xref: /openbmc/linux/drivers/net/can/ctucanfd/ctucanfd_base.c (revision fd5e9fccbd504c5179ab57ff695c610bca8809d6)
1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*******************************************************************************
3   *
4   * CTU CAN FD IP Core
5   *
6   * Copyright (C) 2015-2018 Ondrej Ille <ondrej.ille@gmail.com> FEE CTU
7   * Copyright (C) 2018-2021 Ondrej Ille <ondrej.ille@gmail.com> self-funded
8   * Copyright (C) 2018-2019 Martin Jerabek <martin.jerabek01@gmail.com> FEE CTU
9   * Copyright (C) 2018-2022 Pavel Pisa <pisa@cmp.felk.cvut.cz> FEE CTU/self-funded
10   *
11   * Project advisors:
12   *     Jiri Novak <jnovak@fel.cvut.cz>
13   *     Pavel Pisa <pisa@cmp.felk.cvut.cz>
14   *
15   * Department of Measurement         (http://meas.fel.cvut.cz/)
16   * Faculty of Electrical Engineering (http://www.fel.cvut.cz)
17   * Czech Technical University        (http://www.cvut.cz/)
18   ******************************************************************************/
19  
20  #include <linux/clk.h>
21  #include <linux/errno.h>
22  #include <linux/ethtool.h>
23  #include <linux/init.h>
24  #include <linux/bitfield.h>
25  #include <linux/interrupt.h>
26  #include <linux/io.h>
27  #include <linux/kernel.h>
28  #include <linux/module.h>
29  #include <linux/skbuff.h>
30  #include <linux/string.h>
31  #include <linux/types.h>
32  #include <linux/can/error.h>
33  #include <linux/pm_runtime.h>
34  
35  #include "ctucanfd.h"
36  #include "ctucanfd_kregs.h"
37  #include "ctucanfd_kframe.h"
38  
39  #ifdef DEBUG
40  #define  ctucan_netdev_dbg(ndev, args...) \
41  		netdev_dbg(ndev, args)
42  #else
43  #define ctucan_netdev_dbg(...) do { } while (0)
44  #endif
45  
46  #define CTUCANFD_ID 0xCAFD
47  
48  /* TX buffer rotation:
49   * - when a buffer transitions to empty state, rotate order and priorities
50   * - if more buffers seem to transition at the same time, rotate by the number of buffers
51   * - it may be assumed that buffers transition to empty state in FIFO order (because we manage
52   *   priorities that way)
53   * - at frame filling, do not rotate anything, just increment buffer modulo counter
54   */
55  
56  #define CTUCANFD_FLAG_RX_FFW_BUFFERED	1
57  
58  #define CTUCAN_STATE_TO_TEXT_ENTRY(st) \
59  		[st] = #st
60  
61  enum ctucan_txtb_status {
62  	TXT_NOT_EXIST       = 0x0,
63  	TXT_RDY             = 0x1,
64  	TXT_TRAN            = 0x2,
65  	TXT_ABTP            = 0x3,
66  	TXT_TOK             = 0x4,
67  	TXT_ERR             = 0x6,
68  	TXT_ABT             = 0x7,
69  	TXT_ETY             = 0x8,
70  };
71  
72  enum ctucan_txtb_command {
73  	TXT_CMD_SET_EMPTY   = 0x01,
74  	TXT_CMD_SET_READY   = 0x02,
75  	TXT_CMD_SET_ABORT   = 0x04
76  };
77  
78  static const struct can_bittiming_const ctu_can_fd_bit_timing_max = {
79  	.name = "ctu_can_fd",
80  	.tseg1_min = 2,
81  	.tseg1_max = 190,
82  	.tseg2_min = 1,
83  	.tseg2_max = 63,
84  	.sjw_max = 31,
85  	.brp_min = 1,
86  	.brp_max = 8,
87  	.brp_inc = 1,
88  };
89  
90  static const struct can_bittiming_const ctu_can_fd_bit_timing_data_max = {
91  	.name = "ctu_can_fd",
92  	.tseg1_min = 2,
93  	.tseg1_max = 94,
94  	.tseg2_min = 1,
95  	.tseg2_max = 31,
96  	.sjw_max = 31,
97  	.brp_min = 1,
98  	.brp_max = 2,
99  	.brp_inc = 1,
100  };
101  
102  static const char * const ctucan_state_strings[CAN_STATE_MAX] = {
103  	CTUCAN_STATE_TO_TEXT_ENTRY(CAN_STATE_ERROR_ACTIVE),
104  	CTUCAN_STATE_TO_TEXT_ENTRY(CAN_STATE_ERROR_WARNING),
105  	CTUCAN_STATE_TO_TEXT_ENTRY(CAN_STATE_ERROR_PASSIVE),
106  	CTUCAN_STATE_TO_TEXT_ENTRY(CAN_STATE_BUS_OFF),
107  	CTUCAN_STATE_TO_TEXT_ENTRY(CAN_STATE_STOPPED),
108  	CTUCAN_STATE_TO_TEXT_ENTRY(CAN_STATE_SLEEPING)
109  };
110  
ctucan_write32_le(struct ctucan_priv * priv,enum ctu_can_fd_can_registers reg,u32 val)111  static void ctucan_write32_le(struct ctucan_priv *priv,
112  			      enum ctu_can_fd_can_registers reg, u32 val)
113  {
114  	iowrite32(val, priv->mem_base + reg);
115  }
116  
ctucan_write32_be(struct ctucan_priv * priv,enum ctu_can_fd_can_registers reg,u32 val)117  static void ctucan_write32_be(struct ctucan_priv *priv,
118  			      enum ctu_can_fd_can_registers reg, u32 val)
119  {
120  	iowrite32be(val, priv->mem_base + reg);
121  }
122  
ctucan_read32_le(struct ctucan_priv * priv,enum ctu_can_fd_can_registers reg)123  static u32 ctucan_read32_le(struct ctucan_priv *priv,
124  			    enum ctu_can_fd_can_registers reg)
125  {
126  	return ioread32(priv->mem_base + reg);
127  }
128  
ctucan_read32_be(struct ctucan_priv * priv,enum ctu_can_fd_can_registers reg)129  static u32 ctucan_read32_be(struct ctucan_priv *priv,
130  			    enum ctu_can_fd_can_registers reg)
131  {
132  	return ioread32be(priv->mem_base + reg);
133  }
134  
ctucan_write32(struct ctucan_priv * priv,enum ctu_can_fd_can_registers reg,u32 val)135  static void ctucan_write32(struct ctucan_priv *priv, enum ctu_can_fd_can_registers reg, u32 val)
136  {
137  	priv->write_reg(priv, reg, val);
138  }
139  
ctucan_read32(struct ctucan_priv * priv,enum ctu_can_fd_can_registers reg)140  static u32 ctucan_read32(struct ctucan_priv *priv, enum ctu_can_fd_can_registers reg)
141  {
142  	return priv->read_reg(priv, reg);
143  }
144  
ctucan_write_txt_buf(struct ctucan_priv * priv,enum ctu_can_fd_can_registers buf_base,u32 offset,u32 val)145  static void ctucan_write_txt_buf(struct ctucan_priv *priv, enum ctu_can_fd_can_registers buf_base,
146  				 u32 offset, u32 val)
147  {
148  	priv->write_reg(priv, buf_base + offset, val);
149  }
150  
151  #define CTU_CAN_FD_TXTNF(priv) (!!FIELD_GET(REG_STATUS_TXNF, ctucan_read32(priv, CTUCANFD_STATUS)))
152  #define CTU_CAN_FD_ENABLED(priv) (!!FIELD_GET(REG_MODE_ENA, ctucan_read32(priv, CTUCANFD_MODE)))
153  
154  /**
155   * ctucan_state_to_str() - Converts CAN controller state code to corresponding text
156   * @state:	CAN controller state code
157   *
158   * Return: Pointer to string representation of the error state
159   */
ctucan_state_to_str(enum can_state state)160  static const char *ctucan_state_to_str(enum can_state state)
161  {
162  	const char *txt = NULL;
163  
164  	if (state >= 0 && state < CAN_STATE_MAX)
165  		txt = ctucan_state_strings[state];
166  	return txt ? txt : "UNKNOWN";
167  }
168  
169  /**
170   * ctucan_reset() - Issues software reset request to CTU CAN FD
171   * @ndev:	Pointer to net_device structure
172   *
173   * Return: 0 for success, -%ETIMEDOUT if CAN controller does not leave reset
174   */
ctucan_reset(struct net_device * ndev)175  static int ctucan_reset(struct net_device *ndev)
176  {
177  	struct ctucan_priv *priv = netdev_priv(ndev);
178  	int i = 100;
179  
180  	ctucan_write32(priv, CTUCANFD_MODE, REG_MODE_RST);
181  	clear_bit(CTUCANFD_FLAG_RX_FFW_BUFFERED, &priv->drv_flags);
182  
183  	do {
184  		u16 device_id = FIELD_GET(REG_DEVICE_ID_DEVICE_ID,
185  					  ctucan_read32(priv, CTUCANFD_DEVICE_ID));
186  
187  		if (device_id == 0xCAFD)
188  			return 0;
189  		if (!i--) {
190  			netdev_warn(ndev, "device did not leave reset\n");
191  			return -ETIMEDOUT;
192  		}
193  		usleep_range(100, 200);
194  	} while (1);
195  }
196  
197  /**
198   * ctucan_set_btr() - Sets CAN bus bit timing in CTU CAN FD
199   * @ndev:	Pointer to net_device structure
200   * @bt:		Pointer to Bit timing structure
201   * @nominal:	True - Nominal bit timing, False - Data bit timing
202   *
203   * Return: 0 - OK, -%EPERM if controller is enabled
204   */
ctucan_set_btr(struct net_device * ndev,struct can_bittiming * bt,bool nominal)205  static int ctucan_set_btr(struct net_device *ndev, struct can_bittiming *bt, bool nominal)
206  {
207  	struct ctucan_priv *priv = netdev_priv(ndev);
208  	int max_ph1_len = 31;
209  	u32 btr = 0;
210  	u32 prop_seg = bt->prop_seg;
211  	u32 phase_seg1 = bt->phase_seg1;
212  
213  	if (CTU_CAN_FD_ENABLED(priv)) {
214  		netdev_err(ndev, "BUG! Cannot set bittiming - CAN is enabled\n");
215  		return -EPERM;
216  	}
217  
218  	if (nominal)
219  		max_ph1_len = 63;
220  
221  	/* The timing calculation functions have only constraints on tseg1, which is prop_seg +
222  	 * phase1_seg combined. tseg1 is then split in half and stored into prog_seg and phase_seg1.
