1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_shared.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_defer.h"
15 #include "xfs_btree.h"
16 #include "xfs_rmap.h"
17 #include "xfs_alloc_btree.h"
18 #include "xfs_alloc.h"
19 #include "xfs_extent_busy.h"
20 #include "xfs_errortag.h"
21 #include "xfs_error.h"
22 #include "xfs_trace.h"
23 #include "xfs_trans.h"
24 #include "xfs_buf_item.h"
25 #include "xfs_log.h"
26 #include "xfs_ag.h"
27 #include "xfs_ag_resv.h"
28 #include "xfs_bmap.h"
29
30 struct kmem_cache *xfs_extfree_item_cache;
31
32 struct workqueue_struct *xfs_alloc_wq;
33
34 #define XFS_ABSDIFF(a,b) (((a) <= (b)) ? ((b) - (a)) : ((a) - (b)))
35
36 #define XFSA_FIXUP_BNO_OK 1
37 #define XFSA_FIXUP_CNT_OK 2
38
39 /*
40 * Size of the AGFL. For CRC-enabled filesystes we steal a couple of slots in
41 * the beginning of the block for a proper header with the location information
42 * and CRC.
43 */
44 unsigned int
xfs_agfl_size(struct xfs_mount * mp)45 xfs_agfl_size(
46 struct xfs_mount *mp)
47 {
48 unsigned int size = mp->m_sb.sb_sectsize;
49
50 if (xfs_has_crc(mp))
51 size -= sizeof(struct xfs_agfl);
52
53 return size / sizeof(xfs_agblock_t);
54 }
55
56 unsigned int
xfs_refc_block(struct xfs_mount * mp)57 xfs_refc_block(
58 struct xfs_mount *mp)
59 {
60 if (xfs_has_rmapbt(mp))
61 return XFS_RMAP_BLOCK(mp) + 1;
62 if (xfs_has_finobt(mp))
63 return XFS_FIBT_BLOCK(mp) + 1;
64 return XFS_IBT_BLOCK(mp) + 1;
65 }
66
67 xfs_extlen_t
xfs_prealloc_blocks(struct xfs_mount * mp)68 xfs_prealloc_blocks(
69 struct xfs_mount *mp)
70 {
71 if (xfs_has_reflink(mp))
72 return xfs_refc_block(mp) + 1;
73 if (xfs_has_rmapbt(mp))
74 return XFS_RMAP_BLOCK(mp) + 1;
75 if (xfs_has_finobt(mp))
76 return XFS_FIBT_BLOCK(mp) + 1;
77 return XFS_IBT_BLOCK(mp) + 1;
78 }
79
80 /*
81 * The number of blocks per AG that we withhold from xfs_mod_fdblocks to
82 * guarantee that we can refill the AGFL prior to allocating space in a nearly
83 * full AG. Although the space described by the free space btrees, the
84 * blocks used by the freesp btrees themselves, and the blocks owned by the
85 * AGFL are counted in the ondisk fdblocks, it's a mistake to let the ondisk
86 * free space in the AG drop so low that the free space btrees cannot refill an
87 * empty AGFL up to the minimum level. Rather than grind through empty AGs
88 * until the fs goes down, we subtract this many AG blocks from the incore
89 * fdblocks to ensure user allocation does not overcommit the space the
90 * filesystem needs for the AGFLs. The rmap btree uses a per-AG reservation to
91 * withhold space from xfs_mod_fdblocks, so we do not account for that here.
92 */
93 #define XFS_ALLOCBT_AGFL_RESERVE 4
94
95 /*
96 * Compute the number of blocks that we set aside to guarantee the ability to
97 * refill the AGFL and handle a full bmap btree split.
98 *
99 * In order to avoid ENOSPC-related deadlock caused by out-of-order locking of
100 * AGF buffer (PV 947395), we place constraints on the relationship among
101 * actual allocations for data blocks, freelist blocks, and potential file data
102 * bmap btree blocks. However, these restrictions may result in no actual space
103 * allocated for a delayed extent, for example, a data block in a certain AG is
104 * allocated but there is no additional block for the additional bmap btree
105 * block due to a split of the bmap btree of the file. The result of this may
106 * lead to an infinite loop when the file gets flushed to disk and all delayed
107 * extents need to be actually allocated. To get around this, we explicitly set
108 * aside a few blocks which will not be reserved in delayed allocation.
109 *
110 * For each AG, we need to reserve enough blocks to replenish a totally empty
111 * AGFL and 4 more to handle a potential split of the file's bmap btree.
112 */
113 unsigned int
xfs_alloc_set_aside(struct xfs_mount * mp)114 xfs_alloc_set_aside(
115 struct xfs_mount *mp)
116 {
117 return mp->m_sb.sb_agcount * (XFS_ALLOCBT_AGFL_RESERVE + 4);
118 }
119
120 /*
121 * When deciding how much space to allocate out of an AG, we limit the
122 * allocation maximum size to the size the AG. However, we cannot use all the
123 * blocks in the AG - some are permanently used by metadata. These
124 * blocks are generally:
125 * - the AG superblock, AGF, AGI and AGFL
126 * - the AGF (bno and cnt) and AGI btree root blocks, and optionally
127 * the AGI free inode and rmap btree root blocks.
128 * - blocks on the AGFL according to xfs_alloc_set_aside() limits
129 * - the rmapbt root block
130 *
131 * The AG headers are sector sized, so the amount of space they take up is
132 * dependent on filesystem geometry. The others are all single blocks.
133 */
134 unsigned int
xfs_alloc_ag_max_usable(struct xfs_mount * mp)135 xfs_alloc_ag_max_usable(
136 struct xfs_mount *mp)
137 {
138 unsigned int blocks;
139
140 blocks = XFS_BB_TO_FSB(mp, XFS_FSS_TO_BB(mp, 4)); /* ag headers */
141 blocks += XFS_ALLOCBT_AGFL_RESERVE;
142 blocks += 3; /* AGF, AGI btree root blocks */
143 if (xfs_has_finobt(mp))
144 blocks++; /* finobt root block */
145 if (xfs_has_rmapbt(mp))
146 blocks++; /* rmap root block */
147 if (xfs_has_reflink(mp))
148 blocks++; /* refcount root block */
149
150 return mp->m_sb.sb_agblocks - blocks;
151 }
152
153 /*
154 * Lookup the record equal to [bno, len] in the btree given by cur.
155 */
156 STATIC int /* error */
xfs_alloc_lookup_eq(struct xfs_btree_cur * cur,xfs_agblock_t bno,xfs_extlen_t len,int * stat)157 xfs_alloc_lookup_eq(
158 struct xfs_btree_cur *cur, /* btree cursor */
159 xfs_agblock_t bno, /* starting block of extent */
160 xfs_extlen_t len, /* length of extent */
161 int *stat) /* success/failure */
162 {
163 int error;
164
165 cur->bc_rec.a.ar_startblock = bno;
166 cur->bc_rec.a.ar_blockcount = len;
167 error = xfs_btree_lookup(cur, XFS_LOOKUP_EQ, stat);
168 cur->bc_ag.abt.active = (*stat == 1);
169 return error;
170 }
171
172 /*
173 * Lookup the first record greater than or equal to [bno, len]
174 * in the btree given by cur.
175 */
176 int /* error */
xfs_alloc_lookup_ge(struct xfs_btree_cur * cur,xfs_agblock_t bno,xfs_extlen_t len,int * stat)177 xfs_alloc_lookup_ge(
178 struct xfs_btree_cur *cur, /* btree cursor */
179 xfs_agblock_t bno, /* starting block of extent */
180 xfs_extlen_t len, /* length of extent */
181 int *stat) /* success/failure */
182 {
183 int error;
184
185 cur->bc_rec.a.ar_startblock = bno;
186 cur->bc_rec.a.ar_blockcount = len;
187 error = xfs_btree_lookup(cur, XFS_LOOKUP_GE, stat);
188 cur->bc_ag.abt.active = (*stat == 1);
189 return error;
190 }
191
192 /*
193 * Lookup the first record less than or equal to [bno, len]
194 * in the btree given by cur.
195 */
196 int /* error */
xfs_alloc_lookup_le(struct xfs_btree_cur * cur,xfs_agblock_t bno,xfs_extlen_t len,int * stat)197 xfs_alloc_lookup_le(
198 struct xfs_btree_cur *cur, /* btree cursor */
199 xfs_agblock_t bno, /* starting block of extent */
200 xfs_extlen_t len, /* length of extent */
201 int *stat) /* success/failure */
202 {
203 int error;
204 cur->bc_rec.a.ar_startblock = bno;
205 cur->bc_rec.a.ar_blockcount = len;
206 error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, stat);
207 cur->bc_ag.abt.active = (*stat == 1);
208 return error;
209 }
210
211 static inline bool
xfs_alloc_cur_active(struct xfs_btree_cur * cur)212 xfs_alloc_cur_active(
213 struct xfs_btree_cur *cur)
214 {
215 return cur && cur->bc_ag.abt.active;
216 }
217
218 /*
219 * Update the record referred to by cur to the value given
220 * by [bno, len].
221 * This either works (return 0) or gets an EFSCORRUPTED error.
222 */
223 STATIC int /* error */
xfs_alloc_update(struct xfs_btree_cur * cur,xfs_agblock_t bno,xfs_extlen_t len)224 xfs_alloc_update(
225 struct xfs_btree_cur *cur, /* btree cursor */
226 xfs_agblock_t bno, /* starting block of extent */
227 xfs_extlen_t len) /* length of extent */
228 {
229 union xfs_btree_rec rec;
230
231 rec.alloc.ar_startblock = cpu_to_be32(bno);
232 rec.alloc.ar_blockcount = cpu_to_be32(len);
233 return xfs_btree_update(cur, &rec);
234 }
235
236 /* Convert the ondisk btree record to its incore representation. */
237 void
xfs_alloc_btrec_to_irec(const union xfs_btree_rec * rec,struct xfs_alloc_rec_incore * irec)238 xfs_alloc_btrec_to_irec(
239 const union xfs_btree_rec *rec,
240 struct xfs_alloc_rec_incore *irec)
241 {
242 irec->ar_startblock = be32_to_cpu(rec->alloc.ar_startblock);
243 irec->ar_blockcount = be32_to_cpu(rec->alloc.ar_blockcount);
244 }
245
246 /* Simple checks for free space records. */
247 xfs_failaddr_t
xfs_alloc_check_irec(struct xfs_btree_cur * cur,const struct xfs_alloc_rec_incore * irec)248 xfs_alloc_check_irec(
249 struct xfs_btree_cur *cur,
250 const struct xfs_alloc_rec_incore *irec)
251 {
252 struct xfs_perag *pag = cur->bc_ag.pag;
253
254 if (irec->ar_blockcount == 0)
255 return __this_address;
256
257 /* check for valid extent range, including overflow */
258 if (!xfs_verify_agbext(pag, irec->ar_startblock, irec->ar_blockcount))
259 return __this_address;
260
261 return NULL;
262 }
263
264 static inline int
xfs_alloc_complain_bad_rec(struct xfs_btree_cur * cur,xfs_failaddr_t fa,const struct xfs_alloc_rec_incore * irec)265 xfs_alloc_complain_bad_rec(
266 struct xfs_btree_cur *cur,
267 xfs_failaddr_t fa,
268 const struct xfs_alloc_rec_incore *irec)
269 {
270 struct xfs_mount *mp = cur->bc_mp;
271
272 xfs_warn(mp,
273 "%s Freespace BTree record corruption in AG %d detected at %pS!",
274 cur->bc_btnum == XFS_BTNUM_BNO ? "Block" : "Size",
275 cur->bc_ag.pag->pag_agno, fa);
276 xfs_warn(mp,
277 "start block 0x%x block count 0x%x", irec->ar_startblock,
278 irec->ar_blockcount);
279 return -EFSCORRUPTED;
280 }
281
282 /*
283 * Get the data from the pointed-to record.
284 */
285 int /* error */
xfs_alloc_get_rec(struct xfs_btree_cur * cur,xfs_agblock_t * bno,xfs_extlen_t * len,int * stat)286 xfs_alloc_get_rec(
287 struct xfs_btree_cur *cur, /* btree cursor */
288 xfs_agblock_t *bno, /* output: starting block of extent */
289 xfs_extlen_t *len, /* output: length of extent */
290 int *stat) /* output: success/failure */
291 {
292 struct xfs_alloc_rec_incore irec;
293 union xfs_btree_rec *rec;
294 xfs_failaddr_t fa;
295 int error;
296
297 error = xfs_btree_get_rec(cur, &rec, stat);
298 if (error || !(*stat))
299 return error;
300
301 xfs_alloc_btrec_to_irec(rec, &irec);
302 fa = xfs_alloc_check_irec(cur, &irec);
303 if (fa)
304 return xfs_alloc_complain_bad_rec(cur, fa, &irec);
305
306 *bno = irec.ar_startblock;
307 *len = irec.ar_blockcount;
308 return 0;
309 }
310
311 /*
312 * Compute aligned version of the found extent.
313 * Takes alignment and min length into account.
314 */
315 STATIC bool
xfs_alloc_compute_aligned(xfs_alloc_arg_t * args,xfs_agblock_t foundbno,xfs_extlen_t foundlen,xfs_agblock_t * resbno,xfs_extlen_t * reslen,unsigned * busy_gen)316 xfs_alloc_compute_aligned(
317 xfs_alloc_arg_t *args, /* allocation argument structure */
318 xfs_agblock_t foundbno, /* starting block in found extent */
319 xfs_extlen_t foundlen, /* length in found extent */
320 xfs_agblock_t *resbno, /* result block number */
321 xfs_extlen_t *reslen, /* result length */
322 unsigned *busy_gen)
323 {
324 xfs_agblock_t bno = foundbno;
325 xfs_extlen_t len = foundlen;
326 xfs_extlen_t diff;
327 bool busy;
328
329 /* Trim busy sections out of found extent */
330 busy = xfs_extent_busy_trim(args, &bno, &len, busy_gen);
331
332 /*
333 * If we have a largish extent that happens to start before min_agbno,
334 * see if we can shift it into range...
335 */
336 if (bno < args->min_agbno && bno + len > args->min_agbno) {
337 diff = args->min_agbno - bno;
338 if (len > diff) {
339 bno += diff;
340 len -= diff;
341 }
342 }
343
344 if (args->alignment > 1 && len >= args->minlen) {
345 xfs_agblock_t aligned_bno = roundup(bno, args->alignment);
346
347 diff = aligned_bno - bno;
348
349 *resbno = aligned_bno;
350 *reslen = diff >= len ? 0 : len - diff;
351 } else {
352 *resbno = bno;
353 *reslen = len;
354 }
355
356 return busy;
357 }
358
359 /*
360 * Compute best start block and diff for "near" allocations.
361 * freelen >= wantlen already checked by caller.
362 */
363 STATIC xfs_extlen_t /* difference value (absolute) */
xfs_alloc_compute_diff(xfs_agblock_t wantbno,xfs_extlen_t wantlen,xfs_extlen_t alignment,int datatype,xfs_agblock_t freebno,xfs_extlen_t freelen,xfs_agblock_t * newbnop)364 xfs_alloc_compute_diff(
365 xfs_agblock_t wantbno, /* target starting block */
366 xfs_extlen_t wantlen, /* target length */
367 xfs_extlen_t alignment, /* target alignment */
368 int datatype, /* are we allocating data? */
369 xfs_agblock_t freebno, /* freespace's starting block */
370 xfs_extlen_t freelen, /* freespace's length */
371 xfs_agblock_t *newbnop) /* result: best start block from free */
372 {
373 xfs_agblock_t freeend; /* end of freespace extent */
374 xfs_agblock_t newbno1; /* return block number */
375 xfs_agblock_t newbno2; /* other new block number */
376 xfs_extlen_t newlen1=0; /* length with newbno1 */
377 xfs_extlen_t newlen2=0; /* length with newbno2 */
378 xfs_agblock_t wantend; /* end of target extent */
379 bool userdata = datatype & XFS_ALLOC_USERDATA;
380
381 ASSERT(freelen >= wantlen);
382 freeend = freebno + freelen;
383 wantend = wantbno + wantlen;
384 /*
385 * We want to allocate from the start of a free extent if it is past
386 * the desired block or if we are allocating user data and the free
387 * extent is before desired block. The second case is there to allow
388 * for contiguous allocation from the remaining free space if the file
389 * grows in the short term.
390 */
391 if (freebno >= wantbno || (userdata && freeend < wantend)) {
392 if ((newbno1 = roundup(freebno, alignment)) >= freeend)
393 newbno1 = NULLAGBLOCK;
394 } else if (freeend >= wantend && alignment > 1) {
395 newbno1 = roundup(wantbno, alignment);
396 newbno2 = newbno1 - alignment;
397 if (newbno1 >= freeend)
398 newbno1 = NULLAGBLOCK;
399 else
400 newlen1 = XFS_EXTLEN_MIN(wantlen, freeend - newbno1);
401 if (newbno2 < freebno)
402 newbno2 = NULLAGBLOCK;
403 else
404 newlen2 = XFS_EXTLEN_MIN(wantlen, freeend - newbno2);
405 if (newbno1 != NULLAGBLOCK && newbno2 != NULLAGBLOCK) {
406 if (newlen1 < newlen2 ||
407 (newlen1 == newlen2 &&
408 XFS_ABSDIFF(newbno1, wantbno) >
409 XFS_ABSDIFF(newbno2, wantbno)))
410 newbno1 = newbno2;
411 } else if (newbno2 != NULLAGBLOCK)
412 newbno1 = newbno2;
413 } else if (freeend >= wantend) {
414 newbno1 = wantbno;
415 } else if (alignment > 1) {
416 newbno1 = roundup(freeend - wantlen, alignment);
417 if (newbno1 > freeend - wantlen &&
418 newbno1 - alignment >= freebno)
419 newbno1 -= alignment;
420 else if (newbno1 >= freeend)
421 newbno1 = NULLAGBLOCK;
422 } else
423 newbno1 = freeend - wantlen;
424 *newbnop = newbno1;
425 return newbno1 == NULLAGBLOCK ? 0 : XFS_ABSDIFF(newbno1, wantbno);
426 }
427
428 /*
429 * Fix up the length, based on mod and prod.
430 * len should be k * prod + mod for some k.
431 * If len is too small it is returned unchanged.
432 * If len hits maxlen it is left alone.
433 */
434 STATIC void
xfs_alloc_fix_len(xfs_alloc_arg_t * args)435 xfs_alloc_fix_len(
436 xfs_alloc_arg_t *args) /* allocation argument structure */
437 {
438 xfs_extlen_t k;
439 xfs_extlen_t rlen;
440
441 ASSERT(args->mod < args->prod);
442 rlen = args->len;
443 ASSERT(rlen >= args->minlen);
444 ASSERT(rlen <= args->maxlen);
445 if (args->prod <= 1 || rlen < args->mod || rlen == args->maxlen ||
446 (args->mod == 0 && rlen < args->prod))
447 return;
448 k = rlen % args->prod;
449 if (k == args->mod)
450 return;
451 if (k > args->mod)
452 rlen = rlen - (k - args->mod);
453 else
454 rlen = rlen - args->prod + (args->mod - k);
455 /* casts to (int) catch length underflows */
456 if ((int)rlen < (int)args->minlen)
457 return;
458 ASSERT(rlen >= args->minlen && rlen <= args->maxlen);
459 ASSERT(rlen % args->prod == args->mod);
460 ASSERT(args->pag->pagf_freeblks + args->pag->pagf_flcount >=
461 rlen + args->minleft);
462 args->len = rlen;
463 }
464
465 /*
466 * Update the two btrees, logically removing from freespace the extent
467 * starting at rbno, rlen blocks. The extent is contained within the
468 * actual (current) free extent fbno for flen blocks.
