xref: /openbmc/linux/fs/kernfs/dir.c (revision 7e24a55b2122746c2eef192296fc84624354f895)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * fs/kernfs/dir.c - kernfs directory implementation
4   *
5   * Copyright (c) 2001-3 Patrick Mochel
6   * Copyright (c) 2007 SUSE Linux Products GmbH
7   * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8   */
9  
10  #include <linux/sched.h>
11  #include <linux/fs.h>
12  #include <linux/namei.h>
13  #include <linux/idr.h>
14  #include <linux/slab.h>
15  #include <linux/security.h>
16  #include <linux/hash.h>
17  
18  #include "kernfs-internal.h"
19  
20  static DEFINE_RWLOCK(kernfs_rename_lock);	/* kn->parent and ->name */
21  /*
22   * Don't use rename_lock to piggy back on pr_cont_buf. We don't want to
23   * call pr_cont() while holding rename_lock. Because sometimes pr_cont()
24   * will perform wakeups when releasing console_sem. Holding rename_lock
25   * will introduce deadlock if the scheduler reads the kernfs_name in the
26   * wakeup path.
27   */
28  static DEFINE_SPINLOCK(kernfs_pr_cont_lock);
29  static char kernfs_pr_cont_buf[PATH_MAX];	/* protected by pr_cont_lock */
30  static DEFINE_SPINLOCK(kernfs_idr_lock);	/* root->ino_idr */
31  
32  #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
33  
__kernfs_active(struct kernfs_node * kn)34  static bool __kernfs_active(struct kernfs_node *kn)
35  {
36  	return atomic_read(&kn->active) >= 0;
37  }
38  
kernfs_active(struct kernfs_node * kn)39  static bool kernfs_active(struct kernfs_node *kn)
40  {
41  	lockdep_assert_held(&kernfs_root(kn)->kernfs_rwsem);
42  	return __kernfs_active(kn);
43  }
44  
kernfs_lockdep(struct kernfs_node * kn)45  static bool kernfs_lockdep(struct kernfs_node *kn)
46  {
47  #ifdef CONFIG_DEBUG_LOCK_ALLOC
48  	return kn->flags & KERNFS_LOCKDEP;
49  #else
50  	return false;
51  #endif
52  }
53  
kernfs_name_locked(struct kernfs_node * kn,char * buf,size_t buflen)54  static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
55  {
56  	if (!kn)
57  		return strlcpy(buf, "(null)", buflen);
58  
59  	return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
60  }
61  
62  /* kernfs_node_depth - compute depth from @from to @to */
kernfs_depth(struct kernfs_node * from,struct kernfs_node * to)63  static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
64  {
65  	size_t depth = 0;
66  
67  	while (to->parent && to != from) {
68  		depth++;
69  		to = to->parent;
70  	}
71  	return depth;
72  }
73  
kernfs_common_ancestor(struct kernfs_node * a,struct kernfs_node * b)74  static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
75  						  struct kernfs_node *b)
76  {
77  	size_t da, db;
78  	struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
79  
80  	if (ra != rb)
81  		return NULL;
82  
83  	da = kernfs_depth(ra->kn, a);
84  	db = kernfs_depth(rb->kn, b);
85  
86  	while (da > db) {
87  		a = a->parent;
88  		da--;
89  	}
90  	while (db > da) {
91  		b = b->parent;
92  		db--;
93  	}
94  
95  	/* worst case b and a will be the same at root */
96  	while (b != a) {
97  		b = b->parent;
98  		a = a->parent;
99  	}
100  
101  	return a;
102  }
103  
104  /**
105   * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
106   * where kn_from is treated as root of the path.
107   * @kn_from: kernfs node which should be treated as root for the path
108   * @kn_to: kernfs node to which path is needed
109   * @buf: buffer to copy the path into
110   * @buflen: size of @buf
111   *
112   * We need to handle couple of scenarios here:
113   * [1] when @kn_from is an ancestor of @kn_to at some level
114   * kn_from: /n1/n2/n3
115   * kn_to:   /n1/n2/n3/n4/n5
116   * result:  /n4/n5
117   *
118   * [2] when @kn_from is on a different hierarchy and we need to find common
119   * ancestor between @kn_from and @kn_to.
120   * kn_from: /n1/n2/n3/n4
121   * kn_to:   /n1/n2/n5
122   * result:  /../../n5
123   * OR
124   * kn_from: /n1/n2/n3/n4/n5   [depth=5]
125   * kn_to:   /n1/n2/n3         [depth=3]
126   * result:  /../..
127   *
128   * [3] when @kn_to is %NULL result will be "(null)"
129   *
130   * Return: the length of the constructed path.  If the path would have been
131   * greater than @buflen, @buf contains the truncated path with the trailing
132   * '\0'.  On error, -errno is returned.
133   */
kernfs_path_from_node_locked(struct kernfs_node * kn_to,struct kernfs_node * kn_from,char * buf,size_t buflen)134  static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
135  					struct kernfs_node *kn_from,
136  					char *buf, size_t buflen)
137  {
138  	struct kernfs_node *kn, *common;
139  	const char parent_str[] = "/..";
140  	size_t depth_from, depth_to, len = 0;
141  	ssize_t copied;
142  	int i, j;
143  
144  	if (!kn_to)
145  		return strscpy(buf, "(null)", buflen);
146  
147  	if (!kn_from)
148  		kn_from = kernfs_root(kn_to)->kn;
149  
150  	if (kn_from == kn_to)
151  		return strscpy(buf, "/", buflen);
152  
153  	common = kernfs_common_ancestor(kn_from, kn_to);
154  	if (WARN_ON(!common))
155  		return -EINVAL;
156  
157  	depth_to = kernfs_depth(common, kn_to);
158  	depth_from = kernfs_depth(common, kn_from);
159  
160  	buf[0] = '\0';
161  
162  	for (i = 0; i < depth_from; i++) {
163  		copied = strscpy(buf + len, parent_str, buflen - len);
164  		if (copied < 0)
165  			return copied;
166  		len += copied;
167  	}
168  
169  	/* Calculate how many bytes we need for the rest */
170  	for (i = depth_to - 1; i >= 0; i--) {
171  		for (kn = kn_to, j = 0; j < i; j++)
172  			kn = kn->parent;
173  
174  		len += scnprintf(buf + len, buflen - len, "/%s", kn->name);
175  	}
176  
177  	return len;
178  }
179  
180  /**
181   * kernfs_name - obtain the name of a given node
182   * @kn: kernfs_node of interest
183   * @buf: buffer to copy @kn's name into
184   * @buflen: size of @buf
185   *
186   * Copies the name of @kn into @buf of @buflen bytes.  The behavior is
187   * similar to strlcpy().
188   *
189   * Fills buffer with "(null)" if @kn is %NULL.
190   *
191   * Return: the length of @kn's name and if @buf isn't long enough,
192   * it's filled up to @buflen-1 and nul terminated.
193   *
194   * This function can be called from any context.
195   */
kernfs_name(struct kernfs_node * kn,char * buf,size_t buflen)196  int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
197  {
198  	unsigned long flags;
199  	int ret;
200  
201  	read_lock_irqsave(&kernfs_rename_lock, flags);
202  	ret = kernfs_name_locked(kn, buf, buflen);
203  	read_unlock_irqrestore(&kernfs_rename_lock, flags);
204  	return ret;
205  }
206  
207  /**
208   * kernfs_path_from_node - build path of node @to relative to @from.
209   * @from: parent kernfs_node relative to which we need to build the path
210   * @to: kernfs_node of interest
211   * @buf: buffer to copy @to's path into
212   * @buflen: size of @buf
213   *
214   * Builds @to's path relative to @from in @buf. @from and @to must
215   * be on the same kernfs-root. If @from is not parent of @to, then a relative
216   * path (which includes '..'s) as needed to reach from @from to @to is
217   * returned.
218   *
219   * Return: the length of the constructed path.  If the path would have been
220   * greater than @buflen, @buf contains the truncated path with the trailing
221   * '\0'.  On error, -errno is returned.
222   */
kernfs_path_from_node(struct kernfs_node * to,struct kernfs_node * from,char * buf,size_t buflen)223  int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
224  			  char *buf, size_t buflen)
225  {
226  	unsigned long flags;
227  	int ret;
228  
229  	read_lock_irqsave(&kernfs_rename_lock, flags);
230  	ret = kernfs_path_from_node_locked(to, from, buf, buflen);
231  	read_unlock_irqrestore(&kernfs_rename_lock, flags);
232  	return ret;
233  }
234  EXPORT_SYMBOL_GPL(kernfs_path_from_node);
235  
236  /**
237   * pr_cont_kernfs_name - pr_cont name of a kernfs_node
238   * @kn: kernfs_node of interest
239   *
240   * This function can be called from any context.