223  	 * In CTU CAN FD, PROP is 6/7 bits wide but PH1 only 6/5, so we must re-distribute the
224  	 * values here.
225  	 */
226  	if (phase_seg1 > max_ph1_len) {
227  		prop_seg += phase_seg1 - max_ph1_len;
228  		phase_seg1 = max_ph1_len;
229  		bt->prop_seg = prop_seg;
230  		bt->phase_seg1 = phase_seg1;
231  	}
232  
233  	if (nominal) {
234  		btr = FIELD_PREP(REG_BTR_PROP, prop_seg);
235  		btr |= FIELD_PREP(REG_BTR_PH1, phase_seg1);
236  		btr |= FIELD_PREP(REG_BTR_PH2, bt->phase_seg2);
237  		btr |= FIELD_PREP(REG_BTR_BRP, bt->brp);
238  		btr |= FIELD_PREP(REG_BTR_SJW, bt->sjw);
239  
240  		ctucan_write32(priv, CTUCANFD_BTR, btr);
241  	} else {
242  		btr = FIELD_PREP(REG_BTR_FD_PROP_FD, prop_seg);
243  		btr |= FIELD_PREP(REG_BTR_FD_PH1_FD, phase_seg1);
244  		btr |= FIELD_PREP(REG_BTR_FD_PH2_FD, bt->phase_seg2);
245  		btr |= FIELD_PREP(REG_BTR_FD_BRP_FD, bt->brp);
246  		btr |= FIELD_PREP(REG_BTR_FD_SJW_FD, bt->sjw);
247  
248  		ctucan_write32(priv, CTUCANFD_BTR_FD, btr);
249  	}
250  
251  	return 0;
252  }
253  
254  /**
255   * ctucan_set_bittiming() - CAN set nominal bit timing routine
256   * @ndev:	Pointer to net_device structure
257   *
258   * Return: 0 on success, -%EPERM on error
259   */
ctucan_set_bittiming(struct net_device * ndev)260  static int ctucan_set_bittiming(struct net_device *ndev)
261  {
262  	struct ctucan_priv *priv = netdev_priv(ndev);
263  	struct can_bittiming *bt = &priv->can.bittiming;
264  
265  	/* Note that bt may be modified here */
266  	return ctucan_set_btr(ndev, bt, true);
267  }
268  
269  /**
270   * ctucan_set_data_bittiming() - CAN set data bit timing routine
271   * @ndev:	Pointer to net_device structure
272   *
273   * Return: 0 on success, -%EPERM on error
274   */
ctucan_set_data_bittiming(struct net_device * ndev)275  static int ctucan_set_data_bittiming(struct net_device *ndev)
276  {
277  	struct ctucan_priv *priv = netdev_priv(ndev);
278  	struct can_bittiming *dbt = &priv->can.data_bittiming;
279  
280  	/* Note that dbt may be modified here */
281  	return ctucan_set_btr(ndev, dbt, false);
282  }
283  
284  /**
285   * ctucan_set_secondary_sample_point() - Sets secondary sample point in CTU CAN FD
286   * @ndev:	Pointer to net_device structure
287   *
288   * Return: 0 on success, -%EPERM if controller is enabled
289   */
ctucan_set_secondary_sample_point(struct net_device * ndev)290  static int ctucan_set_secondary_sample_point(struct net_device *ndev)
291  {
292  	struct ctucan_priv *priv = netdev_priv(ndev);
293  	struct can_bittiming *dbt = &priv->can.data_bittiming;
294  	int ssp_offset = 0;
295  	u32 ssp_cfg = 0; /* No SSP by default */
296  
297  	if (CTU_CAN_FD_ENABLED(priv)) {
298  		netdev_err(ndev, "BUG! Cannot set SSP - CAN is enabled\n");
299  		return -EPERM;
300  	}
301  
302  	/* Use SSP for bit-rates above 1 Mbits/s */
303  	if (dbt->bitrate > 1000000) {
304  		/* Calculate SSP in minimal time quanta */
305  		ssp_offset = (priv->can.clock.freq / 1000) * dbt->sample_point / dbt->bitrate;
306  
307  		if (ssp_offset > 127) {
308  			netdev_warn(ndev, "SSP offset saturated to 127\n");
309  			ssp_offset = 127;
310  		}
311  
312  		ssp_cfg = FIELD_PREP(REG_TRV_DELAY_SSP_OFFSET, ssp_offset);
313  		ssp_cfg |= FIELD_PREP(REG_TRV_DELAY_SSP_SRC, 0x1);
314  	}
315  
316  	ctucan_write32(priv, CTUCANFD_TRV_DELAY, ssp_cfg);
317  
318  	return 0;
319  }
320  
321  /**
322   * ctucan_set_mode() - Sets CTU CAN FDs mode
323   * @priv:	Pointer to private data
324   * @mode:	Pointer to controller modes to be set
325   */
ctucan_set_mode(struct ctucan_priv * priv,const struct can_ctrlmode * mode)326  static void ctucan_set_mode(struct ctucan_priv *priv, const struct can_ctrlmode *mode)
327  {
328  	u32 mode_reg = ctucan_read32(priv, CTUCANFD_MODE);
329  
330  	mode_reg = (mode->flags & CAN_CTRLMODE_LOOPBACK) ?
331  			(mode_reg | REG_MODE_ILBP) :
332  			(mode_reg & ~REG_MODE_ILBP);
333  
334  	mode_reg = (mode->flags & CAN_CTRLMODE_LISTENONLY) ?
335  			(mode_reg | REG_MODE_BMM) :
336  			(mode_reg & ~REG_MODE_BMM);
337  
338  	mode_reg = (mode->flags & CAN_CTRLMODE_FD) ?
339  			(mode_reg | REG_MODE_FDE) :
340  			(mode_reg & ~REG_MODE_FDE);
341  
342  	mode_reg = (mode->flags & CAN_CTRLMODE_PRESUME_ACK) ?