469 * Flags are passed in indicating whether the cursors are set to the
470 * relevant records.
471 */
472 STATIC int /* error code */
xfs_alloc_fixup_trees(struct xfs_btree_cur * cnt_cur,struct xfs_btree_cur * bno_cur,xfs_agblock_t fbno,xfs_extlen_t flen,xfs_agblock_t rbno,xfs_extlen_t rlen,int flags)473 xfs_alloc_fixup_trees(
474 struct xfs_btree_cur *cnt_cur, /* cursor for by-size btree */
475 struct xfs_btree_cur *bno_cur, /* cursor for by-block btree */
476 xfs_agblock_t fbno, /* starting block of free extent */
477 xfs_extlen_t flen, /* length of free extent */
478 xfs_agblock_t rbno, /* starting block of returned extent */
479 xfs_extlen_t rlen, /* length of returned extent */
480 int flags) /* flags, XFSA_FIXUP_... */
481 {
482 int error; /* error code */
483 int i; /* operation results */
484 xfs_agblock_t nfbno1; /* first new free startblock */
485 xfs_agblock_t nfbno2; /* second new free startblock */
486 xfs_extlen_t nflen1=0; /* first new free length */
487 xfs_extlen_t nflen2=0; /* second new free length */
488 struct xfs_mount *mp;
489
490 mp = cnt_cur->bc_mp;
491
492 /*
493 * Look up the record in the by-size tree if necessary.
494 */
495 if (flags & XFSA_FIXUP_CNT_OK) {
496 #ifdef DEBUG
497 if ((error = xfs_alloc_get_rec(cnt_cur, &nfbno1, &nflen1, &i)))
498 return error;
499 if (XFS_IS_CORRUPT(mp,
500 i != 1 ||
501 nfbno1 != fbno ||
502 nflen1 != flen))
503 return -EFSCORRUPTED;
504 #endif
505 } else {
506 if ((error = xfs_alloc_lookup_eq(cnt_cur, fbno, flen, &i)))
507 return error;
508 if (XFS_IS_CORRUPT(mp, i != 1))
509 return -EFSCORRUPTED;
510 }
511 /*
512 * Look up the record in the by-block tree if necessary.
513 */
514 if (flags & XFSA_FIXUP_BNO_OK) {
515 #ifdef DEBUG
516 if ((error = xfs_alloc_get_rec(bno_cur, &nfbno1, &nflen1, &i)))
517 return error;
518 if (XFS_IS_CORRUPT(mp,
519 i != 1 ||
520 nfbno1 != fbno ||
521 nflen1 != flen))
522 return -EFSCORRUPTED;
523 #endif
524 } else {
525 if ((error = xfs_alloc_lookup_eq(bno_cur, fbno, flen, &i)))
526 return error;
527 if (XFS_IS_CORRUPT(mp, i != 1))
528 return -EFSCORRUPTED;
529 }
530
531 #ifdef DEBUG
532 if (bno_cur->bc_nlevels == 1 && cnt_cur->bc_nlevels == 1) {
533 struct xfs_btree_block *bnoblock;
534 struct xfs_btree_block *cntblock;
535
536 bnoblock = XFS_BUF_TO_BLOCK(bno_cur->bc_levels[0].bp);
537 cntblock = XFS_BUF_TO_BLOCK(cnt_cur->bc_levels[0].bp);
538
539 if (XFS_IS_CORRUPT(mp,
540 bnoblock->bb_numrecs !=
541 cntblock->bb_numrecs))
542 return -EFSCORRUPTED;
543 }
544 #endif
545
546 /*
547 * Deal with all four cases: the allocated record is contained
548 * within the freespace record, so we can have new freespace
549 * at either (or both) end, or no freespace remaining.
550 */
551 if (rbno == fbno && rlen == flen)
552 nfbno1 = nfbno2 = NULLAGBLOCK;
553 else if (rbno == fbno) {
554 nfbno1 = rbno + rlen;
555 nflen1 = flen - rlen;
556 nfbno2 = NULLAGBLOCK;
557 } else if (rbno + rlen == fbno + flen) {
558 nfbno1 = fbno;
559 nflen1 = flen - rlen;
560 nfbno2 = NULLAGBLOCK;
561 } else {
562 nfbno1 = fbno;
563 nflen1 = rbno - fbno;
564 nfbno2 = rbno + rlen;
565 nflen2 = (fbno + flen) - nfbno2;
566 }
567 /*
568 * Delete the entry from the by-size btree.
569 */
570 if ((error = xfs_btree_delete(cnt_cur, &i)))
571 return error;
572 if (XFS_IS_CORRUPT(mp, i != 1))
573 return -EFSCORRUPTED;
574 /*
575 * Add new by-size btree entry(s).
576 */
577 if (nfbno1 != NULLAGBLOCK) {
578 if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno1, nflen1, &i)))
579 return error;
580 if (XFS_IS_CORRUPT(mp, i != 0))
581 return -EFSCORRUPTED;
582 if ((error = xfs_btree_insert(cnt_cur, &i)))
583 return error;
584 if (XFS_IS_CORRUPT(mp, i != 1))
585 return -EFSCORRUPTED;
586 }
587 if (nfbno2 != NULLAGBLOCK) {
588 if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno2, nflen2, &i)))
589 return error;
590 if (XFS_IS_CORRUPT(mp, i != 0))
591 return -EFSCORRUPTED;
592 if ((error = xfs_btree_insert(cnt_cur, &i)))
593 return error;
594 if (XFS_IS_CORRUPT(mp, i != 1))
595 return -EFSCORRUPTED;
596 }
597 /*
598 * Fix up the by-block btree entry(s).
599 */
600 if (nfbno1 == NULLAGBLOCK) {
601 /*
602 * No remaining freespace, just delete the by-block tree entry.
603 */
604 if ((error = xfs_btree_delete(bno_cur, &i)))
605 return error;
606 if (XFS_IS_CORRUPT(mp, i != 1))
607 return -EFSCORRUPTED;
608 } else {
609 /*
610 * Update the by-block entry to start later|be shorter.
611 */
612 if ((error = xfs_alloc_update(bno_cur, nfbno1, nflen1)))
613 return error;
614 }
615 if (nfbno2 != NULLAGBLOCK) {
616 /*
617 * 2 resulting free entries, need to add one.
618 */
619 if ((error = xfs_alloc_lookup_eq(bno_cur, nfbno2, nflen2, &i)))
620 return error;
621 if (XFS_IS_CORRUPT(mp, i != 0))
622 return -EFSCORRUPTED;
623 if ((error = xfs_btree_insert(bno_cur, &i)))
624 return error;
625 if (XFS_IS_CORRUPT(mp, i != 1))
626 return -EFSCORRUPTED;
627 }
628 return 0;
629 }
630
631 /*
632 * We do not verify the AGFL contents against AGF-based index counters here,
633 * even though we may have access to the perag that contains shadow copies. We
634 * don't know if the AGF based counters have been checked, and if they have they
635 * still may be inconsistent because they haven't yet been reset on the first
636 * allocation after the AGF has been read in.
637 *
638 * This means we can only check that all agfl entries contain valid or null
639 * values because we can't reliably determine the active range to exclude
640 * NULLAGBNO as a valid value.
641 *
642 * However, we can't even do that for v4 format filesystems because there are
643 * old versions of mkfs out there that does not initialise the AGFL to known,
644 * verifiable values. HEnce we can't tell the difference between a AGFL block
645 * allocated by mkfs and a corrupted AGFL block here on v4 filesystems.
646 *
647 * As a result, we can only fully validate AGFL block numbers when we pull them
648 * from the freelist in xfs_alloc_get_freelist().
649 */
650 static xfs_failaddr_t
xfs_agfl_verify(struct xfs_buf * bp)651 xfs_agfl_verify(
652 struct xfs_buf *bp)
653 {
654 struct xfs_mount *mp = bp->b_mount;
655 struct xfs_agfl *agfl = XFS_BUF_TO_AGFL(bp);
656 __be32 *agfl_bno = xfs_buf_to_agfl_bno(bp);
657 int i;
658
659 if (!xfs_has_crc(mp))
660 return NULL;
661
662 if (!xfs_verify_magic(bp, agfl->agfl_magicnum))
663 return __this_address;
664 if (!uuid_equal(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid))
665 return __this_address;
666 /*
667 * during growfs operations, the perag is not fully initialised,
668 * so we can't use it for any useful checking. growfs ensures we can't
669 * use it by using uncached buffers that don't have the perag attached
670 * so we can detect and avoid this problem.
671 */
672 if (bp->b_pag && be32_to_cpu(agfl->agfl_seqno) != bp->b_pag->pag_agno)
673 return __this_address;
674
675 for (i = 0; i < xfs_agfl_size(mp); i++) {
676 if (be32_to_cpu(agfl_bno[i]) != NULLAGBLOCK &&
677 be32_to_cpu(agfl_bno[i]) >= mp->m_sb.sb_agblocks)
678 return __this_address;
679 }
680
681 if (!xfs_log_check_lsn(mp, be64_to_cpu(XFS_BUF_TO_AGFL(bp)->agfl_lsn)))
682 return __this_address;
683 return NULL;
684 }
685
686 static void
xfs_agfl_read_verify(struct xfs_buf * bp)687 xfs_agfl_read_verify(
688 struct xfs_buf *bp)
689 {
690 struct xfs_mount *mp = bp->b_mount;
691 xfs_failaddr_t fa;
692
693 /*
694 * There is no verification of non-crc AGFLs because mkfs does not
695 * initialise the AGFL to zero or NULL. Hence the only valid part of the
696 * AGFL is what the AGF says is active. We can't get to the AGF, so we
697 * can't verify just those entries are valid.
698 */
699 if (!xfs_has_crc(mp))
700 return;
701
702 if (!xfs_buf_verify_cksum(bp, XFS_AGFL_CRC_OFF))
703 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
704 else {
705 fa = xfs_agfl_verify(bp);
706 if (fa)
707 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
708 }
709 }
710
711 static void
xfs_agfl_write_verify(struct xfs_buf * bp)712 xfs_agfl_write_verify(
713 struct xfs_buf *bp)
714 {
715 struct xfs_mount *mp = bp->b_mount;
716 struct xfs_buf_log_item *bip = bp->b_log_item;
717 xfs_failaddr_t fa;
718
719 /* no verification of non-crc AGFLs */
720 if (!xfs_has_crc(mp))
721 return;
722
723 fa = xfs_agfl_verify(bp);
724 if (fa) {
725 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
726 return;
727 }
728
729 if (bip)
730 XFS_BUF_TO_AGFL(bp)->agfl_lsn = cpu_to_be64(bip->bli_item.li_lsn);
731
732 xfs_buf_update_cksum(bp, XFS_AGFL_CRC_OFF);
733 }
734
735 const struct xfs_buf_ops xfs_agfl_buf_ops = {
736 .name = "xfs_agfl",
737 .magic = { cpu_to_be32(XFS_AGFL_MAGIC), cpu_to_be32(XFS_AGFL_MAGIC) },
738 .verify_read = xfs_agfl_read_verify,
739 .verify_write = xfs_agfl_write_verify,
740 .verify_struct = xfs_agfl_verify,
741 };
742
743 /*
744 * Read in the allocation group free block array.
745 */
746 int
xfs_alloc_read_agfl(struct xfs_perag * pag,struct xfs_trans * tp,struct xfs_buf ** bpp)747 xfs_alloc_read_agfl(
748 struct xfs_perag *pag,
749 struct xfs_trans *tp,
750 struct xfs_buf **bpp)
751 {
752 struct xfs_mount *mp = pag->pag_mount;
753 struct xfs_buf *bp;
754 int error;
755
756 error = xfs_trans_read_buf(
757 mp, tp, mp->m_ddev_targp,
758 XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGFL_DADDR(mp)),
759 XFS_FSS_TO_BB(mp, 1), 0, &bp, &xfs_agfl_buf_ops);
760 if (error)
761 return error;
762 xfs_buf_set_ref(bp, XFS_AGFL_REF);
763 *bpp = bp;
764 return 0;
765 }
766
767 STATIC int
xfs_alloc_update_counters(struct xfs_trans * tp,struct xfs_buf * agbp,long len)768 xfs_alloc_update_counters(
769 struct xfs_trans *tp,
770 struct xfs_buf *agbp,
771 long len)
772 {
773 struct xfs_agf *agf = agbp->b_addr;
774
775 agbp->b_pag->pagf_freeblks += len;
776 be32_add_cpu(&agf->agf_freeblks, len);
777
778 if (unlikely(be32_to_cpu(agf->agf_freeblks) >
779 be32_to_cpu(agf->agf_length))) {
780 xfs_buf_mark_corrupt(agbp);
781 return -EFSCORRUPTED;
782 }
783
784 xfs_alloc_log_agf(tp, agbp, XFS_AGF_FREEBLKS);
785 return 0;
786 }
787
788 /*
789 * Block allocation algorithm and data structures.
790 */
791 struct xfs_alloc_cur {
792 struct xfs_btree_cur *cnt; /* btree cursors */
793 struct xfs_btree_cur *bnolt;
794 struct xfs_btree_cur *bnogt;
795 xfs_extlen_t cur_len;/* current search length */
796 xfs_agblock_t rec_bno;/* extent startblock */
797 xfs_extlen_t rec_len;/* extent length */
798 xfs_agblock_t bno; /* alloc bno */
799 xfs_extlen_t len; /* alloc len */
800 xfs_extlen_t diff; /* diff from search bno */
801 unsigned int busy_gen;/* busy state */
802 bool busy;
803 };
804
805 /*
806 * Set up cursors, etc. in the extent allocation cursor. This function can be
807 * called multiple times to reset an initialized structure without having to
808 * reallocate cursors.
809 */
810 static int
xfs_alloc_cur_setup(struct xfs_alloc_arg * args,struct xfs_alloc_cur * acur)811 xfs_alloc_cur_setup(
812 struct xfs_alloc_arg *args,
813 struct xfs_alloc_cur *acur)
814 {
815 int error;
816 int i;
817
818 acur->cur_len = args->maxlen;
819 acur->rec_bno = 0;
820 acur->rec_len = 0;
821 acur->bno = 0;
822 acur->len = 0;
823 acur->diff = -1;
824 acur->busy = false;
825 acur->busy_gen = 0;
826
827 /*
828 * Perform an initial cntbt lookup to check for availability of maxlen
829 * extents. If this fails, we'll return -ENOSPC to signal the caller to
830 * attempt a small allocation.
831 */
832 if (!acur->cnt)
833 acur->cnt = xfs_allocbt_init_cursor(args->mp, args->tp,
834 args->agbp, args->pag, XFS_BTNUM_CNT);
835 error = xfs_alloc_lookup_ge(acur->cnt, 0, args->maxlen, &i);
836 if (error)
837 return error;
838
839 /*
840 * Allocate the bnobt left and right search cursors.
841 */
842 if (!acur->bnolt)
843 acur->bnolt = xfs_allocbt_init_cursor(args->mp, args->tp,
844 args->agbp, args->pag, XFS_BTNUM_BNO);
845 if (!acur->bnogt)
846 acur->bnogt = xfs_allocbt_init_cursor(args->mp, args->tp,
847 args->agbp, args->pag, XFS_BTNUM_BNO);
848 return i == 1 ? 0 : -ENOSPC;
849 }
850
851 static void
xfs_alloc_cur_close(struct xfs_alloc_cur * acur,bool error)852 xfs_alloc_cur_close(
853 struct xfs_alloc_cur *acur,
854 bool error)
855 {
856 int cur_error = XFS_BTREE_NOERROR;
857
858 if (error)
859 cur_error = XFS_BTREE_ERROR;
860
861 if (acur->cnt)
862 xfs_btree_del_cursor(acur->cnt, cur_error);
863 if (acur->bnolt)
864 xfs_btree_del_cursor(acur->bnolt, cur_error);
865 if (acur->bnogt)
866 xfs_btree_del_cursor(acur->bnogt, cur_error);
867 acur->cnt = acur->bnolt = acur->bnogt = NULL;
868 }
869
870 /*
871 * Check an extent for allocation and track the best available candidate in the
872 * allocation structure. The cursor is deactivated if it has entered an out of
873 * range state based on allocation arguments. Optionally return the extent
874 * extent geometry and allocation status if requested by the caller.
875 */
876 static int
xfs_alloc_cur_check(struct xfs_alloc_arg * args,struct xfs_alloc_cur * acur,struct xfs_btree_cur * cur,int * new)877 xfs_alloc_cur_check(
878 struct xfs_alloc_arg *args,
879 struct xfs_alloc_cur *acur,
880 struct xfs_btree_cur *cur,
881 int *new)
882 {
883 int error, i;
884 xfs_agblock_t bno, bnoa, bnew;
885 xfs_extlen_t len, lena, diff = -1;
886 bool busy;
887 unsigned busy_gen = 0;
888 bool deactivate = false;
889 bool isbnobt = cur->bc_btnum == XFS_BTNUM_BNO;
890
891 *new = 0;
892
893 error = xfs_alloc_get_rec(cur, &bno, &len, &i);
894 if (error)
895 return error;
896 if (XFS_IS_CORRUPT(args->mp, i != 1))
897 return -EFSCORRUPTED;
898
899 /*
900 * Check minlen and deactivate a cntbt cursor if out of acceptable size
901 * range (i.e., walking backwards looking for a minlen extent).
902 */
903 if (len < args->minlen) {
904 deactivate = !isbnobt;
905 goto out;
906 }
907
908 busy = xfs_alloc_compute_aligned(args, bno, len, &bnoa, &lena,
909 &busy_gen);
910 acur->busy |= busy;
911 if (busy)
912 acur->busy_gen = busy_gen;
913 /* deactivate a bnobt cursor outside of locality range */
914 if (bnoa < args->min_agbno || bnoa > args->max_agbno) {
915 deactivate = isbnobt;
916 goto out;
917 }
918 if (lena < args->minlen)
919 goto out;
920
921 args->len = XFS_EXTLEN_MIN(lena, args->maxlen);
922 xfs_alloc_fix_len(args);
923 ASSERT(args->len >= args->minlen);
924 if (args->len < acur->len)
925 goto out;
926
927 /*
928 * We have an aligned record that satisfies minlen and beats or matches
929 * the candidate extent size. Compare locality for near allocation mode.
930 */
931 diff = xfs_alloc_compute_diff(args->agbno, args->len,
932 args->alignment, args->datatype,
933 bnoa, lena, &bnew);
934 if (bnew == NULLAGBLOCK)
935 goto out;
936
937 /*
938 * Deactivate a bnobt cursor with worse locality than the current best.
939 */
940 if (diff > acur->diff) {
941 deactivate = isbnobt;
942 goto out;
943 }
944
945 ASSERT(args->len > acur->len ||
946 (args->len == acur->len && diff <= acur->diff));
947 acur->rec_bno = bno;
948 acur->rec_len = len;
949 acur->bno = bnew;
950 acur->len = args->len;
951 acur->diff = diff;
952 *new = 1;
953
954 /*
955 * We're done if we found a perfect allocation. This only deactivates
956 * the current cursor, but this is just an optimization to terminate a
957 * cntbt search that otherwise runs to the edge of the tree.
958 */
959 if (acur->diff == 0 && acur->len == args->maxlen)
960 deactivate = true;
961 out:
962 if (deactivate)
963 cur->bc_ag.abt.active = false;
964 trace_xfs_alloc_cur_check(args->mp, cur->bc_btnum, bno, len, diff,
965 *new);
966 return 0;
967 }
968
969 /*
970 * Complete an allocation of a candidate extent. Remove the extent from both
971 * trees and update the args structure.