241   */
pr_cont_kernfs_name(struct kernfs_node * kn)242  void pr_cont_kernfs_name(struct kernfs_node *kn)
243  {
244  	unsigned long flags;
245  
246  	spin_lock_irqsave(&kernfs_pr_cont_lock, flags);
247  
248  	kernfs_name(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
249  	pr_cont("%s", kernfs_pr_cont_buf);
250  
251  	spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags);
252  }
253  
254  /**
255   * pr_cont_kernfs_path - pr_cont path of a kernfs_node
256   * @kn: kernfs_node of interest
257   *
258   * This function can be called from any context.
259   */
pr_cont_kernfs_path(struct kernfs_node * kn)260  void pr_cont_kernfs_path(struct kernfs_node *kn)
261  {
262  	unsigned long flags;
263  	int sz;
264  
265  	spin_lock_irqsave(&kernfs_pr_cont_lock, flags);
266  
267  	sz = kernfs_path_from_node(kn, NULL, kernfs_pr_cont_buf,
268  				   sizeof(kernfs_pr_cont_buf));
269  	if (sz < 0) {
270  		if (sz == -E2BIG)
271  			pr_cont("(name too long)");
272  		else
273  			pr_cont("(error)");
274  		goto out;
275  	}
276  
277  	pr_cont("%s", kernfs_pr_cont_buf);
278  
279  out:
280  	spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags);
281  }
282  
283  /**
284   * kernfs_get_parent - determine the parent node and pin it
285   * @kn: kernfs_node of interest
286   *
287   * Determines @kn's parent, pins and returns it.  This function can be
288   * called from any context.
289   *
290   * Return: parent node of @kn
291   */
kernfs_get_parent(struct kernfs_node * kn)292  struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
293  {
294  	struct kernfs_node *parent;
295  	unsigned long flags;
296  
297  	read_lock_irqsave(&kernfs_rename_lock, flags);
298  	parent = kn->parent;
299  	kernfs_get(parent);
300  	read_unlock_irqrestore(&kernfs_rename_lock, flags);
301  
302  	return parent;
303  }
304  
305  /**
306   *	kernfs_name_hash - calculate hash of @ns + @name
307   *	@name: Null terminated string to hash
308   *	@ns:   Namespace tag to hash
309   *
310   *	Return: 31-bit hash of ns + name (so it fits in an off_t)
311   */
kernfs_name_hash(const char * name,const void * ns)312  static unsigned int kernfs_name_hash(const char *name, const void *ns)
313  {
314  	unsigned long hash = init_name_hash(ns);
315  	unsigned int len = strlen(name);
316  	while (len--)
317  		hash = partial_name_hash(*name++, hash);
318  	hash = end_name_hash(hash);
319  	hash &= 0x7fffffffU;
320  	/* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
321  	if (hash < 2)
322  		hash += 2;
323  	if (hash >= INT_MAX)
324  		hash = INT_MAX - 1;
325  	return hash;
326  }
327  
kernfs_name_compare(unsigned int hash,const char * name,const void * ns,const struct kernfs_node * kn)328  static int kernfs_name_compare(unsigned int hash, const char *name,
329  			       const void *ns, const struct kernfs_node *kn)
330  {
331  	if (hash < kn->hash)
332  		return -1;
333  	if (hash > kn->hash)
334  		return 1;
335  	if (ns < kn->ns)
336  		return -1;
337  	if (ns > kn->ns)
338  		return 1;
339  	return strcmp(name, kn->name);
340  }
341  
kernfs_sd_compare(const struct kernfs_node * left,const struct kernfs_node * right)342  static int kernfs_sd_compare(const struct kernfs_node *left,
343  			     const struct kernfs_node *right)
344  {
345  	return kernfs_name_compare(left->hash, left->name, left->ns, right);
346  }
347  
348  /**
349   *	kernfs_link_sibling - link kernfs_node into sibling rbtree
350   *	@kn: kernfs_node of interest
351   *
352   *	Link @kn into its sibling rbtree which starts from
353   *	@kn->parent->dir.children.
354   *
355   *	Locking:
356   *	kernfs_rwsem held exclusive
357   *
358   *	Return:
359   *	%0 on success, -EEXIST on failure.
360   */
kernfs_link_sibling(struct kernfs_node * kn)361  static int kernfs_link_sibling(struct kernfs_node *kn)
362  {
363  	struct rb_node **node = &kn->parent->dir.children.rb_node;
364  	struct rb_node *parent = NULL;
365  
366  	while (*node) {
367  		struct kernfs_node *pos;
368  		int result;
369  
370  		pos = rb_to_kn(*node);
371  		parent = *node;
372  		result = kernfs_sd_compare(kn, pos);
373  		if (result < 0)
374  			node = &pos->rb.rb_left;
375  		else if (result > 0)
376  			node = &pos->rb.rb_right;
377  		else
378  			return -EEXIST;
379  	}
380  
381  	/* add new node and rebalance the tree */
382  	rb_link_node(&kn->rb, parent, node);
383  	rb_insert_color(&kn->rb, &kn->parent->dir.children);
384  
385  	/* successfully added, account subdir number */
386  	down_write(&kernfs_root(kn)->kernfs_iattr_rwsem);
387  	if (kernfs_type(kn) == KERNFS_DIR)
388  		kn->parent->dir.subdirs++;
389  	kernfs_inc_rev(kn->parent);
390  	up_write(&kernfs_root(kn)->kernfs_iattr_rwsem);
391  
392  	return 0;
393  }
394  
395  /**
396   *	kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
397   *	@kn: kernfs_node of interest
398   *
399   *	Try to unlink @kn from its sibling rbtree which starts from
400   *	kn->parent->dir.children.
401   *
402   *	Return: %true if @kn was actually removed,
403   *	%false if @kn wasn't on the rbtree.
404   *
405   *	Locking:
406   *	kernfs_rwsem held exclusive
407   */
kernfs_unlink_sibling(struct kernfs_node * kn)408  static bool kernfs_unlink_sibling(struct kernfs_node *kn)
409  {
410  	if (RB_EMPTY_NODE(&kn->rb))
411  		return false;
412  
413  	down_write(&kernfs_root(kn)->kernfs_iattr_rwsem);
414  	if (kernfs_type(kn) == KERNFS_DIR)
415  		kn->parent->dir.subdirs--;
416  	kernfs_inc_rev(kn->parent);
417  	up_write(&kernfs_root(kn)->kernfs_iattr_rwsem);
418  
419  	rb_erase(&kn->rb, &kn->parent->dir.children);
420  	RB_CLEAR_NODE(&kn->rb);
421  	return true;
422  }
423  
424  /**
425   *	kernfs_get_active - get an active reference to kernfs_node
426   *	@kn: kernfs_node to get an active reference to
427   *
428   *	Get an active reference of @kn.  This function is noop if @kn
429   *	is %NULL.
430   *
431   *	Return:
432   *	Pointer to @kn on success, %NULL on failure.
433   */
kernfs_get_active(struct kernfs_node * kn)434  struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
435  {
436  	if (unlikely(!kn))
437  		return NULL;
438  
439  	if (!atomic_inc_unless_negative(&kn->active))
440  		return NULL;
441  
442  	if (kernfs_lockdep(kn))
443  		rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
444  	return kn;
445  }
446  
447  /**
448   *	kernfs_put_active - put an active reference to kernfs_node
449   *	@kn: kernfs_node to put an active reference to
450   *
451   *	Put an active reference to @kn.  This function is noop if @kn
452   *	is %NULL.
453   */
kernfs_put_active(struct kernfs_node * kn)454  void kernfs_put_active(struct kernfs_node *kn)
455  {
456  	int v;
457  
458  	if (unlikely(!kn))
459  		return;
460  
461  	if (kernfs_lockdep(kn))
462  		rwsem_release(&kn->dep_map, _RET_IP_);
463  	v = atomic_dec_return(&kn->active);
464  	if (likely(v != KN_DEACTIVATED_BIAS))
465  		return;
466  
467  	wake_up_all(&kernfs_root(kn)->deactivate_waitq);
468  }
469  
470  /**
471   * kernfs_drain - drain kernfs_node
472   * @kn: kernfs_node to drain
473   *
474   * Drain existing usages and nuke all existing mmaps of @kn.  Multiple
475   * removers may invoke this function concurrently on @kn and all will
476   * return after draining is complete.