343  			(mode_reg | REG_MODE_ACF) :
344  			(mode_reg & ~REG_MODE_ACF);
345  
346  	mode_reg = (mode->flags & CAN_CTRLMODE_FD_NON_ISO) ?
347  			(mode_reg | REG_MODE_NISOFD) :
348  			(mode_reg & ~REG_MODE_NISOFD);
349  
350  	/* One shot mode supported indirectly via Retransmit limit */
351  	mode_reg &= ~FIELD_PREP(REG_MODE_RTRTH, 0xF);
352  	mode_reg = (mode->flags & CAN_CTRLMODE_ONE_SHOT) ?
353  			(mode_reg | REG_MODE_RTRLE) :
354  			(mode_reg & ~REG_MODE_RTRLE);
355  
356  	/* Some bits fixed:
357  	 *   TSTM  - Off, User shall not be able to change REC/TEC by hand during operation
358  	 */
359  	mode_reg &= ~REG_MODE_TSTM;
360  
361  	ctucan_write32(priv, CTUCANFD_MODE, mode_reg);
362  }
363  
364  /**
365   * ctucan_chip_start() - This routine starts the driver
366   * @ndev:	Pointer to net_device structure
367   *
368   * Routine expects that chip is in reset state. It setups initial
369   * Tx buffers for FIFO priorities, sets bittiming, enables interrupts,
370   * switches core to operational mode and changes controller
371   * state to %CAN_STATE_STOPPED.
372   *
373   * Return: 0 on success and failure value on error
374   */
ctucan_chip_start(struct net_device * ndev)375  static int ctucan_chip_start(struct net_device *ndev)
376  {
377  	struct ctucan_priv *priv = netdev_priv(ndev);
378  	u32 int_ena, int_msk;
379  	u32 mode_reg;
380  	int err;
381  	struct can_ctrlmode mode;
382  
383  	priv->txb_prio = 0x01234567;
384  	priv->txb_head = 0;
385  	priv->txb_tail = 0;
386  	ctucan_write32(priv, CTUCANFD_TX_PRIORITY, priv->txb_prio);
387  
388  	/* Configure bit-rates and ssp */
389  	err = ctucan_set_bittiming(ndev);
390  	if (err < 0)
391  		return err;
392  
393  	err = ctucan_set_data_bittiming(ndev);
394  	if (err < 0)
395  		return err;
396  
397  	err = ctucan_set_secondary_sample_point(ndev);
398  	if (err < 0)
399  		return err;
400  
401  	/* Configure modes */
402  	mode.flags = priv->can.ctrlmode;
403  	mode.mask = 0xFFFFFFFF;
404  	ctucan_set_mode(priv, &mode);
405  
406  	/* Configure interrupts */
407  	int_ena = REG_INT_STAT_RBNEI |
408  		  REG_INT_STAT_TXBHCI |
409  		  REG_INT_STAT_EWLI |
410  		  REG_INT_STAT_FCSI;
411  
412  	/* Bus error reporting -> Allow Error/Arb.lost interrupts */
413  	if (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) {
414  		int_ena |= REG_INT_STAT_ALI |
415  			   REG_INT_STAT_BEI;
416  	}
417  
418  	int_msk = ~int_ena; /* Mask all disabled interrupts */
419  
420  	/* It's after reset, so there is no need to clear anything */
421  	ctucan_write32(priv, CTUCANFD_INT_MASK_SET, int_msk);
422  	ctucan_write32(priv, CTUCANFD_INT_ENA_SET, int_ena);
423  
424  	/* Controller enters ERROR_ACTIVE on initial FCSI */
425  	priv->can.state = CAN_STATE_STOPPED;
426  
427  	/* Enable the controller */
428  	mode_reg = ctucan_read32(priv, CTUCANFD_MODE);
429  	mode_reg |= REG_MODE_ENA;
430  	ctucan_write32(priv, CTUCANFD_MODE, mode_reg);
431  
432  	return 0;
433  }
434  
435  /**
436   * ctucan_do_set_mode() - Sets mode of the driver
437   * @ndev:	Pointer to net_device structure
438   * @mode:	Tells the mode of the driver
439   *
440   * This check the drivers state and calls the corresponding modes to set.
441   *
442   * Return: 0 on success and failure value on error
443   */
ctucan_do_set_mode(struct net_device * ndev,enum can_mode mode)444  static int ctucan_do_set_mode(struct net_device *ndev, enum can_mode mode)
445  {
446  	int ret;
447  
448  	switch (mode) {
449  	case CAN_MODE_START:
450  		ret = ctucan_reset(ndev);
451  		if (ret < 0)
452  			return ret;
453  		ret = ctucan_chip_start(ndev);
454  		if (ret < 0) {
455  			netdev_err(ndev, "ctucan_chip_start failed!\n");
456  			return ret;
457  		}
458  		netif_wake_queue(ndev);
459  		break;
460  	default:
461  		ret = -EOPNOTSUPP;
462  		break;
463  	}
464  
465  	return ret;
466  }
467  
468  /**
469   * ctucan_get_tx_status() - Gets status of TXT buffer
470   * @priv:	Pointer to private data
471   * @buf:	Buffer index (0-based)
472   *
473   * Return: Status of TXT buffer
474   */
ctucan_get_tx_status(struct ctucan_priv * priv,u8 buf)475  static enum ctucan_txtb_status ctucan_get_tx_status(struct ctucan_priv *priv, u8 buf)
476  {
477  	u32 tx_status = ctucan_read32(priv, CTUCANFD_TX_STATUS);
478  	enum ctucan_txtb_status status = (tx_status >> (buf * 4)) & 0x7;
479  
480  	return status;
481  }
482  
483  /**
484   * ctucan_is_txt_buf_writable() - Checks if frame can be inserted to TXT Buffer
485   * @priv:	Pointer to private data
486   * @buf:	Buffer index (0-based)
487   *
488   * Return: True - Frame can be inserted to TXT Buffer, False - If attempted, frame will not be
489   *	   inserted to TXT Buffer
490   */
ctucan_is_txt_buf_writable(struct ctucan_priv * priv,u8 buf)491  static bool ctucan_is_txt_buf_writable(struct ctucan_priv *priv, u8 buf)
492  {
493  	enum ctucan_txtb_status buf_status;
494  
495  	buf_status = ctucan_get_tx_status(priv, buf);
496  	if (buf_status == TXT_RDY || buf_status == TXT_TRAN || buf_status == TXT_ABTP)
497  		return false;
498  
499  	return true;
500  }
501  
502  /**
503   * ctucan_insert_frame() - Inserts frame to TXT buffer
504   * @priv:	Pointer to private data
505   * @cf:		Pointer to CAN frame to be inserted
506   * @buf:	TXT Buffer index to which frame is inserted (0-based)
507   * @isfdf:	True - CAN FD Frame, False - CAN 2.0 Frame
508   *
509   * Return: True - Frame inserted successfully
510   *	   False - Frame was not inserted due to one of:
511   *			1. TXT Buffer is not writable (it is in wrong state)
512   *			2. Invalid TXT buffer index
513   *			3. Invalid frame length
514   */
ctucan_insert_frame(struct ctucan_priv * priv,const struct canfd_frame * cf,u8 buf,bool isfdf)515  static bool ctucan_insert_frame(struct ctucan_priv *priv, const struct canfd_frame *cf, u8 buf,
516  				bool isfdf)
517  {
518  	u32 buf_base;
519  	u32 ffw = 0;
520  	u32 idw = 0;
521  	unsigned int i;
522  
523  	if (buf >= priv->ntxbufs)
524  		return false;
525  
526  	if (!ctucan_is_txt_buf_writable(priv, buf))
527  		return false;
528  
529  	if (cf->len > CANFD_MAX_DLEN)
530  		return false;
531  
532  	/* Prepare Frame format */
533  	if (cf->can_id & CAN_RTR_FLAG)
534  		ffw |= REG_FRAME_FORMAT_W_RTR;
535  
536  	if (cf->can_id & CAN_EFF_FLAG)
537  		ffw |= REG_FRAME_FORMAT_W_IDE;
538  
539  	if (isfdf) {
540  		ffw |= REG_FRAME_FORMAT_W_FDF;
541  		if (cf->flags & CANFD_BRS)
542  			ffw |= REG_FRAME_FORMAT_W_BRS;
543  	}
544  
545  	ffw |= FIELD_PREP(REG_FRAME_FORMAT_W_DLC, can_fd_len2dlc(cf->len));
546  
547  	/* Prepare identifier */
548  	if (cf->can_id & CAN_EFF_FLAG)
549  		idw = cf->can_id & CAN_EFF_MASK;
550  	else
551  		idw = FIELD_PREP(REG_IDENTIFIER_W_IDENTIFIER_BASE, cf->can_id & CAN_SFF_MASK);
552  
553  	/* Write ID, Frame format, Don't write timestamp -> Time triggered transmission disabled */
554  	buf_base = (buf + 1) * 0x100;
555  	ctucan_write_txt_buf(priv, buf_base, CTUCANFD_FRAME_FORMAT_W, ffw);
556  	ctucan_write_txt_buf(priv, buf_base, CTUCANFD_IDENTIFIER_W, idw);
557  
558  	/* Write Data payload */
559  	if (!(cf->can_id & CAN_RTR_FLAG)) {
560  		for (i = 0; i < cf->len; i += 4) {
561  			u32 data = le32_to_cpu(*(__le32 *)(cf->data + i));
562  
563  			ctucan_write_txt_buf(priv, buf_base, CTUCANFD_DATA_1_4_W + i, data);
564  		}
565  	}
566  
567  	return true;
568  }
569  
570  /**
571   * ctucan_give_txtb_cmd() - Applies command on TXT buffer
572   * @priv:	Pointer to private data
573   * @cmd:	Command to give
574   * @buf:	Buffer index (0-based)
575   */
ctucan_give_txtb_cmd(struct ctucan_priv * priv,enum ctucan_txtb_command cmd,u8 buf)576  static void ctucan_give_txtb_cmd(struct ctucan_priv *priv, enum ctucan_txtb_command cmd, u8 buf)
577  {
578  	u32 tx_cmd = cmd;
579  
580  	tx_cmd |= 1 << (buf + 8);
581  	ctucan_write32(priv, CTUCANFD_TX_COMMAND, tx_cmd);
582  }
583  
584  /**
585   * ctucan_start_xmit() - Starts the transmission
586   * @skb:	sk_buff pointer that contains data to be Txed
587   * @ndev:	Pointer to net_device structure
588   *
589   * Invoked from upper layers to initiate transmission. Uses the next available free TXT Buffer and
590   * populates its fields to start the transmission.
