xref: /openbmc/linux/drivers/net/ethernet/intel/ice/ice_sriov.c (revision 0f9b4c3ca5fdf3e177266ef994071b1a03f07318)
1  // SPDX-License-Identifier: GPL-2.0
2  /* Copyright (c) 2018, Intel Corporation. */
3  
4  #include "ice.h"
5  #include "ice_vf_lib_private.h"
6  #include "ice_base.h"
7  #include "ice_lib.h"
8  #include "ice_fltr.h"
9  #include "ice_dcb_lib.h"
10  #include "ice_flow.h"
11  #include "ice_eswitch.h"
12  #include "ice_virtchnl_allowlist.h"
13  #include "ice_flex_pipe.h"
14  #include "ice_vf_vsi_vlan_ops.h"
15  #include "ice_vlan.h"
16  
17  /**
18   * ice_free_vf_entries - Free all VF entries from the hash table
19   * @pf: pointer to the PF structure
20   *
21   * Iterate over the VF hash table, removing and releasing all VF entries.
22   * Called during VF teardown or as cleanup during failed VF initialization.
23   */
ice_free_vf_entries(struct ice_pf * pf)24  static void ice_free_vf_entries(struct ice_pf *pf)
25  {
26  	struct ice_vfs *vfs = &pf->vfs;
27  	struct hlist_node *tmp;
28  	struct ice_vf *vf;
29  	unsigned int bkt;
30  
31  	/* Remove all VFs from the hash table and release their main
32  	 * reference. Once all references to the VF are dropped, ice_put_vf()
33  	 * will call ice_release_vf which will remove the VF memory.
34  	 */
35  	lockdep_assert_held(&vfs->table_lock);
36  
37  	hash_for_each_safe(vfs->table, bkt, tmp, vf, entry) {
38  		hash_del_rcu(&vf->entry);
39  		ice_deinitialize_vf_entry(vf);
40  		ice_put_vf(vf);
41  	}
42  }
43  
44  /**
45   * ice_free_vf_res - Free a VF's resources
46   * @vf: pointer to the VF info
47   */
ice_free_vf_res(struct ice_vf * vf)48  static void ice_free_vf_res(struct ice_vf *vf)
49  {
50  	struct ice_pf *pf = vf->pf;
51  	int i, last_vector_idx;
52  
53  	/* First, disable VF's configuration API to prevent OS from
54  	 * accessing the VF's VSI after it's freed or invalidated.
55  	 */
56  	clear_bit(ICE_VF_STATE_INIT, vf->vf_states);
57  	ice_vf_fdir_exit(vf);
58  	/* free VF control VSI */
59  	if (vf->ctrl_vsi_idx != ICE_NO_VSI)
60  		ice_vf_ctrl_vsi_release(vf);
61  
62  	/* free VSI and disconnect it from the parent uplink */
63  	if (vf->lan_vsi_idx != ICE_NO_VSI) {
64  		ice_vf_vsi_release(vf);
65  		vf->num_mac = 0;
66  	}
67  
68  	last_vector_idx = vf->first_vector_idx + pf->vfs.num_msix_per - 1;
69  
70  	/* clear VF MDD event information */
71  	memset(&vf->mdd_tx_events, 0, sizeof(vf->mdd_tx_events));
72  	memset(&vf->mdd_rx_events, 0, sizeof(vf->mdd_rx_events));
73  
74  	/* Disable interrupts so that VF starts in a known state */
75  	for (i = vf->first_vector_idx; i <= last_vector_idx; i++) {
76  		wr32(&pf->hw, GLINT_DYN_CTL(i), GLINT_DYN_CTL_CLEARPBA_M);
77  		ice_flush(&pf->hw);
78  	}
79  	/* reset some of the state variables keeping track of the resources */
80  	clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states);
81  	clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states);
82  }
83  
84  /**
85   * ice_dis_vf_mappings
86   * @vf: pointer to the VF structure
87   */
ice_dis_vf_mappings(struct ice_vf * vf)88  static void ice_dis_vf_mappings(struct ice_vf *vf)
89  {
90  	struct ice_pf *pf = vf->pf;
91  	struct ice_vsi *vsi;
92  	struct device *dev;
93  	int first, last, v;
94  	struct ice_hw *hw;
95  
96  	hw = &pf->hw;
97  	vsi = ice_get_vf_vsi(vf);
98  	if (WARN_ON(!vsi))
99  		return;
100  
101  	dev = ice_pf_to_dev(pf);
102  	wr32(hw, VPINT_ALLOC(vf->vf_id), 0);
103  	wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), 0);
104  
105  	first = vf->first_vector_idx;
106  	last = first + pf->vfs.num_msix_per - 1;
107  	for (v = first; v <= last; v++) {
108  		u32 reg;
109  
110  		reg = (((1 << GLINT_VECT2FUNC_IS_PF_S) &
111  			GLINT_VECT2FUNC_IS_PF_M) |
112  		       ((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) &
113  			GLINT_VECT2FUNC_PF_NUM_M));
114  		wr32(hw, GLINT_VECT2FUNC(v), reg);
115  	}
116  
117  	if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG)
118  		wr32(hw, VPLAN_TX_QBASE(vf->vf_id), 0);
119  	else
120  		dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n");
121  
122  	if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG)
123  		wr32(hw, VPLAN_RX_QBASE(vf->vf_id), 0);
124  	else
125  		dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n");
126  }
127  
128  /**
129   * ice_sriov_free_msix_res - Reset/free any used MSIX resources
130   * @pf: pointer to the PF structure
131   *
132   * Since no MSIX entries are taken from the pf->irq_tracker then just clear
133   * the pf->sriov_base_vector.
134   *
135   * Returns 0 on success, and -EINVAL on error.
136   */
ice_sriov_free_msix_res(struct ice_pf * pf)137  static int ice_sriov_free_msix_res(struct ice_pf *pf)
138  {
139  	if (!pf)
140  		return -EINVAL;
141  
142  	pf->sriov_base_vector = 0;
143  
144  	return 0;
145  }
146  
147  /**
148   * ice_free_vfs - Free all VFs
149   * @pf: pointer to the PF structure
150   */
ice_free_vfs(struct ice_pf * pf)151  void ice_free_vfs(struct ice_pf *pf)
152  {
153  	struct device *dev = ice_pf_to_dev(pf);
154  	struct ice_vfs *vfs = &pf->vfs;
155  	struct ice_hw *hw = &pf->hw;
156  	struct ice_vf *vf;
157  	unsigned int bkt;
158  
159  	if (!ice_has_vfs(pf))
160  		return;
161  
162  	while (test_and_set_bit(ICE_VF_DIS, pf->state))
163  		usleep_range(1000, 2000);
164  
165  	/* Disable IOV before freeing resources. This lets any VF drivers
166  	 * running in the host get themselves cleaned up before we yank
167  	 * the carpet out from underneath their feet.
168  	 */
169  	if (!pci_vfs_assigned(pf->pdev))
170  		pci_disable_sriov(pf->pdev);
171  	else
172  		dev_warn(dev, "VFs are assigned - not disabling SR-IOV\n");
173  
174  	mutex_lock(&vfs->table_lock);
175  
176  	ice_eswitch_release(pf);
177  
178  	ice_for_each_vf(pf, bkt, vf) {
179  		mutex_lock(&vf->cfg_lock);
180  
181  		ice_dis_vf_qs(vf);
182  
183  		if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) {
184  			/* disable VF qp mappings and set VF disable state */
185  			ice_dis_vf_mappings(vf);
186  			set_bit(ICE_VF_STATE_DIS, vf->vf_states);
187  			ice_free_vf_res(vf);
188  		}
189  
190  		if (!pci_vfs_assigned(pf->pdev)) {
191  			u32 reg_idx, bit_idx;
192  
193  			reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32;
194  			bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32;
195  			wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
196  		}
197  
198  		mutex_unlock(&vf->cfg_lock);
199  	}
200  
201  	if (ice_sriov_free_msix_res(pf))
202  		dev_err(dev, "Failed to free MSIX resources used by SR-IOV\n");
203  
204  	vfs->num_qps_per = 0;
205  	ice_free_vf_entries(pf);
206  
207  	mutex_unlock(&vfs->table_lock);
208  
209  	clear_bit(ICE_VF_DIS, pf->state);
210  	clear_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
211  }
212  
213  /**
214   * ice_vf_vsi_setup - Set up a VF VSI
215   * @vf: VF to setup VSI for
216   *
217   * Returns pointer to the successfully allocated VSI struct on success,
218   * otherwise returns NULL on failure.
