1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * TI K3 DSP Remote Processor(s) driver
4 *
5 * Copyright (C) 2018-2022 Texas Instruments Incorporated - https://www.ti.com/
6 * Suman Anna <s-anna@ti.com>
7 */
8
9 #include <linux/io.h>
10 #include <linux/mailbox_client.h>
11 #include <linux/module.h>
12 #include <linux/of.h>
13 #include <linux/of_reserved_mem.h>
14 #include <linux/omap-mailbox.h>
15 #include <linux/platform_device.h>
16 #include <linux/remoteproc.h>
17 #include <linux/reset.h>
18 #include <linux/slab.h>
19
20 #include "omap_remoteproc.h"
21 #include "remoteproc_internal.h"
22 #include "ti_sci_proc.h"
23
24 #define KEYSTONE_RPROC_LOCAL_ADDRESS_MASK (SZ_16M - 1)
25
26 /**
27 * struct k3_dsp_mem - internal memory structure
28 * @cpu_addr: MPU virtual address of the memory region
29 * @bus_addr: Bus address used to access the memory region
30 * @dev_addr: Device address of the memory region from DSP view
31 * @size: Size of the memory region
32 */
33 struct k3_dsp_mem {
34 void __iomem *cpu_addr;
35 phys_addr_t bus_addr;
36 u32 dev_addr;
37 size_t size;
38 };
39
40 /**
41 * struct k3_dsp_mem_data - memory definitions for a DSP
42 * @name: name for this memory entry
43 * @dev_addr: device address for the memory entry
44 */
45 struct k3_dsp_mem_data {
46 const char *name;
47 const u32 dev_addr;
48 };
49
50 /**
51 * struct k3_dsp_dev_data - device data structure for a DSP
52 * @mems: pointer to memory definitions for a DSP
53 * @num_mems: number of memory regions in @mems
54 * @boot_align_addr: boot vector address alignment granularity
55 * @uses_lreset: flag to denote the need for local reset management
56 */
57 struct k3_dsp_dev_data {
58 const struct k3_dsp_mem_data *mems;
59 u32 num_mems;
60 u32 boot_align_addr;
61 bool uses_lreset;
62 };
63
64 /**
65 * struct k3_dsp_rproc - k3 DSP remote processor driver structure
66 * @dev: cached device pointer
67 * @rproc: remoteproc device handle
68 * @mem: internal memory regions data
69 * @num_mems: number of internal memory regions
70 * @rmem: reserved memory regions data
71 * @num_rmems: number of reserved memory regions
72 * @reset: reset control handle
73 * @data: pointer to DSP-specific device data
74 * @tsp: TI-SCI processor control handle
75 * @ti_sci: TI-SCI handle
76 * @ti_sci_id: TI-SCI device identifier
77 * @mbox: mailbox channel handle
78 * @client: mailbox client to request the mailbox channel
79 */
80 struct k3_dsp_rproc {
81 struct device *dev;
82 struct rproc *rproc;
83 struct k3_dsp_mem *mem;
84 int num_mems;
85 struct k3_dsp_mem *rmem;
86 int num_rmems;
87 struct reset_control *reset;
88 const struct k3_dsp_dev_data *data;
89 struct ti_sci_proc *tsp;
90 const struct ti_sci_handle *ti_sci;
91 u32 ti_sci_id;
92 struct mbox_chan *mbox;
93 struct mbox_client client;
94 };
95
96 /**
97 * k3_dsp_rproc_mbox_callback() - inbound mailbox message handler
98 * @client: mailbox client pointer used for requesting the mailbox channel
99 * @data: mailbox payload
100 *
101 * This handler is invoked by the OMAP mailbox driver whenever a mailbox
102 * message is received. Usually, the mailbox payload simply contains
103 * the index of the virtqueue that is kicked by the remote processor,
104 * and we let remoteproc core handle it.
105 *
106 * In addition to virtqueue indices, we also have some out-of-band values
107 * that indicate different events. Those values are deliberately very
108 * large so they don't coincide with virtqueue indices.
