1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * BPF Jit compiler for s390.
4 *
5 * Minimum build requirements:
6 *
7 * - HAVE_MARCH_Z196_FEATURES: laal, laalg
8 * - HAVE_MARCH_Z10_FEATURES: msfi, cgrj, clgrj
9 * - HAVE_MARCH_Z9_109_FEATURES: alfi, llilf, clfi, oilf, nilf
10 * - 64BIT
11 *
12 * Copyright IBM Corp. 2012,2015
13 *
14 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
15 * Michael Holzheu <holzheu@linux.vnet.ibm.com>
16 */
17
18 #define KMSG_COMPONENT "bpf_jit"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20
21 #include <linux/netdevice.h>
22 #include <linux/filter.h>
23 #include <linux/init.h>
24 #include <linux/bpf.h>
25 #include <linux/mm.h>
26 #include <linux/kernel.h>
27 #include <asm/cacheflush.h>
28 #include <asm/extable.h>
29 #include <asm/dis.h>
30 #include <asm/facility.h>
31 #include <asm/nospec-branch.h>
32 #include <asm/set_memory.h>
33 #include <asm/text-patching.h>
34 #include "bpf_jit.h"
35
36 struct bpf_jit {
37 u32 seen; /* Flags to remember seen eBPF instructions */
38 u32 seen_reg[16]; /* Array to remember which registers are used */
39 u32 *addrs; /* Array with relative instruction addresses */
40 u8 *prg_buf; /* Start of program */
41 int size; /* Size of program and literal pool */
42 int size_prg; /* Size of program */
43 int prg; /* Current position in program */
44 int lit32_start; /* Start of 32-bit literal pool */
45 int lit32; /* Current position in 32-bit literal pool */
46 int lit64_start; /* Start of 64-bit literal pool */
47 int lit64; /* Current position in 64-bit literal pool */
48 int base_ip; /* Base address for literal pool */
49 int exit_ip; /* Address of exit */
50 int r1_thunk_ip; /* Address of expoline thunk for 'br %r1' */
51 int r14_thunk_ip; /* Address of expoline thunk for 'br %r14' */
52 int tail_call_start; /* Tail call start offset */
53 int excnt; /* Number of exception table entries */
54 int prologue_plt_ret; /* Return address for prologue hotpatch PLT */
55 int prologue_plt; /* Start of prologue hotpatch PLT */
56 };
57
58 #define SEEN_MEM BIT(0) /* use mem[] for temporary storage */
59 #define SEEN_LITERAL BIT(1) /* code uses literals */
60 #define SEEN_FUNC BIT(2) /* calls C functions */
61 #define SEEN_STACK (SEEN_FUNC | SEEN_MEM)
62
63 /*
64 * s390 registers
65 */
66 #define REG_W0 (MAX_BPF_JIT_REG + 0) /* Work register 1 (even) */
67 #define REG_W1 (MAX_BPF_JIT_REG + 1) /* Work register 2 (odd) */
68 #define REG_L (MAX_BPF_JIT_REG + 2) /* Literal pool register */
69 #define REG_15 (MAX_BPF_JIT_REG + 3) /* Register 15 */
70 #define REG_0 REG_W0 /* Register 0 */
71 #define REG_1 REG_W1 /* Register 1 */
72 #define REG_2 BPF_REG_1 /* Register 2 */
73 #define REG_3 BPF_REG_2 /* Register 3 */
74 #define REG_4 BPF_REG_3 /* Register 4 */
75 #define REG_7 BPF_REG_6 /* Register 7 */
76 #define REG_8 BPF_REG_7 /* Register 8 */
77 #define REG_14 BPF_REG_0 /* Register 14 */
78
79 /*
80 * Mapping of BPF registers to s390 registers
81 */
82 static const int reg2hex[] = {
83 /* Return code */
84 [BPF_REG_0] = 14,
85 /* Function parameters */
86 [BPF_REG_1] = 2,
87 [BPF_REG_2] = 3,
88 [BPF_REG_3] = 4,
89 [BPF_REG_4] = 5,
90 [BPF_REG_5] = 6,
91 /* Call saved registers */
92 [BPF_REG_6] = 7,
93 [BPF_REG_7] = 8,
94 [BPF_REG_8] = 9,
95 [BPF_REG_9] = 10,
96 /* BPF stack pointer */
97 [BPF_REG_FP] = 13,
98 /* Register for blinding */
99 [BPF_REG_AX] = 12,
100 /* Work registers for s390x backend */
101 [REG_W0] = 0,
102 [REG_W1] = 1,
103 [REG_L] = 11,
104 [REG_15] = 15,
105 };
106
reg(u32 dst_reg,u32 src_reg)107 static inline u32 reg(u32 dst_reg, u32 src_reg)
108 {
109 return reg2hex[dst_reg] << 4 | reg2hex[src_reg];
110 }
111
reg_high(u32 reg)112 static inline u32 reg_high(u32 reg)
113 {
114 return reg2hex[reg] << 4;
115 }
116
reg_set_seen(struct bpf_jit * jit,u32 b1)117 static inline void reg_set_seen(struct bpf_jit *jit, u32 b1)
118 {
119 u32 r1 = reg2hex[b1];
120
121 if (r1 >= 6 && r1 <= 15 && !jit->seen_reg[r1])
122 jit->seen_reg[r1] = 1;
123 }
124
125 #define REG_SET_SEEN(b1) \
126 ({ \
127 reg_set_seen(jit, b1); \
128 })
129
130 #define REG_SEEN(b1) jit->seen_reg[reg2hex[(b1)]]
131
132 /*
133 * EMIT macros for code generation
134 */
135
136 #define _EMIT2(op) \
137 ({ \
138 if (jit->prg_buf) \
139 *(u16 *) (jit->prg_buf + jit->prg) = (op); \
140 jit->prg += 2; \
141 })
142
143 #define EMIT2(op, b1, b2) \
144 ({ \
145 _EMIT2((op) | reg(b1, b2)); \
146 REG_SET_SEEN(b1); \
147 REG_SET_SEEN(b2); \
148 })
149
150 #define _EMIT4(op) \
151 ({ \
152 if (jit->prg_buf) \
153 *(u32 *) (jit->prg_buf + jit->prg) = (op); \
154 jit->prg += 4; \
155 })
156
157 #define EMIT4(op, b1, b2) \
158 ({ \
159 _EMIT4((op) | reg(b1, b2)); \
160 REG_SET_SEEN(b1); \
161 REG_SET_SEEN(b2); \
162 })
163
164 #define EMIT4_RRF(op, b1, b2, b3) \
165 ({ \
166 _EMIT4((op) | reg_high(b3) << 8 | reg(b1, b2)); \
167 REG_SET_SEEN(b1); \
168 REG_SET_SEEN(b2); \
169 REG_SET_SEEN(b3); \
170 })
171
172 #define _EMIT4_DISP(op, disp) \
173 ({ \
174 unsigned int __disp = (disp) & 0xfff; \
175 _EMIT4((op) | __disp); \
176 })
177
178 #define EMIT4_DISP(op, b1, b2, disp) \
179 ({ \
180 _EMIT4_DISP((op) | reg_high(b1) << 16 | \
181 reg_high(b2) << 8, (disp)); \
182 REG_SET_SEEN(b1); \
183 REG_SET_SEEN(b2); \
184 })
185
186 #define EMIT4_IMM(op, b1, imm) \
187 ({ \
188 unsigned int __imm = (imm) & 0xffff; \
189 _EMIT4((op) | reg_high(b1) << 16 | __imm); \
190 REG_SET_SEEN(b1); \
191 })
192
193 #define EMIT4_PCREL(op, pcrel) \
194 ({ \
195 long __pcrel = ((pcrel) >> 1) & 0xffff; \
196 _EMIT4((op) | __pcrel); \
197 })
198
199 #define EMIT4_PCREL_RIC(op, mask, target) \
200 ({ \
201 int __rel = ((target) - jit->prg) / 2; \
202 _EMIT4((op) | (mask) << 20 | (__rel & 0xffff)); \
203 })
204
205 #define _EMIT6(op1, op2) \
206 ({ \
207 if (jit->prg_buf) { \
208 *(u32 *) (jit->prg_buf + jit->prg) = (op1); \
209 *(u16 *) (jit->prg_buf + jit->prg + 4) = (op2); \
210 } \
211 jit->prg += 6; \
212 })
213
214 #define _EMIT6_DISP(op1, op2, disp) \
215 ({ \
216 unsigned int __disp = (disp) & 0xfff; \
217 _EMIT6((op1) | __disp, op2); \
218 })
219
220 #define _EMIT6_DISP_LH(op1, op2, disp) \
221 ({ \
222 u32 _disp = (u32) (disp); \
223 unsigned int __disp_h = _disp & 0xff000; \
224 unsigned int __disp_l = _disp & 0x00fff; \
225 _EMIT6((op1) | __disp_l, (op2) | __disp_h >> 4); \
226 })
227
228 #define EMIT6_DISP_LH(op1, op2, b1, b2, b3, disp) \
229 ({ \
230 _EMIT6_DISP_LH((op1) | reg(b1, b2) << 16 | \
231 reg_high(b3) << 8, op2, disp); \
232 REG_SET_SEEN(b1); \