477   */
kernfs_drain(struct kernfs_node * kn)478  static void kernfs_drain(struct kernfs_node *kn)
479  	__releases(&kernfs_root(kn)->kernfs_rwsem)
480  	__acquires(&kernfs_root(kn)->kernfs_rwsem)
481  {
482  	struct kernfs_root *root = kernfs_root(kn);
483  
484  	lockdep_assert_held_write(&root->kernfs_rwsem);
485  	WARN_ON_ONCE(kernfs_active(kn));
486  
487  	/*
488  	 * Skip draining if already fully drained. This avoids draining and its
489  	 * lockdep annotations for nodes which have never been activated
490  	 * allowing embedding kernfs_remove() in create error paths without
491  	 * worrying about draining.
492  	 */
493  	if (atomic_read(&kn->active) == KN_DEACTIVATED_BIAS &&
494  	    !kernfs_should_drain_open_files(kn))
495  		return;
496  
497  	up_write(&root->kernfs_rwsem);
498  
499  	if (kernfs_lockdep(kn)) {
500  		rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
501  		if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
502  			lock_contended(&kn->dep_map, _RET_IP_);
503  	}
504  
505  	wait_event(root->deactivate_waitq,
506  		   atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
507  
508  	if (kernfs_lockdep(kn)) {
509  		lock_acquired(&kn->dep_map, _RET_IP_);
510  		rwsem_release(&kn->dep_map, _RET_IP_);
511  	}
512  
513  	if (kernfs_should_drain_open_files(kn))
514  		kernfs_drain_open_files(kn);
515  
516  	down_write(&root->kernfs_rwsem);
517  }
518  
519  /**
520   * kernfs_get - get a reference count on a kernfs_node
521   * @kn: the target kernfs_node
522   */
kernfs_get(struct kernfs_node * kn)523  void kernfs_get(struct kernfs_node *kn)
524  {
525  	if (kn) {
526  		WARN_ON(!atomic_read(&kn->count));
527  		atomic_inc(&kn->count);
528  	}
529  }
530  EXPORT_SYMBOL_GPL(kernfs_get);
531  
kernfs_free_rcu(struct rcu_head * rcu)532  static void kernfs_free_rcu(struct rcu_head *rcu)
533  {
534  	struct kernfs_node *kn = container_of(rcu, struct kernfs_node, rcu);
535  
536  	kfree_const(kn->name);
537  
538  	if (kn->iattr) {
539  		simple_xattrs_free(&kn->iattr->xattrs, NULL);
540  		kmem_cache_free(kernfs_iattrs_cache, kn->iattr);
541  	}
542  
543  	kmem_cache_free(kernfs_node_cache, kn);
544  }
545  
546  /**
547   * kernfs_put - put a reference count on a kernfs_node
548   * @kn: the target kernfs_node
549   *
550   * Put a reference count of @kn and destroy it if it reached zero.
551   */
kernfs_put(struct kernfs_node * kn)552  void kernfs_put(struct kernfs_node *kn)
553  {
554  	struct kernfs_node *parent;
555  	struct kernfs_root *root;
556  
557  	if (!kn || !atomic_dec_and_test(&kn->count))
558  		return;
559  	root = kernfs_root(kn);
560   repeat:
561  	/*
562  	 * Moving/renaming is always done while holding reference.
563  	 * kn->parent won't change beneath us.
564  	 */
565  	parent = kn->parent;
566  
567  	WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
568  		  "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
569  		  parent ? parent->name : "", kn->name, atomic_read(&kn->active));
570  
571  	if (kernfs_type(kn) == KERNFS_LINK)
572  		kernfs_put(kn->symlink.target_kn);
573  
574  	spin_lock(&kernfs_idr_lock);
575  	idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
576  	spin_unlock(&kernfs_idr_lock);
577  
578  	call_rcu(&kn->rcu, kernfs_free_rcu);
579  
580  	kn = parent;
581  	if (kn) {
582  		if (atomic_dec_and_test(&kn->count))
583  			goto repeat;
584  	} else {
585  		/* just released the root kn, free @root too */
586  		idr_destroy(&root->ino_idr);
587  		kfree_rcu(root, rcu);
588  	}
589  }
590  EXPORT_SYMBOL_GPL(kernfs_put);
591  
592  /**
593   * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
594   * @dentry: the dentry in question
595   *
596   * Return: the kernfs_node associated with @dentry.  If @dentry is not a
597   * kernfs one, %NULL is returned.
598   *
599   * While the returned kernfs_node will stay accessible as long as @dentry
600   * is accessible, the returned node can be in any state and the caller is
601   * fully responsible for determining what's accessible.
602   */
kernfs_node_from_dentry(struct dentry * dentry)603  struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
604  {
605  	if (dentry->d_sb->s_op == &kernfs_sops)
606  		return kernfs_dentry_node(dentry);
607  	return NULL;
608  }
609  
__kernfs_new_node(struct kernfs_root * root,struct kernfs_node * parent,const char * name,umode_t mode,kuid_t uid,kgid_t gid,unsigned flags)610  static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
611  					     struct kernfs_node *parent,
612  					     const char *name, umode_t mode,
613  					     kuid_t uid, kgid_t gid,
614  					     unsigned flags)
615  {
616  	struct kernfs_node *kn;
617  	u32 id_highbits;
618  	int ret;
619  
620  	name = kstrdup_const(name, GFP_KERNEL);
621  	if (!name)
622  		return NULL;
623  
624  	kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
625  	if (!kn)
626  		goto err_out1;
627  
628  	idr_preload(GFP_KERNEL);
629  	spin_lock(&kernfs_idr_lock);
630  	ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC);
631  	if (ret >= 0 && ret < root->last_id_lowbits)
632  		root->id_highbits++;
633  	id_highbits = root->id_highbits;
634  	root->last_id_lowbits = ret;
635  	spin_unlock(&kernfs_idr_lock);
636  	idr_preload_end();
637  	if (ret < 0)
638  		goto err_out2;
639  
640  	kn->id = (u64)id_highbits << 32 | ret;
641  
642  	atomic_set(&kn->count, 1);
643  	atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
644  	RB_CLEAR_NODE(&kn->rb);
645  
646  	kn->name = name;
647  	kn->mode = mode;
648  	kn->flags = flags;
649  
650  	if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) {
651  		struct iattr iattr = {
652  			.ia_valid = ATTR_UID | ATTR_GID,
653  			.ia_uid = uid,
654  			.ia_gid = gid,
655  		};
656  
657  		ret = __kernfs_setattr(kn, &iattr);
658  		if (ret < 0)
659  			goto err_out3;
660  	}
661  
662  	if (parent) {
663  		ret = security_kernfs_init_security(parent, kn);
664  		if (ret)
665  			goto err_out3;
666  	}
667  
668  	return kn;
669  
670   err_out3:
671  	spin_lock(&kernfs_idr_lock);
672  	idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
673  	spin_unlock(&kernfs_idr_lock);
674   err_out2:
675  	kmem_cache_free(kernfs_node_cache, kn);
676   err_out1:
677  	kfree_const(name);
678  	return NULL;
679  }
680  
kernfs_new_node(struct kernfs_node * parent,const char * name,umode_t mode,kuid_t uid,kgid_t gid,unsigned flags)681  struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
682  				    const char *name, umode_t mode,
683  				    kuid_t uid, kgid_t gid,
684  				    unsigned flags)
685  {
686  	struct kernfs_node *kn;
687  
688  	if (parent->mode & S_ISGID) {
689  		/* this code block imitates inode_init_owner() for
690  		 * kernfs
691  		 */
692  
693  		if (parent->iattr)
694  			gid = parent->iattr->ia_gid;
695  
696  		if (flags & KERNFS_DIR)
697  			mode |= S_ISGID;
698  	}
699  
700  	kn = __kernfs_new_node(kernfs_root(parent), parent,
701  			       name, mode, uid, gid, flags);
702  	if (kn) {
703  		kernfs_get(parent);
704  		kn->parent = parent;
705  	}
706  	return kn;
707  }
708  
709  /*
710   * kernfs_find_and_get_node_by_id - get kernfs_node from node id
711   * @root: the kernfs root
712   * @id: the target node id
713   *
714   * @id's lower 32bits encode ino and upper gen.  If the gen portion is
715   * zero, all generations are matched.
716   *
717   * Return: %NULL on failure,
718   * otherwise a kernfs node with reference counter incremented.