591   *
592   * Return: %NETDEV_TX_OK on success, %NETDEV_TX_BUSY when no free TXT buffer is available,
593   *         negative return values reserved for error cases
594   */
ctucan_start_xmit(struct sk_buff * skb,struct net_device * ndev)595  static netdev_tx_t ctucan_start_xmit(struct sk_buff *skb, struct net_device *ndev)
596  {
597  	struct ctucan_priv *priv = netdev_priv(ndev);
598  	struct canfd_frame *cf = (struct canfd_frame *)skb->data;
599  	u32 txtb_id;
600  	bool ok;
601  	unsigned long flags;
602  
603  	if (can_dev_dropped_skb(ndev, skb))
604  		return NETDEV_TX_OK;
605  
606  	if (unlikely(!CTU_CAN_FD_TXTNF(priv))) {
607  		netif_stop_queue(ndev);
608  		netdev_err(ndev, "BUG!, no TXB free when queue awake!\n");
609  		return NETDEV_TX_BUSY;
610  	}
611  
612  	txtb_id = priv->txb_head % priv->ntxbufs;
613  	ctucan_netdev_dbg(ndev, "%s: using TXB#%u\n", __func__, txtb_id);
614  	ok = ctucan_insert_frame(priv, cf, txtb_id, can_is_canfd_skb(skb));
615  
616  	if (!ok) {
617  		netdev_err(ndev, "BUG! TXNF set but cannot insert frame into TXTB! HW Bug?");
618  		kfree_skb(skb);
619  		ndev->stats.tx_dropped++;
620  		return NETDEV_TX_OK;
621  	}
622  
623  	can_put_echo_skb(skb, ndev, txtb_id, 0);
624  
625  	spin_lock_irqsave(&priv->tx_lock, flags);
626  	ctucan_give_txtb_cmd(priv, TXT_CMD_SET_READY, txtb_id);
627  	priv->txb_head++;
628  
629  	/* Check if all TX buffers are full */
630  	if (!CTU_CAN_FD_TXTNF(priv))
631  		netif_stop_queue(ndev);
632  
633  	spin_unlock_irqrestore(&priv->tx_lock, flags);
634  
635  	return NETDEV_TX_OK;
636  }
637  
638  /**
639   * ctucan_read_rx_frame() - Reads frame from RX FIFO
640   * @priv:	Pointer to CTU CAN FD's private data
641   * @cf:		Pointer to CAN frame struct
642   * @ffw:	Previously read frame format word
643   *
644   * Note: Frame format word must be read separately and provided in 'ffw'.
645   */
ctucan_read_rx_frame(struct ctucan_priv * priv,struct canfd_frame * cf,u32 ffw)646  static void ctucan_read_rx_frame(struct ctucan_priv *priv, struct canfd_frame *cf, u32 ffw)
647  {
648  	u32 idw;
649  	unsigned int i;
650  	unsigned int wc;
651  	unsigned int len;
652  
653  	idw = ctucan_read32(priv, CTUCANFD_RX_DATA);
654  	if (FIELD_GET(REG_FRAME_FORMAT_W_IDE, ffw))
655  		cf->can_id = (idw & CAN_EFF_MASK) | CAN_EFF_FLAG;
656  	else
657  		cf->can_id = (idw >> 18) & CAN_SFF_MASK;
658  
659  	/* BRS, ESI, RTR Flags */
660  	if (FIELD_GET(REG_FRAME_FORMAT_W_FDF, ffw)) {
661  		if (FIELD_GET(REG_FRAME_FORMAT_W_BRS, ffw))
662  			cf->flags |= CANFD_BRS;
663  		if (FIELD_GET(REG_FRAME_FORMAT_W_ESI_RSV, ffw))
664  			cf->flags |= CANFD_ESI;
665  	} else if (FIELD_GET(REG_FRAME_FORMAT_W_RTR, ffw)) {
666  		cf->can_id |= CAN_RTR_FLAG;
667  	}
668  
669  	wc = FIELD_GET(REG_FRAME_FORMAT_W_RWCNT, ffw) - 3;
670  
671  	/* DLC */
672  	if (FIELD_GET(REG_FRAME_FORMAT_W_DLC, ffw) <= 8) {
673  		len = FIELD_GET(REG_FRAME_FORMAT_W_DLC, ffw);
674  	} else {
675  		if (FIELD_GET(REG_FRAME_FORMAT_W_FDF, ffw))
676  			len = wc << 2;
677  		else
678  			len = 8;
679  	}
680  	cf->len = len;
681  	if (unlikely(len > wc * 4))
682  		len = wc * 4;
683  
684  	/* Timestamp - Read and throw away */
685  	ctucan_read32(priv, CTUCANFD_RX_DATA);
686  	ctucan_read32(priv, CTUCANFD_RX_DATA);
687  
688  	/* Data */
689  	for (i = 0; i < len; i += 4) {
690  		u32 data = ctucan_read32(priv, CTUCANFD_RX_DATA);
691  		*(__le32 *)(cf->data + i) = cpu_to_le32(data);
692  	}
693  	while (unlikely(i < wc * 4)) {
694  		ctucan_read32(priv, CTUCANFD_RX_DATA);
695  		i += 4;
696  	}
697  }
698  
699  /**
700   * ctucan_rx() -  Called from CAN ISR to complete the received frame processing
701   * @ndev:	Pointer to net_device structure
702   *
703   * This function is invoked from the CAN isr(poll) to process the Rx frames. It does minimal
704   * processing and invokes "netif_receive_skb" to complete further processing.
705   * Return: 1 when frame is passed to the network layer, 0 when the first frame word is read but
706   *	   system is out of free SKBs temporally and left code to resolve SKB allocation later,
707   *         -%EAGAIN in a case of empty Rx FIFO.
