1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/kernfs/mount.c - kernfs mount implementation
4 *
5 * Copyright (c) 2001-3 Patrick Mochel
6 * Copyright (c) 2007 SUSE Linux Products GmbH
7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8 */
9
10 #include <linux/fs.h>
11 #include <linux/mount.h>
12 #include <linux/init.h>
13 #include <linux/magic.h>
14 #include <linux/slab.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/seq_file.h>
18 #include <linux/exportfs.h>
19 #include <linux/uuid.h>
20 #include <linux/statfs.h>
21
22 #include "kernfs-internal.h"
23
24 struct kmem_cache *kernfs_node_cache, *kernfs_iattrs_cache;
25 struct kernfs_global_locks *kernfs_locks;
26
kernfs_sop_show_options(struct seq_file * sf,struct dentry * dentry)27 static int kernfs_sop_show_options(struct seq_file *sf, struct dentry *dentry)
28 {
29 struct kernfs_root *root = kernfs_root(kernfs_dentry_node(dentry));
30 struct kernfs_syscall_ops *scops = root->syscall_ops;
31
32 if (scops && scops->show_options)
33 return scops->show_options(sf, root);
34 return 0;
35 }
36
kernfs_sop_show_path(struct seq_file * sf,struct dentry * dentry)37 static int kernfs_sop_show_path(struct seq_file *sf, struct dentry *dentry)
38 {
39 struct kernfs_node *node = kernfs_dentry_node(dentry);
40 struct kernfs_root *root = kernfs_root(node);
41 struct kernfs_syscall_ops *scops = root->syscall_ops;
42
43 if (scops && scops->show_path)
44 return scops->show_path(sf, node, root);
45
46 seq_dentry(sf, dentry, " \t\n\\");
47 return 0;
48 }
49
kernfs_statfs(struct dentry * dentry,struct kstatfs * buf)50 static int kernfs_statfs(struct dentry *dentry, struct kstatfs *buf)
51 {
52 simple_statfs(dentry, buf);
53 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
54 return 0;
55 }
56
57 const struct super_operations kernfs_sops = {
58 .statfs = kernfs_statfs,
59 .drop_inode = generic_delete_inode,
60 .evict_inode = kernfs_evict_inode,
61
62 .show_options = kernfs_sop_show_options,
63 .show_path = kernfs_sop_show_path,
64 };
65
kernfs_encode_fh(struct inode * inode,__u32 * fh,int * max_len,struct inode * parent)66 static int kernfs_encode_fh(struct inode *inode, __u32 *fh, int *max_len,
67 struct inode *parent)
68 {
69 struct kernfs_node *kn = inode->i_private;
70
71 if (*max_len < 2) {
72 *max_len = 2;
73 return FILEID_INVALID;
74 }
75
76 *max_len = 2;
77 *(u64 *)fh = kn->id;
78 return FILEID_KERNFS;
79 }
80
__kernfs_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type,bool get_parent)81 static struct dentry *__kernfs_fh_to_dentry(struct super_block *sb,
82 struct fid *fid, int fh_len,
83 int fh_type, bool get_parent)
84 {
85 struct kernfs_super_info *info = kernfs_info(sb);
86 struct kernfs_node *kn;
87 struct inode *inode;
88 u64 id;
89
90 if (fh_len < 2)
91 return NULL;
92
93 switch (fh_type) {
94 case FILEID_KERNFS:
95 id = *(u64 *)fid;
96 break;
97 case FILEID_INO32_GEN:
98 case FILEID_INO32_GEN_PARENT:
99 /*
100 * blk_log_action() exposes "LOW32,HIGH32" pair without
101 * type and userland can call us with generic fid
102 * constructed from them. Combine it back to ID. See
103 * blk_log_action().