233 REG_SET_SEEN(b2); \
234 REG_SET_SEEN(b3); \
235 })
236
237 #define EMIT6_PCREL_RIEB(op1, op2, b1, b2, mask, target) \
238 ({ \
239 unsigned int rel = (int)((target) - jit->prg) / 2; \
240 _EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff), \
241 (op2) | (mask) << 12); \
242 REG_SET_SEEN(b1); \
243 REG_SET_SEEN(b2); \
244 })
245
246 #define EMIT6_PCREL_RIEC(op1, op2, b1, imm, mask, target) \
247 ({ \
248 unsigned int rel = (int)((target) - jit->prg) / 2; \
249 _EMIT6((op1) | (reg_high(b1) | (mask)) << 16 | \
250 (rel & 0xffff), (op2) | ((imm) & 0xff) << 8); \
251 REG_SET_SEEN(b1); \
252 BUILD_BUG_ON(((unsigned long) (imm)) > 0xff); \
253 })
254
255 #define EMIT6_PCREL(op1, op2, b1, b2, i, off, mask) \
256 ({ \
257 int rel = (addrs[(i) + (off) + 1] - jit->prg) / 2; \
258 _EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff), (op2) | (mask));\
259 REG_SET_SEEN(b1); \
260 REG_SET_SEEN(b2); \
261 })
262
263 #define EMIT6_PCREL_RILB(op, b, target) \
264 ({ \
265 unsigned int rel = (int)((target) - jit->prg) / 2; \
266 _EMIT6((op) | reg_high(b) << 16 | rel >> 16, rel & 0xffff);\
267 REG_SET_SEEN(b); \
268 })
269
270 #define EMIT6_PCREL_RIL(op, target) \
271 ({ \
272 unsigned int rel = (int)((target) - jit->prg) / 2; \
273 _EMIT6((op) | rel >> 16, rel & 0xffff); \
274 })
275
276 #define EMIT6_PCREL_RILC(op, mask, target) \
277 ({ \
278 EMIT6_PCREL_RIL((op) | (mask) << 20, (target)); \
279 })
280
281 #define _EMIT6_IMM(op, imm) \
282 ({ \
283 unsigned int __imm = (imm); \
284 _EMIT6((op) | (__imm >> 16), __imm & 0xffff); \
285 })
286
287 #define EMIT6_IMM(op, b1, imm) \
288 ({ \
289 _EMIT6_IMM((op) | reg_high(b1) << 16, imm); \
290 REG_SET_SEEN(b1); \
291 })
292
293 #define _EMIT_CONST_U32(val) \
294 ({ \
295 unsigned int ret; \
296 ret = jit->lit32; \
297 if (jit->prg_buf) \
298 *(u32 *)(jit->prg_buf + jit->lit32) = (u32)(val);\
299 jit->lit32 += 4; \
300 ret; \
301 })
302
303 #define EMIT_CONST_U32(val) \
304 ({ \
305 jit->seen |= SEEN_LITERAL; \
306 _EMIT_CONST_U32(val) - jit->base_ip; \
307 })
308
309 #define _EMIT_CONST_U64(val) \
310 ({ \
311 unsigned int ret; \
312 ret = jit->lit64; \
313 if (jit->prg_buf) \
314 *(u64 *)(jit->prg_buf + jit->lit64) = (u64)(val);\
315 jit->lit64 += 8; \
316 ret; \
317 })
318
319 #define EMIT_CONST_U64(val) \
320 ({ \
321 jit->seen |= SEEN_LITERAL; \
322 _EMIT_CONST_U64(val) - jit->base_ip; \
323 })
324
325 #define EMIT_ZERO(b1) \
326 ({ \
327 if (!fp->aux->verifier_zext) { \
328 /* llgfr %dst,%dst (zero extend to 64 bit) */ \
329 EMIT4(0xb9160000, b1, b1); \
330 REG_SET_SEEN(b1); \
331 } \
332 })
333
334 /*
335 * Return whether this is the first pass. The first pass is special, since we
336 * don't know any sizes yet, and thus must be conservative.
337 */
is_first_pass(struct bpf_jit * jit)338 static bool is_first_pass(struct bpf_jit *jit)
339 {
340 return jit->size == 0;
341 }
342
343 /*
344 * Return whether this is the code generation pass. The code generation pass is
345 * special, since we should change as little as possible.
346 */
is_codegen_pass(struct bpf_jit * jit)347 static bool is_codegen_pass(struct bpf_jit *jit)
348 {
349 return jit->prg_buf;
350 }
351
352 /*
353 * Return whether "rel" can be encoded as a short PC-relative offset
354 */
is_valid_rel(int rel)355 static bool is_valid_rel(int rel)
356 {
357 return rel >= -65536 && rel <= 65534;
358 }
359
360 /*
361 * Return whether "off" can be reached using a short PC-relative offset
362 */
can_use_rel(struct bpf_jit * jit,int off)363 static bool can_use_rel(struct bpf_jit *jit, int off)
364 {
365 return is_valid_rel(off - jit->prg);
366 }
367
368 /*
369 * Return whether given displacement can be encoded using
370 * Long-Displacement Facility
371 */
is_valid_ldisp(int disp)372 static bool is_valid_ldisp(int disp)
373 {
374 return disp >= -524288 && disp <= 524287;
375 }
376
377 /*
378 * Return whether the next 32-bit literal pool entry can be referenced using
379 * Long-Displacement Facility
380 */
can_use_ldisp_for_lit32(struct bpf_jit * jit)381 static bool can_use_ldisp_for_lit32(struct bpf_jit *jit)
382 {
383 return is_valid_ldisp(jit->lit32 - jit->base_ip);
384 }
385
386 /*
387 * Return whether the next 64-bit literal pool entry can be referenced using
388 * Long-Displacement Facility
389 */
can_use_ldisp_for_lit64(struct bpf_jit * jit)390 static bool can_use_ldisp_for_lit64(struct bpf_jit *jit)
391 {
392 return is_valid_ldisp(jit->lit64 - jit->base_ip);
393 }
394
395 /*
396 * Fill whole space with illegal instructions
397 */
jit_fill_hole(void * area,unsigned int size)398 static void jit_fill_hole(void *area, unsigned int size)
399 {
400 memset(area, 0, size);
401 }
402
403 /*
404 * Save registers from "rs" (register start) to "re" (register end) on stack
405 */
save_regs(struct bpf_jit * jit,u32 rs,u32 re)406 static void save_regs(struct bpf_jit *jit, u32 rs, u32 re)
407 {
408 u32 off = STK_OFF_R6 + (rs - 6) * 8;
409
410 if (rs == re)
411 /* stg %rs,off(%r15) */
412 _EMIT6(0xe300f000 | rs << 20 | off, 0x0024);
413 else
414 /* stmg %rs,%re,off(%r15) */
415 _EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0024, off);
416 }
417
418 /*
419 * Restore registers from "rs" (register start) to "re" (register end) on stack
420 */
restore_regs(struct bpf_jit * jit,u32 rs,u32 re,u32 stack_depth)421 static void restore_regs(struct bpf_jit *jit, u32 rs, u32 re, u32 stack_depth)
422 {
423 u32 off = STK_OFF_R6 + (rs - 6) * 8;
424
425 if (jit->seen & SEEN_STACK)
426 off += STK_OFF + stack_depth;
427
428 if (rs == re)
429 /* lg %rs,off(%r15) */
430 _EMIT6(0xe300f000 | rs << 20 | off, 0x0004);
431 else
432 /* lmg %rs,%re,off(%r15) */
433 _EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0004, off);
434 }
435
436 /*
437 * Return first seen register (from start)
438 */
get_start(struct bpf_jit * jit,int start)439 static int get_start(struct bpf_jit *jit, int start)
440 {
441 int i;
442
443 for (i = start; i <= 15; i++) {
444 if (jit->seen_reg[i])
445 return i;
446 }
447 return 0;
448 }
449
450 /*
451 * Return last seen register (from start) (gap >= 2)
452 */
get_end(struct bpf_jit * jit,int start)453 static int get_end(struct bpf_jit *jit, int start)
454 {
455 int i;
456
457 for (i = start; i < 15; i++) {
458 if (!jit->seen_reg[i] && !jit->seen_reg[i + 1])
459 return i - 1;
460 }
461 return jit->seen_reg[15] ? 15 : 14;
462 }
463
464 #define REGS_SAVE 1
465 #define REGS_RESTORE 0
466 /*
467 * Save and restore clobbered registers (6-15) on stack.