972 */
973 STATIC int
xfs_alloc_cur_finish(struct xfs_alloc_arg * args,struct xfs_alloc_cur * acur)974 xfs_alloc_cur_finish(
975 struct xfs_alloc_arg *args,
976 struct xfs_alloc_cur *acur)
977 {
978 struct xfs_agf __maybe_unused *agf = args->agbp->b_addr;
979 int error;
980
981 ASSERT(acur->cnt && acur->bnolt);
982 ASSERT(acur->bno >= acur->rec_bno);
983 ASSERT(acur->bno + acur->len <= acur->rec_bno + acur->rec_len);
984 ASSERT(acur->rec_bno + acur->rec_len <= be32_to_cpu(agf->agf_length));
985
986 error = xfs_alloc_fixup_trees(acur->cnt, acur->bnolt, acur->rec_bno,
987 acur->rec_len, acur->bno, acur->len, 0);
988 if (error)
989 return error;
990
991 args->agbno = acur->bno;
992 args->len = acur->len;
993 args->wasfromfl = 0;
994
995 trace_xfs_alloc_cur(args);
996 return 0;
997 }
998
999 /*
1000 * Locality allocation lookup algorithm. This expects a cntbt cursor and uses
1001 * bno optimized lookup to search for extents with ideal size and locality.
1002 */
1003 STATIC int
xfs_alloc_cntbt_iter(struct xfs_alloc_arg * args,struct xfs_alloc_cur * acur)1004 xfs_alloc_cntbt_iter(
1005 struct xfs_alloc_arg *args,
1006 struct xfs_alloc_cur *acur)
1007 {
1008 struct xfs_btree_cur *cur = acur->cnt;
1009 xfs_agblock_t bno;
1010 xfs_extlen_t len, cur_len;
1011 int error;
1012 int i;
1013
1014 if (!xfs_alloc_cur_active(cur))
1015 return 0;
1016
1017 /* locality optimized lookup */
1018 cur_len = acur->cur_len;
1019 error = xfs_alloc_lookup_ge(cur, args->agbno, cur_len, &i);
1020 if (error)
1021 return error;
1022 if (i == 0)
1023 return 0;
1024 error = xfs_alloc_get_rec(cur, &bno, &len, &i);
1025 if (error)
1026 return error;
1027
1028 /* check the current record and update search length from it */
1029 error = xfs_alloc_cur_check(args, acur, cur, &i);
1030 if (error)
1031 return error;
1032 ASSERT(len >= acur->cur_len);
1033 acur->cur_len = len;
1034
1035 /*
1036 * We looked up the first record >= [agbno, len] above. The agbno is a
1037 * secondary key and so the current record may lie just before or after
1038 * agbno. If it is past agbno, check the previous record too so long as
1039 * the length matches as it may be closer. Don't check a smaller record
1040 * because that could deactivate our cursor.
1041 */
1042 if (bno > args->agbno) {
1043 error = xfs_btree_decrement(cur, 0, &i);
1044 if (!error && i) {
1045 error = xfs_alloc_get_rec(cur, &bno, &len, &i);
1046 if (!error && i && len == acur->cur_len)
1047 error = xfs_alloc_cur_check(args, acur, cur,
1048 &i);
1049 }
1050 if (error)
1051 return error;
1052 }
1053
1054 /*
1055 * Increment the search key until we find at least one allocation
1056 * candidate or if the extent we found was larger. Otherwise, double the
1057 * search key to optimize the search. Efficiency is more important here
1058 * than absolute best locality.
1059 */
1060 cur_len <<= 1;
1061 if (!acur->len || acur->cur_len >= cur_len)
1062 acur->cur_len++;
1063 else
1064 acur->cur_len = cur_len;
1065
1066 return error;
1067 }
1068
1069 /*
1070 * Deal with the case where only small freespaces remain. Either return the
1071 * contents of the last freespace record, or allocate space from the freelist if
1072 * there is nothing in the tree.
1073 */
1074 STATIC int /* error */
xfs_alloc_ag_vextent_small(struct xfs_alloc_arg * args,struct xfs_btree_cur * ccur,xfs_agblock_t * fbnop,xfs_extlen_t * flenp,int * stat)1075 xfs_alloc_ag_vextent_small(
1076 struct xfs_alloc_arg *args, /* allocation argument structure */
1077 struct xfs_btree_cur *ccur, /* optional by-size cursor */
1078 xfs_agblock_t *fbnop, /* result block number */
1079 xfs_extlen_t *flenp, /* result length */
1080 int *stat) /* status: 0-freelist, 1-normal/none */
1081 {
1082 struct xfs_agf *agf = args->agbp->b_addr;
1083 int error = 0;
1084 xfs_agblock_t fbno = NULLAGBLOCK;
1085 xfs_extlen_t flen = 0;
1086 int i = 0;
1087
1088 /*
1089 * If a cntbt cursor is provided, try to allocate the largest record in
1090 * the tree. Try the AGFL if the cntbt is empty, otherwise fail the
1091 * allocation. Make sure to respect minleft even when pulling from the
1092 * freelist.
1093 */
1094 if (ccur)
1095 error = xfs_btree_decrement(ccur, 0, &i);
1096 if (error)
1097 goto error;
1098 if (i) {
1099 error = xfs_alloc_get_rec(ccur, &fbno, &flen, &i);
1100 if (error)
1101 goto error;
1102 if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1103 error = -EFSCORRUPTED;
1104 goto error;
1105 }
1106 goto out;
1107 }
1108
1109 if (args->minlen != 1 || args->alignment != 1 ||
1110 args->resv == XFS_AG_RESV_AGFL ||
1111 be32_to_cpu(agf->agf_flcount) <= args->minleft)
1112 goto out;
1113
1114 error = xfs_alloc_get_freelist(args->pag, args->tp, args->agbp,
1115 &fbno, 0);
1116 if (error)
1117 goto error;
1118 if (fbno == NULLAGBLOCK)
1119 goto out;
1120
1121 xfs_extent_busy_reuse(args->mp, args->pag, fbno, 1,
1122 (args->datatype & XFS_ALLOC_NOBUSY));
1123
1124 if (args->datatype & XFS_ALLOC_USERDATA) {
1125 struct xfs_buf *bp;
1126
1127 error = xfs_trans_get_buf(args->tp, args->mp->m_ddev_targp,
1128 XFS_AGB_TO_DADDR(args->mp, args->agno, fbno),
1129 args->mp->m_bsize, 0, &bp);
1130 if (error)
1131 goto error;
1132 xfs_trans_binval(args->tp, bp);
1133 }
1134 *fbnop = args->agbno = fbno;
1135 *flenp = args->len = 1;
1136 if (XFS_IS_CORRUPT(args->mp, fbno >= be32_to_cpu(agf->agf_length))) {
1137 error = -EFSCORRUPTED;
1138 goto error;
1139 }
1140 args->wasfromfl = 1;
1141 trace_xfs_alloc_small_freelist(args);
1142
1143 /*
1144 * If we're feeding an AGFL block to something that doesn't live in the
1145 * free space, we need to clear out the OWN_AG rmap.
1146 */
1147 error = xfs_rmap_free(args->tp, args->agbp, args->pag, fbno, 1,
1148 &XFS_RMAP_OINFO_AG);
1149 if (error)
1150 goto error;
1151
1152 *stat = 0;
1153 return 0;
1154
1155 out:
1156 /*
1157 * Can't do the allocation, give up.
1158 */
1159 if (flen < args->minlen) {
1160 args->agbno = NULLAGBLOCK;
1161 trace_xfs_alloc_small_notenough(args);
1162 flen = 0;
1163 }
1164 *fbnop = fbno;
1165 *flenp = flen;
1166 *stat = 1;
1167 trace_xfs_alloc_small_done(args);
1168 return 0;
1169
1170 error:
1171 trace_xfs_alloc_small_error(args);
1172 return error;
1173 }
1174
1175 /*
1176 * Allocate a variable extent at exactly agno/bno.
1177 * Extent's length (returned in *len) will be between minlen and maxlen,
1178 * and of the form k * prod + mod unless there's nothing that large.
1179 * Return the starting a.g. block (bno), or NULLAGBLOCK if we can't do it.
1180 */
1181 STATIC int /* error */
xfs_alloc_ag_vextent_exact(xfs_alloc_arg_t * args)1182 xfs_alloc_ag_vextent_exact(
1183 xfs_alloc_arg_t *args) /* allocation argument structure */
1184 {
1185 struct xfs_agf __maybe_unused *agf = args->agbp->b_addr;
1186 struct xfs_btree_cur *bno_cur;/* by block-number btree cursor */
1187 struct xfs_btree_cur *cnt_cur;/* by count btree cursor */
1188 int error;
1189 xfs_agblock_t fbno; /* start block of found extent */
1190 xfs_extlen_t flen; /* length of found extent */
1191 xfs_agblock_t tbno; /* start block of busy extent */
1192 xfs_extlen_t tlen; /* length of busy extent */
1193 xfs_agblock_t tend; /* end block of busy extent */
1194 int i; /* success/failure of operation */
1195 unsigned busy_gen;
1196
1197 ASSERT(args->alignment == 1);
1198
1199 /*
1200 * Allocate/initialize a cursor for the by-number freespace btree.
1201 */
1202 bno_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
1203 args->pag, XFS_BTNUM_BNO);
1204
1205 /*
1206 * Lookup bno and minlen in the btree (minlen is irrelevant, really).
1207 * Look for the closest free block <= bno, it must contain bno
1208 * if any free block does.
1209 */
1210 error = xfs_alloc_lookup_le(bno_cur, args->agbno, args->minlen, &i);
1211 if (error)
1212 goto error0;
1213 if (!i)
1214 goto not_found;
1215
1216 /*
1217 * Grab the freespace record.
1218 */
1219 error = xfs_alloc_get_rec(bno_cur, &fbno, &flen, &i);
1220 if (error)
1221 goto error0;
1222 if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1223 error = -EFSCORRUPTED;
1224 goto error0;
1225 }
1226 ASSERT(fbno <= args->agbno);
1227
1228 /*
1229 * Check for overlapping busy extents.
1230 */
1231 tbno = fbno;
1232 tlen = flen;
1233 xfs_extent_busy_trim(args, &tbno, &tlen, &busy_gen);
1234
1235 /*
1236 * Give up if the start of the extent is busy, or the freespace isn't
1237 * long enough for the minimum request.
1238 */
1239 if (tbno > args->agbno)
1240 goto not_found;
1241 if (tlen < args->minlen)
1242 goto not_found;
1243 tend = tbno + tlen;
1244 if (tend < args->agbno + args->minlen)
1245 goto not_found;
1246
1247 /*
1248 * End of extent will be smaller of the freespace end and the
1249 * maximal requested end.
1250 *
1251 * Fix the length according to mod and prod if given.
1252 */
1253 args->len = XFS_AGBLOCK_MIN(tend, args->agbno + args->maxlen)
1254 - args->agbno;
1255 xfs_alloc_fix_len(args);
1256 ASSERT(args->agbno + args->len <= tend);
1257
1258 /*
1259 * We are allocating agbno for args->len
1260 * Allocate/initialize a cursor for the by-size btree.
1261 */
1262 cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
1263 args->pag, XFS_BTNUM_CNT);
1264 ASSERT(args->agbno + args->len <= be32_to_cpu(agf->agf_length));
1265 error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen, args->agbno,
1266 args->len, XFSA_FIXUP_BNO_OK);
1267 if (error) {
1268 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
1269 goto error0;
1270 }
1271
1272 xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
1273 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1274
1275 args->wasfromfl = 0;
1276 trace_xfs_alloc_exact_done(args);
1277 return 0;
1278
1279 not_found:
1280 /* Didn't find it, return null. */
1281 xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
1282 args->agbno = NULLAGBLOCK;
1283 trace_xfs_alloc_exact_notfound(args);
1284 return 0;
1285
1286 error0:
1287 xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
1288 trace_xfs_alloc_exact_error(args);
1289 return error;
1290 }
1291
1292 /*
1293 * Search a given number of btree records in a given direction. Check each
1294 * record against the good extent we've already found.
1295 */
1296 STATIC int
xfs_alloc_walk_iter(struct xfs_alloc_arg * args,struct xfs_alloc_cur * acur,struct xfs_btree_cur * cur,bool increment,bool find_one,int count,int * stat)1297 xfs_alloc_walk_iter(
1298 struct xfs_alloc_arg *args,
1299 struct xfs_alloc_cur *acur,
1300 struct xfs_btree_cur *cur,
1301 bool increment,
1302 bool find_one, /* quit on first candidate */
1303 int count, /* rec count (-1 for infinite) */
1304 int *stat)
1305 {
1306 int error;
1307 int i;
1308
1309 *stat = 0;
1310
1311 /*
1312 * Search so long as the cursor is active or we find a better extent.
1313 * The cursor is deactivated if it extends beyond the range of the
1314 * current allocation candidate.
1315 */
1316 while (xfs_alloc_cur_active(cur) && count) {
1317 error = xfs_alloc_cur_check(args, acur, cur, &i);
1318 if (error)
1319 return error;
1320 if (i == 1) {
1321 *stat = 1;
1322 if (find_one)
1323 break;
1324 }
1325 if (!xfs_alloc_cur_active(cur))
1326 break;
1327
1328 if (increment)
1329 error = xfs_btree_increment(cur, 0, &i);
1330 else
1331 error = xfs_btree_decrement(cur, 0, &i);
1332 if (error)
1333 return error;
1334 if (i == 0)
1335 cur->bc_ag.abt.active = false;
1336
1337 if (count > 0)
1338 count--;
1339 }
1340
1341 return 0;
1342 }
1343
1344 /*
1345 * Search the by-bno and by-size btrees in parallel in search of an extent with
1346 * ideal locality based on the NEAR mode ->agbno locality hint.
1347 */
1348 STATIC int
xfs_alloc_ag_vextent_locality(struct xfs_alloc_arg * args,struct xfs_alloc_cur * acur,int * stat)1349 xfs_alloc_ag_vextent_locality(
1350 struct xfs_alloc_arg *args,
1351 struct xfs_alloc_cur *acur,
1352 int *stat)
1353 {
1354 struct xfs_btree_cur *fbcur = NULL;
1355 int error;
1356 int i;
1357 bool fbinc;
1358
1359 ASSERT(acur->len == 0);
1360
1361 *stat = 0;
1362
1363 error = xfs_alloc_lookup_ge(acur->cnt, args->agbno, acur->cur_len, &i);
1364 if (error)
1365 return error;
1366 error = xfs_alloc_lookup_le(acur->bnolt, args->agbno, 0, &i);
1367 if (error)
1368 return error;
1369 error = xfs_alloc_lookup_ge(acur->bnogt, args->agbno, 0, &i);
1370 if (error)
1371 return error;
1372
1373 /*
1374 * Search the bnobt and cntbt in parallel. Search the bnobt left and
1375 * right and lookup the closest extent to the locality hint for each
1376 * extent size key in the cntbt. The entire search terminates
1377 * immediately on a bnobt hit because that means we've found best case
1378 * locality. Otherwise the search continues until the cntbt cursor runs
1379 * off the end of the tree. If no allocation candidate is found at this
1380 * point, give up on locality, walk backwards from the end of the cntbt
1381 * and take the first available extent.
1382 *
1383 * The parallel tree searches balance each other out to provide fairly
1384 * consistent performance for various situations. The bnobt search can
1385 * have pathological behavior in the worst case scenario of larger
1386 * allocation requests and fragmented free space. On the other hand, the
1387 * bnobt is able to satisfy most smaller allocation requests much more
1388 * quickly than the cntbt. The cntbt search can sift through fragmented
1389 * free space and sets of free extents for larger allocation requests
1390 * more quickly than the bnobt. Since the locality hint is just a hint
1391 * and we don't want to scan the entire bnobt for perfect locality, the
1392 * cntbt search essentially bounds the bnobt search such that we can
1393 * find good enough locality at reasonable performance in most cases.
1394 */
1395 while (xfs_alloc_cur_active(acur->bnolt) ||
1396 xfs_alloc_cur_active(acur->bnogt) ||
1397 xfs_alloc_cur_active(acur->cnt)) {
1398
1399 trace_xfs_alloc_cur_lookup(args);
1400
1401 /*
1402 * Search the bnobt left and right. In the case of a hit, finish
1403 * the search in the opposite direction and we're done.
1404 */
1405 error = xfs_alloc_walk_iter(args, acur, acur->bnolt, false,
1406 true, 1, &i);
1407 if (error)
1408 return error;
1409 if (i == 1) {
1410 trace_xfs_alloc_cur_left(args);
1411 fbcur = acur->bnogt;
1412 fbinc = true;
1413 break;
1414 }
1415 error = xfs_alloc_walk_iter(args, acur, acur->bnogt, true, true,
1416 1, &i);
1417 if (error)
1418 return error;
1419 if (i == 1) {
1420 trace_xfs_alloc_cur_right(args);
1421 fbcur = acur->bnolt;
1422 fbinc = false;
1423 break;
1424 }
1425
1426 /*
1427 * Check the extent with best locality based on the current
1428 * extent size search key and keep track of the best candidate.
1429 */
1430 error = xfs_alloc_cntbt_iter(args, acur);
1431 if (error)
1432 return error;
1433 if (!xfs_alloc_cur_active(acur->cnt)) {
1434 trace_xfs_alloc_cur_lookup_done(args);
1435 break;
1436 }
1437 }
1438
1439 /*
1440 * If we failed to find anything due to busy extents, return empty
1441 * handed so the caller can flush and retry. If no busy extents were
1442 * found, walk backwards from the end of the cntbt as a last resort.
1443 */
1444 if (!xfs_alloc_cur_active(acur->cnt) && !acur->len && !acur->busy) {
1445 error = xfs_btree_decrement(acur->cnt, 0, &i);
1446 if (error)
1447 return error;
1448 if (i) {
1449 acur->cnt->bc_ag.abt.active = true;
1450 fbcur = acur->cnt;
1451 fbinc = false;
1452 }
1453 }
1454
1455 /*
1456 * Search in the opposite direction for a better entry in the case of
1457 * a bnobt hit or walk backwards from the end of the cntbt.
1458 */
1459 if (fbcur) {
1460 error = xfs_alloc_walk_iter(args, acur, fbcur, fbinc, true, -1,
1461 &i);
1462 if (error)
1463 return error;
1464 }
1465
1466 if (acur->len)
1467 *stat = 1;
1468
1469 return 0;
1470 }
1471
1472 /* Check the last block of the cnt btree for allocations. */
1473 static int
xfs_alloc_ag_vextent_lastblock(struct xfs_alloc_arg * args,struct xfs_alloc_cur * acur,xfs_agblock_t * bno,xfs_extlen_t * len,bool * allocated)1474 xfs_alloc_ag_vextent_lastblock(
1475 struct xfs_alloc_arg *args,
1476 struct xfs_alloc_cur *acur,
1477 xfs_agblock_t *bno,
1478 xfs_extlen_t *len,
1479 bool *allocated)
1480 {
1481 int error;
1482 int i;
1483
1484 #ifdef DEBUG
1485 /* Randomly don't execute the first algorithm. */
1486 if (get_random_u32_below(2))
1487 return 0;
1488 #endif
1489
1490 /*
1491 * Start from the entry that lookup found, sequence through all larger
1492 * free blocks. If we're actually pointing at a record smaller than
1493 * maxlen, go to the start of this block, and skip all those smaller
1494 * than minlen.