219   */
ice_vf_vsi_setup(struct ice_vf * vf)220  static struct ice_vsi *ice_vf_vsi_setup(struct ice_vf *vf)
221  {
222  	struct ice_vsi_cfg_params params = {};
223  	struct ice_pf *pf = vf->pf;
224  	struct ice_vsi *vsi;
225  
226  	params.type = ICE_VSI_VF;
227  	params.pi = ice_vf_get_port_info(vf);
228  	params.vf = vf;
229  	params.flags = ICE_VSI_FLAG_INIT;
230  
231  	vsi = ice_vsi_setup(pf, &params);
232  
233  	if (!vsi) {
234  		dev_err(ice_pf_to_dev(pf), "Failed to create VF VSI\n");
235  		ice_vf_invalidate_vsi(vf);
236  		return NULL;
237  	}
238  
239  	vf->lan_vsi_idx = vsi->idx;
240  	vf->lan_vsi_num = vsi->vsi_num;
241  
242  	return vsi;
243  }
244  
245  /**
246   * ice_calc_vf_first_vector_idx - Calculate MSIX vector index in the PF space
247   * @pf: pointer to PF structure
248   * @vf: pointer to VF that the first MSIX vector index is being calculated for
249   *
250   * This returns the first MSIX vector index in PF space that is used by this VF.
251   * This index is used when accessing PF relative registers such as
252   * GLINT_VECT2FUNC and GLINT_DYN_CTL.
253   * This will always be the OICR index in the AVF driver so any functionality
254   * using vf->first_vector_idx for queue configuration will have to increment by
255   * 1 to avoid meddling with the OICR index.
256   */
ice_calc_vf_first_vector_idx(struct ice_pf * pf,struct ice_vf * vf)257  static int ice_calc_vf_first_vector_idx(struct ice_pf *pf, struct ice_vf *vf)
258  {
259  	return pf->sriov_base_vector + vf->vf_id * pf->vfs.num_msix_per;
260  }
261  
262  /**
263   * ice_ena_vf_msix_mappings - enable VF MSIX mappings in hardware
264   * @vf: VF to enable MSIX mappings for
265   *
266   * Some of the registers need to be indexed/configured using hardware global
267   * device values and other registers need 0-based values, which represent PF
268   * based values.
269   */
ice_ena_vf_msix_mappings(struct ice_vf * vf)270  static void ice_ena_vf_msix_mappings(struct ice_vf *vf)
271  {
272  	int device_based_first_msix, device_based_last_msix;
273  	int pf_based_first_msix, pf_based_last_msix, v;
274  	struct ice_pf *pf = vf->pf;
275  	int device_based_vf_id;
276  	struct ice_hw *hw;
277  	u32 reg;
278  
279  	hw = &pf->hw;
280  	pf_based_first_msix = vf->first_vector_idx;
281  	pf_based_last_msix = (pf_based_first_msix + pf->vfs.num_msix_per) - 1;
282  
283  	device_based_first_msix = pf_based_first_msix +
284  		pf->hw.func_caps.common_cap.msix_vector_first_id;
285  	device_based_last_msix =
286  		(device_based_first_msix + pf->vfs.num_msix_per) - 1;
287  	device_based_vf_id = vf->vf_id + hw->func_caps.vf_base_id;
288  
289  	reg = (((device_based_first_msix << VPINT_ALLOC_FIRST_S) &
290  		VPINT_ALLOC_FIRST_M) |
291  	       ((device_based_last_msix << VPINT_ALLOC_LAST_S) &
292  		VPINT_ALLOC_LAST_M) | VPINT_ALLOC_VALID_M);
293  	wr32(hw, VPINT_ALLOC(vf->vf_id), reg);
294  
295  	reg = (((device_based_first_msix << VPINT_ALLOC_PCI_FIRST_S)
296  		 & VPINT_ALLOC_PCI_FIRST_M) |
297  	       ((device_based_last_msix << VPINT_ALLOC_PCI_LAST_S) &
298  		VPINT_ALLOC_PCI_LAST_M) | VPINT_ALLOC_PCI_VALID_M);
299  	wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), reg);
300  
301  	/* map the interrupts to its functions */
302  	for (v = pf_based_first_msix; v <= pf_based_last_msix; v++) {
303  		reg = (((device_based_vf_id << GLINT_VECT2FUNC_VF_NUM_S) &
304  			GLINT_VECT2FUNC_VF_NUM_M) |
305  		       ((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) &
306  			GLINT_VECT2FUNC_PF_NUM_M));
307  		wr32(hw, GLINT_VECT2FUNC(v), reg);
308  	}
309  
310  	/* Map mailbox interrupt to VF MSI-X vector 0 */
311  	wr32(hw, VPINT_MBX_CTL(device_based_vf_id), VPINT_MBX_CTL_CAUSE_ENA_M);
312  }
313  
314  /**
315   * ice_ena_vf_q_mappings - enable Rx/Tx queue mappings for a VF
316   * @vf: VF to enable the mappings for
317   * @max_txq: max Tx queues allowed on the VF's VSI
318   * @max_rxq: max Rx queues allowed on the VF's VSI
319   */
ice_ena_vf_q_mappings(struct ice_vf * vf,u16 max_txq,u16 max_rxq)320  static void ice_ena_vf_q_mappings(struct ice_vf *vf, u16 max_txq, u16 max_rxq)
321  {
322  	struct device *dev = ice_pf_to_dev(vf->pf);
323  	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
324  	struct ice_hw *hw = &vf->pf->hw;
325  	u32 reg;
326  
327  	if (WARN_ON(!vsi))
328  		return;
329  
330  	/* set regardless of mapping mode */
331  	wr32(hw, VPLAN_TXQ_MAPENA(vf->vf_id), VPLAN_TXQ_MAPENA_TX_ENA_M);
332  
333  	/* VF Tx queues allocation */
334  	if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) {
335  		/* set the VF PF Tx queue range
336  		 * VFNUMQ value should be set to (number of queues - 1). A value
337  		 * of 0 means 1 queue and a value of 255 means 256 queues
338  		 */
339  		reg = (((vsi->txq_map[0] << VPLAN_TX_QBASE_VFFIRSTQ_S) &
340  			VPLAN_TX_QBASE_VFFIRSTQ_M) |
341  		       (((max_txq - 1) << VPLAN_TX_QBASE_VFNUMQ_S) &
342  			VPLAN_TX_QBASE_VFNUMQ_M));
343  		wr32(hw, VPLAN_TX_QBASE(vf->vf_id), reg);
344  	} else {
345  		dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n");
346  	}
347  
348  	/* set regardless of mapping mode */
349  	wr32(hw, VPLAN_RXQ_MAPENA(vf->vf_id), VPLAN_RXQ_MAPENA_RX_ENA_M);
350  
351  	/* VF Rx queues allocation */
352  	if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) {
353  		/* set the VF PF Rx queue range
354  		 * VFNUMQ value should be set to (number of queues - 1). A value
355  		 * of 0 means 1 queue and a value of 255 means 256 queues
356  		 */
357  		reg = (((vsi->rxq_map[0] << VPLAN_RX_QBASE_VFFIRSTQ_S) &
358  			VPLAN_RX_QBASE_VFFIRSTQ_M) |
359  		       (((max_rxq - 1) << VPLAN_RX_QBASE_VFNUMQ_S) &
360  			VPLAN_RX_QBASE_VFNUMQ_M));
361  		wr32(hw, VPLAN_RX_QBASE(vf->vf_id), reg);
362  	} else {
363  		dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n");
364  	}
365  }
366  
367  /**
368   * ice_ena_vf_mappings - enable VF MSIX and queue mapping
369   * @vf: pointer to the VF structure
370   */
ice_ena_vf_mappings(struct ice_vf * vf)371  static void ice_ena_vf_mappings(struct ice_vf *vf)
372  {
373  	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
374  
375  	if (WARN_ON(!vsi))
376  		return;
377  
378  	ice_ena_vf_msix_mappings(vf);
379  	ice_ena_vf_q_mappings(vf, vsi->alloc_txq, vsi->alloc_rxq);
380  }
381  
382  /**
383   * ice_calc_vf_reg_idx - Calculate the VF's register index in the PF space
384   * @vf: VF to calculate the register index for
385   * @q_vector: a q_vector associated to the VF
386   */
ice_calc_vf_reg_idx(struct ice_vf * vf,struct ice_q_vector * q_vector)387  int ice_calc_vf_reg_idx(struct ice_vf *vf, struct ice_q_vector *q_vector)
388  {
389  	struct ice_pf *pf;
390  
391  	if (!vf || !q_vector)
392  		return -EINVAL;
393  
394  	pf = vf->pf;
395  
396  	/* always add one to account for the OICR being the first MSIX */
397  	return pf->sriov_base_vector + pf->vfs.num_msix_per * vf->vf_id +
398  		q_vector->v_idx + 1;
399  }
400  
401  /**
402   * ice_sriov_set_msix_res - Set any used MSIX resources
403   * @pf: pointer to PF structure
404   * @num_msix_needed: number of MSIX vectors needed for all SR-IOV VFs
405   *
406   * This function allows SR-IOV resources to be taken from the end of the PF's
407   * allowed HW MSIX vectors so that the irq_tracker will not be affected. We
408   * just set the pf->sriov_base_vector and return success.
409   *
410   * If there are not enough resources available, return an error. This should
411   * always be caught by ice_set_per_vf_res().
412   *
413   * Return 0 on success, and -EINVAL when there are not enough MSIX vectors
414   * in the PF's space available for SR-IOV.