109 */
k3_dsp_rproc_mbox_callback(struct mbox_client * client,void * data)110 static void k3_dsp_rproc_mbox_callback(struct mbox_client *client, void *data)
111 {
112 struct k3_dsp_rproc *kproc = container_of(client, struct k3_dsp_rproc,
113 client);
114 struct device *dev = kproc->rproc->dev.parent;
115 const char *name = kproc->rproc->name;
116 u32 msg = omap_mbox_message(data);
117
118 dev_dbg(dev, "mbox msg: 0x%x\n", msg);
119
120 switch (msg) {
121 case RP_MBOX_CRASH:
122 /*
123 * remoteproc detected an exception, but error recovery is not
124 * supported. So, just log this for now
125 */
126 dev_err(dev, "K3 DSP rproc %s crashed\n", name);
127 break;
128 case RP_MBOX_ECHO_REPLY:
129 dev_info(dev, "received echo reply from %s\n", name);
130 break;
131 default:
132 /* silently handle all other valid messages */
133 if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG)
134 return;
135 if (msg > kproc->rproc->max_notifyid) {
136 dev_dbg(dev, "dropping unknown message 0x%x", msg);
137 return;
138 }
139 /* msg contains the index of the triggered vring */
140 if (rproc_vq_interrupt(kproc->rproc, msg) == IRQ_NONE)
141 dev_dbg(dev, "no message was found in vqid %d\n", msg);
142 }
143 }
144
145 /*
146 * Kick the remote processor to notify about pending unprocessed messages.
147 * The vqid usage is not used and is inconsequential, as the kick is performed
148 * through a simulated GPIO (a bit in an IPC interrupt-triggering register),
149 * the remote processor is expected to process both its Tx and Rx virtqueues.
150 */
k3_dsp_rproc_kick(struct rproc * rproc,int vqid)151 static void k3_dsp_rproc_kick(struct rproc *rproc, int vqid)
152 {
153 struct k3_dsp_rproc *kproc = rproc->priv;
154 struct device *dev = rproc->dev.parent;
155 mbox_msg_t msg = (mbox_msg_t)vqid;
156 int ret;
157
158 /* send the index of the triggered virtqueue in the mailbox payload */
159 ret = mbox_send_message(kproc->mbox, (void *)msg);
160 if (ret < 0)
161 dev_err(dev, "failed to send mailbox message, status = %d\n",
162 ret);
163 }
164
165 /* Put the DSP processor into reset */
k3_dsp_rproc_reset(struct k3_dsp_rproc * kproc)166 static int k3_dsp_rproc_reset(struct k3_dsp_rproc *kproc)
167 {
168 struct device *dev = kproc->dev;
169 int ret;
170
171 ret = reset_control_assert(kproc->reset);
172 if (ret) {
173 dev_err(dev, "local-reset assert failed, ret = %d\n", ret);
174 return ret;
175 }
176
177 if (kproc->data->uses_lreset)
178 return ret;
179
180 ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci,
181 kproc->ti_sci_id);
182 if (ret) {
183 dev_err(dev, "module-reset assert failed, ret = %d\n", ret);
184 if (reset_control_deassert(kproc->reset))
185 dev_warn(dev, "local-reset deassert back failed\n");
186 }
187
188 return ret;
189 }
190
191 /* Release the DSP processor from reset */
k3_dsp_rproc_release(struct k3_dsp_rproc * kproc)192 static int k3_dsp_rproc_release(struct k3_dsp_rproc *kproc)
193 {
194 struct device *dev = kproc->dev;
195 int ret;
196
197 if (kproc->data->uses_lreset)
198 goto lreset;
199
200 ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci,
201 kproc->ti_sci_id);
202 if (ret) {
203 dev_err(dev, "module-reset deassert failed, ret = %d\n", ret);
204 return ret;
205 }
206
207 lreset:
208 ret = reset_control_deassert(kproc->reset);
209 if (ret) {
210 dev_err(dev, "local-reset deassert failed, ret = %d\n", ret);
211 if (kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci,
212 kproc->ti_sci_id))
213 dev_warn(dev, "module-reset assert back failed\n");
214 }
215
216 return ret;
217 }
218
k3_dsp_rproc_request_mbox(struct rproc * rproc)219 static int k3_dsp_rproc_request_mbox(struct rproc *rproc)
220 {
221 struct k3_dsp_rproc *kproc = rproc->priv;
222 struct mbox_client *client = &kproc->client;
223 struct device *dev = kproc->dev;
224 int ret;
225
226 client->dev = dev;
227 client->tx_done = NULL;
228 client->rx_callback = k3_dsp_rproc_mbox_callback;
229 client->tx_block = false;
230 client->knows_txdone = false;
231
232 kproc->mbox = mbox_request_channel(client, 0);
233 if (IS_ERR(kproc->mbox)) {
234 ret = -EBUSY;
235 dev_err(dev, "mbox_request_channel failed: %ld\n",
236 PTR_ERR(kproc->mbox));
237 return ret;
238 }
239
240 /*
241 * Ping the remote processor, this is only for sanity-sake for now;
242 * there is no functional effect whatsoever.