104 */
105 id = ((u64)fid->i32.gen << 32) | fid->i32.ino;
106 break;
107 default:
108 return NULL;
109 }
110
111 kn = kernfs_find_and_get_node_by_id(info->root, id);
112 if (!kn)
113 return ERR_PTR(-ESTALE);
114
115 if (get_parent) {
116 struct kernfs_node *parent;
117
118 parent = kernfs_get_parent(kn);
119 kernfs_put(kn);
120 kn = parent;
121 if (!kn)
122 return ERR_PTR(-ESTALE);
123 }
124
125 inode = kernfs_get_inode(sb, kn);
126 kernfs_put(kn);
127 if (!inode)
128 return ERR_PTR(-ESTALE);
129
130 return d_obtain_alias(inode);
131 }
132
kernfs_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)133 static struct dentry *kernfs_fh_to_dentry(struct super_block *sb,
134 struct fid *fid, int fh_len,
135 int fh_type)
136 {
137 return __kernfs_fh_to_dentry(sb, fid, fh_len, fh_type, false);
138 }
139
kernfs_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)140 static struct dentry *kernfs_fh_to_parent(struct super_block *sb,
141 struct fid *fid, int fh_len,
142 int fh_type)
143 {
144 return __kernfs_fh_to_dentry(sb, fid, fh_len, fh_type, true);
145 }
146
kernfs_get_parent_dentry(struct dentry * child)147 static struct dentry *kernfs_get_parent_dentry(struct dentry *child)
148 {
149 struct kernfs_node *kn = kernfs_dentry_node(child);
150
151 return d_obtain_alias(kernfs_get_inode(child->d_sb, kn->parent));
152 }
153
154 static const struct export_operations kernfs_export_ops = {
155 .encode_fh = kernfs_encode_fh,
156 .fh_to_dentry = kernfs_fh_to_dentry,
157 .fh_to_parent = kernfs_fh_to_parent,
158 .get_parent = kernfs_get_parent_dentry,
159 };
160
161 /**
162 * kernfs_root_from_sb - determine kernfs_root associated with a super_block
163 * @sb: the super_block in question
164 *
165 * Return: the kernfs_root associated with @sb. If @sb is not a kernfs one,
166 * %NULL is returned.
167 */
kernfs_root_from_sb(struct super_block * sb)168 struct kernfs_root *kernfs_root_from_sb(struct super_block *sb)
169 {
170 if (sb->s_op == &kernfs_sops)
171 return kernfs_info(sb)->root;
172 return NULL;
173 }
174
175 /*
176 * find the next ancestor in the path down to @child, where @parent was the
177 * ancestor whose descendant we want to find.
178 *
179 * Say the path is /a/b/c/d. @child is d, @parent is %NULL. We return the root
180 * node. If @parent is b, then we return the node for c.
181 * Passing in d as @parent is not ok.
182 */
find_next_ancestor(struct kernfs_node * child,struct kernfs_node * parent)183 static struct kernfs_node *find_next_ancestor(struct kernfs_node *child,
184 struct kernfs_node *parent)
185 {
186 if (child == parent) {
187 pr_crit_once("BUG in find_next_ancestor: called with parent == child");
188 return NULL;
189 }
190
191 while (child->parent != parent) {
192 if (!child->parent)
193 return NULL;
194 child = child->parent;
195 }
196
197 return child;
198 }
199
200 /**
201 * kernfs_node_dentry - get a dentry for the given kernfs_node
202 * @kn: kernfs_node for which a dentry is needed
203 * @sb: the kernfs super_block
204 *
205 * Return: the dentry pointer
206 */
kernfs_node_dentry(struct kernfs_node * kn,struct super_block * sb)207 struct dentry *kernfs_node_dentry(struct kernfs_node *kn,
208 struct super_block *sb)
209 {
210 struct dentry *dentry;
211 struct kernfs_node *knparent = NULL;
212
213 BUG_ON(sb->s_op != &kernfs_sops);
214
215 dentry = dget(sb->s_root);
216
217 /* Check if this is the root kernfs_node */