1495 */
1496 if (*len || args->alignment > 1) {
1497 acur->cnt->bc_levels[0].ptr = 1;
1498 do {
1499 error = xfs_alloc_get_rec(acur->cnt, bno, len, &i);
1500 if (error)
1501 return error;
1502 if (XFS_IS_CORRUPT(args->mp, i != 1))
1503 return -EFSCORRUPTED;
1504 if (*len >= args->minlen)
1505 break;
1506 error = xfs_btree_increment(acur->cnt, 0, &i);
1507 if (error)
1508 return error;
1509 } while (i);
1510 ASSERT(*len >= args->minlen);
1511 if (!i)
1512 return 0;
1513 }
1514
1515 error = xfs_alloc_walk_iter(args, acur, acur->cnt, true, false, -1, &i);
1516 if (error)
1517 return error;
1518
1519 /*
1520 * It didn't work. We COULD be in a case where there's a good record
1521 * somewhere, so try again.
1522 */
1523 if (acur->len == 0)
1524 return 0;
1525
1526 trace_xfs_alloc_near_first(args);
1527 *allocated = true;
1528 return 0;
1529 }
1530
1531 /*
1532 * Allocate a variable extent near bno in the allocation group agno.
1533 * Extent's length (returned in len) will be between minlen and maxlen,
1534 * and of the form k * prod + mod unless there's nothing that large.
1535 * Return the starting a.g. block, or NULLAGBLOCK if we can't do it.
1536 */
1537 STATIC int
xfs_alloc_ag_vextent_near(struct xfs_alloc_arg * args,uint32_t alloc_flags)1538 xfs_alloc_ag_vextent_near(
1539 struct xfs_alloc_arg *args,
1540 uint32_t alloc_flags)
1541 {
1542 struct xfs_alloc_cur acur = {};
1543 int error; /* error code */
1544 int i; /* result code, temporary */
1545 xfs_agblock_t bno;
1546 xfs_extlen_t len;
1547
1548 /* handle uninitialized agbno range so caller doesn't have to */
1549 if (!args->min_agbno && !args->max_agbno)
1550 args->max_agbno = args->mp->m_sb.sb_agblocks - 1;
1551 ASSERT(args->min_agbno <= args->max_agbno);
1552
1553 /* clamp agbno to the range if it's outside */
1554 if (args->agbno < args->min_agbno)
1555 args->agbno = args->min_agbno;
1556 if (args->agbno > args->max_agbno)
1557 args->agbno = args->max_agbno;
1558
1559 /* Retry once quickly if we find busy extents before blocking. */
1560 alloc_flags |= XFS_ALLOC_FLAG_TRYFLUSH;
1561 restart:
1562 len = 0;
1563
1564 /*
1565 * Set up cursors and see if there are any free extents as big as
1566 * maxlen. If not, pick the last entry in the tree unless the tree is
1567 * empty.
1568 */
1569 error = xfs_alloc_cur_setup(args, &acur);
1570 if (error == -ENOSPC) {
1571 error = xfs_alloc_ag_vextent_small(args, acur.cnt, &bno,
1572 &len, &i);
1573 if (error)
1574 goto out;
1575 if (i == 0 || len == 0) {
1576 trace_xfs_alloc_near_noentry(args);
1577 goto out;
1578 }
1579 ASSERT(i == 1);
1580 } else if (error) {
1581 goto out;
1582 }
1583
1584 /*
1585 * First algorithm.
1586 * If the requested extent is large wrt the freespaces available
1587 * in this a.g., then the cursor will be pointing to a btree entry
1588 * near the right edge of the tree. If it's in the last btree leaf
1589 * block, then we just examine all the entries in that block
1590 * that are big enough, and pick the best one.
1591 */
1592 if (xfs_btree_islastblock(acur.cnt, 0)) {
1593 bool allocated = false;
1594
1595 error = xfs_alloc_ag_vextent_lastblock(args, &acur, &bno, &len,
1596 &allocated);
1597 if (error)
1598 goto out;
1599 if (allocated)
1600 goto alloc_finish;
1601 }
1602
1603 /*
1604 * Second algorithm. Combined cntbt and bnobt search to find ideal
1605 * locality.
1606 */
1607 error = xfs_alloc_ag_vextent_locality(args, &acur, &i);
1608 if (error)
1609 goto out;
1610
1611 /*
1612 * If we couldn't get anything, give up.
1613 */
1614 if (!acur.len) {
1615 if (acur.busy) {
1616 /*
1617 * Our only valid extents must have been busy. Flush and
1618 * retry the allocation again. If we get an -EAGAIN
1619 * error, we're being told that a deadlock was avoided
1620 * and the current transaction needs committing before
1621 * the allocation can be retried.
1622 */
1623 trace_xfs_alloc_near_busy(args);
1624 error = xfs_extent_busy_flush(args->tp, args->pag,
1625 acur.busy_gen, alloc_flags);
1626 if (error)
1627 goto out;
1628
1629 alloc_flags &= ~XFS_ALLOC_FLAG_TRYFLUSH;
1630 goto restart;
1631 }
1632 trace_xfs_alloc_size_neither(args);
1633 args->agbno = NULLAGBLOCK;
1634 goto out;
1635 }
1636
1637 alloc_finish:
1638 /* fix up btrees on a successful allocation */
1639 error = xfs_alloc_cur_finish(args, &acur);
1640
1641 out:
1642 xfs_alloc_cur_close(&acur, error);
1643 return error;
1644 }
1645
1646 /*
1647 * Allocate a variable extent anywhere in the allocation group agno.
1648 * Extent's length (returned in len) will be between minlen and maxlen,
1649 * and of the form k * prod + mod unless there's nothing that large.
1650 * Return the starting a.g. block, or NULLAGBLOCK if we can't do it.
1651 */
1652 static int
xfs_alloc_ag_vextent_size(struct xfs_alloc_arg * args,uint32_t alloc_flags)1653 xfs_alloc_ag_vextent_size(
1654 struct xfs_alloc_arg *args,
1655 uint32_t alloc_flags)
1656 {
1657 struct xfs_agf *agf = args->agbp->b_addr;
1658 struct xfs_btree_cur *bno_cur;
1659 struct xfs_btree_cur *cnt_cur;
1660 xfs_agblock_t fbno; /* start of found freespace */
1661 xfs_extlen_t flen; /* length of found freespace */
1662 xfs_agblock_t rbno; /* returned block number */
1663 xfs_extlen_t rlen; /* length of returned extent */
1664 bool busy;
1665 unsigned busy_gen;
1666 int error;
1667 int i;
1668
1669 /* Retry once quickly if we find busy extents before blocking. */
1670 alloc_flags |= XFS_ALLOC_FLAG_TRYFLUSH;
1671 restart:
1672 /*
1673 * Allocate and initialize a cursor for the by-size btree.
1674 */
1675 cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
1676 args->pag, XFS_BTNUM_CNT);
1677 bno_cur = NULL;
1678
1679 /*
1680 * Look for an entry >= maxlen+alignment-1 blocks.
1681 */
1682 if ((error = xfs_alloc_lookup_ge(cnt_cur, 0,
1683 args->maxlen + args->alignment - 1, &i)))
1684 goto error0;
1685
1686 /*
1687 * If none then we have to settle for a smaller extent. In the case that
1688 * there are no large extents, this will return the last entry in the
1689 * tree unless the tree is empty. In the case that there are only busy
1690 * large extents, this will return the largest small extent unless there
1691 * are no smaller extents available.
1692 */
1693 if (!i) {
1694 error = xfs_alloc_ag_vextent_small(args, cnt_cur,
1695 &fbno, &flen, &i);
1696 if (error)
1697 goto error0;
1698 if (i == 0 || flen == 0) {
1699 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1700 trace_xfs_alloc_size_noentry(args);
1701 return 0;
1702 }
1703 ASSERT(i == 1);
1704 busy = xfs_alloc_compute_aligned(args, fbno, flen, &rbno,
1705 &rlen, &busy_gen);
1706 } else {
1707 /*
1708 * Search for a non-busy extent that is large enough.
1709 */
1710 for (;;) {
1711 error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, &i);
1712 if (error)
1713 goto error0;
1714 if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1715 error = -EFSCORRUPTED;
1716 goto error0;
1717 }
1718
1719 busy = xfs_alloc_compute_aligned(args, fbno, flen,
1720 &rbno, &rlen, &busy_gen);
1721
1722 if (rlen >= args->maxlen)
1723 break;
1724
1725 error = xfs_btree_increment(cnt_cur, 0, &i);
1726 if (error)
1727 goto error0;
1728 if (i)
1729 continue;
1730
1731 /*
1732 * Our only valid extents must have been busy. Flush and
1733 * retry the allocation again. If we get an -EAGAIN
1734 * error, we're being told that a deadlock was avoided
1735 * and the current transaction needs committing before
1736 * the allocation can be retried.
1737 */
1738 trace_xfs_alloc_size_busy(args);
1739 error = xfs_extent_busy_flush(args->tp, args->pag,
1740 busy_gen, alloc_flags);
1741 if (error)
1742 goto error0;
1743
1744 alloc_flags &= ~XFS_ALLOC_FLAG_TRYFLUSH;
1745 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1746 goto restart;
1747 }
1748 }
1749
1750 /*
1751 * In the first case above, we got the last entry in the
1752 * by-size btree. Now we check to see if the space hits maxlen
1753 * once aligned; if not, we search left for something better.
1754 * This can't happen in the second case above.
1755 */
1756 rlen = XFS_EXTLEN_MIN(args->maxlen, rlen);
1757 if (XFS_IS_CORRUPT(args->mp,
1758 rlen != 0 &&
1759 (rlen > flen ||
1760 rbno + rlen > fbno + flen))) {
1761 error = -EFSCORRUPTED;
1762 goto error0;
1763 }
1764 if (rlen < args->maxlen) {
1765 xfs_agblock_t bestfbno;
1766 xfs_extlen_t bestflen;
1767 xfs_agblock_t bestrbno;
1768 xfs_extlen_t bestrlen;
1769
1770 bestrlen = rlen;
1771 bestrbno = rbno;
1772 bestflen = flen;
1773 bestfbno = fbno;
1774 for (;;) {
1775 if ((error = xfs_btree_decrement(cnt_cur, 0, &i)))
1776 goto error0;
1777 if (i == 0)
1778 break;
1779 if ((error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen,
1780 &i)))
1781 goto error0;
1782 if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1783 error = -EFSCORRUPTED;
1784 goto error0;
1785 }
1786 if (flen <= bestrlen)
1787 break;
1788 busy = xfs_alloc_compute_aligned(args, fbno, flen,
1789 &rbno, &rlen, &busy_gen);
1790 rlen = XFS_EXTLEN_MIN(args->maxlen, rlen);
1791 if (XFS_IS_CORRUPT(args->mp,
1792 rlen != 0 &&
1793 (rlen > flen ||
1794 rbno + rlen > fbno + flen))) {
1795 error = -EFSCORRUPTED;
1796 goto error0;
1797 }
1798 if (rlen > bestrlen) {
1799 bestrlen = rlen;
1800 bestrbno = rbno;
1801 bestflen = flen;
1802 bestfbno = fbno;
1803 if (rlen == args->maxlen)
1804 break;
1805 }
1806 }
1807 if ((error = xfs_alloc_lookup_eq(cnt_cur, bestfbno, bestflen,
1808 &i)))
1809 goto error0;
1810 if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1811 error = -EFSCORRUPTED;
1812 goto error0;
1813 }
1814 rlen = bestrlen;
1815 rbno = bestrbno;
1816 flen = bestflen;
1817 fbno = bestfbno;
1818 }
1819 args->wasfromfl = 0;
1820 /*
1821 * Fix up the length.
1822 */
1823 args->len = rlen;
1824 if (rlen < args->minlen) {
1825 if (busy) {
1826 /*
1827 * Our only valid extents must have been busy. Flush and
1828 * retry the allocation again. If we get an -EAGAIN
1829 * error, we're being told that a deadlock was avoided
1830 * and the current transaction needs committing before
1831 * the allocation can be retried.
1832 */
1833 trace_xfs_alloc_size_busy(args);
1834 error = xfs_extent_busy_flush(args->tp, args->pag,
1835 busy_gen, alloc_flags);
1836 if (error)
1837 goto error0;
1838
1839 alloc_flags &= ~XFS_ALLOC_FLAG_TRYFLUSH;
1840 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1841 goto restart;
1842 }
1843 goto out_nominleft;
1844 }
1845 xfs_alloc_fix_len(args);
1846
1847 rlen = args->len;
1848 if (XFS_IS_CORRUPT(args->mp, rlen > flen)) {
1849 error = -EFSCORRUPTED;
1850 goto error0;
1851 }
1852 /*
1853 * Allocate and initialize a cursor for the by-block tree.
1854 */
1855 bno_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
1856 args->pag, XFS_BTNUM_BNO);
1857 if ((error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen,
1858 rbno, rlen, XFSA_FIXUP_CNT_OK)))
1859 goto error0;
1860 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1861 xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
1862 cnt_cur = bno_cur = NULL;
1863 args->len = rlen;
1864 args->agbno = rbno;
1865 if (XFS_IS_CORRUPT(args->mp,
1866 args->agbno + args->len >
1867 be32_to_cpu(agf->agf_length))) {
1868 error = -EFSCORRUPTED;
1869 goto error0;
1870 }
1871 trace_xfs_alloc_size_done(args);
1872 return 0;
1873
1874 error0:
1875 trace_xfs_alloc_size_error(args);
1876 if (cnt_cur)
1877 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
1878 if (bno_cur)
1879 xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
1880 return error;
1881
1882 out_nominleft:
1883 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1884 trace_xfs_alloc_size_nominleft(args);
1885 args->agbno = NULLAGBLOCK;
1886 return 0;
1887 }
1888
1889 /*
1890 * Free the extent starting at agno/bno for length.
1891 */
1892 STATIC int
xfs_free_ag_extent(struct xfs_trans * tp,struct xfs_buf * agbp,xfs_agnumber_t agno,xfs_agblock_t bno,xfs_extlen_t len,const struct xfs_owner_info * oinfo,enum xfs_ag_resv_type type)1893 xfs_free_ag_extent(
1894 struct xfs_trans *tp,
1895 struct xfs_buf *agbp,
1896 xfs_agnumber_t agno,
1897 xfs_agblock_t bno,
1898 xfs_extlen_t len,
1899 const struct xfs_owner_info *oinfo,
1900 enum xfs_ag_resv_type type)
1901 {
1902 struct xfs_mount *mp;
1903 struct xfs_btree_cur *bno_cur;
1904 struct xfs_btree_cur *cnt_cur;
1905 xfs_agblock_t gtbno; /* start of right neighbor */
1906 xfs_extlen_t gtlen; /* length of right neighbor */
1907 xfs_agblock_t ltbno; /* start of left neighbor */
1908 xfs_extlen_t ltlen; /* length of left neighbor */
1909 xfs_agblock_t nbno; /* new starting block of freesp */
1910 xfs_extlen_t nlen; /* new length of freespace */
1911 int haveleft; /* have a left neighbor */
1912 int haveright; /* have a right neighbor */
1913 int i;
1914 int error;
1915 struct xfs_perag *pag = agbp->b_pag;
1916
1917 bno_cur = cnt_cur = NULL;
1918 mp = tp->t_mountp;
1919
1920 if (!xfs_rmap_should_skip_owner_update(oinfo)) {
1921 error = xfs_rmap_free(tp, agbp, pag, bno, len, oinfo);
1922 if (error)
1923 goto error0;
1924 }
1925
1926 /*
1927 * Allocate and initialize a cursor for the by-block btree.
1928 */
1929 bno_cur = xfs_allocbt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_BNO);
1930 /*
1931 * Look for a neighboring block on the left (lower block numbers)
1932 * that is contiguous with this space.
1933 */
1934 if ((error = xfs_alloc_lookup_le(bno_cur, bno, len, &haveleft)))
1935 goto error0;
1936 if (haveleft) {
1937 /*
1938 * There is a block to our left.
1939 */
1940 if ((error = xfs_alloc_get_rec(bno_cur, <bno, <len, &i)))
1941 goto error0;
1942 if (XFS_IS_CORRUPT(mp, i != 1)) {
1943 error = -EFSCORRUPTED;
1944 goto error0;
1945 }
1946 /*
1947 * It's not contiguous, though.
1948 */
1949 if (ltbno + ltlen < bno)
1950 haveleft = 0;
1951 else {
1952 /*
1953 * If this failure happens the request to free this
1954 * space was invalid, it's (partly) already free.
1955 * Very bad.
1956 */
1957 if (XFS_IS_CORRUPT(mp, ltbno + ltlen > bno)) {
1958 error = -EFSCORRUPTED;
1959 goto error0;
1960 }
1961 }
1962 }
1963 /*
1964 * Look for a neighboring block on the right (higher block numbers)
1965 * that is contiguous with this space.
1966 */
1967 if ((error = xfs_btree_increment(bno_cur, 0, &haveright)))
1968 goto error0;
1969 if (haveright) {
1970 /*
1971 * There is a block to our right.
1972 */
1973 if ((error = xfs_alloc_get_rec(bno_cur, >bno, >len, &i)))
1974 goto error0;
1975 if (XFS_IS_CORRUPT(mp, i != 1)) {
1976 error = -EFSCORRUPTED;
1977 goto error0;
1978 }
1979 /*
1980 * It's not contiguous, though.
1981 */
1982 if (bno + len < gtbno)
1983 haveright = 0;
1984 else {
1985 /*
1986 * If this failure happens the request to free this
1987 * space was invalid, it's (partly) already free.
1988 * Very bad.
1989 */
1990 if (XFS_IS_CORRUPT(mp, bno + len > gtbno)) {
1991 error = -EFSCORRUPTED;
1992 goto error0;
1993 }
1994 }
1995 }
1996 /*
1997 * Now allocate and initialize a cursor for the by-size tree.
1998 */
1999 cnt_cur = xfs_allocbt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_CNT);
2000 /*
2001 * Have both left and right contiguous neighbors.
2002 * Merge all three into a single free block.
2003 */
2004 if (haveleft && haveright) {
2005 /*
2006 * Delete the old by-size entry on the left.
2007 */
2008 if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i)))
2009 goto error0;
2010 if (XFS_IS_CORRUPT(mp, i != 1)) {
2011 error = -EFSCORRUPTED;
2012 goto error0;
2013 }
2014 if ((error = xfs_btree_delete(cnt_cur, &i)))
2015 goto error0;
2016 if (XFS_IS_CORRUPT(mp, i != 1)) {
2017 error = -EFSCORRUPTED;
2018 goto error0;
2019 }
2020 /*
2021 * Delete the old by-size entry on the right.
2022 */
2023 if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i)))
2024 goto error0;
2025 if (XFS_IS_CORRUPT(mp, i != 1)) {
2026 error = -EFSCORRUPTED;
2027 goto error0;
2028 }
2029 if ((error = xfs_btree_delete(cnt_cur, &i)))
2030 goto error0;
2031 if (XFS_IS_CORRUPT(mp, i != 1)) {
2032 error = -EFSCORRUPTED;
2033 goto error0;
2034 }
2035 /*
2036 * Delete the old by-block entry for the right block.
2037 */
2038 if ((error = xfs_btree_delete(bno_cur, &i)))
2039 goto error0;
2040 if (XFS_IS_CORRUPT(mp, i != 1)) {
2041 error = -EFSCORRUPTED;
2042 goto error0;
2043 }
2044 /*
2045 * Move the by-block cursor back to the left neighbor.
2046 */
2047 if ((error = xfs_btree_decrement(bno_cur, 0, &i)))
2048 goto error0;
2049 if (XFS_IS_CORRUPT(mp, i != 1)) {
2050 error = -EFSCORRUPTED;
2051 goto error0;
2052 }
2053 #ifdef DEBUG
2054 /*
2055 * Check that this is the right record: delete didn't
2056 * mangle the cursor.