243 *
244 * Note that the reply will _not_ arrive immediately: this message
245 * will wait in the mailbox fifo until the remote processor is booted.
246 */
247 ret = mbox_send_message(kproc->mbox, (void *)RP_MBOX_ECHO_REQUEST);
248 if (ret < 0) {
249 dev_err(dev, "mbox_send_message failed: %d\n", ret);
250 mbox_free_channel(kproc->mbox);
251 return ret;
252 }
253
254 return 0;
255 }
256 /*
257 * The C66x DSP cores have a local reset that affects only the CPU, and a
258 * generic module reset that powers on the device and allows the DSP internal
259 * memories to be accessed while the local reset is asserted. This function is
260 * used to release the global reset on C66x DSPs to allow loading into the DSP
261 * internal RAMs. The .prepare() ops is invoked by remoteproc core before any
262 * firmware loading, and is followed by the .start() ops after loading to
263 * actually let the C66x DSP cores run. This callback is invoked only in
264 * remoteproc mode.
265 */
k3_dsp_rproc_prepare(struct rproc * rproc)266 static int k3_dsp_rproc_prepare(struct rproc *rproc)
267 {
268 struct k3_dsp_rproc *kproc = rproc->priv;
269 struct device *dev = kproc->dev;
270 int ret;
271
272 ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci,
273 kproc->ti_sci_id);
274 if (ret)
275 dev_err(dev, "module-reset deassert failed, cannot enable internal RAM loading, ret = %d\n",
276 ret);
277
278 return ret;
279 }
280
281 /*
282 * This function implements the .unprepare() ops and performs the complimentary
283 * operations to that of the .prepare() ops. The function is used to assert the
284 * global reset on applicable C66x cores. This completes the second portion of
285 * powering down the C66x DSP cores. The cores themselves are only halted in the
286 * .stop() callback through the local reset, and the .unprepare() ops is invoked
287 * by the remoteproc core after the remoteproc is stopped to balance the global
288 * reset. This callback is invoked only in remoteproc mode.
289 */
k3_dsp_rproc_unprepare(struct rproc * rproc)290 static int k3_dsp_rproc_unprepare(struct rproc *rproc)
291 {
292 struct k3_dsp_rproc *kproc = rproc->priv;
293 struct device *dev = kproc->dev;
294 int ret;
295
296 ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci,
297 kproc->ti_sci_id);
298 if (ret)
299 dev_err(dev, "module-reset assert failed, ret = %d\n", ret);
300
301 return ret;
302 }
303
304 /*
305 * Power up the DSP remote processor.
306 *
307 * This function will be invoked only after the firmware for this rproc
308 * was loaded, parsed successfully, and all of its resource requirements
309 * were met. This callback is invoked only in remoteproc mode.
310 */
k3_dsp_rproc_start(struct rproc * rproc)311 static int k3_dsp_rproc_start(struct rproc *rproc)
312 {
313 struct k3_dsp_rproc *kproc = rproc->priv;
314 struct device *dev = kproc->dev;
315 u32 boot_addr;
316 int ret;
317
318 ret = k3_dsp_rproc_request_mbox(rproc);
319 if (ret)
320 return ret;
321
322 boot_addr = rproc->bootaddr;
323 if (boot_addr & (kproc->data->boot_align_addr - 1)) {
324 dev_err(dev, "invalid boot address 0x%x, must be aligned on a 0x%x boundary\n",
325 boot_addr, kproc->data->boot_align_addr);
326 ret = -EINVAL;
327 goto put_mbox;
328 }
329
330 dev_err(dev, "booting DSP core using boot addr = 0x%x\n", boot_addr);
331 ret = ti_sci_proc_set_config(kproc->tsp, boot_addr, 0, 0);
332 if (ret)
333 goto put_mbox;
334
335 ret = k3_dsp_rproc_release(kproc);
336 if (ret)
337 goto put_mbox;
338
339 return 0;
340
341 put_mbox:
342 mbox_free_channel(kproc->mbox);
343 return ret;
344 }
345
346 /*
347 * Stop the DSP remote processor.
348 *
349 * This function puts the DSP processor into reset, and finishes processing
350 * of any pending messages. This callback is invoked only in remoteproc mode.
