userspace that relies on old KVM behavior of %rip being
9120 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
9121 	 */
9122 	if (port == 0x7e &&
9123 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
9124 		vcpu->arch.complete_userspace_io =
9125 			complete_fast_pio_out_port_0x7e;
9126 		kvm_skip_emulated_instruction(vcpu);
9127 	} else {
9128 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9129 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
9130 	}
9131 	return 0;
9132 }
9133 
complete_fast_pio_in(struct kvm_vcpu * vcpu)9134 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
9135 {
9136 	unsigned long val;
9137 
9138 	/* We should only ever be called with arch.pio.count equal to 1 */
9139 	BUG_ON(vcpu->arch.pio.count != 1);
9140 
9141 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
9142 		vcpu->arch.pio.count = 0;
9143 		return 1;
9144 	}
9145 
9146 	/* For size less than 4 we merge, else we zero extend */
9147 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9148 
9149 	complete_emulator_pio_in(vcpu, &val);
9150 	kvm_rax_write(vcpu, val);
9151 
9152 	return kvm_skip_emulated_instruction(vcpu);
9153 }
9154 
kvm_fast_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port)9155 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9156 			   unsigned short port)
9157 {
9158 	unsigned long val;
9159 	int ret;
9160 
9161 	/* For size less than 4 we merge, else we zero extend */
9162 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9163 
9164 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
9165 	if (ret) {
9166 		kvm_rax_write(vcpu, val);
9167 		return ret;
9168 	}
9169 
9170 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9171 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9172 
9173 	return 0;
9174 }
9175 
kvm_fast_pio(struct kvm_vcpu * vcpu,int size,unsigned short port,int in)9176 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9177 {
9178 	int ret;
9179 
9180 	if (in)
9181 		ret = kvm_fast_pio_in(vcpu, size, port);
9182 	else
9183 		ret = kvm_fast_pio_out(vcpu, size, port);
9184 	return ret && kvm_skip_emulated_instruction(vcpu);
9185 }
9186 EXPORT_SYMBOL_GPL(kvm_fast_pio);
9187 
kvmclock_cpu_down_prep(unsigned int cpu)9188 static int kvmclock_cpu_down_prep(unsigned int cpu)
9189 {
9190 	__this_cpu_write(cpu_tsc_khz, 0);
9191 	return 0;
9192 }
9193 
tsc_khz_changed(void * data)9194 static void tsc_khz_changed(void *data)
9195 {
9196 	struct cpufreq_freqs *freq = data;
9197 	unsigned long khz;
9198 
9199 	WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9200 
9201 	if (data)
9202 		khz = freq->new;
9203 	else
9204 		khz = cpufreq_quick_get(raw_smp_processor_id());
9205 	if (!khz)
9206 		khz = tsc_khz;
9207 	__this_cpu_write(cpu_tsc_khz, khz);
9208 }
9209 
9210 #ifdef CONFIG_X86_64
kvm_hyperv_tsc_notifier(void)9211 static void kvm_hyperv_tsc_notifier(void)
9212 {
9213 	struct kvm *kvm;
9214 	int cpu;
9215 
9216 	mutex_lock(&kvm_lock);
9217 	list_for_each_entry(kvm, &vm_list, vm_list)
9218 		kvm_make_mclock_inprogress_request(kvm);
9219 
9220 	/* no guest entries from this point */
9221 	hyperv_stop_tsc_emulation();
9222 
9223 	/* TSC frequency always matches when on Hyper-V */
9224 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9225 		for_each_present_cpu(cpu)
9226 			per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9227 	}
9228 	kvm_caps.max_guest_tsc_khz = tsc_khz;
9229 
9230 	list_for_each_entry(kvm, &vm_list, vm_list) {
9231 		__kvm_start_pvclock_update(kvm);
9232 		pvclock_update_vm_gtod_copy(kvm);
9233 		kvm_end_pvclock_update(kvm);
9234 	}
9235 
9236 	mutex_unlock(&kvm_lock);
9237 }
9238 #endif
9239 
__kvmclock_cpufreq_notifier(struct cpufreq_freqs * freq,int cpu)9240 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9241 {
9242 	struct kvm *kvm;
9243 	struct kvm_vcpu *vcpu;
9244 	int send_ipi = 0;
9245 	unsigned long i;
9246 
9247 	/*
9248 	 * We allow guests to temporarily run on slowing clocks,
9249 	 * provided we notify them after, or to run on accelerating
9250 	 * clocks, provided we notify them before.  Thus time never
9251 	 * goes backwards.
9252 	 *
9253 	 * However, we have a problem.  We can't atomically update
9254 	 * the frequency of a given CPU from this function; it is
9255 	 * merely a notifier, which can be called from any CPU.
9256 	 * Changing the TSC frequency at arbitrary points in time
9257 	 * requires a recomputation of local variables related to
9258 	 * the TSC for each VCPU.  We must flag these local variables
9259 	 * to be updated and be sure the update takes place with the
9260 	 * new frequency before any guests proceed.
9261 	 *
9262 	 * Unfortunately, the combination of hotplug CPU and frequency
9263 	 * change creates an intractable locking scenario; the order
9264 	 * of when these callouts happen is undefined with respect to
9265 	 * CPU hotplug, and they can race with each other.  As such,
9266 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9267 	 * undefined; you can actually have a CPU frequency change take
9268 	 * place in between the computation of X and the setting of the
9269 	 * variable.  To protect against this problem, all updates of
9270 	 * the per_cpu tsc_khz variable are done in an interrupt
9271 	 * protected IPI, and all callers wishing to update the value
9272 	 * must wait for a synchronous IPI to complete (which is trivial
9273 	 * if the caller is on the CPU already).  This establishes the
9274 	 * necessary total order on variable updates.
9275 	 *
9276 	 * Note that because a guest time update may take place
9277 	 * anytime after the setting of the VCPU's request bit, the
9278 	 * correct TSC value must be set before the request.  However,
9279 	 * to ensure the update actually makes it to any guest which
9280 	 * starts running in hardware virtualization between the set
9281 	 * and the acquisition of the spinlock, we must also ping the
9282 	 * CPU after setting the request bit.
9283 	 *
9284 	 */
9285 
9286 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9287 
9288 	mutex_lock(&kvm_lock);
9289 	list_for_each_entry(kvm, &vm_list, vm_list) {
9290 		kvm_for_each_vcpu(i, vcpu, kvm) {
9291 			if (vcpu->cpu != cpu)
9292 				continue;
9293 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9294 			if (vcpu->cpu != raw_smp_processor_id())
9295 				send_ipi = 1;
9296 		}
9297 	}
9298 	mutex_unlock(&kvm_lock);
9299 
9300 	if (freq->old < freq->new && send_ipi) {
9301 		/*
9302 		 * We upscale the frequency.  Must make the guest
9303 		 * doesn't see old kvmclock values while running with
9304 		 * the new frequency, otherwise we risk the guest sees
9305 		 * time go backwards.
9306 		 *
9307 		 * In case we update the frequency for another cpu
9308 		 * (which might be in guest context) send an interrupt
9309 		 * to kick the cpu out of guest context.  Next time
9310 		 * guest context is entered kvmclock will be updated,
9311 		 * so the guest will not see stale values.
9312 		 */
9313 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9314 	}
9315 }
9316 
kvmclock_cpufreq_notifier(struct notifier_block * nb,unsigned long val,void * data)9317 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9318 				     void *data)
9319 {
9320 	struct cpufreq_freqs *freq = data;
9321 	int cpu;
9322 
9323 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9324 		return 0;
9325 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9326 		return 0;
9327 
9328 	for_each_cpu(cpu, freq->policy->cpus)
9329 		__kvmclock_cpufreq_notifier(freq, cpu);
9330 
9331 	return 0;
9332 }
9333 
9334 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9335 	.notifier_call  = kvmclock_cpufreq_notifier
9336 };
9337 
kvmclock_cpu_online(unsigned int cpu)9338 static int kvmclock_cpu_online(unsigned int cpu)
9339 {
9340 	tsc_khz_changed(NULL);
9341 	return 0;
9342 }
9343 
kvm_timer_init(void)9344 static void kvm_timer_init(void)
9345 {
9346 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9347 		max_tsc_khz = tsc_khz;
9348 
9349 		if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9350 			struct cpufreq_policy *policy;
9351 			int cpu;
9352 
9353 			cpu = get_cpu();
9354 			policy = cpufreq_cpu_get(cpu);
9355 			if (policy) {
9356 				if (policy->cpuinfo.max_freq)
9357 					max_tsc_khz = policy->cpuinfo.max_freq;
9358 				cpufreq_cpu_put(policy);
9359 			}
9360 			put_cpu();
9361 		}
9362 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9363 					  CPUFREQ_TRANSITION_NOTIFIER);
9364 
9365 		cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9366 				  kvmclock_cpu_online, kvmclock_cpu_down_prep);
9367 	}
9368 }
9369 
9370 #ifdef CONFIG_X86_64
pvclock_gtod_update_fn(struct work_struct * work)9371 static void pvclock_gtod_update_fn(struct work_struct *work)
9372 {
9373 	struct kvm *kvm;
9374 	struct kvm_vcpu *vcpu;
9375 	unsigned long i;
9376 
9377 	mutex_lock(&kvm_lock);
9378 	list_for_each_entry(kvm, &vm_list, vm_list)
9379 		kvm_for_each_vcpu(i, vcpu, kvm)
9380 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9381 	atomic_set(&kvm_guest_has_master_clock, 0);
9382 	mutex_unlock(&kvm_lock);
9383 }
9384 
9385 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9386 
9387 /*
9388  * Indirection to move queue_work() out of the tk_core.seq write held
9389  * region to prevent possible deadlocks against time accessors which
9390  * are invoked with work related locks held.
9391  */
pvclock_irq_work_fn(struct irq_work * w)9392 static void pvclock_irq_work_fn(struct irq_work *w)
9393 {
9394 	queue_work(system_long_wq, &pvclock_gtod_work);
9395 }
9396 
9397 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9398 
9399 /*
9400  * Notification about pvclock gtod data update.
9401  */
pvclock_gtod_notify(struct notifier_block * nb,unsigned long unused,void * priv)9402 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9403 			       void *priv)
9404 {
9405 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9406 	struct timekeeper *tk = priv;
9407 
9408 	update_pvclock_gtod(tk);
9409 
9410 	/*
9411 	 * Disable master clock if host does not trust, or does not use,
9412 	 * TSC based clocksource. Delegate queue_work() to irq_work as
9413 	 * this is invoked with tk_core.seq write held.
9414 	 */
9415 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9416 	    atomic_read(&kvm_guest_has_master_clock) != 0)
9417 		irq_work_queue(&pvclock_irq_work);
9418 	return 0;
9419 }
9420 
9421 static struct notifier_block pvclock_gtod_notifier = {
9422 	.notifier_call = pvclock_gtod_notify,
9423 };
9424 #endif
9425 
kvm_ops_update(struct kvm_x86_init_ops * ops)9426 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
9427 {
9428 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9429 
9430 #define __KVM_X86_OP(func) \
9431 	static_call_update(kvm_x86_##func, kvm_x86_ops.func);
9432 #define KVM_X86_OP(func) \
9433 	WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
9434 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
9435 #define KVM_X86_OP_OPTIONAL_RET0(func) \
9436 	static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
9437 					   (void *)__static_call_return0);
9438 #include <asm/kvm-x86-ops.h>
9439 #undef __KVM_X86_OP
9440 
9441 	kvm_pmu_ops_update(ops->pmu_ops);
9442 }
9443 
kvm_x86_check_processor_compatibility(void)9444 static int kvm_x86_check_processor_compatibility(void)
9445 {
9446 	int cpu = smp_processor_id();
9447 	struct cpuinfo_x86 *c = &cpu_data(cpu);
9448 
9449 	/*
9450 	 * Compatibility checks are done when loading KVM and when enabling
9451 	 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are
9452 	 * compatible, i.e. KVM should never perform a compatibility check on
9453 	 * an offline CPU.
9454 	 */
9455 	WARN_ON(!cpu_online(cpu));
9456 
9457 	if (__cr4_reserved_bits(cpu_has, c) !=
9458 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9459 		return -EIO;
9460 
9461 	return static_call(kvm_x86_check_processor_compatibility)();
9462 }
9463 
kvm_x86_check_cpu_compat(void * ret)9464 static void kvm_x86_check_cpu_compat(void *ret)
9465 {
9466 	*(int *)ret = kvm_x86_check_processor_compatibility();
9467 }
9468 
__kvm_x86_vendor_init(struct kvm_x86_init_ops * ops)9469 static int __kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9470 {
9471 	u64 host_pat;
9472 	int r, cpu;
9473 
9474 	if (kvm_x86_ops.hardware_enable) {
9475 		pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name);
9476 		return -EEXIST;
9477 	}
9478 
9479 	/*
9480 	 * KVM explicitly assumes that the guest has an FPU and
9481 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9482 	 * vCPU's FPU state as a fxregs_state struct.
9483 	 */
9484 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9485 		pr_err("inadequate fpu\n");
9486 		return -EOPNOTSUPP;
9487 	}
9488 
9489 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9490 		pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9491 		return -EOPNOTSUPP;
9492 	}
9493 
9494 	/*
9495 	 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9496 	 * the PAT bits in SPTEs.  Bail if PAT[0] is programmed to something
9497 	 * other than WB.  Note, EPT doesn't utilize the PAT, but don't bother
9498 	 * with an exception.  PAT[0] is set to WB on RESET and also by the
9499 	 * kernel, i.e. failure indicates a kernel bug or broken firmware.
9500 	 */
9501 	if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9502 	    (host_pat & GENMASK(2, 0)) != 6) {
9503 		pr_err("host PAT[0] is not WB\n");
9504 		return -EIO;
9505 	}
9506 
9507 	x86_emulator_cache = kvm_alloc_emulator_cache();
9508 	if (!x86_emulator_cache) {
9509 		pr_err("failed to allocate cache for x86 emulator\n");
9510 		return -ENOMEM;
9511 	}
9512 
9513 	user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9514 	if (!user_return_msrs) {
9515 		pr_err("failed to allocate percpu kvm_user_return_msrs\n");
9516 		r = -ENOMEM;
9517 		goto out_free_x86_emulator_cache;
9518 	}
9519 	kvm_nr_uret_msrs = 0;
9520 
9521 	r = kvm_mmu_vendor_module_init();
9522 	if (r)
9523 		goto out_free_percpu;
9524 
9525 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9526 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9527 		kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
9528 	}
9529 
9530 	rdmsrl_safe(MSR_EFER, &host_efer);
9531 
9532 	if (boot_cpu_has(X86_FEATURE_XSAVES))
9533 		rdmsrl(MSR_IA32_XSS, host_xss);
9534 
9535 	kvm_init_pmu_capability(ops->pmu_ops);
9536 
9537 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
9538 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, host_arch_capabilities);
9539 
9540 	r = ops->hardware_setup();
9541 	if (r != 0)
9542 		goto out_mmu_exit;
9543 
9544 	kvm_ops_update(ops);
9545 
9546 	for_each_online_cpu(cpu) {
9547 		smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1);
9548 		if (r < 0)
9549 			goto out_unwind_ops;
9550 	}
9551 
9552 	/*
9553 	 * Point of no return!  DO NOT add error paths below this point unless
9554 	 * absolutely necessary, as most operations from this point forward
9555 	 * require unwinding.
9556 	 */
9557 	kvm_timer_init();
9558 
9559 	if (pi_inject_timer == -1)
9560 		pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9561 #ifdef CONFIG_X86_64
9562 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9563 
9564 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9565 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9566 #endif
9567 
9568 	kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
9569 
9570 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9571 		kvm_caps.supported_xss = 0;
9572 
9573 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
9574 	cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
9575 #undef __kvm_cpu_cap_has
9576 
9577 	if (kvm_caps.has_tsc_control) {
9578 		/*
9579 		 * Make sure the user can only configure tsc_khz values that
9580 		 * fit into a signed integer.
9581 		 * A min value is not calculated because it will always
9582 		 * be 1 on all machines.
9583 		 */
9584 		u64 max = min(0x7fffffffULL,
9585 			      __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
9586 		kvm_caps.max_guest_tsc_khz = max;
9587 	}
9588 	kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
9589 	kvm_init_msr_lists();
9590 	return 0;
9591 
9592 out_unwind_ops:
9593 	kvm_x86_ops.hardware_enable = NULL;
9594 	static_call(kvm_x86_hardware_unsetup)();
9595 out_mmu_exit:
9596 	kvm_mmu_vendor_module_exit();
9597 out_free_percpu:
9598 	free_percpu(user_return_msrs);
9599 out_free_x86_emulator_cache:
9600 	kmem_cache_destroy(x86_emulator_cache);
9601 	return r;
9602 }
9603 
kvm_x86_vendor_init(struct kvm_x86_init_ops * ops)9604 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9605 {
9606 	int r;
9607 
9608 	mutex_lock(&vendor_module_lock);
9609 	r = __kvm_x86_vendor_init(ops);
9610 	mutex_unlock(&vendor_module_lock);
9611 
9612 	return r;
9613 }
9614 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init);
9615 
kvm_x86_vendor_exit(void)9616 void kvm_x86_vendor_exit(void)
9617 {
9618 	kvm_unregister_perf_callbacks();
9619 
9620 #ifdef CONFIG_X86_64
9621 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9622 		clear_hv_tscchange_cb();
9623 #endif
9624 	kvm_lapic_exit();
9625 
9626 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9627 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9628 					    CPUFREQ_TRANSITION_NOTIFIER);
9629 		cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9630 	}
9631 #ifdef CONFIG_X86_64
9632 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9633 	irq_work_sync(&pvclock_irq_work);
9634 	cancel_work_sync(&pvclock_gtod_work);
9635 #endif
9636 	static_call(kvm_x86_hardware_unsetup)();
9637 	kvm_mmu_vendor_module_exit();
9638 	free_percpu(user_return_msrs);
9639 	kmem_cache_destroy(x86_emulator_cache);
9640 #ifdef CONFIG_KVM_XEN
9641 	static_key_deferred_flush(&kvm_xen_enabled);
9642 	WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9643 #endif
9644 	mutex_lock(&vendor_module_lock);
9645 	kvm_x86_ops.hardware_enable = NULL;
9646 	mutex_unlock(&vendor_module_lock);
9647 }
9648 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit);
9649 
__kvm_emulate_halt(struct kvm_vcpu * vcpu,int state,int reason)9650 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
9651 {
9652 	/*
9653 	 * The vCPU has halted, e.g. executed HLT.  Update the run state if the
9654 	 * local APIC is in-kernel, the run loop will detect the non-runnable
9655 	 * state and halt the vCPU.  Exit to userspace if the local APIC is
9656 	 * managed by userspace, in which case userspace is responsible for
9657 	 * handling wake events.
9658 	 */
9659 	++vcpu->stat.halt_exits;
9660 	if (lapic_in_kernel(vcpu)) {
9661 		vcpu->arch.mp_state = state;
9662 		return 1;
9663 	} else {
9664 		vcpu->run->exit_reason = reason;
9665 		return 0;
9666 	}
9667 }
9668 
kvm_emulate_halt_noskip(struct kvm_vcpu * vcpu)9669 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9670 {
9671 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9672 }
9673 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9674 
kvm_emulate_halt(struct kvm_vcpu * vcpu)9675 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9676 {
9677 	int ret = kvm_skip_emulated_instruction(vcpu);
9678 	/*
9679 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9680 	 * KVM_EXIT_DEBUG here.
