1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/readahead.c - address_space-level file readahead.
4 *
5 * Copyright (C) 2002, Linus Torvalds
6 *
7 * 09Apr2002 Andrew Morton
8 * Initial version.
9 */
10
11 /**
12 * DOC: Readahead Overview
13 *
14 * Readahead is used to read content into the page cache before it is
15 * explicitly requested by the application. Readahead only ever
16 * attempts to read folios that are not yet in the page cache. If a
17 * folio is present but not up-to-date, readahead will not try to read
18 * it. In that case a simple ->read_folio() will be requested.
19 *
20 * Readahead is triggered when an application read request (whether a
21 * system call or a page fault) finds that the requested folio is not in
22 * the page cache, or that it is in the page cache and has the
23 * readahead flag set. This flag indicates that the folio was read
24 * as part of a previous readahead request and now that it has been
25 * accessed, it is time for the next readahead.
26 *
27 * Each readahead request is partly synchronous read, and partly async
28 * readahead. This is reflected in the struct file_ra_state which
29 * contains ->size being the total number of pages, and ->async_size
30 * which is the number of pages in the async section. The readahead
31 * flag will be set on the first folio in this async section to trigger
32 * a subsequent readahead. Once a series of sequential reads has been
33 * established, there should be no need for a synchronous component and
34 * all readahead request will be fully asynchronous.
35 *
36 * When either of the triggers causes a readahead, three numbers need
37 * to be determined: the start of the region to read, the size of the
38 * region, and the size of the async tail.
39 *
40 * The start of the region is simply the first page address at or after
41 * the accessed address, which is not currently populated in the page
42 * cache. This is found with a simple search in the page cache.
43 *
44 * The size of the async tail is determined by subtracting the size that
45 * was explicitly requested from the determined request size, unless
46 * this would be less than zero - then zero is used. NOTE THIS
47 * CALCULATION IS WRONG WHEN THE START OF THE REGION IS NOT THE ACCESSED
48 * PAGE. ALSO THIS CALCULATION IS NOT USED CONSISTENTLY.
49 *
50 * The size of the region is normally determined from the size of the
51 * previous readahead which loaded the preceding pages. This may be
52 * discovered from the struct file_ra_state for simple sequential reads,
53 * or from examining the state of the page cache when multiple
54 * sequential reads are interleaved. Specifically: where the readahead
55 * was triggered by the readahead flag, the size of the previous
56 * readahead is assumed to be the number of pages from the triggering
57 * page to the start of the new readahead. In these cases, the size of
58 * the previous readahead is scaled, often doubled, for the new
59 * readahead, though see get_next_ra_size() for details.
60 *
61 * If the size of the previous read cannot be determined, the number of
62 * preceding pages in the page cache is used to estimate the size of
63 * a previous read. This estimate could easily be misled by random
64 * reads being coincidentally adjacent, so it is ignored unless it is
65 * larger than the current request, and it is not scaled up, unless it
66 * is at the start of file.
67 *
68 * In general readahead is accelerated at the start of the file, as
69 * reads from there are often sequential. There are other minor
70 * adjustments to the readahead size in various special cases and these
71 * are best discovered by reading the code.
72 *
73 * The above calculation, based on the previous readahead size,
74 * determines the size of the readahead, to which any requested read
75 * size may be added.
76 *
77 * Readahead requests are sent to the filesystem using the ->readahead()
78 * address space operation, for which mpage_readahead() is a canonical
79 * implementation. ->readahead() should normally initiate reads on all
80 * folios, but may fail to read any or all folios without causing an I/O
81 * error. The page cache reading code will issue a ->read_folio() request
82 * for any folio which ->readahead() did not read, and only an error
83 * from this will be final.
84 *
85 * ->readahead() will generally call readahead_folio() repeatedly to get
86 * each folio from those prepared for readahead. It may fail to read a
87 * folio by:
88 *
89 * * not calling readahead_folio() sufficiently many times, effectively
90 * ignoring some folios, as might be appropriate if the path to
91 * storage is congested.
