1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2019 Intel Corporation
4  */
5 
6 #include <linux/kobject.h>
7 #include <linux/sysfs.h>
8 
9 #include "i915_drv.h"
10 #include "intel_engine.h"
11 #include "intel_engine_heartbeat.h"
12 #include "sysfs_engines.h"
13 
14 struct kobj_engine {
15 	struct kobject base;
16 	struct intel_engine_cs *engine;
17 };
18 
kobj_to_engine(struct kobject * kobj)19 static struct intel_engine_cs *kobj_to_engine(struct kobject *kobj)
20 {
21 	return container_of(kobj, struct kobj_engine, base)->engine;
22 }
23 
24 static ssize_t
name_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)25 name_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
26 {
27 	return sysfs_emit(buf, "%s\n", kobj_to_engine(kobj)->name);
28 }
29 
30 static const struct kobj_attribute name_attr =
31 __ATTR(name, 0444, name_show, NULL);
32 
33 static ssize_t
class_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)34 class_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
35 {
36 	return sysfs_emit(buf, "%d\n", kobj_to_engine(kobj)->uabi_class);
37 }
38 
39 static const struct kobj_attribute class_attr =
40 __ATTR(class, 0444, class_show, NULL);
41 
42 static ssize_t
inst_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)43 inst_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
44 {
45 	return sysfs_emit(buf, "%d\n", kobj_to_engine(kobj)->uabi_instance);
46 }
47 
48 static const struct kobj_attribute inst_attr =
49 __ATTR(instance, 0444, inst_show, NULL);
50 
51 static ssize_t
mmio_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)52 mmio_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
53 {
54 	return sysfs_emit(buf, "0x%x\n", kobj_to_engine(kobj)->mmio_base);
55 }
56 
57 static const struct kobj_attribute mmio_attr =
58 __ATTR(mmio_base, 0444, mmio_show, NULL);
59 
60 static const char * const vcs_caps[] = {
61 	[ilog2(I915_VIDEO_CLASS_CAPABILITY_HEVC)] = "hevc",
62 	[ilog2(I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC)] = "sfc",
63 };
64 
65 static const char * const vecs_caps[] = {
66 	[ilog2(I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC)] = "sfc",
67 };
68 
repr_trim(char * buf,ssize_t len)69 static ssize_t repr_trim(char *buf, ssize_t len)
70 {
71 	/* Trim off the trailing space and replace with a newline */
72 	if (len > PAGE_SIZE)
73 		len = PAGE_SIZE;
74 	if (len > 0)
75 		buf[len - 1] = '\n';
76 
77 	return len;
78 }
79 
80 static ssize_t
__caps_show(struct intel_engine_cs * engine,unsigned long caps,char * buf,bool show_unknown)81 __caps_show(struct intel_engine_cs *engine,
82 	    unsigned long caps, char *buf, bool show_unknown)
83 {
84 	const char * const *repr;
85 	int count, n;
86 	ssize_t len;
87 
88 	switch (engine->class) {
89 	case VIDEO_DECODE_CLASS:
90 		repr = vcs_caps;
91 		count = ARRAY_SIZE(vcs_caps);
92 		break;
93 
94 	case VIDEO_ENHANCEMENT_CLASS:
95 		repr = vecs_caps;
96 		count = ARRAY_SIZE(vecs_caps);
97 		break;
98 
99 	default:
100 		repr = NULL;
101 		count = 0;
102 		break;
103 	}
104 	GEM_BUG_ON(count > BITS_PER_LONG);
105 
106 	len = 0;
107 	for_each_set_bit(n, &caps, show_unknown ? BITS_PER_LONG : count) {
108 		if (n >= count || !repr[n]) {
109 			if (GEM_WARN_ON(show_unknown))
110 				len += sysfs_emit_at(buf, len, "[%x] ", n);
111 		} else {
112 			len += sysfs_emit_at(buf, len, "%s ", repr[n]);
113 		}
114 		if (GEM_WARN_ON(len >= PAGE_SIZE))
115 			break;
116 	}
117 	return repr_trim(buf, len);
118 }
119 
120 static ssize_t
caps_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)121 caps_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
122 {
123 	struct intel_engine_cs *engine = kobj_to_engine(kobj);