9681 	 */
9682 	return kvm_emulate_halt_noskip(vcpu) && ret;
9683 }
9684 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9685 
kvm_emulate_ap_reset_hold(struct kvm_vcpu * vcpu)9686 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9687 {
9688 	int ret = kvm_skip_emulated_instruction(vcpu);
9689 
9690 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9691 					KVM_EXIT_AP_RESET_HOLD) && ret;
9692 }
9693 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9694 
9695 #ifdef CONFIG_X86_64
kvm_pv_clock_pairing(struct kvm_vcpu * vcpu,gpa_t paddr,unsigned long clock_type)9696 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9697 			        unsigned long clock_type)
9698 {
9699 	struct kvm_clock_pairing clock_pairing;
9700 	struct timespec64 ts;
9701 	u64 cycle;
9702 	int ret;
9703 
9704 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9705 		return -KVM_EOPNOTSUPP;
9706 
9707 	/*
9708 	 * When tsc is in permanent catchup mode guests won't be able to use
9709 	 * pvclock_read_retry loop to get consistent view of pvclock
9710 	 */
9711 	if (vcpu->arch.tsc_always_catchup)
9712 		return -KVM_EOPNOTSUPP;
9713 
9714 	if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9715 		return -KVM_EOPNOTSUPP;
9716 
9717 	clock_pairing.sec = ts.tv_sec;
9718 	clock_pairing.nsec = ts.tv_nsec;
9719 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9720 	clock_pairing.flags = 0;
9721 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9722 
9723 	ret = 0;
9724 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9725 			    sizeof(struct kvm_clock_pairing)))
9726 		ret = -KVM_EFAULT;
9727 
9728 	return ret;
9729 }
9730 #endif
9731 
9732 /*
9733  * kvm_pv_kick_cpu_op:  Kick a vcpu.
9734  *
9735  * @apicid - apicid of vcpu to be kicked.
9736  */
kvm_pv_kick_cpu_op(struct kvm * kvm,int apicid)9737 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9738 {
9739 	/*
9740 	 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9741 	 * common code, e.g. for tracing. Defer initialization to the compiler.
9742 	 */
9743 	struct kvm_lapic_irq lapic_irq = {
9744 		.delivery_mode = APIC_DM_REMRD,
9745 		.dest_mode = APIC_DEST_PHYSICAL,
9746 		.shorthand = APIC_DEST_NOSHORT,
9747 		.dest_id = apicid,
9748 	};
9749 
9750 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9751 }
9752 
kvm_apicv_activated(struct kvm * kvm)9753 bool kvm_apicv_activated(struct kvm *kvm)
9754 {
9755 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9756 }
9757 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9758 
kvm_vcpu_apicv_activated(struct kvm_vcpu * vcpu)9759 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9760 {
9761 	ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9762 	ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu);
9763 
9764 	return (vm_reasons | vcpu_reasons) == 0;
9765 }
9766 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9767 
set_or_clear_apicv_inhibit(unsigned long * inhibits,enum kvm_apicv_inhibit reason,bool set)9768 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9769 				       enum kvm_apicv_inhibit reason, bool set)
9770 {
9771 	if (set)
9772 		__set_bit(reason, inhibits);
9773 	else
9774 		__clear_bit(reason, inhibits);
9775 
9776 	trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9777 }
9778 
kvm_apicv_init(struct kvm * kvm)9779 static void kvm_apicv_init(struct kvm *kvm)
9780 {
9781 	unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
9782 
9783 	init_rwsem(&kvm->arch.apicv_update_lock);
9784 
9785 	set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true);
9786 
9787 	if (!enable_apicv)
9788 		set_or_clear_apicv_inhibit(inhibits,
9789 					   APICV_INHIBIT_REASON_DISABLE, true);
9790 }
9791 
kvm_sched_yield(struct kvm_vcpu * vcpu,unsigned long dest_id)9792 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9793 {
9794 	struct kvm_vcpu *target = NULL;
9795 	struct kvm_apic_map *map;
9796 
9797 	vcpu->stat.directed_yield_attempted++;
9798 
9799 	if (single_task_running())
9800 		goto no_yield;
9801 
9802 	rcu_read_lock();
9803 	map = rcu_dereference(vcpu->kvm->arch.apic_map);
9804 
9805 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9806 		target = map->phys_map[dest_id]->vcpu;
9807 
9808 	rcu_read_unlock();
9809 
9810 	if (!target || !READ_ONCE(target->ready))
9811 		goto no_yield;
9812 
9813 	/* Ignore requests to yield to self */
9814 	if (vcpu == target)
9815 		goto no_yield;
9816 
9817 	if (kvm_vcpu_yield_to(target) <= 0)
9818 		goto no_yield;
9819 
9820 	vcpu->stat.directed_yield_successful++;
9821 
9822 no_yield:
9823 	return;
9824 }
9825 
complete_hypercall_exit(struct kvm_vcpu * vcpu)9826 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9827 {
9828 	u64 ret = vcpu->run->hypercall.ret;
9829 
9830 	if (!is_64_bit_hypercall(vcpu))
9831 		ret = (u32)ret;
9832 	kvm_rax_write(vcpu, ret);
9833 	++vcpu->stat.hypercalls;
9834 	return kvm_skip_emulated_instruction(vcpu);
9835 }
9836 
kvm_emulate_hypercall(struct kvm_vcpu * vcpu)9837 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
9838 {
9839 	unsigned long nr, a0, a1, a2, a3, ret;
9840 	int op_64_bit;
9841 
9842 	if (kvm_xen_hypercall_enabled(vcpu->kvm))
9843 		return kvm_xen_hypercall(vcpu);
9844 
9845 	if (kvm_hv_hypercall_enabled(vcpu))
9846 		return kvm_hv_hypercall(vcpu);
9847 
9848 	nr = kvm_rax_read(vcpu);
9849 	a0 = kvm_rbx_read(vcpu);
9850 	a1 = kvm_rcx_read(vcpu);
9851 	a2 = kvm_rdx_read(vcpu);
9852 	a3 = kvm_rsi_read(vcpu);
9853 
9854 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
9855 
9856 	op_64_bit = is_64_bit_hypercall(vcpu);
9857 	if (!op_64_bit) {
9858 		nr &= 0xFFFFFFFF;
9859 		a0 &= 0xFFFFFFFF;
9860 		a1 &= 0xFFFFFFFF;
9861 		a2 &= 0xFFFFFFFF;
9862 		a3 &= 0xFFFFFFFF;
9863 	}
9864 
9865 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
9866 		ret = -KVM_EPERM;
9867 		goto out;
9868 	}
9869 
9870 	ret = -KVM_ENOSYS;
9871 
9872 	switch (nr) {
9873 	case KVM_HC_VAPIC_POLL_IRQ:
9874 		ret = 0;
9875 		break;
9876 	case KVM_HC_KICK_CPU:
9877 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
9878 			break;
9879 
9880 		kvm_pv_kick_cpu_op(vcpu->kvm, a1);
9881 		kvm_sched_yield(vcpu, a1);
9882 		ret = 0;
9883 		break;
9884 #ifdef CONFIG_X86_64
9885 	case KVM_HC_CLOCK_PAIRING:
9886 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
9887 		break;
9888 #endif
9889 	case KVM_HC_SEND_IPI:
9890 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
9891 			break;
9892 
9893 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9894 		break;
9895 	case KVM_HC_SCHED_YIELD:
9896 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9897 			break;
9898 
9899 		kvm_sched_yield(vcpu, a0);
9900 		ret = 0;
9901 		break;
9902 	case KVM_HC_MAP_GPA_RANGE: {
9903 		u64 gpa = a0, npages = a1, attrs = a2;
9904 
9905 		ret = -KVM_ENOSYS;
9906 		if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
9907 			break;
9908 
9909 		if (!PAGE_ALIGNED(gpa) || !npages ||
9910 		    gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
9911 			ret = -KVM_EINVAL;
9912 			break;
9913 		}
9914 
9915 		vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
9916 		vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
9917 		vcpu->run->hypercall.args[0]  = gpa;
9918 		vcpu->run->hypercall.args[1]  = npages;
9919 		vcpu->run->hypercall.args[2]  = attrs;
9920 		vcpu->run->hypercall.flags    = 0;
9921 		if (op_64_bit)
9922 			vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE;
9923 
9924 		WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ);
9925 		vcpu->arch.complete_userspace_io = complete_hypercall_exit;
9926 		return 0;
9927 	}
9928 	default:
9929 		ret = -KVM_ENOSYS;
9930 		break;
9931 	}
9932 out:
9933 	if (!op_64_bit)
9934 		ret = (u32)ret;
9935 	kvm_rax_write(vcpu, ret);
9936 
9937 	++vcpu->stat.hypercalls;
9938 	return kvm_skip_emulated_instruction(vcpu);
9939 }
9940 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
9941 
emulator_fix_hypercall(struct x86_emulate_ctxt * ctxt)9942 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
9943 {
9944 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9945 	char instruction[3];
9946 	unsigned long rip = kvm_rip_read(vcpu);
9947 
9948 	/*
9949 	 * If the quirk is disabled, synthesize a #UD and let the guest pick up
9950 	 * the pieces.
9951 	 */
9952 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
9953 		ctxt->exception.error_code_valid = false;
9954 		ctxt->exception.vector = UD_VECTOR;
9955 		ctxt->have_exception = true;
9956 		return X86EMUL_PROPAGATE_FAULT;
9957 	}
9958 
9959 	static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
9960 
9961 	return emulator_write_emulated(ctxt, rip, instruction, 3,
9962 		&ctxt->exception);
9963 }
9964 
dm_request_for_irq_injection(struct kvm_vcpu * vcpu)9965 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
9966 {
9967 	return vcpu->run->request_interrupt_window &&
9968 		likely(!pic_in_kernel(vcpu->kvm));
9969 }
9970 
9971 /* Called within kvm->srcu read side.  */
post_kvm_run_save(struct kvm_vcpu * vcpu)9972 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
9973 {
9974 	struct kvm_run *kvm_run = vcpu->run;
9975 
9976 	kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
9977 	kvm_run->cr8 = kvm_get_cr8(vcpu);
9978 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
9979 
9980 	kvm_run->ready_for_interrupt_injection =
9981 		pic_in_kernel(vcpu->kvm) ||
9982 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
9983 
9984 	if (is_smm(vcpu))
9985 		kvm_run->flags |= KVM_RUN_X86_SMM;
9986 }
9987 
update_cr8_intercept(struct kvm_vcpu * vcpu)9988 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9989 {
9990 	int max_irr, tpr;
9991 
9992 	if (!kvm_x86_ops.update_cr8_intercept)
9993 		return;
9994 
9995 	if (!lapic_in_kernel(vcpu))
9996 		return;
9997 
9998 	if (vcpu->arch.apic->apicv_active)
9999 		return;
10000 
10001 	if (!vcpu->arch.apic->vapic_addr)
10002 		max_irr = kvm_lapic_find_highest_irr(vcpu);
10003 	else
10004 		max_irr = -1;
10005 
10006 	if (max_irr != -1)
10007 		max_irr >>= 4;
10008 
10009 	tpr = kvm_lapic_get_cr8(vcpu);
10010 
10011 	static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
10012 }
10013 
10014 
kvm_check_nested_events(struct kvm_vcpu * vcpu)10015 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
10016 {
10017 	if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10018 		kvm_x86_ops.nested_ops->triple_fault(vcpu);
10019 		return 1;
10020 	}
10021 
10022 	return kvm_x86_ops.nested_ops->check_events(vcpu);
10023 }
10024 
kvm_inject_exception(struct kvm_vcpu * vcpu)10025 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
10026 {
10027 	/*
10028 	 * Suppress the error code if the vCPU is in Real Mode, as Real Mode
10029 	 * exceptions don't report error codes.  The presence of an error code
10030 	 * is carried with the exception and only stripped when the exception
10031 	 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do
10032 	 * report an error code despite the CPU being in Real Mode.
10033 	 */
10034 	vcpu->arch.exception.has_error_code &= is_protmode(vcpu);
10035 
10036 	trace_kvm_inj_exception(vcpu->arch.exception.vector,
10037 				vcpu->arch.exception.has_error_code,
10038 				vcpu->arch.exception.error_code,
10039 				vcpu->arch.exception.injected);
10040 
10041 	static_call(kvm_x86_inject_exception)(vcpu);
10042 }
10043 
10044 /*
10045  * Check for any event (interrupt or exception) that is ready to be injected,
10046  * and if there is at least one event, inject the event with the highest
10047  * priority.  This handles both "pending" events, i.e. events that have never
10048  * been injected into the guest, and "injected" events, i.e. events that were
10049  * injected as part of a previous VM-Enter, but weren't successfully delivered
10050  * and need to be re-injected.
10051  *
10052  * Note, this is not guaranteed to be invoked on a guest instruction boundary,
10053  * i.e. doesn't guarantee that there's an event window in the guest.  KVM must
10054  * be able to inject exceptions in the "middle" of an instruction, and so must
10055  * also be able to re-inject NMIs and IRQs in the middle of an instruction.
10056  * I.e. for exceptions and re-injected events, NOT invoking this on instruction
10057  * boundaries is necessary and correct.
10058  *
10059  * For simplicity, KVM uses a single path to inject all events (except events
10060  * that are injected directly from L1 to L2) and doesn't explicitly track
10061  * instruction boundaries for asynchronous events.  However, because VM-Exits
10062  * that can occur during instruction execution typically result in KVM skipping
10063  * the instruction or injecting an exception, e.g. instruction and exception
10064  * intercepts, and because pending exceptions have higher priority than pending
10065  * interrupts, KVM still honors instruction boundaries in most scenarios.
10066  *
10067  * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
10068  * the instruction or inject an exception, then KVM can incorrecty inject a new
10069  * asynchrounous event if the event became pending after the CPU fetched the
10070  * instruction (in the guest).  E.g. if a page fault (#PF, #NPF, EPT violation)
10071  * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
10072  * injected on the restarted instruction instead of being deferred until the
10073  * instruction completes.
10074  *
10075  * In practice, this virtualization hole is unlikely to be observed by the
10076  * guest, and even less likely to cause functional problems.  To detect the
10077  * hole, the guest would have to trigger an event on a side effect of an early
10078  * phase of instruction execution, e.g. on the instruction fetch from memory.
10079  * And for it to be a functional problem, the guest would need to depend on the
10080  * ordering between that side effect, the instruction completing, _and_ the
10081  * delivery of the asynchronous event.
10082  */
kvm_check_and_inject_events(struct kvm_vcpu * vcpu,bool * req_immediate_exit)10083 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
10084 				       bool *req_immediate_exit)
10085 {
10086 	bool can_inject;
10087 	int r;
10088 
10089 	/*
10090 	 * Process nested events first, as nested VM-Exit supercedes event
10091 	 * re-injection.  If there's an event queued for re-injection, it will
10092 	 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
10093 	 */
10094 	if (is_guest_mode(vcpu))
10095 		r = kvm_check_nested_events(vcpu);
10096 	else
10097 		r = 0;
10098 
10099 	/*
10100 	 * Re-inject exceptions and events *especially* if immediate entry+exit
10101 	 * to/from L2 is needed, as any event that has already been injected
10102 	 * into L2 needs to complete its lifecycle before injecting a new event.
10103 	 *
10104 	 * Don't re-inject an NMI or interrupt if there is a pending exception.
10105 	 * This collision arises if an exception occurred while vectoring the
10106 	 * injected event, KVM intercepted said exception, and KVM ultimately
10107 	 * determined the fault belongs to the guest and queues the exception
10108 	 * for injection back into the guest.
10109 	 *
10110 	 * "Injected" interrupts can also collide with pending exceptions if
10111 	 * userspace ignores the "ready for injection" flag and blindly queues
10112 	 * an interrupt.  In that case, prioritizing the exception is correct,
10113 	 * as the exception "occurred" before the exit to userspace.  Trap-like
10114 	 * exceptions, e.g. most #DBs, have higher priority than interrupts.
10115 	 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
10116 	 * priority, they're only generated (pended) during instruction
10117 	 * execution, and interrupts are recognized at instruction boundaries.
10118 	 * Thus a pending fault-like exception means the fault occurred on the
10119 	 * *previous* instruction and must be serviced prior to recognizing any
10120 	 * new events in order to fully complete the previous instruction.
10121 	 */
10122 	if (vcpu->arch.exception.injected)
10123 		kvm_inject_exception(vcpu);
10124 	else if (kvm_is_exception_pending(vcpu))
10125 		; /* see above */
10126 	else if (vcpu->arch.nmi_injected)
10127 		static_call(kvm_x86_inject_nmi)(vcpu);
10128 	else if (vcpu->arch.interrupt.injected)
10129 		static_call(kvm_x86_inject_irq)(vcpu, true);
10130 
10131 	/*
10132 	 * Exceptions that morph to VM-Exits are handled above, and pending
10133 	 * exceptions on top of injected exceptions that do not VM-Exit should
10134 	 * either morph to #DF or, sadly, override the injected exception.
10135 	 */
10136 	WARN_ON_ONCE(vcpu->arch.exception.injected &&
10137 		     vcpu->arch.exception.pending);
10138 
10139 	/*
10140 	 * Bail if immediate entry+exit to/from the guest is needed to complete
10141 	 * nested VM-Enter or event re-injection so that a different pending
10142 	 * event can be serviced (or if KVM needs to exit to userspace).
10143 	 *
10144 	 * Otherwise, continue processing events even if VM-Exit occurred.  The
10145 	 * VM-Exit will have cleared exceptions that were meant for L2, but
10146 	 * there may now be events that can be injected into L1.
10147 	 */
10148 	if (r < 0)
10149 		goto out;
10150 
10151 	/*
10152 	 * A pending exception VM-Exit should either result in nested VM-Exit
10153 	 * or force an immediate re-entry and exit to/from L2, and exception
10154 	 * VM-Exits cannot be injected (flag should _never_ be set).
10155 	 */
10156 	WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
10157 		     vcpu->arch.exception_vmexit.pending);
10158 
10159 	/*
10160 	 * New events, other than exceptions, cannot be injected if KVM needs
10161 	 * to re-inject a previous event.  See above comments on re-injecting
10162 	 * for why pending exceptions get priority.
10163 	 */
10164 	can_inject = !kvm_event_needs_reinjection(vcpu);
10165 
10166 	if (vcpu->arch.exception.pending) {
10167 		/*
10168 		 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
10169 		 * value pushed on the stack.  Trap-like exception and all #DBs
10170 		 * leave RF as-is (KVM follows Intel's behavior in this regard;
10171 		 * AMD states that code breakpoint #DBs excplitly clear RF=0).
10172 		 *
10173 		 * Note, most versions of Intel's SDM and AMD's APM incorrectly
10174 		 * describe the behavior of General Detect #DBs, which are
10175 		 * fault-like.  They do _not_ set RF, a la code breakpoints.
10176 		 */
10177 		if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
10178 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
10179 					     X86_EFLAGS_RF);
10180 
10181 		if (vcpu->arch.exception.vector == DB_VECTOR) {
10182 			kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
10183 			if (vcpu->arch.dr7 & DR7_GD) {
10184 				vcpu->arch.dr7 &= ~DR7_GD;
10185 				kvm_update_dr7(vcpu);
10186 			}
10187 		}
10188 
10189 		kvm_inject_exception(vcpu);
10190 
10191 		vcpu->arch.exception.pending = false;
10192 		vcpu->arch.exception.injected = true;
10193 
10194 		can_inject = false;
10195 	}
10196 
10197 	/* Don't inject interrupts if the user asked to avoid doing so */
10198 	if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
10199 		return 0;
10200 
10201 	/*
10202 	 * Finally, inject interrupt events.  If an event cannot be injected
10203 	 * due to architectural conditions (e.g. IF=0) a window-open exit
10204 	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
10205 	 * and can architecturally be injected, but we cannot do it right now:
10206 	 * an interrupt could have arrived just now and we have to inject it
10207 	 * as a vmexit, or there could already an event in the queue, which is
10208 	 * indicated by can_inject.  In that case we request an immediate exit
10209 	 * in order to make progress and get back here for another iteration.