415   */
ice_sriov_set_msix_res(struct ice_pf * pf,u16 num_msix_needed)416  static int ice_sriov_set_msix_res(struct ice_pf *pf, u16 num_msix_needed)
417  {
418  	u16 total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors;
419  	int vectors_used = ice_get_max_used_msix_vector(pf);
420  	int sriov_base_vector;
421  
422  	sriov_base_vector = total_vectors - num_msix_needed;
423  
424  	/* make sure we only grab irq_tracker entries from the list end and
425  	 * that we have enough available MSIX vectors
426  	 */
427  	if (sriov_base_vector < vectors_used)
428  		return -EINVAL;
429  
430  	pf->sriov_base_vector = sriov_base_vector;
431  
432  	return 0;
433  }
434  
435  /**
436   * ice_set_per_vf_res - check if vectors and queues are available
437   * @pf: pointer to the PF structure
438   * @num_vfs: the number of SR-IOV VFs being configured
439   *
440   * First, determine HW interrupts from common pool. If we allocate fewer VFs, we
441   * get more vectors and can enable more queues per VF. Note that this does not
442   * grab any vectors from the SW pool already allocated. Also note, that all
443   * vector counts include one for each VF's miscellaneous interrupt vector
444   * (i.e. OICR).
445   *
446   * Minimum VFs - 2 vectors, 1 queue pair
447   * Small VFs - 5 vectors, 4 queue pairs
448   * Medium VFs - 17 vectors, 16 queue pairs
449   *
450   * Second, determine number of queue pairs per VF by starting with a pre-defined
451   * maximum each VF supports. If this is not possible, then we adjust based on
452   * queue pairs available on the device.
453   *
454   * Lastly, set queue and MSI-X VF variables tracked by the PF so it can be used
455   * by each VF during VF initialization and reset.
456   */
ice_set_per_vf_res(struct ice_pf * pf,u16 num_vfs)457  static int ice_set_per_vf_res(struct ice_pf *pf, u16 num_vfs)
458  {
459  	int vectors_used = ice_get_max_used_msix_vector(pf);
460  	u16 num_msix_per_vf, num_txq, num_rxq, avail_qs;
461  	int msix_avail_per_vf, msix_avail_for_sriov;
462  	struct device *dev = ice_pf_to_dev(pf);
463  	int err;
464  
465  	lockdep_assert_held(&pf->vfs.table_lock);
466  
467  	if (!num_vfs)
468  		return -EINVAL;
469  
470  	/* determine MSI-X resources per VF */
471  	msix_avail_for_sriov = pf->hw.func_caps.common_cap.num_msix_vectors -
472  		vectors_used;
473  	msix_avail_per_vf = msix_avail_for_sriov / num_vfs;
474  	if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MED) {
475  		num_msix_per_vf = ICE_NUM_VF_MSIX_MED;
476  	} else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_SMALL) {
477  		num_msix_per_vf = ICE_NUM_VF_MSIX_SMALL;
478  	} else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MULTIQ_MIN) {
479  		num_msix_per_vf = ICE_NUM_VF_MSIX_MULTIQ_MIN;
480  	} else if (msix_avail_per_vf >= ICE_MIN_INTR_PER_VF) {
481  		num_msix_per_vf = ICE_MIN_INTR_PER_VF;
482  	} else {
483  		dev_err(dev, "Only %d MSI-X interrupts available for SR-IOV. Not enough to support minimum of %d MSI-X interrupts per VF for %d VFs\n",
484  			msix_avail_for_sriov, ICE_MIN_INTR_PER_VF,
485  			num_vfs);
486  		return -ENOSPC;
487  	}
488  
489  	num_txq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF,
490  			ICE_MAX_RSS_QS_PER_VF);
491  	avail_qs = ice_get_avail_txq_count(pf) / num_vfs;
492  	if (!avail_qs)
493  		num_txq = 0;
494  	else if (num_txq > avail_qs)
495  		num_txq = rounddown_pow_of_two(avail_qs);
496  
497  	num_rxq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF,
498  			ICE_MAX_RSS_QS_PER_VF);
499  	avail_qs = ice_get_avail_rxq_count(pf) / num_vfs;
500  	if (!avail_qs)
501  		num_rxq = 0;
502  	else if (num_rxq > avail_qs)
503  		num_rxq = rounddown_pow_of_two(avail_qs);
504  
505  	if (num_txq < ICE_MIN_QS_PER_VF || num_rxq < ICE_MIN_QS_PER_VF) {
506  		dev_err(dev, "Not enough queues to support minimum of %d queue pairs per VF for %d VFs\n",
507  			ICE_MIN_QS_PER_VF, num_vfs);
508  		return -ENOSPC;
509  	}
510  
511  	err = ice_sriov_set_msix_res(pf, num_msix_per_vf * num_vfs);
512  	if (err) {
513  		dev_err(dev, "Unable to set MSI-X resources for %d VFs, err %d\n",
514  			num_vfs, err);
515  		return err;
516  	}
517  
518  	/* only allow equal Tx/Rx queue count (i.e. queue pairs) */
519  	pf->vfs.num_qps_per = min_t(int, num_txq, num_rxq);
520  	pf->vfs.num_msix_per = num_msix_per_vf;
521  	dev_info(dev, "Enabling %d VFs with %d vectors and %d queues per VF\n",
522  		 num_vfs, pf->vfs.num_msix_per, pf->vfs.num_qps_per);
523  
524  	return 0;
525  }
526  
527  /**
528   * ice_init_vf_vsi_res - initialize/setup VF VSI resources
529   * @vf: VF to initialize/setup the VSI for
530   *
531   * This function creates a VSI for the VF, adds a VLAN 0 filter, and sets up the
532   * VF VSI's broadcast filter and is only used during initial VF creation.
533   */
ice_init_vf_vsi_res(struct ice_vf * vf)534  static int ice_init_vf_vsi_res(struct ice_vf *vf)
535  {
536  	struct ice_pf *pf = vf->pf;
537  	struct ice_vsi *vsi;
538  	int err;
539  
540  	vf->first_vector_idx = ice_calc_vf_first_vector_idx(pf, vf);
541  
542  	vsi = ice_vf_vsi_setup(vf);
543  	if (!vsi)
544  		return -ENOMEM;
545  
546  	err = ice_vf_init_host_cfg(vf, vsi);
547  	if (err)
548  		goto release_vsi;
549  
550  	return 0;
551  
552  release_vsi:
553  	ice_vf_vsi_release(vf);
554  	return err;
555  }
556  
557  /**
558   * ice_start_vfs - start VFs so they are ready to be used by SR-IOV
559   * @pf: PF the VFs are associated with
560   */
ice_start_vfs(struct ice_pf * pf)561  static int ice_start_vfs(struct ice_pf *pf)
562  {
563  	struct ice_hw *hw = &pf->hw;
564  	unsigned int bkt, it_cnt;
565  	struct ice_vf *vf;
566  	int retval;
567  
568  	lockdep_assert_held(&pf->vfs.table_lock);
569  
570  	it_cnt = 0;
571  	ice_for_each_vf(pf, bkt, vf) {
572  		vf->vf_ops->clear_reset_trigger(vf);
573  
574  		retval = ice_init_vf_vsi_res(vf);
575  		if (retval) {
576  			dev_err(ice_pf_to_dev(pf), "Failed to initialize VSI resources for VF %d, error %d\n",
577  				vf->vf_id, retval);
578  			goto teardown;
579  		}
580  
581  		set_bit(ICE_VF_STATE_INIT, vf->vf_states);
582  		ice_ena_vf_mappings(vf);
583  		wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
584  		it_cnt++;
585  	}
586  
587  	ice_flush(hw);
588  	return 0;
589  
590  teardown:
591  	ice_for_each_vf(pf, bkt, vf) {
592  		if (it_cnt == 0)
593  			break;
594  
595  		ice_dis_vf_mappings(vf);
596  		ice_vf_vsi_release(vf);
597  		it_cnt--;
598  	}
599  
600  	return retval;
601  }
602  
603  /**
604   * ice_sriov_free_vf - Free VF memory after all references are dropped
605   * @vf: pointer to VF to free
606   *
607   * Called by ice_put_vf through ice_release_vf once the last reference to a VF
608   * structure has been dropped.
609   */
ice_sriov_free_vf(struct ice_vf * vf)610  static void ice_sriov_free_vf(struct ice_vf *vf)
611  {
612  	mutex_destroy(&vf->cfg_lock);
613  
614  	kfree_rcu(vf, rcu);
615  }
616  
617  /**
618   * ice_sriov_clear_reset_state - clears VF Reset status register
619   * @vf: the vf to configure
620   */
ice_sriov_clear_reset_state(struct ice_vf * vf)621  static void ice_sriov_clear_reset_state(struct ice_vf *vf)
622  {
623  	struct ice_hw *hw = &vf->pf->hw;
624  
625  	/* Clear the reset status register so that VF immediately sees that
626  	 * the device is resetting, even if hardware hasn't yet gotten around
627  	 * to clearing VFGEN_RSTAT for us.