124 
125 	return __caps_show(engine, engine->uabi_capabilities, buf, true);
126 }
127 
128 static const struct kobj_attribute caps_attr =
129 __ATTR(capabilities, 0444, caps_show, NULL);
130 
131 static ssize_t
all_caps_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)132 all_caps_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
133 {
134 	return __caps_show(kobj_to_engine(kobj), -1, buf, false);
135 }
136 
137 static const struct kobj_attribute all_caps_attr =
138 __ATTR(known_capabilities, 0444, all_caps_show, NULL);
139 
140 static ssize_t
max_spin_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)141 max_spin_store(struct kobject *kobj, struct kobj_attribute *attr,
142 	       const char *buf, size_t count)
143 {
144 	struct intel_engine_cs *engine = kobj_to_engine(kobj);
145 	unsigned long long duration, clamped;
146 	int err;
147 
148 	/*
149 	 * When waiting for a request, if is it currently being executed
150 	 * on the GPU, we busywait for a short while before sleeping. The
151 	 * premise is that most requests are short, and if it is already
152 	 * executing then there is a good chance that it will complete
153 	 * before we can setup the interrupt handler and go to sleep.
154 	 * We try to offset the cost of going to sleep, by first spinning
155 	 * on the request -- if it completed in less time than it would take
156 	 * to go sleep, process the interrupt and return back to the client,
157 	 * then we have saved the client some latency, albeit at the cost
158 	 * of spinning on an expensive CPU core.
159 	 *
160 	 * While we try to avoid waiting at all for a request that is unlikely
161 	 * to complete, deciding how long it is worth spinning is for is an
162 	 * arbitrary decision: trading off power vs latency.
163 	 */
164 
165 	err = kstrtoull(buf, 0, &duration);
166 	if (err)
167 		return err;
168 
169 	clamped = intel_clamp_max_busywait_duration_ns(engine, duration);
170 	if (duration != clamped)
171 		return -EINVAL;
172 
173 	WRITE_ONCE(engine->props.max_busywait_duration_ns, duration);
174 
175 	return count;
176 }
177 
178 static ssize_t
max_spin_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)179 max_spin_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
180 {
181 	struct intel_engine_cs *engine = kobj_to_engine(kobj);
182 
183 	return sysfs_emit(buf, "%lu\n", engine->props.max_busywait_duration_ns);
184 }
185 
186 static const struct kobj_attribute max_spin_attr =
187 __ATTR(max_busywait_duration_ns, 0644, max_spin_show, max_spin_store);
188 
189 static ssize_t
max_spin_default(struct kobject * kobj,struct kobj_attribute * attr,char * buf)190 max_spin_default(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
191 {
192 	struct intel_engine_cs *engine = kobj_to_engine(kobj);
193 
194 	return sysfs_emit(buf, "%lu\n", engine->defaults.max_busywait_duration_ns);
195 }
196 
197 static const struct kobj_attribute max_spin_def =
198 __ATTR(max_busywait_duration_ns, 0444, max_spin_default, NULL);
199 
200 static ssize_t
timeslice_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)201 timeslice_store(struct kobject *kobj, struct kobj_attribute *attr,
202 		const char *buf, size_t count)
203 {
204 	struct intel_engine_cs *engine = kobj_to_engine(kobj);
205 	unsigned long long duration, clamped;
206 	int err;
207 
208 	/*
209 	 * Execlists uses a scheduling quantum (a timeslice) to alternate
210 	 * execution between ready-to-run contexts of equal priority. This
211 	 * ensures that all users (though only if they of equal importance)
212 	 * have the opportunity to run and prevents livelocks where contexts
213 	 * may have implicit ordering due to userspace semaphores.