468 * We save/restore registers in chunks with gap >= 2 registers.
469 */
save_restore_regs(struct bpf_jit * jit,int op,u32 stack_depth)470 static void save_restore_regs(struct bpf_jit *jit, int op, u32 stack_depth)
471 {
472 const int last = 15, save_restore_size = 6;
473 int re = 6, rs;
474
475 if (is_first_pass(jit)) {
476 /*
477 * We don't know yet which registers are used. Reserve space
478 * conservatively.
479 */
480 jit->prg += (last - re + 1) * save_restore_size;
481 return;
482 }
483
484 do {
485 rs = get_start(jit, re);
486 if (!rs)
487 break;
488 re = get_end(jit, rs + 1);
489 if (op == REGS_SAVE)
490 save_regs(jit, rs, re);
491 else
492 restore_regs(jit, rs, re, stack_depth);
493 re++;
494 } while (re <= last);
495 }
496
bpf_skip(struct bpf_jit * jit,int size)497 static void bpf_skip(struct bpf_jit *jit, int size)
498 {
499 if (size >= 6 && !is_valid_rel(size)) {
500 /* brcl 0xf,size */
501 EMIT6_PCREL_RIL(0xc0f4000000, size);
502 size -= 6;
503 } else if (size >= 4 && is_valid_rel(size)) {
504 /* brc 0xf,size */
505 EMIT4_PCREL(0xa7f40000, size);
506 size -= 4;
507 }
508 while (size >= 2) {
509 /* bcr 0,%0 */
510 _EMIT2(0x0700);
511 size -= 2;
512 }
513 }
514
515 /*
516 * PLT for hotpatchable calls. The calling convention is the same as for the
517 * ftrace hotpatch trampolines: %r0 is return address, %r1 is clobbered.
518 */
519 struct bpf_plt {
520 char code[16];
521 void *ret;
522 void *target;
523 } __packed;
524 extern const struct bpf_plt bpf_plt;
525 asm(
526 ".pushsection .rodata\n"
527 " .balign 8\n"
528 "bpf_plt:\n"
529 " lgrl %r0,bpf_plt_ret\n"
530 " lgrl %r1,bpf_plt_target\n"
531 " br %r1\n"
532 " .balign 8\n"
533 "bpf_plt_ret: .quad 0\n"
534 "bpf_plt_target: .quad 0\n"
535 " .popsection\n"
536 );
537
bpf_jit_plt(struct bpf_plt * plt,void * ret,void * target)538 static void bpf_jit_plt(struct bpf_plt *plt, void *ret, void *target)
539 {
540 memcpy(plt, &bpf_plt, sizeof(*plt));
541 plt->ret = ret;
542 plt->target = target;
543 }
544
545 /*
546 * Emit function prologue
547 *
548 * Save registers and create stack frame if necessary.
549 * See stack frame layout description in "bpf_jit.h"!
550 */
bpf_jit_prologue(struct bpf_jit * jit,struct bpf_prog * fp,u32 stack_depth)551 static void bpf_jit_prologue(struct bpf_jit *jit, struct bpf_prog *fp,
552 u32 stack_depth)
553 {
554 /* No-op for hotpatching */
555 /* brcl 0,prologue_plt */
556 EMIT6_PCREL_RILC(0xc0040000, 0, jit->prologue_plt);
557 jit->prologue_plt_ret = jit->prg;
558
559 if (fp->aux->func_idx == 0) {
560 /* Initialize the tail call counter in the main program. */
561 /* xc STK_OFF_TCCNT(4,%r15),STK_OFF_TCCNT(%r15) */
562 _EMIT6(0xd703f000 | STK_OFF_TCCNT, 0xf000 | STK_OFF_TCCNT);
563 } else {
564 /*
565 * Skip the tail call counter initialization in subprograms.
566 * Insert nops in order to have tail_call_start at a
567 * predictable offset.
568 */
569 bpf_skip(jit, 6);
570 }
571 /* Tail calls have to skip above initialization */
572 jit->tail_call_start = jit->prg;
573 /* Save registers */
574 save_restore_regs(jit, REGS_SAVE, stack_depth);
575 /* Setup literal pool */
576 if (is_first_pass(jit) || (jit->seen & SEEN_LITERAL)) {
577 if (!is_first_pass(jit) &&
578 is_valid_ldisp(jit->size - (jit->prg + 2))) {
579 /* basr %l,0 */
580 EMIT2(0x0d00, REG_L, REG_0);
581 jit->base_ip = jit->prg;
582 } else {
583 /* larl %l,lit32_start */
584 EMIT6_PCREL_RILB(0xc0000000, REG_L, jit->lit32_start);
585 jit->base_ip = jit->lit32_start;
586 }
587 }
588 /* Setup stack and backchain */
589 if (is_first_pass(jit) || (jit->seen & SEEN_STACK)) {
590 if (is_first_pass(jit) || (jit->seen & SEEN_FUNC))
591 /* lgr %w1,%r15 (backchain) */
592 EMIT4(0xb9040000, REG_W1, REG_15);
593 /* la %bfp,STK_160_UNUSED(%r15) (BPF frame pointer) */
594 EMIT4_DISP(0x41000000, BPF_REG_FP, REG_15, STK_160_UNUSED);
595 /* aghi %r15,-STK_OFF */
596 EMIT4_IMM(0xa70b0000, REG_15, -(STK_OFF + stack_depth));
597 if (is_first_pass(jit) || (jit->seen & SEEN_FUNC))
598 /* stg %w1,152(%r15) (backchain) */
599 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0,
600 REG_15, 152);
601 }
602 }
603
604 /*
605 * Emit an expoline for a jump that follows
606 */
emit_expoline(struct bpf_jit * jit)607 static void emit_expoline(struct bpf_jit *jit)
608 {
609 /* exrl %r0,.+10 */
610 EMIT6_PCREL_RIL(0xc6000000, jit->prg + 10);
611 /* j . */
612 EMIT4_PCREL(0xa7f40000, 0);
613 }
614
615 /*
616 * Emit __s390_indirect_jump_r1 thunk if necessary
617 */
emit_r1_thunk(struct bpf_jit * jit)618 static void emit_r1_thunk(struct bpf_jit *jit)
619 {
620 if (nospec_uses_trampoline()) {
621 jit->r1_thunk_ip = jit->prg;
622 emit_expoline(jit);
623 /* br %r1 */
624 _EMIT2(0x07f1);
625 }
626 }
627
628 /*
629 * Call r1 either directly or via __s390_indirect_jump_r1 thunk
630 */
call_r1(struct bpf_jit * jit)631 static void call_r1(struct bpf_jit *jit)
632 {
633 if (nospec_uses_trampoline())
634 /* brasl %r14,__s390_indirect_jump_r1 */
635 EMIT6_PCREL_RILB(0xc0050000, REG_14, jit->r1_thunk_ip);
636 else
637 /* basr %r14,%r1 */
638 EMIT2(0x0d00, REG_14, REG_1);
639 }
640
641 /*
642 * Function epilogue
643 */
bpf_jit_epilogue(struct bpf_jit * jit,u32 stack_depth)644 static void bpf_jit_epilogue(struct bpf_jit *jit, u32 stack_depth)
645 {
646 jit->exit_ip = jit->prg;
647 /* Load exit code: lgr %r2,%b0 */
648 EMIT4(0xb9040000, REG_2, BPF_REG_0);
649 /* Restore registers */
650 save_restore_regs(jit, REGS_RESTORE, stack_depth);
651 if (nospec_uses_trampoline()) {
652 jit->r14_thunk_ip = jit->prg;
653 /* Generate __s390_indirect_jump_r14 thunk */
654 emit_expoline(jit);
655 }
656 /* br %r14 */
657 _EMIT2(0x07fe);
658
659 if (is_first_pass(jit) || (jit->seen & SEEN_FUNC))
660 emit_r1_thunk(jit);
661
662 jit->prg = ALIGN(jit->prg, 8);
663 jit->prologue_plt = jit->prg;
664 if (jit->prg_buf)
665 bpf_jit_plt((struct bpf_plt *)(jit->prg_buf + jit->prg),
666 jit->prg_buf + jit->prologue_plt_ret, NULL);
667 jit->prg += sizeof(struct bpf_plt);
668 }
669
get_probe_mem_regno(const u8 * insn)670 static int get_probe_mem_regno(const u8 *insn)
671 {
672 /*
673 * insn must point to llgc, llgh, llgf or lg, which have destination
674 * register at the same position.