708   */
ctucan_rx(struct net_device * ndev)709  static int ctucan_rx(struct net_device *ndev)
710  {
711  	struct ctucan_priv *priv = netdev_priv(ndev);
712  	struct net_device_stats *stats = &ndev->stats;
713  	struct canfd_frame *cf;
714  	struct sk_buff *skb;
715  	u32 ffw;
716  
717  	if (test_bit(CTUCANFD_FLAG_RX_FFW_BUFFERED, &priv->drv_flags)) {
718  		ffw = priv->rxfrm_first_word;
719  		clear_bit(CTUCANFD_FLAG_RX_FFW_BUFFERED, &priv->drv_flags);
720  	} else {
721  		ffw = ctucan_read32(priv, CTUCANFD_RX_DATA);
722  	}
723  
724  	if (!FIELD_GET(REG_FRAME_FORMAT_W_RWCNT, ffw))
725  		return -EAGAIN;
726  
727  	if (FIELD_GET(REG_FRAME_FORMAT_W_FDF, ffw))
728  		skb = alloc_canfd_skb(ndev, &cf);
729  	else
730  		skb = alloc_can_skb(ndev, (struct can_frame **)&cf);
731  
732  	if (unlikely(!skb)) {
733  		priv->rxfrm_first_word = ffw;
734  		set_bit(CTUCANFD_FLAG_RX_FFW_BUFFERED, &priv->drv_flags);
735  		return 0;
736  	}
737  
738  	ctucan_read_rx_frame(priv, cf, ffw);
739  
740  	stats->rx_bytes += cf->len;
741  	stats->rx_packets++;
742  	netif_receive_skb(skb);
743  
744  	return 1;
745  }
746  
747  /**
748   * ctucan_read_fault_state() - Reads CTU CAN FDs fault confinement state.
749   * @priv:	Pointer to private data
750   *
751   * Returns: Fault confinement state of controller
752   */
ctucan_read_fault_state(struct ctucan_priv * priv)753  static enum can_state ctucan_read_fault_state(struct ctucan_priv *priv)
754  {
755  	u32 fs;
756  	u32 rec_tec;
757  	u32 ewl;
758  
759  	fs = ctucan_read32(priv, CTUCANFD_EWL);
760  	rec_tec = ctucan_read32(priv, CTUCANFD_REC);
761  	ewl = FIELD_GET(REG_EWL_EW_LIMIT, fs);
762  
763  	if (FIELD_GET(REG_EWL_ERA, fs)) {
764  		if (ewl > FIELD_GET(REG_REC_REC_VAL, rec_tec) &&
765  		    ewl > FIELD_GET(REG_REC_TEC_VAL, rec_tec))
766  			return CAN_STATE_ERROR_ACTIVE;
767  		else
768  			return CAN_STATE_ERROR_WARNING;
769  	} else if (FIELD_GET(REG_EWL_ERP, fs)) {
770  		return CAN_STATE_ERROR_PASSIVE;
771  	} else if (FIELD_GET(REG_EWL_BOF, fs)) {
772  		return CAN_STATE_BUS_OFF;
773  	}
774  
775  	WARN(true, "Invalid error state");
776  	return CAN_STATE_ERROR_PASSIVE;
777  }
778  
779  /**
780   * ctucan_get_rec_tec() - Reads REC/TEC counter values from controller
781   * @priv:	Pointer to private data
782   * @bec:	Pointer to Error counter structure
783   */
ctucan_get_rec_tec(struct ctucan_priv * priv,struct can_berr_counter * bec)784  static void ctucan_get_rec_tec(struct ctucan_priv *priv, struct can_berr_counter *bec)
785  {
786  	u32 err_ctrs = ctucan_read32(priv, CTUCANFD_REC);
787  
788  	bec->rxerr = FIELD_GET(REG_REC_REC_VAL, err_ctrs);
789  	bec->txerr = FIELD_GET(REG_REC_TEC_VAL, err_ctrs);
790  }
791  
792  /**
793   * ctucan_err_interrupt() - Error frame ISR
794   * @ndev:	net_device pointer
795   * @isr:	interrupt status register value
796   *
797   * This is the CAN error interrupt and it will check the type of error and forward the error
798   * frame to upper layers.
799   */
ctucan_err_interrupt(struct net_device * ndev,u32 isr)800  static void ctucan_err_interrupt(struct net_device *ndev, u32 isr)
801  {
802  	struct ctucan_priv *priv = netdev_priv(ndev);
803  	struct net_device_stats *stats = &ndev->stats;
804  	struct can_frame *cf;
805  	struct sk_buff *skb;
806  	enum can_state state;
807  	struct can_berr_counter bec;
808  	u32 err_capt_alc;
809  	int dologerr = net_ratelimit();
810  
811  	ctucan_get_rec_tec(priv, &bec);
812  	state = ctucan_read_fault_state(priv);
813  	err_capt_alc = ctucan_read32(priv, CTUCANFD_ERR_CAPT);
814  
815  	if (dologerr)
816  		netdev_info(ndev, "%s: ISR = 0x%08x, rxerr %d, txerr %d, error type %lu, pos %lu, ALC id_field %lu, bit %lu\n",
817  			    __func__, isr, bec.rxerr, bec.txerr,
818  			    FIELD_GET(REG_ERR_CAPT_ERR_TYPE, err_capt_alc),
819  			    FIELD_GET(REG_ERR_CAPT_ERR_POS, err_capt_alc),
820  			    FIELD_GET(REG_ERR_CAPT_ALC_ID_FIELD, err_capt_alc),
821  			    FIELD_GET(REG_ERR_CAPT_ALC_BIT, err_capt_alc));
822  
823  	skb = alloc_can_err_skb(ndev, &cf);
824  
825  	/* EWLI: error warning limit condition met
826  	 * FCSI: fault confinement state changed
827  	 * ALI:  arbitration lost (just informative)
828  	 * BEI:  bus error interrupt
829  	 */
830  	if (FIELD_GET(REG_INT_STAT_FCSI, isr) || FIELD_GET(REG_INT_STAT_EWLI, isr)) {
831  		netdev_info(ndev, "state changes from %s to %s\n",
832  			    ctucan_state_to_str(priv->can.state),
833  			    ctucan_state_to_str(state));
834  
835  		if (priv->can.state == state)
836  			netdev_warn(ndev,
837  				    "current and previous state is the same! (missed interrupt?)\n");
838  
839  		priv->can.state = state;
840  		switch (state) {
841  		case CAN_STATE_BUS_OFF:
842  			priv->can.can_stats.bus_off++;
843  			can_bus_off(ndev);
844  			if (skb)
845  				cf->can_id |= CAN_ERR_BUSOFF;
846  			break;
847  		case CAN_STATE_ERROR_PASSIVE:
848  			priv->can.can_stats.error_passive++;
849  			if (skb) {
850  				cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
851  				cf->data[1] = (bec.rxerr > 127) ?
852  						CAN_ERR_CRTL_RX_PASSIVE :
853  						CAN_ERR_CRTL_TX_PASSIVE;
854  				cf->data[6] = bec.txerr;
855  				cf->data[7] = bec.rxerr;
856  			}
857  			break;
858  		case CAN_STATE_ERROR_WARNING:
859  			priv->can.can_stats.error_warning++;
860  			if (skb) {
861  				cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
862  				cf->data[1] |= (bec.txerr > bec.rxerr) ?
863  					CAN_ERR_CRTL_TX_WARNING :
864  					CAN_ERR_CRTL_RX_WARNING;
865  				cf->data[6] = bec.txerr;
866  				cf->data[7] = bec.rxerr;
867  			}
868  			break;
869  		case CAN_STATE_ERROR_ACTIVE:
870  			if (skb) {
871  				cf->can_id |= CAN_ERR_CNT;
872  				cf->data[1] = CAN_ERR_CRTL_ACTIVE;
873  				cf->data[6] = bec.txerr;
874  				cf->data[7] = bec.rxerr;
875  			}
876  			break;
877  		default:
878  			netdev_warn(ndev, "unhandled error state (%d:%s)!\n",
879  				    state, ctucan_state_to_str(state));
880  			break;
881  		}
882  	}
883  
884  	/* Check for Arbitration Lost interrupt */
885  	if (FIELD_GET(REG_INT_STAT_ALI, isr)) {
886  		if (dologerr)
887  			netdev_info(ndev, "arbitration lost\n");
888  		priv->can.can_stats.arbitration_lost++;
889  		if (skb) {
890  			cf->can_id |= CAN_ERR_LOSTARB;
891  			cf->data[0] = CAN_ERR_LOSTARB_UNSPEC;
892  		}
893  	}
894  
895  	/* Check for Bus Error interrupt */
896  	if (FIELD_GET(REG_INT_STAT_BEI, isr)) {
897  		netdev_info(ndev, "bus error\n");
898  		priv->can.can_stats.bus_error++;
899  		stats->rx_errors++;
900  		if (skb) {
901  			cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
902  			cf->data[2] = CAN_ERR_PROT_UNSPEC;
903  			cf->data[3] = CAN_ERR_PROT_LOC_UNSPEC;
904  		}
905  	}
906  
907  	if (skb) {
908  		stats->rx_packets++;
909  		stats->rx_bytes += cf->can_dlc;
910  		netif_rx(skb);
911  	}
912  }
913  
914  /**
915   * ctucan_rx_poll() - Poll routine for rx packets (NAPI)
916   * @napi:	NAPI structure pointer
917   * @quota:	Max number of rx packets to be processed.
