1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * LoongArch KGDB support
4 *
5 * Copyright (C) 2023 Loongson Technology Corporation Limited
6 */
7
8 #include <linux/hw_breakpoint.h>
9 #include <linux/kdebug.h>
10 #include <linux/kgdb.h>
11 #include <linux/processor.h>
12 #include <linux/ptrace.h>
13 #include <linux/sched.h>
14 #include <linux/smp.h>
15
16 #include <asm/cacheflush.h>
17 #include <asm/fpu.h>
18 #include <asm/hw_breakpoint.h>
19 #include <asm/inst.h>
20 #include <asm/irq_regs.h>
21 #include <asm/ptrace.h>
22 #include <asm/sigcontext.h>
23
24 int kgdb_watch_activated;
25 static unsigned int stepped_opcode;
26 static unsigned long stepped_address;
27
28 struct dbg_reg_def_t dbg_reg_def[DBG_MAX_REG_NUM] = {
29 { "r0", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[0]) },
30 { "r1", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[1]) },
31 { "r2", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[2]) },
32 { "r3", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[3]) },
33 { "r4", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[4]) },
34 { "r5", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[5]) },
35 { "r6", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[6]) },
36 { "r7", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[7]) },
37 { "r8", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[8]) },
38 { "r9", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[9]) },
39 { "r10", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[10]) },
40 { "r11", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[11]) },
41 { "r12", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[12]) },
42 { "r13", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[13]) },
43 { "r14", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[14]) },
44 { "r15", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[15]) },
45 { "r16", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[16]) },
46 { "r17", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[17]) },
47 { "r18", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[18]) },
48 { "r19", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[19]) },
49 { "r20", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[20]) },
50 { "r21", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[21]) },
51 { "r22", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[22]) },
52 { "r23", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[23]) },
53 { "r24", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[24]) },
54 { "r25", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[25]) },
55 { "r26", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[26]) },
56 { "r27", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[27]) },
57 { "r28", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[28]) },
58 { "r29", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[29]) },
59 { "r30", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[30]) },
60 { "r31", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[31]) },
61 { "orig_a0", GDB_SIZEOF_REG, offsetof(struct pt_regs, orig_a0) },
62 { "pc", GDB_SIZEOF_REG, offsetof(struct pt_regs, csr_era) },
63 { "badv", GDB_SIZEOF_REG, offsetof(struct pt_regs, csr_badvaddr) },
64 { "f0", GDB_SIZEOF_REG, 0 },
65 { "f1", GDB_SIZEOF_REG, 1 },
66 { "f2", GDB_SIZEOF_REG, 2 },
67 { "f3", GDB_SIZEOF_REG, 3 },
68 { "f4", GDB_SIZEOF_REG, 4 },
69 { "f5", GDB_SIZEOF_REG, 5 },
70 { "f6", GDB_SIZEOF_REG, 6 },