675 */
676 if (insn[0] != 0xe3) /* common llgc, llgh, llgf and lg prefix */
677 return -1;
678 if (insn[5] != 0x90 && /* llgc */
679 insn[5] != 0x91 && /* llgh */
680 insn[5] != 0x16 && /* llgf */
681 insn[5] != 0x04) /* lg */
682 return -1;
683 return insn[1] >> 4;
684 }
685
ex_handler_bpf(const struct exception_table_entry * x,struct pt_regs * regs)686 bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs)
687 {
688 regs->psw.addr = extable_fixup(x);
689 regs->gprs[x->data] = 0;
690 return true;
691 }
692
bpf_jit_probe_mem(struct bpf_jit * jit,struct bpf_prog * fp,int probe_prg,int nop_prg)693 static int bpf_jit_probe_mem(struct bpf_jit *jit, struct bpf_prog *fp,
694 int probe_prg, int nop_prg)
695 {
696 struct exception_table_entry *ex;
697 int reg, prg;
698 s64 delta;
699 u8 *insn;
700 int i;
701
702 if (!fp->aux->extable)
703 /* Do nothing during early JIT passes. */
704 return 0;
705 insn = jit->prg_buf + probe_prg;
706 reg = get_probe_mem_regno(insn);
707 if (WARN_ON_ONCE(reg < 0))
708 /* JIT bug - unexpected probe instruction. */
709 return -1;
710 if (WARN_ON_ONCE(probe_prg + insn_length(*insn) != nop_prg))
711 /* JIT bug - gap between probe and nop instructions. */
712 return -1;
713 for (i = 0; i < 2; i++) {
714 if (WARN_ON_ONCE(jit->excnt >= fp->aux->num_exentries))
715 /* Verifier bug - not enough entries. */
716 return -1;
717 ex = &fp->aux->extable[jit->excnt];
718 /* Add extable entries for probe and nop instructions. */
719 prg = i == 0 ? probe_prg : nop_prg;
720 delta = jit->prg_buf + prg - (u8 *)&ex->insn;
721 if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
722 /* JIT bug - code and extable must be close. */
723 return -1;
724 ex->insn = delta;
725 /*
726 * Always land on the nop. Note that extable infrastructure
727 * ignores fixup field, it is handled by ex_handler_bpf().
728 */
729 delta = jit->prg_buf + nop_prg - (u8 *)&ex->fixup;
730 if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
731 /* JIT bug - landing pad and extable must be close. */
732 return -1;
733 ex->fixup = delta;
734 ex->type = EX_TYPE_BPF;
735 ex->data = reg;
736 jit->excnt++;
737 }
738 return 0;
739 }
740
741 /*
742 * Sign-extend the register if necessary
743 */
sign_extend(struct bpf_jit * jit,int r,u8 size,u8 flags)744 static int sign_extend(struct bpf_jit *jit, int r, u8 size, u8 flags)
745 {
746 if (!(flags & BTF_FMODEL_SIGNED_ARG))
747 return 0;
748
749 switch (size) {
750 case 1:
751 /* lgbr %r,%r */
752 EMIT4(0xb9060000, r, r);
753 return 0;
754 case 2:
755 /* lghr %r,%r */
756 EMIT4(0xb9070000, r, r);
757 return 0;
758 case 4:
759 /* lgfr %r,%r */
760 EMIT4(0xb9140000, r, r);
761 return 0;
762 case 8:
763 return 0;
764 default:
765 return -1;
766 }
767 }
768
769 /*
770 * Compile one eBPF instruction into s390x code
771 *
772 * NOTE: Use noinline because for gcov (-fprofile-arcs) gcc allocates a lot of
773 * stack space for the large switch statement.
774 */
bpf_jit_insn(struct bpf_jit * jit,struct bpf_prog * fp,int i,bool extra_pass,u32 stack_depth)775 static noinline int bpf_jit_insn(struct bpf_jit *jit, struct bpf_prog *fp,
776 int i, bool extra_pass, u32 stack_depth)
777 {
778 struct bpf_insn *insn = &fp->insnsi[i];
779 u32 dst_reg = insn->dst_reg;
780 u32 src_reg = insn->src_reg;
781 int last, insn_count = 1;
782 u32 *addrs = jit->addrs;
783 s32 imm = insn->imm;
784 s16 off = insn->off;
785 int probe_prg = -1;
786 unsigned int mask;
787 int nop_prg;
788 int err;
789
790 if (BPF_CLASS(insn->code) == BPF_LDX &&
791 BPF_MODE(insn->code) == BPF_PROBE_MEM)
792 probe_prg = jit->prg;
793
794 switch (insn->code) {
795 /*
796 * BPF_MOV
797 */
798 case BPF_ALU | BPF_MOV | BPF_X: /* dst = (u32) src */
799 /* llgfr %dst,%src */
800 EMIT4(0xb9160000, dst_reg, src_reg);
801 if (insn_is_zext(&insn[1]))
802 insn_count = 2;
803 break;
804 case BPF_ALU64 | BPF_MOV | BPF_X: /* dst = src */
805 /* lgr %dst,%src */
806 EMIT4(0xb9040000, dst_reg, src_reg);
807 break;
808 case BPF_ALU | BPF_MOV | BPF_K: /* dst = (u32) imm */
809 /* llilf %dst,imm */
810 EMIT6_IMM(0xc00f0000, dst_reg, imm);
811 if (insn_is_zext(&insn[1]))
812 insn_count = 2;
813 break;
814 case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = imm */
815 /* lgfi %dst,imm */
816 EMIT6_IMM(0xc0010000, dst_reg, imm);
817 break;
818 /*
819 * BPF_LD 64
820 */
821 case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
822 {
823 /* 16 byte instruction that uses two 'struct bpf_insn' */
824 u64 imm64;
825
826 imm64 = (u64)(u32) insn[0].imm | ((u64)(u32) insn[1].imm) << 32;
827 /* lgrl %dst,imm */
828 EMIT6_PCREL_RILB(0xc4080000, dst_reg, _EMIT_CONST_U64(imm64));
829 insn_count = 2;
830 break;
831 }
832 /*
833 * BPF_ADD
834 */
835 case BPF_ALU | BPF_ADD | BPF_X: /* dst = (u32) dst + (u32) src */
836 /* ar %dst,%src */
837 EMIT2(0x1a00, dst_reg, src_reg);
838 EMIT_ZERO(dst_reg);
839 break;
840 case BPF_ALU64 | BPF_ADD | BPF_X: /* dst = dst + src */
841 /* agr %dst,%src */
842 EMIT4(0xb9080000, dst_reg, src_reg);
843 break;
844 case BPF_ALU | BPF_ADD | BPF_K: /* dst = (u32) dst + (u32) imm */
845 if (imm != 0) {
846 /* alfi %dst,imm */
847 EMIT6_IMM(0xc20b0000, dst_reg, imm);
848 }
849 EMIT_ZERO(dst_reg);
850 break;
851 case BPF_ALU64 | BPF_ADD | BPF_K: /* dst = dst + imm */
852 if (!imm)
853 break;
854 /* agfi %dst,imm */
855 EMIT6_IMM(0xc2080000, dst_reg, imm);
856 break;
857 /*
858 * BPF_SUB
859 */
860 case BPF_ALU | BPF_SUB | BPF_X: /* dst = (u32) dst - (u32) src */
861 /* sr %dst,%src */
862 EMIT2(0x1b00, dst_reg, src_reg);
863 EMIT_ZERO(dst_reg);
864 break;
865 case BPF_ALU64 | BPF_SUB | BPF_X: /* dst = dst - src */
866 /* sgr %dst,%src */
867 EMIT4(0xb9090000, dst_reg, src_reg);
868 break;