351 */
k3_dsp_rproc_stop(struct rproc * rproc)352 static int k3_dsp_rproc_stop(struct rproc *rproc)
353 {
354 struct k3_dsp_rproc *kproc = rproc->priv;
355
356 mbox_free_channel(kproc->mbox);
357
358 k3_dsp_rproc_reset(kproc);
359
360 return 0;
361 }
362
363 /*
364 * Attach to a running DSP remote processor (IPC-only mode)
365 *
366 * This rproc attach callback only needs to request the mailbox, the remote
367 * processor is already booted, so there is no need to issue any TI-SCI
368 * commands to boot the DSP core. This callback is invoked only in IPC-only
369 * mode.
370 */
k3_dsp_rproc_attach(struct rproc * rproc)371 static int k3_dsp_rproc_attach(struct rproc *rproc)
372 {
373 struct k3_dsp_rproc *kproc = rproc->priv;
374 struct device *dev = kproc->dev;
375 int ret;
376
377 ret = k3_dsp_rproc_request_mbox(rproc);
378 if (ret)
379 return ret;
380
381 dev_info(dev, "DSP initialized in IPC-only mode\n");
382 return 0;
383 }
384
385 /*
386 * Detach from a running DSP remote processor (IPC-only mode)
387 *
388 * This rproc detach callback performs the opposite operation to attach callback
389 * and only needs to release the mailbox, the DSP core is not stopped and will
390 * be left to continue to run its booted firmware. This callback is invoked only
391 * in IPC-only mode.
392 */
k3_dsp_rproc_detach(struct rproc * rproc)393 static int k3_dsp_rproc_detach(struct rproc *rproc)
394 {
395 struct k3_dsp_rproc *kproc = rproc->priv;
396 struct device *dev = kproc->dev;
397
398 mbox_free_channel(kproc->mbox);
399 dev_info(dev, "DSP deinitialized in IPC-only mode\n");
400 return 0;
401 }
402
403 /*
404 * This function implements the .get_loaded_rsc_table() callback and is used
405 * to provide the resource table for a booted DSP in IPC-only mode. The K3 DSP
406 * firmwares follow a design-by-contract approach and are expected to have the
407 * resource table at the base of the DDR region reserved for firmware usage.
408 * This provides flexibility for the remote processor to be booted by different
409 * bootloaders that may or may not have the ability to publish the resource table
410 * address and size through a DT property. This callback is invoked only in
411 * IPC-only mode.
412 */
k3_dsp_get_loaded_rsc_table(struct rproc * rproc,size_t * rsc_table_sz)413 static struct resource_table *k3_dsp_get_loaded_rsc_table(struct rproc *rproc,
414 size_t *rsc_table_sz)
415 {
416 struct k3_dsp_rproc *kproc = rproc->priv;
417 struct device *dev = kproc->dev;
418
419 if (!kproc->rmem[0].cpu_addr) {
420 dev_err(dev, "memory-region #1 does not exist, loaded rsc table can't be found");
421 return ERR_PTR(-ENOMEM);
422 }
423
424 /*
425 * NOTE: The resource table size is currently hard-coded to a maximum
426 * of 256 bytes. The most common resource table usage for K3 firmwares
427 * is to only have the vdev resource entry and an optional trace entry.
428 * The exact size could be computed based on resource table address, but
429 * the hard-coded value suffices to support the IPC-only mode.
430 */
431 *rsc_table_sz = 256;
432 return (struct resource_table *)kproc->rmem[0].cpu_addr;
433 }
434
435 /*
436 * Custom function to translate a DSP device address (internal RAMs only) to a
437 * kernel virtual address. The DSPs can access their RAMs at either an internal
438 * address visible only from a DSP, or at the SoC-level bus address. Both these
439 * addresses need to be looked through for translation. The translated addresses
440 * can be used either by the remoteproc core for loading (when using kernel
441 * remoteproc loader), or by any rpmsg bus drivers.