71 { "f7", GDB_SIZEOF_REG, 7 },
72 { "f8", GDB_SIZEOF_REG, 8 },
73 { "f9", GDB_SIZEOF_REG, 9 },
74 { "f10", GDB_SIZEOF_REG, 10 },
75 { "f11", GDB_SIZEOF_REG, 11 },
76 { "f12", GDB_SIZEOF_REG, 12 },
77 { "f13", GDB_SIZEOF_REG, 13 },
78 { "f14", GDB_SIZEOF_REG, 14 },
79 { "f15", GDB_SIZEOF_REG, 15 },
80 { "f16", GDB_SIZEOF_REG, 16 },
81 { "f17", GDB_SIZEOF_REG, 17 },
82 { "f18", GDB_SIZEOF_REG, 18 },
83 { "f19", GDB_SIZEOF_REG, 19 },
84 { "f20", GDB_SIZEOF_REG, 20 },
85 { "f21", GDB_SIZEOF_REG, 21 },
86 { "f22", GDB_SIZEOF_REG, 22 },
87 { "f23", GDB_SIZEOF_REG, 23 },
88 { "f24", GDB_SIZEOF_REG, 24 },
89 { "f25", GDB_SIZEOF_REG, 25 },
90 { "f26", GDB_SIZEOF_REG, 26 },
91 { "f27", GDB_SIZEOF_REG, 27 },
92 { "f28", GDB_SIZEOF_REG, 28 },
93 { "f29", GDB_SIZEOF_REG, 29 },
94 { "f30", GDB_SIZEOF_REG, 30 },
95 { "f31", GDB_SIZEOF_REG, 31 },
96 { "fcc0", 1, 0 },
97 { "fcc1", 1, 1 },
98 { "fcc2", 1, 2 },
99 { "fcc3", 1, 3 },
100 { "fcc4", 1, 4 },
101 { "fcc5", 1, 5 },
102 { "fcc6", 1, 6 },
103 { "fcc7", 1, 7 },
104 { "fcsr", 4, 0 },
105 };
106
dbg_get_reg(int regno,void * mem,struct pt_regs * regs)107 char *dbg_get_reg(int regno, void *mem, struct pt_regs *regs)
108 {
109 int reg_offset, reg_size;
110
111 if (regno < 0 || regno >= DBG_MAX_REG_NUM)
112 return NULL;
113
114 reg_offset = dbg_reg_def[regno].offset;
115 reg_size = dbg_reg_def[regno].size;
116
117 if (reg_offset == -1)
118 goto out;
119
120 /* Handle general-purpose/orig_a0/pc/badv registers */
121 if (regno <= DBG_PT_REGS_END) {
122 memcpy(mem, (void *)regs + reg_offset, reg_size);
123 goto out;
124 }
125
126 if (!(regs->csr_euen & CSR_EUEN_FPEN))
127 goto out;
128
129 save_fp(current);
130
131 /* Handle FP registers */
132 switch (regno) {
133 case DBG_FCSR: /* Process the fcsr */
134 memcpy(mem, (void *)¤t->thread.fpu.fcsr, reg_size);
135 break;
136 case DBG_FCC_BASE ... DBG_FCC_END: /* Process the fcc */
137 memcpy(mem, (void *)¤t->thread.fpu.fcc + reg_offset, reg_size);
138 break;
139 case DBG_FPR_BASE ... DBG_FPR_END: /* Process the fpr */
140 memcpy(mem, (void *)¤t->thread.fpu.fpr[reg_offset], reg_size);
141 break;
142 default:
143 break;
144 }
145
146 out:
147 return dbg_reg_def[regno].name;
148 }
149
dbg_set_reg(int regno,void * mem,struct pt_regs * regs)150 int dbg_set_reg(int regno, void *mem, struct pt_regs *regs)
151 {
152 int reg_offset, reg_size;
153
154 if (regno < 0 || regno >= DBG_MAX_REG_NUM)
155 return -EINVAL;
156
157 reg_offset = dbg_reg_def[regno].offset;
158 reg_size = dbg_reg_def[regno].size;
159
160 if (reg_offset == -1)
161 return 0;
162
163 /* Handle general-purpose/orig_a0/pc/badv registers */
164 if (regno <= DBG_PT_REGS_END) {
165 memcpy((void *)regs + reg_offset, mem, reg_size);
166 return 0;
167 }
168
169 if (!(regs->csr_euen & CSR_EUEN_FPEN))
170 return 0;
171
172 /* Handle FP registers */
173 switch (regno) {
174 case DBG_FCSR: /* Process the fcsr */
175 memcpy((void *)¤t->thread.fpu.fcsr, mem, reg_size);
176 break;
177 case DBG_FCC_BASE ... DBG_FCC_END: /* Process the fcc */
178 memcpy((void *)¤t->thread.fpu.fcc + reg_offset, mem, reg_size);
179 break;
180 case DBG_FPR_BASE ... DBG_FPR_END: /* Process the fpr */
181 memcpy((void *)¤t->thread.fpu.fpr[reg_offset], mem, reg_size);
182 break;
183 default:
184 break;
185 }
186
187 restore_fp(current);
188
189 return 0;
190 }
191
192 /*
193 * Similar to regs_to_gdb_regs() except that process is sleeping and so
194 * we may not be able to get all the info.