719   */
kernfs_find_and_get_node_by_id(struct kernfs_root * root,u64 id)720  struct kernfs_node *kernfs_find_and_get_node_by_id(struct kernfs_root *root,
721  						   u64 id)
722  {
723  	struct kernfs_node *kn;
724  	ino_t ino = kernfs_id_ino(id);
725  	u32 gen = kernfs_id_gen(id);
726  
727  	rcu_read_lock();
728  
729  	kn = idr_find(&root->ino_idr, (u32)ino);
730  	if (!kn)
731  		goto err_unlock;
732  
733  	if (sizeof(ino_t) >= sizeof(u64)) {
734  		/* we looked up with the low 32bits, compare the whole */
735  		if (kernfs_ino(kn) != ino)
736  			goto err_unlock;
737  	} else {
738  		/* 0 matches all generations */
739  		if (unlikely(gen && kernfs_gen(kn) != gen))
740  			goto err_unlock;
741  	}
742  
743  	/*
744  	 * We should fail if @kn has never been activated and guarantee success
745  	 * if the caller knows that @kn is active. Both can be achieved by
746  	 * __kernfs_active() which tests @kn->active without kernfs_rwsem.
747  	 */
748  	if (unlikely(!__kernfs_active(kn) || !atomic_inc_not_zero(&kn->count)))
749  		goto err_unlock;
750  
751  	rcu_read_unlock();
752  	return kn;
753  err_unlock:
754  	rcu_read_unlock();
755  	return NULL;
756  }
757  
758  /**
759   *	kernfs_add_one - add kernfs_node to parent without warning
760   *	@kn: kernfs_node to be added
761   *
762   *	The caller must already have initialized @kn->parent.  This
763   *	function increments nlink of the parent's inode if @kn is a
764   *	directory and link into the children list of the parent.
765   *
766   *	Return:
767   *	%0 on success, -EEXIST if entry with the given name already
768   *	exists.
769   */
kernfs_add_one(struct kernfs_node * kn)770  int kernfs_add_one(struct kernfs_node *kn)
771  {
772  	struct kernfs_node *parent = kn->parent;
773  	struct kernfs_root *root = kernfs_root(parent);
774  	struct kernfs_iattrs *ps_iattr;
775  	bool has_ns;
776  	int ret;
777  
778  	down_write(&root->kernfs_rwsem);
779  
780  	ret = -EINVAL;
781  	has_ns = kernfs_ns_enabled(parent);
782  	if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
783  		 has_ns ? "required" : "invalid", parent->name, kn->name))
784  		goto out_unlock;
785  
786  	if (kernfs_type(parent) != KERNFS_DIR)
787  		goto out_unlock;
788  
789  	ret = -ENOENT;
790  	if (parent->flags & (KERNFS_REMOVING | KERNFS_EMPTY_DIR))
791  		goto out_unlock;
792  
793  	kn->hash = kernfs_name_hash(kn->name, kn->ns);
794  
795  	ret = kernfs_link_sibling(kn);
796  	if (ret)
797  		goto out_unlock;
798  
799  	/* Update timestamps on the parent */
800  	down_write(&root->kernfs_iattr_rwsem);
801  
802  	ps_iattr = parent->iattr;
803  	if (ps_iattr) {
804  		ktime_get_real_ts64(&ps_iattr->ia_ctime);
805  		ps_iattr->ia_mtime = ps_iattr->ia_ctime;
806  	}
807  
808  	up_write(&root->kernfs_iattr_rwsem);
809  	up_write(&root->kernfs_rwsem);
810  
811  	/*
812  	 * Activate the new node unless CREATE_DEACTIVATED is requested.
813  	 * If not activated here, the kernfs user is responsible for
814  	 * activating the node with kernfs_activate().  A node which hasn't
815  	 * been activated is not visible to userland and its removal won't
816  	 * trigger deactivation.
817  	 */
818  	if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
819  		kernfs_activate(kn);
820  	return 0;
821  
822  out_unlock:
823  	up_write(&root->kernfs_rwsem);
824  	return ret;
825  }
826  
827  /**
828   * kernfs_find_ns - find kernfs_node with the given name
829   * @parent: kernfs_node to search under
830   * @name: name to look for
831   * @ns: the namespace tag to use
832   *
833   * Look for kernfs_node with name @name under @parent.
834   *
835   * Return: pointer to the found kernfs_node on success, %NULL on failure.
836   */
kernfs_find_ns(struct kernfs_node * parent,const unsigned char * name,const void * ns)837  static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
838  					  const unsigned char *name,
839  					  const void *ns)
840  {
841  	struct rb_node *node = parent->dir.children.rb_node;
842  	bool has_ns = kernfs_ns_enabled(parent);
843  	unsigned int hash;
844  
845  	lockdep_assert_held(&kernfs_root(parent)->kernfs_rwsem);
846  
847  	if (has_ns != (bool)ns) {
848  		WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
849  		     has_ns ? "required" : "invalid", parent->name, name);
850  		return NULL;
851  	}
852  
853  	hash = kernfs_name_hash(name, ns);
854  	while (node) {
855  		struct kernfs_node *kn;
856  		int result;
857  
858  		kn = rb_to_kn(node);
859  		result = kernfs_name_compare(hash, name, ns, kn);
860  		if (result < 0)
861  			node = node->rb_left;
862  		else if (result > 0)
863  			node = node->rb_right;
864  		else
865  			return kn;
866  	}
867  	return NULL;
868  }
869  
kernfs_walk_ns(struct kernfs_node * parent,const unsigned char * path,const void * ns)870  static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
871  					  const unsigned char *path,
872  					  const void *ns)
873  {
874  	size_t len;
875  	char *p, *name;
876  
877  	lockdep_assert_held_read(&kernfs_root(parent)->kernfs_rwsem);
878  
879  	spin_lock_irq(&kernfs_pr_cont_lock);
880  
881  	len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
882  
883  	if (len >= sizeof(kernfs_pr_cont_buf)) {
884  		spin_unlock_irq(&kernfs_pr_cont_lock);
885  		return NULL;
886  	}
887  
888  	p = kernfs_pr_cont_buf;
889  
890  	while ((name = strsep(&p, "/")) && parent) {
891  		if (*name == '\0')
892  			continue;
893  		parent = kernfs_find_ns(parent, name, ns);
894  	}
895  
896  	spin_unlock_irq(&kernfs_pr_cont_lock);
897  
898  	return parent;
899  }
900  
901  /**
902   * kernfs_find_and_get_ns - find and get kernfs_node with the given name
903   * @parent: kernfs_node to search under
904   * @name: name to look for
905   * @ns: the namespace tag to use
906   *
907   * Look for kernfs_node with name @name under @parent and get a reference
908   * if found.  This function may sleep.
909   *
910   * Return: pointer to the found kernfs_node on success, %NULL on failure.
911   */
kernfs_find_and_get_ns(struct kernfs_node * parent,const char * name,const void * ns)912  struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
913  					   const char *name, const void *ns)
914  {
915  	struct kernfs_node *kn;
916  	struct kernfs_root *root = kernfs_root(parent);
917  
918  	down_read(&root->kernfs_rwsem);
919  	kn = kernfs_find_ns(parent, name, ns);
920  	kernfs_get(kn);
921  	up_read(&root->kernfs_rwsem);
922  
923  	return kn;
924  }
925  EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
926  
927  /**
928   * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
929   * @parent: kernfs_node to search under
930   * @path: path to look for
931   * @ns: the namespace tag to use
932   *
933   * Look for kernfs_node with path @path under @parent and get a reference
934   * if found.  This function may sleep.
935   *
936   * Return: pointer to the found kernfs_node on success, %NULL on failure.
937   */
kernfs_walk_and_get_ns(struct kernfs_node * parent,const char * path,const void * ns)938  struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
939  					   const char *path, const void *ns)
940  {
941  	struct kernfs_node *kn;
942  	struct kernfs_root *root = kernfs_root(parent);
943  
944  	down_read(&root->kernfs_rwsem);
945  	kn = kernfs_walk_ns(parent, path, ns);
946  	kernfs_get(kn);
947  	up_read(&root->kernfs_rwsem);
948  
949  	return kn;
950  }
951  
952  /**
953   * kernfs_create_root - create a new kernfs hierarchy
954   * @scops: optional syscall operations for the hierarchy
955   * @flags: KERNFS_ROOT_* flags
956   * @priv: opaque data associated with the new directory
957   *
958   * Return: the root of the new hierarchy on success, ERR_PTR() value on
959   * failure.
960   */
kernfs_create_root(struct kernfs_syscall_ops * scops,unsigned int flags,void * priv)961  struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
962  				       unsigned int flags, void *priv)
963  {
964  	struct kernfs_root *root;
965  	struct kernfs_node *kn;
966  
967  	root = kzalloc(sizeof(*root), GFP_KERNEL);
968  	if (!root)
969  		return ERR_PTR(-ENOMEM);
970  
971  	idr_init(&root->ino_idr);
972  	init_rwsem(&root->kernfs_rwsem);
973  	init_rwsem(&root->kernfs_iattr_rwsem);
974  	init_rwsem(&root->kernfs_supers_rwsem);
975  	INIT_LIST_HEAD(&root->supers);
976  
977  	/*
978  	 * On 64bit ino setups, id is ino.  On 32bit, low 32bits are ino.
