1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Basic authentication token and access key management
3 *
4 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
6 */
7
8 #include <linux/export.h>
9 #include <linux/init.h>
10 #include <linux/poison.h>
11 #include <linux/sched.h>
12 #include <linux/slab.h>
13 #include <linux/security.h>
14 #include <linux/workqueue.h>
15 #include <linux/random.h>
16 #include <linux/ima.h>
17 #include <linux/err.h>
18 #include "internal.h"
19
20 struct kmem_cache *key_jar;
21 struct rb_root key_serial_tree; /* tree of keys indexed by serial */
22 DEFINE_SPINLOCK(key_serial_lock);
23
24 struct rb_root key_user_tree; /* tree of quota records indexed by UID */
25 DEFINE_SPINLOCK(key_user_lock);
26
27 unsigned int key_quota_root_maxkeys = 1000000; /* root's key count quota */
28 unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */
29 unsigned int key_quota_maxkeys = 200; /* general key count quota */
30 unsigned int key_quota_maxbytes = 20000; /* general key space quota */
31
32 static LIST_HEAD(key_types_list);
33 static DECLARE_RWSEM(key_types_sem);
34
35 /* We serialise key instantiation and link */
36 DEFINE_MUTEX(key_construction_mutex);
37
38 #ifdef KEY_DEBUGGING
__key_check(const struct key * key)39 void __key_check(const struct key *key)
40 {
41 printk("__key_check: key %p {%08x} should be {%08x}\n",
42 key, key->magic, KEY_DEBUG_MAGIC);
43 BUG();
44 }
45 #endif
46
47 /*
48 * Get the key quota record for a user, allocating a new record if one doesn't
49 * already exist.
50 */
key_user_lookup(kuid_t uid)51 struct key_user *key_user_lookup(kuid_t uid)
52 {
53 struct key_user *candidate = NULL, *user;
54 struct rb_node *parent, **p;
55
56 try_again:
57 parent = NULL;
58 p = &key_user_tree.rb_node;
59 spin_lock(&key_user_lock);
60
61 /* search the tree for a user record with a matching UID */
62 while (*p) {
63 parent = *p;
64 user = rb_entry(parent, struct key_user, node);
65
66 if (uid_lt(uid, user->uid))
67 p = &(*p)->rb_left;
68 else if (uid_gt(uid, user->uid))
69 p = &(*p)->rb_right;
70 else
71 goto found;
72 }
73
74 /* if we get here, we failed to find a match in the tree */
75 if (!candidate) {
76 /* allocate a candidate user record if we don't already have
77 * one */
78 spin_unlock(&key_user_lock);
79
80 user = NULL;
81 candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
82 if (unlikely(!candidate))
83 goto out;
84
85 /* the allocation may have scheduled, so we need to repeat the
86 * search lest someone else added the record whilst we were
87 * asleep */
88 goto try_again;
89 }
90
91 /* if we get here, then the user record still hadn't appeared on the
92 * second pass - so we use the candidate record */
93 refcount_set(&candidate->usage, 1);
94 atomic_set(&candidate->nkeys, 0);
95 atomic_set(&candidate->nikeys, 0);
96 candidate->uid = uid;
97 candidate->qnkeys = 0;
98 candidate->qnbytes = 0;
99 spin_lock_init(&candidate->lock);
100 mutex_init(&candidate->cons_lock);
101
102 rb_link_node(&candidate->node, parent, p);
103 rb_insert_color(&candidate->node, &key_user_tree);
104 spin_unlock(&key_user_lock);
105 user = candidate;
106 goto out;
107
108 /* okay - we found a user record for this UID */
109 found:
110 refcount_inc(&user->usage);
111 spin_unlock(&key_user_lock);
112 kfree(candidate);
113 out:
114 return user;
115 }
116
117 /*
118 * Dispose of a user structure
119 */
key_user_put(struct key_user * user)120 void key_user_put(struct key_user *user)
121 {
122 if (refcount_dec_and_lock(&user->usage, &key_user_lock)) {
123 rb_erase(&user->node, &key_user_tree);
124 spin_unlock(&key_user_lock);
125
126 kfree(user);
127 }
128 }
129
130 /*
131 * Allocate a serial number for a key. These are assigned randomly to avoid
132 * security issues through covert channel problems.
133 */
key_alloc_serial(struct key * key)134 static inline void key_alloc_serial(struct key *key)
135 {
136 struct rb_node *parent, **p;
137 struct key *xkey;
138
139 /* propose a random serial number and look for a hole for it in the
140 * serial number tree */
141 do {
142 get_random_bytes(&key->serial, sizeof(key->serial));
143
144 key->serial >>= 1; /* negative numbers are not permitted */
145 } while (key->serial < 3);
146
147 spin_lock(&key_serial_lock);
148
149 attempt_insertion:
150 parent = NULL;
151 p = &key_serial_tree.rb_node;
152
153 while (*p) {
154 parent = *p;
155 xkey = rb_entry(parent, struct key, serial_node);
156
157 if (key->serial < xkey->serial)
158 p = &(*p)->rb_left;
159 else if (key->serial > xkey->serial)
160 p = &(*p)->rb_right;
161 else
162 goto serial_exists;
163 }
164
165 /* we've found a suitable hole - arrange for this key to occupy it */
166 rb_link_node(&key->serial_node, parent, p);
167 rb_insert_color(&key->serial_node, &key_serial_tree);
168
169 spin_unlock(&key_serial_lock);
170 return;
171
172 /* we found a key with the proposed serial number - walk the tree from
173 * that point looking for the next unused serial number */
174 serial_exists:
175 for (;;) {
176 key->serial++;
177 if (key->serial < 3) {
178 key->serial = 3;
179 goto attempt_insertion;
180 }
181
182 parent = rb_next(parent);
183 if (!parent)
184 goto attempt_insertion;
185
186 xkey = rb_entry(parent, struct key, serial_node);
187 if (key->serial < xkey->serial)
188 goto attempt_insertion;
189 }
190 }
191
192 /**
193 * key_alloc - Allocate a key of the specified type.