2057 */
2058 {
2059 xfs_agblock_t xxbno;
2060 xfs_extlen_t xxlen;
2061
2062 if ((error = xfs_alloc_get_rec(bno_cur, &xxbno, &xxlen,
2063 &i)))
2064 goto error0;
2065 if (XFS_IS_CORRUPT(mp,
2066 i != 1 ||
2067 xxbno != ltbno ||
2068 xxlen != ltlen)) {
2069 error = -EFSCORRUPTED;
2070 goto error0;
2071 }
2072 }
2073 #endif
2074 /*
2075 * Update remaining by-block entry to the new, joined block.
2076 */
2077 nbno = ltbno;
2078 nlen = len + ltlen + gtlen;
2079 if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2080 goto error0;
2081 }
2082 /*
2083 * Have only a left contiguous neighbor.
2084 * Merge it together with the new freespace.
2085 */
2086 else if (haveleft) {
2087 /*
2088 * Delete the old by-size entry on the left.
2089 */
2090 if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i)))
2091 goto error0;
2092 if (XFS_IS_CORRUPT(mp, i != 1)) {
2093 error = -EFSCORRUPTED;
2094 goto error0;
2095 }
2096 if ((error = xfs_btree_delete(cnt_cur, &i)))
2097 goto error0;
2098 if (XFS_IS_CORRUPT(mp, i != 1)) {
2099 error = -EFSCORRUPTED;
2100 goto error0;
2101 }
2102 /*
2103 * Back up the by-block cursor to the left neighbor, and
2104 * update its length.
2105 */
2106 if ((error = xfs_btree_decrement(bno_cur, 0, &i)))
2107 goto error0;
2108 if (XFS_IS_CORRUPT(mp, i != 1)) {
2109 error = -EFSCORRUPTED;
2110 goto error0;
2111 }
2112 nbno = ltbno;
2113 nlen = len + ltlen;
2114 if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2115 goto error0;
2116 }
2117 /*
2118 * Have only a right contiguous neighbor.
2119 * Merge it together with the new freespace.
2120 */
2121 else if (haveright) {
2122 /*
2123 * Delete the old by-size entry on the right.
2124 */
2125 if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i)))
2126 goto error0;
2127 if (XFS_IS_CORRUPT(mp, i != 1)) {
2128 error = -EFSCORRUPTED;
2129 goto error0;
2130 }
2131 if ((error = xfs_btree_delete(cnt_cur, &i)))
2132 goto error0;
2133 if (XFS_IS_CORRUPT(mp, i != 1)) {
2134 error = -EFSCORRUPTED;
2135 goto error0;
2136 }
2137 /*
2138 * Update the starting block and length of the right
2139 * neighbor in the by-block tree.
2140 */
2141 nbno = bno;
2142 nlen = len + gtlen;
2143 if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2144 goto error0;
2145 }
2146 /*
2147 * No contiguous neighbors.
2148 * Insert the new freespace into the by-block tree.
2149 */
2150 else {
2151 nbno = bno;
2152 nlen = len;
2153 if ((error = xfs_btree_insert(bno_cur, &i)))
2154 goto error0;
2155 if (XFS_IS_CORRUPT(mp, i != 1)) {
2156 error = -EFSCORRUPTED;
2157 goto error0;
2158 }
2159 }
2160 xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
2161 bno_cur = NULL;
2162 /*
2163 * In all cases we need to insert the new freespace in the by-size tree.
2164 */
2165 if ((error = xfs_alloc_lookup_eq(cnt_cur, nbno, nlen, &i)))
2166 goto error0;
2167 if (XFS_IS_CORRUPT(mp, i != 0)) {
2168 error = -EFSCORRUPTED;
2169 goto error0;
2170 }
2171 if ((error = xfs_btree_insert(cnt_cur, &i)))
2172 goto error0;
2173 if (XFS_IS_CORRUPT(mp, i != 1)) {
2174 error = -EFSCORRUPTED;
2175 goto error0;
2176 }
2177 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
2178 cnt_cur = NULL;
2179
2180 /*
2181 * Update the freespace totals in the ag and superblock.
2182 */
2183 error = xfs_alloc_update_counters(tp, agbp, len);
2184 xfs_ag_resv_free_extent(agbp->b_pag, type, tp, len);
2185 if (error)
2186 goto error0;
2187
2188 XFS_STATS_INC(mp, xs_freex);
2189 XFS_STATS_ADD(mp, xs_freeb, len);
2190
2191 trace_xfs_free_extent(mp, agno, bno, len, type, haveleft, haveright);
2192
2193 return 0;
2194
2195 error0:
2196 trace_xfs_free_extent(mp, agno, bno, len, type, -1, -1);
2197 if (bno_cur)
2198 xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
2199 if (cnt_cur)
2200 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
2201 return error;
2202 }
2203
2204 /*
2205 * Visible (exported) allocation/free functions.
2206 * Some of these are used just by xfs_alloc_btree.c and this file.
2207 */
2208
2209 /*
2210 * Compute and fill in value of m_alloc_maxlevels.
2211 */
2212 void
xfs_alloc_compute_maxlevels(xfs_mount_t * mp)2213 xfs_alloc_compute_maxlevels(
2214 xfs_mount_t *mp) /* file system mount structure */
2215 {
2216 mp->m_alloc_maxlevels = xfs_btree_compute_maxlevels(mp->m_alloc_mnr,
2217 (mp->m_sb.sb_agblocks + 1) / 2);
2218 ASSERT(mp->m_alloc_maxlevels <= xfs_allocbt_maxlevels_ondisk());
2219 }
2220
2221 /*
2222 * Find the length of the longest extent in an AG. The 'need' parameter
2223 * specifies how much space we're going to need for the AGFL and the
2224 * 'reserved' parameter tells us how many blocks in this AG are reserved for
2225 * other callers.
2226 */
2227 xfs_extlen_t
xfs_alloc_longest_free_extent(struct xfs_perag * pag,xfs_extlen_t need,xfs_extlen_t reserved)2228 xfs_alloc_longest_free_extent(
2229 struct xfs_perag *pag,
2230 xfs_extlen_t need,
2231 xfs_extlen_t reserved)
2232 {
2233 xfs_extlen_t delta = 0;
2234
2235 /*
2236 * If the AGFL needs a recharge, we'll have to subtract that from the
2237 * longest extent.
2238 */
2239 if (need > pag->pagf_flcount)
2240 delta = need - pag->pagf_flcount;
2241
2242 /*
2243 * If we cannot maintain others' reservations with space from the
2244 * not-longest freesp extents, we'll have to subtract /that/ from
2245 * the longest extent too.
2246 */
2247 if (pag->pagf_freeblks - pag->pagf_longest < reserved)
2248 delta += reserved - (pag->pagf_freeblks - pag->pagf_longest);
2249
2250 /*
2251 * If the longest extent is long enough to satisfy all the
2252 * reservations and AGFL rules in place, we can return this extent.
2253 */
2254 if (pag->pagf_longest > delta)
2255 return min_t(xfs_extlen_t, pag->pag_mount->m_ag_max_usable,
2256 pag->pagf_longest - delta);
2257
2258 /* Otherwise, let the caller try for 1 block if there's space. */
2259 return pag->pagf_flcount > 0 || pag->pagf_longest > 0;
2260 }
2261
2262 /*
2263 * Compute the minimum length of the AGFL in the given AG. If @pag is NULL,
2264 * return the largest possible minimum length.
2265 */
2266 unsigned int
xfs_alloc_min_freelist(struct xfs_mount * mp,struct xfs_perag * pag)2267 xfs_alloc_min_freelist(
2268 struct xfs_mount *mp,
2269 struct xfs_perag *pag)
2270 {
2271 /* AG btrees have at least 1 level. */
2272 static const uint8_t fake_levels[XFS_BTNUM_AGF] = {1, 1, 1};
2273 const uint8_t *levels = pag ? pag->pagf_levels : fake_levels;
2274 unsigned int min_free;
2275
2276 ASSERT(mp->m_alloc_maxlevels > 0);
2277
2278 /*
2279 * For a btree shorter than the maximum height, the worst case is that
2280 * every level gets split and a new level is added, then while inserting
2281 * another entry to refill the AGFL, every level under the old root gets
2282 * split again. This is:
2283 *
2284 * (full height split reservation) + (AGFL refill split height)
2285 * = (current height + 1) + (current height - 1)
2286 * = (new height) + (new height - 2)
2287 * = 2 * new height - 2
2288 *
2289 * For a btree of maximum height, the worst case is that every level
2290 * under the root gets split, then while inserting another entry to
2291 * refill the AGFL, every level under the root gets split again. This is
2292 * also:
2293 *
2294 * 2 * (current height - 1)
2295 * = 2 * (new height - 1)
2296 * = 2 * new height - 2
2297 */
2298
2299 /* space needed by-bno freespace btree */
2300 min_free = min_t(unsigned int, levels[XFS_BTNUM_BNOi] + 1,
2301 mp->m_alloc_maxlevels) * 2 - 2;
2302 /* space needed by-size freespace btree */
2303 min_free += min_t(unsigned int, levels[XFS_BTNUM_CNTi] + 1,
2304 mp->m_alloc_maxlevels) * 2 - 2;
2305 /* space needed reverse mapping used space btree */
2306 if (xfs_has_rmapbt(mp))
2307 min_free += min_t(unsigned int, levels[XFS_BTNUM_RMAPi] + 1,
2308 mp->m_rmap_maxlevels) * 2 - 2;
2309
2310 return min_free;
2311 }
2312
2313 /*
2314 * Check if the operation we are fixing up the freelist for should go ahead or
2315 * not. If we are freeing blocks, we always allow it, otherwise the allocation
2316 * is dependent on whether the size and shape of free space available will
2317 * permit the requested allocation to take place.
2318 */
2319 static bool
xfs_alloc_space_available(struct xfs_alloc_arg * args,xfs_extlen_t min_free,int flags)2320 xfs_alloc_space_available(
2321 struct xfs_alloc_arg *args,
2322 xfs_extlen_t min_free,
2323 int flags)
2324 {
2325 struct xfs_perag *pag = args->pag;
2326 xfs_extlen_t alloc_len, longest;
2327 xfs_extlen_t reservation; /* blocks that are still reserved */
2328 int available;
2329 xfs_extlen_t agflcount;
2330
2331 if (flags & XFS_ALLOC_FLAG_FREEING)
2332 return true;
2333
2334 reservation = xfs_ag_resv_needed(pag, args->resv);
2335
2336 /* do we have enough contiguous free space for the allocation? */
2337 alloc_len = args->minlen + (args->alignment - 1) + args->minalignslop;
2338 longest = xfs_alloc_longest_free_extent(pag, min_free, reservation);
2339 if (longest < alloc_len)
2340 return false;
2341
2342 /*
2343 * Do we have enough free space remaining for the allocation? Don't
2344 * account extra agfl blocks because we are about to defer free them,
2345 * making them unavailable until the current transaction commits.
2346 */
2347 agflcount = min_t(xfs_extlen_t, pag->pagf_flcount, min_free);
2348 available = (int)(pag->pagf_freeblks + agflcount -
2349 reservation - min_free - args->minleft);
2350 if (available < (int)max(args->total, alloc_len))
2351 return false;
2352
2353 /*
2354 * Clamp maxlen to the amount of free space available for the actual
2355 * extent allocation.
2356 */
2357 if (available < (int)args->maxlen && !(flags & XFS_ALLOC_FLAG_CHECK)) {
2358 args->maxlen = available;
2359 ASSERT(args->maxlen > 0);
2360 ASSERT(args->maxlen >= args->minlen);
2361 }
2362
2363 return true;
2364 }
2365
2366 int
xfs_free_agfl_block(struct xfs_trans * tp,xfs_agnumber_t agno,xfs_agblock_t agbno,struct xfs_buf * agbp,struct xfs_owner_info * oinfo)2367 xfs_free_agfl_block(
2368 struct xfs_trans *tp,
2369 xfs_agnumber_t agno,
2370 xfs_agblock_t agbno,
2371 struct xfs_buf *agbp,
2372 struct xfs_owner_info *oinfo)
2373 {
2374 int error;
2375 struct xfs_buf *bp;
2376
2377 error = xfs_free_ag_extent(tp, agbp, agno, agbno, 1, oinfo,
2378 XFS_AG_RESV_AGFL);
2379 if (error)
2380 return error;
2381
2382 error = xfs_trans_get_buf(tp, tp->t_mountp->m_ddev_targp,
2383 XFS_AGB_TO_DADDR(tp->t_mountp, agno, agbno),
2384 tp->t_mountp->m_bsize, 0, &bp);
2385 if (error)
2386 return error;
2387 xfs_trans_binval(tp, bp);
2388
2389 return 0;
2390 }
2391
2392 /*
2393 * Check the agfl fields of the agf for inconsistency or corruption.
2394 *
2395 * The original purpose was to detect an agfl header padding mismatch between
2396 * current and early v5 kernels. This problem manifests as a 1-slot size
2397 * difference between the on-disk flcount and the active [first, last] range of
2398 * a wrapped agfl.
2399 *
2400 * However, we need to use these same checks to catch agfl count corruptions
2401 * unrelated to padding. This could occur on any v4 or v5 filesystem, so either
2402 * way, we need to reset the agfl and warn the user.
2403 *
2404 * Return true if a reset is required before the agfl can be used, false
2405 * otherwise.
2406 */
2407 static bool
xfs_agfl_needs_reset(struct xfs_mount * mp,struct xfs_agf * agf)2408 xfs_agfl_needs_reset(
2409 struct xfs_mount *mp,
2410 struct xfs_agf *agf)
2411 {
2412 uint32_t f = be32_to_cpu(agf->agf_flfirst);
2413 uint32_t l = be32_to_cpu(agf->agf_fllast);
2414 uint32_t c = be32_to_cpu(agf->agf_flcount);
2415 int agfl_size = xfs_agfl_size(mp);
2416 int active;
2417
2418 /*
2419 * The agf read verifier catches severe corruption of these fields.
2420 * Repeat some sanity checks to cover a packed -> unpacked mismatch if
2421 * the verifier allows it.
2422 */
2423 if (f >= agfl_size || l >= agfl_size)
2424 return true;
2425 if (c > agfl_size)
2426 return true;
2427
2428 /*
2429 * Check consistency between the on-disk count and the active range. An
2430 * agfl padding mismatch manifests as an inconsistent flcount.
2431 */
2432 if (c && l >= f)
2433 active = l - f + 1;
2434 else if (c)
2435 active = agfl_size - f + l + 1;
2436 else
2437 active = 0;
2438
2439 return active != c;
2440 }
2441
2442 /*
2443 * Reset the agfl to an empty state. Ignore/drop any existing blocks since the
2444 * agfl content cannot be trusted. Warn the user that a repair is required to
2445 * recover leaked blocks.
2446 *
2447 * The purpose of this mechanism is to handle filesystems affected by the agfl
2448 * header padding mismatch problem. A reset keeps the filesystem online with a
2449 * relatively minor free space accounting inconsistency rather than suffer the
2450 * inevitable crash from use of an invalid agfl block.
2451 */
2452 static void
xfs_agfl_reset(struct xfs_trans * tp,struct xfs_buf * agbp,struct xfs_perag * pag)2453 xfs_agfl_reset(
2454 struct xfs_trans *tp,
2455 struct xfs_buf *agbp,
2456 struct xfs_perag *pag)
2457 {
2458 struct xfs_mount *mp = tp->t_mountp;
2459 struct xfs_agf *agf = agbp->b_addr;
2460
2461 ASSERT(xfs_perag_agfl_needs_reset(pag));
2462 trace_xfs_agfl_reset(mp, agf, 0, _RET_IP_);
2463
2464 xfs_warn(mp,
2465 "WARNING: Reset corrupted AGFL on AG %u. %d blocks leaked. "
2466 "Please unmount and run xfs_repair.",
2467 pag->pag_agno, pag->pagf_flcount);
2468
2469 agf->agf_flfirst = 0;
2470 agf->agf_fllast = cpu_to_be32(xfs_agfl_size(mp) - 1);
2471 agf->agf_flcount = 0;
2472 xfs_alloc_log_agf(tp, agbp, XFS_AGF_FLFIRST | XFS_AGF_FLLAST |
2473 XFS_AGF_FLCOUNT);
2474
2475 pag->pagf_flcount = 0;
2476 clear_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate);
2477 }
2478
2479 /*
2480 * Defer an AGFL block free. This is effectively equivalent to
2481 * xfs_free_extent_later() with some special handling particular to AGFL blocks.
2482 *
2483 * Deferring AGFL frees helps prevent log reservation overruns due to too many
2484 * allocation operations in a transaction. AGFL frees are prone to this problem
2485 * because for one they are always freed one at a time. Further, an immediate
2486 * AGFL block free can cause a btree join and require another block free before
2487 * the real allocation can proceed. Deferring the free disconnects freeing up
2488 * the AGFL slot from freeing the block.
2489 */
2490 static int
xfs_defer_agfl_block(struct xfs_trans * tp,xfs_agnumber_t agno,xfs_agblock_t agbno,struct xfs_owner_info * oinfo)2491 xfs_defer_agfl_block(
2492 struct xfs_trans *tp,
2493 xfs_agnumber_t agno,
2494 xfs_agblock_t agbno,
2495 struct xfs_owner_info *oinfo)
2496 {
2497 struct xfs_mount *mp = tp->t_mountp;
2498 struct xfs_extent_free_item *xefi;
2499 xfs_fsblock_t fsbno = XFS_AGB_TO_FSB(mp, agno, agbno);
2500
2501 ASSERT(xfs_extfree_item_cache != NULL);
2502 ASSERT(oinfo != NULL);
2503
2504 if (XFS_IS_CORRUPT(mp, !xfs_verify_fsbno(mp, fsbno)))
2505 return -EFSCORRUPTED;
2506
2507 xefi = kmem_cache_zalloc(xfs_extfree_item_cache,
2508 GFP_KERNEL | __GFP_NOFAIL);
2509 xefi->xefi_startblock = fsbno;
2510 xefi->xefi_blockcount = 1;
2511 xefi->xefi_owner = oinfo->oi_owner;
2512 xefi->xefi_agresv = XFS_AG_RESV_AGFL;
2513
2514 trace_xfs_agfl_free_defer(mp, agno, 0, agbno, 1);
2515
2516 xfs_extent_free_get_group(mp, xefi);
2517 xfs_defer_add(tp, XFS_DEFER_OPS_TYPE_AGFL_FREE, &xefi->xefi_list);
2518 return 0;
2519 }
2520
2521 /*
2522 * Add the extent to the list of extents to be free at transaction end.
2523 * The list is maintained sorted (by block number).
