1 /*
2 * ARM Generic Interrupt Controller using KVM in-kernel support
3 *
4 * Copyright (c) 2012 Linaro Limited
5 * Written by Peter Maydell
6 * Save/Restore logic added by Christoffer Dall.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
20 */
21
22 #include "qemu/osdep.h"
23 #include "qapi/error.h"
24 #include "qemu/module.h"
25 #include "migration/blocker.h"
26 #include "sysemu/kvm.h"
27 #include "kvm_arm.h"
28 #include "gic_internal.h"
29 #include "vgic_common.h"
30 #include "qom/object.h"
31
32 #define TYPE_KVM_ARM_GIC "kvm-arm-gic"
33 typedef struct KVMARMGICClass KVMARMGICClass;
34 /* This is reusing the GICState typedef from ARM_GIC_COMMON */
35 DECLARE_OBJ_CHECKERS(GICState, KVMARMGICClass,
36 KVM_ARM_GIC, TYPE_KVM_ARM_GIC)
37
38 struct KVMARMGICClass {
39 ARMGICCommonClass parent_class;
40 DeviceRealize parent_realize;
41 ResettablePhases parent_phases;
42 };
43
kvm_arm_gic_set_irq(uint32_t num_irq,int irq,int level)44 void kvm_arm_gic_set_irq(uint32_t num_irq, int irq, int level)
45 {
46 /* Meaning of the 'irq' parameter:
47 * [0..N-1] : external interrupts
48 * [N..N+31] : PPI (internal) interrupts for CPU 0
49 * [N+32..N+63] : PPI (internal interrupts for CPU 1
50 * ...
51 * Convert this to the kernel's desired encoding, which
52 * has separate fields in the irq number for type,
53 * CPU number and interrupt number.
54 */
55 int irqtype, cpu;
56
57 if (irq < (num_irq - GIC_INTERNAL)) {
58 /* External interrupt. The kernel numbers these like the GIC
59 * hardware, with external interrupt IDs starting after the
60 * internal ones.
61 */
62 irqtype = KVM_ARM_IRQ_TYPE_SPI;
63 cpu = 0;
64 irq += GIC_INTERNAL;
65 } else {
66 /* Internal interrupt: decode into (cpu, interrupt id) */
67 irqtype = KVM_ARM_IRQ_TYPE_PPI;
68 irq -= (num_irq - GIC_INTERNAL);
69 cpu = irq / GIC_INTERNAL;
70 irq %= GIC_INTERNAL;
71 }
72 kvm_arm_set_irq(cpu, irqtype, irq, !!level);
73 }
74
kvm_arm_gicv2_set_irq(void * opaque,int irq,int level)75 static void kvm_arm_gicv2_set_irq(void *opaque, int irq, int level)
76 {
77 GICState *s = (GICState *)opaque;
78
79 kvm_arm_gic_set_irq(s->num_irq, irq, level);
80 }
81
kvm_arm_gic_can_save_restore(GICState * s)82 static bool kvm_arm_gic_can_save_restore(GICState *s)
83 {
84 return s->dev_fd >= 0;
85 }
86
87 #define KVM_VGIC_ATTR(offset, cpu) \
88 ((((uint64_t)(cpu) << KVM_DEV_ARM_VGIC_CPUID_SHIFT) & \
89 KVM_DEV_ARM_VGIC_CPUID_MASK) | \
90 (((uint64_t)(offset) << KVM_DEV_ARM_VGIC_OFFSET_SHIFT) & \
91 KVM_DEV_ARM_VGIC_OFFSET_MASK))
92
kvm_gicd_access(GICState * s,int offset,int cpu,uint32_t * val,bool write)93 static void kvm_gicd_access(GICState *s, int offset, int cpu,
94 uint32_t *val, bool write)
95 {
96 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_DIST_REGS,
97 KVM_VGIC_ATTR(offset, cpu), val, write, &error_abort);
98 }
99
kvm_gicc_access(GICState * s,int offset,int cpu,uint32_t * val,bool write)100 static void kvm_gicc_access(GICState *s, int offset, int cpu,
101 uint32_t *val, bool write)
102 {
103 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_REGS,
104 KVM_VGIC_ATTR(offset, cpu), val, write, &error_abort);
105 }
106
107 #define for_each_irq_reg(_ctr, _max_irq, _field_width) \
108 for (_ctr = 0; _ctr < ((_max_irq) / (32 / (_field_width))); _ctr++)
109
110 /*
111 * Translate from the in-kernel field for an IRQ value to/from the qemu
112 * representation.