195 */
sleeping_thread_to_gdb_regs(unsigned long * gdb_regs,struct task_struct * p)196 void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
197 {
198 /* Initialize to zero */
199 memset((char *)gdb_regs, 0, NUMREGBYTES);
200
201 gdb_regs[DBG_LOONGARCH_RA] = p->thread.reg01;
202 gdb_regs[DBG_LOONGARCH_TP] = (long)p;
203 gdb_regs[DBG_LOONGARCH_SP] = p->thread.reg03;
204
205 /* S0 - S8 */
206 gdb_regs[DBG_LOONGARCH_S0] = p->thread.reg23;
207 gdb_regs[DBG_LOONGARCH_S1] = p->thread.reg24;
208 gdb_regs[DBG_LOONGARCH_S2] = p->thread.reg25;
209 gdb_regs[DBG_LOONGARCH_S3] = p->thread.reg26;
210 gdb_regs[DBG_LOONGARCH_S4] = p->thread.reg27;
211 gdb_regs[DBG_LOONGARCH_S5] = p->thread.reg28;
212 gdb_regs[DBG_LOONGARCH_S6] = p->thread.reg29;
213 gdb_regs[DBG_LOONGARCH_S7] = p->thread.reg30;
214 gdb_regs[DBG_LOONGARCH_S8] = p->thread.reg31;
215
216 /*
217 * PC use return address (RA), i.e. the moment after return from __switch_to()
218 */
219 gdb_regs[DBG_LOONGARCH_PC] = p->thread.reg01;
220 }
221
kgdb_arch_set_pc(struct pt_regs * regs,unsigned long pc)222 void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long pc)
223 {
224 regs->csr_era = pc;
225 }
226
arch_kgdb_breakpoint(void)227 void arch_kgdb_breakpoint(void)
228 {
229 __asm__ __volatile__ ( \
230 ".globl kgdb_breakinst\n\t" \
231 "nop\n" \
232 "kgdb_breakinst:\tbreak 2\n\t"); /* BRK_KDB = 2 */
233 }
234
235 /*
236 * Calls linux_debug_hook before the kernel dies. If KGDB is enabled,
237 * then try to fall into the debugger
238 */
kgdb_loongarch_notify(struct notifier_block * self,unsigned long cmd,void * ptr)239 static int kgdb_loongarch_notify(struct notifier_block *self, unsigned long cmd, void *ptr)
240 {
241 struct die_args *args = (struct die_args *)ptr;
242 struct pt_regs *regs = args->regs;
243
244 /* Userspace events, ignore. */
245 if (user_mode(regs))
246 return NOTIFY_DONE;
247
248 if (!kgdb_io_module_registered)
249 return NOTIFY_DONE;
250
251 if (atomic_read(&kgdb_active) != -1)
252 kgdb_nmicallback(smp_processor_id(), regs);
253
254 if (kgdb_handle_exception(args->trapnr, args->signr, cmd, regs))
255 return NOTIFY_DONE;
256
257 if (atomic_read(&kgdb_setting_breakpoint))
258 if (regs->csr_era == (unsigned long)&kgdb_breakinst)
259 regs->csr_era += LOONGARCH_INSN_SIZE;
260
261 return NOTIFY_STOP;
262 }
263
kgdb_breakpoint_handler(struct pt_regs * regs)264 bool kgdb_breakpoint_handler(struct pt_regs *regs)
265 {
266 struct die_args args = {
267 .regs = regs,
268 .str = "Break",
269 .err = BRK_KDB,
270 .trapnr = read_csr_excode(),
271 .signr = SIGTRAP,
272
273 };
274
275 return (kgdb_loongarch_notify(NULL, DIE_TRAP, &args) == NOTIFY_STOP) ? true : false;
276 }
277
278 static struct notifier_block kgdb_notifier = {
279 .notifier_call = kgdb_loongarch_notify,
280 };
281
kgdb_arch_update_addr(struct pt_regs * regs,char * remcom_in_buffer)282 static inline void kgdb_arch_update_addr(struct pt_regs *regs,
283 char *remcom_in_buffer)
284 {
285 unsigned long addr;
286 char *ptr;
287
288 ptr = &remcom_in_buffer[1];
289 if (kgdb_hex2long(&ptr, &addr))