92 *
93 * * failing to actually submit a read request for a given folio,
94 * possibly due to insufficient resources, or
95 *
96 * * getting an error during subsequent processing of a request.
97 *
98 * In the last two cases, the folio should be unlocked by the filesystem
99 * to indicate that the read attempt has failed. In the first case the
100 * folio will be unlocked by the VFS.
101 *
102 * Those folios not in the final ``async_size`` of the request should be
103 * considered to be important and ->readahead() should not fail them due
104 * to congestion or temporary resource unavailability, but should wait
105 * for necessary resources (e.g. memory or indexing information) to
106 * become available. Folios in the final ``async_size`` may be
107 * considered less urgent and failure to read them is more acceptable.
108 * In this case it is best to use filemap_remove_folio() to remove the
109 * folios from the page cache as is automatically done for folios that
110 * were not fetched with readahead_folio(). This will allow a
111 * subsequent synchronous readahead request to try them again. If they
112 * are left in the page cache, then they will be read individually using
113 * ->read_folio() which may be less efficient.
114 */
115
116 #include <linux/blkdev.h>
117 #include <linux/kernel.h>
118 #include <linux/dax.h>
119 #include <linux/gfp.h>
120 #include <linux/export.h>
121 #include <linux/backing-dev.h>
122 #include <linux/task_io_accounting_ops.h>
123 #include <linux/pagemap.h>
124 #include <linux/psi.h>
125 #include <linux/syscalls.h>
126 #include <linux/file.h>
127 #include <linux/mm_inline.h>
128 #include <linux/blk-cgroup.h>
129 #include <linux/fadvise.h>
130 #include <linux/sched/mm.h>
131
132 #include "internal.h"
133
134 /*
135 * Initialise a struct file's readahead state. Assumes that the caller has
136 * memset *ra to zero.
137 */
138 void
file_ra_state_init(struct file_ra_state * ra,struct address_space * mapping)139 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
140 {
141 ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
142 ra->prev_pos = -1;
143 }
144 EXPORT_SYMBOL_GPL(file_ra_state_init);
145
read_pages(struct readahead_control * rac)146 static void read_pages(struct readahead_control *rac)
147 {
148 const struct address_space_operations *aops = rac->mapping->a_ops;
149 struct folio *folio;
150 struct blk_plug plug;
151
152 if (!readahead_count(rac))
153 return;
154
155 if (unlikely(rac->_workingset))
156 psi_memstall_enter(&rac->_pflags);
157 blk_start_plug(&plug);
158
159 if (aops->readahead) {
160 aops->readahead(rac);
161 /*
162 * Clean up the remaining folios. The sizes in ->ra
163 * may be used to size the next readahead, so make sure
164 * they accurately reflect what happened.
165 */
166 while ((folio = readahead_folio(rac)) != NULL) {
167 unsigned long nr = folio_nr_pages(folio);
168
169 folio_get(folio);
170 rac->ra->size -= nr;
171 if (rac->ra->async_size >= nr) {
172 rac->ra->async_size -= nr;
173 filemap_remove_folio(folio);
174 }
175 folio_unlock(folio);
176 folio_put(folio);
177 }
178 } else {
179 while ((folio = readahead_folio(rac)) != NULL)
180 aops->read_folio(rac->file, folio);
181 }
182
183 blk_finish_plug(&plug);
184 if (unlikely(rac->_workingset))
185 psi_memstall_leave(&rac->_pflags);
186 rac->_workingset = false;
187
188 BUG_ON(readahead_count(rac));
189 }
190
191 /**
192 * page_cache_ra_unbounded - Start unchecked readahead.
193 * @ractl: Readahead control.
194 * @nr_to_read: The number of pages to read.
195 * @lookahead_size: Where to start the next readahead.
