xref: /openbmc/qemu/target/arm/kvm.c (revision 0edc2afe0c8197bbcb98f948c609fb74c9b1ffd5)
1 /*
2  * ARM implementation of KVM hooks
3  *
4  * Copyright Christoffer Dall 2009-2010
5  * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
6  * Copyright Alex Bennée 2014, Linaro
7  *
8  * This work is licensed under the terms of the GNU GPL, version 2 or later.
9  * See the COPYING file in the top-level directory.
10  *
11  */
12 
13 #include "qemu/osdep.h"
14 #include <sys/ioctl.h>
15 
16 #include <linux/kvm.h>
17 
18 #include "qemu/timer.h"
19 #include "qemu/error-report.h"
20 #include "qemu/main-loop.h"
21 #include "qom/object.h"
22 #include "qapi/error.h"
23 #include "system/system.h"
24 #include "system/runstate.h"
25 #include "system/kvm.h"
26 #include "system/kvm_int.h"
27 #include "kvm_arm.h"
28 #include "cpu.h"
29 #include "cpu-sysregs.h"
30 #include "trace.h"
31 #include "internals.h"
32 #include "hw/pci/pci.h"
33 #include "exec/memattrs.h"
34 #include "system/address-spaces.h"
35 #include "gdbstub/enums.h"
36 #include "hw/boards.h"
37 #include "hw/irq.h"
38 #include "qapi/visitor.h"
39 #include "qemu/log.h"
40 #include "hw/acpi/acpi.h"
41 #include "hw/acpi/ghes.h"
42 #include "target/arm/gtimer.h"
43 #include "migration/blocker.h"
44 
45 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
46     KVM_CAP_INFO(DEVICE_CTRL),
47     KVM_CAP_LAST_INFO
48 };
49 
50 static bool cap_has_mp_state;
51 static bool cap_has_inject_serror_esr;
52 static bool cap_has_inject_ext_dabt;
53 
54 /**
55  * ARMHostCPUFeatures: information about the host CPU (identified
56  * by asking the host kernel)
57  */
58 typedef struct ARMHostCPUFeatures {
59     ARMISARegisters isar;
60     uint64_t features;
61     uint32_t target;
62     const char *dtb_compatible;
63 } ARMHostCPUFeatures;
64 
65 static ARMHostCPUFeatures arm_host_cpu_features;
66 
67 /**
68  * kvm_arm_vcpu_init:
69  * @cpu: ARMCPU
70  *
71  * Initialize (or reinitialize) the VCPU by invoking the
72  * KVM_ARM_VCPU_INIT ioctl with the CPU type and feature
73  * bitmask specified in the CPUState.
74  *
75  * Returns: 0 if success else < 0 error code
76  */
kvm_arm_vcpu_init(ARMCPU * cpu)77 static int kvm_arm_vcpu_init(ARMCPU *cpu)
78 {
79     struct kvm_vcpu_init init;
80 
81     init.target = cpu->kvm_target;
82     memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
83 
84     return kvm_vcpu_ioctl(CPU(cpu), KVM_ARM_VCPU_INIT, &init);
85 }
86 
87 /**
88  * kvm_arm_vcpu_finalize:
89  * @cpu: ARMCPU
90  * @feature: feature to finalize
91  *
92  * Finalizes the configuration of the specified VCPU feature by
93  * invoking the KVM_ARM_VCPU_FINALIZE ioctl. Features requiring
94  * this are documented in the "KVM_ARM_VCPU_FINALIZE" section of
95  * KVM's API documentation.
96  *
97  * Returns: 0 if success else < 0 error code
98  */
kvm_arm_vcpu_finalize(ARMCPU * cpu,int feature)99 static int kvm_arm_vcpu_finalize(ARMCPU *cpu, int feature)
100 {
101     return kvm_vcpu_ioctl(CPU(cpu), KVM_ARM_VCPU_FINALIZE, &feature);
102 }
103 
kvm_arm_create_scratch_host_vcpu(int * fdarray,struct kvm_vcpu_init * init)104 bool kvm_arm_create_scratch_host_vcpu(int *fdarray,
105                                       struct kvm_vcpu_init *init)
106 {
107     int ret = 0, kvmfd = -1, vmfd = -1, cpufd = -1;
108     int max_vm_pa_size;
109 
110     kvmfd = qemu_open_old("/dev/kvm", O_RDWR);
111     if (kvmfd < 0) {
112         goto err;
113     }
114     max_vm_pa_size = ioctl(kvmfd, KVM_CHECK_EXTENSION, KVM_CAP_ARM_VM_IPA_SIZE);
115     if (max_vm_pa_size < 0) {
116         max_vm_pa_size = 0;
117     }
118     do {
119         vmfd = ioctl(kvmfd, KVM_CREATE_VM, max_vm_pa_size);
120     } while (vmfd == -1 && errno == EINTR);
121     if (vmfd < 0) {
122         goto err;
123     }
124 
125     /*
126      * The MTE capability must be enabled by the VMM before creating
127      * any VCPUs in order to allow the MTE bits of the ID_AA64PFR1
128      * register to be probed correctly, as they are masked if MTE
129      * is not enabled.
130      */
131     if (kvm_arm_mte_supported()) {
132         KVMState kvm_state;
133 
134         kvm_state.fd = kvmfd;
135         kvm_state.vmfd = vmfd;
136         kvm_vm_enable_cap(&kvm_state, KVM_CAP_ARM_MTE, 0);
137     }
138 
139     cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
140     if (cpufd < 0) {
141         goto err;
142     }
143 
144     if (!init) {
145         /* Caller doesn't want the VCPU to be initialized, so skip it */
146         goto finish;
147     }
148 
149     if (init->target == -1) {
150         struct kvm_vcpu_init preferred;
151 
152         ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, &preferred);
153         if (ret < 0) {
154             goto err;
155         }
156         init->target = preferred.target;
157     }
158     ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
159     if (ret < 0) {
160         goto err;
161     }
162 
163 finish:
164     fdarray[0] = kvmfd;
165     fdarray[1] = vmfd;
166     fdarray[2] = cpufd;
167 
168     return true;
169 
170 err:
171     if (cpufd >= 0) {
172         close(cpufd);
173     }
174     if (vmfd >= 0) {
175         close(vmfd);
176     }
177     if (kvmfd >= 0) {
178         close(kvmfd);
179     }
180 
181     return false;
182 }
183 
kvm_arm_destroy_scratch_host_vcpu(int * fdarray)184 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
185 {
186     int i;
187 
188     for (i = 2; i >= 0; i--) {
189         close(fdarray[i]);
190     }
191 }
192 
read_sys_reg32(int fd,uint32_t * pret,uint64_t id)193 static int read_sys_reg32(int fd, uint32_t *pret, uint64_t id)
194 {
195     uint64_t ret;
196     struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)&ret };
197     int err;
198 
199     assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
200     err = ioctl(fd, KVM_GET_ONE_REG, &idreg);
201     if (err < 0) {
202         return -1;
203     }
204     *pret = ret;
205     return 0;
206 }
207 
read_sys_reg64(int fd,uint64_t * pret,uint64_t id)208 static int read_sys_reg64(int fd, uint64_t *pret, uint64_t id)
209 {
210     struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)pret };
211 
212     assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
213     return ioctl(fd, KVM_GET_ONE_REG, &idreg);
214 }
215 
kvm_arm_pauth_supported(void)216 static bool kvm_arm_pauth_supported(void)
217 {
218     return (kvm_check_extension(kvm_state, KVM_CAP_ARM_PTRAUTH_ADDRESS) &&
219             kvm_check_extension(kvm_state, KVM_CAP_ARM_PTRAUTH_GENERIC));
220 }
221 
222 
idregs_sysreg_to_kvm_reg(ARMSysRegs sysreg)223 static uint64_t idregs_sysreg_to_kvm_reg(ARMSysRegs sysreg)
224 {
225     return ARM64_SYS_REG((sysreg & CP_REG_ARM64_SYSREG_OP0_MASK) >> CP_REG_ARM64_SYSREG_OP0_SHIFT,
226                          (sysreg & CP_REG_ARM64_SYSREG_OP1_MASK) >> CP_REG_ARM64_SYSREG_OP1_SHIFT,
227                          (sysreg & CP_REG_ARM64_SYSREG_CRN_MASK) >> CP_REG_ARM64_SYSREG_CRN_SHIFT,
228                          (sysreg & CP_REG_ARM64_SYSREG_CRM_MASK) >> CP_REG_ARM64_SYSREG_CRM_SHIFT,
229                          (sysreg & CP_REG_ARM64_SYSREG_OP2_MASK) >> CP_REG_ARM64_SYSREG_OP2_SHIFT);
230 }
231 
232 /* read a sysreg value and store it in the idregs */
get_host_cpu_reg(int fd,ARMHostCPUFeatures * ahcf,ARMIDRegisterIdx index)233 static int get_host_cpu_reg(int fd, ARMHostCPUFeatures *ahcf,
234                             ARMIDRegisterIdx index)
235 {
236     uint64_t *reg;
237     int ret;
238 
239     reg = &ahcf->isar.idregs[index];
240     ret = read_sys_reg64(fd, reg,
241                          idregs_sysreg_to_kvm_reg(id_register_sysreg[index]));
242     return ret;
243 }
244 
kvm_arm_get_host_cpu_features(ARMHostCPUFeatures * ahcf)245 static bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
246 {
247     /* Identify the feature bits corresponding to the host CPU, and
248      * fill out the ARMHostCPUClass fields accordingly. To do this
249      * we have to create a scratch VM, create a single CPU inside it,
250      * and then query that CPU for the relevant ID registers.
251      */
252     int fdarray[3];
253     bool sve_supported;
254     bool el2_supported;
255     bool pmu_supported = false;
256     uint64_t features = 0;
257     int err;
258 
259     /*
260      * target = -1 informs kvm_arm_create_scratch_host_vcpu()
261      * to use the preferred target
262      */
263     struct kvm_vcpu_init init = { .target = -1, };
264 
265     /*
266      * Ask for SVE if supported, so that we can query ID_AA64ZFR0,
267      * which is otherwise RAZ.
268      */
269     sve_supported = kvm_arm_sve_supported();
270     if (sve_supported) {
271         init.features[0] |= 1 << KVM_ARM_VCPU_SVE;
272     }
273 
274     /*
275      * Ask for EL2 if supported.
276      */
277     el2_supported = kvm_arm_el2_supported();
278     if (el2_supported) {
279         init.features[0] |= 1 << KVM_ARM_VCPU_HAS_EL2;
280     }
281 
282     /*
283      * Ask for Pointer Authentication if supported, so that we get
284      * the unsanitized field values for AA64ISAR1_EL1.
285      */
286     if (kvm_arm_pauth_supported()) {
287         init.features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS |
288                              1 << KVM_ARM_VCPU_PTRAUTH_GENERIC);
289     }
290 
291     if (kvm_arm_pmu_supported()) {
292         init.features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
293         pmu_supported = true;
294         features |= 1ULL << ARM_FEATURE_PMU;
295     }
296 
297     if (!kvm_arm_create_scratch_host_vcpu(fdarray, &init)) {
298         return false;
299     }
300 
301     ahcf->target = init.target;
302     ahcf->dtb_compatible = "arm,armv8";
303     int fd = fdarray[2];
304 
305     err = get_host_cpu_reg(fd, ahcf, ID_AA64PFR0_EL1_IDX);
306     if (unlikely(err < 0)) {
307         /*
308          * Before v4.15, the kernel only exposed a limited number of system
309          * registers, not including any of the interesting AArch64 ID regs.