194 * @type: The type of key to allocate.
195 * @desc: The key description to allow the key to be searched out.
196 * @uid: The owner of the new key.
197 * @gid: The group ID for the new key's group permissions.
198 * @cred: The credentials specifying UID namespace.
199 * @perm: The permissions mask of the new key.
200 * @flags: Flags specifying quota properties.
201 * @restrict_link: Optional link restriction for new keyrings.
202 *
203 * Allocate a key of the specified type with the attributes given. The key is
204 * returned in an uninstantiated state and the caller needs to instantiate the
205 * key before returning.
206 *
207 * The restrict_link structure (if not NULL) will be freed when the
208 * keyring is destroyed, so it must be dynamically allocated.
209 *
210 * The user's key count quota is updated to reflect the creation of the key and
211 * the user's key data quota has the default for the key type reserved. The
212 * instantiation function should amend this as necessary. If insufficient
213 * quota is available, -EDQUOT will be returned.
214 *
215 * The LSM security modules can prevent a key being created, in which case
216 * -EACCES will be returned.
217 *
218 * Returns a pointer to the new key if successful and an error code otherwise.
219 *
220 * Note that the caller needs to ensure the key type isn't uninstantiated.
221 * Internally this can be done by locking key_types_sem. Externally, this can
222 * be done by either never unregistering the key type, or making sure
223 * key_alloc() calls don't race with module unloading.
224 */
key_alloc(struct key_type * type,const char * desc,kuid_t uid,kgid_t gid,const struct cred * cred,key_perm_t perm,unsigned long flags,struct key_restriction * restrict_link)225 struct key *key_alloc(struct key_type *type, const char *desc,
226 kuid_t uid, kgid_t gid, const struct cred *cred,
227 key_perm_t perm, unsigned long flags,
228 struct key_restriction *restrict_link)
229 {
230 struct key_user *user = NULL;
231 struct key *key;
232 size_t desclen, quotalen;
233 int ret;
234
235 key = ERR_PTR(-EINVAL);
236 if (!desc || !*desc)
237 goto error;
238
239 if (type->vet_description) {
240 ret = type->vet_description(desc);
241 if (ret < 0) {
242 key = ERR_PTR(ret);
243 goto error;
244 }
245 }
246
247 desclen = strlen(desc);
248 quotalen = desclen + 1 + type->def_datalen;
249
250 /* get hold of the key tracking for this user */
251 user = key_user_lookup(uid);
252 if (!user)
253 goto no_memory_1;
254
255 /* check that the user's quota permits allocation of another key and
256 * its description */
257 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
258 unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
259 key_quota_root_maxkeys : key_quota_maxkeys;
260 unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
261 key_quota_root_maxbytes : key_quota_maxbytes;
262
263 spin_lock(&user->lock);
264 if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
265 if (user->qnkeys + 1 > maxkeys ||
266 user->qnbytes + quotalen > maxbytes ||
267 user->qnbytes + quotalen < user->qnbytes)
268 goto no_quota;
269 }
270
271 user->qnkeys++;
272 user->qnbytes += quotalen;
273 spin_unlock(&user->lock);
274 }
275
276 /* allocate and initialise the key and its description */
277 key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
278 if (!key)
279 goto no_memory_2;
280
281 key->index_key.desc_len = desclen;
282 key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
283 if (!key->index_key.description)
284 goto no_memory_3;
285 key->index_key.type = type;
286 key_set_index_key(&key->index_key);
287
288 refcount_set(&key->usage, 1);
289 init_rwsem(&key->sem);
290 lockdep_set_class(&key->sem, &type->lock_class);
291 key->user = user;
292 key->quotalen = quotalen;
293 key->datalen = type->def_datalen;
294 key->uid = uid;
295 key->gid = gid;
296 key->perm = perm;
297 key->expiry = TIME64_MAX;
298 key->restrict_link = restrict_link;
299 key->last_used_at = ktime_get_real_seconds();
300
301 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
302 key->flags |= 1 << KEY_FLAG_IN_QUOTA;
303 if (flags & KEY_ALLOC_BUILT_IN)
304 key->flags |= 1 << KEY_FLAG_BUILTIN;
305 if (flags & KEY_ALLOC_UID_KEYRING)
306 key->flags |= 1 << KEY_FLAG_UID_KEYRING;
307 if (flags & KEY_ALLOC_SET_KEEP)
308 key->flags |= 1 << KEY_FLAG_KEEP;
309
310 #ifdef KEY_DEBUGGING
311 key->magic = KEY_DEBUG_MAGIC;
312 #endif
313
314 /* let the security module know about the key */
315 ret = security_key_alloc(key, cred, flags);
316 if (ret < 0)
317 goto security_error;
318
319 /* publish the key by giving it a serial number */
320 refcount_inc(&key->domain_tag->usage);
321 atomic_inc(&user->nkeys);
322 key_alloc_serial(key);
323
324 error:
325 return key;
326
327 security_error:
328 kfree(key->description);
329 kmem_cache_free(key_jar, key);
330 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
331 spin_lock(&user->lock);
332 user->qnkeys--;
333 user->qnbytes -= quotalen;
334 spin_unlock(&user->lock);
335 }
336 key_user_put(user);
337 key = ERR_PTR(ret);
338 goto error;
339
340 no_memory_3:
341 kmem_cache_free(key_jar, key);
342 no_memory_2:
343 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
344 spin_lock(&user->lock);
345 user->qnkeys--;
346 user->qnbytes -= quotalen;
347 spin_unlock(&user->lock);
348 }
349 key_user_put(user);
350 no_memory_1:
351 key = ERR_PTR(-ENOMEM);
352 goto error;
353
354 no_quota:
355 spin_unlock(&user->lock);
356 key_user_put(user);
357 key = ERR_PTR(-EDQUOT);
358 goto error;
359 }
360 EXPORT_SYMBOL(key_alloc);
361
362 /**
363 * key_payload_reserve - Adjust data quota reservation for the key's payload
364 * @key: The key to make the reservation for.