979  	 * High bits generation.  The starting value for both ino and
980  	 * genenration is 1.  Initialize upper 32bit allocation
981  	 * accordingly.
982  	 */
983  	if (sizeof(ino_t) >= sizeof(u64))
984  		root->id_highbits = 0;
985  	else
986  		root->id_highbits = 1;
987  
988  	kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO,
989  			       GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
990  			       KERNFS_DIR);
991  	if (!kn) {
992  		idr_destroy(&root->ino_idr);
993  		kfree(root);
994  		return ERR_PTR(-ENOMEM);
995  	}
996  
997  	kn->priv = priv;
998  	kn->dir.root = root;
999  
1000  	root->syscall_ops = scops;
1001  	root->flags = flags;
1002  	root->kn = kn;
1003  	init_waitqueue_head(&root->deactivate_waitq);
1004  
1005  	if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
1006  		kernfs_activate(kn);
1007  
1008  	return root;
1009  }
1010  
1011  /**
1012   * kernfs_destroy_root - destroy a kernfs hierarchy
1013   * @root: root of the hierarchy to destroy
1014   *
1015   * Destroy the hierarchy anchored at @root by removing all existing
1016   * directories and destroying @root.
1017   */
kernfs_destroy_root(struct kernfs_root * root)1018  void kernfs_destroy_root(struct kernfs_root *root)
1019  {
1020  	/*
1021  	 *  kernfs_remove holds kernfs_rwsem from the root so the root
1022  	 *  shouldn't be freed during the operation.
1023  	 */
1024  	kernfs_get(root->kn);
1025  	kernfs_remove(root->kn);
1026  	kernfs_put(root->kn); /* will also free @root */
1027  }
1028  
1029  /**
1030   * kernfs_root_to_node - return the kernfs_node associated with a kernfs_root
1031   * @root: root to use to lookup
1032   *
1033   * Return: @root's kernfs_node
1034   */
kernfs_root_to_node(struct kernfs_root * root)1035  struct kernfs_node *kernfs_root_to_node(struct kernfs_root *root)
1036  {
1037  	return root->kn;
1038  }
1039  
1040  /**
1041   * kernfs_create_dir_ns - create a directory
1042   * @parent: parent in which to create a new directory
1043   * @name: name of the new directory
1044   * @mode: mode of the new directory
1045   * @uid: uid of the new directory
1046   * @gid: gid of the new directory
1047   * @priv: opaque data associated with the new directory
1048   * @ns: optional namespace tag of the directory
1049   *
1050   * Return: the created node on success, ERR_PTR() value on failure.
1051   */
kernfs_create_dir_ns(struct kernfs_node * parent,const char * name,umode_t mode,kuid_t uid,kgid_t gid,void * priv,const void * ns)1052  struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
1053  					 const char *name, umode_t mode,
1054  					 kuid_t uid, kgid_t gid,
1055  					 void *priv, const void *ns)
1056  {
1057  	struct kernfs_node *kn;
1058  	int rc;
1059  
1060  	/* allocate */
1061  	kn = kernfs_new_node(parent, name, mode | S_IFDIR,
1062  			     uid, gid, KERNFS_DIR);
1063  	if (!kn)
1064  		return ERR_PTR(-ENOMEM);
1065  
1066  	kn->dir.root = parent->dir.root;
1067  	kn->ns = ns;
1068  	kn->priv = priv;
1069  
1070  	/* link in */
1071  	rc = kernfs_add_one(kn);
1072  	if (!rc)
1073  		return kn;
1074  
1075  	kernfs_put(kn);
1076  	return ERR_PTR(rc);
1077  }
1078  
1079  /**
1080   * kernfs_create_empty_dir - create an always empty directory
1081   * @parent: parent in which to create a new directory
1082   * @name: name of the new directory
1083   *
1084   * Return: the created node on success, ERR_PTR() value on failure.
1085   */
kernfs_create_empty_dir(struct kernfs_node * parent,const char * name)1086  struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
1087  					    const char *name)
1088  {
1089  	struct kernfs_node *kn;
1090  	int rc;
1091  
1092  	/* allocate */
1093  	kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR,
1094  			     GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR);
1095  	if (!kn)
1096  		return ERR_PTR(-ENOMEM);
1097  
1098  	kn->flags |= KERNFS_EMPTY_DIR;
1099  	kn->dir.root = parent->dir.root;
1100  	kn->ns = NULL;
1101  	kn->priv = NULL;
1102  
1103  	/* link in */
1104  	rc = kernfs_add_one(kn);
1105  	if (!rc)
1106  		return kn;
1107  
1108  	kernfs_put(kn);
1109  	return ERR_PTR(rc);
1110  }
1111  
kernfs_dop_revalidate(struct dentry * dentry,unsigned int flags)1112  static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
1113  {
1114  	struct kernfs_node *kn;
1115  	struct kernfs_root *root;
1116  
1117  	if (flags & LOOKUP_RCU)
1118  		return -ECHILD;
1119  
1120  	/* Negative hashed dentry? */
1121  	if (d_really_is_negative(dentry)) {
1122  		struct kernfs_node *parent;
1123  
1124  		/* If the kernfs parent node has changed discard and
1125  		 * proceed to ->lookup.
1126  		 *
1127  		 * There's nothing special needed here when getting the
1128  		 * dentry parent, even if a concurrent rename is in
1129  		 * progress. That's because the dentry is negative so
1130  		 * it can only be the target of the rename and it will
1131  		 * be doing a d_move() not a replace. Consequently the
1132  		 * dentry d_parent won't change over the d_move().
1133  		 *
1134  		 * Also kernfs negative dentries transitioning from
1135  		 * negative to positive during revalidate won't happen
1136  		 * because they are invalidated on containing directory
1137  		 * changes and the lookup re-done so that a new positive
1138  		 * dentry can be properly created.
1139  		 */
1140  		root = kernfs_root_from_sb(dentry->d_sb);
1141  		down_read(&root->kernfs_rwsem);
1142  		parent = kernfs_dentry_node(dentry->d_parent);
1143  		if (parent) {
1144  			if (kernfs_dir_changed(parent, dentry)) {
1145  				up_read(&root->kernfs_rwsem);
1146  				return 0;
1147  			}
1148  		}
1149  		up_read(&root->kernfs_rwsem);
1150  
1151  		/* The kernfs parent node hasn't changed, leave the
1152  		 * dentry negative and return success.
1153  		 */
1154  		return 1;
1155  	}
1156  
1157  	kn = kernfs_dentry_node(dentry);
1158  	root = kernfs_root(kn);
1159  	down_read(&root->kernfs_rwsem);
1160  
1161  	/* The kernfs node has been deactivated */
1162  	if (!kernfs_active(kn))
1163  		goto out_bad;
1164  
1165  	/* The kernfs node has been moved? */
1166  	if (kernfs_dentry_node(dentry->d_parent) != kn->parent)
1167  		goto out_bad;
1168  
1169  	/* The kernfs node has been renamed */
1170  	if (strcmp(dentry->d_name.name, kn->name) != 0)
1171  		goto out_bad;
1172  
1173  	/* The kernfs node has been moved to a different namespace */
1174  	if (kn->parent && kernfs_ns_enabled(kn->parent) &&
1175  	    kernfs_info(dentry->d_sb)->ns != kn->ns)
1176  		goto out_bad;
1177  
1178  	up_read(&root->kernfs_rwsem);
1179  	return 1;
1180  out_bad:
1181  	up_read(&root->kernfs_rwsem);
1182  	return 0;
1183  }
1184  
1185  const struct dentry_operations kernfs_dops = {
1186  	.d_revalidate	= kernfs_dop_revalidate,
1187  };
1188  
kernfs_iop_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)1189  static struct dentry *kernfs_iop_lookup(struct inode *dir,
1190  					struct dentry *dentry,
1191  					unsigned int flags)
1192  {
1193  	struct kernfs_node *parent = dir->i_private;
1194  	struct kernfs_node *kn;
1195  	struct kernfs_root *root;
1196  	struct inode *inode = NULL;
1197  	const void *ns = NULL;
1198  
1199  	root = kernfs_root(parent);
1200  	down_read(&root->kernfs_rwsem);
1201  	if (kernfs_ns_enabled(parent))
1202  		ns = kernfs_info(dir->i_sb)->ns;
1203  
1204  	kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
1205  	/* attach dentry and inode */
1206  	if (kn) {
1207  		/* Inactive nodes are invisible to the VFS so don't
1208  		 * create a negative.