310          * For the most part we could leave these fields as zero with minimal
311          * effect, since this does not affect the values seen by the guest.
312          *
313          * However, it could cause problems down the line for QEMU,
314          * so provide a minimal v8.0 default.
315          *
316          * ??? Could read MIDR and use knowledge from cpu64.c.
317          * ??? Could map a page of memory into our temp guest and
318          *     run the tiniest of hand-crafted kernels to extract
319          *     the values seen by the guest.
320          * ??? Either of these sounds like too much effort just
321          *     to work around running a modern host kernel.
322          */
323         SET_IDREG(&ahcf->isar, ID_AA64PFR0, 0x00000011); /* EL1&0, AArch64 only */
324         err = 0;
325     } else {
326         err |= get_host_cpu_reg(fd, ahcf, ID_AA64PFR1_EL1_IDX);
327         err |= get_host_cpu_reg(fd, ahcf, ID_AA64SMFR0_EL1_IDX);
328         err |= get_host_cpu_reg(fd, ahcf, ID_AA64DFR0_EL1_IDX);
329         err |= get_host_cpu_reg(fd, ahcf, ID_AA64DFR1_EL1_IDX);
330         err |= get_host_cpu_reg(fd, ahcf, ID_AA64ISAR0_EL1_IDX);
331         err |= get_host_cpu_reg(fd, ahcf, ID_AA64ISAR1_EL1_IDX);
332         err |= get_host_cpu_reg(fd, ahcf, ID_AA64ISAR2_EL1_IDX);
333         err |= get_host_cpu_reg(fd, ahcf, ID_AA64MMFR0_EL1_IDX);
334         err |= get_host_cpu_reg(fd, ahcf, ID_AA64MMFR1_EL1_IDX);
335         err |= get_host_cpu_reg(fd, ahcf, ID_AA64MMFR2_EL1_IDX);
336         err |= get_host_cpu_reg(fd, ahcf, ID_AA64MMFR3_EL1_IDX);
337 
338         /*
339          * Note that if AArch32 support is not present in the host,
340          * the AArch32 sysregs are present to be read, but will
341          * return UNKNOWN values.  This is neither better nor worse
342          * than skipping the reads and leaving 0, as we must avoid
343          * considering the values in every case.
344          */
345         err |= get_host_cpu_reg(fd, ahcf, ID_PFR0_EL1_IDX);
346         err |= get_host_cpu_reg(fd, ahcf, ID_PFR1_EL1_IDX);
347         err |= get_host_cpu_reg(fd, ahcf, ID_DFR0_EL1_IDX);
348         err |= get_host_cpu_reg(fd, ahcf, ID_MMFR0_EL1_IDX);
349         err |= get_host_cpu_reg(fd, ahcf, ID_MMFR1_EL1_IDX);
350         err |= get_host_cpu_reg(fd, ahcf, ID_MMFR2_EL1_IDX);
351         err |= get_host_cpu_reg(fd, ahcf, ID_MMFR3_EL1_IDX);
352         err |= get_host_cpu_reg(fd, ahcf, ID_ISAR0_EL1_IDX);
353         err |= get_host_cpu_reg(fd, ahcf, ID_ISAR1_EL1_IDX);
354         err |= get_host_cpu_reg(fd, ahcf, ID_ISAR2_EL1_IDX);
355         err |= get_host_cpu_reg(fd, ahcf, ID_ISAR3_EL1_IDX);
356         err |= get_host_cpu_reg(fd, ahcf, ID_ISAR4_EL1_IDX);
357         err |= get_host_cpu_reg(fd, ahcf, ID_ISAR5_EL1_IDX);
358         err |= get_host_cpu_reg(fd, ahcf, ID_ISAR6_EL1_IDX);
359         err |= get_host_cpu_reg(fd, ahcf, ID_MMFR4_EL1_IDX);
360 
361         err |= read_sys_reg32(fd, &ahcf->isar.mvfr0,
362                               ARM64_SYS_REG(3, 0, 0, 3, 0));
363         err |= read_sys_reg32(fd, &ahcf->isar.mvfr1,
364                               ARM64_SYS_REG(3, 0, 0, 3, 1));
365         err |= read_sys_reg32(fd, &ahcf->isar.mvfr2,
366                               ARM64_SYS_REG(3, 0, 0, 3, 2));
367         err |= get_host_cpu_reg(fd, ahcf, ID_PFR2_EL1_IDX);
368         err |= get_host_cpu_reg(fd, ahcf, ID_DFR1_EL1_IDX);
369         err |= get_host_cpu_reg(fd, ahcf, ID_MMFR5_EL1_IDX);
370 
371         /*
372          * DBGDIDR is a bit complicated because the kernel doesn't
373          * provide an accessor for it in 64-bit mode, which is what this
374          * scratch VM is in, and there's no architected "64-bit sysreg
375          * which reads the same as the 32-bit register" the way there is
376          * for other ID registers. Instead we synthesize a value from the
377          * AArch64 ID_AA64DFR0, the same way the kernel code in
378          * arch/arm64/kvm/sys_regs.c:trap_dbgidr() does.
379          * We only do this if the CPU supports AArch32 at EL1.
380          */
381         if (FIELD_EX32_IDREG(&ahcf->isar, ID_AA64PFR0, EL1) >= 2) {
382             int wrps = FIELD_EX64_IDREG(&ahcf->isar, ID_AA64DFR0, WRPS);
383             int brps = FIELD_EX64_IDREG(&ahcf->isar, ID_AA64DFR0, BRPS);
384             int ctx_cmps =
385                 FIELD_EX64_IDREG(&ahcf->isar, ID_AA64DFR0, CTX_CMPS);
386             int version = 6; /* ARMv8 debug architecture */
387             bool has_el3 =
388                 !!FIELD_EX32_IDREG(&ahcf->isar, ID_AA64PFR0, EL3);
389             uint32_t dbgdidr = 0;
390 
391             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, WRPS, wrps);
392             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, BRPS, brps);
393             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, CTX_CMPS, ctx_cmps);
394             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, VERSION, version);
395             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, NSUHD_IMP, has_el3);
396             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, SE_IMP, has_el3);
397             dbgdidr |= (1 << 15); /* RES1 bit */
398             ahcf->isar.dbgdidr = dbgdidr;
399         }
400 
401         if (pmu_supported) {
402             /* PMCR_EL0 is only accessible if the vCPU has feature PMU_V3 */
403             err |= read_sys_reg64(fd, &ahcf->isar.reset_pmcr_el0,
404                                   ARM64_SYS_REG(3, 3, 9, 12, 0));
405         }
406 
407         if (sve_supported) {
408             /*
409              * There is a range of kernels between kernel commit 73433762fcae
410              * and f81cb2c3ad41 which have a bug where the kernel doesn't
411              * expose SYS_ID_AA64ZFR0_EL1 via the ONE_REG API unless the VM has
412              * enabled SVE support, which resulted in an error rather than RAZ.
413              * So only read the register if we set KVM_ARM_VCPU_SVE above.
414              */
415             err |= get_host_cpu_reg(fd, ahcf, ID_AA64ZFR0_EL1_IDX);
416         }
417     }
418 
419     kvm_arm_destroy_scratch_host_vcpu(fdarray);
420 
421     if (err < 0) {
422         return false;
423     }
424 
425     /*
426      * We can assume any KVM supporting CPU is at least a v8
427      * with VFPv4+Neon; this in turn implies most of the other
428      * feature bits.
429      */
430     features |= 1ULL << ARM_FEATURE_V8;
431     features |= 1ULL << ARM_FEATURE_NEON;
432     features |= 1ULL << ARM_FEATURE_AARCH64;
433     features |= 1ULL << ARM_FEATURE_GENERIC_TIMER;
434 
435     if (el2_supported) {
436         features |= 1ULL << ARM_FEATURE_EL2;
437     }
438 
439     ahcf->features = features;
440 
441     return true;
442 }
443 
kvm_arm_set_cpu_features_from_host(ARMCPU * cpu)444 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
445 {
446     CPUARMState *env = &cpu->env;
447 
448     if (!arm_host_cpu_features.dtb_compatible) {
449         if (!kvm_enabled() ||
450             !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) {
451             /* We can't report this error yet, so flag that we need to
452              * in arm_cpu_realizefn().
453              */
454             cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
455             cpu->host_cpu_probe_failed = true;
456             return;
457         }
458     }
459 
460     cpu->kvm_target = arm_host_cpu_features.target;
461     cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
462     cpu->isar = arm_host_cpu_features.isar;
463     env->features = arm_host_cpu_features.features;
464 }
465 
kvm_no_adjvtime_get(Object * obj,Error ** errp)466 static bool kvm_no_adjvtime_get(Object *obj, Error **errp)
467 {
468     return !ARM_CPU(obj)->kvm_adjvtime;
469 }
470 
kvm_no_adjvtime_set(Object * obj,bool value,Error ** errp)471 static void kvm_no_adjvtime_set(Object *obj, bool value, Error **errp)
472 {
473     ARM_CPU(obj)->kvm_adjvtime = !value;
474 }
475 
kvm_steal_time_get(Object * obj,Error ** errp)476 static bool kvm_steal_time_get(Object *obj, Error **errp)
477 {
478     return ARM_CPU(obj)->kvm_steal_time != ON_OFF_AUTO_OFF;
479 }
480 
kvm_steal_time_set(Object * obj,bool value,Error ** errp)481 static void kvm_steal_time_set(Object *obj, bool value, Error **errp)
482 {
483     ARM_CPU(obj)->kvm_steal_time = value ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
484 }
485 
486 /* KVM VCPU properties should be prefixed with "kvm-". */
kvm_arm_add_vcpu_properties(ARMCPU * cpu)487 void kvm_arm_add_vcpu_properties(ARMCPU *cpu)
488 {
489     CPUARMState *env = &cpu->env;
490     Object *obj = OBJECT(cpu);
491 
492     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
493         cpu->kvm_adjvtime = true;
494         object_property_add_bool(obj, "kvm-no-adjvtime", kvm_no_adjvtime_get,
495                                  kvm_no_adjvtime_set);
496         object_property_set_description(obj, "kvm-no-adjvtime",
497                                         "Set on to disable the adjustment of "
498                                         "the virtual counter. VM stopped time "
499                                         "will be counted.");
500     }
501 
502     cpu->kvm_steal_time = ON_OFF_AUTO_AUTO;
503     object_property_add_bool(obj, "kvm-steal-time", kvm_steal_time_get,
504                              kvm_steal_time_set);
505     object_property_set_description(obj, "kvm-steal-time",
506                                     "Set off to disable KVM steal time.");
507 }
508 
kvm_arm_pmu_supported(void)509 bool kvm_arm_pmu_supported(void)
510 {
511     return kvm_check_extension(kvm_state, KVM_CAP_ARM_PMU_V3);
512 }
513 
kvm_arm_get_max_vm_ipa_size(MachineState * ms,bool * fixed_ipa)514 int kvm_arm_get_max_vm_ipa_size(MachineState *ms, bool *fixed_ipa)
515 {
516     KVMState *s = KVM_STATE(ms->accelerator);
517     int ret;
518 
519     ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE);
520     *fixed_ipa = ret <= 0;
521 
522     return ret > 0 ? ret : 40;
523 }
524 
kvm_arch_get_default_type(MachineState * ms)525 int kvm_arch_get_default_type(MachineState *ms)
526 {
527     bool fixed_ipa;
528     int size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa);
529     return fixed_ipa ? 0 : size;
530 }
531 
kvm_arch_init(MachineState * ms,KVMState * s)532 int kvm_arch_init(MachineState *ms, KVMState *s)
533 {
534     int ret = 0;
535     /* For ARM interrupt delivery is always asynchronous,
536      * whether we are using an in-kernel VGIC or not.