113 */
114 typedef void (*vgic_translate_fn)(GICState *s, int irq, int cpu,
115 uint32_t *field, bool to_kernel);
116
117 /* synthetic translate function used for clear/set registers to completely
118 * clear a setting using a clear-register before setting the remaining bits
119 * using a set-register */
translate_clear(GICState * s,int irq,int cpu,uint32_t * field,bool to_kernel)120 static void translate_clear(GICState *s, int irq, int cpu,
121 uint32_t *field, bool to_kernel)
122 {
123 if (to_kernel) {
124 *field = ~0;
125 } else {
126 /* does not make sense: qemu model doesn't use set/clear regs */
127 abort();
128 }
129 }
130
translate_group(GICState * s,int irq,int cpu,uint32_t * field,bool to_kernel)131 static void translate_group(GICState *s, int irq, int cpu,
132 uint32_t *field, bool to_kernel)
133 {
134 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
135
136 if (to_kernel) {
137 *field = GIC_DIST_TEST_GROUP(irq, cm);
138 } else {
139 if (*field & 1) {
140 GIC_DIST_SET_GROUP(irq, cm);
141 }
142 }
143 }
144
translate_enabled(GICState * s,int irq,int cpu,uint32_t * field,bool to_kernel)145 static void translate_enabled(GICState *s, int irq, int cpu,
146 uint32_t *field, bool to_kernel)
147 {
148 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
149
150 if (to_kernel) {
151 *field = GIC_DIST_TEST_ENABLED(irq, cm);
152 } else {
153 if (*field & 1) {
154 GIC_DIST_SET_ENABLED(irq, cm);
155 }
156 }
157 }
158
translate_pending(GICState * s,int irq,int cpu,uint32_t * field,bool to_kernel)159 static void translate_pending(GICState *s, int irq, int cpu,
160 uint32_t *field, bool to_kernel)
161 {
162 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
163
164 if (to_kernel) {
165 *field = gic_test_pending(s, irq, cm);
166 } else {
167 if (*field & 1) {
168 GIC_DIST_SET_PENDING(irq, cm);
169 /* TODO: Capture is level-line is held high in the kernel */
170 }
171 }
172 }
173
translate_active(GICState * s,int irq,int cpu,uint32_t * field,bool to_kernel)174 static void translate_active(GICState *s, int irq, int cpu,
175 uint32_t *field, bool to_kernel)
176 {
177 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
178
179 if (to_kernel) {
180 *field = GIC_DIST_TEST_ACTIVE(irq, cm);
181 } else {
182 if (*field & 1) {
183 GIC_DIST_SET_ACTIVE(irq, cm);
184 }
185 }
186 }
187
translate_trigger(GICState * s,int irq,int cpu,uint32_t * field,bool to_kernel)188 static void translate_trigger(GICState *s, int irq, int cpu,
189 uint32_t *field, bool to_kernel)
190 {
191 if (to_kernel) {
192 *field = (GIC_DIST_TEST_EDGE_TRIGGER(irq)) ? 0x2 : 0x0;
193 } else {
194 if (*field & 0x2) {
195 GIC_DIST_SET_EDGE_TRIGGER(irq);
196 }
197 }
198 }
199
translate_priority(GICState * s,int irq,int cpu,uint32_t * field,bool to_kernel)200 static void translate_priority(GICState *s, int irq, int cpu,
201 uint32_t *field, bool to_kernel)
202 {
203 if (to_kernel) {
204 *field = GIC_DIST_GET_PRIORITY(irq, cpu) & 0xff;
205 } else {
206 gic_dist_set_priority(s, cpu, irq,
207 *field & 0xff, MEMTXATTRS_UNSPECIFIED);
208 }
209 }
210
translate_targets(GICState * s,int irq,int cpu,uint32_t * field,bool to_kernel)211 static void translate_targets(GICState *s, int irq, int cpu,
212 uint32_t *field, bool to_kernel)
213 {
214 if (to_kernel) {
215 *field = s->irq_target[irq] & 0xff;
216 } else {
217 s->irq_target[irq] = *field & 0xff;
218 }
219 }
220
translate_sgisource(GICState * s,int irq,int cpu,uint32_t * field,bool to_kernel)221 static void translate_sgisource(GICState *s, int irq, int cpu,