1209  		 */
1210  		if (!kernfs_active(kn)) {
1211  			up_read(&root->kernfs_rwsem);
1212  			return NULL;
1213  		}
1214  		inode = kernfs_get_inode(dir->i_sb, kn);
1215  		if (!inode)
1216  			inode = ERR_PTR(-ENOMEM);
1217  	}
1218  	/*
1219  	 * Needed for negative dentry validation.
1220  	 * The negative dentry can be created in kernfs_iop_lookup()
1221  	 * or transforms from positive dentry in dentry_unlink_inode()
1222  	 * called from vfs_rmdir().
1223  	 */
1224  	if (!IS_ERR(inode))
1225  		kernfs_set_rev(parent, dentry);
1226  	up_read(&root->kernfs_rwsem);
1227  
1228  	/* instantiate and hash (possibly negative) dentry */
1229  	return d_splice_alias(inode, dentry);
1230  }
1231  
kernfs_iop_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)1232  static int kernfs_iop_mkdir(struct mnt_idmap *idmap,
1233  			    struct inode *dir, struct dentry *dentry,
1234  			    umode_t mode)
1235  {
1236  	struct kernfs_node *parent = dir->i_private;
1237  	struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
1238  	int ret;
1239  
1240  	if (!scops || !scops->mkdir)
1241  		return -EPERM;
1242  
1243  	if (!kernfs_get_active(parent))
1244  		return -ENODEV;
1245  
1246  	ret = scops->mkdir(parent, dentry->d_name.name, mode);
1247  
1248  	kernfs_put_active(parent);
1249  	return ret;
1250  }
1251  
kernfs_iop_rmdir(struct inode * dir,struct dentry * dentry)1252  static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
1253  {
1254  	struct kernfs_node *kn  = kernfs_dentry_node(dentry);
1255  	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1256  	int ret;
1257  
1258  	if (!scops || !scops->rmdir)
1259  		return -EPERM;
1260  
1261  	if (!kernfs_get_active(kn))
1262  		return -ENODEV;
1263  
1264  	ret = scops->rmdir(kn);
1265  
1266  	kernfs_put_active(kn);
1267  	return ret;
1268  }
1269  
kernfs_iop_rename(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)1270  static int kernfs_iop_rename(struct mnt_idmap *idmap,
1271  			     struct inode *old_dir, struct dentry *old_dentry,
1272  			     struct inode *new_dir, struct dentry *new_dentry,
1273  			     unsigned int flags)
1274  {
1275  	struct kernfs_node *kn = kernfs_dentry_node(old_dentry);
1276  	struct kernfs_node *new_parent = new_dir->i_private;
1277  	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1278  	int ret;
1279  
1280  	if (flags)
1281  		return -EINVAL;
1282  
1283  	if (!scops || !scops->rename)
1284  		return -EPERM;
1285  
1286  	if (!kernfs_get_active(kn))
1287  		return -ENODEV;
1288  
1289  	if (!kernfs_get_active(new_parent)) {
1290  		kernfs_put_active(kn);
1291  		return -ENODEV;
1292  	}
1293  
1294  	ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
1295  
1296  	kernfs_put_active(new_parent);
1297  	kernfs_put_active(kn);
1298  	return ret;
1299  }
1300  
1301  const struct inode_operations kernfs_dir_iops = {
1302  	.lookup		= kernfs_iop_lookup,
1303  	.permission	= kernfs_iop_permission,
1304  	.setattr	= kernfs_iop_setattr,
1305  	.getattr	= kernfs_iop_getattr,
1306  	.listxattr	= kernfs_iop_listxattr,
1307  
1308  	.mkdir		= kernfs_iop_mkdir,
1309  	.rmdir		= kernfs_iop_rmdir,
1310  	.rename		= kernfs_iop_rename,
1311  };
1312  
kernfs_leftmost_descendant(struct kernfs_node * pos)1313  static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1314  {
1315  	struct kernfs_node *last;
1316  
1317  	while (true) {
1318  		struct rb_node *rbn;
1319  
1320  		last = pos;
1321  
1322  		if (kernfs_type(pos) != KERNFS_DIR)
1323  			break;
1324  
1325  		rbn = rb_first(&pos->dir.children);
1326  		if (!rbn)
1327  			break;
1328  
1329  		pos = rb_to_kn(rbn);
1330  	}
1331  
1332  	return last;
1333  }
1334  
1335  /**
1336   * kernfs_next_descendant_post - find the next descendant for post-order walk
1337   * @pos: the current position (%NULL to initiate traversal)
1338   * @root: kernfs_node whose descendants to walk
1339   *
1340   * Find the next descendant to visit for post-order traversal of @root's
1341   * descendants.  @root is included in the iteration and the last node to be
1342   * visited.
1343   *
1344   * Return: the next descendant to visit or %NULL when done.
1345   */
kernfs_next_descendant_post(struct kernfs_node * pos,struct kernfs_node * root)1346  static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1347  						       struct kernfs_node *root)
1348  {
1349  	struct rb_node *rbn;
1350  
1351  	lockdep_assert_held_write(&kernfs_root(root)->kernfs_rwsem);
1352  
1353  	/* if first iteration, visit leftmost descendant which may be root */
1354  	if (!pos)
1355  		return kernfs_leftmost_descendant(root);
1356  
1357  	/* if we visited @root, we're done */
1358  	if (pos == root)
1359  		return NULL;
1360  
1361  	/* if there's an unvisited sibling, visit its leftmost descendant */
1362  	rbn = rb_next(&pos->rb);
1363  	if (rbn)
1364  		return kernfs_leftmost_descendant(rb_to_kn(rbn));
1365  
1366  	/* no sibling left, visit parent */
1367  	return pos->parent;
1368  }
1369  
kernfs_activate_one(struct kernfs_node * kn)1370  static void kernfs_activate_one(struct kernfs_node *kn)
1371  {
1372  	lockdep_assert_held_write(&kernfs_root(kn)->kernfs_rwsem);
1373  
1374  	kn->flags |= KERNFS_ACTIVATED;
1375  
1376  	if (kernfs_active(kn) || (kn->flags & (KERNFS_HIDDEN | KERNFS_REMOVING)))
1377  		return;
1378  
1379  	WARN_ON_ONCE(kn->parent && RB_EMPTY_NODE(&kn->rb));
1380  	WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1381  
1382  	atomic_sub(KN_DEACTIVATED_BIAS, &kn->active);
1383  }
1384  
1385  /**
1386   * kernfs_activate - activate a node which started deactivated
1387   * @kn: kernfs_node whose subtree is to be activated
1388   *
1389   * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1390   * needs to be explicitly activated.  A node which hasn't been activated
1391   * isn't visible to userland and deactivation is skipped during its
1392   * removal.  This is useful to construct atomic init sequences where
1393   * creation of multiple nodes should either succeed or fail atomically.
1394   *
1395   * The caller is responsible for ensuring that this function is not called
1396   * after kernfs_remove*() is invoked on @kn.
1397   */
kernfs_activate(struct kernfs_node * kn)1398  void kernfs_activate(struct kernfs_node *kn)
1399  {
1400  	struct kernfs_node *pos;
1401  	struct kernfs_root *root = kernfs_root(kn);
1402  
1403  	down_write(&root->kernfs_rwsem);
1404  
1405  	pos = NULL;
1406  	while ((pos = kernfs_next_descendant_post(pos, kn)))
1407  		kernfs_activate_one(pos);
1408  
1409  	up_write(&root->kernfs_rwsem);
1410  }
1411  
1412  /**
1413   * kernfs_show - show or hide a node
1414   * @kn: kernfs_node to show or hide
1415   * @show: whether to show or hide
1416   *
1417   * If @show is %false, @kn is marked hidden and deactivated. A hidden node is
1418   * ignored in future activaitons. If %true, the mark is removed and activation
1419   * state is restored. This function won't implicitly activate a new node in a
1420   * %KERNFS_ROOT_CREATE_DEACTIVATED root which hasn't been activated yet.
1421   *
1422   * To avoid recursion complexities, directories aren't supported for now.