537      */
538     kvm_async_interrupts_allowed = true;
539 
540     /*
541      * PSCI wakes up secondary cores, so we always need to
542      * have vCPUs waiting in kernel space
543      */
544     kvm_halt_in_kernel_allowed = true;
545 
546     cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
547 
548     /* Check whether user space can specify guest syndrome value */
549     cap_has_inject_serror_esr =
550         kvm_check_extension(s, KVM_CAP_ARM_INJECT_SERROR_ESR);
551 
552     if (ms->smp.cpus > 256 &&
553         !kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) {
554         error_report("Using more than 256 vcpus requires a host kernel "
555                      "with KVM_CAP_ARM_IRQ_LINE_LAYOUT_2");
556         ret = -EINVAL;
557     }
558 
559     if (kvm_check_extension(s, KVM_CAP_ARM_NISV_TO_USER)) {
560         if (kvm_vm_enable_cap(s, KVM_CAP_ARM_NISV_TO_USER, 0)) {
561             error_report("Failed to enable KVM_CAP_ARM_NISV_TO_USER cap");
562         } else {
563             /* Set status for supporting the external dabt injection */
564             cap_has_inject_ext_dabt = kvm_check_extension(s,
565                                     KVM_CAP_ARM_INJECT_EXT_DABT);
566         }
567     }
568 
569     if (s->kvm_eager_split_size) {
570         uint32_t sizes;
571 
572         sizes = kvm_vm_check_extension(s, KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES);
573         if (!sizes) {
574             s->kvm_eager_split_size = 0;
575             warn_report("Eager Page Split support not available");
576         } else if (!(s->kvm_eager_split_size & sizes)) {
577             error_report("Eager Page Split requested chunk size not valid");
578             ret = -EINVAL;
579         } else {
580             ret = kvm_vm_enable_cap(s, KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE, 0,
581                                     s->kvm_eager_split_size);
582             if (ret < 0) {
583                 error_report("Enabling of Eager Page Split failed: %s",
584                              strerror(-ret));
585             }
586         }
587     }
588 
589     max_hw_wps = kvm_check_extension(s, KVM_CAP_GUEST_DEBUG_HW_WPS);
590     hw_watchpoints = g_array_sized_new(true, true,
591                                        sizeof(HWWatchpoint), max_hw_wps);
592 
593     max_hw_bps = kvm_check_extension(s, KVM_CAP_GUEST_DEBUG_HW_BPS);
594     hw_breakpoints = g_array_sized_new(true, true,
595                                        sizeof(HWBreakpoint), max_hw_bps);
596 
597     return ret;
598 }
599 
kvm_arch_vcpu_id(CPUState * cpu)600 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
601 {
602     return cpu->cpu_index;
603 }
604 
605 /* We track all the KVM devices which need their memory addresses
606  * passing to the kernel in a list of these structures.
607  * When board init is complete we run through the list and
608  * tell the kernel the base addresses of the memory regions.
609  * We use a MemoryListener to track mapping and unmapping of
610  * the regions during board creation, so the board models don't
611  * need to do anything special for the KVM case.
612  *
613  * Sometimes the address must be OR'ed with some other fields
614  * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION).
615  * @kda_addr_ormask aims at storing the value of those fields.
616  */
617 typedef struct KVMDevice {
618     struct kvm_arm_device_addr kda;
619     struct kvm_device_attr kdattr;
620     uint64_t kda_addr_ormask;
621     MemoryRegion *mr;
622     QSLIST_ENTRY(KVMDevice) entries;
623     int dev_fd;
624 } KVMDevice;
625 
626 static QSLIST_HEAD(, KVMDevice) kvm_devices_head;
627 
kvm_arm_devlistener_add(MemoryListener * listener,MemoryRegionSection * section)628 static void kvm_arm_devlistener_add(MemoryListener *listener,
629                                     MemoryRegionSection *section)
630 {
631     KVMDevice *kd;
632 
633     QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
634         if (section->mr == kd->mr) {
635             kd->kda.addr = section->offset_within_address_space;
636         }
637     }
638 }
639 
kvm_arm_devlistener_del(MemoryListener * listener,MemoryRegionSection * section)640 static void kvm_arm_devlistener_del(MemoryListener *listener,
641                                     MemoryRegionSection *section)
642 {
643     KVMDevice *kd;
644 
645     QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
646         if (section->mr == kd->mr) {
647             kd->kda.addr = -1;
648         }
649     }
650 }
651 
652 static MemoryListener devlistener = {
653     .name = "kvm-arm",
654     .region_add = kvm_arm_devlistener_add,
655     .region_del = kvm_arm_devlistener_del,
656     .priority = MEMORY_LISTENER_PRIORITY_MIN,
657 };
658 
kvm_arm_set_device_addr(KVMDevice * kd)659 static void kvm_arm_set_device_addr(KVMDevice *kd)
660 {
661     struct kvm_device_attr *attr = &kd->kdattr;
662     int ret;
663     uint64_t addr = kd->kda.addr;
664 
665     addr |= kd->kda_addr_ormask;
666     attr->addr = (uintptr_t)&addr;
667     ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
668 
669     if (ret < 0) {
670         fprintf(stderr, "Failed to set device address: %s\n",
671                 strerror(-ret));
672         abort();
673     }
674 }
675 
kvm_arm_machine_init_done(Notifier * notifier,void * data)676 static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
677 {
678     KVMDevice *kd, *tkd;
679 
680     QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
681         if (kd->kda.addr != -1) {
682             kvm_arm_set_device_addr(kd);
683         }
684         memory_region_unref(kd->mr);
685         QSLIST_REMOVE_HEAD(&kvm_devices_head, entries);
686         g_free(kd);
687     }
688     memory_listener_unregister(&devlistener);
689 }
690 
691 static Notifier notify = {
692     .notify = kvm_arm_machine_init_done,
693 };
694 
kvm_arm_register_device(MemoryRegion * mr,uint64_t devid,uint64_t group,uint64_t attr,int dev_fd,uint64_t addr_ormask)695 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
696                              uint64_t attr, int dev_fd, uint64_t addr_ormask)
697 {
698     KVMDevice *kd;
699 
700     if (!kvm_irqchip_in_kernel()) {
701         return;
702     }
703 
704     if (QSLIST_EMPTY(&kvm_devices_head)) {
705         memory_listener_register(&devlistener, &address_space_memory);
706         qemu_add_machine_init_done_notifier(&notify);
707     }
708     kd = g_new0(KVMDevice, 1);
709     kd->mr = mr;
710     kd->kda.id = devid;
711     kd->kda.addr = -1;
712     kd->kdattr.flags = 0;
713     kd->kdattr.group = group;
714     kd->kdattr.attr = attr;
715     kd->dev_fd = dev_fd;
716     kd->kda_addr_ormask = addr_ormask;
717     QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
718     memory_region_ref(kd->mr);
719 }
720 
compare_u64(const void * a,const void * b)721 static int compare_u64(const void *a, const void *b)
722 {
723     if (*(uint64_t *)a > *(uint64_t *)b) {
724         return 1;
725     }
726     if (*(uint64_t *)a < *(uint64_t *)b) {
727         return -1;
728     }
729     return 0;
730 }
731 
732 /*
733  * cpreg_values are sorted in ascending order by KVM register ID
734  * (see kvm_arm_init_cpreg_list). This allows us to cheaply find
735  * the storage for a KVM register by ID with a binary search.
736  */
kvm_arm_get_cpreg_ptr(ARMCPU * cpu,uint64_t regidx)737 static uint64_t *kvm_arm_get_cpreg_ptr(ARMCPU *cpu, uint64_t regidx)
738 {
739     uint64_t *res;
740 
741     res = bsearch(&regidx, cpu->cpreg_indexes, cpu->cpreg_array_len,
742                   sizeof(uint64_t), compare_u64);
743     assert(res);
744 
745     return &cpu->cpreg_values[res - cpu->cpreg_indexes];
746 }
747 
748 /**
749  * kvm_arm_reg_syncs_via_cpreg_list:
750  * @regidx: KVM register index
751  *
752  * Return true if this KVM register should be synchronized via the
753  * cpreg list of arbitrary system registers, false if it is synchronized
754  * by hand using code in kvm_arch_get/put_registers().
755  */
kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)756 static bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
757 {
758     switch (regidx & KVM_REG_ARM_COPROC_MASK) {
759     case KVM_REG_ARM_CORE:
760     case KVM_REG_ARM64_SVE:
761         return false;
762     default:
763         return true;
764     }
765 }
766 
767 /**
768  * kvm_arm_init_cpreg_list:
769  * @cpu: ARMCPU
770  *
771  * Initialize the ARMCPU cpreg list according to the kernel's
772  * definition of what CPU registers it knows about (and throw away
773  * the previous TCG-created cpreg list).
774  *
775  * Returns: 0 if success, else < 0 error code
776  */
kvm_arm_init_cpreg_list(ARMCPU * cpu)777 static int kvm_arm_init_cpreg_list(ARMCPU *cpu)
778 {
779     struct kvm_reg_list rl;
780     struct kvm_reg_list *rlp;
781     int i, ret, arraylen;
782     CPUState *cs = CPU(cpu);
783 
784     rl.n = 0;
785     ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
786     if (ret != -E2BIG) {
787         return ret;
788     }
789     rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
790     rlp->n = rl.n;
791     ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
792     if (ret) {
793         goto out;
794     }
795     /* Sort the list we get back from the kernel, since cpreg_tuples
796      * must be in strictly ascending order.
797      */
798     qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
799 
800     for (i = 0, arraylen = 0; i < rlp->n; i++) {
801         if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
802             continue;
803         }
804         switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
805         case KVM_REG_SIZE_U32:
806         case KVM_REG_SIZE_U64:
807             break;
808         default:
809             fprintf(stderr, "Can't handle size of register in kernel list\n");
810             ret = -EINVAL;
811             goto out;
812         }
813 
814         arraylen++;
815     }
816 
817     cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
818     cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
819     cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
820                                          arraylen);
821     cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
822                                         arraylen);
823     cpu->cpreg_array_len = arraylen;
824     cpu->cpreg_vmstate_array_len = arraylen;
825 
826     for (i = 0, arraylen = 0; i < rlp->n; i++) {
827         uint64_t regidx = rlp->reg[i];
828         if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
829             continue;
830         }
831         cpu->cpreg_indexes[arraylen] = regidx;
832         arraylen++;
833     }
834     assert(cpu->cpreg_array_len == arraylen);
835 
836     if (!write_kvmstate_to_list(cpu)) {
837         /* Shouldn't happen unless kernel is inconsistent about
838          * what registers exist.
839          */
840         fprintf(stderr, "Initial read of kernel register state failed\n");
841         ret = -EINVAL;
842         goto out;
843     }
844 
845 out:
846     g_free(rlp);
847     return ret;
848 }
849 
850 /**
851  * kvm_arm_cpreg_level:
852  * @regidx: KVM register index
853  *
854  * Return the level of this coprocessor/system register.  Return value is
855  * either KVM_PUT_RUNTIME_STATE, KVM_PUT_RESET_STATE, or KVM_PUT_FULL_STATE.
856  */
kvm_arm_cpreg_level(uint64_t regidx)857 static int kvm_arm_cpreg_level(uint64_t regidx)
858 {
859     /*
860      * All system registers are assumed to be level KVM_PUT_RUNTIME_STATE.