222 uint32_t *field, bool to_kernel)
223 {
224 if (to_kernel) {
225 *field = s->sgi_pending[irq][cpu] & 0xff;
226 } else {
227 s->sgi_pending[irq][cpu] = *field & 0xff;
228 }
229 }
230
231 /* Read a register group from the kernel VGIC */
kvm_dist_get(GICState * s,uint32_t offset,int width,int maxirq,vgic_translate_fn translate_fn)232 static void kvm_dist_get(GICState *s, uint32_t offset, int width,
233 int maxirq, vgic_translate_fn translate_fn)
234 {
235 uint32_t reg;
236 int i;
237 int j;
238 int irq;
239 int cpu;
240 int regsz = 32 / width; /* irqs per kernel register */
241 uint32_t field;
242
243 for_each_irq_reg(i, maxirq, width) {
244 irq = i * regsz;
245 cpu = 0;
246 while ((cpu < s->num_cpu && irq < GIC_INTERNAL) || cpu == 0) {
247 kvm_gicd_access(s, offset, cpu, ®, false);
248 for (j = 0; j < regsz; j++) {
249 field = extract32(reg, j * width, width);
250 translate_fn(s, irq + j, cpu, &field, false);
251 }
252
253 cpu++;
254 }
255 offset += 4;
256 }
257 }
258
259 /* Write a register group to the kernel VGIC */
kvm_dist_put(GICState * s,uint32_t offset,int width,int maxirq,vgic_translate_fn translate_fn)260 static void kvm_dist_put(GICState *s, uint32_t offset, int width,
261 int maxirq, vgic_translate_fn translate_fn)
262 {
263 uint32_t reg;
264 int i;
265 int j;
266 int irq;
267 int cpu;
268 int regsz = 32 / width; /* irqs per kernel register */
269 uint32_t field;
270
271 for_each_irq_reg(i, maxirq, width) {
272 irq = i * regsz;
273 cpu = 0;
274 while ((cpu < s->num_cpu && irq < GIC_INTERNAL) || cpu == 0) {
275 reg = 0;
276 for (j = 0; j < regsz; j++) {
277 translate_fn(s, irq + j, cpu, &field, true);
278 reg = deposit32(reg, j * width, width, field);
279 }
280 kvm_gicd_access(s, offset, cpu, ®, true);
281
282 cpu++;
283 }
284 offset += 4;
285 }
286 }
287
kvm_arm_gic_put(GICState * s)288 static void kvm_arm_gic_put(GICState *s)
289 {
290 uint32_t reg;
291 int i;
292 int cpu;
293 int num_cpu;
294 int num_irq;
295
296 /* Note: We do the restore in a slightly different order than the save
297 * (where the order doesn't matter and is simply ordered according to the
298 * register offset values */
299
300 /*****************************************************************
301 * Distributor State
302 */
303
304 /* s->ctlr -> GICD_CTLR */
305 reg = s->ctlr;
306 kvm_gicd_access(s, 0x0, 0, ®, true);
307
308 /* Sanity checking on GICD_TYPER and s->num_irq, s->num_cpu */
309 kvm_gicd_access(s, 0x4, 0, ®, false);
310 num_irq = ((reg & 0x1f) + 1) * 32;
311 num_cpu = ((reg & 0xe0) >> 5) + 1;
312
313 if (num_irq < s->num_irq) {
314 fprintf(stderr, "Restoring %u IRQs, but kernel supports max %d\n",
315 s->num_irq, num_irq);
316 abort();
317 } else if (num_cpu != s->num_cpu) {
318 fprintf(stderr, "Restoring %u CPU interfaces, kernel only has %d\n",
319 s->num_cpu, num_cpu);
320 /* Did we not create the VCPUs in the kernel yet? */
321 abort();
322 }
323
324 /* TODO: Consider checking compatibility with the IIDR ? */
325
326 /* irq_state[n].enabled -> GICD_ISENABLERn */
327 kvm_dist_put(s, 0x180, 1, s->num_irq, translate_clear);
328 kvm_dist_put(s, 0x100, 1, s->num_irq, translate_enabled);
329
330 /* irq_state[n].group -> GICD_IGROUPRn */
331 kvm_dist_put(s, 0x80, 1, s->num_irq, translate_group);
332
333 /* s->irq_target[irq] -> GICD_ITARGETSRn
334 * (restore targets before pending to ensure the pending state is set on
335 * the appropriate CPU interfaces in the kernel) */
336 kvm_dist_put(s, 0x800, 8, s->num_irq, translate_targets);
337
338 /* irq_state[n].trigger -> GICD_ICFGRn