365 * @datalen: The amount of data payload the caller now wants.
366 *
367 * Adjust the amount of the owning user's key data quota that a key reserves.
368 * If the amount is increased, then -EDQUOT may be returned if there isn't
369 * enough free quota available.
370 *
371 * If successful, 0 is returned.
372 */
key_payload_reserve(struct key * key,size_t datalen)373 int key_payload_reserve(struct key *key, size_t datalen)
374 {
375 int delta = (int)datalen - key->datalen;
376 int ret = 0;
377
378 key_check(key);
379
380 /* contemplate the quota adjustment */
381 if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
382 unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
383 key_quota_root_maxbytes : key_quota_maxbytes;
384
385 spin_lock(&key->user->lock);
386
387 if (delta > 0 &&
388 (key->user->qnbytes + delta > maxbytes ||
389 key->user->qnbytes + delta < key->user->qnbytes)) {
390 ret = -EDQUOT;
391 }
392 else {
393 key->user->qnbytes += delta;
394 key->quotalen += delta;
395 }
396 spin_unlock(&key->user->lock);
397 }
398
399 /* change the recorded data length if that didn't generate an error */
400 if (ret == 0)
401 key->datalen = datalen;
402
403 return ret;
404 }
405 EXPORT_SYMBOL(key_payload_reserve);
406
407 /*
408 * Change the key state to being instantiated.
409 */
mark_key_instantiated(struct key * key,int reject_error)410 static void mark_key_instantiated(struct key *key, int reject_error)
411 {
412 /* Commit the payload before setting the state; barrier versus
413 * key_read_state().
414 */
415 smp_store_release(&key->state,
416 (reject_error < 0) ? reject_error : KEY_IS_POSITIVE);
417 }
418
419 /*
420 * Instantiate a key and link it into the target keyring atomically. Must be
421 * called with the target keyring's semaphore writelocked. The target key's
422 * semaphore need not be locked as instantiation is serialised by
423 * key_construction_mutex.
424 */
__key_instantiate_and_link(struct key * key,struct key_preparsed_payload * prep,struct key * keyring,struct key * authkey,struct assoc_array_edit ** _edit)425 static int __key_instantiate_and_link(struct key *key,
426 struct key_preparsed_payload *prep,
427 struct key *keyring,
428 struct key *authkey,
429 struct assoc_array_edit **_edit)
430 {
431 int ret, awaken;
432
433 key_check(key);
434 key_check(keyring);
435
436 awaken = 0;
437 ret = -EBUSY;
438
439 mutex_lock(&key_construction_mutex);
440
441 /* can't instantiate twice */
442 if (key->state == KEY_IS_UNINSTANTIATED) {
443 /* instantiate the key */
444 ret = key->type->instantiate(key, prep);
445
446 if (ret == 0) {
447 /* mark the key as being instantiated */
448 atomic_inc(&key->user->nikeys);
449 mark_key_instantiated(key, 0);
450 notify_key(key, NOTIFY_KEY_INSTANTIATED, 0);
451
452 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
453 awaken = 1;
454
455 /* and link it into the destination keyring */
456 if (keyring) {
457 if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
458 set_bit(KEY_FLAG_KEEP, &key->flags);
459
460 __key_link(keyring, key, _edit);
461 }
462
463 /* disable the authorisation key */
464 if (authkey)
465 key_invalidate(authkey);
466
467 if (prep->expiry != TIME64_MAX)
468 key_set_expiry(key, prep->expiry);
469 }
470 }
471
472 mutex_unlock(&key_construction_mutex);
473
474 /* wake up anyone waiting for a key to be constructed */
475 if (awaken)
476 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
477
478 return ret;
479 }
480
481 /**
482 * key_instantiate_and_link - Instantiate a key and link it into the keyring.
483 * @key: The key to instantiate.
484 * @data: The data to use to instantiate the keyring.
485 * @datalen: The length of @data.
486 * @keyring: Keyring to create a link in on success (or NULL).