196 *
197 * This function is for filesystems to call when they want to start
198 * readahead beyond a file's stated i_size. This is almost certainly
199 * not the function you want to call. Use page_cache_async_readahead()
200 * or page_cache_sync_readahead() instead.
201 *
202 * Context: File is referenced by caller. Mutexes may be held by caller.
203 * May sleep, but will not reenter filesystem to reclaim memory.
204 */
page_cache_ra_unbounded(struct readahead_control * ractl,unsigned long nr_to_read,unsigned long lookahead_size)205 void page_cache_ra_unbounded(struct readahead_control *ractl,
206 unsigned long nr_to_read, unsigned long lookahead_size)
207 {
208 struct address_space *mapping = ractl->mapping;
209 unsigned long index = readahead_index(ractl);
210 gfp_t gfp_mask = readahead_gfp_mask(mapping);
211 unsigned long i;
212
213 /*
214 * Partway through the readahead operation, we will have added
215 * locked pages to the page cache, but will not yet have submitted
216 * them for I/O. Adding another page may need to allocate memory,
217 * which can trigger memory reclaim. Telling the VM we're in
218 * the middle of a filesystem operation will cause it to not
219 * touch file-backed pages, preventing a deadlock. Most (all?)
220 * filesystems already specify __GFP_NOFS in their mapping's
221 * gfp_mask, but let's be explicit here.
222 */
223 unsigned int nofs = memalloc_nofs_save();
224
225 filemap_invalidate_lock_shared(mapping);
226 /*
227 * Preallocate as many pages as we will need.
228 */
229 for (i = 0; i < nr_to_read; i++) {
230 struct folio *folio = xa_load(&mapping->i_pages, index + i);
231
232 if (folio && !xa_is_value(folio)) {
233 /*
234 * Page already present? Kick off the current batch
235 * of contiguous pages before continuing with the
236 * next batch. This page may be the one we would
237 * have intended to mark as Readahead, but we don't
238 * have a stable reference to this page, and it's
239 * not worth getting one just for that.
240 */
241 read_pages(ractl);
242 ractl->_index++;
243 i = ractl->_index + ractl->_nr_pages - index - 1;
244 continue;
245 }
246
247 folio = filemap_alloc_folio(gfp_mask, 0);
248 if (!folio)
249 break;
250 if (filemap_add_folio(mapping, folio, index + i,
251 gfp_mask) < 0) {
252 folio_put(folio);
253 read_pages(ractl);
254 ractl->_index++;
255 i = ractl->_index + ractl->_nr_pages - index - 1;
256 continue;
257 }
258 if (i == nr_to_read - lookahead_size)
259 folio_set_readahead(folio);
260 ractl->_workingset |= folio_test_workingset(folio);
261 ractl->_nr_pages++;
262 }
263
264 /*
265 * Now start the IO. We ignore I/O errors - if the folio is not
266 * uptodate then the caller will launch read_folio again, and
267 * will then handle the error.
268 */
269 read_pages(ractl);
270 filemap_invalidate_unlock_shared(mapping);
271 memalloc_nofs_restore(nofs);
272 }
273 EXPORT_SYMBOL_GPL(page_cache_ra_unbounded);
274
275 /*
276 * do_page_cache_ra() actually reads a chunk of disk. It allocates
277 * the pages first, then submits them for I/O. This avoids the very bad
278 * behaviour which would occur if page allocations are causing VM writeback.
279 * We really don't want to intermingle reads and writes like that.
280 */
do_page_cache_ra(struct readahead_control * ractl,unsigned long nr_to_read,unsigned long lookahead_size)281 static void do_page_cache_ra(struct readahead_control *ractl,
282 unsigned long nr_to_read, unsigned long lookahead_size)
283 {
284 struct inode *inode = ractl->mapping->host;
285 unsigned long index = readahead_index(ractl);
286 loff_t isize = i_size_read(inode);
287 pgoff_t end_index; /* The last page we want to read */
288
289 if (isize == 0)
290 return;
291
292 end_index = (isize - 1) >> PAGE_SHIFT;
293 if (index > end_index)
294 return;
295 /* Don't read past the page containing the last byte of the file */
296 if (nr_to_read > end_index - index)
297 nr_to_read = end_index - index + 1;
298
299 page_cache_ra_unbounded(ractl, nr_to_read, lookahead_size);
300 }
301
302 /*
303 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
304 * memory at once.