339 * (restore configuration registers before pending IRQs so we treat
340 * level/edge correctly) */
341 kvm_dist_put(s, 0xc00, 2, s->num_irq, translate_trigger);
342
343 /* irq_state[n].pending + irq_state[n].level -> GICD_ISPENDRn */
344 kvm_dist_put(s, 0x280, 1, s->num_irq, translate_clear);
345 kvm_dist_put(s, 0x200, 1, s->num_irq, translate_pending);
346
347 /* irq_state[n].active -> GICD_ISACTIVERn */
348 kvm_dist_put(s, 0x380, 1, s->num_irq, translate_clear);
349 kvm_dist_put(s, 0x300, 1, s->num_irq, translate_active);
350
351
352 /* s->priorityX[irq] -> ICD_IPRIORITYRn */
353 kvm_dist_put(s, 0x400, 8, s->num_irq, translate_priority);
354
355 /* s->sgi_pending -> ICD_CPENDSGIRn */
356 kvm_dist_put(s, 0xf10, 8, GIC_NR_SGIS, translate_clear);
357 kvm_dist_put(s, 0xf20, 8, GIC_NR_SGIS, translate_sgisource);
358
359
360 /*****************************************************************
361 * CPU Interface(s) State
362 */
363
364 for (cpu = 0; cpu < s->num_cpu; cpu++) {
365 /* s->cpu_ctlr[cpu] -> GICC_CTLR */
366 reg = s->cpu_ctlr[cpu];
367 kvm_gicc_access(s, 0x00, cpu, ®, true);
368
369 /* s->priority_mask[cpu] -> GICC_PMR */
370 reg = (s->priority_mask[cpu] & 0xff);
371 kvm_gicc_access(s, 0x04, cpu, ®, true);
372
373 /* s->bpr[cpu] -> GICC_BPR */
374 reg = (s->bpr[cpu] & 0x7);
375 kvm_gicc_access(s, 0x08, cpu, ®, true);
376
377 /* s->abpr[cpu] -> GICC_ABPR */
378 reg = (s->abpr[cpu] & 0x7);
379 kvm_gicc_access(s, 0x1c, cpu, ®, true);
380
381 /* s->apr[n][cpu] -> GICC_APRn */
382 for (i = 0; i < 4; i++) {
383 reg = s->apr[i][cpu];
384 kvm_gicc_access(s, 0xd0 + i * 4, cpu, ®, true);
385 }
386 }
387 }
388
kvm_arm_gic_get(GICState * s)389 static void kvm_arm_gic_get(GICState *s)
390 {
391 uint32_t reg;
392 int i;
393 int cpu;
394
395 /*****************************************************************
396 * Distributor State
397 */
398
399 /* GICD_CTLR -> s->ctlr */
400 kvm_gicd_access(s, 0x0, 0, ®, false);
401 s->ctlr = reg;
402
403 /* Sanity checking on GICD_TYPER -> s->num_irq, s->num_cpu */
404 kvm_gicd_access(s, 0x4, 0, ®, false);
405 s->num_irq = ((reg & 0x1f) + 1) * 32;
406 s->num_cpu = ((reg & 0xe0) >> 5) + 1;
407
408 if (s->num_irq > GIC_MAXIRQ) {
409 fprintf(stderr, "Too many IRQs reported from the kernel: %d\n",
410 s->num_irq);
411 abort();
412 }
413
414 /* GICD_IIDR -> ? */
415 kvm_gicd_access(s, 0x8, 0, ®, false);
416
417 /* Clear all the IRQ settings */
418 for (i = 0; i < s->num_irq; i++) {
419 memset(&s->irq_state[i], 0, sizeof(s->irq_state[0]));
420 }
421
422 /* GICD_IGROUPRn -> irq_state[n].group */
423 kvm_dist_get(s, 0x80, 1, s->num_irq, translate_group);
424
425 /* GICD_ISENABLERn -> irq_state[n].enabled */
426 kvm_dist_get(s, 0x100, 1, s->num_irq, translate_enabled);
427
428 /* GICD_ISPENDRn -> irq_state[n].pending + irq_state[n].level */
429 kvm_dist_get(s, 0x200, 1, s->num_irq, translate_pending);
430
431 /* GICD_ISACTIVERn -> irq_state[n].active */
432 kvm_dist_get(s, 0x300, 1, s->num_irq, translate_active);
433
434 /* GICD_ICFRn -> irq_state[n].trigger */
435 kvm_dist_get(s, 0xc00, 2, s->num_irq, translate_trigger);
436
437 /* GICD_IPRIORITYRn -> s->priorityX[irq] */
438 kvm_dist_get(s, 0x400, 8, s->num_irq, translate_priority);
439
440 /* GICD_ITARGETSRn -> s->irq_target[irq] */
441 kvm_dist_get(s, 0x800, 8, s->num_irq, translate_targets);
442
443 /* GICD_CPENDSGIRn -> s->sgi_pending */
444 kvm_dist_get(s, 0xf10, 8, GIC_NR_SGIS, translate_sgisource);
445
446
447 /*****************************************************************