869 case BPF_ALU | BPF_SUB | BPF_K: /* dst = (u32) dst - (u32) imm */
870 if (imm != 0) {
871 /* alfi %dst,-imm */
872 EMIT6_IMM(0xc20b0000, dst_reg, -imm);
873 }
874 EMIT_ZERO(dst_reg);
875 break;
876 case BPF_ALU64 | BPF_SUB | BPF_K: /* dst = dst - imm */
877 if (!imm)
878 break;
879 if (imm == -0x80000000) {
880 /* algfi %dst,0x80000000 */
881 EMIT6_IMM(0xc20a0000, dst_reg, 0x80000000);
882 } else {
883 /* agfi %dst,-imm */
884 EMIT6_IMM(0xc2080000, dst_reg, -imm);
885 }
886 break;
887 /*
888 * BPF_MUL
889 */
890 case BPF_ALU | BPF_MUL | BPF_X: /* dst = (u32) dst * (u32) src */
891 /* msr %dst,%src */
892 EMIT4(0xb2520000, dst_reg, src_reg);
893 EMIT_ZERO(dst_reg);
894 break;
895 case BPF_ALU64 | BPF_MUL | BPF_X: /* dst = dst * src */
896 /* msgr %dst,%src */
897 EMIT4(0xb90c0000, dst_reg, src_reg);
898 break;
899 case BPF_ALU | BPF_MUL | BPF_K: /* dst = (u32) dst * (u32) imm */
900 if (imm != 1) {
901 /* msfi %r5,imm */
902 EMIT6_IMM(0xc2010000, dst_reg, imm);
903 }
904 EMIT_ZERO(dst_reg);
905 break;
906 case BPF_ALU64 | BPF_MUL | BPF_K: /* dst = dst * imm */
907 if (imm == 1)
908 break;
909 /* msgfi %dst,imm */
910 EMIT6_IMM(0xc2000000, dst_reg, imm);
911 break;
912 /*
913 * BPF_DIV / BPF_MOD
914 */
915 case BPF_ALU | BPF_DIV | BPF_X: /* dst = (u32) dst / (u32) src */
916 case BPF_ALU | BPF_MOD | BPF_X: /* dst = (u32) dst % (u32) src */
917 {
918 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
919
920 /* lhi %w0,0 */
921 EMIT4_IMM(0xa7080000, REG_W0, 0);
922 /* lr %w1,%dst */
923 EMIT2(0x1800, REG_W1, dst_reg);
924 /* dlr %w0,%src */
925 EMIT4(0xb9970000, REG_W0, src_reg);
926 /* llgfr %dst,%rc */
927 EMIT4(0xb9160000, dst_reg, rc_reg);
928 if (insn_is_zext(&insn[1]))
929 insn_count = 2;
930 break;
931 }
932 case BPF_ALU64 | BPF_DIV | BPF_X: /* dst = dst / src */
933 case BPF_ALU64 | BPF_MOD | BPF_X: /* dst = dst % src */
934 {
935 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
936
937 /* lghi %w0,0 */
938 EMIT4_IMM(0xa7090000, REG_W0, 0);
939 /* lgr %w1,%dst */
940 EMIT4(0xb9040000, REG_W1, dst_reg);
941 /* dlgr %w0,%dst */
942 EMIT4(0xb9870000, REG_W0, src_reg);
943 /* lgr %dst,%rc */
944 EMIT4(0xb9040000, dst_reg, rc_reg);
945 break;
946 }
947 case BPF_ALU | BPF_DIV | BPF_K: /* dst = (u32) dst / (u32) imm */
948 case BPF_ALU | BPF_MOD | BPF_K: /* dst = (u32) dst % (u32) imm */
949 {
950 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
951
952 if (imm == 1) {
953 if (BPF_OP(insn->code) == BPF_MOD)
954 /* lhgi %dst,0 */
955 EMIT4_IMM(0xa7090000, dst_reg, 0);
956 else
957 EMIT_ZERO(dst_reg);
958 break;
959 }
960 /* lhi %w0,0 */
961 EMIT4_IMM(0xa7080000, REG_W0, 0);
962 /* lr %w1,%dst */
963 EMIT2(0x1800, REG_W1, dst_reg);
964 if (!is_first_pass(jit) && can_use_ldisp_for_lit32(jit)) {
965 /* dl %w0,<d(imm)>(%l) */
966 EMIT6_DISP_LH(0xe3000000, 0x0097, REG_W0, REG_0, REG_L,
967 EMIT_CONST_U32(imm));
968 } else {
969 /* lgfrl %dst,imm */
970 EMIT6_PCREL_RILB(0xc40c0000, dst_reg,
971 _EMIT_CONST_U32(imm));
972 jit->seen |= SEEN_LITERAL;
973 /* dlr %w0,%dst */
974 EMIT4(0xb9970000, REG_W0, dst_reg);
975 }
976 /* llgfr %dst,%rc */
977 EMIT4(0xb9160000, dst_reg, rc_reg);
978 if (insn_is_zext(&insn[1]))
979 insn_count = 2;
980 break;
981 }
982 case BPF_ALU64 | BPF_DIV | BPF_K: /* dst = dst / imm */
983 case BPF_ALU64 | BPF_MOD | BPF_K: /* dst = dst % imm */
984 {
985 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
986
987 if (imm == 1) {
988 if (BPF_OP(insn->code) == BPF_MOD)
989 /* lhgi %dst,0 */
990 EMIT4_IMM(0xa7090000, dst_reg, 0);
991 break;
992 }
993 /* lghi %w0,0 */
994 EMIT4_IMM(0xa7090000, REG_W0, 0);
995 /* lgr %w1,%dst */
996 EMIT4(0xb9040000, REG_W1, dst_reg);
997 if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
998 /* dlg %w0,<d(imm)>(%l) */
999 EMIT6_DISP_LH(0xe3000000, 0x0087, REG_W0, REG_0, REG_L,
1000 EMIT_CONST_U64(imm));
1001 } else {
1002 /* lgrl %dst,imm */
1003 EMIT6_PCREL_RILB(0xc4080000, dst_reg,
1004 _EMIT_CONST_U64(imm));
1005 jit->seen |= SEEN_LITERAL;
1006 /* dlgr %w0,%dst */
1007 EMIT4(0xb9870000, REG_W0, dst_reg);
1008 }
1009 /* lgr %dst,%rc */
1010 EMIT4(0xb9040000, dst_reg, rc_reg);
1011 break;
1012 }
1013 /*
1014 * BPF_AND
1015 */
1016 case BPF_ALU | BPF_AND | BPF_X: /* dst = (u32) dst & (u32) src */
1017 /* nr %dst,%src */
1018 EMIT2(0x1400, dst_reg, src_reg);
1019 EMIT_ZERO(dst_reg);
1020 break;
1021 case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
1022 /* ngr %dst,%src */
1023 EMIT4(0xb9800000, dst_reg, src_reg);
1024 break;
1025 case BPF_ALU | BPF_AND | BPF_K: /* dst = (u32) dst & (u32) imm */
1026 /* nilf %dst,imm */
1027 EMIT6_IMM(0xc00b0000, dst_reg, imm);
1028 EMIT_ZERO(dst_reg);
1029 break;
1030 case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
1031 if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1032 /* ng %dst,<d(imm)>(%l) */
1033 EMIT6_DISP_LH(0xe3000000, 0x0080,
1034 dst_reg, REG_0, REG_L,
1035 EMIT_CONST_U64(imm));
1036 } else {
1037 /* lgrl %w0,imm */
1038 EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1039 _EMIT_CONST_U64(imm));
1040 jit->seen |= SEEN_LITERAL;
1041 /* ngr %dst,%w0 */
1042 EMIT4(0xb9800000, dst_reg, REG_W0);
1043 }
1044 break;
1045 /*
1046 * BPF_OR
1047 */
1048 case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
1049 /* or %dst,%src */
1050 EMIT2(0x1600, dst_reg, src_reg);
1051 EMIT_ZERO(dst_reg);
1052 break;
1053 case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
1054 /* ogr %dst,%src */
1055 EMIT4(0xb9810000, dst_reg, src_reg);
1056 break;
1057 case BPF_ALU | BPF_OR | BPF_K: /* dst = (u32) dst | (u32) imm */
1058 /* oilf %dst,imm */
1059 EMIT6_IMM(0xc00d0000, dst_reg, imm);
1060 EMIT_ZERO(dst_reg);
1061 break;
1062 case BPF_ALU64 | BPF_OR | BPF_K: /* dst = dst | imm */