305 */
force_page_cache_ra(struct readahead_control * ractl,unsigned long nr_to_read)306 void force_page_cache_ra(struct readahead_control *ractl,
307 unsigned long nr_to_read)
308 {
309 struct address_space *mapping = ractl->mapping;
310 struct file_ra_state *ra = ractl->ra;
311 struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
312 unsigned long max_pages, index;
313
314 if (unlikely(!mapping->a_ops->read_folio && !mapping->a_ops->readahead))
315 return;
316
317 /*
318 * If the request exceeds the readahead window, allow the read to
319 * be up to the optimal hardware IO size
320 */
321 index = readahead_index(ractl);
322 max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages);
323 nr_to_read = min_t(unsigned long, nr_to_read, max_pages);
324 while (nr_to_read) {
325 unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE;
326
327 if (this_chunk > nr_to_read)
328 this_chunk = nr_to_read;
329 ractl->_index = index;
330 do_page_cache_ra(ractl, this_chunk, 0);
331
332 index += this_chunk;
333 nr_to_read -= this_chunk;
334 }
335 }
336
337 /*
338 * Set the initial window size, round to next power of 2 and square
339 * for small size, x 4 for medium, and x 2 for large
340 * for 128k (32 page) max ra
341 * 1-2 page = 16k, 3-4 page 32k, 5-8 page = 64k, > 8 page = 128k initial
342 */
get_init_ra_size(unsigned long size,unsigned long max)343 static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
344 {
345 unsigned long newsize = roundup_pow_of_two(size);
346
347 if (newsize <= max / 32)
348 newsize = newsize * 4;
349 else if (newsize <= max / 4)
350 newsize = newsize * 2;
351 else
352 newsize = max;
353
354 return newsize;
355 }
356
357 /*
358 * Get the previous window size, ramp it up, and
359 * return it as the new window size.
360 */
get_next_ra_size(struct file_ra_state * ra,unsigned long max)361 static unsigned long get_next_ra_size(struct file_ra_state *ra,
362 unsigned long max)
363 {
364 unsigned long cur = ra->size;
365
366 if (cur < max / 16)
367 return 4 * cur;
368 if (cur <= max / 2)
369 return 2 * cur;
370 return max;
371 }
372
373 /*
374 * On-demand readahead design.
375 *
376 * The fields in struct file_ra_state represent the most-recently-executed
377 * readahead attempt:
378 *
379 * |<----- async_size ---------|
380 * |------------------- size -------------------->|
381 * |==================#===========================|
382 * ^start ^page marked with PG_readahead
383 *
384 * To overlap application thinking time and disk I/O time, we do
385 * `readahead pipelining': Do not wait until the application consumed all
386 * readahead pages and stalled on the missing page at readahead_index;
387 * Instead, submit an asynchronous readahead I/O as soon as there are
388 * only async_size pages left in the readahead window. Normally async_size
389 * will be equal to size, for maximum pipelining.
390 *
391 * In interleaved sequential reads, concurrent streams on the same fd can
392 * be invalidating each other's readahead state. So we flag the new readahead
393 * page at (start+size-async_size) with PG_readahead, and use it as readahead
394 * indicator. The flag won't be set on already cached pages, to avoid the
395 * readahead-for-nothing fuss, saving pointless page cache lookups.
396 *
397 * prev_pos tracks the last visited byte in the _previous_ read request.
398 * It should be maintained by the caller, and will be used for detecting
399 * small random reads. Note that the readahead algorithm checks loosely
400 * for sequential patterns. Hence interleaved reads might be served as
401 * sequential ones.