448 * CPU Interface(s) State
449 */
450
451 for (cpu = 0; cpu < s->num_cpu; cpu++) {
452 /* GICC_CTLR -> s->cpu_ctlr[cpu] */
453 kvm_gicc_access(s, 0x00, cpu, ®, false);
454 s->cpu_ctlr[cpu] = reg;
455
456 /* GICC_PMR -> s->priority_mask[cpu] */
457 kvm_gicc_access(s, 0x04, cpu, ®, false);
458 s->priority_mask[cpu] = (reg & 0xff);
459
460 /* GICC_BPR -> s->bpr[cpu] */
461 kvm_gicc_access(s, 0x08, cpu, ®, false);
462 s->bpr[cpu] = (reg & 0x7);
463
464 /* GICC_ABPR -> s->abpr[cpu] */
465 kvm_gicc_access(s, 0x1c, cpu, ®, false);
466 s->abpr[cpu] = (reg & 0x7);
467
468 /* GICC_APRn -> s->apr[n][cpu] */
469 for (i = 0; i < 4; i++) {
470 kvm_gicc_access(s, 0xd0 + i * 4, cpu, ®, false);
471 s->apr[i][cpu] = reg;
472 }
473 }
474 }
475
kvm_arm_gic_reset_hold(Object * obj,ResetType type)476 static void kvm_arm_gic_reset_hold(Object *obj, ResetType type)
477 {
478 GICState *s = ARM_GIC_COMMON(obj);
479 KVMARMGICClass *kgc = KVM_ARM_GIC_GET_CLASS(s);
480
481 if (kgc->parent_phases.hold) {
482 kgc->parent_phases.hold(obj, type);
483 }
484
485 if (kvm_arm_gic_can_save_restore(s)) {
486 kvm_arm_gic_put(s);
487 }
488 }
489
kvm_arm_gic_realize(DeviceState * dev,Error ** errp)490 static void kvm_arm_gic_realize(DeviceState *dev, Error **errp)
491 {
492 int i;
493 GICState *s = KVM_ARM_GIC(dev);
494 KVMARMGICClass *kgc = KVM_ARM_GIC_GET_CLASS(s);
495 Error *local_err = NULL;
496 int ret;
497
498 kgc->parent_realize(dev, &local_err);
499 if (local_err) {
500 error_propagate(errp, local_err);
501 return;
502 }
503
504 if (s->security_extn) {
505 error_setg(errp, "the in-kernel VGIC does not implement the "
506 "security extensions");
507 return;
508 }
509
510 if (s->virt_extn) {
511 error_setg(errp, "the in-kernel VGIC does not implement the "
512 "virtualization extensions");
513 return;
514 }
515
516 if (!kvm_arm_gic_can_save_restore(s)) {
517 error_setg(&s->migration_blocker, "This operating system kernel does "
518 "not support vGICv2 migration");
519 if (migrate_add_blocker(&s->migration_blocker, errp) < 0) {
520 return;
521 }
522 }
523
524 gic_init_irqs_and_mmio(s, kvm_arm_gicv2_set_irq, NULL, NULL);
525
526 for (i = 0; i < s->num_irq - GIC_INTERNAL; i++) {
527 qemu_irq irq = qdev_get_gpio_in(dev, i);
528 kvm_irqchip_set_qemuirq_gsi(kvm_state, irq, i);
529 }
530
531 /* Try to create the device via the device control API */
532 s->dev_fd = -1;
533 ret = kvm_create_device(kvm_state, KVM_DEV_TYPE_ARM_VGIC_V2, false);
534 if (ret >= 0) {
535 s->dev_fd = ret;
536
537 /* Newstyle API is used, we may have attributes */
538 if (kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_NR_IRQS, 0)) {
539 uint32_t numirqs = s->num_irq;
540 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_NR_IRQS, 0,
541 &numirqs, true, &error_abort);
542 }
543 /* Tell the kernel to complete VGIC initialization now */
544 if (kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
545 KVM_DEV_ARM_VGIC_CTRL_INIT)) {
546 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
547 KVM_DEV_ARM_VGIC_CTRL_INIT, NULL, true,
548 &error_abort);
549 }
550 } else if (kvm_check_extension(kvm_state, KVM_CAP_DEVICE_CTRL)) {
551 error_setg_errno(errp, -ret, "error creating in-kernel VGIC");
552 error_append_hint(errp,
553 "Perhaps the host CPU does not support GICv2?\n");
554 } else if (ret != -ENODEV && ret != -ENOTSUP) {
555 /*
556 * Very ancient kernel without KVM_CAP_DEVICE_CTRL: assume that
557 * ENODEV or ENOTSUP mean "can't create GICv2 with KVM_CREATE_DEVICE",
558 * and that we will get a GICv2 via KVM_CREATE_IRQCHIP.