861      * If a register should be written less often, you must add it here
862      * with a state of either KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
863      */
864     switch (regidx) {
865     case KVM_REG_ARM_TIMER_CNT:
866     case KVM_REG_ARM_PTIMER_CNT:
867         return KVM_PUT_FULL_STATE;
868     }
869     return KVM_PUT_RUNTIME_STATE;
870 }
871 
write_kvmstate_to_list(ARMCPU * cpu)872 bool write_kvmstate_to_list(ARMCPU *cpu)
873 {
874     CPUState *cs = CPU(cpu);
875     int i;
876     bool ok = true;
877 
878     for (i = 0; i < cpu->cpreg_array_len; i++) {
879         uint64_t regidx = cpu->cpreg_indexes[i];
880         uint32_t v32;
881         int ret;
882 
883         switch (regidx & KVM_REG_SIZE_MASK) {
884         case KVM_REG_SIZE_U32:
885             ret = kvm_get_one_reg(cs, regidx, &v32);
886             if (!ret) {
887                 cpu->cpreg_values[i] = v32;
888             }
889             break;
890         case KVM_REG_SIZE_U64:
891             ret = kvm_get_one_reg(cs, regidx, cpu->cpreg_values + i);
892             break;
893         default:
894             g_assert_not_reached();
895         }
896         if (ret) {
897             ok = false;
898         }
899     }
900     return ok;
901 }
902 
write_list_to_kvmstate(ARMCPU * cpu,int level)903 bool write_list_to_kvmstate(ARMCPU *cpu, int level)
904 {
905     CPUState *cs = CPU(cpu);
906     int i;
907     bool ok = true;
908 
909     for (i = 0; i < cpu->cpreg_array_len; i++) {
910         uint64_t regidx = cpu->cpreg_indexes[i];
911         uint32_t v32;
912         int ret;
913 
914         if (kvm_arm_cpreg_level(regidx) > level) {
915             continue;
916         }
917 
918         switch (regidx & KVM_REG_SIZE_MASK) {
919         case KVM_REG_SIZE_U32:
920             v32 = cpu->cpreg_values[i];
921             ret = kvm_set_one_reg(cs, regidx, &v32);
922             break;
923         case KVM_REG_SIZE_U64:
924             ret = kvm_set_one_reg(cs, regidx, cpu->cpreg_values + i);
925             break;
926         default:
927             g_assert_not_reached();
928         }
929         if (ret) {
930             /* We might fail for "unknown register" and also for
931              * "you tried to set a register which is constant with
932              * a different value from what it actually contains".
933              */
934             ok = false;
935         }
936     }
937     return ok;
938 }
939 
kvm_arm_cpu_pre_save(ARMCPU * cpu)940 void kvm_arm_cpu_pre_save(ARMCPU *cpu)
941 {
942     /* KVM virtual time adjustment */
943     if (cpu->kvm_vtime_dirty) {
944         *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT) = cpu->kvm_vtime;
945     }
946 }
947 
kvm_arm_cpu_post_load(ARMCPU * cpu)948 bool kvm_arm_cpu_post_load(ARMCPU *cpu)
949 {
950     if (!write_list_to_kvmstate(cpu, KVM_PUT_FULL_STATE)) {
951         return false;
952     }
953     /* Note that it's OK for the TCG side not to know about
954      * every register in the list; KVM is authoritative if
955      * we're using it.
956      */
957     write_list_to_cpustate(cpu);
958 
959     /* KVM virtual time adjustment */
960     if (cpu->kvm_adjvtime) {
961         cpu->kvm_vtime = *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT);
962         cpu->kvm_vtime_dirty = true;
963     }
964 
965     return true;
966 }
967 
kvm_arm_reset_vcpu(ARMCPU * cpu)968 void kvm_arm_reset_vcpu(ARMCPU *cpu)
969 {
970     int ret;
971 
972     /* Re-init VCPU so that all registers are set to
973      * their respective reset values.
974      */
975     ret = kvm_arm_vcpu_init(cpu);
976     if (ret < 0) {
977         fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
978         abort();
979     }
980     if (!write_kvmstate_to_list(cpu)) {
981         fprintf(stderr, "write_kvmstate_to_list failed\n");
982         abort();
983     }
984     /*
985      * Sync the reset values also into the CPUState. This is necessary
986      * because the next thing we do will be a kvm_arch_put_registers()
987      * which will update the list values from the CPUState before copying
988      * the list values back to KVM. It's OK to ignore failure returns here
989      * for the same reason we do so in kvm_arch_get_registers().
990      */
991     write_list_to_cpustate(cpu);
992 }
993 
994 /*
995  * Update KVM's MP_STATE based on what QEMU thinks it is
996  */
kvm_arm_sync_mpstate_to_kvm(ARMCPU * cpu)997 static int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
998 {
999     if (cap_has_mp_state) {
1000         struct kvm_mp_state mp_state = {
1001             .mp_state = (cpu->power_state == PSCI_OFF) ?
1002             KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
1003         };
1004         return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
1005     }
1006     return 0;
1007 }
1008 
1009 /*
1010  * Sync the KVM MP_STATE into QEMU
1011  */
kvm_arm_sync_mpstate_to_qemu(ARMCPU * cpu)1012 static int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
1013 {
1014     if (cap_has_mp_state) {
1015         struct kvm_mp_state mp_state;
1016         int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
1017         if (ret) {
1018             return ret;
1019         }
1020         cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
1021             PSCI_OFF : PSCI_ON;
1022     }
1023     return 0;
1024 }
1025 
1026 /**
1027  * kvm_arm_get_virtual_time:
1028  * @cpu: ARMCPU
1029  *
1030  * Gets the VCPU's virtual counter and stores it in the KVM CPU state.
1031  */
kvm_arm_get_virtual_time(ARMCPU * cpu)1032 static void kvm_arm_get_virtual_time(ARMCPU *cpu)
1033 {
1034     int ret;
1035 
1036     if (cpu->kvm_vtime_dirty) {
1037         return;
1038     }
1039 
1040     ret = kvm_get_one_reg(CPU(cpu), KVM_REG_ARM_TIMER_CNT, &cpu->kvm_vtime);
1041     if (ret) {
1042         error_report("Failed to get KVM_REG_ARM_TIMER_CNT");
1043         abort();
1044     }
1045 
1046     cpu->kvm_vtime_dirty = true;
1047 }
1048 
1049 /**
1050  * kvm_arm_put_virtual_time:
1051  * @cpu: ARMCPU
1052  *
1053  * Sets the VCPU's virtual counter to the value stored in the KVM CPU state.
1054  */
kvm_arm_put_virtual_time(ARMCPU * cpu)1055 static void kvm_arm_put_virtual_time(ARMCPU *cpu)
1056 {
1057     int ret;
1058 
1059     if (!cpu->kvm_vtime_dirty) {
1060         return;
1061     }
1062 
1063     ret = kvm_set_one_reg(CPU(cpu), KVM_REG_ARM_TIMER_CNT, &cpu->kvm_vtime);
1064     if (ret) {
1065         error_report("Failed to set KVM_REG_ARM_TIMER_CNT");
1066         abort();
1067     }
1068 
1069     cpu->kvm_vtime_dirty = false;
1070 }
1071 
1072 /**
1073  * kvm_put_vcpu_events:
1074  * @cpu: ARMCPU
1075  *
1076  * Put VCPU related state to kvm.
1077  *
1078  * Returns: 0 if success else < 0 error code
1079  */
kvm_put_vcpu_events(ARMCPU * cpu)1080 static int kvm_put_vcpu_events(ARMCPU *cpu)
1081 {
1082     CPUARMState *env = &cpu->env;
1083     struct kvm_vcpu_events events;
1084     int ret;
1085 
1086     if (!kvm_has_vcpu_events()) {
1087         return 0;
1088     }
1089 
1090     memset(&events, 0, sizeof(events));
1091     events.exception.serror_pending = env->serror.pending;
1092 
1093     /* Inject SError to guest with specified syndrome if host kernel
1094      * supports it, otherwise inject SError without syndrome.
1095      */
1096     if (cap_has_inject_serror_esr) {
1097         events.exception.serror_has_esr = env->serror.has_esr;
1098         events.exception.serror_esr = env->serror.esr;
1099     }
1100 
1101     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
1102     if (ret) {
1103         error_report("failed to put vcpu events");
1104     }
1105 
1106     return ret;
1107 }
1108 
1109 /**
1110  * kvm_get_vcpu_events:
1111  * @cpu: ARMCPU
1112  *
1113  * Get VCPU related state from kvm.
1114  *
1115  * Returns: 0 if success else < 0 error code
1116  */
kvm_get_vcpu_events(ARMCPU * cpu)1117 static int kvm_get_vcpu_events(ARMCPU *cpu)
1118 {
1119     CPUARMState *env = &cpu->env;
1120     struct kvm_vcpu_events events;
1121     int ret;
1122 
1123     if (!kvm_has_vcpu_events()) {
1124         return 0;
1125     }
1126 
1127     memset(&events, 0, sizeof(events));
1128     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
1129     if (ret) {
1130         error_report("failed to get vcpu events");
1131         return ret;
1132     }
1133 
1134     env->serror.pending = events.exception.serror_pending;
1135     env->serror.has_esr = events.exception.serror_has_esr;
1136     env->serror.esr = events.exception.serror_esr;
1137 
1138     return 0;
1139 }
1140 
1141 #define ARM64_REG_ESR_EL1 ARM64_SYS_REG(3, 0, 5, 2, 0)
1142 #define ARM64_REG_TCR_EL1 ARM64_SYS_REG(3, 0, 2, 0, 2)
1143 
1144 /*
1145  * ESR_EL1
1146  * ISS encoding
1147  * AARCH64: DFSC,   bits [5:0]
1148  * AARCH32:
1149  *      TTBCR.EAE == 0
1150  *          FS[4]   - DFSR[10]
1151  *          FS[3:0] - DFSR[3:0]
1152  *      TTBCR.EAE == 1
1153  *          FS, bits [5:0]
1154  */
1155 #define ESR_DFSC(aarch64, lpae, v)        \
1156     ((aarch64 || (lpae)) ? ((v) & 0x3F)   \
1157                : (((v) >> 6) | ((v) & 0x1F)))
1158 
1159 #define ESR_DFSC_EXTABT(aarch64, lpae) \
1160     ((aarch64) ? 0x10 : (lpae) ? 0x10 : 0x8)
1161 
1162 /**
1163  * kvm_arm_verify_ext_dabt_pending:
1164  * @cpu: ARMCPU
1165  *
1166  * Verify the fault status code wrt the Ext DABT injection
1167  *
1168  * Returns: true if the fault status code is as expected, false otherwise
1169  */
kvm_arm_verify_ext_dabt_pending(ARMCPU * cpu)1170 static bool kvm_arm_verify_ext_dabt_pending(ARMCPU *cpu)
1171 {
1172     CPUState *cs = CPU(cpu);
1173     uint64_t dfsr_val;
1174 
1175     if (!kvm_get_one_reg(cs, ARM64_REG_ESR_EL1, &dfsr_val)) {
1176         CPUARMState *env = &cpu->env;
1177         int aarch64_mode = arm_feature(env, ARM_FEATURE_AARCH64);
1178         int lpae = 0;
1179 
1180         if (!aarch64_mode) {
1181             uint64_t ttbcr;
1182 
1183             if (!kvm_get_one_reg(cs, ARM64_REG_TCR_EL1, &ttbcr)) {
1184                 lpae = arm_feature(env, ARM_FEATURE_LPAE)
1185                         && (ttbcr & TTBCR_EAE);
1186             }
1187         }
1188         /*
1189          * The verification here is based on the DFSC bits
1190          * of the ESR_EL1 reg only
1191          */
1192          return (ESR_DFSC(aarch64_mode, lpae, dfsr_val) ==
1193                 ESR_DFSC_EXTABT(aarch64_mode, lpae));
1194     }
1195     return false;
1196 }
1197 
kvm_arch_pre_run(CPUState * cs,struct kvm_run * run)1198 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
1199 {
1200     ARMCPU *cpu = ARM_CPU(cs);
1201     CPUARMState *env = &cpu->env;
1202 
1203     if (unlikely(env->ext_dabt_raised)) {
1204         /*
1205          * Verifying that the ext DABT has been properly injected,
1206          * otherwise risking indefinitely re-running the faulting instruction
1207          * Covering a very narrow case for kernels 5.5..5.5.4
1208          * when injected abort was misconfigured to be
1209          * an IMPLEMENTATION DEFINED exception (for 32-bit EL1)
1210          */
1211         if (!arm_feature(env, ARM_FEATURE_AARCH64) &&
1212             unlikely(!kvm_arm_verify_ext_dabt_pending(cpu))) {
1213 
1214             error_report("Data abort exception with no valid ISS generated by "
1215                    "guest memory access. KVM unable to emulate faulting "
1216                    "instruction. Failed to inject an external data abort "
1217                    "into the guest.");
1218             abort();
1219        }
1220        /* Clear the status */
1221        env->ext_dabt_raised = 0;
1222     }
1223 }
1224 
kvm_arch_post_run(CPUState * cs,struct kvm_run * run)1225 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
1226 {
1227     ARMCPU *cpu;
1228     uint32_t switched_level;
1229 
1230     if (kvm_irqchip_in_kernel()) {
1231         /*
1232          * We only need to sync timer states with user-space interrupt
1233          * controllers, so return early and save cycles if we don't.