628  	 */
629  	wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_INPROGRESS);
630  }
631  
632  /**
633   * ice_sriov_clear_mbx_register - clears SRIOV VF's mailbox registers
634   * @vf: the vf to configure
635   */
ice_sriov_clear_mbx_register(struct ice_vf * vf)636  static void ice_sriov_clear_mbx_register(struct ice_vf *vf)
637  {
638  	struct ice_pf *pf = vf->pf;
639  
640  	wr32(&pf->hw, VF_MBX_ARQLEN(vf->vf_id), 0);
641  	wr32(&pf->hw, VF_MBX_ATQLEN(vf->vf_id), 0);
642  }
643  
644  /**
645   * ice_sriov_trigger_reset_register - trigger VF reset for SRIOV VF
646   * @vf: pointer to VF structure
647   * @is_vflr: true if reset occurred due to VFLR
648   *
649   * Trigger and cleanup after a VF reset for a SR-IOV VF.
650   */
ice_sriov_trigger_reset_register(struct ice_vf * vf,bool is_vflr)651  static void ice_sriov_trigger_reset_register(struct ice_vf *vf, bool is_vflr)
652  {
653  	struct ice_pf *pf = vf->pf;
654  	u32 reg, reg_idx, bit_idx;
655  	unsigned int vf_abs_id, i;
656  	struct device *dev;
657  	struct ice_hw *hw;
658  
659  	dev = ice_pf_to_dev(pf);
660  	hw = &pf->hw;
661  	vf_abs_id = vf->vf_id + hw->func_caps.vf_base_id;
662  
663  	/* In the case of a VFLR, HW has already reset the VF and we just need
664  	 * to clean up. Otherwise we must first trigger the reset using the
665  	 * VFRTRIG register.
666  	 */
667  	if (!is_vflr) {
668  		reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
669  		reg |= VPGEN_VFRTRIG_VFSWR_M;
670  		wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
671  	}
672  
673  	/* clear the VFLR bit in GLGEN_VFLRSTAT */
674  	reg_idx = (vf_abs_id) / 32;
675  	bit_idx = (vf_abs_id) % 32;
676  	wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
677  	ice_flush(hw);
678  
679  	wr32(hw, PF_PCI_CIAA,
680  	     VF_DEVICE_STATUS | (vf_abs_id << PF_PCI_CIAA_VF_NUM_S));
681  	for (i = 0; i < ICE_PCI_CIAD_WAIT_COUNT; i++) {
682  		reg = rd32(hw, PF_PCI_CIAD);
683  		/* no transactions pending so stop polling */
684  		if ((reg & VF_TRANS_PENDING_M) == 0)
685  			break;
686  
687  		dev_err(dev, "VF %u PCI transactions stuck\n", vf->vf_id);
688  		udelay(ICE_PCI_CIAD_WAIT_DELAY_US);
689  	}
690  }
691  
692  /**
693   * ice_sriov_poll_reset_status - poll SRIOV VF reset status
694   * @vf: pointer to VF structure
695   *
696   * Returns true when reset is successful, else returns false
697   */
ice_sriov_poll_reset_status(struct ice_vf * vf)698  static bool ice_sriov_poll_reset_status(struct ice_vf *vf)
699  {
700  	struct ice_pf *pf = vf->pf;
701  	unsigned int i;
702  	u32 reg;
703  
704  	for (i = 0; i < 10; i++) {
705  		/* VF reset requires driver to first reset the VF and then
706  		 * poll the status register to make sure that the reset
707  		 * completed successfully.
708  		 */
709  		reg = rd32(&pf->hw, VPGEN_VFRSTAT(vf->vf_id));
710  		if (reg & VPGEN_VFRSTAT_VFRD_M)
711  			return true;
712  
713  		/* only sleep if the reset is not done */
714  		usleep_range(10, 20);
715  	}
716  	return false;
717  }
718  
719  /**
720   * ice_sriov_clear_reset_trigger - enable VF to access hardware
721   * @vf: VF to enabled hardware access for
722   */
ice_sriov_clear_reset_trigger(struct ice_vf * vf)723  static void ice_sriov_clear_reset_trigger(struct ice_vf *vf)
724  {
725  	struct ice_hw *hw = &vf->pf->hw;
726  	u32 reg;
727  
728  	reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
729  	reg &= ~VPGEN_VFRTRIG_VFSWR_M;
730  	wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
731  	ice_flush(hw);
732  }
733  
734  /**
735   * ice_sriov_create_vsi - Create a new VSI for a VF
736   * @vf: VF to create the VSI for
737   *
738   * This is called by ice_vf_recreate_vsi to create the new VSI after the old
739   * VSI has been released.
740   */
ice_sriov_create_vsi(struct ice_vf * vf)741  static int ice_sriov_create_vsi(struct ice_vf *vf)
742  {
743  	struct ice_vsi *vsi;
744  
745  	vsi = ice_vf_vsi_setup(vf);
746  	if (!vsi)
747  		return -ENOMEM;
748  
749  	return 0;
750  }
751  
752  /**
753   * ice_sriov_post_vsi_rebuild - tasks to do after the VF's VSI have been rebuilt
754   * @vf: VF to perform tasks on
755   */
ice_sriov_post_vsi_rebuild(struct ice_vf * vf)756  static void ice_sriov_post_vsi_rebuild(struct ice_vf *vf)
757  {
758  	ice_ena_vf_mappings(vf);
759  	wr32(&vf->pf->hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
760  }
761  
762  static const struct ice_vf_ops ice_sriov_vf_ops = {
763  	.reset_type = ICE_VF_RESET,
764  	.free = ice_sriov_free_vf,
765  	.clear_reset_state = ice_sriov_clear_reset_state,
766  	.clear_mbx_register = ice_sriov_clear_mbx_register,
767  	.trigger_reset_register = ice_sriov_trigger_reset_register,
768  	.poll_reset_status = ice_sriov_poll_reset_status,
769  	.clear_reset_trigger = ice_sriov_clear_reset_trigger,
770  	.irq_close = NULL,
771  	.create_vsi = ice_sriov_create_vsi,
772  	.post_vsi_rebuild = ice_sriov_post_vsi_rebuild,
773  };
774  
775  /**
776   * ice_create_vf_entries - Allocate and insert VF entries
777   * @pf: pointer to the PF structure
778   * @num_vfs: the number of VFs to allocate
779   *
780   * Allocate new VF entries and insert them into the hash table. Set some
781   * basic default fields for initializing the new VFs.
782   *
783   * After this function exits, the hash table will have num_vfs entries
784   * inserted.
785   *
786   * Returns 0 on success or an integer error code on failure.