10210 	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10211 	 */
10212 #ifdef CONFIG_KVM_SMM
10213 	if (vcpu->arch.smi_pending) {
10214 		r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
10215 		if (r < 0)
10216 			goto out;
10217 		if (r) {
10218 			vcpu->arch.smi_pending = false;
10219 			++vcpu->arch.smi_count;
10220 			enter_smm(vcpu);
10221 			can_inject = false;
10222 		} else
10223 			static_call(kvm_x86_enable_smi_window)(vcpu);
10224 	}
10225 #endif
10226 
10227 	if (vcpu->arch.nmi_pending) {
10228 		r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
10229 		if (r < 0)
10230 			goto out;
10231 		if (r) {
10232 			--vcpu->arch.nmi_pending;
10233 			vcpu->arch.nmi_injected = true;
10234 			static_call(kvm_x86_inject_nmi)(vcpu);
10235 			can_inject = false;
10236 			WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
10237 		}
10238 		if (vcpu->arch.nmi_pending)
10239 			static_call(kvm_x86_enable_nmi_window)(vcpu);
10240 	}
10241 
10242 	if (kvm_cpu_has_injectable_intr(vcpu)) {
10243 		r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
10244 		if (r < 0)
10245 			goto out;
10246 		if (r) {
10247 			int irq = kvm_cpu_get_interrupt(vcpu);
10248 
10249 			if (!WARN_ON_ONCE(irq == -1)) {
10250 				kvm_queue_interrupt(vcpu, irq, false);
10251 				static_call(kvm_x86_inject_irq)(vcpu, false);
10252 				WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
10253 			}
10254 		}
10255 		if (kvm_cpu_has_injectable_intr(vcpu))
10256 			static_call(kvm_x86_enable_irq_window)(vcpu);
10257 	}
10258 
10259 	if (is_guest_mode(vcpu) &&
10260 	    kvm_x86_ops.nested_ops->has_events &&
10261 	    kvm_x86_ops.nested_ops->has_events(vcpu, true))
10262 		*req_immediate_exit = true;
10263 
10264 	/*
10265 	 * KVM must never queue a new exception while injecting an event; KVM
10266 	 * is done emulating and should only propagate the to-be-injected event
10267 	 * to the VMCS/VMCB.  Queueing a new exception can put the vCPU into an
10268 	 * infinite loop as KVM will bail from VM-Enter to inject the pending
10269 	 * exception and start the cycle all over.
10270 	 *
10271 	 * Exempt triple faults as they have special handling and won't put the
10272 	 * vCPU into an infinite loop.  Triple fault can be queued when running
10273 	 * VMX without unrestricted guest, as that requires KVM to emulate Real
10274 	 * Mode events (see kvm_inject_realmode_interrupt()).
10275 	 */
10276 	WARN_ON_ONCE(vcpu->arch.exception.pending ||
10277 		     vcpu->arch.exception_vmexit.pending);
10278 	return 0;
10279 
10280 out:
10281 	if (r == -EBUSY) {
10282 		*req_immediate_exit = true;
10283 		r = 0;
10284 	}
10285 	return r;
10286 }
10287 
process_nmi(struct kvm_vcpu * vcpu)10288 static void process_nmi(struct kvm_vcpu *vcpu)
10289 {
10290 	unsigned int limit;
10291 
10292 	/*
10293 	 * x86 is limited to one NMI pending, but because KVM can't react to
10294 	 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is
10295 	 * scheduled out, KVM needs to play nice with two queued NMIs showing
10296 	 * up at the same time.  To handle this scenario, allow two NMIs to be
10297 	 * (temporarily) pending so long as NMIs are not blocked and KVM is not
10298 	 * waiting for a previous NMI injection to complete (which effectively
10299 	 * blocks NMIs).  KVM will immediately inject one of the two NMIs, and
10300 	 * will request an NMI window to handle the second NMI.
10301 	 */
10302 	if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10303 		limit = 1;
10304 	else
10305 		limit = 2;
10306 
10307 	/*
10308 	 * Adjust the limit to account for pending virtual NMIs, which aren't
10309 	 * tracked in vcpu->arch.nmi_pending.
10310 	 */
10311 	if (static_call(kvm_x86_is_vnmi_pending)(vcpu))
10312 		limit--;
10313 
10314 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10315 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10316 
10317 	if (vcpu->arch.nmi_pending &&
10318 	    (static_call(kvm_x86_set_vnmi_pending)(vcpu)))
10319 		vcpu->arch.nmi_pending--;
10320 
10321 	if (vcpu->arch.nmi_pending)
10322 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10323 }
10324 
10325 /* Return total number of NMIs pending injection to the VM */
kvm_get_nr_pending_nmis(struct kvm_vcpu * vcpu)10326 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu)
10327 {
10328 	return vcpu->arch.nmi_pending +
10329 	       static_call(kvm_x86_is_vnmi_pending)(vcpu);
10330 }
10331 
kvm_make_scan_ioapic_request_mask(struct kvm * kvm,unsigned long * vcpu_bitmap)10332 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10333 				       unsigned long *vcpu_bitmap)
10334 {
10335 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10336 }
10337 
kvm_make_scan_ioapic_request(struct kvm * kvm)10338 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10339 {
10340 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10341 }
10342 
__kvm_vcpu_update_apicv(struct kvm_vcpu * vcpu)10343 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10344 {
10345 	struct kvm_lapic *apic = vcpu->arch.apic;
10346 	bool activate;
10347 
10348 	if (!lapic_in_kernel(vcpu))
10349 		return;
10350 
10351 	down_read(&vcpu->kvm->arch.apicv_update_lock);
10352 	preempt_disable();
10353 
10354 	/* Do not activate APICV when APIC is disabled */
10355 	activate = kvm_vcpu_apicv_activated(vcpu) &&
10356 		   (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10357 
10358 	if (apic->apicv_active == activate)
10359 		goto out;
10360 
10361 	apic->apicv_active = activate;
10362 	kvm_apic_update_apicv(vcpu);
10363 	static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
10364 
10365 	/*
10366 	 * When APICv gets disabled, we may still have injected interrupts
10367 	 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10368 	 * still active when the interrupt got accepted. Make sure
10369 	 * kvm_check_and_inject_events() is called to check for that.
10370 	 */
10371 	if (!apic->apicv_active)
10372 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10373 
10374 out:
10375 	preempt_enable();
10376 	up_read(&vcpu->kvm->arch.apicv_update_lock);
10377 }
10378 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv);
10379 
kvm_vcpu_update_apicv(struct kvm_vcpu * vcpu)10380 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10381 {
10382 	if (!lapic_in_kernel(vcpu))
10383 		return;
10384 
10385 	/*
10386 	 * Due to sharing page tables across vCPUs, the xAPIC memslot must be
10387 	 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
10388 	 * and hardware doesn't support x2APIC virtualization.  E.g. some AMD
10389 	 * CPUs support AVIC but not x2APIC.  KVM still allows enabling AVIC in
10390 	 * this case so that KVM can the AVIC doorbell to inject interrupts to
10391 	 * running vCPUs, but KVM must not create SPTEs for the APIC base as
10392 	 * the vCPU would incorrectly be able to access the vAPIC page via MMIO
10393 	 * despite being in x2APIC mode.  For simplicity, inhibiting the APIC
10394 	 * access page is sticky.
10395 	 */
10396 	if (apic_x2apic_mode(vcpu->arch.apic) &&
10397 	    kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
10398 		kvm_inhibit_apic_access_page(vcpu);
10399 
10400 	__kvm_vcpu_update_apicv(vcpu);
10401 }
10402 
__kvm_set_or_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason,bool set)10403 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10404 				      enum kvm_apicv_inhibit reason, bool set)
10405 {
10406 	unsigned long old, new;
10407 
10408 	lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10409 
10410 	if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
10411 		return;
10412 
10413 	old = new = kvm->arch.apicv_inhibit_reasons;
10414 
10415 	set_or_clear_apicv_inhibit(&new, reason, set);
10416 
10417 	if (!!old != !!new) {
10418 		/*
10419 		 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10420 		 * false positives in the sanity check WARN in svm_vcpu_run().
10421 		 * This task will wait for all vCPUs to ack the kick IRQ before
10422 		 * updating apicv_inhibit_reasons, and all other vCPUs will
10423 		 * block on acquiring apicv_update_lock so that vCPUs can't
10424 		 * redo svm_vcpu_run() without seeing the new inhibit state.
10425 		 *
10426 		 * Note, holding apicv_update_lock and taking it in the read
10427 		 * side (handling the request) also prevents other vCPUs from
10428 		 * servicing the request with a stale apicv_inhibit_reasons.
10429 		 */
10430 		kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10431 		kvm->arch.apicv_inhibit_reasons = new;
10432 		if (new) {
10433 			unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10434 			int idx = srcu_read_lock(&kvm->srcu);
10435 
10436 			kvm_zap_gfn_range(kvm, gfn, gfn+1);
10437 			srcu_read_unlock(&kvm->srcu, idx);
10438 		}
10439 	} else {
10440 		kvm->arch.apicv_inhibit_reasons = new;
10441 	}
10442 }
10443 
kvm_set_or_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason,bool set)10444 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10445 				    enum kvm_apicv_inhibit reason, bool set)
10446 {
10447 	if (!enable_apicv)
10448 		return;
10449 
10450 	down_write(&kvm->arch.apicv_update_lock);
10451 	__kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10452 	up_write(&kvm->arch.apicv_update_lock);
10453 }
10454 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10455 
vcpu_scan_ioapic(struct kvm_vcpu * vcpu)10456 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10457 {
10458 	if (!kvm_apic_present(vcpu))
10459 		return;
10460 
10461 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10462 
10463 	static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10464 
10465 	if (irqchip_split(vcpu->kvm))
10466 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10467 	else if (ioapic_in_kernel(vcpu->kvm))
10468 		kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10469 
10470 	if (is_guest_mode(vcpu))
10471 		vcpu->arch.load_eoi_exitmap_pending = true;
10472 	else
10473 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10474 }
10475 
vcpu_load_eoi_exitmap(struct kvm_vcpu * vcpu)10476 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10477 {
10478 	u64 eoi_exit_bitmap[4];
10479 
10480 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10481 		return;
10482 
10483 	if (to_hv_vcpu(vcpu)) {
10484 		bitmap_or((ulong *)eoi_exit_bitmap,
10485 			  vcpu->arch.ioapic_handled_vectors,
10486 			  to_hv_synic(vcpu)->vec_bitmap, 256);
10487 		static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10488 		return;
10489 	}
10490 
10491 	static_call_cond(kvm_x86_load_eoi_exitmap)(
10492 		vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10493 }
10494 
kvm_arch_guest_memory_reclaimed(struct kvm * kvm)10495 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10496 {
10497 	static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
10498 }
10499 
kvm_vcpu_reload_apic_access_page(struct kvm_vcpu * vcpu)10500 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10501 {
10502 	if (!lapic_in_kernel(vcpu))
10503 		return;
10504 
10505 	static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
10506 }
10507 
__kvm_request_immediate_exit(struct kvm_vcpu * vcpu)10508 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
10509 {
10510 	smp_send_reschedule(vcpu->cpu);
10511 }
10512 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
10513 
10514 /*
10515  * Called within kvm->srcu read side.
10516  * Returns 1 to let vcpu_run() continue the guest execution loop without
10517  * exiting to the userspace.  Otherwise, the value will be returned to the
10518  * userspace.
10519  */
vcpu_enter_guest(struct kvm_vcpu * vcpu)10520 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10521 {
10522 	int r;
10523 	bool req_int_win =
10524 		dm_request_for_irq_injection(vcpu) &&
10525 		kvm_cpu_accept_dm_intr(vcpu);
10526 	fastpath_t exit_fastpath;
10527 
10528 	bool req_immediate_exit = false;
10529 
10530 	if (kvm_request_pending(vcpu)) {
10531 		if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10532 			r = -EIO;
10533 			goto out;
10534 		}
10535 
10536 		if (kvm_dirty_ring_check_request(vcpu)) {
10537 			r = 0;
10538 			goto out;
10539 		}
10540 
10541 		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10542 			if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10543 				r = 0;
10544 				goto out;
10545 			}
10546 		}
10547 		if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10548 			kvm_mmu_free_obsolete_roots(vcpu);
10549 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10550 			__kvm_migrate_timers(vcpu);
10551 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10552 			kvm_update_masterclock(vcpu->kvm);
10553 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10554 			kvm_gen_kvmclock_update(vcpu);
10555 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10556 			r = kvm_guest_time_update(vcpu);
10557 			if (unlikely(r))
10558 				goto out;
10559 		}
10560 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10561 			kvm_mmu_sync_roots(vcpu);
10562 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10563 			kvm_mmu_load_pgd(vcpu);
10564 
10565 		/*
10566 		 * Note, the order matters here, as flushing "all" TLB entries
10567 		 * also flushes the "current" TLB entries, i.e. servicing the
10568 		 * flush "all" will clear any request to flush "current".
10569 		 */
10570 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
10571 			kvm_vcpu_flush_tlb_all(vcpu);
10572 
10573 		kvm_service_local_tlb_flush_requests(vcpu);
10574 
10575 		/*
10576 		 * Fall back to a "full" guest flush if Hyper-V's precise
10577 		 * flushing fails.  Note, Hyper-V's flushing is per-vCPU, but
10578 		 * the flushes are considered "remote" and not "local" because
10579 		 * the requests can be initiated from other vCPUs.
10580 		 */
10581 		if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
10582 		    kvm_hv_vcpu_flush_tlb(vcpu))
10583 			kvm_vcpu_flush_tlb_guest(vcpu);
10584 
10585 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10586 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10587 			r = 0;
10588 			goto out;
10589 		}
10590 		if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10591 			if (is_guest_mode(vcpu))
10592 				kvm_x86_ops.nested_ops->triple_fault(vcpu);
10593 
10594 			if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10595 				vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10596 				vcpu->mmio_needed = 0;
10597 				r = 0;
10598 				goto out;
10599 			}
10600 		}
10601 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10602 			/* Page is swapped out. Do synthetic halt */
10603 			vcpu->arch.apf.halted = true;
10604 			r = 1;
10605 			goto out;
10606 		}
10607 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10608 			record_steal_time(vcpu);
10609 #ifdef CONFIG_KVM_SMM
10610 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
10611 			process_smi(vcpu);
10612 #endif
10613 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
10614 			process_nmi(vcpu);
10615 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
10616 			kvm_pmu_handle_event(vcpu);
10617 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
10618 			kvm_pmu_deliver_pmi(vcpu);
10619 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10620 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10621 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
10622 				     vcpu->arch.ioapic_handled_vectors)) {
10623 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10624 				vcpu->run->eoi.vector =
10625 						vcpu->arch.pending_ioapic_eoi;
10626 				r = 0;
10627 				goto out;
10628 			}
10629 		}
10630 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10631 			vcpu_scan_ioapic(vcpu);
10632 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10633 			vcpu_load_eoi_exitmap(vcpu);
10634 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10635 			kvm_vcpu_reload_apic_access_page(vcpu);
10636 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10637 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10638 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10639 			vcpu->run->system_event.ndata = 0;
10640 			r = 0;
10641 			goto out;
10642 		}
10643 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10644 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10645 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10646 			vcpu->run->system_event.ndata = 0;
10647 			r = 0;
10648 			goto out;
10649 		}
10650 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10651 			struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10652 
10653 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10654 			vcpu->run->hyperv = hv_vcpu->exit;
10655 			r = 0;
10656 			goto out;
10657 		}
10658 
10659 		/*
10660 		 * KVM_REQ_HV_STIMER has to be processed after
10661 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10662 		 * depend on the guest clock being up-to-date
10663 		 */
10664 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10665 			kvm_hv_process_stimers(vcpu);
10666 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10667 			kvm_vcpu_update_apicv(vcpu);
10668 		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10669 			kvm_check_async_pf_completion(vcpu);
10670 		if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10671 			static_call(kvm_x86_msr_filter_changed)(vcpu);
10672 
10673 		if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10674 			static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10675 	}
10676 
10677 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10678 	    kvm_xen_has_interrupt(vcpu)) {
10679 		++vcpu->stat.req_event;
10680 		r = kvm_apic_accept_events(vcpu);
10681 		if (r < 0) {
10682 			r = 0;
10683 			goto out;
10684 		}
10685 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10686 			r = 1;
10687 			goto out;
10688 		}
10689 
10690 		r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
10691 		if (r < 0) {
10692 			r = 0;
10693 			goto out;
10694 		}
10695 		if (req_int_win)
10696 			static_call(kvm_x86_enable_irq_window)(vcpu);
10697 
10698 		if (kvm_lapic_enabled(vcpu)) {
10699 			update_cr8_intercept(vcpu);
10700 			kvm_lapic_sync_to_vapic(vcpu);
10701 		}
10702 	}
10703 
10704 	r = kvm_mmu_reload(vcpu);
10705 	if (unlikely(r)) {
10706 		goto cancel_injection;
10707 	}
10708 
10709 	preempt_disable();
10710 
10711 	static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10712 
10713 	/*
10714 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
10715 	 * IPI are then delayed after guest entry, which ensures that they
10716 	 * result in virtual interrupt delivery.
10717 	 */
10718 	local_irq_disable();
10719 
10720 	/* Store vcpu->apicv_active before vcpu->mode.  */
10721 	smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10722 
10723 	kvm_vcpu_srcu_read_unlock(vcpu);
10724 
10725 	/*
10726 	 * 1) We should set ->mode before checking ->requests.  Please see
10727 	 * the comment in kvm_vcpu_exiting_guest_mode().
10728 	 *
10729 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
10730 	 * pairs with the memory barrier implicit in pi_test_and_set_on
10731 	 * (see vmx_deliver_posted_interrupt).
10732 	 *
10733 	 * 3) This also orders the write to mode from any reads to the page
10734 	 * tables done while the VCPU is running.  Please see the comment
10735 	 * in kvm_flush_remote_tlbs.
10736 	 */
10737 	smp_mb__after_srcu_read_unlock();
10738 
10739 	/*
10740 	 * Process pending posted interrupts to handle the case where the
10741 	 * notification IRQ arrived in the host, or was never sent (because the
10742 	 * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
10743 	 * status, KVM doesn't update assigned devices when APICv is inhibited,
10744 	 * i.e. they can post interrupts even if APICv is temporarily disabled.