442 */
k3_dsp_rproc_da_to_va(struct rproc * rproc,u64 da,size_t len,bool * is_iomem)443 static void *k3_dsp_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
444 {
445 struct k3_dsp_rproc *kproc = rproc->priv;
446 void __iomem *va = NULL;
447 phys_addr_t bus_addr;
448 u32 dev_addr, offset;
449 size_t size;
450 int i;
451
452 if (len == 0)
453 return NULL;
454
455 for (i = 0; i < kproc->num_mems; i++) {
456 bus_addr = kproc->mem[i].bus_addr;
457 dev_addr = kproc->mem[i].dev_addr;
458 size = kproc->mem[i].size;
459
460 if (da < KEYSTONE_RPROC_LOCAL_ADDRESS_MASK) {
461 /* handle DSP-view addresses */
462 if (da >= dev_addr &&
463 ((da + len) <= (dev_addr + size))) {
464 offset = da - dev_addr;
465 va = kproc->mem[i].cpu_addr + offset;
466 return (__force void *)va;
467 }
468 } else {
469 /* handle SoC-view addresses */
470 if (da >= bus_addr &&
471 (da + len) <= (bus_addr + size)) {
472 offset = da - bus_addr;
473 va = kproc->mem[i].cpu_addr + offset;
474 return (__force void *)va;
475 }
476 }
477 }
478
479 /* handle static DDR reserved memory regions */
480 for (i = 0; i < kproc->num_rmems; i++) {
481 dev_addr = kproc->rmem[i].dev_addr;
482 size = kproc->rmem[i].size;
483
484 if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
485 offset = da - dev_addr;
486 va = kproc->rmem[i].cpu_addr + offset;
487 return (__force void *)va;
488 }
489 }
490
491 return NULL;
492 }
493
494 static const struct rproc_ops k3_dsp_rproc_ops = {
495 .start = k3_dsp_rproc_start,
496 .stop = k3_dsp_rproc_stop,
497 .kick = k3_dsp_rproc_kick,
498 .da_to_va = k3_dsp_rproc_da_to_va,
499 };
500
k3_dsp_rproc_of_get_memories(struct platform_device * pdev,struct k3_dsp_rproc * kproc)501 static int k3_dsp_rproc_of_get_memories(struct platform_device *pdev,
502 struct k3_dsp_rproc *kproc)
503 {
504 const struct k3_dsp_dev_data *data = kproc->data;
505 struct device *dev = &pdev->dev;
506 struct resource *res;
507 int num_mems = 0;
508 int i;
509
510 num_mems = kproc->data->num_mems;
511 kproc->mem = devm_kcalloc(kproc->dev, num_mems,
512 sizeof(*kproc->mem), GFP_KERNEL);
513 if (!kproc->mem)
514 return -ENOMEM;
515
516 for (i = 0; i < num_mems; i++) {
517 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
518 data->mems[i].name);
519 if (!res) {
520 dev_err(dev, "found no memory resource for %s\n",
521 data->mems[i].name);
522 return -EINVAL;
523 }
524 if (!devm_request_mem_region(dev, res->start,
525 resource_size(res),
526 dev_name(dev))) {
527 dev_err(dev, "could not request %s region for resource\n",
528 data->mems[i].name);
529 return -EBUSY;
530 }
531
532 kproc->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start,
533 resource_size(res));
534 if (!kproc->mem[i].cpu_addr) {
535 dev_err(dev, "failed to map %s memory\n",
536 data->mems[i].name);
537 return -ENOMEM;
538 }
539 kproc->mem[i].bus_addr = res->start;
540 kproc->mem[i].dev_addr = data->mems[i].dev_addr;
541 kproc->mem[i].size = resource_size(res);
542
543 dev_dbg(dev, "memory %8s: bus addr %pa size 0x%zx va %pK da 0x%x\n",
544 data->mems[i].name, &kproc->mem[i].bus_addr,
545 kproc->mem[i].size, kproc->mem[i].cpu_addr,
546 kproc->mem[i].dev_addr);
547 }
548 kproc->num_mems = num_mems;
549
550 return 0;
551 }
552
k3_dsp_reserved_mem_init(struct k3_dsp_rproc * kproc)553 static int k3_dsp_reserved_mem_init(struct k3_dsp_rproc *kproc)