218 if (!kn->parent)
219 return dentry;
220
221 knparent = find_next_ancestor(kn, NULL);
222 if (WARN_ON(!knparent)) {
223 dput(dentry);
224 return ERR_PTR(-EINVAL);
225 }
226
227 do {
228 struct dentry *dtmp;
229 struct kernfs_node *kntmp;
230
231 if (kn == knparent)
232 return dentry;
233 kntmp = find_next_ancestor(kn, knparent);
234 if (WARN_ON(!kntmp)) {
235 dput(dentry);
236 return ERR_PTR(-EINVAL);
237 }
238 dtmp = lookup_positive_unlocked(kntmp->name, dentry,
239 strlen(kntmp->name));
240 dput(dentry);
241 if (IS_ERR(dtmp))
242 return dtmp;
243 knparent = kntmp;
244 dentry = dtmp;
245 } while (true);
246 }
247
kernfs_fill_super(struct super_block * sb,struct kernfs_fs_context * kfc)248 static int kernfs_fill_super(struct super_block *sb, struct kernfs_fs_context *kfc)
249 {
250 struct kernfs_super_info *info = kernfs_info(sb);
251 struct kernfs_root *kf_root = kfc->root;
252 struct inode *inode;
253 struct dentry *root;
254
255 info->sb = sb;
256 /* Userspace would break if executables or devices appear on sysfs */
257 sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
258 sb->s_blocksize = PAGE_SIZE;
259 sb->s_blocksize_bits = PAGE_SHIFT;
260 sb->s_magic = kfc->magic;
261 sb->s_op = &kernfs_sops;
262 sb->s_xattr = kernfs_xattr_handlers;
263 if (info->root->flags & KERNFS_ROOT_SUPPORT_EXPORTOP)
264 sb->s_export_op = &kernfs_export_ops;
265 sb->s_time_gran = 1;
266
267 /* sysfs dentries and inodes don't require IO to create */
268 sb->s_shrink.seeks = 0;
269
270 /* get root inode, initialize and unlock it */
271 down_read(&kf_root->kernfs_rwsem);
272 inode = kernfs_get_inode(sb, info->root->kn);
273 up_read(&kf_root->kernfs_rwsem);
274 if (!inode) {
275 pr_debug("kernfs: could not get root inode\n");
276 return -ENOMEM;
277 }
278
279 /* instantiate and link root dentry */
280 root = d_make_root(inode);
281 if (!root) {
282 pr_debug("%s: could not get root dentry!\n", __func__);
283 return -ENOMEM;
284 }
285 sb->s_root = root;
286 sb->s_d_op = &kernfs_dops;
287 return 0;
288 }
289
kernfs_test_super(struct super_block * sb,struct fs_context * fc)290 static int kernfs_test_super(struct super_block *sb, struct fs_context *fc)
291 {
292 struct kernfs_super_info *sb_info = kernfs_info(sb);
293 struct kernfs_super_info *info = fc->s_fs_info;
294
295 return sb_info->root == info->root && sb_info->ns == info->ns;
296 }
297
kernfs_set_super(struct super_block * sb,struct fs_context * fc)298 static int kernfs_set_super(struct super_block *sb, struct fs_context *fc)
299 {
300 struct kernfs_fs_context *kfc = fc->fs_private;
301
302 kfc->ns_tag = NULL;
303 return set_anon_super_fc(sb, fc);
304 }
305
306 /**
307 * kernfs_super_ns - determine the namespace tag of a kernfs super_block
308 * @sb: super_block of interest
309 *
310 * Return: the namespace tag associated with kernfs super_block @sb.
311 */
kernfs_super_ns(struct super_block * sb)312 const void *kernfs_super_ns(struct super_block *sb)
313 {
314 struct kernfs_super_info *info = kernfs_info(sb);
315
316 return info->ns;
317 }
318
319 /**
320 * kernfs_get_tree - kernfs filesystem access/retrieval helper
321 * @fc: The filesystem context.
322 *
323 * This is to be called from each kernfs user's fs_context->ops->get_tree()
324 * implementation, which should set the specified ->@fs_type and ->@flags, and
325 * specify the hierarchy and namespace tag to mount via ->@root and ->@ns,
326 * respectively.