487 * @authkey: The authorisation token permitting instantiation.
488 *
489 * Instantiate a key that's in the uninstantiated state using the provided data
490 * and, if successful, link it in to the destination keyring if one is
491 * supplied.
492 *
493 * If successful, 0 is returned, the authorisation token is revoked and anyone
494 * waiting for the key is woken up. If the key was already instantiated,
495 * -EBUSY will be returned.
496 */
key_instantiate_and_link(struct key * key,const void * data,size_t datalen,struct key * keyring,struct key * authkey)497 int key_instantiate_and_link(struct key *key,
498 const void *data,
499 size_t datalen,
500 struct key *keyring,
501 struct key *authkey)
502 {
503 struct key_preparsed_payload prep;
504 struct assoc_array_edit *edit = NULL;
505 int ret;
506
507 memset(&prep, 0, sizeof(prep));
508 prep.orig_description = key->description;
509 prep.data = data;
510 prep.datalen = datalen;
511 prep.quotalen = key->type->def_datalen;
512 prep.expiry = TIME64_MAX;
513 if (key->type->preparse) {
514 ret = key->type->preparse(&prep);
515 if (ret < 0)
516 goto error;
517 }
518
519 if (keyring) {
520 ret = __key_link_lock(keyring, &key->index_key);
521 if (ret < 0)
522 goto error;
523
524 ret = __key_link_begin(keyring, &key->index_key, &edit);
525 if (ret < 0)
526 goto error_link_end;
527
528 if (keyring->restrict_link && keyring->restrict_link->check) {
529 struct key_restriction *keyres = keyring->restrict_link;
530
531 ret = keyres->check(keyring, key->type, &prep.payload,
532 keyres->key);
533 if (ret < 0)
534 goto error_link_end;
535 }
536 }
537
538 ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
539
540 error_link_end:
541 if (keyring)
542 __key_link_end(keyring, &key->index_key, edit);
543
544 error:
545 if (key->type->preparse)
546 key->type->free_preparse(&prep);
547 return ret;
548 }
549
550 EXPORT_SYMBOL(key_instantiate_and_link);
551
552 /**
553 * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
554 * @key: The key to instantiate.
555 * @timeout: The timeout on the negative key.
556 * @error: The error to return when the key is hit.
557 * @keyring: Keyring to create a link in on success (or NULL).
558 * @authkey: The authorisation token permitting instantiation.
559 *
560 * Negatively instantiate a key that's in the uninstantiated state and, if
561 * successful, set its timeout and stored error and link it in to the
562 * destination keyring if one is supplied. The key and any links to the key
563 * will be automatically garbage collected after the timeout expires.
564 *
565 * Negative keys are used to rate limit repeated request_key() calls by causing
566 * them to return the stored error code (typically ENOKEY) until the negative
567 * key expires.
568 *
569 * If successful, 0 is returned, the authorisation token is revoked and anyone
570 * waiting for the key is woken up. If the key was already instantiated,
571 * -EBUSY will be returned.
572 */
key_reject_and_link(struct key * key,unsigned timeout,unsigned error,struct key * keyring,struct key * authkey)573 int key_reject_and_link(struct key *key,
574 unsigned timeout,
575 unsigned error,
576 struct key *keyring,
577 struct key *authkey)
578 {
579 struct assoc_array_edit *edit = NULL;
580 int ret, awaken, link_ret = 0;
581
582 key_check(key);
583 key_check(keyring);
584
585 awaken = 0;
586 ret = -EBUSY;
587
588 if (keyring) {
589 if (keyring->restrict_link)
590 return -EPERM;
591
592 link_ret = __key_link_lock(keyring, &key->index_key);
593 if (link_ret == 0) {
594 link_ret = __key_link_begin(keyring, &key->index_key, &edit);
595 if (link_ret < 0)
596 __key_link_end(keyring, &key->index_key, edit);
597 }
598 }
599
600 mutex_lock(&key_construction_mutex);
601
602 /* can't instantiate twice */
603 if (key->state == KEY_IS_UNINSTANTIATED) {
604 /* mark the key as being negatively instantiated */
605 atomic_inc(&key->user->nikeys);
606 mark_key_instantiated(key, -error);
607 notify_key(key, NOTIFY_KEY_INSTANTIATED, -error);
608 key_set_expiry(key, ktime_get_real_seconds() + timeout);
609
610 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
611 awaken = 1;
612
613 ret = 0;
614
615 /* and link it into the destination keyring */
616 if (keyring && link_ret == 0)
617 __key_link(keyring, key, &edit);
618
619 /* disable the authorisation key */
620 if (authkey)
621 key_invalidate(authkey);
622 }
623
624 mutex_unlock(&key_construction_mutex);
625
626 if (keyring && link_ret == 0)
627 __key_link_end(keyring, &key->index_key, edit);
628
629 /* wake up anyone waiting for a key to be constructed */
630 if (awaken)
631 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
632
633 return ret == 0 ? link_ret : ret;
634 }
635 EXPORT_SYMBOL(key_reject_and_link);
636
637 /**
638 * key_put - Discard a reference to a key.
639 * @key: The key to discard a reference from.
640 *
641 * Discard a reference to a key, and when all the references are gone, we
642 * schedule the cleanup task to come and pull it out of the tree in process
643 * context at some later time.