554 {
555 struct device *dev = kproc->dev;
556 struct device_node *np = dev->of_node;
557 struct device_node *rmem_np;
558 struct reserved_mem *rmem;
559 int num_rmems;
560 int ret, i;
561
562 num_rmems = of_property_count_elems_of_size(np, "memory-region",
563 sizeof(phandle));
564 if (num_rmems <= 0) {
565 dev_err(dev, "device does not reserved memory regions, ret = %d\n",
566 num_rmems);
567 return -EINVAL;
568 }
569 if (num_rmems < 2) {
570 dev_err(dev, "device needs at least two memory regions to be defined, num = %d\n",
571 num_rmems);
572 return -EINVAL;
573 }
574
575 /* use reserved memory region 0 for vring DMA allocations */
576 ret = of_reserved_mem_device_init_by_idx(dev, np, 0);
577 if (ret) {
578 dev_err(dev, "device cannot initialize DMA pool, ret = %d\n",
579 ret);
580 return ret;
581 }
582
583 num_rmems--;
584 kproc->rmem = kcalloc(num_rmems, sizeof(*kproc->rmem), GFP_KERNEL);
585 if (!kproc->rmem) {
586 ret = -ENOMEM;
587 goto release_rmem;
588 }
589
590 /* use remaining reserved memory regions for static carveouts */
591 for (i = 0; i < num_rmems; i++) {
592 rmem_np = of_parse_phandle(np, "memory-region", i + 1);
593 if (!rmem_np) {
594 ret = -EINVAL;
595 goto unmap_rmem;
596 }
597
598 rmem = of_reserved_mem_lookup(rmem_np);
599 if (!rmem) {
600 of_node_put(rmem_np);
601 ret = -EINVAL;
602 goto unmap_rmem;
603 }
604 of_node_put(rmem_np);
605
606 kproc->rmem[i].bus_addr = rmem->base;
607 /* 64-bit address regions currently not supported */
608 kproc->rmem[i].dev_addr = (u32)rmem->base;
609 kproc->rmem[i].size = rmem->size;
610 kproc->rmem[i].cpu_addr = ioremap_wc(rmem->base, rmem->size);
611 if (!kproc->rmem[i].cpu_addr) {
612 dev_err(dev, "failed to map reserved memory#%d at %pa of size %pa\n",
613 i + 1, &rmem->base, &rmem->size);
614 ret = -ENOMEM;
615 goto unmap_rmem;
616 }
617
618 dev_dbg(dev, "reserved memory%d: bus addr %pa size 0x%zx va %pK da 0x%x\n",
619 i + 1, &kproc->rmem[i].bus_addr,
620 kproc->rmem[i].size, kproc->rmem[i].cpu_addr,
621 kproc->rmem[i].dev_addr);
622 }
623 kproc->num_rmems = num_rmems;
624
625 return 0;
626
627 unmap_rmem:
628 for (i--; i >= 0; i--)
629 iounmap(kproc->rmem[i].cpu_addr);
630 kfree(kproc->rmem);
631 release_rmem:
632 of_reserved_mem_device_release(kproc->dev);
633 return ret;
634 }
635
k3_dsp_reserved_mem_exit(struct k3_dsp_rproc * kproc)636 static void k3_dsp_reserved_mem_exit(struct k3_dsp_rproc *kproc)
637 {
638 int i;
639
640 for (i = 0; i < kproc->num_rmems; i++)
641 iounmap(kproc->rmem[i].cpu_addr);
642 kfree(kproc->rmem);
643
644 of_reserved_mem_device_release(kproc->dev);
645 }
646
647 static
k3_dsp_rproc_of_get_tsp(struct device * dev,const struct ti_sci_handle * sci)648 struct ti_sci_proc *k3_dsp_rproc_of_get_tsp(struct device *dev,
649 const struct ti_sci_handle *sci)
650 {
651 struct ti_sci_proc *tsp;
652 u32 temp[2];
653 int ret;
654
655 ret = of_property_read_u32_array(dev->of_node, "ti,sci-proc-ids",
656 temp, 2);
657 if (ret < 0)
658 return ERR_PTR(ret);
659
660 tsp = kzalloc(sizeof(*tsp), GFP_KERNEL);
661 if (!tsp)
662 return ERR_PTR(-ENOMEM);
663
664 tsp->dev = dev;
665 tsp->sci = sci;
666 tsp->ops = &sci->ops.proc_ops;
667 tsp->proc_id = temp[0];
668 tsp->host_id = temp[1];
669
670 return tsp;
671 }
672
k3_dsp_rproc_probe(struct platform_device * pdev)673 static int k3_dsp_rproc_probe(struct platform_device *pdev)