290 regs->csr_era = addr;
291 }
292
293 /* Calculate the new address for after a step */
get_step_address(struct pt_regs * regs,unsigned long * next_addr)294 static int get_step_address(struct pt_regs *regs, unsigned long *next_addr)
295 {
296 char cj_val;
297 unsigned int si, si_l, si_h, rd, rj, cj;
298 unsigned long pc = instruction_pointer(regs);
299 union loongarch_instruction *ip = (union loongarch_instruction *)pc;
300
301 if (pc & 3) {
302 pr_warn("%s: invalid pc 0x%lx\n", __func__, pc);
303 return -EINVAL;
304 }
305
306 *next_addr = pc + LOONGARCH_INSN_SIZE;
307
308 si_h = ip->reg0i26_format.immediate_h;
309 si_l = ip->reg0i26_format.immediate_l;
310 switch (ip->reg0i26_format.opcode) {
311 case b_op:
312 *next_addr = pc + sign_extend64((si_h << 16 | si_l) << 2, 27);
313 return 0;
314 case bl_op:
315 *next_addr = pc + sign_extend64((si_h << 16 | si_l) << 2, 27);
316 regs->regs[1] = pc + LOONGARCH_INSN_SIZE;
317 return 0;
318 }
319
320 rj = ip->reg1i21_format.rj;
321 cj = (rj & 0x07) + DBG_FCC_BASE;
322 si_l = ip->reg1i21_format.immediate_l;
323 si_h = ip->reg1i21_format.immediate_h;
324 dbg_get_reg(cj, &cj_val, regs);
325 switch (ip->reg1i21_format.opcode) {
326 case beqz_op:
327 if (regs->regs[rj] == 0)
328 *next_addr = pc + sign_extend64((si_h << 16 | si_l) << 2, 22);
329 return 0;
330 case bnez_op:
331 if (regs->regs[rj] != 0)
332 *next_addr = pc + sign_extend64((si_h << 16 | si_l) << 2, 22);
333 return 0;
334 case bceqz_op: /* bceqz_op = bcnez_op */
335 if (((rj & 0x18) == 0x00) && !cj_val) /* bceqz */
336 *next_addr = pc + sign_extend64((si_h << 16 | si_l) << 2, 22);
337 if (((rj & 0x18) == 0x08) && cj_val) /* bcnez */
338 *next_addr = pc + sign_extend64((si_h << 16 | si_l) << 2, 22);
339 return 0;
340 }
341
342 rj = ip->reg2i16_format.rj;
343 rd = ip->reg2i16_format.rd;
344 si = ip->reg2i16_format.immediate;
345 switch (ip->reg2i16_format.opcode) {
346 case beq_op:
347 if (regs->regs[rj] == regs->regs[rd])
348 *next_addr = pc + sign_extend64(si << 2, 17);
349 return 0;
350 case bne_op:
351 if (regs->regs[rj] != regs->regs[rd])
352 *next_addr = pc + sign_extend64(si << 2, 17);
353 return 0;
354 case blt_op:
355 if ((long)regs->regs[rj] < (long)regs->regs[rd])
356 *next_addr = pc + sign_extend64(si << 2, 17);
357 return 0;
358 case bge_op:
359 if ((long)regs->regs[rj] >= (long)regs->regs[rd])
360 *next_addr = pc + sign_extend64(si << 2, 17);
361 return 0;
362 case bltu_op:
363 if (regs->regs[rj] < regs->regs[rd])
364 *next_addr = pc + sign_extend64(si << 2, 17);
365 return 0;
366 case bgeu_op:
367 if (regs->regs[rj] >= regs->regs[rd])
368 *next_addr = pc + sign_extend64(si << 2, 17);
369 return 0;
370 case jirl_op:
371 regs->regs[rd] = pc + LOONGARCH_INSN_SIZE;
372 *next_addr = regs->regs[rj] + sign_extend64(si << 2, 17);
373 return 0;
374 }
375
376 return 0;
377 }
378
do_single_step(struct pt_regs * regs)379 static int do_single_step(struct pt_regs *regs)
380 {
381 int error = 0;
382 unsigned long addr = 0; /* Determine where the target instruction will send us to */
383