2524 */
2525 int
__xfs_free_extent_later(struct xfs_trans * tp,xfs_fsblock_t bno,xfs_filblks_t len,const struct xfs_owner_info * oinfo,enum xfs_ag_resv_type type,bool skip_discard)2526 __xfs_free_extent_later(
2527 struct xfs_trans *tp,
2528 xfs_fsblock_t bno,
2529 xfs_filblks_t len,
2530 const struct xfs_owner_info *oinfo,
2531 enum xfs_ag_resv_type type,
2532 bool skip_discard)
2533 {
2534 struct xfs_extent_free_item *xefi;
2535 struct xfs_mount *mp = tp->t_mountp;
2536 #ifdef DEBUG
2537 xfs_agnumber_t agno;
2538 xfs_agblock_t agbno;
2539
2540 ASSERT(bno != NULLFSBLOCK);
2541 ASSERT(len > 0);
2542 ASSERT(len <= XFS_MAX_BMBT_EXTLEN);
2543 ASSERT(!isnullstartblock(bno));
2544 agno = XFS_FSB_TO_AGNO(mp, bno);
2545 agbno = XFS_FSB_TO_AGBNO(mp, bno);
2546 ASSERT(agno < mp->m_sb.sb_agcount);
2547 ASSERT(agbno < mp->m_sb.sb_agblocks);
2548 ASSERT(len < mp->m_sb.sb_agblocks);
2549 ASSERT(agbno + len <= mp->m_sb.sb_agblocks);
2550 #endif
2551 ASSERT(xfs_extfree_item_cache != NULL);
2552 ASSERT(type != XFS_AG_RESV_AGFL);
2553
2554 if (XFS_IS_CORRUPT(mp, !xfs_verify_fsbext(mp, bno, len)))
2555 return -EFSCORRUPTED;
2556
2557 xefi = kmem_cache_zalloc(xfs_extfree_item_cache,
2558 GFP_KERNEL | __GFP_NOFAIL);
2559 xefi->xefi_startblock = bno;
2560 xefi->xefi_blockcount = (xfs_extlen_t)len;
2561 xefi->xefi_agresv = type;
2562 if (skip_discard)
2563 xefi->xefi_flags |= XFS_EFI_SKIP_DISCARD;
2564 if (oinfo) {
2565 ASSERT(oinfo->oi_offset == 0);
2566
2567 if (oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK)
2568 xefi->xefi_flags |= XFS_EFI_ATTR_FORK;
2569 if (oinfo->oi_flags & XFS_OWNER_INFO_BMBT_BLOCK)
2570 xefi->xefi_flags |= XFS_EFI_BMBT_BLOCK;
2571 xefi->xefi_owner = oinfo->oi_owner;
2572 } else {
2573 xefi->xefi_owner = XFS_RMAP_OWN_NULL;
2574 }
2575 trace_xfs_bmap_free_defer(mp,
2576 XFS_FSB_TO_AGNO(tp->t_mountp, bno), 0,
2577 XFS_FSB_TO_AGBNO(tp->t_mountp, bno), len);
2578
2579 xfs_extent_free_get_group(mp, xefi);
2580 xfs_defer_add(tp, XFS_DEFER_OPS_TYPE_FREE, &xefi->xefi_list);
2581 return 0;
2582 }
2583
2584 /*
2585 * Check if an AGF has a free extent record whose length is equal to
2586 * args->minlen.
2587 */
2588 STATIC int
xfs_exact_minlen_extent_available(struct xfs_alloc_arg * args,struct xfs_buf * agbp,int * stat)2589 xfs_exact_minlen_extent_available(
2590 struct xfs_alloc_arg *args,
2591 struct xfs_buf *agbp,
2592 int *stat)
2593 {
2594 struct xfs_btree_cur *cnt_cur;
2595 xfs_agblock_t fbno;
2596 xfs_extlen_t flen;
2597 int error = 0;
2598
2599 cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, agbp,
2600 args->pag, XFS_BTNUM_CNT);
2601 error = xfs_alloc_lookup_ge(cnt_cur, 0, args->minlen, stat);
2602 if (error)
2603 goto out;
2604
2605 if (*stat == 0) {
2606 error = -EFSCORRUPTED;
2607 goto out;
2608 }
2609
2610 error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, stat);
2611 if (error)
2612 goto out;
2613
2614 if (*stat == 1 && flen != args->minlen)
2615 *stat = 0;
2616
2617 out:
2618 xfs_btree_del_cursor(cnt_cur, error);
2619
2620 return error;
2621 }
2622
2623 /*
2624 * Decide whether to use this allocation group for this allocation.
2625 * If so, fix up the btree freelist's size.
2626 */
2627 int /* error */
xfs_alloc_fix_freelist(struct xfs_alloc_arg * args,uint32_t alloc_flags)2628 xfs_alloc_fix_freelist(
2629 struct xfs_alloc_arg *args, /* allocation argument structure */
2630 uint32_t alloc_flags)
2631 {
2632 struct xfs_mount *mp = args->mp;
2633 struct xfs_perag *pag = args->pag;
2634 struct xfs_trans *tp = args->tp;
2635 struct xfs_buf *agbp = NULL;
2636 struct xfs_buf *agflbp = NULL;
2637 struct xfs_alloc_arg targs; /* local allocation arguments */
2638 xfs_agblock_t bno; /* freelist block */
2639 xfs_extlen_t need; /* total blocks needed in freelist */
2640 int error = 0;
2641
2642 /* deferred ops (AGFL block frees) require permanent transactions */
2643 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
2644
2645 if (!xfs_perag_initialised_agf(pag)) {
2646 error = xfs_alloc_read_agf(pag, tp, alloc_flags, &agbp);
2647 if (error) {
2648 /* Couldn't lock the AGF so skip this AG. */
2649 if (error == -EAGAIN)
2650 error = 0;
2651 goto out_no_agbp;
2652 }
2653 }
2654
2655 /*
2656 * If this is a metadata preferred pag and we are user data then try
2657 * somewhere else if we are not being asked to try harder at this
2658 * point
2659 */
2660 if (xfs_perag_prefers_metadata(pag) &&
2661 (args->datatype & XFS_ALLOC_USERDATA) &&
2662 (alloc_flags & XFS_ALLOC_FLAG_TRYLOCK)) {
2663 ASSERT(!(alloc_flags & XFS_ALLOC_FLAG_FREEING));
2664 goto out_agbp_relse;
2665 }
2666
2667 need = xfs_alloc_min_freelist(mp, pag);
2668 if (!xfs_alloc_space_available(args, need, alloc_flags |
2669 XFS_ALLOC_FLAG_CHECK))
2670 goto out_agbp_relse;
2671
2672 /*
2673 * Get the a.g. freespace buffer.
2674 * Can fail if we're not blocking on locks, and it's held.
2675 */
2676 if (!agbp) {
2677 error = xfs_alloc_read_agf(pag, tp, alloc_flags, &agbp);
2678 if (error) {
2679 /* Couldn't lock the AGF so skip this AG. */
2680 if (error == -EAGAIN)
2681 error = 0;
2682 goto out_no_agbp;
2683 }
2684 }
2685
2686 /* reset a padding mismatched agfl before final free space check */
2687 if (xfs_perag_agfl_needs_reset(pag))
2688 xfs_agfl_reset(tp, agbp, pag);
2689
2690 /* If there isn't enough total space or single-extent, reject it. */
2691 need = xfs_alloc_min_freelist(mp, pag);
2692 if (!xfs_alloc_space_available(args, need, alloc_flags))
2693 goto out_agbp_relse;
2694
2695 if (IS_ENABLED(CONFIG_XFS_DEBUG) && args->alloc_minlen_only) {
2696 int stat;
2697
2698 error = xfs_exact_minlen_extent_available(args, agbp, &stat);
2699 if (error || !stat)
2700 goto out_agbp_relse;
2701 }
2702
2703 /*
2704 * Make the freelist shorter if it's too long.
2705 *
2706 * Note that from this point onwards, we will always release the agf and
2707 * agfl buffers on error. This handles the case where we error out and
2708 * the buffers are clean or may not have been joined to the transaction
2709 * and hence need to be released manually. If they have been joined to
2710 * the transaction, then xfs_trans_brelse() will handle them
2711 * appropriately based on the recursion count and dirty state of the
2712 * buffer.
2713 *
2714 * XXX (dgc): When we have lots of free space, does this buy us
2715 * anything other than extra overhead when we need to put more blocks
2716 * back on the free list? Maybe we should only do this when space is
2717 * getting low or the AGFL is more than half full?
2718 *
2719 * The NOSHRINK flag prevents the AGFL from being shrunk if it's too
2720 * big; the NORMAP flag prevents AGFL expand/shrink operations from
2721 * updating the rmapbt. Both flags are used in xfs_repair while we're
2722 * rebuilding the rmapbt, and neither are used by the kernel. They're
2723 * both required to ensure that rmaps are correctly recorded for the
2724 * regenerated AGFL, bnobt, and cntbt. See repair/phase5.c and
2725 * repair/rmap.c in xfsprogs for details.
2726 */
2727 memset(&targs, 0, sizeof(targs));
2728 /* struct copy below */
2729 if (alloc_flags & XFS_ALLOC_FLAG_NORMAP)
2730 targs.oinfo = XFS_RMAP_OINFO_SKIP_UPDATE;
2731 else
2732 targs.oinfo = XFS_RMAP_OINFO_AG;
2733 while (!(alloc_flags & XFS_ALLOC_FLAG_NOSHRINK) &&
2734 pag->pagf_flcount > need) {
2735 error = xfs_alloc_get_freelist(pag, tp, agbp, &bno, 0);
2736 if (error)
2737 goto out_agbp_relse;
2738
2739 /* defer agfl frees */
2740 error = xfs_defer_agfl_block(tp, args->agno, bno, &targs.oinfo);
2741 if (error)
2742 goto out_agbp_relse;
2743 }
2744
2745 targs.tp = tp;
2746 targs.mp = mp;
2747 targs.agbp = agbp;
2748 targs.agno = args->agno;
2749 targs.alignment = targs.minlen = targs.prod = 1;
2750 targs.pag = pag;
2751 error = xfs_alloc_read_agfl(pag, tp, &agflbp);
2752 if (error)
2753 goto out_agbp_relse;
2754
2755 /* Make the freelist longer if it's too short. */
2756 while (pag->pagf_flcount < need) {
2757 targs.agbno = 0;
2758 targs.maxlen = need - pag->pagf_flcount;
2759 targs.resv = XFS_AG_RESV_AGFL;
2760
2761 /* Allocate as many blocks as possible at once. */
2762 error = xfs_alloc_ag_vextent_size(&targs, alloc_flags);
2763 if (error)
2764 goto out_agflbp_relse;
2765
2766 /*
2767 * Stop if we run out. Won't happen if callers are obeying
2768 * the restrictions correctly. Can happen for free calls
2769 * on a completely full ag.
2770 */
2771 if (targs.agbno == NULLAGBLOCK) {
2772 if (alloc_flags & XFS_ALLOC_FLAG_FREEING)
2773 break;
2774 goto out_agflbp_relse;
2775 }
2776
2777 if (!xfs_rmap_should_skip_owner_update(&targs.oinfo)) {
2778 error = xfs_rmap_alloc(tp, agbp, pag,
2779 targs.agbno, targs.len, &targs.oinfo);
2780 if (error)
2781 goto out_agflbp_relse;
2782 }
2783 error = xfs_alloc_update_counters(tp, agbp,
2784 -((long)(targs.len)));
2785 if (error)
2786 goto out_agflbp_relse;
2787
2788 /*
2789 * Put each allocated block on the list.
2790 */
2791 for (bno = targs.agbno; bno < targs.agbno + targs.len; bno++) {
2792 error = xfs_alloc_put_freelist(pag, tp, agbp,
2793 agflbp, bno, 0);
2794 if (error)
2795 goto out_agflbp_relse;
2796 }
2797 }
2798 xfs_trans_brelse(tp, agflbp);
2799 args->agbp = agbp;
2800 return 0;
2801
2802 out_agflbp_relse:
2803 xfs_trans_brelse(tp, agflbp);
2804 out_agbp_relse:
2805 if (agbp)
2806 xfs_trans_brelse(tp, agbp);
2807 out_no_agbp:
2808 args->agbp = NULL;
2809 return error;
2810 }
2811
2812 /*
2813 * Get a block from the freelist.
2814 * Returns with the buffer for the block gotten.
2815 */
2816 int
xfs_alloc_get_freelist(struct xfs_perag * pag,struct xfs_trans * tp,struct xfs_buf * agbp,xfs_agblock_t * bnop,int btreeblk)2817 xfs_alloc_get_freelist(
2818 struct xfs_perag *pag,
2819 struct xfs_trans *tp,
2820 struct xfs_buf *agbp,
2821 xfs_agblock_t *bnop,
2822 int btreeblk)
2823 {
2824 struct xfs_agf *agf = agbp->b_addr;
2825 struct xfs_buf *agflbp;
2826 xfs_agblock_t bno;
2827 __be32 *agfl_bno;
2828 int error;
2829 uint32_t logflags;
2830 struct xfs_mount *mp = tp->t_mountp;
2831
2832 /*
2833 * Freelist is empty, give up.
2834 */
2835 if (!agf->agf_flcount) {
2836 *bnop = NULLAGBLOCK;
2837 return 0;
2838 }
2839 /*
2840 * Read the array of free blocks.
2841 */
2842 error = xfs_alloc_read_agfl(pag, tp, &agflbp);
2843 if (error)
2844 return error;
2845
2846
2847 /*
2848 * Get the block number and update the data structures.
2849 */
2850 agfl_bno = xfs_buf_to_agfl_bno(agflbp);
2851 bno = be32_to_cpu(agfl_bno[be32_to_cpu(agf->agf_flfirst)]);
2852 if (XFS_IS_CORRUPT(tp->t_mountp, !xfs_verify_agbno(pag, bno)))
2853 return -EFSCORRUPTED;
2854
2855 be32_add_cpu(&agf->agf_flfirst, 1);
2856 xfs_trans_brelse(tp, agflbp);
2857 if (be32_to_cpu(agf->agf_flfirst) == xfs_agfl_size(mp))
2858 agf->agf_flfirst = 0;
2859
2860 ASSERT(!xfs_perag_agfl_needs_reset(pag));
2861 be32_add_cpu(&agf->agf_flcount, -1);
2862 pag->pagf_flcount--;
2863
2864 logflags = XFS_AGF_FLFIRST | XFS_AGF_FLCOUNT;
2865 if (btreeblk) {
2866 be32_add_cpu(&agf->agf_btreeblks, 1);
2867 pag->pagf_btreeblks++;
2868 logflags |= XFS_AGF_BTREEBLKS;
2869 }
2870
2871 xfs_alloc_log_agf(tp, agbp, logflags);
2872 *bnop = bno;
2873
2874 return 0;
2875 }
2876
2877 /*
2878 * Log the given fields from the agf structure.
2879 */
2880 void
xfs_alloc_log_agf(struct xfs_trans * tp,struct xfs_buf * bp,uint32_t fields)2881 xfs_alloc_log_agf(
2882 struct xfs_trans *tp,
2883 struct xfs_buf *bp,
2884 uint32_t fields)
2885 {
2886 int first; /* first byte offset */
2887 int last; /* last byte offset */
2888 static const short offsets[] = {
2889 offsetof(xfs_agf_t, agf_magicnum),
2890 offsetof(xfs_agf_t, agf_versionnum),
2891 offsetof(xfs_agf_t, agf_seqno),
2892 offsetof(xfs_agf_t, agf_length),
2893 offsetof(xfs_agf_t, agf_roots[0]),
2894 offsetof(xfs_agf_t, agf_levels[0]),
2895 offsetof(xfs_agf_t, agf_flfirst),
2896 offsetof(xfs_agf_t, agf_fllast),
2897 offsetof(xfs_agf_t, agf_flcount),
2898 offsetof(xfs_agf_t, agf_freeblks),
2899 offsetof(xfs_agf_t, agf_longest),
2900 offsetof(xfs_agf_t, agf_btreeblks),
2901 offsetof(xfs_agf_t, agf_uuid),
2902 offsetof(xfs_agf_t, agf_rmap_blocks),
2903 offsetof(xfs_agf_t, agf_refcount_blocks),
2904 offsetof(xfs_agf_t, agf_refcount_root),
2905 offsetof(xfs_agf_t, agf_refcount_level),
2906 /* needed so that we don't log the whole rest of the structure: */
2907 offsetof(xfs_agf_t, agf_spare64),
2908 sizeof(xfs_agf_t)
2909 };
2910
2911 trace_xfs_agf(tp->t_mountp, bp->b_addr, fields, _RET_IP_);
2912
2913 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_AGF_BUF);
2914
2915 xfs_btree_offsets(fields, offsets, XFS_AGF_NUM_BITS, &first, &last);
2916 xfs_trans_log_buf(tp, bp, (uint)first, (uint)last);
2917 }
2918
2919 /*
2920 * Put the block on the freelist for the allocation group.
2921 */
2922 int
xfs_alloc_put_freelist(struct xfs_perag * pag,struct xfs_trans * tp,struct xfs_buf * agbp,struct xfs_buf * agflbp,xfs_agblock_t bno,int btreeblk)2923 xfs_alloc_put_freelist(
2924 struct xfs_perag *pag,
2925 struct xfs_trans *tp,
2926 struct xfs_buf *agbp,
2927 struct xfs_buf *agflbp,
2928 xfs_agblock_t bno,
2929 int btreeblk)
2930 {
2931 struct xfs_mount *mp = tp->t_mountp;
2932 struct xfs_agf *agf = agbp->b_addr;
2933 __be32 *blockp;
2934 int error;
2935 uint32_t logflags;
2936 __be32 *agfl_bno;
2937 int startoff;
2938
2939 if (!agflbp) {
2940 error = xfs_alloc_read_agfl(pag, tp, &agflbp);
2941 if (error)
2942 return error;
2943 }
2944
2945 be32_add_cpu(&agf->agf_fllast, 1);
2946 if (be32_to_cpu(agf->agf_fllast) == xfs_agfl_size(mp))
2947 agf->agf_fllast = 0;
2948
2949 ASSERT(!xfs_perag_agfl_needs_reset(pag));
2950 be32_add_cpu(&agf->agf_flcount, 1);
2951 pag->pagf_flcount++;
2952
2953 logflags = XFS_AGF_FLLAST | XFS_AGF_FLCOUNT;
2954 if (btreeblk) {
2955 be32_add_cpu(&agf->agf_btreeblks, -1);
2956 pag->pagf_btreeblks--;
2957 logflags |= XFS_AGF_BTREEBLKS;
2958 }
2959
2960 xfs_alloc_log_agf(tp, agbp, logflags);
2961
2962 ASSERT(be32_to_cpu(agf->agf_flcount) <= xfs_agfl_size(mp));
2963
2964 agfl_bno = xfs_buf_to_agfl_bno(agflbp);
2965 blockp = &agfl_bno[be32_to_cpu(agf->agf_fllast)];
2966 *blockp = cpu_to_be32(bno);
2967 startoff = (char *)blockp - (char *)agflbp->b_addr;
2968
2969 xfs_alloc_log_agf(tp, agbp, logflags);
2970
2971 xfs_trans_buf_set_type(tp, agflbp, XFS_BLFT_AGFL_BUF);
2972 xfs_trans_log_buf(tp, agflbp, startoff,
2973 startoff + sizeof(xfs_agblock_t) - 1);
2974 return 0;
2975 }
2976
2977 /*
2978 * Check that this AGF/AGI header's sequence number and length matches the AG
2979 * number and size in fsblocks.
2980 */
2981 xfs_failaddr_t
xfs_validate_ag_length(struct xfs_buf * bp,uint32_t seqno,uint32_t length)2982 xfs_validate_ag_length(
2983 struct xfs_buf *bp,
2984 uint32_t seqno,
2985 uint32_t length)
2986 {
2987 struct xfs_mount *mp = bp->b_mount;
2988 /*
2989 * During growfs operations, the perag is not fully initialised,
2990 * so we can't use it for any useful checking. growfs ensures we can't
2991 * use it by using uncached buffers that don't have the perag attached
2992 * so we can detect and avoid this problem.
2993 */
2994 if (bp->b_pag && seqno != bp->b_pag->pag_agno)
2995 return __this_address;
2996
2997 /*
2998 * Only the last AG in the filesystem is allowed to be shorter
2999 * than the AG size recorded in the superblock.
3000 */
3001 if (length != mp->m_sb.sb_agblocks) {
3002 /*
3003 * During growfs, the new last AG can get here before we
3004 * have updated the superblock. Give it a pass on the seqno
3005 * check.
3006 */
3007 if (bp->b_pag && seqno != mp->m_sb.sb_agcount - 1)
3008 return __this_address;
3009 if (length < XFS_MIN_AG_BLOCKS)
3010 return __this_address;
3011 if (length > mp->m_sb.sb_agblocks)
3012 return __this_address;
3013 }
3014
3015 return NULL;
3016 }
3017
3018 /*
3019 * Verify the AGF is consistent.