787   */
ice_create_vf_entries(struct ice_pf * pf,u16 num_vfs)788  static int ice_create_vf_entries(struct ice_pf *pf, u16 num_vfs)
789  {
790  	struct ice_vfs *vfs = &pf->vfs;
791  	struct ice_vf *vf;
792  	u16 vf_id;
793  	int err;
794  
795  	lockdep_assert_held(&vfs->table_lock);
796  
797  	for (vf_id = 0; vf_id < num_vfs; vf_id++) {
798  		vf = kzalloc(sizeof(*vf), GFP_KERNEL);
799  		if (!vf) {
800  			err = -ENOMEM;
801  			goto err_free_entries;
802  		}
803  		kref_init(&vf->refcnt);
804  
805  		vf->pf = pf;
806  		vf->vf_id = vf_id;
807  
808  		/* set sriov vf ops for VFs created during SRIOV flow */
809  		vf->vf_ops = &ice_sriov_vf_ops;
810  
811  		ice_initialize_vf_entry(vf);
812  
813  		vf->vf_sw_id = pf->first_sw;
814  
815  		hash_add_rcu(vfs->table, &vf->entry, vf_id);
816  	}
817  
818  	return 0;
819  
820  err_free_entries:
821  	ice_free_vf_entries(pf);
822  	return err;
823  }
824  
825  /**
826   * ice_ena_vfs - enable VFs so they are ready to be used
827   * @pf: pointer to the PF structure
828   * @num_vfs: number of VFs to enable
829   */
ice_ena_vfs(struct ice_pf * pf,u16 num_vfs)830  static int ice_ena_vfs(struct ice_pf *pf, u16 num_vfs)
831  {
832  	struct device *dev = ice_pf_to_dev(pf);
833  	struct ice_hw *hw = &pf->hw;
834  	int ret;
835  
836  	/* Disable global interrupt 0 so we don't try to handle the VFLR. */
837  	wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index),
838  	     ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S);
839  	set_bit(ICE_OICR_INTR_DIS, pf->state);
840  	ice_flush(hw);
841  
842  	ret = pci_enable_sriov(pf->pdev, num_vfs);
843  	if (ret)
844  		goto err_unroll_intr;
845  
846  	mutex_lock(&pf->vfs.table_lock);
847  
848  	ret = ice_set_per_vf_res(pf, num_vfs);
849  	if (ret) {
850  		dev_err(dev, "Not enough resources for %d VFs, err %d. Try with fewer number of VFs\n",
851  			num_vfs, ret);
852  		goto err_unroll_sriov;
853  	}
854  
855  	ret = ice_create_vf_entries(pf, num_vfs);
856  	if (ret) {
857  		dev_err(dev, "Failed to allocate VF entries for %d VFs\n",
858  			num_vfs);
859  		goto err_unroll_sriov;
860  	}
861  
862  	ret = ice_start_vfs(pf);
863  	if (ret) {
864  		dev_err(dev, "Failed to start %d VFs, err %d\n", num_vfs, ret);
865  		ret = -EAGAIN;
866  		goto err_unroll_vf_entries;
867  	}
868  
869  	clear_bit(ICE_VF_DIS, pf->state);
870  
871  	ret = ice_eswitch_configure(pf);
872  	if (ret) {
873  		dev_err(dev, "Failed to configure eswitch, err %d\n", ret);
874  		goto err_unroll_sriov;
875  	}
876  
877  	/* rearm global interrupts */
878  	if (test_and_clear_bit(ICE_OICR_INTR_DIS, pf->state))
879  		ice_irq_dynamic_ena(hw, NULL, NULL);
880  
881  	mutex_unlock(&pf->vfs.table_lock);
882  
883  	return 0;
884  
885  err_unroll_vf_entries:
886  	ice_free_vf_entries(pf);
887  err_unroll_sriov:
888  	mutex_unlock(&pf->vfs.table_lock);
889  	pci_disable_sriov(pf->pdev);
890  err_unroll_intr:
891  	/* rearm interrupts here */
892  	ice_irq_dynamic_ena(hw, NULL, NULL);
893  	clear_bit(ICE_OICR_INTR_DIS, pf->state);
894  	return ret;
895  }
896  
897  /**
898   * ice_pci_sriov_ena - Enable or change number of VFs
899   * @pf: pointer to the PF structure
900   * @num_vfs: number of VFs to allocate
901   *
902   * Returns 0 on success and negative on failure
903   */
ice_pci_sriov_ena(struct ice_pf * pf,int num_vfs)904  static int ice_pci_sriov_ena(struct ice_pf *pf, int num_vfs)
905  {
906  	struct device *dev = ice_pf_to_dev(pf);
907  	int err;
908  
909  	if (!num_vfs) {
910  		ice_free_vfs(pf);
911  		return 0;
912  	}
913  
914  	if (num_vfs > pf->vfs.num_supported) {
915  		dev_err(dev, "Can't enable %d VFs, max VFs supported is %d\n",
916  			num_vfs, pf->vfs.num_supported);
917  		return -EOPNOTSUPP;
918  	}
919  
920  	dev_info(dev, "Enabling %d VFs\n", num_vfs);
921  	err = ice_ena_vfs(pf, num_vfs);
922  	if (err) {
923  		dev_err(dev, "Failed to enable SR-IOV: %d\n", err);
924  		return err;
925  	}
926  
927  	set_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
928  	return 0;
929  }
930  
931  /**
932   * ice_check_sriov_allowed - check if SR-IOV is allowed based on various checks
933   * @pf: PF to enabled SR-IOV on
934   */
ice_check_sriov_allowed(struct ice_pf * pf)935  static int ice_check_sriov_allowed(struct ice_pf *pf)
936  {
937  	struct device *dev = ice_pf_to_dev(pf);
938  
939  	if (!test_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags)) {
940  		dev_err(dev, "This device is not capable of SR-IOV\n");
941  		return -EOPNOTSUPP;
942  	}
943  
944  	if (ice_is_safe_mode(pf)) {
945  		dev_err(dev, "SR-IOV cannot be configured - Device is in Safe Mode\n");
946  		return -EOPNOTSUPP;
947  	}
948  
949  	if (!ice_pf_state_is_nominal(pf)) {
950  		dev_err(dev, "Cannot enable SR-IOV, device not ready\n");
951  		return -EBUSY;
952  	}
953  
954  	return 0;
955  }
956  
957  /**
958   * ice_sriov_configure - Enable or change number of VFs via sysfs
959   * @pdev: pointer to a pci_dev structure
960   * @num_vfs: number of VFs to allocate or 0 to free VFs
961   *
962   * This function is called when the user updates the number of VFs in sysfs. On
963   * success return whatever num_vfs was set to by the caller. Return negative on
964   * failure.
965   */
ice_sriov_configure(struct pci_dev * pdev,int num_vfs)966  int ice_sriov_configure(struct pci_dev *pdev, int num_vfs)
967  {
968  	struct ice_pf *pf = pci_get_drvdata(pdev);
969  	struct device *dev = ice_pf_to_dev(pf);
970  	int err;
971  
972  	err = ice_check_sriov_allowed(pf);
973  	if (err)
974  		return err;
975  
976  	if (!num_vfs) {
977  		if (!pci_vfs_assigned(pdev)) {
978  			ice_free_vfs(pf);
979  			return 0;
980  		}
981  
982  		dev_err(dev, "can't free VFs because some are assigned to VMs.\n");
983  		return -EBUSY;
984  	}
985  
986  	err = ice_pci_sriov_ena(pf, num_vfs);
987  	if (err)
988  		return err;
989  
990  	return num_vfs;
991  }
992  
993  /**
994   * ice_process_vflr_event - Free VF resources via IRQ calls
995   * @pf: pointer to the PF structure
996   *
997   * called from the VFLR IRQ handler to
998   * free up VF resources and state variables
999   */
ice_process_vflr_event(struct ice_pf * pf)1000  void ice_process_vflr_event(struct ice_pf *pf)
1001  {
1002  	struct ice_hw *hw = &pf->hw;
1003  	struct ice_vf *vf;
1004  	unsigned int bkt;
1005  	u32 reg;
1006  
1007  	if (!test_and_clear_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
1008  	    !ice_has_vfs(pf))
1009  		return;
1010  
1011  	mutex_lock(&pf->vfs.table_lock);
1012  	ice_for_each_vf(pf, bkt, vf) {
1013  		u32 reg_idx, bit_idx;
1014  
1015  		reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32;
1016  		bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32;
1017  		/* read GLGEN_VFLRSTAT register to find out the flr VFs */
1018  		reg = rd32(hw, GLGEN_VFLRSTAT(reg_idx));
1019  		if (reg & BIT(bit_idx))
1020  			/* GLGEN_VFLRSTAT bit will be cleared in ice_reset_vf */
1021  			ice_reset_vf(vf, ICE_VF_RESET_VFLR | ICE_VF_RESET_LOCK);
1022  	}
1023  	mutex_unlock(&pf->vfs.table_lock);
1024  }
1025  
1026  /**
1027   * ice_get_vf_from_pfq - get the VF who owns the PF space queue passed in
1028   * @pf: PF used to index all VFs
1029   * @pfq: queue index relative to the PF's function space
1030   *
1031   * If no VF is found who owns the pfq then return NULL, otherwise return a
1032   * pointer to the VF who owns the pfq
1033   *
1034   * If this function returns non-NULL, it acquires a reference count of the VF
1035   * structure. The caller is responsible for calling ice_put_vf() to drop this
1036   * reference.
1037   */
ice_get_vf_from_pfq(struct ice_pf * pf,u16 pfq)1038  static struct ice_vf *ice_get_vf_from_pfq(struct ice_pf *pf, u16 pfq)
1039  {
1040  	struct ice_vf *vf;
1041  	unsigned int bkt;
1042  
1043  	rcu_read_lock();
1044  	ice_for_each_vf_rcu(pf, bkt, vf) {
1045  		struct ice_vsi *vsi;
1046  		u16 rxq_idx;
1047  
1048  		vsi = ice_get_vf_vsi(vf);
1049  		if (!vsi)
1050  			continue;
1051  
1052  		ice_for_each_rxq(vsi, rxq_idx)
1053  			if (vsi->rxq_map[rxq_idx] == pfq) {
1054  				struct ice_vf *found;
1055  
1056  				if (kref_get_unless_zero(&vf->refcnt))
1057  					found = vf;
1058  				else
1059  					found = NULL;
1060  				rcu_read_unlock();
1061  				return found;
1062  			}
1063  	}
1064  	rcu_read_unlock();
1065  
1066  	return NULL;
1067  }
1068  
1069  /**
1070   * ice_globalq_to_pfq - convert from global queue index to PF space queue index
1071   * @pf: PF used for conversion
1072   * @globalq: global queue index used to convert to PF space queue index
1073   */
ice_globalq_to_pfq(struct ice_pf * pf,u32 globalq)1074  static u32 ice_globalq_to_pfq(struct ice_pf *pf, u32 globalq)
1075  {
1076  	return globalq - pf->hw.func_caps.common_cap.rxq_first_id;
1077  }
1078  
1079  /**
1080   * ice_vf_lan_overflow_event - handle LAN overflow event for a VF
1081   * @pf: PF that the LAN overflow event happened on
1082   * @event: structure holding the event information for the LAN overflow event
1083   *
1084   * Determine if the LAN overflow event was caused by a VF queue. If it was not
1085   * caused by a VF, do nothing. If a VF caused this LAN overflow event trigger a
1086   * reset on the offending VF.