918   *
919   * This is the poll routine for rx part. It will process the packets maximux quota value.
920   *
921   * Return: Number of packets received
922   */
ctucan_rx_poll(struct napi_struct * napi,int quota)923  static int ctucan_rx_poll(struct napi_struct *napi, int quota)
924  {
925  	struct net_device *ndev = napi->dev;
926  	struct ctucan_priv *priv = netdev_priv(ndev);
927  	int work_done = 0;
928  	u32 status;
929  	u32 framecnt;
930  	int res = 1;
931  
932  	framecnt = FIELD_GET(REG_RX_STATUS_RXFRC, ctucan_read32(priv, CTUCANFD_RX_STATUS));
933  	while (framecnt && work_done < quota && res > 0) {
934  		res = ctucan_rx(ndev);
935  		work_done++;
936  		framecnt = FIELD_GET(REG_RX_STATUS_RXFRC, ctucan_read32(priv, CTUCANFD_RX_STATUS));
937  	}
938  
939  	/* Check for RX FIFO Overflow */
940  	status = ctucan_read32(priv, CTUCANFD_STATUS);
941  	if (FIELD_GET(REG_STATUS_DOR, status)) {
942  		struct net_device_stats *stats = &ndev->stats;
943  		struct can_frame *cf;
944  		struct sk_buff *skb;
945  
946  		netdev_info(ndev, "rx_poll: rx fifo overflow\n");
947  		stats->rx_over_errors++;
948  		stats->rx_errors++;
949  		skb = alloc_can_err_skb(ndev, &cf);
950  		if (skb) {
951  			cf->can_id |= CAN_ERR_CRTL;
952  			cf->data[1] |= CAN_ERR_CRTL_RX_OVERFLOW;
953  			stats->rx_packets++;
954  			stats->rx_bytes += cf->can_dlc;
955  			netif_rx(skb);
956  		}
957  
958  		/* Clear Data Overrun */
959  		ctucan_write32(priv, CTUCANFD_COMMAND, REG_COMMAND_CDO);
960  	}
961  
962  	if (!framecnt && res != 0) {
963  		if (napi_complete_done(napi, work_done)) {
964  			/* Clear and enable RBNEI. It is level-triggered, so
965  			 * there is no race condition.
966  			 */
967  			ctucan_write32(priv, CTUCANFD_INT_STAT, REG_INT_STAT_RBNEI);
968  			ctucan_write32(priv, CTUCANFD_INT_MASK_CLR, REG_INT_STAT_RBNEI);
969  		}
970  	}
971  
972  	return work_done;
973  }
974  
975  /**
976   * ctucan_rotate_txb_prio() - Rotates priorities of TXT Buffers
977   * @ndev:	net_device pointer
978   */
ctucan_rotate_txb_prio(struct net_device * ndev)979  static void ctucan_rotate_txb_prio(struct net_device *ndev)
980  {
981  	struct ctucan_priv *priv = netdev_priv(ndev);
982  	u32 prio = priv->txb_prio;
983  
984  	prio = (prio << 4) | ((prio >> ((priv->ntxbufs - 1) * 4)) & 0xF);
985  	ctucan_netdev_dbg(ndev, "%s: from 0x%08x to 0x%08x\n", __func__, priv->txb_prio, prio);
986  	priv->txb_prio = prio;
987  	ctucan_write32(priv, CTUCANFD_TX_PRIORITY, prio);
988  }
989  
990  /**
991   * ctucan_tx_interrupt() - Tx done Isr
992   * @ndev:	net_device pointer
993   */
ctucan_tx_interrupt(struct net_device * ndev)994  static void ctucan_tx_interrupt(struct net_device *ndev)
995  {
996  	struct ctucan_priv *priv = netdev_priv(ndev);
997  	struct net_device_stats *stats = &ndev->stats;
998  	bool first = true;
999  	bool some_buffers_processed;
1000  	unsigned long flags;
1001  	enum ctucan_txtb_status txtb_status;
1002  	u32 txtb_id;
1003  
1004  	/*  read tx_status
1005  	 *  if txb[n].finished (bit 2)
1006  	 *	if ok -> echo
1007  	 *	if error / aborted -> ?? (find how to handle oneshot mode)
1008  	 *	txb_tail++
1009  	 */
1010  	do {
1011  		spin_lock_irqsave(&priv->tx_lock, flags);
1012  
1013  		some_buffers_processed = false;
1014  		while ((int)(priv->txb_head - priv->txb_tail) > 0) {
1015  			txtb_id = priv->txb_tail % priv->ntxbufs;
1016  			txtb_status = ctucan_get_tx_status(priv, txtb_id);
1017  
1018  			ctucan_netdev_dbg(ndev, "TXI: TXB#%u: status 0x%x\n", txtb_id, txtb_status);
1019  
1020  			switch (txtb_status) {
1021  			case TXT_TOK:
1022  				ctucan_netdev_dbg(ndev, "TXT_OK\n");
1023  				stats->tx_bytes += can_get_echo_skb(ndev, txtb_id, NULL);
1024  				stats->tx_packets++;
1025  				break;
1026  			case TXT_ERR:
1027  				/* This indicated that retransmit limit has been reached. Obviously
1028  				 * we should not echo the frame, but also not indicate any kind of
1029  				 * error. If desired, it was already reported (possible multiple
1030  				 * times) on each arbitration lost.
1031  				 */
1032  				netdev_warn(ndev, "TXB in Error state\n");
1033  				can_free_echo_skb(ndev, txtb_id, NULL);
1034  				stats->tx_dropped++;
1035  				break;
1036  			case TXT_ABT:
1037  				/* Same as for TXT_ERR, only with different cause. We *could*
1038  				 * re-queue the frame, but multiqueue/abort is not supported yet
1039  				 * anyway.
1040  				 */
1041  				netdev_warn(ndev, "TXB in Aborted state\n");
1042  				can_free_echo_skb(ndev, txtb_id, NULL);
1043  				stats->tx_dropped++;
1044  				break;
1045  			default:
1046  				/* Bug only if the first buffer is not finished, otherwise it is
1047  				 * pretty much expected.
1048  				 */
1049  				if (first) {
1050  					netdev_err(ndev,
1051  						   "BUG: TXB#%u not in a finished state (0x%x)!\n",
1052  						   txtb_id, txtb_status);
1053  					spin_unlock_irqrestore(&priv->tx_lock, flags);
1054  					/* do not clear nor wake */
1055  					return;
1056  				}
1057  				goto clear;
1058  			}
1059  			priv->txb_tail++;
1060  			first = false;
1061  			some_buffers_processed = true;
1062  			/* Adjust priorities *before* marking the buffer as empty. */
1063  			ctucan_rotate_txb_prio(ndev);
1064  			ctucan_give_txtb_cmd(priv, TXT_CMD_SET_EMPTY, txtb_id);
1065  		}
1066  clear:
1067  		spin_unlock_irqrestore(&priv->tx_lock, flags);
1068  
1069  		/* If no buffers were processed this time, we cannot clear - that would introduce
1070  		 * a race condition.
1071  		 */
1072  		if (some_buffers_processed) {
1073  			/* Clear the interrupt again. We do not want to receive again interrupt for
1074  			 * the buffer already handled. If it is the last finished one then it would
1075  			 * cause log of spurious interrupt.