402 *
403 * There is a special-case: if the first page which the application tries to
404 * read happens to be the first page of the file, it is assumed that a linear
405 * read is about to happen and the window is immediately set to the initial size
406 * based on I/O request size and the max_readahead.
407 *
408 * The code ramps up the readahead size aggressively at first, but slow down as
409 * it approaches max_readhead.
410 */
411
412 /*
413 * Count contiguously cached pages from @index-1 to @index-@max,
414 * this count is a conservative estimation of
415 * - length of the sequential read sequence, or
416 * - thrashing threshold in memory tight systems
417 */
count_history_pages(struct address_space * mapping,pgoff_t index,unsigned long max)418 static pgoff_t count_history_pages(struct address_space *mapping,
419 pgoff_t index, unsigned long max)
420 {
421 pgoff_t head;
422
423 rcu_read_lock();
424 head = page_cache_prev_miss(mapping, index - 1, max);
425 rcu_read_unlock();
426
427 return index - 1 - head;
428 }
429
430 /*
431 * page cache context based readahead
432 */
try_context_readahead(struct address_space * mapping,struct file_ra_state * ra,pgoff_t index,unsigned long req_size,unsigned long max)433 static int try_context_readahead(struct address_space *mapping,
434 struct file_ra_state *ra,
435 pgoff_t index,
436 unsigned long req_size,
437 unsigned long max)
438 {
439 pgoff_t size;
440
441 size = count_history_pages(mapping, index, max);
442
443 /*
444 * not enough history pages:
445 * it could be a random read
446 */
447 if (size <= req_size)
448 return 0;
449
450 /*
451 * starts from beginning of file:
452 * it is a strong indication of long-run stream (or whole-file-read)
453 */
454 if (size >= index)
455 size *= 2;
456
457 ra->start = index;
458 ra->size = min(size + req_size, max);
459 ra->async_size = 1;
460
461 return 1;
462 }
463
ra_alloc_folio(struct readahead_control * ractl,pgoff_t index,pgoff_t mark,unsigned int order,gfp_t gfp)464 static inline int ra_alloc_folio(struct readahead_control *ractl, pgoff_t index,
465 pgoff_t mark, unsigned int order, gfp_t gfp)
466 {
467 int err;
468 struct folio *folio = filemap_alloc_folio(gfp, order);
469
470 if (!folio)
471 return -ENOMEM;
472 mark = round_down(mark, 1UL << order);
473 if (index == mark)
474 folio_set_readahead(folio);
475 err = filemap_add_folio(ractl->mapping, folio, index, gfp);
476 if (err) {
477 folio_put(folio);
478 return err;
479 }
480
481 ractl->_nr_pages += 1UL << order;
482 ractl->_workingset |= folio_test_workingset(folio);
483 return 0;
484 }
485
page_cache_ra_order(struct readahead_control * ractl,struct file_ra_state * ra,unsigned int new_order)486 void page_cache_ra_order(struct readahead_control *ractl,
487 struct file_ra_state *ra, unsigned int new_order)
488 {
489 struct address_space *mapping = ractl->mapping;
490 pgoff_t index = readahead_index(ractl);
491 pgoff_t limit = (i_size_read(mapping->host) - 1) >> PAGE_SHIFT;
492 pgoff_t mark = index + ra->size - ra->async_size;
493 unsigned int nofs;
494 int err = 0;
495 gfp_t gfp = readahead_gfp_mask(mapping);
496
497 if (!mapping_large_folio_support(mapping) || ra->size < 4)
498 goto fallback;
499
500 limit = min(limit, index + ra->size - 1);
501
502 if (new_order < MAX_PAGECACHE_ORDER) {
503 new_order += 2;
504 if (new_order > MAX_PAGECACHE_ORDER)
505 new_order = MAX_PAGECACHE_ORDER;
506 while ((1 << new_order) > ra->size)
507 new_order--;
508 }
509
510 /* See comment in page_cache_ra_unbounded() */
511 nofs = memalloc_nofs_save();
512 filemap_invalidate_lock_shared(mapping);
513 while (index <= limit) {
514 unsigned int order = new_order;
515
516 /* Align with smaller pages if needed */
517 if (index & ((1UL << order) - 1))
518 order = __ffs(index);
519 /* Don't allocate pages past EOF */
520 while (index + (1UL << order) - 1 > limit)
521 order--;
522 err = ra_alloc_folio(ractl, index, mark, order, gfp);
523 if (err)
524 break;
525 index += 1UL << order;
526 }
527
528 if (index > limit) {
529 ra->size += index - limit - 1;
530 ra->async_size += index - limit - 1;
531 }
532
533 read_pages(ractl);
534 filemap_invalidate_unlock_shared(mapping);
535 memalloc_nofs_restore(nofs);
536
537 /*
538 * If there were already pages in the page cache, then we may have
539 * left some gaps. Let the regular readahead code take care of this
540 * situation.