1087   */
1088  void
ice_vf_lan_overflow_event(struct ice_pf * pf,struct ice_rq_event_info * event)1089  ice_vf_lan_overflow_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1090  {
1091  	u32 gldcb_rtctq, queue;
1092  	struct ice_vf *vf;
1093  
1094  	gldcb_rtctq = le32_to_cpu(event->desc.params.lan_overflow.prtdcb_ruptq);
1095  	dev_dbg(ice_pf_to_dev(pf), "GLDCB_RTCTQ: 0x%08x\n", gldcb_rtctq);
1096  
1097  	/* event returns device global Rx queue number */
1098  	queue = (gldcb_rtctq & GLDCB_RTCTQ_RXQNUM_M) >>
1099  		GLDCB_RTCTQ_RXQNUM_S;
1100  
1101  	vf = ice_get_vf_from_pfq(pf, ice_globalq_to_pfq(pf, queue));
1102  	if (!vf)
1103  		return;
1104  
1105  	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK);
1106  	ice_put_vf(vf);
1107  }
1108  
1109  /**
1110   * ice_set_vf_spoofchk
1111   * @netdev: network interface device structure
1112   * @vf_id: VF identifier
1113   * @ena: flag to enable or disable feature
1114   *
1115   * Enable or disable VF spoof checking
1116   */
ice_set_vf_spoofchk(struct net_device * netdev,int vf_id,bool ena)1117  int ice_set_vf_spoofchk(struct net_device *netdev, int vf_id, bool ena)
1118  {
1119  	struct ice_netdev_priv *np = netdev_priv(netdev);
1120  	struct ice_pf *pf = np->vsi->back;
1121  	struct ice_vsi *vf_vsi;
1122  	struct device *dev;
1123  	struct ice_vf *vf;
1124  	int ret;
1125  
1126  	dev = ice_pf_to_dev(pf);
1127  
1128  	vf = ice_get_vf_by_id(pf, vf_id);
1129  	if (!vf)
1130  		return -EINVAL;
1131  
1132  	ret = ice_check_vf_ready_for_cfg(vf);
1133  	if (ret)
1134  		goto out_put_vf;
1135  
1136  	vf_vsi = ice_get_vf_vsi(vf);
1137  	if (!vf_vsi) {
1138  		netdev_err(netdev, "VSI %d for VF %d is null\n",
1139  			   vf->lan_vsi_idx, vf->vf_id);
1140  		ret = -EINVAL;
1141  		goto out_put_vf;
1142  	}
1143  
1144  	if (vf_vsi->type != ICE_VSI_VF) {
1145  		netdev_err(netdev, "Type %d of VSI %d for VF %d is no ICE_VSI_VF\n",
1146  			   vf_vsi->type, vf_vsi->vsi_num, vf->vf_id);
1147  		ret = -ENODEV;
1148  		goto out_put_vf;
1149  	}
1150  
1151  	if (ena == vf->spoofchk) {
1152  		dev_dbg(dev, "VF spoofchk already %s\n", ena ? "ON" : "OFF");
1153  		ret = 0;
1154  		goto out_put_vf;
1155  	}
1156  
1157  	ret = ice_vsi_apply_spoofchk(vf_vsi, ena);
1158  	if (ret)
1159  		dev_err(dev, "Failed to set spoofchk %s for VF %d VSI %d\n error %d\n",
1160  			ena ? "ON" : "OFF", vf->vf_id, vf_vsi->vsi_num, ret);
1161  	else
1162  		vf->spoofchk = ena;
1163  
1164  out_put_vf:
1165  	ice_put_vf(vf);
1166  	return ret;
1167  }
1168  
1169  /**
1170   * ice_get_vf_cfg
1171   * @netdev: network interface device structure
1172   * @vf_id: VF identifier
1173   * @ivi: VF configuration structure
1174   *
1175   * return VF configuration
1176   */
1177  int
ice_get_vf_cfg(struct net_device * netdev,int vf_id,struct ifla_vf_info * ivi)1178  ice_get_vf_cfg(struct net_device *netdev, int vf_id, struct ifla_vf_info *ivi)
1179  {
1180  	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1181  	struct ice_vf *vf;
1182  	int ret;
1183  
1184  	vf = ice_get_vf_by_id(pf, vf_id);
1185  	if (!vf)
1186  		return -EINVAL;
1187  
1188  	ret = ice_check_vf_ready_for_cfg(vf);
1189  	if (ret)
1190  		goto out_put_vf;
1191  
1192  	ivi->vf = vf_id;
1193  	ether_addr_copy(ivi->mac, vf->hw_lan_addr);
1194  
1195  	/* VF configuration for VLAN and applicable QoS */
1196  	ivi->vlan = ice_vf_get_port_vlan_id(vf);
1197  	ivi->qos = ice_vf_get_port_vlan_prio(vf);
1198  	if (ice_vf_is_port_vlan_ena(vf))
1199  		ivi->vlan_proto = cpu_to_be16(ice_vf_get_port_vlan_tpid(vf));
1200  
1201  	ivi->trusted = vf->trusted;
1202  	ivi->spoofchk = vf->spoofchk;
1203  	if (!vf->link_forced)
1204  		ivi->linkstate = IFLA_VF_LINK_STATE_AUTO;
1205  	else if (vf->link_up)
1206  		ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE;
1207  	else
1208  		ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE;
1209  	ivi->max_tx_rate = vf->max_tx_rate;
1210  	ivi->min_tx_rate = vf->min_tx_rate;
1211  
1212  out_put_vf:
1213  	ice_put_vf(vf);
1214  	return ret;
1215  }
1216  
1217  /**
1218   * ice_set_vf_mac
1219   * @netdev: network interface device structure
1220   * @vf_id: VF identifier
1221   * @mac: MAC address
1222   *
1223   * program VF MAC address
1224   */
ice_set_vf_mac(struct net_device * netdev,int vf_id,u8 * mac)1225  int ice_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
1226  {
1227  	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1228  	struct ice_vf *vf;
1229  	int ret;
1230  
1231  	if (is_multicast_ether_addr(mac)) {
1232  		netdev_err(netdev, "%pM not a valid unicast address\n", mac);
1233  		return -EINVAL;
1234  	}
1235  
1236  	vf = ice_get_vf_by_id(pf, vf_id);
1237  	if (!vf)
1238  		return -EINVAL;
1239  
1240  	/* nothing left to do, unicast MAC already set */
1241  	if (ether_addr_equal(vf->dev_lan_addr, mac) &&
1242  	    ether_addr_equal(vf->hw_lan_addr, mac)) {
1243  		ret = 0;
1244  		goto out_put_vf;
1245  	}
1246  
1247  	ret = ice_check_vf_ready_for_cfg(vf);
1248  	if (ret)
1249  		goto out_put_vf;
1250  
1251  	mutex_lock(&vf->cfg_lock);
1252  
1253  	/* VF is notified of its new MAC via the PF's response to the
1254  	 * VIRTCHNL_OP_GET_VF_RESOURCES message after the VF has been reset
1255  	 */
1256  	ether_addr_copy(vf->dev_lan_addr, mac);
1257  	ether_addr_copy(vf->hw_lan_addr, mac);
1258  	if (is_zero_ether_addr(mac)) {
1259  		/* VF will send VIRTCHNL_OP_ADD_ETH_ADDR message with its MAC */
1260  		vf->pf_set_mac = false;
1261  		netdev_info(netdev, "Removing MAC on VF %d. VF driver will be reinitialized\n",
1262  			    vf->vf_id);
1263  	} else {
1264  		/* PF will add MAC rule for the VF */
1265  		vf->pf_set_mac = true;
1266  		netdev_info(netdev, "Setting MAC %pM on VF %d. VF driver will be reinitialized\n",
1267  			    mac, vf_id);
1268  	}
1269  
1270  	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1271  	mutex_unlock(&vf->cfg_lock);
1272  
1273  out_put_vf:
1274  	ice_put_vf(vf);
1275  	return ret;
1276  }
1277  
1278  /**
1279   * ice_set_vf_trust
1280   * @netdev: network interface device structure
1281   * @vf_id: VF identifier
1282   * @trusted: Boolean value to enable/disable trusted VF
1283   *
1284   * Enable or disable a given VF as trusted
1285   */
ice_set_vf_trust(struct net_device * netdev,int vf_id,bool trusted)1286  int ice_set_vf_trust(struct net_device *netdev, int vf_id, bool trusted)
1287  {
1288  	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1289  	struct ice_vf *vf;
1290  	int ret;
1291  
1292  	vf = ice_get_vf_by_id(pf, vf_id);
1293  	if (!vf)
1294  		return -EINVAL;
1295  
1296  	if (ice_is_eswitch_mode_switchdev(pf)) {
1297  		dev_info(ice_pf_to_dev(pf), "Trusted VF is forbidden in switchdev mode\n");
1298  		return -EOPNOTSUPP;
1299  	}
1300  
1301  	ret = ice_check_vf_ready_for_cfg(vf);
1302  	if (ret)
1303  		goto out_put_vf;
1304  
1305  	/* Check if already trusted */
1306  	if (trusted == vf->trusted) {
1307  		ret = 0;
1308  		goto out_put_vf;
1309  	}
1310  
1311  	mutex_lock(&vf->cfg_lock);
1312  
1313  	vf->trusted = trusted;
1314  	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1315  	dev_info(ice_pf_to_dev(pf), "VF %u is now %strusted\n",
1316  		 vf_id, trusted ? "" : "un");
1317  
1318  	mutex_unlock(&vf->cfg_lock);
1319  
1320  out_put_vf:
1321  	ice_put_vf(vf);
1322  	return ret;
1323  }
1324  