384 error = get_step_address(regs, &addr);
385 if (error)
386 return error;
387
388 /* Store the opcode in the stepped address */
389 error = get_kernel_nofault(stepped_opcode, (void *)addr);
390 if (error)
391 return error;
392
393 stepped_address = addr;
394
395 /* Replace the opcode with the break instruction */
396 error = copy_to_kernel_nofault((void *)stepped_address,
397 arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE);
398 flush_icache_range(addr, addr + BREAK_INSTR_SIZE);
399
400 if (error) {
401 stepped_opcode = 0;
402 stepped_address = 0;
403 } else {
404 kgdb_single_step = 1;
405 atomic_set(&kgdb_cpu_doing_single_step, raw_smp_processor_id());
406 }
407
408 return error;
409 }
410
411 /* Undo a single step */
undo_single_step(struct pt_regs * regs)412 static void undo_single_step(struct pt_regs *regs)
413 {
414 if (stepped_opcode) {
415 copy_to_kernel_nofault((void *)stepped_address,
416 (void *)&stepped_opcode, BREAK_INSTR_SIZE);
417 flush_icache_range(stepped_address, stepped_address + BREAK_INSTR_SIZE);
418 }
419
420 stepped_opcode = 0;
421 stepped_address = 0;
422 kgdb_single_step = 0;
423 atomic_set(&kgdb_cpu_doing_single_step, -1);
424 }
425
kgdb_arch_handle_exception(int vector,int signo,int err_code,char * remcom_in_buffer,char * remcom_out_buffer,struct pt_regs * regs)426 int kgdb_arch_handle_exception(int vector, int signo, int err_code,
427 char *remcom_in_buffer, char *remcom_out_buffer,
428 struct pt_regs *regs)
429 {
430 int ret = 0;
431
432 undo_single_step(regs);
433 regs->csr_prmd |= CSR_PRMD_PWE;
434
435 switch (remcom_in_buffer[0]) {
436 case 'D':
437 case 'k':
438 regs->csr_prmd &= ~CSR_PRMD_PWE;
439 fallthrough;
440 case 'c':
441 kgdb_arch_update_addr(regs, remcom_in_buffer);
442 break;
443 case 's':
444 kgdb_arch_update_addr(regs, remcom_in_buffer);
445 ret = do_single_step(regs);
446 break;
447 default:
448 ret = -1;
449 }
450
451 return ret;
452 }
453
454 static struct hw_breakpoint {
455 unsigned int enabled;
456 unsigned long addr;
457 int len;
458 int type;
459 struct perf_event * __percpu *pev;
460 } breakinfo[LOONGARCH_MAX_BRP];
461
hw_break_reserve_slot(int breakno)462 static int hw_break_reserve_slot(int breakno)
463 {
464 int cpu, cnt = 0;
465 struct perf_event **pevent;
466
467 for_each_online_cpu(cpu) {
468 cnt++;
469 pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
470 if (dbg_reserve_bp_slot(*pevent))
471 goto fail;
472 }
473
474 return 0;
475
476 fail:
477 for_each_online_cpu(cpu) {
478 cnt--;
479 if (!cnt)
480 break;
481 pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
482 dbg_release_bp_slot(*pevent);
483 }
484
485 return -1;
486 }
487
hw_break_release_slot(int breakno)488 static int hw_break_release_slot(int breakno)
489 {
490 int cpu;
491 struct perf_event **pevent;
492
493 if (dbg_is_early)
494 return 0;
495
496 for_each_online_cpu(cpu) {
497 pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
498 if (dbg_release_bp_slot(*pevent))
499 /*
500 * The debugger is responsible for handing the retry on
501 * remove failure.