541 */
542 if (!err)
543 return;
544 fallback:
545 do_page_cache_ra(ractl, ra->size, ra->async_size);
546 }
547
548 /*
549 * A minimal readahead algorithm for trivial sequential/random reads.
550 */
ondemand_readahead(struct readahead_control * ractl,struct folio * folio,unsigned long req_size)551 static void ondemand_readahead(struct readahead_control *ractl,
552 struct folio *folio, unsigned long req_size)
553 {
554 struct backing_dev_info *bdi = inode_to_bdi(ractl->mapping->host);
555 struct file_ra_state *ra = ractl->ra;
556 unsigned long max_pages = ra->ra_pages;
557 unsigned long add_pages;
558 pgoff_t index = readahead_index(ractl);
559 pgoff_t expected, prev_index;
560 unsigned int order = folio ? folio_order(folio) : 0;
561
562 /*
563 * If the request exceeds the readahead window, allow the read to
564 * be up to the optimal hardware IO size
565 */
566 if (req_size > max_pages && bdi->io_pages > max_pages)
567 max_pages = min(req_size, bdi->io_pages);
568
569 /*
570 * start of file
571 */
572 if (!index)
573 goto initial_readahead;
574
575 /*
576 * It's the expected callback index, assume sequential access.
577 * Ramp up sizes, and push forward the readahead window.
578 */
579 expected = round_down(ra->start + ra->size - ra->async_size,
580 1UL << order);
581 if (index == expected || index == (ra->start + ra->size)) {
582 ra->start += ra->size;
583 ra->size = get_next_ra_size(ra, max_pages);
584 ra->async_size = ra->size;
585 goto readit;
586 }
587
588 /*
589 * Hit a marked folio without valid readahead state.
590 * E.g. interleaved reads.
591 * Query the pagecache for async_size, which normally equals to
592 * readahead size. Ramp it up and use it as the new readahead size.
593 */
594 if (folio) {
595 pgoff_t start;
596
597 rcu_read_lock();
598 start = page_cache_next_miss(ractl->mapping, index + 1,
599 max_pages);
600 rcu_read_unlock();
601
602 if (!start || start - index > max_pages)
603 return;
604
605 ra->start = start;
606 ra->size = start - index; /* old async_size */
607 ra->size += req_size;
608 ra->size = get_next_ra_size(ra, max_pages);
609 ra->async_size = ra->size;
610 goto readit;
611 }
612
613 /*
614 * oversize read
615 */
616 if (req_size > max_pages)
617 goto initial_readahead;
618
619 /*
620 * sequential cache miss
621 * trivial case: (index - prev_index) == 1
622 * unaligned reads: (index - prev_index) == 0
623 */
624 prev_index = (unsigned long long)ra->prev_pos >> PAGE_SHIFT;
625 if (index - prev_index <= 1UL)
626 goto initial_readahead;
627
628 /*
629 * Query the page cache and look for the traces(cached history pages)
630 * that a sequential stream would leave behind.