674 {
675 struct device *dev = &pdev->dev;
676 struct device_node *np = dev->of_node;
677 const struct k3_dsp_dev_data *data;
678 struct k3_dsp_rproc *kproc;
679 struct rproc *rproc;
680 const char *fw_name;
681 bool p_state = false;
682 int ret = 0;
683 int ret1;
684
685 data = of_device_get_match_data(dev);
686 if (!data)
687 return -ENODEV;
688
689 ret = rproc_of_parse_firmware(dev, 0, &fw_name);
690 if (ret) {
691 dev_err(dev, "failed to parse firmware-name property, ret = %d\n",
692 ret);
693 return ret;
694 }
695
696 rproc = rproc_alloc(dev, dev_name(dev), &k3_dsp_rproc_ops, fw_name,
697 sizeof(*kproc));
698 if (!rproc)
699 return -ENOMEM;
700
701 rproc->has_iommu = false;
702 rproc->recovery_disabled = true;
703 if (data->uses_lreset) {
704 rproc->ops->prepare = k3_dsp_rproc_prepare;
705 rproc->ops->unprepare = k3_dsp_rproc_unprepare;
706 }
707 kproc = rproc->priv;
708 kproc->rproc = rproc;
709 kproc->dev = dev;
710 kproc->data = data;
711
712 kproc->ti_sci = ti_sci_get_by_phandle(np, "ti,sci");
713 if (IS_ERR(kproc->ti_sci)) {
714 ret = PTR_ERR(kproc->ti_sci);
715 if (ret != -EPROBE_DEFER) {
716 dev_err(dev, "failed to get ti-sci handle, ret = %d\n",
717 ret);
718 }
719 kproc->ti_sci = NULL;
720 goto free_rproc;
721 }
722
723 ret = of_property_read_u32(np, "ti,sci-dev-id", &kproc->ti_sci_id);
724 if (ret) {
725 dev_err(dev, "missing 'ti,sci-dev-id' property\n");
726 goto put_sci;
727 }
728
729 kproc->reset = devm_reset_control_get_exclusive(dev, NULL);
730 if (IS_ERR(kproc->reset)) {
731 ret = PTR_ERR(kproc->reset);
732 dev_err(dev, "failed to get reset, status = %d\n", ret);
733 goto put_sci;
734 }
735
736 kproc->tsp = k3_dsp_rproc_of_get_tsp(dev, kproc->ti_sci);
737 if (IS_ERR(kproc->tsp)) {
738 dev_err(dev, "failed to construct ti-sci proc control, ret = %d\n",
739 ret);
740 ret = PTR_ERR(kproc->tsp);
741 goto put_sci;
742 }
743
744 ret = ti_sci_proc_request(kproc->tsp);
745 if (ret < 0) {
746 dev_err(dev, "ti_sci_proc_request failed, ret = %d\n", ret);
747 goto free_tsp;
748 }
749
750 ret = k3_dsp_rproc_of_get_memories(pdev, kproc);
751 if (ret)
752 goto release_tsp;
753
754 ret = k3_dsp_reserved_mem_init(kproc);
755 if (ret) {
756 dev_err(dev, "reserved memory init failed, ret = %d\n", ret);
757 goto release_tsp;
758 }
759
760 ret = kproc->ti_sci->ops.dev_ops.is_on(kproc->ti_sci, kproc->ti_sci_id,
761 NULL, &p_state);
762 if (ret) {
763 dev_err(dev, "failed to get initial state, mode cannot be determined, ret = %d\n",
764 ret);
765 goto release_mem;
766 }
767
768 /* configure J721E devices for either remoteproc or IPC-only mode */
769 if (p_state) {
770 dev_info(dev, "configured DSP for IPC-only mode\n");
771 rproc->state = RPROC_DETACHED;
772 /* override rproc ops with only required IPC-only mode ops */
773 rproc->ops->prepare = NULL;
774 rproc->ops->unprepare = NULL;
775 rproc->ops->start = NULL;
776 rproc->ops->stop = NULL;
777 rproc->ops->attach = k3_dsp_rproc_attach;
778 rproc->ops->detach = k3_dsp_rproc_detach;
779 rproc->ops->get_loaded_rsc_table = k3_dsp_get_loaded_rsc_table;
780 } else {
781 dev_info(dev, "configured DSP for remoteproc mode\n");
782 /*
783 * ensure the DSP local reset is asserted to ensure the DSP
784 * doesn't execute bogus code in .prepare() when the module
785 * reset is released.