1076  			 */
1077  			ctucan_write32(priv, CTUCANFD_INT_STAT, REG_INT_STAT_TXBHCI);
1078  		}
1079  	} while (some_buffers_processed);
1080  
1081  	spin_lock_irqsave(&priv->tx_lock, flags);
1082  
1083  	/* Check if at least one TX buffer is free */
1084  	if (CTU_CAN_FD_TXTNF(priv))
1085  		netif_wake_queue(ndev);
1086  
1087  	spin_unlock_irqrestore(&priv->tx_lock, flags);
1088  }
1089  
1090  /**
1091   * ctucan_interrupt() - CAN Isr
1092   * @irq:	irq number
1093   * @dev_id:	device id pointer
1094   *
1095   * This is the CTU CAN FD ISR. It checks for the type of interrupt
1096   * and invokes the corresponding ISR.
1097   *
1098   * Return:
1099   * IRQ_NONE - If CAN device is in sleep mode, IRQ_HANDLED otherwise
1100   */
ctucan_interrupt(int irq,void * dev_id)1101  static irqreturn_t ctucan_interrupt(int irq, void *dev_id)
1102  {
1103  	struct net_device *ndev = (struct net_device *)dev_id;
1104  	struct ctucan_priv *priv = netdev_priv(ndev);
1105  	u32 isr, icr;
1106  	u32 imask;
1107  	int irq_loops;
1108  
1109  	for (irq_loops = 0; irq_loops < 10000; irq_loops++) {
1110  		/* Get the interrupt status */
1111  		isr = ctucan_read32(priv, CTUCANFD_INT_STAT);
1112  
1113  		if (!isr)
1114  			return irq_loops ? IRQ_HANDLED : IRQ_NONE;
1115  
1116  		/* Receive Buffer Not Empty Interrupt */
1117  		if (FIELD_GET(REG_INT_STAT_RBNEI, isr)) {
1118  			ctucan_netdev_dbg(ndev, "RXBNEI\n");
1119  			/* Mask RXBNEI the first, then clear interrupt and schedule NAPI. Even if
1120  			 * another IRQ fires, RBNEI will always be 0 (masked).
1121  			 */
1122  			icr = REG_INT_STAT_RBNEI;
1123  			ctucan_write32(priv, CTUCANFD_INT_MASK_SET, icr);
1124  			ctucan_write32(priv, CTUCANFD_INT_STAT, icr);
1125  			napi_schedule(&priv->napi);
1126  		}
1127  
1128  		/* TXT Buffer HW Command Interrupt */
1129  		if (FIELD_GET(REG_INT_STAT_TXBHCI, isr)) {
1130  			ctucan_netdev_dbg(ndev, "TXBHCI\n");
1131  			/* Cleared inside */
1132  			ctucan_tx_interrupt(ndev);
1133  		}
1134  
1135  		/* Error interrupts */
1136  		if (FIELD_GET(REG_INT_STAT_EWLI, isr) ||
1137  		    FIELD_GET(REG_INT_STAT_FCSI, isr) ||
1138  		    FIELD_GET(REG_INT_STAT_ALI, isr)) {
1139  			icr = isr & (REG_INT_STAT_EWLI | REG_INT_STAT_FCSI | REG_INT_STAT_ALI);
1140  
1141  			ctucan_netdev_dbg(ndev, "some ERR interrupt: clearing 0x%08x\n", icr);
1142  			ctucan_write32(priv, CTUCANFD_INT_STAT, icr);
1143  			ctucan_err_interrupt(ndev, isr);
1144  		}
1145  		/* Ignore RI, TI, LFI, RFI, BSI */
1146  	}
1147  
1148  	netdev_err(ndev, "%s: stuck interrupt (isr=0x%08x), stopping\n", __func__, isr);
1149  
1150  	if (FIELD_GET(REG_INT_STAT_TXBHCI, isr)) {
1151  		int i;
1152  
1153  		netdev_err(ndev, "txb_head=0x%08x txb_tail=0x%08x\n",
1154  			   priv->txb_head, priv->txb_tail);
1155  		for (i = 0; i < priv->ntxbufs; i++) {
1156  			u32 status = ctucan_get_tx_status(priv, i);
1157  
1158  			netdev_err(ndev, "txb[%d] txb status=0x%08x\n", i, status);
1159  		}
1160  	}
1161  
1162  	imask = 0xffffffff;
1163  	ctucan_write32(priv, CTUCANFD_INT_ENA_CLR, imask);
1164  	ctucan_write32(priv, CTUCANFD_INT_MASK_SET, imask);
1165  
1166  	return IRQ_HANDLED;
1167  }
1168  
1169  /**
1170   * ctucan_chip_stop() - Driver stop routine
1171   * @ndev:	Pointer to net_device structure
1172   *
1173   * This is the drivers stop routine. It will disable the
1174   * interrupts and disable the controller.
1175   */
ctucan_chip_stop(struct net_device * ndev)1176  static void ctucan_chip_stop(struct net_device *ndev)
1177  {
1178  	struct ctucan_priv *priv = netdev_priv(ndev);
1179  	u32 mask = 0xffffffff;
1180  	u32 mode;
1181  
1182  	/* Disable interrupts and disable CAN */
1183  	ctucan_write32(priv, CTUCANFD_INT_ENA_CLR, mask);
1184  	ctucan_write32(priv, CTUCANFD_INT_MASK_SET, mask);
1185  	mode = ctucan_read32(priv, CTUCANFD_MODE);
1186  	mode &= ~REG_MODE_ENA;
1187  	ctucan_write32(priv, CTUCANFD_MODE, mode);
1188  
1189  	priv->can.state = CAN_STATE_STOPPED;
1190  }
1191  
1192  /**
1193   * ctucan_open() - Driver open routine
1194   * @ndev:	Pointer to net_device structure
1195   *
1196   * This is the driver open routine.
1197   * Return: 0 on success and failure value on error
1198   */
ctucan_open(struct net_device * ndev)1199  static int ctucan_open(struct net_device *ndev)
1200  {
1201  	struct ctucan_priv *priv = netdev_priv(ndev);
1202  	int ret;
1203  
1204  	ret = pm_runtime_get_sync(priv->dev);
1205  	if (ret < 0) {
1206  		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1207  			   __func__, ret);
1208  		pm_runtime_put_noidle(priv->dev);
1209  		return ret;
1210  	}
1211  
1212  	ret = ctucan_reset(ndev);
1213  	if (ret < 0)
1214  		goto err_reset;
1215  
1216  	/* Common open */
1217  	ret = open_candev(ndev);
1218  	if (ret) {
1219  		netdev_warn(ndev, "open_candev failed!\n");
1220  		goto err_open;
1221  	}
1222  
1223  	ret = request_irq(ndev->irq, ctucan_interrupt, priv->irq_flags, ndev->name, ndev);
1224  	if (ret < 0) {
1225  		netdev_err(ndev, "irq allocation for CAN failed\n");
1226  		goto err_irq;
1227  	}
1228  
1229  	ret = ctucan_chip_start(ndev);
1230  	if (ret < 0) {
1231  		netdev_err(ndev, "ctucan_chip_start failed!\n");
1232  		goto err_chip_start;
1233  	}
1234  
1235  	netdev_info(ndev, "ctu_can_fd device registered\n");
1236  	napi_enable(&priv->napi);
1237  	netif_start_queue(ndev);
1238  
1239  	return 0;
1240  
1241  err_chip_start:
1242  	free_irq(ndev->irq, ndev);
1243  err_irq:
1244  	close_candev(ndev);
1245  err_open:
1246  err_reset:
1247  	pm_runtime_put(priv->dev);
1248  
1249  	return ret;
1250  }
1251  
1252  /**
1253   * ctucan_close() - Driver close routine
1254   * @ndev:	Pointer to net_device structure
1255   *
1256   * Return: 0 always
1257   */
ctucan_close(struct net_device * ndev)1258  static int ctucan_close(struct net_device *ndev)
1259  {
1260  	struct ctucan_priv *priv = netdev_priv(ndev);
1261  
1262  	netif_stop_queue(ndev);
1263  	napi_disable(&priv->napi);
1264  	ctucan_chip_stop(ndev);
1265  	free_irq(ndev->irq, ndev);
1266  	close_candev(ndev);
1267  
1268  	pm_runtime_put(priv->dev);
1269  
1270  	return 0;
1271  }
1272  
1273  /**
1274   * ctucan_get_berr_counter() - error counter routine
1275   * @ndev:	Pointer to net_device structure
1276   * @bec:	Pointer to can_berr_counter structure
1277   *
1278   * This is the driver error counter routine.