502 */
503 return -1;
504 }
505
506 return 0;
507 }
508
kgdb_set_hw_break(unsigned long addr,int len,enum kgdb_bptype bptype)509 static int kgdb_set_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
510 {
511 int i;
512
513 for (i = 0; i < LOONGARCH_MAX_BRP; i++)
514 if (!breakinfo[i].enabled)
515 break;
516
517 if (i == LOONGARCH_MAX_BRP)
518 return -1;
519
520 switch (bptype) {
521 case BP_HARDWARE_BREAKPOINT:
522 breakinfo[i].type = HW_BREAKPOINT_X;
523 break;
524 case BP_READ_WATCHPOINT:
525 breakinfo[i].type = HW_BREAKPOINT_R;
526 break;
527 case BP_WRITE_WATCHPOINT:
528 breakinfo[i].type = HW_BREAKPOINT_W;
529 break;
530 case BP_ACCESS_WATCHPOINT:
531 breakinfo[i].type = HW_BREAKPOINT_RW;
532 break;
533 default:
534 return -1;
535 }
536
537 switch (len) {
538 case 1:
539 breakinfo[i].len = HW_BREAKPOINT_LEN_1;
540 break;
541 case 2:
542 breakinfo[i].len = HW_BREAKPOINT_LEN_2;
543 break;
544 case 4:
545 breakinfo[i].len = HW_BREAKPOINT_LEN_4;
546 break;
547 case 8:
548 breakinfo[i].len = HW_BREAKPOINT_LEN_8;
549 break;
550 default:
551 return -1;
552 }
553
554 breakinfo[i].addr = addr;
555 if (hw_break_reserve_slot(i)) {
556 breakinfo[i].addr = 0;
557 return -1;
558 }
559 breakinfo[i].enabled = 1;
560
561 return 0;
562 }
563
kgdb_remove_hw_break(unsigned long addr,int len,enum kgdb_bptype bptype)564 static int kgdb_remove_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
565 {
566 int i;
567
568 for (i = 0; i < LOONGARCH_MAX_BRP; i++)
569 if (breakinfo[i].addr == addr && breakinfo[i].enabled)
570 break;
571
572 if (i == LOONGARCH_MAX_BRP)
573 return -1;
574
575 if (hw_break_release_slot(i)) {
576 pr_err("Cannot remove hw breakpoint at %lx\n", addr);
577 return -1;
578 }
579 breakinfo[i].enabled = 0;
580
581 return 0;
582 }
583
kgdb_disable_hw_break(struct pt_regs * regs)584 static void kgdb_disable_hw_break(struct pt_regs *regs)
585 {
586 int i;
587 int cpu = raw_smp_processor_id();
588 struct perf_event *bp;
589
590 for (i = 0; i < LOONGARCH_MAX_BRP; i++) {
591 if (!breakinfo[i].enabled)
592 continue;
593
594 bp = *per_cpu_ptr(breakinfo[i].pev, cpu);
595 if (bp->attr.disabled == 1)
596 continue;
597
598 arch_uninstall_hw_breakpoint(bp);
599 bp->attr.disabled = 1;
600 }
601
602 /* Disable hardware debugging while we are in kgdb */
603 csr_xchg32(0, CSR_CRMD_WE, LOONGARCH_CSR_CRMD);
604 }
605
kgdb_remove_all_hw_break(void)606 static void kgdb_remove_all_hw_break(void)
607 {
608 int i;
609 int cpu = raw_smp_processor_id();
610 struct perf_event *bp;
611
612 for (i = 0; i < LOONGARCH_MAX_BRP; i++) {
613 if (!breakinfo[i].enabled)
614 continue;
615
616 bp = *per_cpu_ptr(breakinfo[i].pev, cpu);
617 if (!bp->attr.disabled) {
618 arch_uninstall_hw_breakpoint(bp);
619 bp->attr.disabled = 1;
620 continue;