786 */
787 if (data->uses_lreset) {
788 ret = reset_control_status(kproc->reset);
789 if (ret < 0) {
790 dev_err(dev, "failed to get reset status, status = %d\n",
791 ret);
792 goto release_mem;
793 } else if (ret == 0) {
794 dev_warn(dev, "local reset is deasserted for device\n");
795 k3_dsp_rproc_reset(kproc);
796 }
797 }
798 }
799
800 ret = rproc_add(rproc);
801 if (ret) {
802 dev_err(dev, "failed to add register device with remoteproc core, status = %d\n",
803 ret);
804 goto release_mem;
805 }
806
807 platform_set_drvdata(pdev, kproc);
808
809 return 0;
810
811 release_mem:
812 k3_dsp_reserved_mem_exit(kproc);
813 release_tsp:
814 ret1 = ti_sci_proc_release(kproc->tsp);
815 if (ret1)
816 dev_err(dev, "failed to release proc, ret = %d\n", ret1);
817 free_tsp:
818 kfree(kproc->tsp);
819 put_sci:
820 ret1 = ti_sci_put_handle(kproc->ti_sci);
821 if (ret1)
822 dev_err(dev, "failed to put ti_sci handle, ret = %d\n", ret1);
823 free_rproc:
824 rproc_free(rproc);
825 return ret;
826 }
827
k3_dsp_rproc_remove(struct platform_device * pdev)828 static int k3_dsp_rproc_remove(struct platform_device *pdev)
829 {
830 struct k3_dsp_rproc *kproc = platform_get_drvdata(pdev);
831 struct rproc *rproc = kproc->rproc;
832 struct device *dev = &pdev->dev;
833 int ret;
834
835 if (rproc->state == RPROC_ATTACHED) {
836 ret = rproc_detach(rproc);
837 if (ret) {
838 dev_err(dev, "failed to detach proc, ret = %d\n", ret);
839 return ret;
840 }
841 }
842
843 rproc_del(kproc->rproc);
844
845 ret = ti_sci_proc_release(kproc->tsp);
846 if (ret)
847 dev_err(dev, "failed to release proc, ret = %d\n", ret);
848
849 kfree(kproc->tsp);
850
851 ret = ti_sci_put_handle(kproc->ti_sci);
852 if (ret)
853 dev_err(dev, "failed to put ti_sci handle, ret = %d\n", ret);
854
855 k3_dsp_reserved_mem_exit(kproc);
856 rproc_free(kproc->rproc);
857
858 return 0;
859 }
860
861 static const struct k3_dsp_mem_data c66_mems[] = {
862 { .name = "l2sram", .dev_addr = 0x800000 },
863 { .name = "l1pram", .dev_addr = 0xe00000 },
864 { .name = "l1dram", .dev_addr = 0xf00000 },
865 };
866
867 /* C71x cores only have a L1P Cache, there are no L1P SRAMs */
868 static const struct k3_dsp_mem_data c71_mems[] = {
869 { .name = "l2sram", .dev_addr = 0x800000 },
870 { .name = "l1dram", .dev_addr = 0xe00000 },
871 };
872
873 static const struct k3_dsp_mem_data c7xv_mems[] = {
874 { .name = "l2sram", .dev_addr = 0x800000 },
875 };
876
877 static const struct k3_dsp_dev_data c66_data = {
878 .mems = c66_mems,
879 .num_mems = ARRAY_SIZE(c66_mems),
880 .boot_align_addr = SZ_1K,
881 .uses_lreset = true,
882 };
883
884 static const struct k3_dsp_dev_data c71_data = {
885 .mems = c71_mems,
886 .num_mems = ARRAY_SIZE(c71_mems),
887 .boot_align_addr = SZ_2M,
888 .uses_lreset = false,
889 };
890
891 static const struct k3_dsp_dev_data c7xv_data = {
892 .mems = c7xv_mems,
893 .num_mems = ARRAY_SIZE(c7xv_mems),
894 .boot_align_addr = SZ_2M,
895 .uses_lreset = false,
896 };
897
898 static const struct of_device_id k3_dsp_of_match[] = {
899 { .compatible = "ti,j721e-c66-dsp", .data = &c66_data, },
900 { .compatible = "ti,j721e-c71-dsp", .data = &c71_data, },
901 { .compatible = "ti,j721s2-c71-dsp", .data = &c71_data, },
902 { .compatible = "ti,am62a-c7xv-dsp", .data = &c7xv_data, },
903 { /* sentinel */ },
904 };
905 MODULE_DEVICE_TABLE(of, k3_dsp_of_match);
906
907 static struct platform_driver k3_dsp_rproc_driver = {
908 .probe = k3_dsp_rproc_probe,
909 .remove = k3_dsp_rproc_remove,
910 .driver = {
911 .name = "k3-dsp-rproc",
912 .of_match_table = k3_dsp_of_match,
913 },
914 };
915
916 module_platform_driver(k3_dsp_rproc_driver);
917
918 MODULE_AUTHOR("Suman Anna <s-anna@ti.com>");
919 MODULE_LICENSE("GPL v2");
920 MODULE_DESCRIPTION("TI K3 DSP Remoteproc driver");
921