1063 if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1064 /* og %dst,<d(imm)>(%l) */
1065 EMIT6_DISP_LH(0xe3000000, 0x0081,
1066 dst_reg, REG_0, REG_L,
1067 EMIT_CONST_U64(imm));
1068 } else {
1069 /* lgrl %w0,imm */
1070 EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1071 _EMIT_CONST_U64(imm));
1072 jit->seen |= SEEN_LITERAL;
1073 /* ogr %dst,%w0 */
1074 EMIT4(0xb9810000, dst_reg, REG_W0);
1075 }
1076 break;
1077 /*
1078 * BPF_XOR
1079 */
1080 case BPF_ALU | BPF_XOR | BPF_X: /* dst = (u32) dst ^ (u32) src */
1081 /* xr %dst,%src */
1082 EMIT2(0x1700, dst_reg, src_reg);
1083 EMIT_ZERO(dst_reg);
1084 break;
1085 case BPF_ALU64 | BPF_XOR | BPF_X: /* dst = dst ^ src */
1086 /* xgr %dst,%src */
1087 EMIT4(0xb9820000, dst_reg, src_reg);
1088 break;
1089 case BPF_ALU | BPF_XOR | BPF_K: /* dst = (u32) dst ^ (u32) imm */
1090 if (imm != 0) {
1091 /* xilf %dst,imm */
1092 EMIT6_IMM(0xc0070000, dst_reg, imm);
1093 }
1094 EMIT_ZERO(dst_reg);
1095 break;
1096 case BPF_ALU64 | BPF_XOR | BPF_K: /* dst = dst ^ imm */
1097 if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1098 /* xg %dst,<d(imm)>(%l) */
1099 EMIT6_DISP_LH(0xe3000000, 0x0082,
1100 dst_reg, REG_0, REG_L,
1101 EMIT_CONST_U64(imm));
1102 } else {
1103 /* lgrl %w0,imm */
1104 EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1105 _EMIT_CONST_U64(imm));
1106 jit->seen |= SEEN_LITERAL;
1107 /* xgr %dst,%w0 */
1108 EMIT4(0xb9820000, dst_reg, REG_W0);
1109 }
1110 break;
1111 /*
1112 * BPF_LSH
1113 */
1114 case BPF_ALU | BPF_LSH | BPF_X: /* dst = (u32) dst << (u32) src */
1115 /* sll %dst,0(%src) */
1116 EMIT4_DISP(0x89000000, dst_reg, src_reg, 0);
1117 EMIT_ZERO(dst_reg);
1118 break;
1119 case BPF_ALU64 | BPF_LSH | BPF_X: /* dst = dst << src */
1120 /* sllg %dst,%dst,0(%src) */
1121 EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, src_reg, 0);
1122 break;
1123 case BPF_ALU | BPF_LSH | BPF_K: /* dst = (u32) dst << (u32) imm */
1124 if (imm != 0) {
1125 /* sll %dst,imm(%r0) */
1126 EMIT4_DISP(0x89000000, dst_reg, REG_0, imm);
1127 }
1128 EMIT_ZERO(dst_reg);
1129 break;
1130 case BPF_ALU64 | BPF_LSH | BPF_K: /* dst = dst << imm */
1131 if (imm == 0)
1132 break;
1133 /* sllg %dst,%dst,imm(%r0) */
1134 EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, REG_0, imm);
1135 break;
1136 /*
1137 * BPF_RSH
1138 */
1139 case BPF_ALU | BPF_RSH | BPF_X: /* dst = (u32) dst >> (u32) src */
1140 /* srl %dst,0(%src) */
1141 EMIT4_DISP(0x88000000, dst_reg, src_reg, 0);
1142 EMIT_ZERO(dst_reg);
1143 break;
1144 case BPF_ALU64 | BPF_RSH | BPF_X: /* dst = dst >> src */
1145 /* srlg %dst,%dst,0(%src) */
1146 EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, src_reg, 0);
1147 break;
1148 case BPF_ALU | BPF_RSH | BPF_K: /* dst = (u32) dst >> (u32) imm */
1149 if (imm != 0) {
1150 /* srl %dst,imm(%r0) */
1151 EMIT4_DISP(0x88000000, dst_reg, REG_0, imm);
1152 }
1153 EMIT_ZERO(dst_reg);
1154 break;
1155 case BPF_ALU64 | BPF_RSH | BPF_K: /* dst = dst >> imm */
1156 if (imm == 0)
1157 break;
1158 /* srlg %dst,%dst,imm(%r0) */
1159 EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, REG_0, imm);
1160 break;
1161 /*
1162 * BPF_ARSH
1163 */
1164 case BPF_ALU | BPF_ARSH | BPF_X: /* ((s32) dst) >>= src */
1165 /* sra %dst,%dst,0(%src) */
1166 EMIT4_DISP(0x8a000000, dst_reg, src_reg, 0);
1167 EMIT_ZERO(dst_reg);
1168 break;
1169 case BPF_ALU64 | BPF_ARSH | BPF_X: /* ((s64) dst) >>= src */
1170 /* srag %dst,%dst,0(%src) */
1171 EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, src_reg, 0);
1172 break;
1173 case BPF_ALU | BPF_ARSH | BPF_K: /* ((s32) dst >> imm */
1174 if (imm != 0) {
1175 /* sra %dst,imm(%r0) */
1176 EMIT4_DISP(0x8a000000, dst_reg, REG_0, imm);
1177 }
1178 EMIT_ZERO(dst_reg);
1179 break;
1180 case BPF_ALU64 | BPF_ARSH | BPF_K: /* ((s64) dst) >>= imm */
1181 if (imm == 0)
1182 break;
1183 /* srag %dst,%dst,imm(%r0) */
1184 EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, REG_0, imm);
1185 break;
1186 /*
1187 * BPF_NEG
1188 */
1189 case BPF_ALU | BPF_NEG: /* dst = (u32) -dst */
1190 /* lcr %dst,%dst */
1191 EMIT2(0x1300, dst_reg, dst_reg);
1192 EMIT_ZERO(dst_reg);
1193 break;
1194 case BPF_ALU64 | BPF_NEG: /* dst = -dst */
1195 /* lcgr %dst,%dst */
1196 EMIT4(0xb9030000, dst_reg, dst_reg);
1197 break;
1198 /*
1199 * BPF_FROM_BE/LE
1200 */
1201 case BPF_ALU | BPF_END | BPF_FROM_BE:
1202 /* s390 is big endian, therefore only clear high order bytes */
1203 switch (imm) {
1204 case 16: /* dst = (u16) cpu_to_be16(dst) */
1205 /* llghr %dst,%dst */
1206 EMIT4(0xb9850000, dst_reg, dst_reg);
1207 if (insn_is_zext(&insn[1]))
1208 insn_count = 2;
1209 break;
1210 case 32: /* dst = (u32) cpu_to_be32(dst) */
1211 if (!fp->aux->verifier_zext)
1212 /* llgfr %dst,%dst */
1213 EMIT4(0xb9160000, dst_reg, dst_reg);
1214 break;
1215 case 64: /* dst = (u64) cpu_to_be64(dst) */
1216 break;
1217 }
1218 break;
1219 case BPF_ALU | BPF_END | BPF_FROM_LE:
1220 switch (imm) {
1221 case 16: /* dst = (u16) cpu_to_le16(dst) */
1222 /* lrvr %dst,%dst */
1223 EMIT4(0xb91f0000, dst_reg, dst_reg);
1224 /* srl %dst,16(%r0) */
1225 EMIT4_DISP(0x88000000, dst_reg, REG_0, 16);
1226 /* llghr %dst,%dst */
1227 EMIT4(0xb9850000, dst_reg, dst_reg);
1228 if (insn_is_zext(&insn[1]))
1229 insn_count = 2;
1230 break;
1231 case 32: /* dst = (u32) cpu_to_le32(dst) */
1232 /* lrvr %dst,%dst */
1233 EMIT4(0xb91f0000, dst_reg, dst_reg);
1234 if (!fp->aux->verifier_zext)
1235 /* llgfr %dst,%dst */
1236 EMIT4(0xb9160000, dst_reg, dst_reg);
1237 break;
1238 case 64: /* dst = (u64) cpu_to_le64(dst) */
1239 /* lrvgr %dst,%dst */
1240 EMIT4(0xb90f0000, dst_reg, dst_reg);
1241 break;
1242 }
1243 break;
1244 /*
1245 * BPF_NOSPEC (speculation barrier)
1246 */