10745 	 */
10746 	if (kvm_lapic_enabled(vcpu))
10747 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10748 
10749 	if (kvm_vcpu_exit_request(vcpu)) {
10750 		vcpu->mode = OUTSIDE_GUEST_MODE;
10751 		smp_wmb();
10752 		local_irq_enable();
10753 		preempt_enable();
10754 		kvm_vcpu_srcu_read_lock(vcpu);
10755 		r = 1;
10756 		goto cancel_injection;
10757 	}
10758 
10759 	if (req_immediate_exit) {
10760 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10761 		static_call(kvm_x86_request_immediate_exit)(vcpu);
10762 	}
10763 
10764 	fpregs_assert_state_consistent();
10765 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
10766 		switch_fpu_return();
10767 
10768 	if (vcpu->arch.guest_fpu.xfd_err)
10769 		wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10770 
10771 	if (unlikely(vcpu->arch.switch_db_regs)) {
10772 		set_debugreg(0, 7);
10773 		set_debugreg(vcpu->arch.eff_db[0], 0);
10774 		set_debugreg(vcpu->arch.eff_db[1], 1);
10775 		set_debugreg(vcpu->arch.eff_db[2], 2);
10776 		set_debugreg(vcpu->arch.eff_db[3], 3);
10777 		/* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
10778 		if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
10779 			static_call(kvm_x86_set_dr6)(vcpu, vcpu->arch.dr6);
10780 	} else if (unlikely(hw_breakpoint_active())) {
10781 		set_debugreg(0, 7);
10782 	}
10783 
10784 	guest_timing_enter_irqoff();
10785 
10786 	for (;;) {
10787 		/*
10788 		 * Assert that vCPU vs. VM APICv state is consistent.  An APICv
10789 		 * update must kick and wait for all vCPUs before toggling the
10790 		 * per-VM state, and responsing vCPUs must wait for the update
10791 		 * to complete before servicing KVM_REQ_APICV_UPDATE.
10792 		 */
10793 		WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
10794 			     (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
10795 
10796 		exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu);
10797 		if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10798 			break;
10799 
10800 		if (kvm_lapic_enabled(vcpu))
10801 			static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10802 
10803 		if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10804 			exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10805 			break;
10806 		}
10807 
10808 		/* Note, VM-Exits that go down the "slow" path are accounted below. */
10809 		++vcpu->stat.exits;
10810 	}
10811 
10812 	/*
10813 	 * Do this here before restoring debug registers on the host.  And
10814 	 * since we do this before handling the vmexit, a DR access vmexit
10815 	 * can (a) read the correct value of the debug registers, (b) set
10816 	 * KVM_DEBUGREG_WONT_EXIT again.
10817 	 */
10818 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10819 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10820 		static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10821 		kvm_update_dr0123(vcpu);
10822 		kvm_update_dr7(vcpu);
10823 	}
10824 
10825 	/*
10826 	 * If the guest has used debug registers, at least dr7
10827 	 * will be disabled while returning to the host.
10828 	 * If we don't have active breakpoints in the host, we don't
10829 	 * care about the messed up debug address registers. But if
10830 	 * we have some of them active, restore the old state.
10831 	 */
10832 	if (hw_breakpoint_active())
10833 		hw_breakpoint_restore();
10834 
10835 	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10836 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10837 
10838 	vcpu->mode = OUTSIDE_GUEST_MODE;
10839 	smp_wmb();
10840 
10841 	/*
10842 	 * Sync xfd before calling handle_exit_irqoff() which may
10843 	 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10844 	 * in #NM irqoff handler).
10845 	 */
10846 	if (vcpu->arch.xfd_no_write_intercept)
10847 		fpu_sync_guest_vmexit_xfd_state();
10848 
10849 	static_call(kvm_x86_handle_exit_irqoff)(vcpu);
10850 
10851 	if (vcpu->arch.guest_fpu.xfd_err)
10852 		wrmsrl(MSR_IA32_XFD_ERR, 0);
10853 
10854 	/*
10855 	 * Consume any pending interrupts, including the possible source of
10856 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10857 	 * An instruction is required after local_irq_enable() to fully unblock
10858 	 * interrupts on processors that implement an interrupt shadow, the
10859 	 * stat.exits increment will do nicely.
10860 	 */
10861 	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
10862 	local_irq_enable();
10863 	++vcpu->stat.exits;
10864 	local_irq_disable();
10865 	kvm_after_interrupt(vcpu);
10866 
10867 	/*
10868 	 * Wait until after servicing IRQs to account guest time so that any
10869 	 * ticks that occurred while running the guest are properly accounted
10870 	 * to the guest.  Waiting until IRQs are enabled degrades the accuracy
10871 	 * of accounting via context tracking, but the loss of accuracy is
10872 	 * acceptable for all known use cases.
10873 	 */
10874 	guest_timing_exit_irqoff();
10875 
10876 	local_irq_enable();
10877 	preempt_enable();
10878 
10879 	kvm_vcpu_srcu_read_lock(vcpu);
10880 
10881 	/*
10882 	 * Profile KVM exit RIPs:
10883 	 */
10884 	if (unlikely(prof_on == KVM_PROFILING)) {
10885 		unsigned long rip = kvm_rip_read(vcpu);
10886 		profile_hit(KVM_PROFILING, (void *)rip);
10887 	}
10888 
10889 	if (unlikely(vcpu->arch.tsc_always_catchup))
10890 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10891 
10892 	if (vcpu->arch.apic_attention)
10893 		kvm_lapic_sync_from_vapic(vcpu);
10894 
10895 	r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10896 	return r;
10897 
10898 cancel_injection:
10899 	if (req_immediate_exit)
10900 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10901 	static_call(kvm_x86_cancel_injection)(vcpu);
10902 	if (unlikely(vcpu->arch.apic_attention))
10903 		kvm_lapic_sync_from_vapic(vcpu);
10904 out:
10905 	return r;
10906 }
10907 
10908 /* Called within kvm->srcu read side.  */
vcpu_block(struct kvm_vcpu * vcpu)10909 static inline int vcpu_block(struct kvm_vcpu *vcpu)
10910 {
10911 	bool hv_timer;
10912 
10913 	if (!kvm_arch_vcpu_runnable(vcpu)) {
10914 		/*
10915 		 * Switch to the software timer before halt-polling/blocking as
10916 		 * the guest's timer may be a break event for the vCPU, and the
10917 		 * hypervisor timer runs only when the CPU is in guest mode.
10918 		 * Switch before halt-polling so that KVM recognizes an expired
10919 		 * timer before blocking.
10920 		 */
10921 		hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
10922 		if (hv_timer)
10923 			kvm_lapic_switch_to_sw_timer(vcpu);
10924 
10925 		kvm_vcpu_srcu_read_unlock(vcpu);
10926 		if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10927 			kvm_vcpu_halt(vcpu);
10928 		else
10929 			kvm_vcpu_block(vcpu);
10930 		kvm_vcpu_srcu_read_lock(vcpu);
10931 
10932 		if (hv_timer)
10933 			kvm_lapic_switch_to_hv_timer(vcpu);
10934 
10935 		/*
10936 		 * If the vCPU is not runnable, a signal or another host event
10937 		 * of some kind is pending; service it without changing the
10938 		 * vCPU's activity state.
10939 		 */
10940 		if (!kvm_arch_vcpu_runnable(vcpu))
10941 			return 1;
10942 	}
10943 
10944 	/*
10945 	 * Evaluate nested events before exiting the halted state.  This allows
10946 	 * the halt state to be recorded properly in the VMCS12's activity
10947 	 * state field (AMD does not have a similar field and a VM-Exit always
10948 	 * causes a spurious wakeup from HLT).
10949 	 */
10950 	if (is_guest_mode(vcpu)) {
10951 		if (kvm_check_nested_events(vcpu) < 0)
10952 			return 0;
10953 	}
10954 
10955 	if (kvm_apic_accept_events(vcpu) < 0)
10956 		return 0;
10957 	switch(vcpu->arch.mp_state) {
10958 	case KVM_MP_STATE_HALTED:
10959 	case KVM_MP_STATE_AP_RESET_HOLD:
10960 		vcpu->arch.pv.pv_unhalted = false;
10961 		vcpu->arch.mp_state =
10962 			KVM_MP_STATE_RUNNABLE;
10963 		fallthrough;
10964 	case KVM_MP_STATE_RUNNABLE:
10965 		vcpu->arch.apf.halted = false;
10966 		break;
10967 	case KVM_MP_STATE_INIT_RECEIVED:
10968 		break;
10969 	default:
10970 		WARN_ON_ONCE(1);
10971 		break;
10972 	}
10973 	return 1;
10974 }
10975 
kvm_vcpu_running(struct kvm_vcpu * vcpu)10976 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10977 {
10978 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10979 		!vcpu->arch.apf.halted);
10980 }
10981 
10982 /* Called within kvm->srcu read side.  */
vcpu_run(struct kvm_vcpu * vcpu)10983 static int vcpu_run(struct kvm_vcpu *vcpu)
10984 {
10985 	int r;
10986 
10987 	vcpu->arch.l1tf_flush_l1d = true;
10988 
10989 	for (;;) {
10990 		/*
10991 		 * If another guest vCPU requests a PV TLB flush in the middle
10992 		 * of instruction emulation, the rest of the emulation could
10993 		 * use a stale page translation. Assume that any code after
10994 		 * this point can start executing an instruction.
10995 		 */
10996 		vcpu->arch.at_instruction_boundary = false;
10997 		if (kvm_vcpu_running(vcpu)) {
10998 			r = vcpu_enter_guest(vcpu);
10999 		} else {
11000 			r = vcpu_block(vcpu);
11001 		}
11002 
11003 		if (r <= 0)
11004 			break;
11005 
11006 		kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
11007 		if (kvm_xen_has_pending_events(vcpu))
11008 			kvm_xen_inject_pending_events(vcpu);
11009 
11010 		if (kvm_cpu_has_pending_timer(vcpu))
11011 			kvm_inject_pending_timer_irqs(vcpu);
11012 
11013 		if (dm_request_for_irq_injection(vcpu) &&
11014 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
11015 			r = 0;
11016 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
11017 			++vcpu->stat.request_irq_exits;
11018 			break;
11019 		}
11020 
11021 		if (__xfer_to_guest_mode_work_pending()) {
11022 			kvm_vcpu_srcu_read_unlock(vcpu);
11023 			r = xfer_to_guest_mode_handle_work(vcpu);
11024 			kvm_vcpu_srcu_read_lock(vcpu);
11025 			if (r)
11026 				return r;
11027 		}
11028 	}
11029 
11030 	return r;
11031 }
11032 
complete_emulated_io(struct kvm_vcpu * vcpu)11033 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
11034 {
11035 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
11036 }
11037 
complete_emulated_pio(struct kvm_vcpu * vcpu)11038 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
11039 {
11040 	BUG_ON(!vcpu->arch.pio.count);
11041 
11042 	return complete_emulated_io(vcpu);
11043 }
11044 
11045 /*
11046  * Implements the following, as a state machine:
11047  *
11048  * read:
11049  *   for each fragment
11050  *     for each mmio piece in the fragment
11051  *       write gpa, len
11052  *       exit
11053  *       copy data
11054  *   execute insn
11055  *
11056  * write:
11057  *   for each fragment
11058  *     for each mmio piece in the fragment
11059  *       write gpa, len
11060  *       copy data
11061  *       exit
11062  */
complete_emulated_mmio(struct kvm_vcpu * vcpu)11063 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
11064 {
11065 	struct kvm_run *run = vcpu->run;
11066 	struct kvm_mmio_fragment *frag;
11067 	unsigned len;
11068 
11069 	BUG_ON(!vcpu->mmio_needed);
11070 
11071 	/* Complete previous fragment */
11072 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11073 	len = min(8u, frag->len);
11074 	if (!vcpu->mmio_is_write)
11075 		memcpy(frag->data, run->mmio.data, len);
11076 
11077 	if (frag->len <= 8) {
11078 		/* Switch to the next fragment. */
11079 		frag++;
11080 		vcpu->mmio_cur_fragment++;
11081 	} else {
11082 		/* Go forward to the next mmio piece. */
11083 		frag->data += len;
11084 		frag->gpa += len;
11085 		frag->len -= len;
11086 	}
11087 
11088 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11089 		vcpu->mmio_needed = 0;
11090 
11091 		/* FIXME: return into emulator if single-stepping.  */
11092 		if (vcpu->mmio_is_write)
11093 			return 1;
11094 		vcpu->mmio_read_completed = 1;
11095 		return complete_emulated_io(vcpu);
11096 	}
11097 
11098 	run->exit_reason = KVM_EXIT_MMIO;
11099 	run->mmio.phys_addr = frag->gpa;
11100 	if (vcpu->mmio_is_write)
11101 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11102 	run->mmio.len = min(8u, frag->len);
11103 	run->mmio.is_write = vcpu->mmio_is_write;
11104 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
11105 	return 0;
11106 }
11107 
11108 /* Swap (qemu) user FPU context for the guest FPU context. */
kvm_load_guest_fpu(struct kvm_vcpu * vcpu)11109 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
11110 {
11111 	/* Exclude PKRU, it's restored separately immediately after VM-Exit. */
11112 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
11113 	trace_kvm_fpu(1);
11114 }
11115 
11116 /* When vcpu_run ends, restore user space FPU context. */
kvm_put_guest_fpu(struct kvm_vcpu * vcpu)11117 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
11118 {
11119 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
11120 	++vcpu->stat.fpu_reload;
11121 	trace_kvm_fpu(0);
11122 }
11123 
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)11124 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
11125 {
11126 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
11127 	struct kvm_run *kvm_run = vcpu->run;
11128 	int r;
11129 
11130 	vcpu_load(vcpu);
11131 	kvm_sigset_activate(vcpu);
11132 	kvm_run->flags = 0;
11133 	kvm_load_guest_fpu(vcpu);
11134 
11135 	kvm_vcpu_srcu_read_lock(vcpu);
11136 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
11137 		if (kvm_run->immediate_exit) {
11138 			r = -EINTR;
11139 			goto out;
11140 		}
11141 
11142 		/*
11143 		 * Don't bother switching APIC timer emulation from the
11144 		 * hypervisor timer to the software timer, the only way for the
11145 		 * APIC timer to be active is if userspace stuffed vCPU state,
11146 		 * i.e. put the vCPU into a nonsensical state.  Only an INIT
11147 		 * will transition the vCPU out of UNINITIALIZED (without more
11148 		 * state stuffing from userspace), which will reset the local
11149 		 * APIC and thus cancel the timer or drop the IRQ (if the timer
11150 		 * already expired).
11151 		 */
11152 		kvm_vcpu_srcu_read_unlock(vcpu);
11153 		kvm_vcpu_block(vcpu);
11154 		kvm_vcpu_srcu_read_lock(vcpu);
11155 
11156 		if (kvm_apic_accept_events(vcpu) < 0) {
11157 			r = 0;
11158 			goto out;
11159 		}
11160 		r = -EAGAIN;
11161 		if (signal_pending(current)) {
11162 			r = -EINTR;
11163 			kvm_run->exit_reason = KVM_EXIT_INTR;
11164 			++vcpu->stat.signal_exits;
11165 		}
11166 		goto out;
11167 	}
11168 
11169 	if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
11170 	    (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
11171 		r = -EINVAL;
11172 		goto out;
11173 	}
11174 
11175 	if (kvm_run->kvm_dirty_regs) {
11176 		r = sync_regs(vcpu);
11177 		if (r != 0)
11178 			goto out;
11179 	}
11180 
11181 	/* re-sync apic's tpr */
11182 	if (!lapic_in_kernel(vcpu)) {
11183 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
11184 			r = -EINVAL;
11185 			goto out;
11186 		}
11187 	}
11188 
11189 	/*
11190 	 * If userspace set a pending exception and L2 is active, convert it to
11191 	 * a pending VM-Exit if L1 wants to intercept the exception.