1234          */
1235         return MEMTXATTRS_UNSPECIFIED;
1236     }
1237 
1238     cpu = ARM_CPU(cs);
1239 
1240     /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
1241     if (run->s.regs.device_irq_level != cpu->device_irq_level) {
1242         switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level;
1243 
1244         bql_lock();
1245 
1246         if (switched_level & KVM_ARM_DEV_EL1_VTIMER) {
1247             qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT],
1248                          !!(run->s.regs.device_irq_level &
1249                             KVM_ARM_DEV_EL1_VTIMER));
1250             switched_level &= ~KVM_ARM_DEV_EL1_VTIMER;
1251         }
1252 
1253         if (switched_level & KVM_ARM_DEV_EL1_PTIMER) {
1254             qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS],
1255                          !!(run->s.regs.device_irq_level &
1256                             KVM_ARM_DEV_EL1_PTIMER));
1257             switched_level &= ~KVM_ARM_DEV_EL1_PTIMER;
1258         }
1259 
1260         if (switched_level & KVM_ARM_DEV_PMU) {
1261             qemu_set_irq(cpu->pmu_interrupt,
1262                          !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU));
1263             switched_level &= ~KVM_ARM_DEV_PMU;
1264         }
1265 
1266         if (switched_level) {
1267             qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n",
1268                           __func__, switched_level);
1269         }
1270 
1271         /* We also mark unknown levels as processed to not waste cycles */
1272         cpu->device_irq_level = run->s.regs.device_irq_level;
1273         bql_unlock();
1274     }
1275 
1276     return MEMTXATTRS_UNSPECIFIED;
1277 }
1278 
kvm_arm_vm_state_change(void * opaque,bool running,RunState state)1279 static void kvm_arm_vm_state_change(void *opaque, bool running, RunState state)
1280 {
1281     ARMCPU *cpu = opaque;
1282 
1283     if (running) {
1284         if (cpu->kvm_adjvtime) {
1285             kvm_arm_put_virtual_time(cpu);
1286         }
1287     } else {
1288         if (cpu->kvm_adjvtime) {
1289             kvm_arm_get_virtual_time(cpu);
1290         }
1291     }
1292 }
1293 
1294 /**
1295  * kvm_arm_handle_dabt_nisv:
1296  * @cpu: ARMCPU
1297  * @esr_iss: ISS encoding (limited) for the exception from Data Abort
1298  *           ISV bit set to '0b0' -> no valid instruction syndrome
1299  * @fault_ipa: faulting address for the synchronous data abort
1300  *
1301  * Returns: 0 if the exception has been handled, < 0 otherwise
1302  */
kvm_arm_handle_dabt_nisv(ARMCPU * cpu,uint64_t esr_iss,uint64_t fault_ipa)1303 static int kvm_arm_handle_dabt_nisv(ARMCPU *cpu, uint64_t esr_iss,
1304                                     uint64_t fault_ipa)
1305 {
1306     CPUARMState *env = &cpu->env;
1307     /*
1308      * Request KVM to inject the external data abort into the guest
1309      */
1310     if (cap_has_inject_ext_dabt) {
1311         struct kvm_vcpu_events events = { };
1312         /*
1313          * The external data abort event will be handled immediately by KVM
1314          * using the address fault that triggered the exit on given VCPU.
1315          * Requesting injection of the external data abort does not rely
1316          * on any other VCPU state. Therefore, in this particular case, the VCPU
1317          * synchronization can be exceptionally skipped.
1318          */
1319         events.exception.ext_dabt_pending = 1;
1320         /* KVM_CAP_ARM_INJECT_EXT_DABT implies KVM_CAP_VCPU_EVENTS */
1321         if (!kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events)) {
1322             env->ext_dabt_raised = 1;
1323             return 0;
1324         }
1325     } else {
1326         error_report("Data abort exception triggered by guest memory access "
1327                      "at physical address: 0x"  TARGET_FMT_lx,
1328                      (target_ulong)fault_ipa);
1329         error_printf("KVM unable to emulate faulting instruction.\n");
1330     }
1331     return -1;
1332 }
1333 
1334 /**
1335  * kvm_arm_handle_debug:
1336  * @cpu: ARMCPU
1337  * @debug_exit: debug part of the KVM exit structure
1338  *
1339  * Returns: TRUE if the debug exception was handled.
1340  *
1341  * See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register
1342  *
1343  * To minimise translating between kernel and user-space the kernel
1344  * ABI just provides user-space with the full exception syndrome
1345  * register value to be decoded in QEMU.
1346  */
kvm_arm_handle_debug(ARMCPU * cpu,struct kvm_debug_exit_arch * debug_exit)1347 static bool kvm_arm_handle_debug(ARMCPU *cpu,
1348                                  struct kvm_debug_exit_arch *debug_exit)
1349 {
1350     int hsr_ec = syn_get_ec(debug_exit->hsr);
1351     CPUState *cs = CPU(cpu);
1352     CPUARMState *env = &cpu->env;
1353 
1354     /* Ensure PC is synchronised */
1355     kvm_cpu_synchronize_state(cs);
1356 
1357     switch (hsr_ec) {
1358     case EC_SOFTWARESTEP:
1359         if (cs->singlestep_enabled) {
1360             return true;
1361         } else {
1362             /*
1363              * The kernel should have suppressed the guest's ability to
1364              * single step at this point so something has gone wrong.
1365              */
1366             error_report("%s: guest single-step while debugging unsupported"
1367                          " (%"PRIx64", %"PRIx32")",
1368                          __func__, env->pc, debug_exit->hsr);
1369             return false;
1370         }
1371         break;
1372     case EC_AA64_BKPT:
1373         if (kvm_find_sw_breakpoint(cs, env->pc)) {
1374             return true;
1375         }
1376         break;
1377     case EC_BREAKPOINT:
1378         if (find_hw_breakpoint(cs, env->pc)) {
1379             return true;
1380         }
1381         break;
1382     case EC_WATCHPOINT:
1383     {
1384         CPUWatchpoint *wp = find_hw_watchpoint(cs, debug_exit->far);
1385         if (wp) {
1386             cs->watchpoint_hit = wp;
1387             return true;
1388         }
1389         break;
1390     }
1391     default:
1392         error_report("%s: unhandled debug exit (%"PRIx32", %"PRIx64")",
1393                      __func__, debug_exit->hsr, env->pc);
1394     }
1395 
1396     /* If we are not handling the debug exception it must belong to
1397      * the guest. Let's re-use the existing TCG interrupt code to set
1398      * everything up properly.
1399      */
1400     cs->exception_index = EXCP_BKPT;
1401     env->exception.syndrome = debug_exit->hsr;
1402     env->exception.vaddress = debug_exit->far;
1403     env->exception.target_el = 1;
1404     bql_lock();
1405     arm_cpu_do_interrupt(cs);
1406     bql_unlock();
1407 
1408     return false;
1409 }
1410 
kvm_arch_handle_exit(CPUState * cs,struct kvm_run * run)1411 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1412 {
1413     ARMCPU *cpu = ARM_CPU(cs);
1414     int ret = 0;
1415 
1416     switch (run->exit_reason) {
1417     case KVM_EXIT_DEBUG:
1418         if (kvm_arm_handle_debug(cpu, &run->debug.arch)) {
1419             ret = EXCP_DEBUG;
1420         } /* otherwise return to guest */
1421         break;
1422     case KVM_EXIT_ARM_NISV:
1423         /* External DABT with no valid iss to decode */
1424         ret = kvm_arm_handle_dabt_nisv(cpu, run->arm_nisv.esr_iss,
1425                                        run->arm_nisv.fault_ipa);
1426         break;
1427     default:
1428         qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
1429                       __func__, run->exit_reason);
1430         break;
1431     }
1432     return ret;
1433 }
1434 
kvm_arch_stop_on_emulation_error(CPUState * cs)1435 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
1436 {
1437     return true;
1438 }
1439 
kvm_arch_process_async_events(CPUState * cs)1440 int kvm_arch_process_async_events(CPUState *cs)
1441 {
1442     return 0;
1443 }
1444 
1445 /**
1446  * kvm_arm_hw_debug_active:
1447  * @cpu: ARMCPU
1448  *
1449  * Return: TRUE if any hardware breakpoints in use.
1450  */
kvm_arm_hw_debug_active(ARMCPU * cpu)1451 static bool kvm_arm_hw_debug_active(ARMCPU *cpu)
1452 {
1453     return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
1454 }
1455 
1456 /**
1457  * kvm_arm_copy_hw_debug_data:
1458  * @ptr: kvm_guest_debug_arch structure
1459  *
1460  * Copy the architecture specific debug registers into the
1461  * kvm_guest_debug ioctl structure.