1279   * Return: 0 on success and failure value on error
1280   */
ctucan_get_berr_counter(const struct net_device * ndev,struct can_berr_counter * bec)1281  static int ctucan_get_berr_counter(const struct net_device *ndev, struct can_berr_counter *bec)
1282  {
1283  	struct ctucan_priv *priv = netdev_priv(ndev);
1284  	int ret;
1285  
1286  	ret = pm_runtime_get_sync(priv->dev);
1287  	if (ret < 0) {
1288  		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n", __func__, ret);
1289  		pm_runtime_put_noidle(priv->dev);
1290  		return ret;
1291  	}
1292  
1293  	ctucan_get_rec_tec(priv, bec);
1294  	pm_runtime_put(priv->dev);
1295  
1296  	return 0;
1297  }
1298  
1299  static const struct net_device_ops ctucan_netdev_ops = {
1300  	.ndo_open	= ctucan_open,
1301  	.ndo_stop	= ctucan_close,
1302  	.ndo_start_xmit	= ctucan_start_xmit,
1303  	.ndo_change_mtu	= can_change_mtu,
1304  };
1305  
1306  static const struct ethtool_ops ctucan_ethtool_ops = {
1307  	.get_ts_info = ethtool_op_get_ts_info,
1308  };
1309  
ctucan_suspend(struct device * dev)1310  int ctucan_suspend(struct device *dev)
1311  {
1312  	struct net_device *ndev = dev_get_drvdata(dev);
1313  	struct ctucan_priv *priv = netdev_priv(ndev);
1314  
1315  	if (netif_running(ndev)) {
1316  		netif_stop_queue(ndev);
1317  		netif_device_detach(ndev);
1318  	}
1319  
1320  	priv->can.state = CAN_STATE_SLEEPING;
1321  
1322  	return 0;
1323  }
1324  EXPORT_SYMBOL(ctucan_suspend);
1325  
ctucan_resume(struct device * dev)1326  int ctucan_resume(struct device *dev)
1327  {
1328  	struct net_device *ndev = dev_get_drvdata(dev);
1329  	struct ctucan_priv *priv = netdev_priv(ndev);
1330  
1331  	priv->can.state = CAN_STATE_ERROR_ACTIVE;
1332  
1333  	if (netif_running(ndev)) {
1334  		netif_device_attach(ndev);
1335  		netif_start_queue(ndev);
1336  	}
1337  
1338  	return 0;
1339  }
1340  EXPORT_SYMBOL(ctucan_resume);
1341  
ctucan_probe_common(struct device * dev,void __iomem * addr,int irq,unsigned int ntxbufs,unsigned long can_clk_rate,int pm_enable_call,void (* set_drvdata_fnc)(struct device * dev,struct net_device * ndev))1342  int ctucan_probe_common(struct device *dev, void __iomem *addr, int irq, unsigned int ntxbufs,
1343  			unsigned long can_clk_rate, int pm_enable_call,
1344  			void (*set_drvdata_fnc)(struct device *dev, struct net_device *ndev))
1345  {
1346  	struct ctucan_priv *priv;
1347  	struct net_device *ndev;
1348  	int ret;
1349  
1350  	/* Create a CAN device instance */
1351  	ndev = alloc_candev(sizeof(struct ctucan_priv), ntxbufs);
1352  	if (!ndev)
1353  		return -ENOMEM;
1354  
1355  	priv = netdev_priv(ndev);
1356  	spin_lock_init(&priv->tx_lock);
1357  	INIT_LIST_HEAD(&priv->peers_on_pdev);
1358  	priv->ntxbufs = ntxbufs;
1359  	priv->dev = dev;
1360  	priv->can.bittiming_const = &ctu_can_fd_bit_timing_max;
1361  	priv->can.data_bittiming_const = &ctu_can_fd_bit_timing_data_max;
1362  	priv->can.do_set_mode = ctucan_do_set_mode;
1363  
1364  	/* Needed for timing adjustment to be performed as soon as possible */
1365  	priv->can.do_set_bittiming = ctucan_set_bittiming;
1366  	priv->can.do_set_data_bittiming = ctucan_set_data_bittiming;
1367  
1368  	priv->can.do_get_berr_counter = ctucan_get_berr_counter;
1369  	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK
1370  					| CAN_CTRLMODE_LISTENONLY
1371  					| CAN_CTRLMODE_FD
1372  					| CAN_CTRLMODE_PRESUME_ACK
1373  					| CAN_CTRLMODE_BERR_REPORTING
1374  					| CAN_CTRLMODE_FD_NON_ISO
1375  					| CAN_CTRLMODE_ONE_SHOT;
1376  	priv->mem_base = addr;
1377  
1378  	/* Get IRQ for the device */
1379  	ndev->irq = irq;
1380  	ndev->flags |= IFF_ECHO;	/* We support local echo */
1381  
1382  	if (set_drvdata_fnc)
1383  		set_drvdata_fnc(dev, ndev);
1384  	SET_NETDEV_DEV(ndev, dev);
1385  	ndev->netdev_ops = &ctucan_netdev_ops;
1386  	ndev->ethtool_ops = &ctucan_ethtool_ops;
1387  
1388  	/* Getting the can_clk info */
1389  	if (!can_clk_rate) {
1390  		priv->can_clk = devm_clk_get(dev, NULL);
1391  		if (IS_ERR(priv->can_clk)) {
1392  			dev_err(dev, "Device clock not found.\n");
1393  			ret = PTR_ERR(priv->can_clk);
1394  			goto err_free;
1395  		}
1396  		can_clk_rate = clk_get_rate(priv->can_clk);
1397  	}
1398  
1399  	priv->write_reg = ctucan_write32_le;
1400  	priv->read_reg = ctucan_read32_le;
1401  
1402  	if (pm_enable_call)
1403  		pm_runtime_enable(dev);
1404  	ret = pm_runtime_get_sync(dev);
1405  	if (ret < 0) {
1406  		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1407  			   __func__, ret);
1408  		pm_runtime_put_noidle(priv->dev);
1409  		goto err_pmdisable;
1410  	}
1411  
1412  	/* Check for big-endianity and set according IO-accessors */
1413  	if ((ctucan_read32(priv, CTUCANFD_DEVICE_ID) & 0xFFFF) != CTUCANFD_ID) {
1414  		priv->write_reg = ctucan_write32_be;
1415  		priv->read_reg = ctucan_read32_be;
1416  		if ((ctucan_read32(priv, CTUCANFD_DEVICE_ID) & 0xFFFF) != CTUCANFD_ID) {
1417  			netdev_err(ndev, "CTU_CAN_FD signature not found\n");
1418  			ret = -ENODEV;
1419  			goto err_deviceoff;
1420  		}
1421  	}
1422  
1423  	ret = ctucan_reset(ndev);
1424  	if (ret < 0)
1425  		goto err_deviceoff;
1426  
1427  	priv->can.clock.freq = can_clk_rate;
1428  
1429  	netif_napi_add(ndev, &priv->napi, ctucan_rx_poll);
1430  
1431  	ret = register_candev(ndev);
1432  	if (ret) {
1433  		dev_err(dev, "fail to register failed (err=%d)\n", ret);
1434  		goto err_deviceoff;
1435  	}
1436  
1437  	pm_runtime_put(dev);
1438  
1439  	netdev_dbg(ndev, "mem_base=0x%p irq=%d clock=%d, no. of txt buffers:%d\n",
1440  		   priv->mem_base, ndev->irq, priv->can.clock.freq, priv->ntxbufs);
1441  
1442  	return 0;
1443  
1444  err_deviceoff:
1445  	pm_runtime_put(priv->dev);
1446  err_pmdisable:
1447  	if (pm_enable_call)
1448  		pm_runtime_disable(dev);
1449  err_free:
1450  	list_del_init(&priv->peers_on_pdev);
1451  	free_candev(ndev);
1452  	return ret;
1453  }
1454  EXPORT_SYMBOL(ctucan_probe_common);
1455  
1456  MODULE_LICENSE("GPL");
1457  MODULE_AUTHOR("Martin Jerabek <martin.jerabek01@gmail.com>");
1458  MODULE_AUTHOR("Pavel Pisa <pisa@cmp.felk.cvut.cz>");
1459  MODULE_AUTHOR("Ondrej Ille <ondrej.ille@gmail.com>");
1460  MODULE_DESCRIPTION("CTU CAN FD interface");
1461