11192 	 */
11193 	if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11194 	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11195 							ex->error_code)) {
11196 		kvm_queue_exception_vmexit(vcpu, ex->vector,
11197 					   ex->has_error_code, ex->error_code,
11198 					   ex->has_payload, ex->payload);
11199 		ex->injected = false;
11200 		ex->pending = false;
11201 	}
11202 	vcpu->arch.exception_from_userspace = false;
11203 
11204 	if (unlikely(vcpu->arch.complete_userspace_io)) {
11205 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11206 		vcpu->arch.complete_userspace_io = NULL;
11207 		r = cui(vcpu);
11208 		if (r <= 0)
11209 			goto out;
11210 	} else {
11211 		WARN_ON_ONCE(vcpu->arch.pio.count);
11212 		WARN_ON_ONCE(vcpu->mmio_needed);
11213 	}
11214 
11215 	if (kvm_run->immediate_exit) {
11216 		r = -EINTR;
11217 		goto out;
11218 	}
11219 
11220 	r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
11221 	if (r <= 0)
11222 		goto out;
11223 
11224 	r = vcpu_run(vcpu);
11225 
11226 out:
11227 	kvm_put_guest_fpu(vcpu);
11228 	if (kvm_run->kvm_valid_regs)
11229 		store_regs(vcpu);
11230 	post_kvm_run_save(vcpu);
11231 	kvm_vcpu_srcu_read_unlock(vcpu);
11232 
11233 	kvm_sigset_deactivate(vcpu);
11234 	vcpu_put(vcpu);
11235 	return r;
11236 }
11237 
__get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11238 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11239 {
11240 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11241 		/*
11242 		 * We are here if userspace calls get_regs() in the middle of
11243 		 * instruction emulation. Registers state needs to be copied
11244 		 * back from emulation context to vcpu. Userspace shouldn't do
11245 		 * that usually, but some bad designed PV devices (vmware
11246 		 * backdoor interface) need this to work
11247 		 */
11248 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
11249 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11250 	}
11251 	regs->rax = kvm_rax_read(vcpu);
11252 	regs->rbx = kvm_rbx_read(vcpu);
11253 	regs->rcx = kvm_rcx_read(vcpu);
11254 	regs->rdx = kvm_rdx_read(vcpu);
11255 	regs->rsi = kvm_rsi_read(vcpu);
11256 	regs->rdi = kvm_rdi_read(vcpu);
11257 	regs->rsp = kvm_rsp_read(vcpu);
11258 	regs->rbp = kvm_rbp_read(vcpu);
11259 #ifdef CONFIG_X86_64
11260 	regs->r8 = kvm_r8_read(vcpu);
11261 	regs->r9 = kvm_r9_read(vcpu);
11262 	regs->r10 = kvm_r10_read(vcpu);
11263 	regs->r11 = kvm_r11_read(vcpu);
11264 	regs->r12 = kvm_r12_read(vcpu);
11265 	regs->r13 = kvm_r13_read(vcpu);
11266 	regs->r14 = kvm_r14_read(vcpu);
11267 	regs->r15 = kvm_r15_read(vcpu);
11268 #endif
11269 
11270 	regs->rip = kvm_rip_read(vcpu);
11271 	regs->rflags = kvm_get_rflags(vcpu);
11272 }
11273 
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11274 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11275 {
11276 	vcpu_load(vcpu);
11277 	__get_regs(vcpu, regs);
11278 	vcpu_put(vcpu);
11279 	return 0;
11280 }
11281 
__set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11282 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11283 {
11284 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
11285 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11286 
11287 	kvm_rax_write(vcpu, regs->rax);
11288 	kvm_rbx_write(vcpu, regs->rbx);
11289 	kvm_rcx_write(vcpu, regs->rcx);
11290 	kvm_rdx_write(vcpu, regs->rdx);
11291 	kvm_rsi_write(vcpu, regs->rsi);
11292 	kvm_rdi_write(vcpu, regs->rdi);
11293 	kvm_rsp_write(vcpu, regs->rsp);
11294 	kvm_rbp_write(vcpu, regs->rbp);
11295 #ifdef CONFIG_X86_64
11296 	kvm_r8_write(vcpu, regs->r8);
11297 	kvm_r9_write(vcpu, regs->r9);
11298 	kvm_r10_write(vcpu, regs->r10);
11299 	kvm_r11_write(vcpu, regs->r11);
11300 	kvm_r12_write(vcpu, regs->r12);
11301 	kvm_r13_write(vcpu, regs->r13);
11302 	kvm_r14_write(vcpu, regs->r14);
11303 	kvm_r15_write(vcpu, regs->r15);
11304 #endif
11305 
11306 	kvm_rip_write(vcpu, regs->rip);
11307 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
11308 
11309 	vcpu->arch.exception.pending = false;
11310 	vcpu->arch.exception_vmexit.pending = false;
11311 
11312 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11313 }
11314 
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11315 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11316 {
11317 	vcpu_load(vcpu);
11318 	__set_regs(vcpu, regs);
11319 	vcpu_put(vcpu);
11320 	return 0;
11321 }
11322 
__get_sregs_common(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11323 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11324 {
11325 	struct desc_ptr dt;
11326 
11327 	if (vcpu->arch.guest_state_protected)
11328 		goto skip_protected_regs;
11329 
11330 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11331 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11332 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11333 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11334 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11335 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11336 
11337 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11338 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11339 
11340 	static_call(kvm_x86_get_idt)(vcpu, &dt);
11341 	sregs->idt.limit = dt.size;
11342 	sregs->idt.base = dt.address;
11343 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
11344 	sregs->gdt.limit = dt.size;
11345 	sregs->gdt.base = dt.address;
11346 
11347 	sregs->cr2 = vcpu->arch.cr2;
11348 	sregs->cr3 = kvm_read_cr3(vcpu);
11349 
11350 skip_protected_regs:
11351 	sregs->cr0 = kvm_read_cr0(vcpu);
11352 	sregs->cr4 = kvm_read_cr4(vcpu);
11353 	sregs->cr8 = kvm_get_cr8(vcpu);
11354 	sregs->efer = vcpu->arch.efer;
11355 	sregs->apic_base = kvm_get_apic_base(vcpu);
11356 }
11357 
__get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11358 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11359 {
11360 	__get_sregs_common(vcpu, sregs);
11361 
11362 	if (vcpu->arch.guest_state_protected)
11363 		return;
11364 
11365 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11366 		set_bit(vcpu->arch.interrupt.nr,
11367 			(unsigned long *)sregs->interrupt_bitmap);
11368 }
11369 
__get_sregs2(struct kvm_vcpu * vcpu,struct kvm_sregs2 * sregs2)11370 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11371 {
11372 	int i;
11373 
11374 	__get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11375 
11376 	if (vcpu->arch.guest_state_protected)
11377 		return;
11378 
11379 	if (is_pae_paging(vcpu)) {
11380 		for (i = 0 ; i < 4 ; i++)
11381 			sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11382 		sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11383 	}
11384 }
11385 
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11386 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11387 				  struct kvm_sregs *sregs)
11388 {
11389 	vcpu_load(vcpu);
11390 	__get_sregs(vcpu, sregs);
11391 	vcpu_put(vcpu);
11392 	return 0;
11393 }
11394 
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)11395 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11396 				    struct kvm_mp_state *mp_state)
11397 {
11398 	int r;
11399 
11400 	vcpu_load(vcpu);
11401 	if (kvm_mpx_supported())
11402 		kvm_load_guest_fpu(vcpu);
11403 
11404 	kvm_vcpu_srcu_read_lock(vcpu);
11405 
11406 	r = kvm_apic_accept_events(vcpu);
11407 	if (r < 0)
11408 		goto out;
11409 	r = 0;
11410 
11411 	if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11412 	     vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11413 	    vcpu->arch.pv.pv_unhalted)
11414 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11415 	else
11416 		mp_state->mp_state = vcpu->arch.mp_state;
11417 
11418 out:
11419 	kvm_vcpu_srcu_read_unlock(vcpu);
11420 
11421 	if (kvm_mpx_supported())
11422 		kvm_put_guest_fpu(vcpu);
11423 	vcpu_put(vcpu);
11424 	return r;
11425 }
11426 
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)11427 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11428 				    struct kvm_mp_state *mp_state)
11429 {
11430 	int ret = -EINVAL;
11431 
11432 	vcpu_load(vcpu);
11433 
11434 	switch (mp_state->mp_state) {
11435 	case KVM_MP_STATE_UNINITIALIZED:
11436 	case KVM_MP_STATE_HALTED:
11437 	case KVM_MP_STATE_AP_RESET_HOLD:
11438 	case KVM_MP_STATE_INIT_RECEIVED:
11439 	case KVM_MP_STATE_SIPI_RECEIVED:
11440 		if (!lapic_in_kernel(vcpu))
11441 			goto out;
11442 		break;
11443 
11444 	case KVM_MP_STATE_RUNNABLE:
11445 		break;
11446 
11447 	default:
11448 		goto out;
11449 	}
11450 
11451 	/*
11452 	 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
11453 	 * forcing the guest into INIT/SIPI if those events are supposed to be
11454 	 * blocked.  KVM prioritizes SMI over INIT, so reject INIT/SIPI state
11455 	 * if an SMI is pending as well.
11456 	 */
11457 	if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
11458 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11459 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11460 		goto out;
11461 
11462 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11463 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
11464 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11465 	} else
11466 		vcpu->arch.mp_state = mp_state->mp_state;
11467 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11468 
11469 	ret = 0;
11470 out:
11471 	vcpu_put(vcpu);
11472 	return ret;
11473 }
11474 
kvm_task_switch(struct kvm_vcpu * vcpu,u16 tss_selector,int idt_index,int reason,bool has_error_code,u32 error_code)11475 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11476 		    int reason, bool has_error_code, u32 error_code)
11477 {
11478 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11479 	int ret;
11480 
11481 	init_emulate_ctxt(vcpu);
11482 
11483 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11484 				   has_error_code, error_code);
11485 	if (ret) {
11486 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11487 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11488 		vcpu->run->internal.ndata = 0;
11489 		return 0;
11490 	}
11491 
11492 	kvm_rip_write(vcpu, ctxt->eip);
11493 	kvm_set_rflags(vcpu, ctxt->eflags);
11494 	return 1;
11495 }
11496 EXPORT_SYMBOL_GPL(kvm_task_switch);
11497 
kvm_is_valid_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11498 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11499 {
11500 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11501 		/*
11502 		 * When EFER.LME and CR0.PG are set, the processor is in
11503 		 * 64-bit mode (though maybe in a 32-bit code segment).
11504 		 * CR4.PAE and EFER.LMA must be set.
11505 		 */
11506 		if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11507 			return false;
11508 		if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
11509 			return false;
11510 	} else {
11511 		/*
11512 		 * Not in 64-bit mode: EFER.LMA is clear and the code
11513 		 * segment cannot be 64-bit.
11514 		 */
11515 		if (sregs->efer & EFER_LMA || sregs->cs.l)
11516 			return false;
11517 	}
11518 
11519 	return kvm_is_valid_cr4(vcpu, sregs->cr4) &&
11520 	       kvm_is_valid_cr0(vcpu, sregs->cr0);
11521 }
11522 
__set_sregs_common(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs,int * mmu_reset_needed,bool update_pdptrs)11523 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11524 		int *mmu_reset_needed, bool update_pdptrs)
11525 {
11526 	struct msr_data apic_base_msr;
11527 	int idx;
11528 	struct desc_ptr dt;
11529 
11530 	if (!kvm_is_valid_sregs(vcpu, sregs))
11531 		return -EINVAL;
11532 
11533 	apic_base_msr.data = sregs->apic_base;
11534 	apic_base_msr.host_initiated = true;
11535 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
11536 		return -EINVAL;
11537 
11538 	if (vcpu->arch.guest_state_protected)
11539 		return 0;
11540 
11541 	dt.size = sregs->idt.limit;
11542 	dt.address = sregs->idt.base;
11543 	static_call(kvm_x86_set_idt)(vcpu, &dt);
11544 	dt.size = sregs->gdt.limit;
11545 	dt.address = sregs->gdt.base;
11546 	static_call(kvm_x86_set_gdt)(vcpu, &dt);
11547 
11548 	vcpu->arch.cr2 = sregs->cr2;
11549 	*mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11550 	vcpu->arch.cr3 = sregs->cr3;
11551 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11552 	static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
11553 
11554 	kvm_set_cr8(vcpu, sregs->cr8);
11555 
11556 	*mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11557 	static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
11558 
11559 	*mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11560 	static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
11561 	vcpu->arch.cr0 = sregs->cr0;
11562 
11563 	*mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11564 	static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
11565 
11566 	if (update_pdptrs) {
11567 		idx = srcu_read_lock(&vcpu->kvm->srcu);
11568 		if (is_pae_paging(vcpu)) {
11569 			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11570 			*mmu_reset_needed = 1;
11571 		}
11572 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
11573 	}
11574 
11575 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11576 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11577 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11578 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11579 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11580 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11581 
11582 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11583 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11584 
11585 	update_cr8_intercept(vcpu);
11586 
11587 	/* Older userspace won't unhalt the vcpu on reset. */
11588 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11589 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11590 	    !is_protmode(vcpu))
11591 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11592 
11593 	return 0;
11594 }
11595 
__set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11596 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11597 {
11598 	int pending_vec, max_bits;
11599 	int mmu_reset_needed = 0;
11600 	int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11601 
11602 	if (ret)
11603 		return ret;
11604 
11605 	if (mmu_reset_needed)
11606 		kvm_mmu_reset_context(vcpu);
11607 
11608 	max_bits = KVM_NR_INTERRUPTS;
11609 	pending_vec = find_first_bit(
11610 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
11611 
11612 	if (pending_vec < max_bits) {
11613 		kvm_queue_interrupt(vcpu, pending_vec, false);
11614 		pr_debug("Set back pending irq %d\n", pending_vec);
11615 		kvm_make_request(KVM_REQ_EVENT, vcpu);
11616 	}
11617 	return 0;
11618 }
11619 
__set_sregs2(struct kvm_vcpu * vcpu,struct kvm_sregs2 * sregs2)11620 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11621 {
11622 	int mmu_reset_needed = 0;
11623 	bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11624 	bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11625 		!(sregs2->efer & EFER_LMA);
11626 	int i, ret;
11627 
11628 	if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11629 		return -EINVAL;
11630 
11631 	if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11632 		return -EINVAL;
11633 
11634 	ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
11635 				 &mmu_reset_needed, !valid_pdptrs);
11636 	if (ret)
11637 		return ret;
11638 
11639 	if (valid_pdptrs) {
11640 		for (i = 0; i < 4 ; i++)
11641 			kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
11642 
11643 		kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
11644 		mmu_reset_needed = 1;
11645 		vcpu->arch.pdptrs_from_userspace = true;
11646 	}
11647 	if (mmu_reset_needed)
11648 		kvm_mmu_reset_context(vcpu);
11649 	return 0;
11650 }
11651 
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11652 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
11653 				  struct kvm_sregs *sregs)
11654 {
11655 	int ret;
11656 
11657 	vcpu_load(vcpu);
11658 	ret = __set_sregs(vcpu, sregs);
11659 	vcpu_put(vcpu);
11660 	return ret;
11661 }
11662 
kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm * kvm)11663 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
11664 {
11665 	bool set = false;
11666 	struct kvm_vcpu *vcpu;
11667 	unsigned long i;
11668 
11669 	if (!enable_apicv)
11670 		return;
11671 
11672 	down_write(&kvm->arch.apicv_update_lock);
11673 
11674 	kvm_for_each_vcpu(i, vcpu, kvm) {
11675 		if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
11676 			set = true;
11677 			break;
11678 		}
11679 	}
11680 	__kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
11681 	up_write(&kvm->arch.apicv_update_lock);
11682 }
11683 
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)11684 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11685 					struct kvm_guest_debug *dbg)
11686 {
11687 	unsigned long rflags;
11688 	int i, r;
11689 
11690 	if (vcpu->arch.guest_state_protected)
11691 		return -EINVAL;
11692 
11693 	vcpu_load(vcpu);
11694 
11695 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11696 		r = -EBUSY;
11697 		if (kvm_is_exception_pending(vcpu))
11698 			goto out;
11699 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11700 			kvm_queue_exception(vcpu, DB_VECTOR);
11701 		else
11702 			kvm_queue_exception(vcpu, BP_VECTOR);
11703 	}
11704 
11705 	/*
11706 	 * Read rflags as long as potentially injected trace flags are still
11707 	 * filtered out.
11708 	 */
11709 	rflags = kvm_get_rflags(vcpu);
11710 
11711 	vcpu->guest_debug = dbg->control;
11712 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11713 		vcpu->guest_debug = 0;
11714 
11715 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
11716 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
11717 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
11718 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
11719 	} else {
11720 		for (i = 0; i < KVM_NR_DB_REGS; i++)
11721 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
11722 	}
11723 	kvm_update_dr7(vcpu);
11724 
11725 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11726 		vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
11727 
11728 	/*
11729 	 * Trigger an rflags update that will inject or remove the trace
11730 	 * flags.
11731 	 */
11732 	kvm_set_rflags(vcpu, rflags);
11733 
11734 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
11735 
11736 	kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
11737 
11738 	r = 0;
11739 
11740 out:
11741 	vcpu_put(vcpu);
11742 	return r;
11743 }
11744 
11745 /*
11746  * Translate a guest virtual address to a guest physical address.
11747  */
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)11748 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
11749 				    struct kvm_translation *tr)
11750 {
11751 	unsigned long vaddr = tr->linear_address;
11752 	gpa_t gpa;
11753 	int idx;
11754 
11755 	vcpu_load(vcpu);
11756 
11757 	idx = srcu_read_lock(&vcpu->kvm->srcu);
11758 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
11759 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
11760 	tr->physical_address = gpa;
11761 	tr->valid = gpa != INVALID_GPA;
11762 	tr->writeable = 1;
11763 	tr->usermode = 0;
11764 
11765 	vcpu_put(vcpu);
11766 	return 0;
11767 }
11768 
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)11769 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11770 {
11771 	struct fxregs_state *fxsave;
11772 
11773 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11774 		return 0;
11775 
11776 	vcpu_load(vcpu);
11777 
11778 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11779 	memcpy(fpu->fpr, fxsave->st_space, 128);
11780 	fpu->fcw = fxsave->cwd;
11781 	fpu->fsw = fxsave->swd;
11782 	fpu->ftwx = fxsave->twd;
11783 	fpu->last_opcode = fxsave->fop;
11784 	fpu->last_ip = fxsave->rip;
11785 	fpu->last_dp = fxsave->rdp;
11786 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11787 
11788 	vcpu_put(vcpu);
11789 	return 0;
11790 }
11791 
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)11792 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11793 {
11794 	struct fxregs_state *fxsave;
11795 
11796 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11797 		return 0;
11798 
11799 	vcpu_load(vcpu);
11800 
11801 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11802 
11803 	memcpy(fxsave->st_space, fpu->fpr, 128);
11804 	fxsave->cwd = fpu->fcw;
11805 	fxsave->swd = fpu->fsw;
11806 	fxsave->twd = fpu->ftwx;
11807 	fxsave->fop = fpu->last_opcode;
11808 	fxsave->rip = fpu->last_ip;
11809 	fxsave->rdp = fpu->last_dp;
11810 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11811 
11812 	vcpu_put(vcpu);
11813 	return 0;
11814 }
11815 
store_regs(struct kvm_vcpu * vcpu)11816 static void store_regs(struct kvm_vcpu *vcpu)
11817 {
11818 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11819 
11820 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11821 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
11822 
11823 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
11824 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
11825 
11826 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
11827 		kvm_vcpu_ioctl_x86_get_vcpu_events(
11828 				vcpu, &vcpu->run->s.regs.events);
11829 }
11830 
sync_regs(struct kvm_vcpu * vcpu)11831 static int sync_regs(struct kvm_vcpu *vcpu)
11832 {
11833 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
11834 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
11835 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
11836 	}
11837 
11838 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
11839 		struct kvm_sregs sregs = vcpu->run->s.regs.sregs;
11840 
11841 		if (__set_sregs(vcpu, &sregs))
11842 			return -EINVAL;
11843 
11844 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
11845 	}
11846 
11847 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
11848 		struct kvm_vcpu_events events = vcpu->run->s.regs.events;
11849 
11850 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events))
11851 			return -EINVAL;
11852 
11853 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
11854 	}
11855 
11856 	return 0;
11857 }
11858 
kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)11859 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
11860 {
11861 	if (kvm_check_tsc_unstable() && kvm->created_vcpus)
11862 		pr_warn_once("SMP vm created on host with unstable TSC; "
11863 			     "guest TSC will not be reliable\n");
11864 
11865 	if (!kvm->arch.max_vcpu_ids)
11866 		kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
11867 
11868 	if (id >= kvm->arch.max_vcpu_ids)
11869 		return -EINVAL;
11870 
11871 	return static_call(kvm_x86_vcpu_precreate)(kvm);
11872 }
11873 
kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)11874 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
11875 {
11876 	struct page *page;
11877 	int r;
11878 
11879 	vcpu->arch.last_vmentry_cpu = -1;
11880 	vcpu->arch.regs_avail = ~0;
11881 	vcpu->arch.regs_dirty = ~0;
11882 
11883 	kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN);
11884 
11885 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
11886 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11887 	else
11888 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
11889 
11890 	r = kvm_mmu_create(vcpu);
11891 	if (r < 0)
11892 		return r;
11893 
11894 	if (irqchip_in_kernel(vcpu->kvm)) {
11895 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11896 		if (r < 0)
11897 			goto fail_mmu_destroy;
11898 
11899 		/*
11900 		 * Defer evaluating inhibits until the vCPU is first run, as
11901 		 * this vCPU will not get notified of any changes until this
11902 		 * vCPU is visible to other vCPUs (marked online and added to
11903 		 * the set of vCPUs).  Opportunistically mark APICv active as
11904 		 * VMX in particularly is highly unlikely to have inhibits.
11905 		 * Ignore the current per-VM APICv state so that vCPU creation
11906 		 * is guaranteed to run with a deterministic value, the request
11907 		 * will ensure the vCPU gets the correct state before VM-Entry.