1423   */
kernfs_show(struct kernfs_node * kn,bool show)1424  void kernfs_show(struct kernfs_node *kn, bool show)
1425  {
1426  	struct kernfs_root *root = kernfs_root(kn);
1427  
1428  	if (WARN_ON_ONCE(kernfs_type(kn) == KERNFS_DIR))
1429  		return;
1430  
1431  	down_write(&root->kernfs_rwsem);
1432  
1433  	if (show) {
1434  		kn->flags &= ~KERNFS_HIDDEN;
1435  		if (kn->flags & KERNFS_ACTIVATED)
1436  			kernfs_activate_one(kn);
1437  	} else {
1438  		kn->flags |= KERNFS_HIDDEN;
1439  		if (kernfs_active(kn))
1440  			atomic_add(KN_DEACTIVATED_BIAS, &kn->active);
1441  		kernfs_drain(kn);
1442  	}
1443  
1444  	up_write(&root->kernfs_rwsem);
1445  }
1446  
__kernfs_remove(struct kernfs_node * kn)1447  static void __kernfs_remove(struct kernfs_node *kn)
1448  {
1449  	struct kernfs_node *pos;
1450  
1451  	/* Short-circuit if non-root @kn has already finished removal. */
1452  	if (!kn)
1453  		return;
1454  
1455  	lockdep_assert_held_write(&kernfs_root(kn)->kernfs_rwsem);
1456  
1457  	/*
1458  	 * This is for kernfs_remove_self() which plays with active ref
1459  	 * after removal.
1460  	 */
1461  	if (kn->parent && RB_EMPTY_NODE(&kn->rb))
1462  		return;
1463  
1464  	pr_debug("kernfs %s: removing\n", kn->name);
1465  
1466  	/* prevent new usage by marking all nodes removing and deactivating */
1467  	pos = NULL;
1468  	while ((pos = kernfs_next_descendant_post(pos, kn))) {
1469  		pos->flags |= KERNFS_REMOVING;
1470  		if (kernfs_active(pos))
1471  			atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1472  	}
1473  
1474  	/* deactivate and unlink the subtree node-by-node */
1475  	do {
1476  		pos = kernfs_leftmost_descendant(kn);
1477  
1478  		/*
1479  		 * kernfs_drain() may drop kernfs_rwsem temporarily and @pos's
1480  		 * base ref could have been put by someone else by the time
1481  		 * the function returns.  Make sure it doesn't go away
1482  		 * underneath us.
1483  		 */
1484  		kernfs_get(pos);
1485  
1486  		kernfs_drain(pos);
1487  
1488  		/*
1489  		 * kernfs_unlink_sibling() succeeds once per node.  Use it
1490  		 * to decide who's responsible for cleanups.
1491  		 */
1492  		if (!pos->parent || kernfs_unlink_sibling(pos)) {
1493  			struct kernfs_iattrs *ps_iattr =
1494  				pos->parent ? pos->parent->iattr : NULL;
1495  
1496  			/* update timestamps on the parent */
1497  			down_write(&kernfs_root(kn)->kernfs_iattr_rwsem);
1498  
1499  			if (ps_iattr) {
1500  				ktime_get_real_ts64(&ps_iattr->ia_ctime);
1501  				ps_iattr->ia_mtime = ps_iattr->ia_ctime;
1502  			}
1503  
1504  			up_write(&kernfs_root(kn)->kernfs_iattr_rwsem);
1505  			kernfs_put(pos);
1506  		}
1507  
1508  		kernfs_put(pos);
1509  	} while (pos != kn);
1510  }
1511  
1512  /**
1513   * kernfs_remove - remove a kernfs_node recursively
1514   * @kn: the kernfs_node to remove
1515   *
1516   * Remove @kn along with all its subdirectories and files.
1517   */
kernfs_remove(struct kernfs_node * kn)1518  void kernfs_remove(struct kernfs_node *kn)
1519  {
1520  	struct kernfs_root *root;
1521  
1522  	if (!kn)
1523  		return;
1524  
1525  	root = kernfs_root(kn);
1526  
1527  	down_write(&root->kernfs_rwsem);
1528  	__kernfs_remove(kn);
1529  	up_write(&root->kernfs_rwsem);
1530  }
1531  
1532  /**
1533   * kernfs_break_active_protection - break out of active protection
1534   * @kn: the self kernfs_node
1535   *
1536   * The caller must be running off of a kernfs operation which is invoked
1537   * with an active reference - e.g. one of kernfs_ops.  Each invocation of
1538   * this function must also be matched with an invocation of
1539   * kernfs_unbreak_active_protection().
1540   *
1541   * This function releases the active reference of @kn the caller is
1542   * holding.  Once this function is called, @kn may be removed at any point
1543   * and the caller is solely responsible for ensuring that the objects it
1544   * dereferences are accessible.
1545   */
kernfs_break_active_protection(struct kernfs_node * kn)1546  void kernfs_break_active_protection(struct kernfs_node *kn)
1547  {
1548  	/*
1549  	 * Take out ourself out of the active ref dependency chain.  If
1550  	 * we're called without an active ref, lockdep will complain.
1551  	 */
1552  	kernfs_put_active(kn);
1553  }
1554  
1555  /**
1556   * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1557   * @kn: the self kernfs_node
1558   *
1559   * If kernfs_break_active_protection() was called, this function must be
1560   * invoked before finishing the kernfs operation.  Note that while this
1561   * function restores the active reference, it doesn't and can't actually
1562   * restore the active protection - @kn may already or be in the process of
1563   * being removed.  Once kernfs_break_active_protection() is invoked, that
1564   * protection is irreversibly gone for the kernfs operation instance.
1565   *
1566   * While this function may be called at any point after
1567   * kernfs_break_active_protection() is invoked, its most useful location
1568   * would be right before the enclosing kernfs operation returns.
1569   */
kernfs_unbreak_active_protection(struct kernfs_node * kn)1570  void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1571  {
1572  	/*
1573  	 * @kn->active could be in any state; however, the increment we do
1574  	 * here will be undone as soon as the enclosing kernfs operation
1575  	 * finishes and this temporary bump can't break anything.  If @kn
1576  	 * is alive, nothing changes.  If @kn is being deactivated, the
1577  	 * soon-to-follow put will either finish deactivation or restore
1578  	 * deactivated state.  If @kn is already removed, the temporary
1579  	 * bump is guaranteed to be gone before @kn is released.
1580  	 */
1581  	atomic_inc(&kn->active);
1582  	if (kernfs_lockdep(kn))
1583  		rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1584  }
1585  
1586  /**
1587   * kernfs_remove_self - remove a kernfs_node from its own method
1588   * @kn: the self kernfs_node to remove
1589   *
1590   * The caller must be running off of a kernfs operation which is invoked
1591   * with an active reference - e.g. one of kernfs_ops.  This can be used to
1592   * implement a file operation which deletes itself.
1593   *
1594   * For example, the "delete" file for a sysfs device directory can be
1595   * implemented by invoking kernfs_remove_self() on the "delete" file
1596   * itself.  This function breaks the circular dependency of trying to
1597   * deactivate self while holding an active ref itself.  It isn't necessary
1598   * to modify the usual removal path to use kernfs_remove_self().  The
1599   * "delete" implementation can simply invoke kernfs_remove_self() on self
1600   * before proceeding with the usual removal path.  kernfs will ignore later
1601   * kernfs_remove() on self.
1602   *
1603   * kernfs_remove_self() can be called multiple times concurrently on the
1604   * same kernfs_node.  Only the first one actually performs removal and
1605   * returns %true.  All others will wait until the kernfs operation which
1606   * won self-removal finishes and return %false.  Note that the losers wait
1607   * for the completion of not only the winning kernfs_remove_self() but also
1608   * the whole kernfs_ops which won the arbitration.  This can be used to
1609   * guarantee, for example, all concurrent writes to a "delete" file to
1610   * finish only after the whole operation is complete.
1611   *
1612   * Return: %true if @kn is removed by this call, otherwise %false.
1613   */
kernfs_remove_self(struct kernfs_node * kn)1614  bool kernfs_remove_self(struct kernfs_node *kn)
1615  {
1616  	bool ret;
1617  	struct kernfs_root *root = kernfs_root(kn);
1618  
1619  	down_write(&root->kernfs_rwsem);
1620  	kernfs_break_active_protection(kn);
1621  
1622  	/*
1623  	 * SUICIDAL is used to arbitrate among competing invocations.  Only
1624  	 * the first one will actually perform removal.  When the removal
1625  	 * is complete, SUICIDED is set and the active ref is restored
1626  	 * while kernfs_rwsem for held exclusive.  The ones which lost
1627  	 * arbitration waits for SUICIDED && drained which can happen only
1628  	 * after the enclosing kernfs operation which executed the winning
1629  	 * instance of kernfs_remove_self() finished.