1325  /**
1326   * ice_set_vf_link_state
1327   * @netdev: network interface device structure
1328   * @vf_id: VF identifier
1329   * @link_state: required link state
1330   *
1331   * Set VF's link state, irrespective of physical link state status
1332   */
ice_set_vf_link_state(struct net_device * netdev,int vf_id,int link_state)1333  int ice_set_vf_link_state(struct net_device *netdev, int vf_id, int link_state)
1334  {
1335  	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1336  	struct ice_vf *vf;
1337  	int ret;
1338  
1339  	vf = ice_get_vf_by_id(pf, vf_id);
1340  	if (!vf)
1341  		return -EINVAL;
1342  
1343  	ret = ice_check_vf_ready_for_cfg(vf);
1344  	if (ret)
1345  		goto out_put_vf;
1346  
1347  	switch (link_state) {
1348  	case IFLA_VF_LINK_STATE_AUTO:
1349  		vf->link_forced = false;
1350  		break;
1351  	case IFLA_VF_LINK_STATE_ENABLE:
1352  		vf->link_forced = true;
1353  		vf->link_up = true;
1354  		break;
1355  	case IFLA_VF_LINK_STATE_DISABLE:
1356  		vf->link_forced = true;
1357  		vf->link_up = false;
1358  		break;
1359  	default:
1360  		ret = -EINVAL;
1361  		goto out_put_vf;
1362  	}
1363  
1364  	ice_vc_notify_vf_link_state(vf);
1365  
1366  out_put_vf:
1367  	ice_put_vf(vf);
1368  	return ret;
1369  }
1370  
1371  /**
1372   * ice_calc_all_vfs_min_tx_rate - calculate cumulative min Tx rate on all VFs
1373   * @pf: PF associated with VFs
1374   */
ice_calc_all_vfs_min_tx_rate(struct ice_pf * pf)1375  static int ice_calc_all_vfs_min_tx_rate(struct ice_pf *pf)
1376  {
1377  	struct ice_vf *vf;
1378  	unsigned int bkt;
1379  	int rate = 0;
1380  
1381  	rcu_read_lock();
1382  	ice_for_each_vf_rcu(pf, bkt, vf)
1383  		rate += vf->min_tx_rate;
1384  	rcu_read_unlock();
1385  
1386  	return rate;
1387  }
1388  
1389  /**
1390   * ice_min_tx_rate_oversubscribed - check if min Tx rate causes oversubscription
1391   * @vf: VF trying to configure min_tx_rate
1392   * @min_tx_rate: min Tx rate in Mbps
1393   *
1394   * Check if the min_tx_rate being passed in will cause oversubscription of total
1395   * min_tx_rate based on the current link speed and all other VFs configured
1396   * min_tx_rate
1397   *
1398   * Return true if the passed min_tx_rate would cause oversubscription, else
1399   * return false
1400   */
1401  static bool
ice_min_tx_rate_oversubscribed(struct ice_vf * vf,int min_tx_rate)1402  ice_min_tx_rate_oversubscribed(struct ice_vf *vf, int min_tx_rate)
1403  {
1404  	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
1405  	int all_vfs_min_tx_rate;
1406  	int link_speed_mbps;
1407  
1408  	if (WARN_ON(!vsi))
1409  		return false;
1410  
1411  	link_speed_mbps = ice_get_link_speed_mbps(vsi);
1412  	all_vfs_min_tx_rate = ice_calc_all_vfs_min_tx_rate(vf->pf);
1413  
1414  	/* this VF's previous rate is being overwritten */
1415  	all_vfs_min_tx_rate -= vf->min_tx_rate;
1416  
1417  	if (all_vfs_min_tx_rate + min_tx_rate > link_speed_mbps) {
1418  		dev_err(ice_pf_to_dev(vf->pf), "min_tx_rate of %d Mbps on VF %u would cause oversubscription of %d Mbps based on the current link speed %d Mbps\n",
1419  			min_tx_rate, vf->vf_id,
1420  			all_vfs_min_tx_rate + min_tx_rate - link_speed_mbps,
1421  			link_speed_mbps);
1422  		return true;
1423  	}
1424  
1425  	return false;
1426  }
1427  
1428  /**
1429   * ice_set_vf_bw - set min/max VF bandwidth
1430   * @netdev: network interface device structure
1431   * @vf_id: VF identifier
1432   * @min_tx_rate: Minimum Tx rate in Mbps
1433   * @max_tx_rate: Maximum Tx rate in Mbps
1434   */
1435  int
ice_set_vf_bw(struct net_device * netdev,int vf_id,int min_tx_rate,int max_tx_rate)1436  ice_set_vf_bw(struct net_device *netdev, int vf_id, int min_tx_rate,
1437  	      int max_tx_rate)
1438  {
1439  	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1440  	struct ice_vsi *vsi;
1441  	struct device *dev;
1442  	struct ice_vf *vf;
1443  	int ret;
1444  
1445  	dev = ice_pf_to_dev(pf);
1446  
1447  	vf = ice_get_vf_by_id(pf, vf_id);
1448  	if (!vf)
1449  		return -EINVAL;
1450  
1451  	ret = ice_check_vf_ready_for_cfg(vf);
1452  	if (ret)
1453  		goto out_put_vf;
1454  
1455  	vsi = ice_get_vf_vsi(vf);
1456  	if (!vsi) {
1457  		ret = -EINVAL;
1458  		goto out_put_vf;
1459  	}
1460  
1461  	if (min_tx_rate && ice_is_dcb_active(pf)) {
1462  		dev_err(dev, "DCB on PF is currently enabled. VF min Tx rate limiting not allowed on this PF.\n");
1463  		ret = -EOPNOTSUPP;
1464  		goto out_put_vf;
1465  	}
1466  
1467  	if (ice_min_tx_rate_oversubscribed(vf, min_tx_rate)) {
1468  		ret = -EINVAL;
1469  		goto out_put_vf;
1470  	}
1471  
1472  	if (vf->min_tx_rate != (unsigned int)min_tx_rate) {
1473  		ret = ice_set_min_bw_limit(vsi, (u64)min_tx_rate * 1000);
1474  		if (ret) {
1475  			dev_err(dev, "Unable to set min-tx-rate for VF %d\n",
1476  				vf->vf_id);
1477  			goto out_put_vf;
1478  		}
1479  
1480  		vf->min_tx_rate = min_tx_rate;
1481  	}
1482  
1483  	if (vf->max_tx_rate != (unsigned int)max_tx_rate) {
1484  		ret = ice_set_max_bw_limit(vsi, (u64)max_tx_rate * 1000);
1485  		if (ret) {
1486  			dev_err(dev, "Unable to set max-tx-rate for VF %d\n",
1487  				vf->vf_id);
1488  			goto out_put_vf;
1489  		}
1490  
1491  		vf->max_tx_rate = max_tx_rate;
1492  	}
1493  
1494  out_put_vf:
1495  	ice_put_vf(vf);
1496  	return ret;
1497  }
1498  
1499  /**
1500   * ice_get_vf_stats - populate some stats for the VF
1501   * @netdev: the netdev of the PF
1502   * @vf_id: the host OS identifier (0-255)
1503   * @vf_stats: pointer to the OS memory to be initialized
1504   */
ice_get_vf_stats(struct net_device * netdev,int vf_id,struct ifla_vf_stats * vf_stats)1505  int ice_get_vf_stats(struct net_device *netdev, int vf_id,
1506  		     struct ifla_vf_stats *vf_stats)
1507  {
1508  	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1509  	struct ice_eth_stats *stats;
1510  	struct ice_vsi *vsi;
1511  	struct ice_vf *vf;
1512  	int ret;
1513  
1514  	vf = ice_get_vf_by_id(pf, vf_id);
1515  	if (!vf)
1516  		return -EINVAL;
1517  
1518  	ret = ice_check_vf_ready_for_cfg(vf);
1519  	if (ret)
1520  		goto out_put_vf;
1521  
1522  	vsi = ice_get_vf_vsi(vf);
1523  	if (!vsi) {
1524  		ret = -EINVAL;
1525  		goto out_put_vf;
1526  	}
1527  
1528  	ice_update_eth_stats(vsi);
1529  	stats = &vsi->eth_stats;
1530  
1531  	memset(vf_stats, 0, sizeof(*vf_stats));
1532  
1533  	vf_stats->rx_packets = stats->rx_unicast + stats->rx_broadcast +
1534  		stats->rx_multicast;
1535  	vf_stats->tx_packets = stats->tx_unicast + stats->tx_broadcast +
1536  		stats->tx_multicast;
1537  	vf_stats->rx_bytes   = stats->rx_bytes;
1538  	vf_stats->tx_bytes   = stats->tx_bytes;
1539  	vf_stats->broadcast  = stats->rx_broadcast;
1540  	vf_stats->multicast  = stats->rx_multicast;
1541  	vf_stats->rx_dropped = stats->rx_discards;
1542  	vf_stats->tx_dropped = stats->tx_discards;
1543  
1544  out_put_vf:
1545  	ice_put_vf(vf);
1546  	return ret;
1547  }
1548  
1549  /**
1550   * ice_is_supported_port_vlan_proto - make sure the vlan_proto is supported
1551   * @hw: hardware structure used to check the VLAN mode
1552   * @vlan_proto: VLAN TPID being checked
1553   *
1554   * If the device is configured in Double VLAN Mode (DVM), then both ETH_P_8021Q
1555   * and ETH_P_8021AD are supported. If the device is configured in Single VLAN
1556   * Mode (SVM), then only ETH_P_8021Q is supported.