11908 		 */
11909 		if (enable_apicv) {
11910 			vcpu->arch.apic->apicv_active = true;
11911 			kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
11912 		}
11913 	} else
11914 		static_branch_inc(&kvm_has_noapic_vcpu);
11915 
11916 	r = -ENOMEM;
11917 
11918 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
11919 	if (!page)
11920 		goto fail_free_lapic;
11921 	vcpu->arch.pio_data = page_address(page);
11922 
11923 	vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
11924 				       GFP_KERNEL_ACCOUNT);
11925 	vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
11926 					    GFP_KERNEL_ACCOUNT);
11927 	if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
11928 		goto fail_free_mce_banks;
11929 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
11930 
11931 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
11932 				GFP_KERNEL_ACCOUNT))
11933 		goto fail_free_mce_banks;
11934 
11935 	if (!alloc_emulate_ctxt(vcpu))
11936 		goto free_wbinvd_dirty_mask;
11937 
11938 	if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
11939 		pr_err("failed to allocate vcpu's fpu\n");
11940 		goto free_emulate_ctxt;
11941 	}
11942 
11943 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
11944 	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
11945 
11946 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
11947 
11948 	kvm_async_pf_hash_reset(vcpu);
11949 
11950 	vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
11951 	kvm_pmu_init(vcpu);
11952 
11953 	vcpu->arch.pending_external_vector = -1;
11954 	vcpu->arch.preempted_in_kernel = false;
11955 
11956 #if IS_ENABLED(CONFIG_HYPERV)
11957 	vcpu->arch.hv_root_tdp = INVALID_PAGE;
11958 #endif
11959 
11960 	r = static_call(kvm_x86_vcpu_create)(vcpu);
11961 	if (r)
11962 		goto free_guest_fpu;
11963 
11964 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
11965 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
11966 	kvm_xen_init_vcpu(vcpu);
11967 	kvm_vcpu_mtrr_init(vcpu);
11968 	vcpu_load(vcpu);
11969 	kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
11970 	kvm_vcpu_reset(vcpu, false);
11971 	kvm_init_mmu(vcpu);
11972 	vcpu_put(vcpu);
11973 	return 0;
11974 
11975 free_guest_fpu:
11976 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11977 free_emulate_ctxt:
11978 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11979 free_wbinvd_dirty_mask:
11980 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11981 fail_free_mce_banks:
11982 	kfree(vcpu->arch.mce_banks);
11983 	kfree(vcpu->arch.mci_ctl2_banks);
11984 	free_page((unsigned long)vcpu->arch.pio_data);
11985 fail_free_lapic:
11986 	kvm_free_lapic(vcpu);
11987 fail_mmu_destroy:
11988 	kvm_mmu_destroy(vcpu);
11989 	return r;
11990 }
11991 
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)11992 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
11993 {
11994 	struct kvm *kvm = vcpu->kvm;
11995 
11996 	if (mutex_lock_killable(&vcpu->mutex))
11997 		return;
11998 	vcpu_load(vcpu);
11999 	kvm_synchronize_tsc(vcpu, 0);
12000 	vcpu_put(vcpu);
12001 
12002 	/* poll control enabled by default */
12003 	vcpu->arch.msr_kvm_poll_control = 1;
12004 
12005 	mutex_unlock(&vcpu->mutex);
12006 
12007 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
12008 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
12009 						KVMCLOCK_SYNC_PERIOD);
12010 }
12011 
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)12012 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
12013 {
12014 	int idx;
12015 
12016 	kvmclock_reset(vcpu);
12017 
12018 	static_call(kvm_x86_vcpu_free)(vcpu);
12019 
12020 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12021 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12022 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12023 
12024 	kvm_xen_destroy_vcpu(vcpu);
12025 	kvm_hv_vcpu_uninit(vcpu);
12026 	kvm_pmu_destroy(vcpu);
12027 	kfree(vcpu->arch.mce_banks);
12028 	kfree(vcpu->arch.mci_ctl2_banks);
12029 	kvm_free_lapic(vcpu);
12030 	idx = srcu_read_lock(&vcpu->kvm->srcu);
12031 	kvm_mmu_destroy(vcpu);
12032 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
12033 	free_page((unsigned long)vcpu->arch.pio_data);
12034 	kvfree(vcpu->arch.cpuid_entries);
12035 	if (!lapic_in_kernel(vcpu))
12036 		static_branch_dec(&kvm_has_noapic_vcpu);
12037 }
12038 
kvm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)12039 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
12040 {
12041 	struct kvm_cpuid_entry2 *cpuid_0x1;
12042 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
12043 	unsigned long new_cr0;
12044 
12045 	/*
12046 	 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
12047 	 * to handle side effects.  RESET emulation hits those flows and relies
12048 	 * on emulated/virtualized registers, including those that are loaded
12049 	 * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
12050 	 * to detect improper or missing initialization.
12051 	 */
12052 	WARN_ON_ONCE(!init_event &&
12053 		     (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
12054 
12055 	/*
12056 	 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
12057 	 * possible to INIT the vCPU while L2 is active.  Force the vCPU back
12058 	 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
12059 	 * bits), i.e. virtualization is disabled.
12060 	 */
12061 	if (is_guest_mode(vcpu))
12062 		kvm_leave_nested(vcpu);
12063 
12064 	kvm_lapic_reset(vcpu, init_event);
12065 
12066 	WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
12067 	vcpu->arch.hflags = 0;
12068 
12069 	vcpu->arch.smi_pending = 0;
12070 	vcpu->arch.smi_count = 0;
12071 	atomic_set(&vcpu->arch.nmi_queued, 0);
12072 	vcpu->arch.nmi_pending = 0;
12073 	vcpu->arch.nmi_injected = false;
12074 	kvm_clear_interrupt_queue(vcpu);
12075 	kvm_clear_exception_queue(vcpu);
12076 
12077 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
12078 	kvm_update_dr0123(vcpu);
12079 	vcpu->arch.dr6 = DR6_ACTIVE_LOW;
12080 	vcpu->arch.dr7 = DR7_FIXED_1;
12081 	kvm_update_dr7(vcpu);
12082 
12083 	vcpu->arch.cr2 = 0;
12084 
12085 	kvm_make_request(KVM_REQ_EVENT, vcpu);
12086 	vcpu->arch.apf.msr_en_val = 0;
12087 	vcpu->arch.apf.msr_int_val = 0;
12088 	vcpu->arch.st.msr_val = 0;
12089 
12090 	kvmclock_reset(vcpu);
12091 
12092 	kvm_clear_async_pf_completion_queue(vcpu);
12093 	kvm_async_pf_hash_reset(vcpu);
12094 	vcpu->arch.apf.halted = false;
12095 
12096 	if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
12097 		struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
12098 
12099 		/*
12100 		 * All paths that lead to INIT are required to load the guest's
12101 		 * FPU state (because most paths are buried in KVM_RUN).
12102 		 */
12103 		if (init_event)
12104 			kvm_put_guest_fpu(vcpu);
12105 
12106 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
12107 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
12108 
12109 		if (init_event)
12110 			kvm_load_guest_fpu(vcpu);
12111 	}
12112 
12113 	if (!init_event) {
12114 		kvm_pmu_reset(vcpu);
12115 		vcpu->arch.smbase = 0x30000;
12116 
12117 		vcpu->arch.msr_misc_features_enables = 0;
12118 		vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
12119 						  MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
12120 
12121 		__kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
12122 		__kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
12123 	}
12124 
12125 	/* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
12126 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
12127 	kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
12128 
12129 	/*
12130 	 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
12131 	 * if no CPUID match is found.  Note, it's impossible to get a match at
12132 	 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
12133 	 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
12134 	 * on RESET.  But, go through the motions in case that's ever remedied.
12135 	 */
12136 	cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
12137 	kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
12138 
12139 	static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
12140 
12141 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
12142 	kvm_rip_write(vcpu, 0xfff0);
12143 
12144 	vcpu->arch.cr3 = 0;
12145 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12146 
12147 	/*
12148 	 * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
12149 	 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
12150 	 * (or qualify) that with a footnote stating that CD/NW are preserved.
12151 	 */
12152 	new_cr0 = X86_CR0_ET;
12153 	if (init_event)
12154 		new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
12155 	else
12156 		new_cr0 |= X86_CR0_NW | X86_CR0_CD;
12157 
12158 	static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
12159 	static_call(kvm_x86_set_cr4)(vcpu, 0);
12160 	static_call(kvm_x86_set_efer)(vcpu, 0);
12161 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
12162 
12163 	/*
12164 	 * On the standard CR0/CR4/EFER modification paths, there are several
12165 	 * complex conditions determining whether the MMU has to be reset and/or
12166 	 * which PCIDs have to be flushed.  However, CR0.WP and the paging-related
12167 	 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
12168 	 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
12169 	 * CR0 will be '0' prior to RESET).  So we only need to check CR0.PG here.
12170 	 */
12171 	if (old_cr0 & X86_CR0_PG) {
12172 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12173 		kvm_mmu_reset_context(vcpu);
12174 	}
12175 
12176 	/*
12177 	 * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
12178 	 * APM states the TLBs are untouched by INIT, but it also states that
12179 	 * the TLBs are flushed on "External initialization of the processor."
12180 	 * Flush the guest TLB regardless of vendor, there is no meaningful
12181 	 * benefit in relying on the guest to flush the TLB immediately after
12182 	 * INIT.  A spurious TLB flush is benign and likely negligible from a
12183 	 * performance perspective.
12184 	 */
12185 	if (init_event)
12186 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12187 }
12188 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
12189 
kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)12190 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
12191 {
12192 	struct kvm_segment cs;
12193 
12194 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
12195 	cs.selector = vector << 8;
12196 	cs.base = vector << 12;
12197 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
12198 	kvm_rip_write(vcpu, 0);
12199 }
12200 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
12201 
kvm_arch_hardware_enable(void)12202 int kvm_arch_hardware_enable(void)
12203 {
12204 	struct kvm *kvm;
12205 	struct kvm_vcpu *vcpu;
12206 	unsigned long i;
12207 	int ret;
12208 	u64 local_tsc;
12209 	u64 max_tsc = 0;
12210 	bool stable, backwards_tsc = false;
12211 
12212 	kvm_user_return_msr_cpu_online();
12213 
12214 	ret = kvm_x86_check_processor_compatibility();
12215 	if (ret)
12216 		return ret;
12217 
12218 	ret = static_call(kvm_x86_hardware_enable)();
12219 	if (ret != 0)
12220 		return ret;
12221 
12222 	local_tsc = rdtsc();
12223 	stable = !kvm_check_tsc_unstable();
12224 	list_for_each_entry(kvm, &vm_list, vm_list) {
12225 		kvm_for_each_vcpu(i, vcpu, kvm) {
12226 			if (!stable && vcpu->cpu == smp_processor_id())
12227 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
12228 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
12229 				backwards_tsc = true;
12230 				if (vcpu->arch.last_host_tsc > max_tsc)
12231 					max_tsc = vcpu->arch.last_host_tsc;
12232 			}
12233 		}
12234 	}
12235 
12236 	/*
12237 	 * Sometimes, even reliable TSCs go backwards.  This happens on
12238 	 * platforms that reset TSC during suspend or hibernate actions, but
12239 	 * maintain synchronization.  We must compensate.  Fortunately, we can
12240 	 * detect that condition here, which happens early in CPU bringup,
12241 	 * before any KVM threads can be running.  Unfortunately, we can't
12242 	 * bring the TSCs fully up to date with real time, as we aren't yet far
12243 	 * enough into CPU bringup that we know how much real time has actually
12244 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
12245 	 * variables that haven't been updated yet.
12246 	 *
12247 	 * So we simply find the maximum observed TSC above, then record the
12248 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
12249 	 * the adjustment will be applied.  Note that we accumulate
12250 	 * adjustments, in case multiple suspend cycles happen before some VCPU
12251 	 * gets a chance to run again.  In the event that no KVM threads get a
12252 	 * chance to run, we will miss the entire elapsed period, as we'll have
12253 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
12254 	 * loose cycle time.  This isn't too big a deal, since the loss will be
12255 	 * uniform across all VCPUs (not to mention the scenario is extremely
12256 	 * unlikely). It is possible that a second hibernate recovery happens
12257 	 * much faster than a first, causing the observed TSC here to be
12258 	 * smaller; this would require additional padding adjustment, which is
12259 	 * why we set last_host_tsc to the local tsc observed here.
12260 	 *
12261 	 * N.B. - this code below runs only on platforms with reliable TSC,
12262 	 * as that is the only way backwards_tsc is set above.  Also note
12263 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
12264 	 * have the same delta_cyc adjustment applied if backwards_tsc
12265 	 * is detected.  Note further, this adjustment is only done once,
12266 	 * as we reset last_host_tsc on all VCPUs to stop this from being
12267 	 * called multiple times (one for each physical CPU bringup).
12268 	 *
12269 	 * Platforms with unreliable TSCs don't have to deal with this, they
12270 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
12271 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
12272 	 * guarantee that they stay in perfect synchronization.
12273 	 */
12274 	if (backwards_tsc) {
12275 		u64 delta_cyc = max_tsc - local_tsc;
12276 		list_for_each_entry(kvm, &vm_list, vm_list) {
12277 			kvm->arch.backwards_tsc_observed = true;
12278 			kvm_for_each_vcpu(i, vcpu, kvm) {
12279 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
12280 				vcpu->arch.last_host_tsc = local_tsc;
12281 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
12282 			}
12283 
12284 			/*
12285 			 * We have to disable TSC offset matching.. if you were
12286 			 * booting a VM while issuing an S4 host suspend....
12287 			 * you may have some problem.  Solving this issue is
12288 			 * left as an exercise to the reader.
12289 			 */
12290 			kvm->arch.last_tsc_nsec = 0;
12291 			kvm->arch.last_tsc_write = 0;
12292 		}
12293 
12294 	}
12295 	return 0;
12296 }
12297 
kvm_arch_hardware_disable(void)12298 void kvm_arch_hardware_disable(void)
12299 {
12300 	static_call(kvm_x86_hardware_disable)();
12301 	drop_user_return_notifiers();
12302 }
12303 
kvm_vcpu_is_reset_bsp(struct kvm_vcpu * vcpu)12304 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12305 {
12306 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12307 }
12308 
kvm_vcpu_is_bsp(struct kvm_vcpu * vcpu)12309 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12310 {
12311 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12312 }
12313 
12314 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
12315 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
12316 
kvm_arch_sched_in(struct kvm_vcpu * vcpu,int cpu)12317 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
12318 {
12319 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
12320 
12321 	vcpu->arch.l1tf_flush_l1d = true;
12322 	if (pmu->version && unlikely(pmu->event_count)) {
12323 		pmu->need_cleanup = true;
12324 		kvm_make_request(KVM_REQ_PMU, vcpu);
12325 	}
12326 	static_call(kvm_x86_sched_in)(vcpu, cpu);
12327 }
12328 
kvm_arch_free_vm(struct kvm * kvm)12329 void kvm_arch_free_vm(struct kvm *kvm)
12330 {
12331 	kfree(to_kvm_hv(kvm)->hv_pa_pg);
12332 	__kvm_arch_free_vm(kvm);
12333 }
12334 
12335 
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)12336 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12337 {
12338 	int ret;
12339 	unsigned long flags;
12340 
12341 	if (type)
12342 		return -EINVAL;
12343 
12344 	ret = kvm_page_track_init(kvm);
12345 	if (ret)
12346 		goto out;
12347 
12348 	kvm_mmu_init_vm(kvm);
12349 
12350 	ret = static_call(kvm_x86_vm_init)(kvm);
12351 	if (ret)
12352 		goto out_uninit_mmu;
12353 
12354 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12355 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
12356 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12357 
12358 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12359 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12360 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12361 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12362 		&kvm->arch.irq_sources_bitmap);
12363 
12364 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12365 	mutex_init(&kvm->arch.apic_map_lock);
12366 	seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12367 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12368 
12369 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12370 	pvclock_update_vm_gtod_copy(kvm);
12371 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12372 
12373 	kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12374 	kvm->arch.guest_can_read_msr_platform_info = true;
12375 	kvm->arch.enable_pmu = enable_pmu;
12376 
12377 #if IS_ENABLED(CONFIG_HYPERV)
12378 	spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12379 	kvm->arch.hv_root_tdp = INVALID_PAGE;
12380 #endif
12381 
12382 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12383 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12384 
12385 	kvm_apicv_init(kvm);
12386 	kvm_hv_init_vm(kvm);
12387 	kvm_xen_init_vm(kvm);
12388 
12389 	return 0;
12390 
12391 out_uninit_mmu:
12392 	kvm_mmu_uninit_vm(kvm);
12393 	kvm_page_track_cleanup(kvm);
12394 out:
12395 	return ret;
12396 }
12397 
kvm_arch_post_init_vm(struct kvm * kvm)12398 int kvm_arch_post_init_vm(struct kvm *kvm)
12399 {
12400 	return kvm_mmu_post_init_vm(kvm);
12401 }
12402 
kvm_unload_vcpu_mmu(struct kvm_vcpu * vcpu)12403 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
12404 {
12405 	vcpu_load(vcpu);
12406 	kvm_mmu_unload(vcpu);
12407 	vcpu_put(vcpu);
12408 }
12409 
kvm_unload_vcpu_mmus(struct kvm * kvm)12410 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
12411 {
12412 	unsigned long i;
12413 	struct kvm_vcpu *vcpu;
12414 
12415 	kvm_for_each_vcpu(i, vcpu, kvm) {
12416 		kvm_clear_async_pf_completion_queue(vcpu);
12417 		kvm_unload_vcpu_mmu(vcpu);
12418 	}
12419 }
12420 
kvm_arch_sync_events(struct kvm * kvm)12421 void kvm_arch_sync_events(struct kvm *kvm)
12422 {
12423 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12424 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12425 	kvm_free_pit(kvm);
12426 }
12427 
12428 /**
12429  * __x86_set_memory_region: Setup KVM internal memory slot
12430  *
12431  * @kvm: the kvm pointer to the VM.
12432  * @id: the slot ID to setup.
12433  * @gpa: the GPA to install the slot (unused when @size == 0).
12434  * @size: the size of the slot. Set to zero to uninstall a slot.
12435  *
12436  * This function helps to setup a KVM internal memory slot.  Specify
12437  * @size > 0 to install a new slot, while @size == 0 to uninstall a
12438  * slot.  The return code can be one of the following:
12439  *
12440  *   HVA:           on success (uninstall will return a bogus HVA)
12441  *   -errno:        on error
12442  *
12443  * The caller should always use IS_ERR() to check the return value
12444  * before use.  Note, the KVM internal memory slots are guaranteed to
12445  * remain valid and unchanged until the VM is destroyed, i.e., the
12446  * GPA->HVA translation will not change.  However, the HVA is a user
12447  * address, i.e. its accessibility is not guaranteed, and must be
12448  * accessed via __copy_{to,from}_user().
12449  */
__x86_set_memory_region(struct kvm * kvm,int id,gpa_t gpa,u32 size)12450 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12451 				      u32 size)
12452 {
12453 	int i, r;
12454 	unsigned long hva, old_npages;
12455 	struct kvm_memslots *slots = kvm_memslots(kvm);
12456 	struct kvm_memory_slot *slot;
12457 
12458 	/* Called with kvm->slots_lock held.  */
12459 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12460 		return ERR_PTR_USR(-EINVAL);
12461 
12462 	slot = id_to_memslot(slots, id);
12463 	if (size) {
12464 		if (slot && slot->npages)
12465 			return ERR_PTR_USR(-EEXIST);
12466 
12467 		/*
12468 		 * MAP_SHARED to prevent internal slot pages from being moved
12469 		 * by fork()/COW.
12470 		 */
12471 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12472 			      MAP_SHARED | MAP_ANONYMOUS, 0);
12473 		if (IS_ERR_VALUE(hva))
12474 			return (void __user *)hva;
12475 	} else {
12476 		if (!slot || !slot->npages)
12477 			return NULL;
12478 
12479 		old_npages = slot->npages;
12480 		hva = slot->userspace_addr;
12481 	}
12482 
12483 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
12484 		struct kvm_userspace_memory_region m;
12485 
12486 		m.slot = id | (i << 16);
12487 		m.flags = 0;
12488 		m.guest_phys_addr = gpa;
12489 		m.userspace_addr = hva;
12490 		m.memory_size = size;
12491 		r = __kvm_set_memory_region(kvm, &m);
12492 		if (r < 0)
12493 			return ERR_PTR_USR(r);
12494 	}
12495 
12496 	if (!size)
12497 		vm_munmap(hva, old_npages * PAGE_SIZE);
12498 
12499 	return (void __user *)hva;
12500 }
12501 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12502 
kvm_arch_pre_destroy_vm(struct kvm * kvm)12503 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12504 {
12505 	kvm_mmu_pre_destroy_vm(kvm);
12506 }
12507 
kvm_arch_destroy_vm(struct kvm * kvm)12508 void kvm_arch_destroy_vm(struct kvm *kvm)
12509 {
12510 	if (current->mm == kvm->mm) {
12511 		/*
12512 		 * Free memory regions allocated on behalf of userspace,
12513 		 * unless the memory map has changed due to process exit
12514 		 * or fd copying.