559 */
560 error_setg_errno(errp, -ret, "error creating in-kernel VGIC");
561 return;
562 }
563
564 /* Distributor */
565 kvm_arm_register_device(&s->iomem,
566 (KVM_ARM_DEVICE_VGIC_V2 << KVM_ARM_DEVICE_ID_SHIFT)
567 | KVM_VGIC_V2_ADDR_TYPE_DIST,
568 KVM_DEV_ARM_VGIC_GRP_ADDR,
569 KVM_VGIC_V2_ADDR_TYPE_DIST,
570 s->dev_fd, 0);
571 /* CPU interface for current core. Unlike arm_gic, we don't
572 * provide the "interface for core #N" memory regions, because
573 * cores with a VGIC don't have those.
574 */
575 kvm_arm_register_device(&s->cpuiomem[0],
576 (KVM_ARM_DEVICE_VGIC_V2 << KVM_ARM_DEVICE_ID_SHIFT)
577 | KVM_VGIC_V2_ADDR_TYPE_CPU,
578 KVM_DEV_ARM_VGIC_GRP_ADDR,
579 KVM_VGIC_V2_ADDR_TYPE_CPU,
580 s->dev_fd, 0);
581
582 if (kvm_has_gsi_routing()) {
583 /* set up irq routing */
584 for (i = 0; i < s->num_irq - GIC_INTERNAL; ++i) {
585 kvm_irqchip_add_irq_route(kvm_state, i, 0, i);
586 }
587
588 kvm_gsi_routing_allowed = true;
589
590 kvm_irqchip_commit_routes(kvm_state);
591 }
592 }
593
kvm_arm_gic_class_init(ObjectClass * klass,void * data)594 static void kvm_arm_gic_class_init(ObjectClass *klass, void *data)
595 {
596 DeviceClass *dc = DEVICE_CLASS(klass);
597 ResettableClass *rc = RESETTABLE_CLASS(klass);
598 ARMGICCommonClass *agcc = ARM_GIC_COMMON_CLASS(klass);
599 KVMARMGICClass *kgc = KVM_ARM_GIC_CLASS(klass);
600
601 agcc->pre_save = kvm_arm_gic_get;
602 agcc->post_load = kvm_arm_gic_put;
603 device_class_set_parent_realize(dc, kvm_arm_gic_realize,
604 &kgc->parent_realize);
605 resettable_class_set_parent_phases(rc, NULL, kvm_arm_gic_reset_hold, NULL,
606 &kgc->parent_phases);
607 }
608
609 static const TypeInfo kvm_arm_gic_info = {
610 .name = TYPE_KVM_ARM_GIC,
611 .parent = TYPE_ARM_GIC_COMMON,
612 .instance_size = sizeof(GICState),
613 .class_init = kvm_arm_gic_class_init,
614 .class_size = sizeof(KVMARMGICClass),
615 };
616
kvm_arm_gic_register_types(void)617 static void kvm_arm_gic_register_types(void)
618 {
619 type_register_static(&kvm_arm_gic_info);
620 }
621
622 type_init(kvm_arm_gic_register_types)
623