3020 *
3021 * We do not verify the AGFL indexes in the AGF are fully consistent here
3022 * because of issues with variable on-disk structure sizes. Instead, we check
3023 * the agfl indexes for consistency when we initialise the perag from the AGF
3024 * information after a read completes.
3025 *
3026 * If the index is inconsistent, then we mark the perag as needing an AGFL
3027 * reset. The first AGFL update performed then resets the AGFL indexes and
3028 * refills the AGFL with known good free blocks, allowing the filesystem to
3029 * continue operating normally at the cost of a few leaked free space blocks.
3030 */
3031 static xfs_failaddr_t
xfs_agf_verify(struct xfs_buf * bp)3032 xfs_agf_verify(
3033 struct xfs_buf *bp)
3034 {
3035 struct xfs_mount *mp = bp->b_mount;
3036 struct xfs_agf *agf = bp->b_addr;
3037 xfs_failaddr_t fa;
3038 uint32_t agf_seqno = be32_to_cpu(agf->agf_seqno);
3039 uint32_t agf_length = be32_to_cpu(agf->agf_length);
3040
3041 if (xfs_has_crc(mp)) {
3042 if (!uuid_equal(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid))
3043 return __this_address;
3044 if (!xfs_log_check_lsn(mp, be64_to_cpu(agf->agf_lsn)))
3045 return __this_address;
3046 }
3047
3048 if (!xfs_verify_magic(bp, agf->agf_magicnum))
3049 return __this_address;
3050
3051 if (!XFS_AGF_GOOD_VERSION(be32_to_cpu(agf->agf_versionnum)))
3052 return __this_address;
3053
3054 /*
3055 * Both agf_seqno and agf_length need to validated before anything else
3056 * block number related in the AGF or AGFL can be checked.
3057 */
3058 fa = xfs_validate_ag_length(bp, agf_seqno, agf_length);
3059 if (fa)
3060 return fa;
3061
3062 if (be32_to_cpu(agf->agf_flfirst) >= xfs_agfl_size(mp))
3063 return __this_address;
3064 if (be32_to_cpu(agf->agf_fllast) >= xfs_agfl_size(mp))
3065 return __this_address;
3066 if (be32_to_cpu(agf->agf_flcount) > xfs_agfl_size(mp))
3067 return __this_address;
3068
3069 if (be32_to_cpu(agf->agf_freeblks) < be32_to_cpu(agf->agf_longest) ||
3070 be32_to_cpu(agf->agf_freeblks) > agf_length)
3071 return __this_address;
3072
3073 if (be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]) < 1 ||
3074 be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]) < 1 ||
3075 be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]) >
3076 mp->m_alloc_maxlevels ||
3077 be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]) >
3078 mp->m_alloc_maxlevels)
3079 return __this_address;
3080
3081 if (xfs_has_lazysbcount(mp) &&
3082 be32_to_cpu(agf->agf_btreeblks) > agf_length)
3083 return __this_address;
3084
3085 if (xfs_has_rmapbt(mp)) {
3086 if (be32_to_cpu(agf->agf_rmap_blocks) > agf_length)
3087 return __this_address;
3088
3089 if (be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]) < 1 ||
3090 be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]) >
3091 mp->m_rmap_maxlevels)
3092 return __this_address;
3093 }
3094
3095 if (xfs_has_reflink(mp)) {
3096 if (be32_to_cpu(agf->agf_refcount_blocks) > agf_length)
3097 return __this_address;
3098
3099 if (be32_to_cpu(agf->agf_refcount_level) < 1 ||
3100 be32_to_cpu(agf->agf_refcount_level) > mp->m_refc_maxlevels)
3101 return __this_address;
3102 }
3103
3104 return NULL;
3105 }
3106
3107 static void
xfs_agf_read_verify(struct xfs_buf * bp)3108 xfs_agf_read_verify(
3109 struct xfs_buf *bp)
3110 {
3111 struct xfs_mount *mp = bp->b_mount;
3112 xfs_failaddr_t fa;
3113
3114 if (xfs_has_crc(mp) &&
3115 !xfs_buf_verify_cksum(bp, XFS_AGF_CRC_OFF))
3116 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
3117 else {
3118 fa = xfs_agf_verify(bp);
3119 if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_ALLOC_READ_AGF))
3120 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
3121 }
3122 }
3123
3124 static void
xfs_agf_write_verify(struct xfs_buf * bp)3125 xfs_agf_write_verify(
3126 struct xfs_buf *bp)
3127 {
3128 struct xfs_mount *mp = bp->b_mount;
3129 struct xfs_buf_log_item *bip = bp->b_log_item;
3130 struct xfs_agf *agf = bp->b_addr;
3131 xfs_failaddr_t fa;
3132
3133 fa = xfs_agf_verify(bp);
3134 if (fa) {
3135 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
3136 return;
3137 }
3138
3139 if (!xfs_has_crc(mp))
3140 return;
3141
3142 if (bip)
3143 agf->agf_lsn = cpu_to_be64(bip->bli_item.li_lsn);
3144
3145 xfs_buf_update_cksum(bp, XFS_AGF_CRC_OFF);
3146 }
3147
3148 const struct xfs_buf_ops xfs_agf_buf_ops = {
3149 .name = "xfs_agf",
3150 .magic = { cpu_to_be32(XFS_AGF_MAGIC), cpu_to_be32(XFS_AGF_MAGIC) },
3151 .verify_read = xfs_agf_read_verify,
3152 .verify_write = xfs_agf_write_verify,
3153 .verify_struct = xfs_agf_verify,
3154 };
3155
3156 /*
3157 * Read in the allocation group header (free/alloc section).
3158 */
3159 int
xfs_read_agf(struct xfs_perag * pag,struct xfs_trans * tp,int flags,struct xfs_buf ** agfbpp)3160 xfs_read_agf(
3161 struct xfs_perag *pag,
3162 struct xfs_trans *tp,
3163 int flags,
3164 struct xfs_buf **agfbpp)
3165 {
3166 struct xfs_mount *mp = pag->pag_mount;
3167 int error;
3168
3169 trace_xfs_read_agf(pag->pag_mount, pag->pag_agno);
3170
3171 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
3172 XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGF_DADDR(mp)),
3173 XFS_FSS_TO_BB(mp, 1), flags, agfbpp, &xfs_agf_buf_ops);
3174 if (error)
3175 return error;
3176
3177 xfs_buf_set_ref(*agfbpp, XFS_AGF_REF);
3178 return 0;
3179 }
3180
3181 /*
3182 * Read in the allocation group header (free/alloc section) and initialise the
3183 * perag structure if necessary. If the caller provides @agfbpp, then return the
3184 * locked buffer to the caller, otherwise free it.
3185 */
3186 int
xfs_alloc_read_agf(struct xfs_perag * pag,struct xfs_trans * tp,int flags,struct xfs_buf ** agfbpp)3187 xfs_alloc_read_agf(
3188 struct xfs_perag *pag,
3189 struct xfs_trans *tp,
3190 int flags,
3191 struct xfs_buf **agfbpp)
3192 {
3193 struct xfs_buf *agfbp;
3194 struct xfs_agf *agf;
3195 int error;
3196 int allocbt_blks;
3197
3198 trace_xfs_alloc_read_agf(pag->pag_mount, pag->pag_agno);
3199
3200 /* We don't support trylock when freeing. */
3201 ASSERT((flags & (XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK)) !=
3202 (XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK));
3203 error = xfs_read_agf(pag, tp,
3204 (flags & XFS_ALLOC_FLAG_TRYLOCK) ? XBF_TRYLOCK : 0,
3205 &agfbp);
3206 if (error)
3207 return error;
3208
3209 agf = agfbp->b_addr;
3210 if (!xfs_perag_initialised_agf(pag)) {
3211 pag->pagf_freeblks = be32_to_cpu(agf->agf_freeblks);
3212 pag->pagf_btreeblks = be32_to_cpu(agf->agf_btreeblks);
3213 pag->pagf_flcount = be32_to_cpu(agf->agf_flcount);
3214 pag->pagf_longest = be32_to_cpu(agf->agf_longest);
3215 pag->pagf_levels[XFS_BTNUM_BNOi] =
3216 be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNOi]);
3217 pag->pagf_levels[XFS_BTNUM_CNTi] =
3218 be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNTi]);
3219 pag->pagf_levels[XFS_BTNUM_RMAPi] =
3220 be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAPi]);
3221 pag->pagf_refcount_level = be32_to_cpu(agf->agf_refcount_level);
3222 if (xfs_agfl_needs_reset(pag->pag_mount, agf))
3223 set_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate);
3224 else
3225 clear_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate);
3226
3227 /*
3228 * Update the in-core allocbt counter. Filter out the rmapbt
3229 * subset of the btreeblks counter because the rmapbt is managed
3230 * by perag reservation. Subtract one for the rmapbt root block
3231 * because the rmap counter includes it while the btreeblks
3232 * counter only tracks non-root blocks.
3233 */
3234 allocbt_blks = pag->pagf_btreeblks;
3235 if (xfs_has_rmapbt(pag->pag_mount))
3236 allocbt_blks -= be32_to_cpu(agf->agf_rmap_blocks) - 1;
3237 if (allocbt_blks > 0)
3238 atomic64_add(allocbt_blks,
3239 &pag->pag_mount->m_allocbt_blks);
3240
3241 set_bit(XFS_AGSTATE_AGF_INIT, &pag->pag_opstate);
3242 }
3243 #ifdef DEBUG
3244 else if (!xfs_is_shutdown(pag->pag_mount)) {
3245 ASSERT(pag->pagf_freeblks == be32_to_cpu(agf->agf_freeblks));
3246 ASSERT(pag->pagf_btreeblks == be32_to_cpu(agf->agf_btreeblks));
3247 ASSERT(pag->pagf_flcount == be32_to_cpu(agf->agf_flcount));
3248 ASSERT(pag->pagf_longest == be32_to_cpu(agf->agf_longest));
3249 ASSERT(pag->pagf_levels[XFS_BTNUM_BNOi] ==
3250 be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNOi]));
3251 ASSERT(pag->pagf_levels[XFS_BTNUM_CNTi] ==
3252 be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNTi]));
3253 }
3254 #endif
3255 if (agfbpp)
3256 *agfbpp = agfbp;
3257 else
3258 xfs_trans_brelse(tp, agfbp);
3259 return 0;
3260 }
3261
3262 /*
3263 * Pre-proces allocation arguments to set initial state that we don't require
3264 * callers to set up correctly, as well as bounds check the allocation args
3265 * that are set up.
3266 */
3267 static int
xfs_alloc_vextent_check_args(struct xfs_alloc_arg * args,xfs_fsblock_t target,xfs_agnumber_t * minimum_agno)3268 xfs_alloc_vextent_check_args(
3269 struct xfs_alloc_arg *args,
3270 xfs_fsblock_t target,
3271 xfs_agnumber_t *minimum_agno)
3272 {
3273 struct xfs_mount *mp = args->mp;
3274 xfs_agblock_t agsize;
3275
3276 args->fsbno = NULLFSBLOCK;
3277
3278 *minimum_agno = 0;
3279 if (args->tp->t_highest_agno != NULLAGNUMBER)
3280 *minimum_agno = args->tp->t_highest_agno;
3281
3282 /*
3283 * Just fix this up, for the case where the last a.g. is shorter
3284 * (or there's only one a.g.) and the caller couldn't easily figure
3285 * that out (xfs_bmap_alloc).
3286 */
3287 agsize = mp->m_sb.sb_agblocks;
3288 if (args->maxlen > agsize)
3289 args->maxlen = agsize;
3290 if (args->alignment == 0)
3291 args->alignment = 1;
3292
3293 ASSERT(args->minlen > 0);
3294 ASSERT(args->maxlen > 0);
3295 ASSERT(args->alignment > 0);
3296 ASSERT(args->resv != XFS_AG_RESV_AGFL);
3297
3298 ASSERT(XFS_FSB_TO_AGNO(mp, target) < mp->m_sb.sb_agcount);
3299 ASSERT(XFS_FSB_TO_AGBNO(mp, target) < agsize);
3300 ASSERT(args->minlen <= args->maxlen);
3301 ASSERT(args->minlen <= agsize);
3302 ASSERT(args->mod < args->prod);
3303
3304 if (XFS_FSB_TO_AGNO(mp, target) >= mp->m_sb.sb_agcount ||
3305 XFS_FSB_TO_AGBNO(mp, target) >= agsize ||
3306 args->minlen > args->maxlen || args->minlen > agsize ||
3307 args->mod >= args->prod) {
3308 trace_xfs_alloc_vextent_badargs(args);
3309 return -ENOSPC;
3310 }
3311
3312 if (args->agno != NULLAGNUMBER && *minimum_agno > args->agno) {
3313 trace_xfs_alloc_vextent_skip_deadlock(args);
3314 return -ENOSPC;
3315 }
3316 return 0;
3317
3318 }
3319
3320 /*
3321 * Prepare an AG for allocation. If the AG is not prepared to accept the
3322 * allocation, return failure.
3323 *
3324 * XXX(dgc): The complexity of "need_pag" will go away as all caller paths are
3325 * modified to hold their own perag references.
3326 */
3327 static int
xfs_alloc_vextent_prepare_ag(struct xfs_alloc_arg * args,uint32_t alloc_flags)3328 xfs_alloc_vextent_prepare_ag(
3329 struct xfs_alloc_arg *args,
3330 uint32_t alloc_flags)
3331 {
3332 bool need_pag = !args->pag;
3333 int error;
3334
3335 if (need_pag)
3336 args->pag = xfs_perag_get(args->mp, args->agno);
3337
3338 args->agbp = NULL;
3339 error = xfs_alloc_fix_freelist(args, alloc_flags);
3340 if (error) {
3341 trace_xfs_alloc_vextent_nofix(args);
3342 if (need_pag)
3343 xfs_perag_put(args->pag);
3344 args->agbno = NULLAGBLOCK;
3345 return error;
3346 }
3347 if (!args->agbp) {
3348 /* cannot allocate in this AG at all */
3349 trace_xfs_alloc_vextent_noagbp(args);
3350 args->agbno = NULLAGBLOCK;
3351 return 0;
3352 }
3353 args->wasfromfl = 0;
3354 return 0;
3355 }
3356
3357 /*
3358 * Post-process allocation results to account for the allocation if it succeed
3359 * and set the allocated block number correctly for the caller.
3360 *
3361 * XXX: we should really be returning ENOSPC for ENOSPC, not
3362 * hiding it behind a "successful" NULLFSBLOCK allocation.
3363 */
3364 static int
xfs_alloc_vextent_finish(struct xfs_alloc_arg * args,xfs_agnumber_t minimum_agno,int alloc_error,bool drop_perag)3365 xfs_alloc_vextent_finish(
3366 struct xfs_alloc_arg *args,
3367 xfs_agnumber_t minimum_agno,
3368 int alloc_error,
3369 bool drop_perag)
3370 {
3371 struct xfs_mount *mp = args->mp;
3372 int error = 0;
3373
3374 /*
3375 * We can end up here with a locked AGF. If we failed, the caller is
3376 * likely going to try to allocate again with different parameters, and
3377 * that can widen the AGs that are searched for free space. If we have
3378 * to do BMBT block allocation, we have to do a new allocation.
3379 *
3380 * Hence leaving this function with the AGF locked opens up potential
3381 * ABBA AGF deadlocks because a future allocation attempt in this
3382 * transaction may attempt to lock a lower number AGF.
3383 *
3384 * We can't release the AGF until the transaction is commited, so at
3385 * this point we must update the "first allocation" tracker to point at
3386 * this AG if the tracker is empty or points to a lower AG. This allows
3387 * the next allocation attempt to be modified appropriately to avoid
3388 * deadlocks.
3389 */
3390 if (args->agbp &&
3391 (args->tp->t_highest_agno == NULLAGNUMBER ||
3392 args->agno > minimum_agno))
3393 args->tp->t_highest_agno = args->agno;
3394
3395 /*
3396 * If the allocation failed with an error or we had an ENOSPC result,
3397 * preserve the returned error whilst also marking the allocation result
3398 * as "no extent allocated". This ensures that callers that fail to
3399 * capture the error will still treat it as a failed allocation.
3400 */
3401 if (alloc_error || args->agbno == NULLAGBLOCK) {
3402 args->fsbno = NULLFSBLOCK;
3403 error = alloc_error;
3404 goto out_drop_perag;
3405 }
3406
3407 args->fsbno = XFS_AGB_TO_FSB(mp, args->agno, args->agbno);
3408
3409 ASSERT(args->len >= args->minlen);
3410 ASSERT(args->len <= args->maxlen);
3411 ASSERT(args->agbno % args->alignment == 0);
3412 XFS_AG_CHECK_DADDR(mp, XFS_FSB_TO_DADDR(mp, args->fsbno), args->len);
3413
3414 /* if not file data, insert new block into the reverse map btree */
3415 if (!xfs_rmap_should_skip_owner_update(&args->oinfo)) {
3416 error = xfs_rmap_alloc(args->tp, args->agbp, args->pag,
3417 args->agbno, args->len, &args->oinfo);
3418 if (error)
3419 goto out_drop_perag;
3420 }
3421
3422 if (!args->wasfromfl) {
3423 error = xfs_alloc_update_counters(args->tp, args->agbp,
3424 -((long)(args->len)));
3425 if (error)
3426 goto out_drop_perag;
3427
3428 ASSERT(!xfs_extent_busy_search(mp, args->pag, args->agbno,
3429 args->len));
3430 }
3431
3432 xfs_ag_resv_alloc_extent(args->pag, args->resv, args);
3433
3434 XFS_STATS_INC(mp, xs_allocx);
3435 XFS_STATS_ADD(mp, xs_allocb, args->len);
3436
3437 trace_xfs_alloc_vextent_finish(args);
3438
3439 out_drop_perag:
3440 if (drop_perag && args->pag) {
3441 xfs_perag_rele(args->pag);
3442 args->pag = NULL;
3443 }
3444 return error;
3445 }
3446
3447 /*
3448 * Allocate within a single AG only. This uses a best-fit length algorithm so if
3449 * you need an exact sized allocation without locality constraints, this is the
3450 * fastest way to do it.
3451 *
3452 * Caller is expected to hold a perag reference in args->pag.
3453 */
3454 int
xfs_alloc_vextent_this_ag(struct xfs_alloc_arg * args,xfs_agnumber_t agno)3455 xfs_alloc_vextent_this_ag(
3456 struct xfs_alloc_arg *args,
3457 xfs_agnumber_t agno)
3458 {
3459 struct xfs_mount *mp = args->mp;
3460 xfs_agnumber_t minimum_agno;
3461 uint32_t alloc_flags = 0;
3462 int error;
3463
3464 ASSERT(args->pag != NULL);
3465 ASSERT(args->pag->pag_agno == agno);
3466
3467 args->agno = agno;
3468 args->agbno = 0;
3469
3470 trace_xfs_alloc_vextent_this_ag(args);
3471
3472 error = xfs_alloc_vextent_check_args(args, XFS_AGB_TO_FSB(mp, agno, 0),
3473 &minimum_agno);
3474 if (error) {
3475 if (error == -ENOSPC)
3476 return 0;
3477 return error;
3478 }
3479
3480 error = xfs_alloc_vextent_prepare_ag(args, alloc_flags);
3481 if (!error && args->agbp)
3482 error = xfs_alloc_ag_vextent_size(args, alloc_flags);
3483
3484 return xfs_alloc_vextent_finish(args, minimum_agno, error, false);
3485 }
3486
3487 /*
3488 * Iterate all AGs trying to allocate an extent starting from @start_ag.