644 */
key_put(struct key * key)645 void key_put(struct key *key)
646 {
647 if (key) {
648 key_check(key);
649
650 if (refcount_dec_and_test(&key->usage))
651 schedule_work(&key_gc_work);
652 }
653 }
654 EXPORT_SYMBOL(key_put);
655
656 /*
657 * Find a key by its serial number.
658 */
key_lookup(key_serial_t id)659 struct key *key_lookup(key_serial_t id)
660 {
661 struct rb_node *n;
662 struct key *key;
663
664 spin_lock(&key_serial_lock);
665
666 /* search the tree for the specified key */
667 n = key_serial_tree.rb_node;
668 while (n) {
669 key = rb_entry(n, struct key, serial_node);
670
671 if (id < key->serial)
672 n = n->rb_left;
673 else if (id > key->serial)
674 n = n->rb_right;
675 else
676 goto found;
677 }
678
679 not_found:
680 key = ERR_PTR(-ENOKEY);
681 goto error;
682
683 found:
684 /* A key is allowed to be looked up only if someone still owns a
685 * reference to it - otherwise it's awaiting the gc.
686 */
687 if (!refcount_inc_not_zero(&key->usage))
688 goto not_found;
689
690 error:
691 spin_unlock(&key_serial_lock);
692 return key;
693 }
694
695 /*
696 * Find and lock the specified key type against removal.
697 *
698 * We return with the sem read-locked if successful. If the type wasn't
699 * available -ENOKEY is returned instead.
700 */
key_type_lookup(const char * type)701 struct key_type *key_type_lookup(const char *type)
702 {
703 struct key_type *ktype;
704
705 down_read(&key_types_sem);
706
707 /* look up the key type to see if it's one of the registered kernel
708 * types */
709 list_for_each_entry(ktype, &key_types_list, link) {
710 if (strcmp(ktype->name, type) == 0)
711 goto found_kernel_type;
712 }
713
714 up_read(&key_types_sem);
715 ktype = ERR_PTR(-ENOKEY);
716
717 found_kernel_type:
718 return ktype;
719 }
720
key_set_timeout(struct key * key,unsigned timeout)721 void key_set_timeout(struct key *key, unsigned timeout)
722 {
723 time64_t expiry = TIME64_MAX;
724
725 /* make the changes with the locks held to prevent races */
726 down_write(&key->sem);
727
728 if (timeout > 0)
729 expiry = ktime_get_real_seconds() + timeout;
730 key_set_expiry(key, expiry);
731
732 up_write(&key->sem);
733 }
734 EXPORT_SYMBOL_GPL(key_set_timeout);
735
736 /*
737 * Unlock a key type locked by key_type_lookup().
738 */
key_type_put(struct key_type * ktype)739 void key_type_put(struct key_type *ktype)
740 {
741 up_read(&key_types_sem);
742 }
743
744 /*
745 * Attempt to update an existing key.
746 *
747 * The key is given to us with an incremented refcount that we need to discard
748 * if we get an error.
749 */
__key_update(key_ref_t key_ref,struct key_preparsed_payload * prep)750 static inline key_ref_t __key_update(key_ref_t key_ref,
751 struct key_preparsed_payload *prep)
752 {
753 struct key *key = key_ref_to_ptr(key_ref);
754 int ret;
755
756 /* need write permission on the key to update it */
757 ret = key_permission(key_ref, KEY_NEED_WRITE);
758 if (ret < 0)
759 goto error;
760
761 ret = -EEXIST;
762 if (!key->type->update)
763 goto error;
764
765 down_write(&key->sem);
766
767 ret = key->type->update(key, prep);
768 if (ret == 0) {
769 /* Updating a negative key positively instantiates it */
770 mark_key_instantiated(key, 0);
771 notify_key(key, NOTIFY_KEY_UPDATED, 0);
772 }
773
774 up_write(&key->sem);
775
776 if (ret < 0)
777 goto error;
778 out:
779 return key_ref;
780
781 error:
782 key_put(key);
783 key_ref = ERR_PTR(ret);
784 goto out;
785 }
786
787 /*
788 * Create or potentially update a key. The combined logic behind
789 * key_create_or_update() and key_create()
790 */
__key_create_or_update(key_ref_t keyring_ref,const char * type,const char * description,const void * payload,size_t plen,key_perm_t perm,unsigned long flags,bool allow_update)791 static key_ref_t __key_create_or_update(key_ref_t keyring_ref,
792 const char *type,
793 const char *description,
794 const void *payload,
795 size_t plen,
796 key_perm_t perm,
797 unsigned long flags,
798 bool allow_update)
799 {
800 struct keyring_index_key index_key = {
801 .description = description,
802 };
803 struct key_preparsed_payload prep;
804 struct assoc_array_edit *edit = NULL;
805 const struct cred *cred = current_cred();
806 struct key *keyring, *key = NULL;
807 key_ref_t key_ref;
808 int ret;
809 struct key_restriction *restrict_link = NULL;
810
811 /* look up the key type to see if it's one of the registered kernel
812 * types */
813 index_key.type = key_type_lookup(type);
814 if (IS_ERR(index_key.type)) {
815 key_ref = ERR_PTR(-ENODEV);
816 goto error;
817 }
818
819 key_ref = ERR_PTR(-EINVAL);
820 if (!index_key.type->instantiate ||
821 (!index_key.description && !index_key.type->preparse))
822 goto error_put_type;
823
824 keyring = key_ref_to_ptr(keyring_ref);