1557   */
1558  static bool
ice_is_supported_port_vlan_proto(struct ice_hw * hw,u16 vlan_proto)1559  ice_is_supported_port_vlan_proto(struct ice_hw *hw, u16 vlan_proto)
1560  {
1561  	bool is_supported = false;
1562  
1563  	switch (vlan_proto) {
1564  	case ETH_P_8021Q:
1565  		is_supported = true;
1566  		break;
1567  	case ETH_P_8021AD:
1568  		if (ice_is_dvm_ena(hw))
1569  			is_supported = true;
1570  		break;
1571  	}
1572  
1573  	return is_supported;
1574  }
1575  
1576  /**
1577   * ice_set_vf_port_vlan
1578   * @netdev: network interface device structure
1579   * @vf_id: VF identifier
1580   * @vlan_id: VLAN ID being set
1581   * @qos: priority setting
1582   * @vlan_proto: VLAN protocol
1583   *
1584   * program VF Port VLAN ID and/or QoS
1585   */
1586  int
ice_set_vf_port_vlan(struct net_device * netdev,int vf_id,u16 vlan_id,u8 qos,__be16 vlan_proto)1587  ice_set_vf_port_vlan(struct net_device *netdev, int vf_id, u16 vlan_id, u8 qos,
1588  		     __be16 vlan_proto)
1589  {
1590  	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1591  	u16 local_vlan_proto = ntohs(vlan_proto);
1592  	struct device *dev;
1593  	struct ice_vf *vf;
1594  	int ret;
1595  
1596  	dev = ice_pf_to_dev(pf);
1597  
1598  	if (vlan_id >= VLAN_N_VID || qos > 7) {
1599  		dev_err(dev, "Invalid Port VLAN parameters for VF %d, ID %d, QoS %d\n",
1600  			vf_id, vlan_id, qos);
1601  		return -EINVAL;
1602  	}
1603  
1604  	if (!ice_is_supported_port_vlan_proto(&pf->hw, local_vlan_proto)) {
1605  		dev_err(dev, "VF VLAN protocol 0x%04x is not supported\n",
1606  			local_vlan_proto);
1607  		return -EPROTONOSUPPORT;
1608  	}
1609  
1610  	vf = ice_get_vf_by_id(pf, vf_id);
1611  	if (!vf)
1612  		return -EINVAL;
1613  
1614  	ret = ice_check_vf_ready_for_cfg(vf);
1615  	if (ret)
1616  		goto out_put_vf;
1617  
1618  	if (ice_vf_get_port_vlan_prio(vf) == qos &&
1619  	    ice_vf_get_port_vlan_tpid(vf) == local_vlan_proto &&
1620  	    ice_vf_get_port_vlan_id(vf) == vlan_id) {
1621  		/* duplicate request, so just return success */
1622  		dev_dbg(dev, "Duplicate port VLAN %u, QoS %u, TPID 0x%04x request\n",
1623  			vlan_id, qos, local_vlan_proto);
1624  		ret = 0;
1625  		goto out_put_vf;
1626  	}
1627  
1628  	mutex_lock(&vf->cfg_lock);
1629  
1630  	vf->port_vlan_info = ICE_VLAN(local_vlan_proto, vlan_id, qos);
1631  	if (ice_vf_is_port_vlan_ena(vf))
1632  		dev_info(dev, "Setting VLAN %u, QoS %u, TPID 0x%04x on VF %d\n",
1633  			 vlan_id, qos, local_vlan_proto, vf_id);
1634  	else
1635  		dev_info(dev, "Clearing port VLAN on VF %d\n", vf_id);
1636  
1637  	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1638  	mutex_unlock(&vf->cfg_lock);
1639  
1640  out_put_vf:
1641  	ice_put_vf(vf);
1642  	return ret;
1643  }
1644  
1645  /**
1646   * ice_print_vf_rx_mdd_event - print VF Rx malicious driver detect event
1647   * @vf: pointer to the VF structure
1648   */
ice_print_vf_rx_mdd_event(struct ice_vf * vf)1649  void ice_print_vf_rx_mdd_event(struct ice_vf *vf)
1650  {
1651  	struct ice_pf *pf = vf->pf;
1652  	struct device *dev;
1653  
1654  	dev = ice_pf_to_dev(pf);
1655  
1656  	dev_info(dev, "%d Rx Malicious Driver Detection events detected on PF %d VF %d MAC %pM. mdd-auto-reset-vfs=%s\n",
1657  		 vf->mdd_rx_events.count, pf->hw.pf_id, vf->vf_id,
1658  		 vf->dev_lan_addr,
1659  		 test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)
1660  			  ? "on" : "off");
1661  }
1662  
1663  /**
1664   * ice_print_vfs_mdd_events - print VFs malicious driver detect event
1665   * @pf: pointer to the PF structure
1666   *
1667   * Called from ice_handle_mdd_event to rate limit and print VFs MDD events.
1668   */
ice_print_vfs_mdd_events(struct ice_pf * pf)1669  void ice_print_vfs_mdd_events(struct ice_pf *pf)
1670  {
1671  	struct device *dev = ice_pf_to_dev(pf);
1672  	struct ice_hw *hw = &pf->hw;
1673  	struct ice_vf *vf;
1674  	unsigned int bkt;
1675  
1676  	/* check that there are pending MDD events to print */
1677  	if (!test_and_clear_bit(ICE_MDD_VF_PRINT_PENDING, pf->state))
1678  		return;
1679  
1680  	/* VF MDD event logs are rate limited to one second intervals */
1681  	if (time_is_after_jiffies(pf->vfs.last_printed_mdd_jiffies + HZ * 1))
1682  		return;
1683  
1684  	pf->vfs.last_printed_mdd_jiffies = jiffies;
1685  
1686  	mutex_lock(&pf->vfs.table_lock);
1687  	ice_for_each_vf(pf, bkt, vf) {
1688  		/* only print Rx MDD event message if there are new events */
1689  		if (vf->mdd_rx_events.count != vf->mdd_rx_events.last_printed) {
1690  			vf->mdd_rx_events.last_printed =
1691  							vf->mdd_rx_events.count;
1692  			ice_print_vf_rx_mdd_event(vf);
1693  		}
1694  
1695  		/* only print Tx MDD event message if there are new events */
1696  		if (vf->mdd_tx_events.count != vf->mdd_tx_events.last_printed) {
1697  			vf->mdd_tx_events.last_printed =
1698  							vf->mdd_tx_events.count;
1699  
1700  			dev_info(dev, "%d Tx Malicious Driver Detection events detected on PF %d VF %d MAC %pM.\n",
1701  				 vf->mdd_tx_events.count, hw->pf_id, vf->vf_id,
1702  				 vf->dev_lan_addr);
1703  		}
1704  	}
1705  	mutex_unlock(&pf->vfs.table_lock);
1706  }
1707  
1708  /**
1709   * ice_restore_all_vfs_msi_state - restore VF MSI state after PF FLR
1710   * @pdev: pointer to a pci_dev structure
1711   *
1712   * Called when recovering from a PF FLR to restore interrupt capability to
1713   * the VFs.
1714   */
ice_restore_all_vfs_msi_state(struct pci_dev * pdev)1715  void ice_restore_all_vfs_msi_state(struct pci_dev *pdev)
1716  {
1717  	u16 vf_id;
1718  	int pos;
1719  
1720  	if (!pci_num_vf(pdev))
1721  		return;
1722  
1723  	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
1724  	if (pos) {
1725  		struct pci_dev *vfdev;
1726  
1727  		pci_read_config_word(pdev, pos + PCI_SRIOV_VF_DID,
1728  				     &vf_id);
1729  		vfdev = pci_get_device(pdev->vendor, vf_id, NULL);
1730  		while (vfdev) {
1731  			if (vfdev->is_virtfn && vfdev->physfn == pdev)
1732  				pci_restore_msi_state(vfdev);
1733  			vfdev = pci_get_device(pdev->vendor, vf_id,
1734  					       vfdev);
1735  		}
1736  	}
1737  }
1738