327 *
328 * Return: %0 on success, -errno on failure.
329 */
kernfs_get_tree(struct fs_context * fc)330 int kernfs_get_tree(struct fs_context *fc)
331 {
332 struct kernfs_fs_context *kfc = fc->fs_private;
333 struct super_block *sb;
334 struct kernfs_super_info *info;
335 int error;
336
337 info = kzalloc(sizeof(*info), GFP_KERNEL);
338 if (!info)
339 return -ENOMEM;
340
341 info->root = kfc->root;
342 info->ns = kfc->ns_tag;
343 INIT_LIST_HEAD(&info->node);
344
345 fc->s_fs_info = info;
346 sb = sget_fc(fc, kernfs_test_super, kernfs_set_super);
347 if (IS_ERR(sb))
348 return PTR_ERR(sb);
349
350 if (!sb->s_root) {
351 struct kernfs_super_info *info = kernfs_info(sb);
352 struct kernfs_root *root = kfc->root;
353
354 kfc->new_sb_created = true;
355
356 error = kernfs_fill_super(sb, kfc);
357 if (error) {
358 deactivate_locked_super(sb);
359 return error;
360 }
361 sb->s_flags |= SB_ACTIVE;
362
363 uuid_gen(&sb->s_uuid);
364
365 down_write(&root->kernfs_supers_rwsem);
366 list_add(&info->node, &info->root->supers);
367 up_write(&root->kernfs_supers_rwsem);
368 }
369
370 fc->root = dget(sb->s_root);
371 return 0;
372 }
373
kernfs_free_fs_context(struct fs_context * fc)374 void kernfs_free_fs_context(struct fs_context *fc)
375 {
376 /* Note that we don't deal with kfc->ns_tag here. */
377 kfree(fc->s_fs_info);
378 fc->s_fs_info = NULL;
379 }
380
381 /**
382 * kernfs_kill_sb - kill_sb for kernfs
383 * @sb: super_block being killed
384 *
385 * This can be used directly for file_system_type->kill_sb(). If a kernfs
386 * user needs extra cleanup, it can implement its own kill_sb() and call
387 * this function at the end.
388 */
kernfs_kill_sb(struct super_block * sb)389 void kernfs_kill_sb(struct super_block *sb)
390 {
391 struct kernfs_super_info *info = kernfs_info(sb);
392 struct kernfs_root *root = info->root;
393
394 down_write(&root->kernfs_supers_rwsem);
395 list_del(&info->node);
396 up_write(&root->kernfs_supers_rwsem);
397
398 /*
399 * Remove the superblock from fs_supers/s_instances
400 * so we can't find it, before freeing kernfs_super_info.
401 */
402 kill_anon_super(sb);
403 kfree(info);
404 }
405
kernfs_mutex_init(void)406 static void __init kernfs_mutex_init(void)
407 {
408 int count;
409
410 for (count = 0; count < NR_KERNFS_LOCKS; count++)
411 mutex_init(&kernfs_locks->open_file_mutex[count]);
412 }
413
kernfs_lock_init(void)414 static void __init kernfs_lock_init(void)
415 {
416 kernfs_locks = kmalloc(sizeof(struct kernfs_global_locks), GFP_KERNEL);
417 WARN_ON(!kernfs_locks);
418
419 kernfs_mutex_init();
420 }
421
kernfs_init(void)422 void __init kernfs_init(void)
423 {
424 kernfs_node_cache = kmem_cache_create("kernfs_node_cache",
425 sizeof(struct kernfs_node),
426 0, SLAB_PANIC, NULL);
427
428 /* Creates slab cache for kernfs inode attributes */
429 kernfs_iattrs_cache = kmem_cache_create("kernfs_iattrs_cache",
430 sizeof(struct kernfs_iattrs),
431 0, SLAB_PANIC, NULL);
432
433 kernfs_lock_init();
434 }
435