1630  	 */
1631  	if (!(kn->flags & KERNFS_SUICIDAL)) {
1632  		kn->flags |= KERNFS_SUICIDAL;
1633  		__kernfs_remove(kn);
1634  		kn->flags |= KERNFS_SUICIDED;
1635  		ret = true;
1636  	} else {
1637  		wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1638  		DEFINE_WAIT(wait);
1639  
1640  		while (true) {
1641  			prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1642  
1643  			if ((kn->flags & KERNFS_SUICIDED) &&
1644  			    atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1645  				break;
1646  
1647  			up_write(&root->kernfs_rwsem);
1648  			schedule();
1649  			down_write(&root->kernfs_rwsem);
1650  		}
1651  		finish_wait(waitq, &wait);
1652  		WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1653  		ret = false;
1654  	}
1655  
1656  	/*
1657  	 * This must be done while kernfs_rwsem held exclusive; otherwise,
1658  	 * waiting for SUICIDED && deactivated could finish prematurely.
1659  	 */
1660  	kernfs_unbreak_active_protection(kn);
1661  
1662  	up_write(&root->kernfs_rwsem);
1663  	return ret;
1664  }
1665  
1666  /**
1667   * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1668   * @parent: parent of the target
1669   * @name: name of the kernfs_node to remove
1670   * @ns: namespace tag of the kernfs_node to remove
1671   *
1672   * Look for the kernfs_node with @name and @ns under @parent and remove it.
1673   *
1674   * Return: %0 on success, -ENOENT if such entry doesn't exist.
1675   */
kernfs_remove_by_name_ns(struct kernfs_node * parent,const char * name,const void * ns)1676  int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1677  			     const void *ns)
1678  {
1679  	struct kernfs_node *kn;
1680  	struct kernfs_root *root;
1681  
1682  	if (!parent) {
1683  		WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1684  			name);
1685  		return -ENOENT;
1686  	}
1687  
1688  	root = kernfs_root(parent);
1689  	down_write(&root->kernfs_rwsem);
1690  
1691  	kn = kernfs_find_ns(parent, name, ns);
1692  	if (kn) {
1693  		kernfs_get(kn);
1694  		__kernfs_remove(kn);
1695  		kernfs_put(kn);
1696  	}
1697  
1698  	up_write(&root->kernfs_rwsem);
1699  
1700  	if (kn)
1701  		return 0;
1702  	else
1703  		return -ENOENT;
1704  }
1705  
1706  /**
1707   * kernfs_rename_ns - move and rename a kernfs_node
1708   * @kn: target node
1709   * @new_parent: new parent to put @sd under
1710   * @new_name: new name
1711   * @new_ns: new namespace tag
1712   *
1713   * Return: %0 on success, -errno on failure.
1714   */
kernfs_rename_ns(struct kernfs_node * kn,struct kernfs_node * new_parent,const char * new_name,const void * new_ns)1715  int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1716  		     const char *new_name, const void *new_ns)
1717  {
1718  	struct kernfs_node *old_parent;
1719  	struct kernfs_root *root;
1720  	const char *old_name = NULL;
1721  	int error;
1722  
1723  	/* can't move or rename root */
1724  	if (!kn->parent)
1725  		return -EINVAL;
1726  
1727  	root = kernfs_root(kn);
1728  	down_write(&root->kernfs_rwsem);
1729  
1730  	error = -ENOENT;
1731  	if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1732  	    (new_parent->flags & KERNFS_EMPTY_DIR))
1733  		goto out;
1734  
1735  	error = 0;
1736  	if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1737  	    (strcmp(kn->name, new_name) == 0))
1738  		goto out;	/* nothing to rename */
1739  
1740  	error = -EEXIST;
1741  	if (kernfs_find_ns(new_parent, new_name, new_ns))
1742  		goto out;
1743  
1744  	/* rename kernfs_node */
1745  	if (strcmp(kn->name, new_name) != 0) {
1746  		error = -ENOMEM;
1747  		new_name = kstrdup_const(new_name, GFP_KERNEL);
1748  		if (!new_name)
1749  			goto out;
1750  	} else {
1751  		new_name = NULL;
1752  	}
1753  
1754  	/*
1755  	 * Move to the appropriate place in the appropriate directories rbtree.
1756  	 */
1757  	kernfs_unlink_sibling(kn);
1758  	kernfs_get(new_parent);
1759  
1760  	/* rename_lock protects ->parent and ->name accessors */
1761  	write_lock_irq(&kernfs_rename_lock);
1762  
1763  	old_parent = kn->parent;
1764  	kn->parent = new_parent;
1765  
1766  	kn->ns = new_ns;
1767  	if (new_name) {
1768  		old_name = kn->name;
1769  		kn->name = new_name;
1770  	}
1771  
1772  	write_unlock_irq(&kernfs_rename_lock);
1773  
1774  	kn->hash = kernfs_name_hash(kn->name, kn->ns);
1775  	kernfs_link_sibling(kn);
1776  
1777  	kernfs_put(old_parent);
1778  	kfree_const(old_name);
1779  
1780  	error = 0;
1781   out:
1782  	up_write(&root->kernfs_rwsem);
1783  	return error;
1784  }
1785  
kernfs_dir_fop_release(struct inode * inode,struct file * filp)1786  static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1787  {
1788  	kernfs_put(filp->private_data);
1789  	return 0;
1790  }
1791  
kernfs_dir_pos(const void * ns,struct kernfs_node * parent,loff_t hash,struct kernfs_node * pos)1792  static struct kernfs_node *kernfs_dir_pos(const void *ns,
1793  	struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1794  {
1795  	if (pos) {
1796  		int valid = kernfs_active(pos) &&
1797  			pos->parent == parent && hash == pos->hash;
1798  		kernfs_put(pos);
1799  		if (!valid)
1800  			pos = NULL;
1801  	}
1802  	if (!pos && (hash > 1) && (hash < INT_MAX)) {
1803  		struct rb_node *node = parent->dir.children.rb_node;
1804  		while (node) {
1805  			pos = rb_to_kn(node);
1806  
1807  			if (hash < pos->hash)
1808  				node = node->rb_left;
1809  			else if (hash > pos->hash)
1810  				node = node->rb_right;
1811  			else
1812  				break;
1813  		}
1814  	}
1815  	/* Skip over entries which are dying/dead or in the wrong namespace */
1816  	while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1817  		struct rb_node *node = rb_next(&pos->rb);
1818  		if (!node)
1819  			pos = NULL;
1820  		else
1821  			pos = rb_to_kn(node);
1822  	}
1823  	return pos;
1824  }
1825  
kernfs_dir_next_pos(const void * ns,struct kernfs_node * parent,ino_t ino,struct kernfs_node * pos)1826  static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1827  	struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1828  {
1829  	pos = kernfs_dir_pos(ns, parent, ino, pos);
1830  	if (pos) {
1831  		do {
1832  			struct rb_node *node = rb_next(&pos->rb);
1833  			if (!node)
1834  				pos = NULL;
1835  			else
1836  				pos = rb_to_kn(node);
1837  		} while (pos && (!kernfs_active(pos) || pos->ns != ns));
1838  	}
1839  	return pos;
1840  }
1841  
kernfs_fop_readdir(struct file * file,struct dir_context * ctx)1842  static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1843  {
1844  	struct dentry *dentry = file->f_path.dentry;
1845  	struct kernfs_node *parent = kernfs_dentry_node(dentry);
1846  	struct kernfs_node *pos = file->private_data;
1847  	struct kernfs_root *root;
1848  	const void *ns = NULL;
1849  
1850  	if (!dir_emit_dots(file, ctx))
1851  		return 0;
1852  
1853  	root = kernfs_root(parent);
1854  	down_read(&root->kernfs_rwsem);
1855  
1856  	if (kernfs_ns_enabled(parent))
1857  		ns = kernfs_info(dentry->d_sb)->ns;
1858  
1859  	for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1860  	     pos;
1861  	     pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1862  		const char *name = pos->name;
1863  		unsigned int type = fs_umode_to_dtype(pos->mode);
1864  		int len = strlen(name);
1865  		ino_t ino = kernfs_ino(pos);
1866  
1867  		ctx->pos = pos->hash;
1868  		file->private_data = pos;
1869  		kernfs_get(pos);
1870  
1871  		up_read(&root->kernfs_rwsem);
1872  		if (!dir_emit(ctx, name, len, ino, type))
1873  			return 0;
1874  		down_read(&root->kernfs_rwsem);
1875  	}
1876  	up_read(&root->kernfs_rwsem);
1877  	file->private_data = NULL;
1878  	ctx->pos = INT_MAX;
1879  	return 0;
1880  }
1881  
1882  const struct file_operations kernfs_dir_fops = {
1883  	.read		= generic_read_dir,
1884  	.iterate_shared	= kernfs_fop_readdir,
1885  	.release	= kernfs_dir_fop_release,
1886  	.llseek		= generic_file_llseek,
1887  };
1888