631 */
632 if (try_context_readahead(ractl->mapping, ra, index, req_size,
633 max_pages))
634 goto readit;
635
636 /*
637 * standalone, small random read
638 * Read as is, and do not pollute the readahead state.
639 */
640 do_page_cache_ra(ractl, req_size, 0);
641 return;
642
643 initial_readahead:
644 ra->start = index;
645 ra->size = get_init_ra_size(req_size, max_pages);
646 ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
647
648 readit:
649 /*
650 * Will this read hit the readahead marker made by itself?
651 * If so, trigger the readahead marker hit now, and merge
652 * the resulted next readahead window into the current one.
653 * Take care of maximum IO pages as above.
654 */
655 if (index == ra->start && ra->size == ra->async_size) {
656 add_pages = get_next_ra_size(ra, max_pages);
657 if (ra->size + add_pages <= max_pages) {
658 ra->async_size = add_pages;
659 ra->size += add_pages;
660 } else {
661 ra->size = max_pages;
662 ra->async_size = max_pages >> 1;
663 }
664 }
665
666 ractl->_index = ra->start;
667 page_cache_ra_order(ractl, ra, order);
668 }
669
page_cache_sync_ra(struct readahead_control * ractl,unsigned long req_count)670 void page_cache_sync_ra(struct readahead_control *ractl,
671 unsigned long req_count)
672 {
673 bool do_forced_ra = ractl->file && (ractl->file->f_mode & FMODE_RANDOM);
674
675 /*
676 * Even if readahead is disabled, issue this request as readahead
677 * as we'll need it to satisfy the requested range. The forced
678 * readahead will do the right thing and limit the read to just the
679 * requested range, which we'll set to 1 page for this case.
680 */
681 if (!ractl->ra->ra_pages || blk_cgroup_congested()) {
682 if (!ractl->file)
683 return;
684 req_count = 1;
685 do_forced_ra = true;
686 }
687
688 /* be dumb */
689 if (do_forced_ra) {
690 force_page_cache_ra(ractl, req_count);
691 return;
692 }
693
694 ondemand_readahead(ractl, NULL, req_count);
695 }
696 EXPORT_SYMBOL_GPL(page_cache_sync_ra);
697
page_cache_async_ra(struct readahead_control * ractl,struct folio * folio,unsigned long req_count)698 void page_cache_async_ra(struct readahead_control *ractl,
699 struct folio *folio, unsigned long req_count)
700 {
701 /* no readahead */
702 if (!ractl->ra->ra_pages)
703 return;
704
705 /*
706 * Same bit is used for PG_readahead and PG_reclaim.
707 */
708 if (folio_test_writeback(folio))
709 return;
710
711 folio_clear_readahead(folio);
712
713 if (blk_cgroup_congested())
714 return;
715
716 ondemand_readahead(ractl, folio, req_count);
717 }
718 EXPORT_SYMBOL_GPL(page_cache_async_ra);
719
ksys_readahead(int fd,loff_t offset,size_t count)720 ssize_t ksys_readahead(int fd, loff_t offset, size_t count)
721 {
722 ssize_t ret;
723 struct fd f;
724
725 ret = -EBADF;
726 f = fdget(fd);
727 if (!f.file || !(f.file->f_mode & FMODE_READ))
728 goto out;
729
730 /*
731 * The readahead() syscall is intended to run only on files
732 * that can execute readahead. If readahead is not possible
733 * on this file, then we must return -EINVAL.