1462  */
kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch * ptr)1463 static void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
1464 {
1465     int i;
1466     memset(ptr, 0, sizeof(struct kvm_guest_debug_arch));
1467 
1468     for (i = 0; i < max_hw_wps; i++) {
1469         HWWatchpoint *wp = get_hw_wp(i);
1470         ptr->dbg_wcr[i] = wp->wcr;
1471         ptr->dbg_wvr[i] = wp->wvr;
1472     }
1473     for (i = 0; i < max_hw_bps; i++) {
1474         HWBreakpoint *bp = get_hw_bp(i);
1475         ptr->dbg_bcr[i] = bp->bcr;
1476         ptr->dbg_bvr[i] = bp->bvr;
1477     }
1478 }
1479 
kvm_arch_update_guest_debug(CPUState * cs,struct kvm_guest_debug * dbg)1480 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
1481 {
1482     if (kvm_sw_breakpoints_active(cs)) {
1483         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1484     }
1485     if (kvm_arm_hw_debug_active(ARM_CPU(cs))) {
1486         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
1487         kvm_arm_copy_hw_debug_data(&dbg->arch);
1488     }
1489 }
1490 
kvm_arch_init_irq_routing(KVMState * s)1491 void kvm_arch_init_irq_routing(KVMState *s)
1492 {
1493 }
1494 
kvm_arch_irqchip_create(KVMState * s)1495 int kvm_arch_irqchip_create(KVMState *s)
1496 {
1497     if (kvm_kernel_irqchip_split()) {
1498         error_report("-machine kernel_irqchip=split is not supported on ARM.");
1499         exit(1);
1500     }
1501 
1502     /* If we can create the VGIC using the newer device control API, we
1503      * let the device do this when it initializes itself, otherwise we
1504      * fall back to the old API */
1505     return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
1506 }
1507 
kvm_arm_vgic_probe(void)1508 int kvm_arm_vgic_probe(void)
1509 {
1510     int val = 0;
1511 
1512     if (kvm_create_device(kvm_state,
1513                           KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
1514         val |= KVM_ARM_VGIC_V3;
1515     }
1516     if (kvm_create_device(kvm_state,
1517                           KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
1518         val |= KVM_ARM_VGIC_V2;
1519     }
1520     return val;
1521 }
1522 
kvm_arm_set_irq(int cpu,int irqtype,int irq,int level)1523 int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level)
1524 {
1525     int kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT) | irq;
1526     int cpu_idx1 = cpu % 256;
1527     int cpu_idx2 = cpu / 256;
1528 
1529     kvm_irq |= (cpu_idx1 << KVM_ARM_IRQ_VCPU_SHIFT) |
1530                (cpu_idx2 << KVM_ARM_IRQ_VCPU2_SHIFT);
1531 
1532     return kvm_set_irq(kvm_state, kvm_irq, !!level);
1533 }
1534 
kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry * route,uint64_t address,uint32_t data,PCIDevice * dev)1535 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
1536                              uint64_t address, uint32_t data, PCIDevice *dev)
1537 {
1538     AddressSpace *as = pci_device_iommu_address_space(dev);
1539     hwaddr xlat, len, doorbell_gpa;
1540     MemoryRegionSection mrs;
1541     MemoryRegion *mr;
1542 
1543     if (as == &address_space_memory) {
1544         return 0;
1545     }
1546 
1547     /* MSI doorbell address is translated by an IOMMU */
1548 
1549     RCU_READ_LOCK_GUARD();
1550 
1551     mr = address_space_translate(as, address, &xlat, &len, true,
1552                                  MEMTXATTRS_UNSPECIFIED);
1553 
1554     if (!mr) {
1555         return 1;
1556     }
1557 
1558     mrs = memory_region_find(mr, xlat, 1);
1559 
1560     if (!mrs.mr) {
1561         return 1;
1562     }
1563 
1564     doorbell_gpa = mrs.offset_within_address_space;
1565     memory_region_unref(mrs.mr);
1566 
1567     route->u.msi.address_lo = doorbell_gpa;
1568     route->u.msi.address_hi = doorbell_gpa >> 32;
1569 
1570     trace_kvm_arm_fixup_msi_route(address, doorbell_gpa);
1571 
1572     return 0;
1573 }
1574 
kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry * route,int vector,PCIDevice * dev)1575 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
1576                                 int vector, PCIDevice *dev)
1577 {
1578     return 0;
1579 }
1580 
kvm_arch_release_virq_post(int virq)1581 int kvm_arch_release_virq_post(int virq)
1582 {
1583     return 0;
1584 }
1585 
kvm_arch_msi_data_to_gsi(uint32_t data)1586 int kvm_arch_msi_data_to_gsi(uint32_t data)
1587 {
1588     return (data - 32) & 0xffff;
1589 }
1590 
kvm_arch_get_eager_split_size(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)1591 static void kvm_arch_get_eager_split_size(Object *obj, Visitor *v,
1592                                           const char *name, void *opaque,
1593                                           Error **errp)
1594 {
1595     KVMState *s = KVM_STATE(obj);
1596     uint64_t value = s->kvm_eager_split_size;
1597 
1598     visit_type_size(v, name, &value, errp);
1599 }
1600 
kvm_arch_set_eager_split_size(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)1601 static void kvm_arch_set_eager_split_size(Object *obj, Visitor *v,
1602                                           const char *name, void *opaque,
1603                                           Error **errp)
1604 {
1605     KVMState *s = KVM_STATE(obj);
1606     uint64_t value;
1607 
1608     if (s->fd != -1) {
1609         error_setg(errp, "Unable to set early-split-size after KVM has been initialized");
1610         return;
1611     }
1612 
1613     if (!visit_type_size(v, name, &value, errp)) {
1614         return;
1615     }
1616 
1617     if (value && !is_power_of_2(value)) {
1618         error_setg(errp, "early-split-size must be a power of two");
1619         return;
1620     }
1621 
1622     s->kvm_eager_split_size = value;
1623 }
1624 
kvm_arch_accel_class_init(ObjectClass * oc)1625 void kvm_arch_accel_class_init(ObjectClass *oc)
1626 {
1627     object_class_property_add(oc, "eager-split-size", "size",
1628                               kvm_arch_get_eager_split_size,
1629                               kvm_arch_set_eager_split_size, NULL, NULL);
1630 
1631     object_class_property_set_description(oc, "eager-split-size",
1632         "Eager Page Split chunk size for hugepages. (default: 0, disabled)");
1633 }
1634 
kvm_arch_insert_hw_breakpoint(vaddr addr,vaddr len,int type)1635 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
1636 {
1637     switch (type) {
1638     case GDB_BREAKPOINT_HW:
1639         return insert_hw_breakpoint(addr);
1640         break;
1641     case GDB_WATCHPOINT_READ:
1642     case GDB_WATCHPOINT_WRITE:
1643     case GDB_WATCHPOINT_ACCESS:
1644         return insert_hw_watchpoint(addr, len, type);
1645     default:
1646         return -ENOSYS;
1647     }
1648 }
1649 
kvm_arch_remove_hw_breakpoint(vaddr addr,vaddr len,int type)1650 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
1651 {
1652     switch (type) {
1653     case GDB_BREAKPOINT_HW:
1654         return delete_hw_breakpoint(addr);
1655     case GDB_WATCHPOINT_READ:
1656     case GDB_WATCHPOINT_WRITE:
1657     case GDB_WATCHPOINT_ACCESS:
1658         return delete_hw_watchpoint(addr, len, type);
1659     default:
1660         return -ENOSYS;
1661     }
1662 }
1663 
kvm_arch_remove_all_hw_breakpoints(void)1664 void kvm_arch_remove_all_hw_breakpoints(void)
1665 {
1666     if (cur_hw_wps > 0) {
1667         g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
1668     }
1669     if (cur_hw_bps > 0) {
1670         g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
1671     }
1672 }
1673 
kvm_arm_set_device_attr(ARMCPU * cpu,struct kvm_device_attr * attr,const char * name)1674 static bool kvm_arm_set_device_attr(ARMCPU *cpu, struct kvm_device_attr *attr,
1675                                     const char *name)
1676 {
1677     int err;
1678 
1679     err = kvm_vcpu_ioctl(CPU(cpu), KVM_HAS_DEVICE_ATTR, attr);
1680     if (err != 0) {
1681         error_report("%s: KVM_HAS_DEVICE_ATTR: %s", name, strerror(-err));
1682         return false;
1683     }
1684 
1685     err = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEVICE_ATTR, attr);
1686     if (err != 0) {
1687         error_report("%s: KVM_SET_DEVICE_ATTR: %s", name, strerror(-err));
1688         return false;
1689     }
1690 
1691     return true;
1692 }
1693 
kvm_arm_pmu_init(ARMCPU * cpu)1694 void kvm_arm_pmu_init(ARMCPU *cpu)
1695 {
1696     struct kvm_device_attr attr = {
1697         .group = KVM_ARM_VCPU_PMU_V3_CTRL,
1698         .attr = KVM_ARM_VCPU_PMU_V3_INIT,
1699     };
1700 
1701     if (!cpu->has_pmu) {
1702         return;
1703     }
1704     if (!kvm_arm_set_device_attr(cpu, &attr, "PMU")) {
1705         error_report("failed to init PMU");
1706         abort();
1707     }
1708 }
1709 
kvm_arm_pmu_set_irq(ARMCPU * cpu,int irq)1710 void kvm_arm_pmu_set_irq(ARMCPU *cpu, int irq)
1711 {
1712     struct kvm_device_attr attr = {
1713         .group = KVM_ARM_VCPU_PMU_V3_CTRL,
1714         .addr = (intptr_t)&irq,
1715         .attr = KVM_ARM_VCPU_PMU_V3_IRQ,
1716     };
1717 
1718     if (!cpu->has_pmu) {
1719         return;
1720     }
1721     if (!kvm_arm_set_device_attr(cpu, &attr, "PMU")) {
1722         error_report("failed to set irq for PMU");
1723         abort();
1724     }
1725 }
1726 
kvm_arm_pvtime_init(ARMCPU * cpu,uint64_t ipa)1727 void kvm_arm_pvtime_init(ARMCPU *cpu, uint64_t ipa)
1728 {
1729     struct kvm_device_attr attr = {
1730         .group = KVM_ARM_VCPU_PVTIME_CTRL,
1731         .attr = KVM_ARM_VCPU_PVTIME_IPA,
1732         .addr = (uint64_t)&ipa,
1733     };
1734 
1735     if (cpu->kvm_steal_time == ON_OFF_AUTO_OFF) {
1736         return;
1737     }
1738     if (!kvm_arm_set_device_attr(cpu, &attr, "PVTIME IPA")) {
1739         error_report("failed to init PVTIME IPA");
1740         abort();
1741     }
1742 }
1743 
kvm_arm_steal_time_finalize(ARMCPU * cpu,Error ** errp)1744 void kvm_arm_steal_time_finalize(ARMCPU *cpu, Error **errp)
1745 {
1746     bool has_steal_time = kvm_check_extension(kvm_state, KVM_CAP_STEAL_TIME);
1747 
1748     if (cpu->kvm_steal_time == ON_OFF_AUTO_AUTO) {
1749         if (!has_steal_time || !arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1750             cpu->kvm_steal_time = ON_OFF_AUTO_OFF;
1751         } else {
1752             cpu->kvm_steal_time = ON_OFF_AUTO_ON;
1753         }
1754     } else if (cpu->kvm_steal_time == ON_OFF_AUTO_ON) {
1755         if (!has_steal_time) {
1756             error_setg(errp, "'kvm-steal-time' cannot be enabled "
1757                              "on this host");
1758             return;
1759         } else if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1760             /*
1761              * DEN0057A chapter 2 says "This specification only covers
1762              * systems in which the Execution state of the hypervisor
1763              * as well as EL1 of virtual machines is AArch64.". And,
1764              * to ensure that, the smc/hvc calls are only specified as
1765              * smc64/hvc64.