214 	 */
215 
216 	err = kstrtoull(buf, 0, &duration);
217 	if (err)
218 		return err;
219 
220 	clamped = intel_clamp_timeslice_duration_ms(engine, duration);
221 	if (duration != clamped)
222 		return -EINVAL;
223 
224 	WRITE_ONCE(engine->props.timeslice_duration_ms, duration);
225 
226 	if (execlists_active(&engine->execlists))
227 		set_timer_ms(&engine->execlists.timer, duration);
228 
229 	return count;
230 }
231 
232 static ssize_t
timeslice_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)233 timeslice_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
234 {
235 	struct intel_engine_cs *engine = kobj_to_engine(kobj);
236 
237 	return sysfs_emit(buf, "%lu\n", engine->props.timeslice_duration_ms);
238 }
239 
240 static const struct kobj_attribute timeslice_duration_attr =
241 __ATTR(timeslice_duration_ms, 0644, timeslice_show, timeslice_store);
242 
243 static ssize_t
timeslice_default(struct kobject * kobj,struct kobj_attribute * attr,char * buf)244 timeslice_default(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
245 {
246 	struct intel_engine_cs *engine = kobj_to_engine(kobj);
247 
248 	return sysfs_emit(buf, "%lu\n", engine->defaults.timeslice_duration_ms);
249 }
250 
251 static const struct kobj_attribute timeslice_duration_def =
252 __ATTR(timeslice_duration_ms, 0444, timeslice_default, NULL);
253 
254 static ssize_t
stop_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)255 stop_store(struct kobject *kobj, struct kobj_attribute *attr,
256 	   const char *buf, size_t count)
257 {
258 	struct intel_engine_cs *engine = kobj_to_engine(kobj);
259 	unsigned long long duration, clamped;
260 	int err;
261 
262 	/*
263 	 * When we allow ourselves to sleep before a GPU reset after disabling
264 	 * submission, even for a few milliseconds, gives an innocent context
265 	 * the opportunity to clear the GPU before the reset occurs. However,
266 	 * how long to sleep depends on the typical non-preemptible duration
267 	 * (a similar problem to determining the ideal preempt-reset timeout
268 	 * or even the heartbeat interval).
269 	 */
270 
271 	err = kstrtoull(buf, 0, &duration);
272 	if (err)
273 		return err;
274 
275 	clamped = intel_clamp_stop_timeout_ms(engine, duration);
276 	if (duration != clamped)
277 		return -EINVAL;
278 
279 	WRITE_ONCE(engine->props.stop_timeout_ms, duration);
280 	return count;
281 }
282 
283 static ssize_t
stop_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)284 stop_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
285 {
286 	struct intel_engine_cs *engine = kobj_to_engine(kobj);
287 
288 	return sysfs_emit(buf, "%lu\n", engine->props.stop_timeout_ms);
289 }
290 
291 static const struct kobj_attribute stop_timeout_attr =
292 __ATTR(stop_timeout_ms, 0644, stop_show, stop_store);
293 
294 static ssize_t
stop_default(struct kobject * kobj,struct kobj_attribute * attr,char * buf)295 stop_default(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
296 {
297 	struct intel_engine_cs *engine = kobj_to_engine(kobj);
298 
299 	return sysfs_emit(buf, "%lu\n", engine->defaults.stop_timeout_ms);
300 }
301 
302 static const struct kobj_attribute stop_timeout_def =
303 __ATTR(stop_timeout_ms, 0444, stop_default, NULL);
304 
305 static ssize_t
preempt_timeout_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)306 preempt_timeout_store(struct kobject *kobj, struct kobj_attribute *attr,
307 		      const char *buf, size_t count)
308 {
309 	struct intel_engine_cs *engine = kobj_to_engine(kobj);
310 	unsigned long long timeout, clamped;
311 	int err;
312 
313 	/*
314 	 * After initialising a preemption request, we give the current
315 	 * resident a small amount of time to vacate the GPU. The preemption
316 	 * request is for a higher priority context and should be immediate to
317 	 * maintain high quality of service (and avoid priority inversion).
318 	 * However, the preemption granularity of the GPU can be quite coarse
319 	 * and so we need a compromise.