734 */
735 ret = -EINVAL;
736 if (!f.file->f_mapping || !f.file->f_mapping->a_ops ||
737 (!S_ISREG(file_inode(f.file)->i_mode) &&
738 !S_ISBLK(file_inode(f.file)->i_mode)))
739 goto out;
740
741 ret = vfs_fadvise(f.file, offset, count, POSIX_FADV_WILLNEED);
742 out:
743 fdput(f);
744 return ret;
745 }
746
SYSCALL_DEFINE3(readahead,int,fd,loff_t,offset,size_t,count)747 SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
748 {
749 return ksys_readahead(fd, offset, count);
750 }
751
752 #if defined(CONFIG_COMPAT) && defined(__ARCH_WANT_COMPAT_READAHEAD)
COMPAT_SYSCALL_DEFINE4(readahead,int,fd,compat_arg_u64_dual (offset),size_t,count)753 COMPAT_SYSCALL_DEFINE4(readahead, int, fd, compat_arg_u64_dual(offset), size_t, count)
754 {
755 return ksys_readahead(fd, compat_arg_u64_glue(offset), count);
756 }
757 #endif
758
759 /**
760 * readahead_expand - Expand a readahead request
761 * @ractl: The request to be expanded
762 * @new_start: The revised start
763 * @new_len: The revised size of the request
764 *
765 * Attempt to expand a readahead request outwards from the current size to the
766 * specified size by inserting locked pages before and after the current window
767 * to increase the size to the new window. This may involve the insertion of
768 * THPs, in which case the window may get expanded even beyond what was
769 * requested.
770 *
771 * The algorithm will stop if it encounters a conflicting page already in the
772 * pagecache and leave a smaller expansion than requested.
773 *
774 * The caller must check for this by examining the revised @ractl object for a
775 * different expansion than was requested.
776 */
readahead_expand(struct readahead_control * ractl,loff_t new_start,size_t new_len)777 void readahead_expand(struct readahead_control *ractl,
778 loff_t new_start, size_t new_len)
779 {
780 struct address_space *mapping = ractl->mapping;
781 struct file_ra_state *ra = ractl->ra;
782 pgoff_t new_index, new_nr_pages;
783 gfp_t gfp_mask = readahead_gfp_mask(mapping);
784
785 new_index = new_start / PAGE_SIZE;
786
787 /* Expand the leading edge downwards */
788 while (ractl->_index > new_index) {
789 unsigned long index = ractl->_index - 1;
790 struct folio *folio = xa_load(&mapping->i_pages, index);
791
792 if (folio && !xa_is_value(folio))
793 return; /* Folio apparently present */
794
795 folio = filemap_alloc_folio(gfp_mask, 0);
796 if (!folio)
797 return;
798 if (filemap_add_folio(mapping, folio, index, gfp_mask) < 0) {
799 folio_put(folio);
800 return;
801 }
802 if (unlikely(folio_test_workingset(folio)) &&
803 !ractl->_workingset) {
804 ractl->_workingset = true;
805 psi_memstall_enter(&ractl->_pflags);
806 }
807 ractl->_nr_pages++;
808 ractl->_index = folio->index;
809 }
810
811 new_len += new_start - readahead_pos(ractl);
812 new_nr_pages = DIV_ROUND_UP(new_len, PAGE_SIZE);
813
814 /* Expand the trailing edge upwards */
815 while (ractl->_nr_pages < new_nr_pages) {
816 unsigned long index = ractl->_index + ractl->_nr_pages;
817 struct folio *folio = xa_load(&mapping->i_pages, index);
818
819 if (folio && !xa_is_value(folio))
820 return; /* Folio apparently present */
821
822 folio = filemap_alloc_folio(gfp_mask, 0);
823 if (!folio)
824 return;
825 if (filemap_add_folio(mapping, folio, index, gfp_mask) < 0) {
826 folio_put(folio);
827 return;
828 }
829 if (unlikely(folio_test_workingset(folio)) &&
830 !ractl->_workingset) {
831 ractl->_workingset = true;
832 psi_memstall_enter(&ractl->_pflags);
833 }
834 ractl->_nr_pages++;
835 if (ra) {
836 ra->size++;
837 ra->async_size++;
838 }
839 }
840 }
841 EXPORT_SYMBOL(readahead_expand);
842