3489 *
3490 * If the incoming allocation type is XFS_ALLOCTYPE_NEAR_BNO, it means the
3491 * allocation attempts in @start_agno have locality information. If we fail to
3492 * allocate in that AG, then we revert to anywhere-in-AG for all the other AGs
3493 * we attempt to allocation in as there is no locality optimisation possible for
3494 * those allocations.
3495 *
3496 * On return, args->pag may be left referenced if we finish before the "all
3497 * failed" return point. The allocation finish still needs the perag, and
3498 * so the caller will release it once they've finished the allocation.
3499 *
3500 * When we wrap the AG iteration at the end of the filesystem, we have to be
3501 * careful not to wrap into AGs below ones we already have locked in the
3502 * transaction if we are doing a blocking iteration. This will result in an
3503 * out-of-order locking of AGFs and hence can cause deadlocks.
3504 */
3505 static int
xfs_alloc_vextent_iterate_ags(struct xfs_alloc_arg * args,xfs_agnumber_t minimum_agno,xfs_agnumber_t start_agno,xfs_agblock_t target_agbno,uint32_t alloc_flags)3506 xfs_alloc_vextent_iterate_ags(
3507 struct xfs_alloc_arg *args,
3508 xfs_agnumber_t minimum_agno,
3509 xfs_agnumber_t start_agno,
3510 xfs_agblock_t target_agbno,
3511 uint32_t alloc_flags)
3512 {
3513 struct xfs_mount *mp = args->mp;
3514 xfs_agnumber_t restart_agno = minimum_agno;
3515 xfs_agnumber_t agno;
3516 int error = 0;
3517
3518 if (alloc_flags & XFS_ALLOC_FLAG_TRYLOCK)
3519 restart_agno = 0;
3520 restart:
3521 for_each_perag_wrap_range(mp, start_agno, restart_agno,
3522 mp->m_sb.sb_agcount, agno, args->pag) {
3523 args->agno = agno;
3524 error = xfs_alloc_vextent_prepare_ag(args, alloc_flags);
3525 if (error)
3526 break;
3527 if (!args->agbp) {
3528 trace_xfs_alloc_vextent_loopfailed(args);
3529 continue;
3530 }
3531
3532 /*
3533 * Allocation is supposed to succeed now, so break out of the
3534 * loop regardless of whether we succeed or not.
3535 */
3536 if (args->agno == start_agno && target_agbno) {
3537 args->agbno = target_agbno;
3538 error = xfs_alloc_ag_vextent_near(args, alloc_flags);
3539 } else {
3540 args->agbno = 0;
3541 error = xfs_alloc_ag_vextent_size(args, alloc_flags);
3542 }
3543 break;
3544 }
3545 if (error) {
3546 xfs_perag_rele(args->pag);
3547 args->pag = NULL;
3548 return error;
3549 }
3550 if (args->agbp)
3551 return 0;
3552
3553 /*
3554 * We didn't find an AG we can alloation from. If we were given
3555 * constraining flags by the caller, drop them and retry the allocation
3556 * without any constraints being set.
3557 */
3558 if (alloc_flags & XFS_ALLOC_FLAG_TRYLOCK) {
3559 alloc_flags &= ~XFS_ALLOC_FLAG_TRYLOCK;
3560 restart_agno = minimum_agno;
3561 goto restart;
3562 }
3563
3564 ASSERT(args->pag == NULL);
3565 trace_xfs_alloc_vextent_allfailed(args);
3566 return 0;
3567 }
3568
3569 /*
3570 * Iterate from the AGs from the start AG to the end of the filesystem, trying
3571 * to allocate blocks. It starts with a near allocation attempt in the initial
3572 * AG, then falls back to anywhere-in-ag after the first AG fails. It will wrap
3573 * back to zero if allowed by previous allocations in this transaction,
3574 * otherwise will wrap back to the start AG and run a second blocking pass to
3575 * the end of the filesystem.
3576 */
3577 int
xfs_alloc_vextent_start_ag(struct xfs_alloc_arg * args,xfs_fsblock_t target)3578 xfs_alloc_vextent_start_ag(
3579 struct xfs_alloc_arg *args,
3580 xfs_fsblock_t target)
3581 {
3582 struct xfs_mount *mp = args->mp;
3583 xfs_agnumber_t minimum_agno;
3584 xfs_agnumber_t start_agno;
3585 xfs_agnumber_t rotorstep = xfs_rotorstep;
3586 bool bump_rotor = false;
3587 uint32_t alloc_flags = XFS_ALLOC_FLAG_TRYLOCK;
3588 int error;
3589
3590 ASSERT(args->pag == NULL);
3591
3592 args->agno = NULLAGNUMBER;
3593 args->agbno = NULLAGBLOCK;
3594
3595 trace_xfs_alloc_vextent_start_ag(args);
3596
3597 error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
3598 if (error) {
3599 if (error == -ENOSPC)
3600 return 0;
3601 return error;
3602 }
3603
3604 if ((args->datatype & XFS_ALLOC_INITIAL_USER_DATA) &&
3605 xfs_is_inode32(mp)) {
3606 target = XFS_AGB_TO_FSB(mp,
3607 ((mp->m_agfrotor / rotorstep) %
3608 mp->m_sb.sb_agcount), 0);
3609 bump_rotor = 1;
3610 }
3611
3612 start_agno = max(minimum_agno, XFS_FSB_TO_AGNO(mp, target));
3613 error = xfs_alloc_vextent_iterate_ags(args, minimum_agno, start_agno,
3614 XFS_FSB_TO_AGBNO(mp, target), alloc_flags);
3615
3616 if (bump_rotor) {
3617 if (args->agno == start_agno)
3618 mp->m_agfrotor = (mp->m_agfrotor + 1) %
3619 (mp->m_sb.sb_agcount * rotorstep);
3620 else
3621 mp->m_agfrotor = (args->agno * rotorstep + 1) %
3622 (mp->m_sb.sb_agcount * rotorstep);
3623 }
3624
3625 return xfs_alloc_vextent_finish(args, minimum_agno, error, true);
3626 }
3627
3628 /*
3629 * Iterate from the agno indicated via @target through to the end of the
3630 * filesystem attempting blocking allocation. This does not wrap or try a second
3631 * pass, so will not recurse into AGs lower than indicated by the target.
3632 */
3633 int
xfs_alloc_vextent_first_ag(struct xfs_alloc_arg * args,xfs_fsblock_t target)3634 xfs_alloc_vextent_first_ag(
3635 struct xfs_alloc_arg *args,
3636 xfs_fsblock_t target)
3637 {
3638 struct xfs_mount *mp = args->mp;
3639 xfs_agnumber_t minimum_agno;
3640 xfs_agnumber_t start_agno;
3641 uint32_t alloc_flags = XFS_ALLOC_FLAG_TRYLOCK;
3642 int error;
3643
3644 ASSERT(args->pag == NULL);
3645
3646 args->agno = NULLAGNUMBER;
3647 args->agbno = NULLAGBLOCK;
3648
3649 trace_xfs_alloc_vextent_first_ag(args);
3650
3651 error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
3652 if (error) {
3653 if (error == -ENOSPC)
3654 return 0;
3655 return error;
3656 }
3657
3658 start_agno = max(minimum_agno, XFS_FSB_TO_AGNO(mp, target));
3659 error = xfs_alloc_vextent_iterate_ags(args, minimum_agno, start_agno,
3660 XFS_FSB_TO_AGBNO(mp, target), alloc_flags);
3661 return xfs_alloc_vextent_finish(args, minimum_agno, error, true);
3662 }
3663
3664 /*
3665 * Allocate at the exact block target or fail. Caller is expected to hold a
3666 * perag reference in args->pag.
3667 */
3668 int
xfs_alloc_vextent_exact_bno(struct xfs_alloc_arg * args,xfs_fsblock_t target)3669 xfs_alloc_vextent_exact_bno(
3670 struct xfs_alloc_arg *args,
3671 xfs_fsblock_t target)
3672 {
3673 struct xfs_mount *mp = args->mp;
3674 xfs_agnumber_t minimum_agno;
3675 int error;
3676
3677 ASSERT(args->pag != NULL);
3678 ASSERT(args->pag->pag_agno == XFS_FSB_TO_AGNO(mp, target));
3679
3680 args->agno = XFS_FSB_TO_AGNO(mp, target);
3681 args->agbno = XFS_FSB_TO_AGBNO(mp, target);
3682
3683 trace_xfs_alloc_vextent_exact_bno(args);
3684
3685 error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
3686 if (error) {
3687 if (error == -ENOSPC)
3688 return 0;
3689 return error;
3690 }
3691
3692 error = xfs_alloc_vextent_prepare_ag(args, 0);
3693 if (!error && args->agbp)
3694 error = xfs_alloc_ag_vextent_exact(args);
3695
3696 return xfs_alloc_vextent_finish(args, minimum_agno, error, false);
3697 }
3698
3699 /*
3700 * Allocate an extent as close to the target as possible. If there are not
3701 * viable candidates in the AG, then fail the allocation.
3702 *
3703 * Caller may or may not have a per-ag reference in args->pag.
3704 */
3705 int
xfs_alloc_vextent_near_bno(struct xfs_alloc_arg * args,xfs_fsblock_t target)3706 xfs_alloc_vextent_near_bno(
3707 struct xfs_alloc_arg *args,
3708 xfs_fsblock_t target)
3709 {
3710 struct xfs_mount *mp = args->mp;
3711 xfs_agnumber_t minimum_agno;
3712 bool needs_perag = args->pag == NULL;
3713 uint32_t alloc_flags = 0;
3714 int error;
3715
3716 if (!needs_perag)
3717 ASSERT(args->pag->pag_agno == XFS_FSB_TO_AGNO(mp, target));
3718
3719 args->agno = XFS_FSB_TO_AGNO(mp, target);
3720 args->agbno = XFS_FSB_TO_AGBNO(mp, target);
3721
3722 trace_xfs_alloc_vextent_near_bno(args);
3723
3724 error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
3725 if (error) {
3726 if (error == -ENOSPC)
3727 return 0;
3728 return error;
3729 }
3730
3731 if (needs_perag)
3732 args->pag = xfs_perag_grab(mp, args->agno);
3733
3734 error = xfs_alloc_vextent_prepare_ag(args, alloc_flags);
3735 if (!error && args->agbp)
3736 error = xfs_alloc_ag_vextent_near(args, alloc_flags);
3737
3738 return xfs_alloc_vextent_finish(args, minimum_agno, error, needs_perag);
3739 }
3740
3741 /* Ensure that the freelist is at full capacity. */
3742 int
xfs_free_extent_fix_freelist(struct xfs_trans * tp,struct xfs_perag * pag,struct xfs_buf ** agbp)3743 xfs_free_extent_fix_freelist(
3744 struct xfs_trans *tp,
3745 struct xfs_perag *pag,
3746 struct xfs_buf **agbp)
3747 {
3748 struct xfs_alloc_arg args;
3749 int error;
3750
3751 memset(&args, 0, sizeof(struct xfs_alloc_arg));
3752 args.tp = tp;
3753 args.mp = tp->t_mountp;
3754 args.agno = pag->pag_agno;
3755 args.pag = pag;
3756
3757 /*
3758 * validate that the block number is legal - the enables us to detect
3759 * and handle a silent filesystem corruption rather than crashing.
3760 */
3761 if (args.agno >= args.mp->m_sb.sb_agcount)
3762 return -EFSCORRUPTED;
3763
3764 error = xfs_alloc_fix_freelist(&args, XFS_ALLOC_FLAG_FREEING);
3765 if (error)
3766 return error;
3767
3768 *agbp = args.agbp;
3769 return 0;
3770 }
3771
3772 /*
3773 * Free an extent.
3774 * Just break up the extent address and hand off to xfs_free_ag_extent
3775 * after fixing up the freelist.
3776 */
3777 int
__xfs_free_extent(struct xfs_trans * tp,struct xfs_perag * pag,xfs_agblock_t agbno,xfs_extlen_t len,const struct xfs_owner_info * oinfo,enum xfs_ag_resv_type type,bool skip_discard)3778 __xfs_free_extent(
3779 struct xfs_trans *tp,
3780 struct xfs_perag *pag,
3781 xfs_agblock_t agbno,
3782 xfs_extlen_t len,
3783 const struct xfs_owner_info *oinfo,
3784 enum xfs_ag_resv_type type,
3785 bool skip_discard)
3786 {
3787 struct xfs_mount *mp = tp->t_mountp;
3788 struct xfs_buf *agbp;
3789 struct xfs_agf *agf;
3790 int error;
3791 unsigned int busy_flags = 0;
3792
3793 ASSERT(len != 0);
3794 ASSERT(type != XFS_AG_RESV_AGFL);
3795
3796 if (XFS_TEST_ERROR(false, mp,
3797 XFS_ERRTAG_FREE_EXTENT))
3798 return -EIO;
3799
3800 error = xfs_free_extent_fix_freelist(tp, pag, &agbp);
3801 if (error)
3802 return error;
3803 agf = agbp->b_addr;
3804
3805 if (XFS_IS_CORRUPT(mp, agbno >= mp->m_sb.sb_agblocks)) {
3806 error = -EFSCORRUPTED;
3807 goto err_release;
3808 }
3809
3810 /* validate the extent size is legal now we have the agf locked */
3811 if (XFS_IS_CORRUPT(mp, agbno + len > be32_to_cpu(agf->agf_length))) {
3812 error = -EFSCORRUPTED;
3813 goto err_release;
3814 }
3815
3816 error = xfs_free_ag_extent(tp, agbp, pag->pag_agno, agbno, len, oinfo,
3817 type);
3818 if (error)
3819 goto err_release;
3820
3821 if (skip_discard)
3822 busy_flags |= XFS_EXTENT_BUSY_SKIP_DISCARD;
3823 xfs_extent_busy_insert(tp, pag, agbno, len, busy_flags);
3824 return 0;
3825
3826 err_release:
3827 xfs_trans_brelse(tp, agbp);
3828 return error;
3829 }
3830
3831 struct xfs_alloc_query_range_info {
3832 xfs_alloc_query_range_fn fn;
3833 void *priv;
3834 };
3835
3836 /* Format btree record and pass to our callback. */
3837 STATIC int
xfs_alloc_query_range_helper(struct xfs_btree_cur * cur,const union xfs_btree_rec * rec,void * priv)3838 xfs_alloc_query_range_helper(
3839 struct xfs_btree_cur *cur,
3840 const union xfs_btree_rec *rec,
3841 void *priv)
3842 {
3843 struct xfs_alloc_query_range_info *query = priv;
3844 struct xfs_alloc_rec_incore irec;
3845 xfs_failaddr_t fa;
3846
3847 xfs_alloc_btrec_to_irec(rec, &irec);
3848 fa = xfs_alloc_check_irec(cur, &irec);
3849 if (fa)
3850 return xfs_alloc_complain_bad_rec(cur, fa, &irec);
3851
3852 return query->fn(cur, &irec, query->priv);
3853 }
3854
3855 /* Find all free space within a given range of blocks. */
3856 int
xfs_alloc_query_range(struct xfs_btree_cur * cur,const struct xfs_alloc_rec_incore * low_rec,const struct xfs_alloc_rec_incore * high_rec,xfs_alloc_query_range_fn fn,void * priv)3857 xfs_alloc_query_range(
3858 struct xfs_btree_cur *cur,
3859 const struct xfs_alloc_rec_incore *low_rec,
3860 const struct xfs_alloc_rec_incore *high_rec,
3861 xfs_alloc_query_range_fn fn,
3862 void *priv)
3863 {
3864 union xfs_btree_irec low_brec = { .a = *low_rec };
3865 union xfs_btree_irec high_brec = { .a = *high_rec };
3866 struct xfs_alloc_query_range_info query = { .priv = priv, .fn = fn };
3867
3868 ASSERT(cur->bc_btnum == XFS_BTNUM_BNO);
3869 return xfs_btree_query_range(cur, &low_brec, &high_brec,
3870 xfs_alloc_query_range_helper, &query);
3871 }
3872
3873 /* Find all free space records. */
3874 int
xfs_alloc_query_all(struct xfs_btree_cur * cur,xfs_alloc_query_range_fn fn,void * priv)3875 xfs_alloc_query_all(
3876 struct xfs_btree_cur *cur,
3877 xfs_alloc_query_range_fn fn,
3878 void *priv)
3879 {
3880 struct xfs_alloc_query_range_info query;
3881
3882 ASSERT(cur->bc_btnum == XFS_BTNUM_BNO);
3883 query.priv = priv;
3884 query.fn = fn;
3885 return xfs_btree_query_all(cur, xfs_alloc_query_range_helper, &query);
3886 }
3887
3888 /*
3889 * Scan part of the keyspace of the free space and tell us if the area has no
3890 * records, is fully mapped by records, or is partially filled.
3891 */
3892 int
xfs_alloc_has_records(struct xfs_btree_cur * cur,xfs_agblock_t bno,xfs_extlen_t len,enum xbtree_recpacking * outcome)3893 xfs_alloc_has_records(
3894 struct xfs_btree_cur *cur,
3895 xfs_agblock_t bno,
3896 xfs_extlen_t len,
3897 enum xbtree_recpacking *outcome)
3898 {
3899 union xfs_btree_irec low;
3900 union xfs_btree_irec high;
3901
3902 memset(&low, 0, sizeof(low));
3903 low.a.ar_startblock = bno;
3904 memset(&high, 0xFF, sizeof(high));
3905 high.a.ar_startblock = bno + len - 1;
3906
3907 return xfs_btree_has_records(cur, &low, &high, NULL, outcome);
3908 }
3909
3910 /*
3911 * Walk all the blocks in the AGFL. The @walk_fn can return any negative
3912 * error code or XFS_ITER_*.
3913 */
3914 int
xfs_agfl_walk(struct xfs_mount * mp,struct xfs_agf * agf,struct xfs_buf * agflbp,xfs_agfl_walk_fn walk_fn,void * priv)3915 xfs_agfl_walk(
3916 struct xfs_mount *mp,
3917 struct xfs_agf *agf,
3918 struct xfs_buf *agflbp,
3919 xfs_agfl_walk_fn walk_fn,
3920 void *priv)
3921 {
3922 __be32 *agfl_bno;
3923 unsigned int i;
3924 int error;
3925
3926 agfl_bno = xfs_buf_to_agfl_bno(agflbp);
3927 i = be32_to_cpu(agf->agf_flfirst);
3928
3929 /* Nothing to walk in an empty AGFL. */
3930 if (agf->agf_flcount == cpu_to_be32(0))
3931 return 0;
3932
3933 /* Otherwise, walk from first to last, wrapping as needed. */
3934 for (;;) {
3935 error = walk_fn(mp, be32_to_cpu(agfl_bno[i]), priv);
3936 if (error)
3937 return error;
3938 if (i == be32_to_cpu(agf->agf_fllast))
3939 break;
3940 if (++i == xfs_agfl_size(mp))
3941 i = 0;
3942 }
3943
3944 return 0;
3945 }
3946
3947 int __init
xfs_extfree_intent_init_cache(void)3948 xfs_extfree_intent_init_cache(void)
3949 {
3950 xfs_extfree_item_cache = kmem_cache_create("xfs_extfree_intent",
3951 sizeof(struct xfs_extent_free_item),
3952 0, 0, NULL);
3953
3954 return xfs_extfree_item_cache != NULL ? 0 : -ENOMEM;
3955 }
3956
3957 void
xfs_extfree_intent_destroy_cache(void)3958 xfs_extfree_intent_destroy_cache(void)
3959 {
3960 kmem_cache_destroy(xfs_extfree_item_cache);
3961 xfs_extfree_item_cache = NULL;
3962 }
3963