320 	 */
321 
322 	err = kstrtoull(buf, 0, &timeout);
323 	if (err)
324 		return err;
325 
326 	clamped = intel_clamp_preempt_timeout_ms(engine, timeout);
327 	if (timeout != clamped)
328 		return -EINVAL;
329 
330 	WRITE_ONCE(engine->props.preempt_timeout_ms, timeout);
331 
332 	if (READ_ONCE(engine->execlists.pending[0]))
333 		set_timer_ms(&engine->execlists.preempt, timeout);
334 
335 	return count;
336 }
337 
338 static ssize_t
preempt_timeout_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)339 preempt_timeout_show(struct kobject *kobj, struct kobj_attribute *attr,
340 		     char *buf)
341 {
342 	struct intel_engine_cs *engine = kobj_to_engine(kobj);
343 
344 	return sysfs_emit(buf, "%lu\n", engine->props.preempt_timeout_ms);
345 }
346 
347 static const struct kobj_attribute preempt_timeout_attr =
348 __ATTR(preempt_timeout_ms, 0644, preempt_timeout_show, preempt_timeout_store);
349 
350 static ssize_t
preempt_timeout_default(struct kobject * kobj,struct kobj_attribute * attr,char * buf)351 preempt_timeout_default(struct kobject *kobj, struct kobj_attribute *attr,
352 			char *buf)
353 {
354 	struct intel_engine_cs *engine = kobj_to_engine(kobj);
355 
356 	return sysfs_emit(buf, "%lu\n", engine->defaults.preempt_timeout_ms);
357 }
358 
359 static const struct kobj_attribute preempt_timeout_def =
360 __ATTR(preempt_timeout_ms, 0444, preempt_timeout_default, NULL);
361 
362 static ssize_t
heartbeat_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)363 heartbeat_store(struct kobject *kobj, struct kobj_attribute *attr,
364 		const char *buf, size_t count)
365 {
366 	struct intel_engine_cs *engine = kobj_to_engine(kobj);
367 	unsigned long long delay, clamped;
368 	int err;
369 
370 	/*
371 	 * We monitor the health of the system via periodic heartbeat pulses.
372 	 * The pulses also provide the opportunity to perform garbage
373 	 * collection.  However, we interpret an incomplete pulse (a missed
374 	 * heartbeat) as an indication that the system is no longer responsive,
375 	 * i.e. hung, and perform an engine or full GPU reset. Given that the
376 	 * preemption granularity can be very coarse on a system, the optimal
377 	 * value for any workload is unknowable!
378 	 */
379 
380 	err = kstrtoull(buf, 0, &delay);
381 	if (err)
382 		return err;
383 
384 	clamped = intel_clamp_heartbeat_interval_ms(engine, delay);
385 	if (delay != clamped)
386 		return -EINVAL;
387 
388 	err = intel_engine_set_heartbeat(engine, delay);
389 	if (err)
390 		return err;
391 
392 	return count;
393 }
394 
395 static ssize_t
heartbeat_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)396 heartbeat_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
397 {
398 	struct intel_engine_cs *engine = kobj_to_engine(kobj);
399 
400 	return sysfs_emit(buf, "%lu\n", engine->props.heartbeat_interval_ms);
401 }
402 
403 static const struct kobj_attribute heartbeat_interval_attr =
404 __ATTR(heartbeat_interval_ms, 0644, heartbeat_show, heartbeat_store);
405 
406 static ssize_t
heartbeat_default(struct kobject * kobj,struct kobj_attribute * attr,char * buf)407 heartbeat_default(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
408 {
409 	struct intel_engine_cs *engine = kobj_to_engine(kobj);
410 
411 	return sysfs_emit(buf, "%lu\n", engine->defaults.heartbeat_interval_ms);
412 }
413 
414 static const struct kobj_attribute heartbeat_interval_def =