825
826 key_check(keyring);
827
828 if (!(flags & KEY_ALLOC_BYPASS_RESTRICTION))
829 restrict_link = keyring->restrict_link;
830
831 key_ref = ERR_PTR(-ENOTDIR);
832 if (keyring->type != &key_type_keyring)
833 goto error_put_type;
834
835 memset(&prep, 0, sizeof(prep));
836 prep.orig_description = description;
837 prep.data = payload;
838 prep.datalen = plen;
839 prep.quotalen = index_key.type->def_datalen;
840 prep.expiry = TIME64_MAX;
841 if (index_key.type->preparse) {
842 ret = index_key.type->preparse(&prep);
843 if (ret < 0) {
844 key_ref = ERR_PTR(ret);
845 goto error_free_prep;
846 }
847 if (!index_key.description)
848 index_key.description = prep.description;
849 key_ref = ERR_PTR(-EINVAL);
850 if (!index_key.description)
851 goto error_free_prep;
852 }
853 index_key.desc_len = strlen(index_key.description);
854 key_set_index_key(&index_key);
855
856 ret = __key_link_lock(keyring, &index_key);
857 if (ret < 0) {
858 key_ref = ERR_PTR(ret);
859 goto error_free_prep;
860 }
861
862 ret = __key_link_begin(keyring, &index_key, &edit);
863 if (ret < 0) {
864 key_ref = ERR_PTR(ret);
865 goto error_link_end;
866 }
867
868 if (restrict_link && restrict_link->check) {
869 ret = restrict_link->check(keyring, index_key.type,
870 &prep.payload, restrict_link->key);
871 if (ret < 0) {
872 key_ref = ERR_PTR(ret);
873 goto error_link_end;
874 }
875 }
876
877 /* if we're going to allocate a new key, we're going to have
878 * to modify the keyring */
879 ret = key_permission(keyring_ref, KEY_NEED_WRITE);
880 if (ret < 0) {
881 key_ref = ERR_PTR(ret);
882 goto error_link_end;
883 }
884
885 /* if it's requested and possible to update this type of key, search
886 * for an existing key of the same type and description in the
887 * destination keyring and update that instead if possible
888 */
889 if (allow_update) {
890 if (index_key.type->update) {
891 key_ref = find_key_to_update(keyring_ref, &index_key);
892 if (key_ref)
893 goto found_matching_key;
894 }
895 } else {
896 key_ref = find_key_to_update(keyring_ref, &index_key);
897 if (key_ref) {
898 key_ref_put(key_ref);
899 key_ref = ERR_PTR(-EEXIST);
900 goto error_link_end;
901 }
902 }
903
904 /* if the client doesn't provide, decide on the permissions we want */
905 if (perm == KEY_PERM_UNDEF) {
906 perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
907 perm |= KEY_USR_VIEW;
908
909 if (index_key.type->read)
910 perm |= KEY_POS_READ;
911
912 if (index_key.type == &key_type_keyring ||
913 index_key.type->update)
914 perm |= KEY_POS_WRITE;
915 }
916
917 /* allocate a new key */
918 key = key_alloc(index_key.type, index_key.description,
919 cred->fsuid, cred->fsgid, cred, perm, flags, NULL);
920 if (IS_ERR(key)) {
921 key_ref = ERR_CAST(key);
922 goto error_link_end;
923 }
924
925 /* instantiate it and link it into the target keyring */
926 ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
927 if (ret < 0) {
928 key_put(key);
929 key_ref = ERR_PTR(ret);
930 goto error_link_end;
931 }
932
933 ima_post_key_create_or_update(keyring, key, payload, plen,
934 flags, true);
935
936 key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
937
938 error_link_end:
939 __key_link_end(keyring, &index_key, edit);
940 error_free_prep:
941 if (index_key.type->preparse)
942 index_key.type->free_preparse(&prep);
943 error_put_type:
944 key_type_put(index_key.type);
945 error:
946 return key_ref;
947
948 found_matching_key:
949 /* we found a matching key, so we're going to try to update it
950 * - we can drop the locks first as we have the key pinned
951 */
952 __key_link_end(keyring, &index_key, edit);
953
954 key = key_ref_to_ptr(key_ref);
955 if (test_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) {
956 ret = wait_for_key_construction(key, true);
957 if (ret < 0) {
958 key_ref_put(key_ref);
959 key_ref = ERR_PTR(ret);
960 goto error_free_prep;
961 }
962 }
963
964 key_ref = __key_update(key_ref, &prep);
965
966 if (!IS_ERR(key_ref))
967 ima_post_key_create_or_update(keyring, key,
968 payload, plen,
969 flags, false);
970
971 goto error_free_prep;
972 }
973
974 /**
975 * key_create_or_update - Update or create and instantiate a key.
976 * @keyring_ref: A pointer to the destination keyring with possession flag.
977 * @type: The type of key.
978 * @description: The searchable description for the key.
979 * @payload: The data to use to instantiate or update the key.
980 * @plen: The length of @payload.
981 * @perm: The permissions mask for a new key.
982 * @flags: The quota flags for a new key.
983 *
984 * Search the destination keyring for a key of the same description and if one
985 * is found, update it, otherwise create and instantiate a new one and create a
986 * link to it from that keyring.