1247 case BPF_ST | BPF_NOSPEC:
1248 break;
1249 /*
1250 * BPF_ST(X)
1251 */
1252 case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src_reg */
1253 /* stcy %src,off(%dst) */
1254 EMIT6_DISP_LH(0xe3000000, 0x0072, src_reg, dst_reg, REG_0, off);
1255 jit->seen |= SEEN_MEM;
1256 break;
1257 case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
1258 /* sthy %src,off(%dst) */
1259 EMIT6_DISP_LH(0xe3000000, 0x0070, src_reg, dst_reg, REG_0, off);
1260 jit->seen |= SEEN_MEM;
1261 break;
1262 case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
1263 /* sty %src,off(%dst) */
1264 EMIT6_DISP_LH(0xe3000000, 0x0050, src_reg, dst_reg, REG_0, off);
1265 jit->seen |= SEEN_MEM;
1266 break;
1267 case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
1268 /* stg %src,off(%dst) */
1269 EMIT6_DISP_LH(0xe3000000, 0x0024, src_reg, dst_reg, REG_0, off);
1270 jit->seen |= SEEN_MEM;
1271 break;
1272 case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
1273 /* lhi %w0,imm */
1274 EMIT4_IMM(0xa7080000, REG_W0, (u8) imm);
1275 /* stcy %w0,off(dst) */
1276 EMIT6_DISP_LH(0xe3000000, 0x0072, REG_W0, dst_reg, REG_0, off);
1277 jit->seen |= SEEN_MEM;
1278 break;
1279 case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
1280 /* lhi %w0,imm */
1281 EMIT4_IMM(0xa7080000, REG_W0, (u16) imm);
1282 /* sthy %w0,off(dst) */
1283 EMIT6_DISP_LH(0xe3000000, 0x0070, REG_W0, dst_reg, REG_0, off);
1284 jit->seen |= SEEN_MEM;
1285 break;
1286 case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
1287 /* llilf %w0,imm */
1288 EMIT6_IMM(0xc00f0000, REG_W0, (u32) imm);
1289 /* sty %w0,off(%dst) */
1290 EMIT6_DISP_LH(0xe3000000, 0x0050, REG_W0, dst_reg, REG_0, off);
1291 jit->seen |= SEEN_MEM;
1292 break;
1293 case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
1294 /* lgfi %w0,imm */
1295 EMIT6_IMM(0xc0010000, REG_W0, imm);
1296 /* stg %w0,off(%dst) */
1297 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, dst_reg, REG_0, off);
1298 jit->seen |= SEEN_MEM;
1299 break;
1300 /*
1301 * BPF_ATOMIC
1302 */
1303 case BPF_STX | BPF_ATOMIC | BPF_DW:
1304 case BPF_STX | BPF_ATOMIC | BPF_W:
1305 {
1306 bool is32 = BPF_SIZE(insn->code) == BPF_W;
1307
1308 switch (insn->imm) {
1309 /* {op32|op64} {%w0|%src},%src,off(%dst) */
1310 #define EMIT_ATOMIC(op32, op64) do { \
1311 EMIT6_DISP_LH(0xeb000000, is32 ? (op32) : (op64), \
1312 (insn->imm & BPF_FETCH) ? src_reg : REG_W0, \
1313 src_reg, dst_reg, off); \
1314 if (insn->imm & BPF_FETCH) { \
1315 /* bcr 14,0 - see atomic_fetch_{add,and,or,xor}() */ \
1316 _EMIT2(0x07e0); \
1317 if (is32) \
1318 EMIT_ZERO(src_reg); \
1319 } \
1320 } while (0)
1321 case BPF_ADD:
1322 case BPF_ADD | BPF_FETCH:
1323 /* {laal|laalg} */
1324 EMIT_ATOMIC(0x00fa, 0x00ea);
1325 break;
1326 case BPF_AND:
1327 case BPF_AND | BPF_FETCH:
1328 /* {lan|lang} */
1329 EMIT_ATOMIC(0x00f4, 0x00e4);
1330 break;
1331 case BPF_OR:
1332 case BPF_OR | BPF_FETCH:
1333 /* {lao|laog} */
1334 EMIT_ATOMIC(0x00f6, 0x00e6);
1335 break;
1336 case BPF_XOR:
1337 case BPF_XOR | BPF_FETCH:
1338 /* {lax|laxg} */
1339 EMIT_ATOMIC(0x00f7, 0x00e7);
1340 break;
1341 #undef EMIT_ATOMIC
1342 case BPF_XCHG:
1343 /* {ly|lg} %w0,off(%dst) */
1344 EMIT6_DISP_LH(0xe3000000,
1345 is32 ? 0x0058 : 0x0004, REG_W0, REG_0,
1346 dst_reg, off);
1347 /* 0: {csy|csg} %w0,%src,off(%dst) */
1348 EMIT6_DISP_LH(0xeb000000, is32 ? 0x0014 : 0x0030,
1349 REG_W0, src_reg, dst_reg, off);
1350 /* brc 4,0b */
1351 EMIT4_PCREL_RIC(0xa7040000, 4, jit->prg - 6);
1352 /* {llgfr|lgr} %src,%w0 */
1353 EMIT4(is32 ? 0xb9160000 : 0xb9040000, src_reg, REG_W0);
1354 if (is32 && insn_is_zext(&insn[1]))
1355 insn_count = 2;
1356 break;
1357 case BPF_CMPXCHG:
1358 /* 0: {csy|csg} %b0,%src,off(%dst) */
1359 EMIT6_DISP_LH(0xeb000000, is32 ? 0x0014 : 0x0030,
1360 BPF_REG_0, src_reg, dst_reg, off);
1361 break;
1362 default:
1363 pr_err("Unknown atomic operation %02x\n", insn->imm);
1364 return -1;
1365 }
1366
1367 jit->seen |= SEEN_MEM;
1368 break;
1369 }
1370 /*
1371 * BPF_LDX
1372 */
1373 case BPF_LDX | BPF_MEM | BPF_B: /* dst = *(u8 *)(ul) (src + off) */
1374 case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1375 /* llgc %dst,0(off,%src) */
1376 EMIT6_DISP_LH(0xe3000000, 0x0090, dst_reg, src_reg, REG_0, off);
1377 jit->seen |= SEEN_MEM;
1378 if (insn_is_zext(&insn[1]))
1379 insn_count = 2;
1380 break;
1381 case BPF_LDX | BPF_MEM | BPF_H: /* dst = *(u16 *)(ul) (src + off) */
1382 case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1383 /* llgh %dst,0(off,%src) */
1384 EMIT6_DISP_LH(0xe3000000, 0x0091, dst_reg, src_reg, REG_0, off);
1385 jit->seen |= SEEN_MEM;
1386 if (insn_is_zext(&insn[1]))
1387 insn_count = 2;
1388 break;
1389 case BPF_LDX | BPF_MEM | BPF_W: /* dst = *(u32 *)(ul) (src + off) */
1390 case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1391 /* llgf %dst,off(%src) */
1392 jit->seen |= SEEN_MEM;
1393 EMIT6_DISP_LH(0xe3000000, 0x0016, dst_reg, src_reg, REG_0, off);
1394 if (insn_is_zext(&insn[1]))
1395 insn_count = 2;
1396 break;
1397 case BPF_LDX | BPF_MEM | BPF_DW: /* dst = *(u64 *)(ul) (src + off) */
1398 case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1399 /* lg %dst,0(off,%src) */
1400 jit->seen |= SEEN_MEM;
1401 EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, src_reg, REG_0, off);
1402 break;
1403 /*
1404 * BPF_JMP / CALL
1405 */
1406 case BPF_JMP | BPF_CALL:
1407 {
1408 const struct btf_func_model *m;
1409 bool func_addr_fixed;
1410 int j, ret;
1411 u64 func;
1412
1413 ret = bpf_jit_get_func_addr(fp, insn, extra_pass,
1414 &func, &func_addr_fixed);
1415 if (ret < 0)
1416 return -1;
1417
1418 REG_SET_SEEN(BPF_REG_5);
1419 jit->seen |= SEEN_FUNC;
1420 /*
1421 * Copy the tail call counter to where the callee expects it.