415 __ATTR(heartbeat_interval_ms, 0444, heartbeat_default, NULL);
416 
kobj_engine_release(struct kobject * kobj)417 static void kobj_engine_release(struct kobject *kobj)
418 {
419 	kfree(kobj);
420 }
421 
422 static const struct kobj_type kobj_engine_type = {
423 	.release = kobj_engine_release,
424 	.sysfs_ops = &kobj_sysfs_ops
425 };
426 
427 static struct kobject *
kobj_engine(struct kobject * dir,struct intel_engine_cs * engine)428 kobj_engine(struct kobject *dir, struct intel_engine_cs *engine)
429 {
430 	struct kobj_engine *ke;
431 
432 	ke = kzalloc(sizeof(*ke), GFP_KERNEL);
433 	if (!ke)
434 		return NULL;
435 
436 	kobject_init(&ke->base, &kobj_engine_type);
437 	ke->engine = engine;
438 
439 	if (kobject_add(&ke->base, dir, "%s", engine->name)) {
440 		kobject_put(&ke->base);
441 		return NULL;
442 	}
443 
444 	/* xfer ownership to sysfs tree */
445 	return &ke->base;
446 }
447 
add_defaults(struct kobj_engine * parent)448 static void add_defaults(struct kobj_engine *parent)
449 {
450 	static const struct attribute * const files[] = {
451 		&max_spin_def.attr,
452 		&stop_timeout_def.attr,
453 #if CONFIG_DRM_I915_HEARTBEAT_INTERVAL
454 		&heartbeat_interval_def.attr,
455 #endif
456 		NULL
457 	};
458 	struct kobj_engine *ke;
459 
460 	ke = kzalloc(sizeof(*ke), GFP_KERNEL);
461 	if (!ke)
462 		return;
463 
464 	kobject_init(&ke->base, &kobj_engine_type);
465 	ke->engine = parent->engine;
466 
467 	if (kobject_add(&ke->base, &parent->base, "%s", ".defaults")) {
468 		kobject_put(&ke->base);
469 		return;
470 	}
471 
472 	if (sysfs_create_files(&ke->base, files))
473 		return;
474 
475 	if (intel_engine_has_timeslices(ke->engine) &&
476 	    sysfs_create_file(&ke->base, &timeslice_duration_def.attr))
477 		return;
478 
479 	if (intel_engine_has_preempt_reset(ke->engine) &&
480 	    sysfs_create_file(&ke->base, &preempt_timeout_def.attr))
481 		return;
482 }
483 
intel_engines_add_sysfs(struct drm_i915_private * i915)484 void intel_engines_add_sysfs(struct drm_i915_private *i915)
485 {
486 	static const struct attribute * const files[] = {
487 		&name_attr.attr,
488 		&class_attr.attr,
489 		&inst_attr.attr,
490 		&mmio_attr.attr,
491 		&caps_attr.attr,
492 		&all_caps_attr.attr,
493 		&max_spin_attr.attr,
494 		&stop_timeout_attr.attr,
495 #if CONFIG_DRM_I915_HEARTBEAT_INTERVAL
496 		&heartbeat_interval_attr.attr,
497 #endif
498 		NULL
499 	};
500 
501 	struct device *kdev = i915->drm.primary->kdev;
502 	struct intel_engine_cs *engine;
503 	struct kobject *dir;
504 
505 	dir = kobject_create_and_add("engine", &kdev->kobj);
506 	if (!dir)
507 		return;
508 
509 	for_each_uabi_engine(engine, i915) {
510 		struct kobject *kobj;
511 
512 		kobj = kobj_engine(dir, engine);
513 		if (!kobj)
514 			goto err_engine;
515 
516 		if (sysfs_create_files(kobj, files))
517 			goto err_object;
518 
519 		if (intel_engine_has_timeslices(engine) &&
520 		    sysfs_create_file(kobj, &timeslice_duration_attr.attr))
521 			goto err_engine;
522 
523 		if (intel_engine_has_preempt_reset(engine) &&
524 		    sysfs_create_file(kobj, &preempt_timeout_attr.attr))
525 			goto err_engine;
526 
527 		add_defaults(container_of(kobj, struct kobj_engine, base));
528 
529 		if (0) {
530 err_object:
531 			kobject_put(kobj);
532 err_engine:
533 			dev_err(kdev, "Failed to add sysfs engine '%s'\n",
534 				engine->name);
535 			break;
536 		}
537 	}
538 }
539