987 *
988 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
989 * concocted.
990 *
991 * Returns a pointer to the new key if successful, -ENODEV if the key type
992 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
993 * caller isn't permitted to modify the keyring or the LSM did not permit
994 * creation of the key.
995 *
996 * On success, the possession flag from the keyring ref will be tacked on to
997 * the key ref before it is returned.
998 */
key_create_or_update(key_ref_t keyring_ref,const char * type,const char * description,const void * payload,size_t plen,key_perm_t perm,unsigned long flags)999 key_ref_t key_create_or_update(key_ref_t keyring_ref,
1000 const char *type,
1001 const char *description,
1002 const void *payload,
1003 size_t plen,
1004 key_perm_t perm,
1005 unsigned long flags)
1006 {
1007 return __key_create_or_update(keyring_ref, type, description, payload,
1008 plen, perm, flags, true);
1009 }
1010 EXPORT_SYMBOL(key_create_or_update);
1011
1012 /**
1013 * key_create - Create and instantiate a key.
1014 * @keyring_ref: A pointer to the destination keyring with possession flag.
1015 * @type: The type of key.
1016 * @description: The searchable description for the key.
1017 * @payload: The data to use to instantiate or update the key.
1018 * @plen: The length of @payload.
1019 * @perm: The permissions mask for a new key.
1020 * @flags: The quota flags for a new key.
1021 *
1022 * Create and instantiate a new key and link to it from the destination keyring.
1023 *
1024 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
1025 * concocted.
1026 *
1027 * Returns a pointer to the new key if successful, -EEXIST if a key with the
1028 * same description already exists, -ENODEV if the key type wasn't available,
1029 * -ENOTDIR if the keyring wasn't a keyring, -EACCES if the caller isn't
1030 * permitted to modify the keyring or the LSM did not permit creation of the
1031 * key.
1032 *
1033 * On success, the possession flag from the keyring ref will be tacked on to
1034 * the key ref before it is returned.
1035 */
key_create(key_ref_t keyring_ref,const char * type,const char * description,const void * payload,size_t plen,key_perm_t perm,unsigned long flags)1036 key_ref_t key_create(key_ref_t keyring_ref,
1037 const char *type,
1038 const char *description,
1039 const void *payload,
1040 size_t plen,
1041 key_perm_t perm,
1042 unsigned long flags)
1043 {
1044 return __key_create_or_update(keyring_ref, type, description, payload,
1045 plen, perm, flags, false);
1046 }
1047 EXPORT_SYMBOL(key_create);
1048
1049 /**
1050 * key_update - Update a key's contents.
1051 * @key_ref: The pointer (plus possession flag) to the key.
1052 * @payload: The data to be used to update the key.
1053 * @plen: The length of @payload.
1054 *
1055 * Attempt to update the contents of a key with the given payload data. The
1056 * caller must be granted Write permission on the key. Negative keys can be
1057 * instantiated by this method.
1058 *
1059 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
1060 * type does not support updating. The key type may return other errors.
1061 */
key_update(key_ref_t key_ref,const void * payload,size_t plen)1062 int key_update(key_ref_t key_ref, const void *payload, size_t plen)
1063 {
1064 struct key_preparsed_payload prep;
1065 struct key *key = key_ref_to_ptr(key_ref);
1066 int ret;
1067
1068 key_check(key);
1069
1070 /* the key must be writable */
1071 ret = key_permission(key_ref, KEY_NEED_WRITE);
1072 if (ret < 0)
1073 return ret;
1074
1075 /* attempt to update it if supported */
1076 if (!key->type->update)
1077 return -EOPNOTSUPP;
1078
1079 memset(&prep, 0, sizeof(prep));
1080 prep.data = payload;
1081 prep.datalen = plen;
1082 prep.quotalen = key->type->def_datalen;
1083 prep.expiry = TIME64_MAX;
1084 if (key->type->preparse) {
1085 ret = key->type->preparse(&prep);
1086 if (ret < 0)
1087 goto error;
1088 }
1089
1090 down_write(&key->sem);
1091
1092 ret = key->type->update(key, &prep);
1093 if (ret == 0) {
1094 /* Updating a negative key positively instantiates it */
1095 mark_key_instantiated(key, 0);
1096 notify_key(key, NOTIFY_KEY_UPDATED, 0);
1097 }
1098
1099 up_write(&key->sem);
1100
1101 error:
1102 if (key->type->preparse)
1103 key->type->free_preparse(&prep);
1104 return ret;
1105 }
1106 EXPORT_SYMBOL(key_update);
1107
1108 /**
1109 * key_revoke - Revoke a key.
1110 * @key: The key to be revoked.
1111 *
1112 * Mark a key as being revoked and ask the type to free up its resources. The
1113 * revocation timeout is set and the key and all its links will be
1114 * automatically garbage collected after key_gc_delay amount of time if they
1115 * are not manually dealt with first.