12515 		 */
12516 		mutex_lock(&kvm->slots_lock);
12517 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12518 					0, 0);
12519 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12520 					0, 0);
12521 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12522 		mutex_unlock(&kvm->slots_lock);
12523 	}
12524 	kvm_unload_vcpu_mmus(kvm);
12525 	static_call_cond(kvm_x86_vm_destroy)(kvm);
12526 	kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12527 	kvm_pic_destroy(kvm);
12528 	kvm_ioapic_destroy(kvm);
12529 	kvm_destroy_vcpus(kvm);
12530 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12531 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12532 	kvm_mmu_uninit_vm(kvm);
12533 	kvm_page_track_cleanup(kvm);
12534 	kvm_xen_destroy_vm(kvm);
12535 	kvm_hv_destroy_vm(kvm);
12536 }
12537 
memslot_rmap_free(struct kvm_memory_slot * slot)12538 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12539 {
12540 	int i;
12541 
12542 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12543 		kvfree(slot->arch.rmap[i]);
12544 		slot->arch.rmap[i] = NULL;
12545 	}
12546 }
12547 
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)12548 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12549 {
12550 	int i;
12551 
12552 	memslot_rmap_free(slot);
12553 
12554 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12555 		kvfree(slot->arch.lpage_info[i - 1]);
12556 		slot->arch.lpage_info[i - 1] = NULL;
12557 	}
12558 
12559 	kvm_page_track_free_memslot(slot);
12560 }
12561 
memslot_rmap_alloc(struct kvm_memory_slot * slot,unsigned long npages)12562 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12563 {
12564 	const int sz = sizeof(*slot->arch.rmap[0]);
12565 	int i;
12566 
12567 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12568 		int level = i + 1;
12569 		int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12570 
12571 		if (slot->arch.rmap[i])
12572 			continue;
12573 
12574 		slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12575 		if (!slot->arch.rmap[i]) {
12576 			memslot_rmap_free(slot);
12577 			return -ENOMEM;
12578 		}
12579 	}
12580 
12581 	return 0;
12582 }
12583 
kvm_alloc_memslot_metadata(struct kvm * kvm,struct kvm_memory_slot * slot)12584 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12585 				      struct kvm_memory_slot *slot)
12586 {
12587 	unsigned long npages = slot->npages;
12588 	int i, r;
12589 
12590 	/*
12591 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
12592 	 * old arrays will be freed by __kvm_set_memory_region() if installing
12593 	 * the new memslot is successful.
12594 	 */
12595 	memset(&slot->arch, 0, sizeof(slot->arch));
12596 
12597 	if (kvm_memslots_have_rmaps(kvm)) {
12598 		r = memslot_rmap_alloc(slot, npages);
12599 		if (r)
12600 			return r;
12601 	}
12602 
12603 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12604 		struct kvm_lpage_info *linfo;
12605 		unsigned long ugfn;
12606 		int lpages;
12607 		int level = i + 1;
12608 
12609 		lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12610 
12611 		linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12612 		if (!linfo)
12613 			goto out_free;
12614 
12615 		slot->arch.lpage_info[i - 1] = linfo;
12616 
12617 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12618 			linfo[0].disallow_lpage = 1;
12619 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12620 			linfo[lpages - 1].disallow_lpage = 1;
12621 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
12622 		/*
12623 		 * If the gfn and userspace address are not aligned wrt each
12624 		 * other, disable large page support for this slot.
12625 		 */
12626 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12627 			unsigned long j;
12628 
12629 			for (j = 0; j < lpages; ++j)
12630 				linfo[j].disallow_lpage = 1;
12631 		}
12632 	}
12633 
12634 	if (kvm_page_track_create_memslot(kvm, slot, npages))
12635 		goto out_free;
12636 
12637 	return 0;
12638 
12639 out_free:
12640 	memslot_rmap_free(slot);
12641 
12642 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12643 		kvfree(slot->arch.lpage_info[i - 1]);
12644 		slot->arch.lpage_info[i - 1] = NULL;
12645 	}
12646 	return -ENOMEM;
12647 }
12648 
kvm_arch_memslots_updated(struct kvm * kvm,u64 gen)12649 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
12650 {
12651 	struct kvm_vcpu *vcpu;
12652 	unsigned long i;
12653 
12654 	/*
12655 	 * memslots->generation has been incremented.
12656 	 * mmio generation may have reached its maximum value.
12657 	 */
12658 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
12659 
12660 	/* Force re-initialization of steal_time cache */
12661 	kvm_for_each_vcpu(i, vcpu, kvm)
12662 		kvm_vcpu_kick(vcpu);
12663 }
12664 
kvm_arch_prepare_memory_region(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)12665 int kvm_arch_prepare_memory_region(struct kvm *kvm,
12666 				   const struct kvm_memory_slot *old,
12667 				   struct kvm_memory_slot *new,
12668 				   enum kvm_mr_change change)
12669 {
12670 	/*
12671 	 * KVM doesn't support moving memslots when there are external page
12672 	 * trackers attached to the VM, i.e. if KVMGT is in use.
12673 	 */
12674 	if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm))
12675 		return -EINVAL;
12676 
12677 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12678 		if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12679 			return -EINVAL;
12680 
12681 		return kvm_alloc_memslot_metadata(kvm, new);
12682 	}
12683 
12684 	if (change == KVM_MR_FLAGS_ONLY)
12685 		memcpy(&new->arch, &old->arch, sizeof(old->arch));
12686 	else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12687 		return -EIO;
12688 
12689 	return 0;
12690 }
12691 
12692 
kvm_mmu_update_cpu_dirty_logging(struct kvm * kvm,bool enable)12693 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12694 {
12695 	int nr_slots;
12696 
12697 	if (!kvm_x86_ops.cpu_dirty_log_size)
12698 		return;
12699 
12700 	nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging);
12701 	if ((enable && nr_slots == 1) || !nr_slots)
12702 		kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12703 }
12704 
kvm_mmu_slot_apply_flags(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)12705 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12706 				     struct kvm_memory_slot *old,
12707 				     const struct kvm_memory_slot *new,
12708 				     enum kvm_mr_change change)
12709 {
12710 	u32 old_flags = old ? old->flags : 0;
12711 	u32 new_flags = new ? new->flags : 0;
12712 	bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12713 
12714 	/*
12715 	 * Update CPU dirty logging if dirty logging is being toggled.  This
12716 	 * applies to all operations.
12717 	 */
12718 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12719 		kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
12720 
12721 	/*
12722 	 * Nothing more to do for RO slots (which can't be dirtied and can't be
12723 	 * made writable) or CREATE/MOVE/DELETE of a slot.
12724 	 *
12725 	 * For a memslot with dirty logging disabled:
12726 	 * CREATE:      No dirty mappings will already exist.
12727 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12728 	 *		kvm_arch_flush_shadow_memslot()
12729 	 *
12730 	 * For a memslot with dirty logging enabled:
12731 	 * CREATE:      No shadow pages exist, thus nothing to write-protect
12732 	 *		and no dirty bits to clear.
12733 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12734 	 *		kvm_arch_flush_shadow_memslot().
12735 	 */
12736 	if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12737 		return;
12738 
12739 	/*
12740 	 * READONLY and non-flags changes were filtered out above, and the only
12741 	 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12742 	 * logging isn't being toggled on or off.
12743 	 */
12744 	if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
12745 		return;
12746 
12747 	if (!log_dirty_pages) {
12748 		/*
12749 		 * Dirty logging tracks sptes in 4k granularity, meaning that
12750 		 * large sptes have to be split.  If live migration succeeds,
12751 		 * the guest in the source machine will be destroyed and large
12752 		 * sptes will be created in the destination.  However, if the
12753 		 * guest continues to run in the source machine (for example if
12754 		 * live migration fails), small sptes will remain around and
12755 		 * cause bad performance.
12756 		 *
12757 		 * Scan sptes if dirty logging has been stopped, dropping those
12758 		 * which can be collapsed into a single large-page spte.  Later
12759 		 * page faults will create the large-page sptes.
12760 		 */
12761 		kvm_mmu_zap_collapsible_sptes(kvm, new);
12762 	} else {
12763 		/*
12764 		 * Initially-all-set does not require write protecting any page,
12765 		 * because they're all assumed to be dirty.
12766 		 */
12767 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12768 			return;
12769 
12770 		if (READ_ONCE(eager_page_split))
12771 			kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
12772 
12773 		if (kvm_x86_ops.cpu_dirty_log_size) {
12774 			kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12775 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12776 		} else {
12777 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12778 		}
12779 
12780 		/*
12781 		 * Unconditionally flush the TLBs after enabling dirty logging.
12782 		 * A flush is almost always going to be necessary (see below),
12783 		 * and unconditionally flushing allows the helpers to omit
12784 		 * the subtly complex checks when removing write access.
12785 		 *
12786 		 * Do the flush outside of mmu_lock to reduce the amount of
12787 		 * time mmu_lock is held.  Flushing after dropping mmu_lock is
12788 		 * safe as KVM only needs to guarantee the slot is fully
12789 		 * write-protected before returning to userspace, i.e. before
12790 		 * userspace can consume the dirty status.
12791 		 *
12792 		 * Flushing outside of mmu_lock requires KVM to be careful when
12793 		 * making decisions based on writable status of an SPTE, e.g. a
12794 		 * !writable SPTE doesn't guarantee a CPU can't perform writes.
12795 		 *
12796 		 * Specifically, KVM also write-protects guest page tables to
12797 		 * monitor changes when using shadow paging, and must guarantee
12798 		 * no CPUs can write to those page before mmu_lock is dropped.
12799 		 * Because CPUs may have stale TLB entries at this point, a
12800 		 * !writable SPTE doesn't guarantee CPUs can't perform writes.
12801 		 *
12802 		 * KVM also allows making SPTES writable outside of mmu_lock,
12803 		 * e.g. to allow dirty logging without taking mmu_lock.
12804 		 *
12805 		 * To handle these scenarios, KVM uses a separate software-only
12806 		 * bit (MMU-writable) to track if a SPTE is !writable due to
12807 		 * a guest page table being write-protected (KVM clears the
12808 		 * MMU-writable flag when write-protecting for shadow paging).
12809 		 *
12810 		 * The use of MMU-writable is also the primary motivation for
12811 		 * the unconditional flush.  Because KVM must guarantee that a
12812 		 * CPU doesn't contain stale, writable TLB entries for a
12813 		 * !MMU-writable SPTE, KVM must flush if it encounters any
12814 		 * MMU-writable SPTE regardless of whether the actual hardware
12815 		 * writable bit was set.  I.e. KVM is almost guaranteed to need
12816 		 * to flush, while unconditionally flushing allows the "remove
12817 		 * write access" helpers to ignore MMU-writable entirely.
12818 		 *
12819 		 * See is_writable_pte() for more details (the case involving
12820 		 * access-tracked SPTEs is particularly relevant).
12821 		 */
12822 		kvm_flush_remote_tlbs_memslot(kvm, new);
12823 	}
12824 }
12825 
kvm_arch_commit_memory_region(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)12826 void kvm_arch_commit_memory_region(struct kvm *kvm,
12827 				struct kvm_memory_slot *old,
12828 				const struct kvm_memory_slot *new,
12829 				enum kvm_mr_change change)
12830 {
12831 	if (change == KVM_MR_DELETE)
12832 		kvm_page_track_delete_slot(kvm, old);
12833 
12834 	if (!kvm->arch.n_requested_mmu_pages &&
12835 	    (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
12836 		unsigned long nr_mmu_pages;
12837 
12838 		nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
12839 		nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
12840 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
12841 	}
12842 
12843 	kvm_mmu_slot_apply_flags(kvm, old, new, change);
12844 
12845 	/* Free the arrays associated with the old memslot. */
12846 	if (change == KVM_MR_MOVE)
12847 		kvm_arch_free_memslot(kvm, old);
12848 }
12849 
kvm_guest_apic_has_interrupt(struct kvm_vcpu * vcpu)12850 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
12851 {
12852 	return (is_guest_mode(vcpu) &&
12853 		static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
12854 }
12855 
kvm_vcpu_has_events(struct kvm_vcpu * vcpu)12856 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
12857 {
12858 	if (!list_empty_careful(&vcpu->async_pf.done))
12859 		return true;
12860 
12861 	if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
12862 	    kvm_apic_init_sipi_allowed(vcpu))
12863 		return true;
12864 
12865 	if (vcpu->arch.pv.pv_unhalted)
12866 		return true;
12867 
12868 	if (kvm_is_exception_pending(vcpu))
12869 		return true;
12870 
12871 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12872 	    (vcpu->arch.nmi_pending &&
12873 	     static_call(kvm_x86_nmi_allowed)(vcpu, false)))
12874 		return true;
12875 
12876 #ifdef CONFIG_KVM_SMM
12877 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
12878 	    (vcpu->arch.smi_pending &&
12879 	     static_call(kvm_x86_smi_allowed)(vcpu, false)))
12880 		return true;
12881 #endif
12882 
12883 	if (kvm_test_request(KVM_REQ_PMI, vcpu))
12884 		return true;
12885 
12886 	if (kvm_arch_interrupt_allowed(vcpu) &&
12887 	    (kvm_cpu_has_interrupt(vcpu) ||
12888 	    kvm_guest_apic_has_interrupt(vcpu)))
12889 		return true;
12890 
12891 	if (kvm_hv_has_stimer_pending(vcpu))
12892 		return true;
12893 
12894 	if (is_guest_mode(vcpu) &&
12895 	    kvm_x86_ops.nested_ops->has_events &&
12896 	    kvm_x86_ops.nested_ops->has_events(vcpu, false))
12897 		return true;
12898 
12899 	if (kvm_xen_has_pending_events(vcpu))
12900 		return true;
12901 
12902 	return false;
12903 }
12904 
kvm_arch_vcpu_runnable(struct kvm_vcpu * vcpu)12905 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
12906 {
12907 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
12908 }
12909 
kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu * vcpu)12910 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
12911 {
12912 	if (kvm_vcpu_apicv_active(vcpu) &&
12913 	    static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
12914 		return true;
12915 
12916 	return false;
12917 }
12918 
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)12919 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
12920 {
12921 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
12922 		return true;
12923 
12924 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12925 #ifdef CONFIG_KVM_SMM
12926 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
12927 #endif
12928 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
12929 		return true;
12930 
12931 	return kvm_arch_dy_has_pending_interrupt(vcpu);
12932 }
12933 
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)12934 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
12935 {
12936 	if (vcpu->arch.guest_state_protected)
12937 		return true;
12938 
12939 	return vcpu->arch.preempted_in_kernel;
12940 }
12941 
kvm_arch_vcpu_get_ip(struct kvm_vcpu * vcpu)12942 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
12943 {
12944 	return kvm_rip_read(vcpu);
12945 }
12946 
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)12947 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
12948 {
12949 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
12950 }
12951 
kvm_arch_interrupt_allowed(struct kvm_vcpu * vcpu)12952 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
12953 {
12954 	return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
12955 }
12956 
kvm_get_linear_rip(struct kvm_vcpu * vcpu)12957 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
12958 {
12959 	/* Can't read the RIP when guest state is protected, just return 0 */
12960 	if (vcpu->arch.guest_state_protected)
12961 		return 0;
12962 
12963 	if (is_64_bit_mode(vcpu))
12964 		return kvm_rip_read(vcpu);
12965 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
12966 		     kvm_rip_read(vcpu));
12967 }
12968 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
12969 
kvm_is_linear_rip(struct kvm_vcpu * vcpu,unsigned long linear_rip)12970 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
12971 {
12972 	return kvm_get_linear_rip(vcpu) == linear_rip;
12973 }
12974 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
12975 
kvm_get_rflags(struct kvm_vcpu * vcpu)12976 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
12977 {
12978 	unsigned long rflags;
12979 
12980 	rflags = static_call(kvm_x86_get_rflags)(vcpu);
12981 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12982 		rflags &= ~X86_EFLAGS_TF;
12983 	return rflags;
12984 }
12985 EXPORT_SYMBOL_GPL(kvm_get_rflags);
12986 
__kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)12987 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12988 {
12989 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
12990 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
12991 		rflags |= X86_EFLAGS_TF;
12992 	static_call(kvm_x86_set_rflags)(vcpu, rflags);
12993 }
12994 
kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)12995 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12996 {
12997 	__kvm_set_rflags(vcpu, rflags);
12998 	kvm_make_request(KVM_REQ_EVENT, vcpu);
12999 }
13000 EXPORT_SYMBOL_GPL(kvm_set_rflags);
13001 
kvm_async_pf_hash_fn(gfn_t gfn)13002 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
13003 {
13004 	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
13005 
13006 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
13007 }
13008 
kvm_async_pf_next_probe(u32 key)13009 static inline u32 kvm_async_pf_next_probe(u32 key)
13010 {
13011 	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
13012 }
13013 
kvm_add_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13014 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13015 {
13016 	u32 key = kvm_async_pf_hash_fn(gfn);
13017 
13018 	while (vcpu->arch.apf.gfns[key] != ~0)
13019 		key = kvm_async_pf_next_probe(key);
13020 
13021 	vcpu->arch.apf.gfns[key] = gfn;
13022 }
13023 
kvm_async_pf_gfn_slot(struct kvm_vcpu * vcpu,gfn_t gfn)13024 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
13025 {
13026 	int i;
13027 	u32 key = kvm_async_pf_hash_fn(gfn);
13028 
13029 	for (i = 0; i < ASYNC_PF_PER_VCPU &&
13030 		     (vcpu->arch.apf.gfns[key] != gfn &&
13031 		      vcpu->arch.apf.gfns[key] != ~0); i++)
13032 		key = kvm_async_pf_next_probe(key);
13033 
13034 	return key;
13035 }
13036 
kvm_find_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13037 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13038 {
13039 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
13040 }
13041 
kvm_del_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13042 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13043 {
13044 	u32 i, j, k;
13045 
13046 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
13047 
13048 	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
13049 		return;
13050 
13051 	while (true) {
13052 		vcpu->arch.apf.gfns[i] = ~0;
13053 		do {
13054 			j = kvm_async_pf_next_probe(j);
13055 			if (vcpu->arch.apf.gfns[j] == ~0)
13056 				return;
13057 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
13058 			/*
13059 			 * k lies cyclically in ]i,j]
13060 			 * |    i.k.j |
13061 			 * |....j i.k.| or  |.k..j i...|
13062 			 */
13063 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
13064 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
13065 		i = j;
13066 	}
13067 }
13068 
apf_put_user_notpresent(struct kvm_vcpu * vcpu)13069 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
13070 {
13071 	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
13072 
13073 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
13074 				      sizeof(reason));
13075 }
13076 
apf_put_user_ready(struct kvm_vcpu * vcpu,u32 token)13077 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
13078 {
13079 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13080 
13081 	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13082 					     &token, offset, sizeof(token));
13083 }
13084 
apf_pageready_slot_free(struct kvm_vcpu * vcpu)13085 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
13086 {
13087 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13088 	u32 val;
13089 
13090 	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13091 					 &val, offset, sizeof(val)))
13092 		return false;
13093 
13094 	return !val;
13095 }
13096 
kvm_can_deliver_async_pf(struct kvm_vcpu * vcpu)13097 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
13098 {
13099 
13100 	if (!kvm_pv_async_pf_enabled(vcpu))
13101 		return false;
13102 
13103 	if (vcpu->arch.apf.send_user_only &&
13104 	    static_call(kvm_x86_get_cpl)(vcpu) == 0)
13105 		return false;
13106 
13107 	if (is_guest_mode(vcpu)) {
13108 		/*
13109 		 * L1 needs to opt into the special #PF vmexits that are
13110 		 * used to deliver async page faults.