1766              */
1767             error_setg(errp, "'kvm-steal-time' cannot be enabled "
1768                              "for AArch32 guests");
1769             return;
1770         }
1771     }
1772 }
1773 
kvm_arm_aarch32_supported(void)1774 bool kvm_arm_aarch32_supported(void)
1775 {
1776     return kvm_check_extension(kvm_state, KVM_CAP_ARM_EL1_32BIT);
1777 }
1778 
kvm_arm_el2_supported(void)1779 bool kvm_arm_el2_supported(void)
1780 {
1781     return kvm_check_extension(kvm_state, KVM_CAP_ARM_EL2);
1782 }
1783 
kvm_arm_sve_supported(void)1784 bool kvm_arm_sve_supported(void)
1785 {
1786     return kvm_check_extension(kvm_state, KVM_CAP_ARM_SVE);
1787 }
1788 
kvm_arm_mte_supported(void)1789 bool kvm_arm_mte_supported(void)
1790 {
1791     return kvm_check_extension(kvm_state, KVM_CAP_ARM_MTE);
1792 }
1793 
1794 QEMU_BUILD_BUG_ON(KVM_ARM64_SVE_VQ_MIN != 1);
1795 
kvm_arm_sve_get_vls(ARMCPU * cpu)1796 uint32_t kvm_arm_sve_get_vls(ARMCPU *cpu)
1797 {
1798     /* Only call this function if kvm_arm_sve_supported() returns true. */
1799     static uint64_t vls[KVM_ARM64_SVE_VLS_WORDS];
1800     static bool probed;
1801     uint32_t vq = 0;
1802     int i;
1803 
1804     /*
1805      * KVM ensures all host CPUs support the same set of vector lengths.
1806      * So we only need to create the scratch VCPUs once and then cache
1807      * the results.
1808      */
1809     if (!probed) {
1810         struct kvm_vcpu_init init = {
1811             .target = -1,
1812             .features[0] = (1 << KVM_ARM_VCPU_SVE),
1813         };
1814         struct kvm_one_reg reg = {
1815             .id = KVM_REG_ARM64_SVE_VLS,
1816             .addr = (uint64_t)&vls[0],
1817         };
1818         int fdarray[3], ret;
1819 
1820         probed = true;
1821 
1822         if (!kvm_arm_create_scratch_host_vcpu(fdarray, &init)) {
1823             error_report("failed to create scratch VCPU with SVE enabled");
1824             abort();
1825         }
1826         ret = ioctl(fdarray[2], KVM_GET_ONE_REG, &reg);
1827         kvm_arm_destroy_scratch_host_vcpu(fdarray);
1828         if (ret) {
1829             error_report("failed to get KVM_REG_ARM64_SVE_VLS: %s",
1830                          strerror(errno));
1831             abort();
1832         }
1833 
1834         for (i = KVM_ARM64_SVE_VLS_WORDS - 1; i >= 0; --i) {
1835             if (vls[i]) {
1836                 vq = 64 - clz64(vls[i]) + i * 64;
1837                 break;
1838             }
1839         }
1840         if (vq > ARM_MAX_VQ) {
1841             warn_report("KVM supports vector lengths larger than "
1842                         "QEMU can enable");
1843             vls[0] &= MAKE_64BIT_MASK(0, ARM_MAX_VQ);
1844         }
1845     }
1846 
1847     return vls[0];
1848 }
1849 
kvm_arm_sve_set_vls(ARMCPU * cpu)1850 static int kvm_arm_sve_set_vls(ARMCPU *cpu)
1851 {
1852     uint64_t vls[KVM_ARM64_SVE_VLS_WORDS] = { cpu->sve_vq.map };
1853 
1854     assert(cpu->sve_max_vq <= KVM_ARM64_SVE_VQ_MAX);
1855 
1856     return kvm_set_one_reg(CPU(cpu), KVM_REG_ARM64_SVE_VLS, &vls[0]);
1857 }
1858 
1859 #define ARM_CPU_ID_MPIDR       3, 0, 0, 0, 5
1860 
kvm_arch_pre_create_vcpu(CPUState * cpu,Error ** errp)1861 int kvm_arch_pre_create_vcpu(CPUState *cpu, Error **errp)
1862 {
1863     return 0;
1864 }
1865 
kvm_arch_init_vcpu(CPUState * cs)1866 int kvm_arch_init_vcpu(CPUState *cs)
1867 {
1868     int ret;
1869     uint64_t mpidr;
1870     ARMCPU *cpu = ARM_CPU(cs);
1871     CPUARMState *env = &cpu->env;
1872     uint64_t psciver;
1873 
1874     if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE) {
1875         error_report("KVM is not supported for this guest CPU type");
1876         return -EINVAL;
1877     }
1878 
1879     qemu_add_vm_change_state_handler(kvm_arm_vm_state_change, cpu);
1880 
1881     /* Determine init features for this CPU */
1882     memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
1883     if (cs->start_powered_off) {
1884         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
1885     }
1886     if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
1887         cpu->psci_version = QEMU_PSCI_VERSION_0_2;
1888         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
1889     }
1890     if (!arm_feature(env, ARM_FEATURE_AARCH64)) {
1891         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
1892     }
1893     if (cpu->has_pmu) {
1894         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
1895     }
1896     if (cpu_isar_feature(aa64_sve, cpu)) {
1897         assert(kvm_arm_sve_supported());
1898         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_SVE;
1899     }
1900     if (cpu_isar_feature(aa64_pauth, cpu)) {
1901         cpu->kvm_init_features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS |
1902                                       1 << KVM_ARM_VCPU_PTRAUTH_GENERIC);
1903     }
1904     if (cpu->has_el2 && kvm_arm_el2_supported()) {
1905         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_HAS_EL2;
1906     }
1907 
1908     /* Do KVM_ARM_VCPU_INIT ioctl */
1909     ret = kvm_arm_vcpu_init(cpu);
1910     if (ret) {
1911         return ret;
1912     }
1913 
1914     if (cpu_isar_feature(aa64_sve, cpu)) {
1915         ret = kvm_arm_sve_set_vls(cpu);
1916         if (ret) {
1917             return ret;
1918         }
1919         ret = kvm_arm_vcpu_finalize(cpu, KVM_ARM_VCPU_SVE);
1920         if (ret) {
1921             return ret;
1922         }
1923     }
1924 
1925     /*
1926      * KVM reports the exact PSCI version it is implementing via a
1927      * special sysreg. If it is present, use its contents to determine
1928      * what to report to the guest in the dtb (it is the PSCI version,
1929      * in the same 15-bits major 16-bits minor format that PSCI_VERSION
1930      * returns).
1931      */
1932     if (!kvm_get_one_reg(cs, KVM_REG_ARM_PSCI_VERSION, &psciver)) {
1933         cpu->psci_version = psciver;
1934     }
1935 
1936     /*
1937      * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
1938      * Currently KVM has its own idea about MPIDR assignment, so we
1939      * override our defaults with what we get from KVM.
1940      */
1941     ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr);
1942     if (ret) {
1943         return ret;
1944     }
1945     cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK;
1946 
1947     return kvm_arm_init_cpreg_list(cpu);
1948 }
1949 
kvm_arch_destroy_vcpu(CPUState * cs)1950 int kvm_arch_destroy_vcpu(CPUState *cs)
1951 {
1952     return 0;
1953 }
1954 
1955 /* Callers must hold the iothread mutex lock */
kvm_inject_arm_sea(CPUState * c)1956 static void kvm_inject_arm_sea(CPUState *c)
1957 {
1958     ARMCPU *cpu = ARM_CPU(c);
1959     CPUARMState *env = &cpu->env;
1960     uint32_t esr;
1961     bool same_el;
1962 
1963     c->exception_index = EXCP_DATA_ABORT;
1964     env->exception.target_el = 1;
1965 
1966     /*
1967      * Set the DFSC to synchronous external abort and set FnV to not valid,
1968      * this will tell guest the FAR_ELx is UNKNOWN for this abort.
1969      */
1970     same_el = arm_current_el(env) == env->exception.target_el;
1971     esr = syn_data_abort_no_iss(same_el, 1, 0, 0, 0, 0, 0x10);
1972 
1973     env->exception.syndrome = esr;
1974 
1975     arm_cpu_do_interrupt(c);
1976 }
1977 
1978 #define AARCH64_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
1979                  KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
1980 
1981 #define AARCH64_SIMD_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
1982                  KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
1983 
1984 #define AARCH64_SIMD_CTRL_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
1985                  KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
1986 
kvm_arch_put_fpsimd(CPUState * cs)1987 static int kvm_arch_put_fpsimd(CPUState *cs)
1988 {
1989     CPUARMState *env = &ARM_CPU(cs)->env;
1990     int i, ret;
1991 
1992     for (i = 0; i < 32; i++) {
1993         uint64_t *q = aa64_vfp_qreg(env, i);
1994 #if HOST_BIG_ENDIAN
1995         uint64_t fp_val[2] = { q[1], q[0] };
1996         ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]),
1997                                                         fp_val);
1998 #else
1999         ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q);
2000 #endif
2001         if (ret) {
2002             return ret;
2003         }
2004     }
2005 
2006     return 0;
2007 }
2008 
2009 /*
2010  * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
2011  * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
2012  * code the slice index to zero for now as it's unlikely we'll need more than
2013  * one slice for quite some time.
2014  */
kvm_arch_put_sve(CPUState * cs)2015 static int kvm_arch_put_sve(CPUState *cs)
2016 {
2017     ARMCPU *cpu = ARM_CPU(cs);
2018     CPUARMState *env = &cpu->env;
2019     uint64_t tmp[ARM_MAX_VQ * 2];
2020     uint64_t *r;
2021     int n, ret;
2022 
2023     for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
2024         r = sve_bswap64(tmp, &env->vfp.zregs[n].d[0], cpu->sve_max_vq * 2);
2025         ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r);
2026         if (ret) {
2027             return ret;
2028         }
2029     }
2030 
2031     for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
2032         r = sve_bswap64(tmp, r = &env->vfp.pregs[n].p[0],
2033                         DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
2034         ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r);
2035         if (ret) {
2036             return ret;
2037         }
2038     }
2039 
2040     r = sve_bswap64(tmp, &env->vfp.pregs[FFR_PRED_NUM].p[0],
2041                     DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
2042     ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r);
2043     if (ret) {
2044         return ret;
2045     }
2046 
2047     return 0;
2048 }
2049 
kvm_arch_put_registers(CPUState * cs,int level,Error ** errp)2050 int kvm_arch_put_registers(CPUState *cs, int level, Error **errp)
2051 {
2052     uint64_t val;
2053     uint32_t fpr;
2054     int i, ret;
2055     unsigned int el;
2056 
2057     ARMCPU *cpu = ARM_CPU(cs);
2058     CPUARMState *env = &cpu->env;
2059 
2060     /* If we are in AArch32 mode then we need to copy the AArch32 regs to the
2061      * AArch64 registers before pushing them out to 64-bit KVM.
2062      */
2063     if (!is_a64(env)) {
2064         aarch64_sync_32_to_64(env);
2065     }
2066 
2067     for (i = 0; i < 31; i++) {
2068         ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]),
2069                               &env->xregs[i]);
2070         if (ret) {
2071             return ret;
2072         }
2073     }
2074 
2075     /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
2076      * QEMU side we keep the current SP in xregs[31] as well.
2077      */
2078     aarch64_save_sp(env, 1);
2079 
2080     ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]);
2081     if (ret) {
2082         return ret;
2083     }
2084 
2085     ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]);
2086     if (ret) {
2087         return ret;
2088     }
2089 
2090     /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
2091     if (is_a64(env)) {
2092         val = pstate_read(env);
2093     } else {
2094         val = cpsr_read(env);
2095     }
2096     ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val);
2097     if (ret) {
2098         return ret;
2099     }
2100 
2101     ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc);
2102     if (ret) {
2103         return ret;
2104     }
2105 
2106     ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]);
2107     if (ret) {
2108         return ret;
2109     }
2110 
2111     /* Saved Program State Registers
2112      *
2113      * Before we restore from the banked_spsr[] array we need to
2114      * ensure that any modifications to env->spsr are correctly
2115      * reflected in the banks.