1116 */
key_revoke(struct key * key)1117 void key_revoke(struct key *key)
1118 {
1119 time64_t time;
1120
1121 key_check(key);
1122
1123 /* make sure no one's trying to change or use the key when we mark it
1124 * - we tell lockdep that we might nest because we might be revoking an
1125 * authorisation key whilst holding the sem on a key we've just
1126 * instantiated
1127 */
1128 down_write_nested(&key->sem, 1);
1129 if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags)) {
1130 notify_key(key, NOTIFY_KEY_REVOKED, 0);
1131 if (key->type->revoke)
1132 key->type->revoke(key);
1133
1134 /* set the death time to no more than the expiry time */
1135 time = ktime_get_real_seconds();
1136 if (key->revoked_at == 0 || key->revoked_at > time) {
1137 key->revoked_at = time;
1138 key_schedule_gc(key->revoked_at + key_gc_delay);
1139 }
1140 }
1141
1142 up_write(&key->sem);
1143 }
1144 EXPORT_SYMBOL(key_revoke);
1145
1146 /**
1147 * key_invalidate - Invalidate a key.
1148 * @key: The key to be invalidated.
1149 *
1150 * Mark a key as being invalidated and have it cleaned up immediately. The key
1151 * is ignored by all searches and other operations from this point.
1152 */
key_invalidate(struct key * key)1153 void key_invalidate(struct key *key)
1154 {
1155 kenter("%d", key_serial(key));
1156
1157 key_check(key);
1158
1159 if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1160 down_write_nested(&key->sem, 1);
1161 if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1162 notify_key(key, NOTIFY_KEY_INVALIDATED, 0);
1163 key_schedule_gc_links();
1164 }
1165 up_write(&key->sem);
1166 }
1167 }
1168 EXPORT_SYMBOL(key_invalidate);
1169
1170 /**
1171 * generic_key_instantiate - Simple instantiation of a key from preparsed data
1172 * @key: The key to be instantiated
1173 * @prep: The preparsed data to load.
1174 *
1175 * Instantiate a key from preparsed data. We assume we can just copy the data
1176 * in directly and clear the old pointers.
1177 *
1178 * This can be pointed to directly by the key type instantiate op pointer.
1179 */
generic_key_instantiate(struct key * key,struct key_preparsed_payload * prep)1180 int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep)
1181 {
1182 int ret;
1183
1184 pr_devel("==>%s()\n", __func__);
1185
1186 ret = key_payload_reserve(key, prep->quotalen);
1187 if (ret == 0) {
1188 rcu_assign_keypointer(key, prep->payload.data[0]);
1189 key->payload.data[1] = prep->payload.data[1];
1190 key->payload.data[2] = prep->payload.data[2];
1191 key->payload.data[3] = prep->payload.data[3];
1192 prep->payload.data[0] = NULL;
1193 prep->payload.data[1] = NULL;
1194 prep->payload.data[2] = NULL;
1195 prep->payload.data[3] = NULL;
1196 }
1197 pr_devel("<==%s() = %d\n", __func__, ret);
1198 return ret;
1199 }
1200 EXPORT_SYMBOL(generic_key_instantiate);
1201
1202 /**
1203 * register_key_type - Register a type of key.
1204 * @ktype: The new key type.
1205 *
1206 * Register a new key type.
1207 *
1208 * Returns 0 on success or -EEXIST if a type of this name already exists.
1209 */
register_key_type(struct key_type * ktype)1210 int register_key_type(struct key_type *ktype)
1211 {
1212 struct key_type *p;
1213 int ret;
1214
1215 memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1216
1217 ret = -EEXIST;
1218 down_write(&key_types_sem);
1219
1220 /* disallow key types with the same name */
1221 list_for_each_entry(p, &key_types_list, link) {
1222 if (strcmp(p->name, ktype->name) == 0)
1223 goto out;
1224 }
1225
1226 /* store the type */
1227 list_add(&ktype->link, &key_types_list);
1228
1229 pr_notice("Key type %s registered\n", ktype->name);
1230 ret = 0;
1231
1232 out:
1233 up_write(&key_types_sem);
1234 return ret;
1235 }
1236 EXPORT_SYMBOL(register_key_type);
1237
1238 /**
1239 * unregister_key_type - Unregister a type of key.
1240 * @ktype: The key type.
1241 *
1242 * Unregister a key type and mark all the extant keys of this type as dead.
1243 * Those keys of this type are then destroyed to get rid of their payloads and
1244 * they and their links will be garbage collected as soon as possible.
1245 */
unregister_key_type(struct key_type * ktype)1246 void unregister_key_type(struct key_type *ktype)
1247 {
1248 down_write(&key_types_sem);
1249 list_del_init(&ktype->link);
1250 downgrade_write(&key_types_sem);
1251 key_gc_keytype(ktype);
1252 pr_notice("Key type %s unregistered\n", ktype->name);
1253 up_read(&key_types_sem);
1254 }
1255 EXPORT_SYMBOL(unregister_key_type);
1256
1257 /*
1258 * Initialise the key management state.
1259 */
key_init(void)1260 void __init key_init(void)
1261 {
1262 /* allocate a slab in which we can store keys */
1263 key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1264 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1265
1266 /* add the special key types */
1267 list_add_tail(&key_type_keyring.link, &key_types_list);
1268 list_add_tail(&key_type_dead.link, &key_types_list);
1269 list_add_tail(&key_type_user.link, &key_types_list);
1270 list_add_tail(&key_type_logon.link, &key_types_list);
1271
1272 /* record the root user tracking */
1273 rb_link_node(&root_key_user.node,
1274 NULL,
1275 &key_user_tree.rb_node);
1276
1277 rb_insert_color(&root_key_user.node,
1278 &key_user_tree);
1279 }
1280