621 }
622
623 if (hw_break_release_slot(i))
624 pr_err("KGDB: hw bpt remove failed %lx\n", breakinfo[i].addr);
625 breakinfo[i].enabled = 0;
626 }
627
628 csr_xchg32(0, CSR_CRMD_WE, LOONGARCH_CSR_CRMD);
629 kgdb_watch_activated = 0;
630 }
631
kgdb_correct_hw_break(void)632 static void kgdb_correct_hw_break(void)
633 {
634 int i, activated = 0;
635
636 for (i = 0; i < LOONGARCH_MAX_BRP; i++) {
637 struct perf_event *bp;
638 int val;
639 int cpu = raw_smp_processor_id();
640
641 if (!breakinfo[i].enabled)
642 continue;
643
644 bp = *per_cpu_ptr(breakinfo[i].pev, cpu);
645 if (bp->attr.disabled != 1)
646 continue;
647
648 bp->attr.bp_addr = breakinfo[i].addr;
649 bp->attr.bp_len = breakinfo[i].len;
650 bp->attr.bp_type = breakinfo[i].type;
651
652 val = hw_breakpoint_arch_parse(bp, &bp->attr, counter_arch_bp(bp));
653 if (val)
654 return;
655
656 val = arch_install_hw_breakpoint(bp);
657 if (!val)
658 bp->attr.disabled = 0;
659 activated = 1;
660 }
661
662 csr_xchg32(activated ? CSR_CRMD_WE : 0, CSR_CRMD_WE, LOONGARCH_CSR_CRMD);
663 kgdb_watch_activated = activated;
664 }
665
666 const struct kgdb_arch arch_kgdb_ops = {
667 .gdb_bpt_instr = {0x02, 0x00, break_op >> 1, 0x00}, /* BRK_KDB = 2 */
668 .flags = KGDB_HW_BREAKPOINT,
669 .set_hw_breakpoint = kgdb_set_hw_break,
670 .remove_hw_breakpoint = kgdb_remove_hw_break,
671 .disable_hw_break = kgdb_disable_hw_break,
672 .remove_all_hw_break = kgdb_remove_all_hw_break,
673 .correct_hw_break = kgdb_correct_hw_break,
674 };
675
kgdb_arch_init(void)676 int kgdb_arch_init(void)
677 {
678 return register_die_notifier(&kgdb_notifier);
679 }
680
kgdb_arch_late(void)681 void kgdb_arch_late(void)
682 {
683 int i, cpu;
684 struct perf_event_attr attr;
685 struct perf_event **pevent;
686
687 hw_breakpoint_init(&attr);
688
689 attr.bp_addr = (unsigned long)kgdb_arch_init;
690 attr.bp_len = HW_BREAKPOINT_LEN_4;
691 attr.bp_type = HW_BREAKPOINT_W;
692 attr.disabled = 1;
693
694 for (i = 0; i < LOONGARCH_MAX_BRP; i++) {
695 if (breakinfo[i].pev)
696 continue;
697
698 breakinfo[i].pev = register_wide_hw_breakpoint(&attr, NULL, NULL);
699 if (IS_ERR((void * __force)breakinfo[i].pev)) {
700 pr_err("kgdb: Could not allocate hw breakpoints.\n");
701 breakinfo[i].pev = NULL;
702 return;
703 }
704
705 for_each_online_cpu(cpu) {
706 pevent = per_cpu_ptr(breakinfo[i].pev, cpu);
707 if (pevent[0]->destroy) {
708 pevent[0]->destroy = NULL;
709 release_bp_slot(*pevent);
710 }
711 }
712 }
713 }
714
kgdb_arch_exit(void)715 void kgdb_arch_exit(void)
716 {
717 int i;
718
719 for (i = 0; i < LOONGARCH_MAX_BRP; i++) {
720 if (breakinfo[i].pev) {
721 unregister_wide_hw_breakpoint(breakinfo[i].pev);
722 breakinfo[i].pev = NULL;
723 }
724 }
725
726 unregister_die_notifier(&kgdb_notifier);
727 }
728