13111 		 */
13112 		return vcpu->arch.apf.delivery_as_pf_vmexit;
13113 	} else {
13114 		/*
13115 		 * Play it safe in case the guest temporarily disables paging.
13116 		 * The real mode IDT in particular is unlikely to have a #PF
13117 		 * exception setup.
13118 		 */
13119 		return is_paging(vcpu);
13120 	}
13121 }
13122 
kvm_can_do_async_pf(struct kvm_vcpu * vcpu)13123 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
13124 {
13125 	if (unlikely(!lapic_in_kernel(vcpu) ||
13126 		     kvm_event_needs_reinjection(vcpu) ||
13127 		     kvm_is_exception_pending(vcpu)))
13128 		return false;
13129 
13130 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
13131 		return false;
13132 
13133 	/*
13134 	 * If interrupts are off we cannot even use an artificial
13135 	 * halt state.
13136 	 */
13137 	return kvm_arch_interrupt_allowed(vcpu);
13138 }
13139 
kvm_arch_async_page_not_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)13140 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
13141 				     struct kvm_async_pf *work)
13142 {
13143 	struct x86_exception fault;
13144 
13145 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
13146 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
13147 
13148 	if (kvm_can_deliver_async_pf(vcpu) &&
13149 	    !apf_put_user_notpresent(vcpu)) {
13150 		fault.vector = PF_VECTOR;
13151 		fault.error_code_valid = true;
13152 		fault.error_code = 0;
13153 		fault.nested_page_fault = false;
13154 		fault.address = work->arch.token;
13155 		fault.async_page_fault = true;
13156 		kvm_inject_page_fault(vcpu, &fault);
13157 		return true;
13158 	} else {
13159 		/*
13160 		 * It is not possible to deliver a paravirtualized asynchronous
13161 		 * page fault, but putting the guest in an artificial halt state
13162 		 * can be beneficial nevertheless: if an interrupt arrives, we
13163 		 * can deliver it timely and perhaps the guest will schedule
13164 		 * another process.  When the instruction that triggered a page
13165 		 * fault is retried, hopefully the page will be ready in the host.
13166 		 */
13167 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
13168 		return false;
13169 	}
13170 }
13171 
kvm_arch_async_page_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)13172 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
13173 				 struct kvm_async_pf *work)
13174 {
13175 	struct kvm_lapic_irq irq = {
13176 		.delivery_mode = APIC_DM_FIXED,
13177 		.vector = vcpu->arch.apf.vec
13178 	};
13179 
13180 	if (work->wakeup_all)
13181 		work->arch.token = ~0; /* broadcast wakeup */
13182 	else
13183 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
13184 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
13185 
13186 	if ((work->wakeup_all || work->notpresent_injected) &&
13187 	    kvm_pv_async_pf_enabled(vcpu) &&
13188 	    !apf_put_user_ready(vcpu, work->arch.token)) {
13189 		vcpu->arch.apf.pageready_pending = true;
13190 		kvm_apic_set_irq(vcpu, &irq, NULL);
13191 	}
13192 
13193 	vcpu->arch.apf.halted = false;
13194 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
13195 }
13196 
kvm_arch_async_page_present_queued(struct kvm_vcpu * vcpu)13197 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13198 {
13199 	kvm_make_request(KVM_REQ_APF_READY, vcpu);
13200 	if (!vcpu->arch.apf.pageready_pending)
13201 		kvm_vcpu_kick(vcpu);
13202 }
13203 
kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu * vcpu)13204 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13205 {
13206 	if (!kvm_pv_async_pf_enabled(vcpu))
13207 		return true;
13208 	else
13209 		return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13210 }
13211 
kvm_arch_start_assignment(struct kvm * kvm)13212 void kvm_arch_start_assignment(struct kvm *kvm)
13213 {
13214 	if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
13215 		static_call_cond(kvm_x86_pi_start_assignment)(kvm);
13216 }
13217 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
13218 
kvm_arch_end_assignment(struct kvm * kvm)13219 void kvm_arch_end_assignment(struct kvm *kvm)
13220 {
13221 	atomic_dec(&kvm->arch.assigned_device_count);
13222 }
13223 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
13224 
kvm_arch_has_assigned_device(struct kvm * kvm)13225 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
13226 {
13227 	return raw_atomic_read(&kvm->arch.assigned_device_count);
13228 }
13229 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
13230 
kvm_arch_register_noncoherent_dma(struct kvm * kvm)13231 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13232 {
13233 	atomic_inc(&kvm->arch.noncoherent_dma_count);
13234 }
13235 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
13236 
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)13237 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13238 {
13239 	atomic_dec(&kvm->arch.noncoherent_dma_count);
13240 }
13241 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
13242 
kvm_arch_has_noncoherent_dma(struct kvm * kvm)13243 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13244 {
13245 	return atomic_read(&kvm->arch.noncoherent_dma_count);
13246 }
13247 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
13248 
kvm_arch_has_irq_bypass(void)13249 bool kvm_arch_has_irq_bypass(void)
13250 {
13251 	return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP);
13252 }
13253 
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)13254 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
13255 				      struct irq_bypass_producer *prod)
13256 {
13257 	struct kvm_kernel_irqfd *irqfd =
13258 		container_of(cons, struct kvm_kernel_irqfd, consumer);
13259 	int ret;
13260 
13261 	irqfd->producer = prod;
13262 	kvm_arch_start_assignment(irqfd->kvm);
13263 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
13264 					 prod->irq, irqfd->gsi, 1);
13265 
13266 	if (ret)
13267 		kvm_arch_end_assignment(irqfd->kvm);
13268 
13269 	return ret;
13270 }
13271 
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)13272 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13273 				      struct irq_bypass_producer *prod)
13274 {
13275 	int ret;
13276 	struct kvm_kernel_irqfd *irqfd =
13277 		container_of(cons, struct kvm_kernel_irqfd, consumer);
13278 
13279 	WARN_ON(irqfd->producer != prod);
13280 	irqfd->producer = NULL;
13281 
13282 	/*
13283 	 * When producer of consumer is unregistered, we change back to
13284 	 * remapped mode, so we can re-use the current implementation
13285 	 * when the irq is masked/disabled or the consumer side (KVM
13286 	 * int this case doesn't want to receive the interrupts.
13287 	*/
13288 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
13289 	if (ret)
13290 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13291 		       " fails: %d\n", irqfd->consumer.token, ret);
13292 
13293 	kvm_arch_end_assignment(irqfd->kvm);
13294 }
13295 
kvm_arch_update_irqfd_routing(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)13296 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13297 				   uint32_t guest_irq, bool set)
13298 {
13299 	return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
13300 }
13301 
kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry * old,struct kvm_kernel_irq_routing_entry * new)13302 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13303 				  struct kvm_kernel_irq_routing_entry *new)
13304 {
13305 	if (old->type != KVM_IRQ_ROUTING_MSI ||
13306 	    new->type != KVM_IRQ_ROUTING_MSI)
13307 		return true;
13308 
13309 	return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13310 }
13311 
kvm_vector_hashing_enabled(void)13312 bool kvm_vector_hashing_enabled(void)
13313 {
13314 	return vector_hashing;
13315 }
13316 
kvm_arch_no_poll(struct kvm_vcpu * vcpu)13317 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13318 {
13319 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13320 }
13321 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13322 
13323 
kvm_spec_ctrl_test_value(u64 value)13324 int kvm_spec_ctrl_test_value(u64 value)
13325 {
13326 	/*
13327 	 * test that setting IA32_SPEC_CTRL to given value
13328 	 * is allowed by the host processor
13329 	 */
13330 
13331 	u64 saved_value;
13332 	unsigned long flags;
13333 	int ret = 0;
13334 
13335 	local_irq_save(flags);
13336 
13337 	if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13338 		ret = 1;
13339 	else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13340 		ret = 1;
13341 	else
13342 		wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
13343 
13344 	local_irq_restore(flags);
13345 
13346 	return ret;
13347 }
13348 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13349 
kvm_fixup_and_inject_pf_error(struct kvm_vcpu * vcpu,gva_t gva,u16 error_code)13350 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13351 {
13352 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13353 	struct x86_exception fault;
13354 	u64 access = error_code &
13355 		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13356 
13357 	if (!(error_code & PFERR_PRESENT_MASK) ||
13358 	    mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13359 		/*
13360 		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13361 		 * tables probably do not match the TLB.  Just proceed
13362 		 * with the error code that the processor gave.
13363 		 */
13364 		fault.vector = PF_VECTOR;
13365 		fault.error_code_valid = true;
13366 		fault.error_code = error_code;
13367 		fault.nested_page_fault = false;
13368 		fault.address = gva;
13369 		fault.async_page_fault = false;
13370 	}
13371 	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13372 }
13373 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13374 
13375 /*
13376  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13377  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13378  * indicates whether exit to userspace is needed.
13379  */
kvm_handle_memory_failure(struct kvm_vcpu * vcpu,int r,struct x86_exception * e)13380 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13381 			      struct x86_exception *e)
13382 {
13383 	if (r == X86EMUL_PROPAGATE_FAULT) {
13384 		if (KVM_BUG_ON(!e, vcpu->kvm))
13385 			return -EIO;
13386 
13387 		kvm_inject_emulated_page_fault(vcpu, e);
13388 		return 1;
13389 	}
13390 
13391 	/*
13392 	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13393 	 * while handling a VMX instruction KVM could've handled the request
13394 	 * correctly by exiting to userspace and performing I/O but there
13395 	 * doesn't seem to be a real use-case behind such requests, just return
13396 	 * KVM_EXIT_INTERNAL_ERROR for now.
13397 	 */
13398 	kvm_prepare_emulation_failure_exit(vcpu);
13399 
13400 	return 0;
13401 }
13402 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13403 
kvm_handle_invpcid(struct kvm_vcpu * vcpu,unsigned long type,gva_t gva)13404 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13405 {
13406 	bool pcid_enabled;
13407 	struct x86_exception e;
13408 	struct {
13409 		u64 pcid;
13410 		u64 gla;
13411 	} operand;
13412 	int r;
13413 
13414 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13415 	if (r != X86EMUL_CONTINUE)
13416 		return kvm_handle_memory_failure(vcpu, r, &e);
13417 
13418 	if (operand.pcid >> 12 != 0) {
13419 		kvm_inject_gp(vcpu, 0);
13420 		return 1;
13421 	}
13422 
13423 	pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE);
13424 
13425 	switch (type) {
13426 	case INVPCID_TYPE_INDIV_ADDR:
13427 		if ((!pcid_enabled && (operand.pcid != 0)) ||
13428 		    is_noncanonical_address(operand.gla, vcpu)) {
13429 			kvm_inject_gp(vcpu, 0);
13430 			return 1;
13431 		}
13432 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13433 		return kvm_skip_emulated_instruction(vcpu);
13434 
13435 	case INVPCID_TYPE_SINGLE_CTXT:
13436 		if (!pcid_enabled && (operand.pcid != 0)) {
13437 			kvm_inject_gp(vcpu, 0);
13438 			return 1;
13439 		}
13440 
13441 		kvm_invalidate_pcid(vcpu, operand.pcid);
13442 		return kvm_skip_emulated_instruction(vcpu);
13443 
13444 	case INVPCID_TYPE_ALL_NON_GLOBAL:
13445 		/*
13446 		 * Currently, KVM doesn't mark global entries in the shadow
13447 		 * page tables, so a non-global flush just degenerates to a
13448 		 * global flush. If needed, we could optimize this later by
13449 		 * keeping track of global entries in shadow page tables.
13450 		 */
13451 
13452 		fallthrough;
13453 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
13454 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13455 		return kvm_skip_emulated_instruction(vcpu);
13456 
13457 	default:
13458 		kvm_inject_gp(vcpu, 0);
13459 		return 1;
13460 	}
13461 }
13462 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13463 
complete_sev_es_emulated_mmio(struct kvm_vcpu * vcpu)13464 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13465 {
13466 	struct kvm_run *run = vcpu->run;
13467 	struct kvm_mmio_fragment *frag;
13468 	unsigned int len;
13469 
13470 	BUG_ON(!vcpu->mmio_needed);
13471 
13472 	/* Complete previous fragment */
13473 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13474 	len = min(8u, frag->len);
13475 	if (!vcpu->mmio_is_write)
13476 		memcpy(frag->data, run->mmio.data, len);
13477 
13478 	if (frag->len <= 8) {
13479 		/* Switch to the next fragment. */
13480 		frag++;
13481 		vcpu->mmio_cur_fragment++;
13482 	} else {
13483 		/* Go forward to the next mmio piece. */
13484 		frag->data += len;
13485 		frag->gpa += len;
13486 		frag->len -= len;
13487 	}
13488 
13489 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13490 		vcpu->mmio_needed = 0;
13491 
13492 		// VMG change, at this point, we're always done
13493 		// RIP has already been advanced
13494 		return 1;
13495 	}
13496 
13497 	// More MMIO is needed
13498 	run->mmio.phys_addr = frag->gpa;
13499 	run->mmio.len = min(8u, frag->len);
13500 	run->mmio.is_write = vcpu->mmio_is_write;
13501 	if (run->mmio.is_write)
13502 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13503 	run->exit_reason = KVM_EXIT_MMIO;
13504 
13505 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13506 
13507 	return 0;
13508 }
13509 
kvm_sev_es_mmio_write(struct kvm_vcpu * vcpu,gpa_t gpa,unsigned int bytes,void * data)13510 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13511 			  void *data)
13512 {
13513 	int handled;
13514 	struct kvm_mmio_fragment *frag;
13515 
13516 	if (!data)
13517 		return -EINVAL;
13518 
13519 	handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13520 	if (handled == bytes)
13521 		return 1;
13522 
13523 	bytes -= handled;
13524 	gpa += handled;
13525 	data += handled;
13526 
13527 	/*TODO: Check if need to increment number of frags */
13528 	frag = vcpu->mmio_fragments;
13529 	vcpu->mmio_nr_fragments = 1;
13530 	frag->len = bytes;
13531 	frag->gpa = gpa;
13532 	frag->data = data;
13533 
13534 	vcpu->mmio_needed = 1;
13535 	vcpu->mmio_cur_fragment = 0;
13536 
13537 	vcpu->run->mmio.phys_addr = gpa;
13538 	vcpu->run->mmio.len = min(8u, frag->len);
13539 	vcpu->run->mmio.is_write = 1;
13540 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13541 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13542 
13543 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13544 
13545 	return 0;
13546 }
13547 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13548 
kvm_sev_es_mmio_read(struct kvm_vcpu * vcpu,gpa_t gpa,unsigned int bytes,void * data)13549 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13550 			 void *data)
13551 {
13552 	int handled;
13553 	struct kvm_mmio_fragment *frag;
13554 
13555 	if (!data)
13556 		return -EINVAL;
13557 
13558 	handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13559 	if (handled == bytes)
13560 		return 1;
13561 
13562 	bytes -= handled;
13563 	gpa += handled;
13564 	data += handled;
13565 
13566 	/*TODO: Check if need to increment number of frags */
13567 	frag = vcpu->mmio_fragments;
13568 	vcpu->mmio_nr_fragments = 1;
13569 	frag->len = bytes;
13570 	frag->gpa = gpa;
13571 	frag->data = data;
13572 
13573 	vcpu->mmio_needed = 1;
13574 	vcpu->mmio_cur_fragment = 0;
13575 
13576 	vcpu->run->mmio.phys_addr = gpa;
13577 	vcpu->run->mmio.len = min(8u, frag->len);
13578 	vcpu->run->mmio.is_write = 0;
13579 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13580 
13581 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13582 
13583 	return 0;
13584 }
13585 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13586 
advance_sev_es_emulated_pio(struct kvm_vcpu * vcpu,unsigned count,int size)13587 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13588 {
13589 	vcpu->arch.sev_pio_count -= count;
13590 	vcpu->arch.sev_pio_data += count * size;
13591 }
13592 
13593 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13594 			   unsigned int port);
13595 
complete_sev_es_emulated_outs(struct kvm_vcpu * vcpu)13596 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13597 {
13598 	int size = vcpu->arch.pio.size;
13599 	int port = vcpu->arch.pio.port;
13600 
13601 	vcpu->arch.pio.count = 0;
13602 	if (vcpu->arch.sev_pio_count)
13603 		return kvm_sev_es_outs(vcpu, size, port);
13604 	return 1;
13605 }
13606 
kvm_sev_es_outs(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port)13607 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13608 			   unsigned int port)
13609 {
13610 	for (;;) {
13611 		unsigned int count =
13612 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13613 		int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13614 
13615 		/* memcpy done already by emulator_pio_out.  */
13616 		advance_sev_es_emulated_pio(vcpu, count, size);
13617 		if (!ret)
13618 			break;
13619 
13620 		/* Emulation done by the kernel.  */
13621 		if (!vcpu->arch.sev_pio_count)
13622 			return 1;
13623 	}
13624 
13625 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13626 	return 0;
13627 }
13628 
13629 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13630 			  unsigned int port);
13631 
complete_sev_es_emulated_ins(struct kvm_vcpu * vcpu)13632 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13633 {
13634 	unsigned count = vcpu->arch.pio.count;
13635 	int size = vcpu->arch.pio.size;
13636 	int port = vcpu->arch.pio.port;
13637 
13638 	complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13639 	advance_sev_es_emulated_pio(vcpu, count, size);
13640 	if (vcpu->arch.sev_pio_count)
13641 		return kvm_sev_es_ins(vcpu, size, port);
13642 	return 1;
13643 }
13644 
kvm_sev_es_ins(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port)13645 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13646 			  unsigned int port)
13647 {
13648 	for (;;) {
13649 		unsigned int count =
13650 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13651 		if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
13652 			break;
13653 
13654 		/* Emulation done by the kernel.  */
13655 		advance_sev_es_emulated_pio(vcpu, count, size);
13656 		if (!vcpu->arch.sev_pio_count)
13657 			return 1;
13658 	}
13659 
13660 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13661 	return 0;
13662 }
13663 
kvm_sev_es_string_io(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port,void * data,unsigned int count,int in)13664 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13665 			 unsigned int port, void *data,  unsigned int count,
13666 			 int in)
13667 {
13668 	vcpu->arch.sev_pio_data = data;
13669 	vcpu->arch.sev_pio_count = count;
13670 	return in ? kvm_sev_es_ins(vcpu, size, port)
13671 		  : kvm_sev_es_outs(vcpu, size, port);
13672 }
13673 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13674 
13675 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13676 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13677 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13678 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13679 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13680 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13681 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13682 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
13683 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13684 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13685 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13686 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13687 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13688 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13689 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13690 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13691 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13692 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13693 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13694 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13695 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13696 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13697 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
13698 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
13699 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13700 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13701 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
13702 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13703 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
13704 
kvm_x86_init(void)13705 static int __init kvm_x86_init(void)
13706 {
13707 	kvm_init_xstate_sizes();
13708 
13709 	kvm_mmu_x86_module_init();
13710 	mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible();
13711 	return 0;
13712 }
13713 module_init(kvm_x86_init);
13714 
kvm_x86_exit(void)13715 static void __exit kvm_x86_exit(void)
13716 {
13717 	/*
13718 	 * If module_init() is implemented, module_exit() must also be
13719 	 * implemented to allow module unload.
13720 	 */
13721 }
13722 module_exit(kvm_x86_exit);
13723