2116      */
2117     el = arm_current_el(env);
2118     if (el > 0 && !is_a64(env)) {
2119         i = bank_number(env->uncached_cpsr & CPSR_M);
2120         env->banked_spsr[i] = env->spsr;
2121     }
2122 
2123     /* KVM 0-4 map to QEMU banks 1-5 */
2124     for (i = 0; i < KVM_NR_SPSR; i++) {
2125         ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(spsr[i]),
2126                               &env->banked_spsr[i + 1]);
2127         if (ret) {
2128             return ret;
2129         }
2130     }
2131 
2132     if (cpu_isar_feature(aa64_sve, cpu)) {
2133         ret = kvm_arch_put_sve(cs);
2134     } else {
2135         ret = kvm_arch_put_fpsimd(cs);
2136     }
2137     if (ret) {
2138         return ret;
2139     }
2140 
2141     fpr = vfp_get_fpsr(env);
2142     ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr);
2143     if (ret) {
2144         return ret;
2145     }
2146 
2147     fpr = vfp_get_fpcr(env);
2148     ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr);
2149     if (ret) {
2150         return ret;
2151     }
2152 
2153     write_cpustate_to_list(cpu, true);
2154 
2155     if (!write_list_to_kvmstate(cpu, level)) {
2156         return -EINVAL;
2157     }
2158 
2159    /*
2160     * Setting VCPU events should be triggered after syncing the registers
2161     * to avoid overwriting potential changes made by KVM upon calling
2162     * KVM_SET_VCPU_EVENTS ioctl
2163     */
2164     ret = kvm_put_vcpu_events(cpu);
2165     if (ret) {
2166         return ret;
2167     }
2168 
2169     return kvm_arm_sync_mpstate_to_kvm(cpu);
2170 }
2171 
kvm_arch_get_fpsimd(CPUState * cs)2172 static int kvm_arch_get_fpsimd(CPUState *cs)
2173 {
2174     CPUARMState *env = &ARM_CPU(cs)->env;
2175     int i, ret;
2176 
2177     for (i = 0; i < 32; i++) {
2178         uint64_t *q = aa64_vfp_qreg(env, i);
2179         ret = kvm_get_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q);
2180         if (ret) {
2181             return ret;
2182         } else {
2183 #if HOST_BIG_ENDIAN
2184             uint64_t t;
2185             t = q[0], q[0] = q[1], q[1] = t;
2186 #endif
2187         }
2188     }
2189 
2190     return 0;
2191 }
2192 
2193 /*
2194  * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
2195  * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
2196  * code the slice index to zero for now as it's unlikely we'll need more than
2197  * one slice for quite some time.
2198  */
kvm_arch_get_sve(CPUState * cs)2199 static int kvm_arch_get_sve(CPUState *cs)
2200 {
2201     ARMCPU *cpu = ARM_CPU(cs);
2202     CPUARMState *env = &cpu->env;
2203     uint64_t *r;
2204     int n, ret;
2205 
2206     for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
2207         r = &env->vfp.zregs[n].d[0];
2208         ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r);
2209         if (ret) {
2210             return ret;
2211         }
2212         sve_bswap64(r, r, cpu->sve_max_vq * 2);
2213     }
2214 
2215     for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
2216         r = &env->vfp.pregs[n].p[0];
2217         ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r);
2218         if (ret) {
2219             return ret;
2220         }
2221         sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
2222     }
2223 
2224     r = &env->vfp.pregs[FFR_PRED_NUM].p[0];
2225     ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r);
2226     if (ret) {
2227         return ret;
2228     }
2229     sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
2230 
2231     return 0;
2232 }
2233 
kvm_arch_get_registers(CPUState * cs,Error ** errp)2234 int kvm_arch_get_registers(CPUState *cs, Error **errp)
2235 {
2236     uint64_t val;
2237     unsigned int el;
2238     uint32_t fpr;
2239     int i, ret;
2240 
2241     ARMCPU *cpu = ARM_CPU(cs);
2242     CPUARMState *env = &cpu->env;
2243 
2244     for (i = 0; i < 31; i++) {
2245         ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]),
2246                               &env->xregs[i]);
2247         if (ret) {
2248             return ret;
2249         }
2250     }
2251 
2252     ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]);
2253     if (ret) {
2254         return ret;
2255     }
2256 
2257     ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]);
2258     if (ret) {
2259         return ret;
2260     }
2261 
2262     ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val);
2263     if (ret) {
2264         return ret;
2265     }
2266 
2267     env->aarch64 = ((val & PSTATE_nRW) == 0);
2268     if (is_a64(env)) {
2269         pstate_write(env, val);
2270     } else {
2271         cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
2272     }
2273 
2274     /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
2275      * QEMU side we keep the current SP in xregs[31] as well.
2276      */
2277     aarch64_restore_sp(env, 1);
2278 
2279     ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc);
2280     if (ret) {
2281         return ret;
2282     }
2283 
2284     /* If we are in AArch32 mode then we need to sync the AArch32 regs with the
2285      * incoming AArch64 regs received from 64-bit KVM.
2286      * We must perform this after all of the registers have been acquired from
2287      * the kernel.
2288      */
2289     if (!is_a64(env)) {
2290         aarch64_sync_64_to_32(env);
2291     }
2292 
2293     ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]);
2294     if (ret) {
2295         return ret;
2296     }
2297 
2298     /* Fetch the SPSR registers
2299      *
2300      * KVM SPSRs 0-4 map to QEMU banks 1-5
2301      */
2302     for (i = 0; i < KVM_NR_SPSR; i++) {
2303         ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(spsr[i]),
2304                               &env->banked_spsr[i + 1]);
2305         if (ret) {
2306             return ret;
2307         }
2308     }
2309 
2310     el = arm_current_el(env);
2311     if (el > 0 && !is_a64(env)) {
2312         i = bank_number(env->uncached_cpsr & CPSR_M);
2313         env->spsr = env->banked_spsr[i];
2314     }
2315 
2316     if (cpu_isar_feature(aa64_sve, cpu)) {
2317         ret = kvm_arch_get_sve(cs);
2318     } else {
2319         ret = kvm_arch_get_fpsimd(cs);
2320     }
2321     if (ret) {
2322         return ret;
2323     }
2324 
2325     ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr);
2326     if (ret) {
2327         return ret;
2328     }
2329     vfp_set_fpsr(env, fpr);
2330 
2331     ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr);
2332     if (ret) {
2333         return ret;
2334     }
2335     vfp_set_fpcr(env, fpr);
2336 
2337     ret = kvm_get_vcpu_events(cpu);
2338     if (ret) {
2339         return ret;
2340     }
2341 
2342     if (!write_kvmstate_to_list(cpu)) {
2343         return -EINVAL;
2344     }
2345     /* Note that it's OK to have registers which aren't in CPUState,
2346      * so we can ignore a failure return here.
2347      */
2348     write_list_to_cpustate(cpu);
2349 
2350     ret = kvm_arm_sync_mpstate_to_qemu(cpu);
2351 
2352     /* TODO: other registers */
2353     return ret;
2354 }
2355 
kvm_arch_on_sigbus_vcpu(CPUState * c,int code,void * addr)2356 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
2357 {
2358     ram_addr_t ram_addr;
2359     hwaddr paddr;
2360 
2361     assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
2362 
2363     if (acpi_ghes_present() && addr) {
2364         ram_addr = qemu_ram_addr_from_host(addr);
2365         if (ram_addr != RAM_ADDR_INVALID &&
2366             kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
2367             kvm_hwpoison_page_add(ram_addr);
2368             /*
2369              * If this is a BUS_MCEERR_AR, we know we have been called
2370              * synchronously from the vCPU thread, so we can easily
2371              * synchronize the state and inject an error.
2372              *
2373              * TODO: we currently don't tell the guest at all about
2374              * BUS_MCEERR_AO. In that case we might either be being
2375              * called synchronously from the vCPU thread, or a bit
2376              * later from the main thread, so doing the injection of
2377              * the error would be more complicated.
2378              */
2379             if (code == BUS_MCEERR_AR) {
2380                 kvm_cpu_synchronize_state(c);
2381                 if (!acpi_ghes_memory_errors(ACPI_HEST_SRC_ID_SEA, paddr)) {
2382                     kvm_inject_arm_sea(c);
2383                 } else {
2384                     error_report("failed to record the error");
2385                     abort();
2386                 }
2387             }
2388             return;
2389         }
2390         if (code == BUS_MCEERR_AO) {
2391             error_report("Hardware memory error at addr %p for memory used by "
2392                 "QEMU itself instead of guest system!", addr);
2393         }
2394     }
2395 
2396     if (code == BUS_MCEERR_AR) {
2397         error_report("Hardware memory error!");
2398         exit(1);
2399     }
2400 }
2401 
2402 /* C6.6.29 BRK instruction */
2403 static const uint32_t brk_insn = 0xd4200000;
2404 
kvm_arch_insert_sw_breakpoint(CPUState * cs,struct kvm_sw_breakpoint * bp)2405 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
2406 {
2407     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
2408         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
2409         return -EINVAL;
2410     }
2411     return 0;
2412 }
2413 
kvm_arch_remove_sw_breakpoint(CPUState * cs,struct kvm_sw_breakpoint * bp)2414 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
2415 {
2416     static uint32_t brk;
2417 
2418     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) ||
2419         brk != brk_insn ||
2420         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
2421         return -EINVAL;
2422     }
2423     return 0;
2424 }
2425 
kvm_arm_enable_mte(Object * cpuobj,Error ** errp)2426 void kvm_arm_enable_mte(Object *cpuobj, Error **errp)
2427 {
2428     static bool tried_to_enable;
2429     static bool succeeded_to_enable;
2430     Error *mte_migration_blocker = NULL;
2431     ARMCPU *cpu = ARM_CPU(cpuobj);
2432     int ret;
2433 
2434     if (!tried_to_enable) {
2435         /*
2436          * MTE on KVM is enabled on a per-VM basis (and retrying doesn't make
2437          * sense), and we only want a single migration blocker as well.
2438          */
2439         tried_to_enable = true;
2440 
2441         ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_ARM_MTE, 0);
2442         if (ret) {
2443             error_setg_errno(errp, -ret, "Failed to enable KVM_CAP_ARM_MTE");
2444             return;
2445         }
2446 
2447         /* TODO: Add migration support with MTE enabled */
2448         error_setg(&mte_migration_blocker,
2449                    "Live migration disabled due to MTE enabled");
2450         if (migrate_add_blocker(&mte_migration_blocker, errp)) {
2451             error_free(mte_migration_blocker);
2452             return;
2453         }
2454 
2455         succeeded_to_enable = true;
2456     }
2457 
2458     if (succeeded_to_enable) {
2459         cpu->kvm_mte = true;
2460     }
2461 }
2462 
arm_cpu_kvm_set_irq(void * arm_cpu,int irq,int level)2463 void arm_cpu_kvm_set_irq(void *arm_cpu, int irq, int level)
2464 {
2465     ARMCPU *cpu = arm_cpu;
2466     CPUARMState *env = &cpu->env;
2467     CPUState *cs = CPU(cpu);
2468     uint32_t linestate_bit;
2469     int irq_id;
2470 
2471     switch (irq) {
2472     case ARM_CPU_IRQ:
2473         irq_id = KVM_ARM_IRQ_CPU_IRQ;
2474         linestate_bit = CPU_INTERRUPT_HARD;
2475         break;
2476     case ARM_CPU_FIQ:
2477         irq_id = KVM_ARM_IRQ_CPU_FIQ;
2478         linestate_bit = CPU_INTERRUPT_FIQ;
2479         break;
2480     default:
2481         g_assert_not_reached();
2482     }
2483 
2484     if (level) {
2485         env->irq_line_state |= linestate_bit;
2486     } else {
2487         env->irq_line_state &= ~linestate_bit;
2488     }
2489     kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
2490 }
2491