1422 *
1423 * Note 1: The callee can increment the tail call counter, but
1424 * we do not load it back, since the x86 JIT does not do this
1425 * either.
1426 *
1427 * Note 2: We assume that the verifier does not let us call the
1428 * main program, which clears the tail call counter on entry.
1429 */
1430 /* mvc STK_OFF_TCCNT(4,%r15),N(%r15) */
1431 _EMIT6(0xd203f000 | STK_OFF_TCCNT,
1432 0xf000 | (STK_OFF_TCCNT + STK_OFF + stack_depth));
1433
1434 /* Sign-extend the kfunc arguments. */
1435 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
1436 m = bpf_jit_find_kfunc_model(fp, insn);
1437 if (!m)
1438 return -1;
1439
1440 for (j = 0; j < m->nr_args; j++) {
1441 if (sign_extend(jit, BPF_REG_1 + j,
1442 m->arg_size[j],
1443 m->arg_flags[j]))
1444 return -1;
1445 }
1446 }
1447
1448 /* lgrl %w1,func */
1449 EMIT6_PCREL_RILB(0xc4080000, REG_W1, _EMIT_CONST_U64(func));
1450 /* %r1() */
1451 call_r1(jit);
1452 /* lgr %b0,%r2: load return value into %b0 */
1453 EMIT4(0xb9040000, BPF_REG_0, REG_2);
1454 break;
1455 }
1456 case BPF_JMP | BPF_TAIL_CALL: {
1457 int patch_1_clrj, patch_2_clij, patch_3_brc;
1458
1459 /*
1460 * Implicit input:
1461 * B1: pointer to ctx
1462 * B2: pointer to bpf_array
1463 * B3: index in bpf_array
1464 *
1465 * if (index >= array->map.max_entries)
1466 * goto out;
1467 */
1468
1469 /* llgf %w1,map.max_entries(%b2) */
1470 EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_2,
1471 offsetof(struct bpf_array, map.max_entries));
1472 /* if ((u32)%b3 >= (u32)%w1) goto out; */
1473 /* clrj %b3,%w1,0xa,out */
1474 patch_1_clrj = jit->prg;
1475 EMIT6_PCREL_RIEB(0xec000000, 0x0077, BPF_REG_3, REG_W1, 0xa,
1476 jit->prg);
1477
1478 /*
1479 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
1480 * goto out;
1481 */
1482
1483 if (jit->seen & SEEN_STACK)
1484 off = STK_OFF_TCCNT + STK_OFF + stack_depth;
1485 else
1486 off = STK_OFF_TCCNT;
1487 /* lhi %w0,1 */
1488 EMIT4_IMM(0xa7080000, REG_W0, 1);
1489 /* laal %w1,%w0,off(%r15) */
1490 EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W1, REG_W0, REG_15, off);
1491 /* clij %w1,MAX_TAIL_CALL_CNT-1,0x2,out */
1492 patch_2_clij = jit->prg;
1493 EMIT6_PCREL_RIEC(0xec000000, 0x007f, REG_W1, MAX_TAIL_CALL_CNT - 1,
1494 2, jit->prg);
1495
1496 /*
1497 * prog = array->ptrs[index];
1498 * if (prog == NULL)
1499 * goto out;
1500 */
1501
1502 /* llgfr %r1,%b3: %r1 = (u32) index */
1503 EMIT4(0xb9160000, REG_1, BPF_REG_3);
1504 /* sllg %r1,%r1,3: %r1 *= 8 */
1505 EMIT6_DISP_LH(0xeb000000, 0x000d, REG_1, REG_1, REG_0, 3);
1506 /* ltg %r1,prog(%b2,%r1) */
1507 EMIT6_DISP_LH(0xe3000000, 0x0002, REG_1, BPF_REG_2,
1508 REG_1, offsetof(struct bpf_array, ptrs));
1509 /* brc 0x8,out */
1510 patch_3_brc = jit->prg;
1511 EMIT4_PCREL_RIC(0xa7040000, 8, jit->prg);
1512
1513 /*
1514 * Restore registers before calling function
1515 */
1516 save_restore_regs(jit, REGS_RESTORE, stack_depth);
1517
1518 /*
1519 * goto *(prog->bpf_func + tail_call_start);
1520 */
1521
1522 /* lg %r1,bpf_func(%r1) */
1523 EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_1, REG_0,
1524 offsetof(struct bpf_prog, bpf_func));
1525 if (nospec_uses_trampoline()) {
1526 jit->seen |= SEEN_FUNC;
1527 /* aghi %r1,tail_call_start */
1528 EMIT4_IMM(0xa70b0000, REG_1, jit->tail_call_start);
1529 /* brcl 0xf,__s390_indirect_jump_r1 */
1530 EMIT6_PCREL_RILC(0xc0040000, 0xf, jit->r1_thunk_ip);
1531 } else {
1532 /* bc 0xf,tail_call_start(%r1) */
1533 _EMIT4(0x47f01000 + jit->tail_call_start);
1534 }
1535 /* out: */
1536 if (jit->prg_buf) {
1537 *(u16 *)(jit->prg_buf + patch_1_clrj + 2) =
1538 (jit->prg - patch_1_clrj) >> 1;
1539 *(u16 *)(jit->prg_buf + patch_2_clij + 2) =
1540 (jit->prg - patch_2_clij) >> 1;
1541 *(u16 *)(jit->prg_buf + patch_3_brc + 2) =
1542 (jit->prg - patch_3_brc) >> 1;
1543 }
1544 break;
1545 }
1546 case BPF_JMP | BPF_EXIT: /* return b0 */
1547 last = (i == fp->len - 1) ? 1 : 0;
1548 if (last)
1549 break;
1550 if (!is_first_pass(jit) && can_use_rel(jit, jit->exit_ip))
1551 /* brc 0xf, <exit> */
1552 EMIT4_PCREL_RIC(0xa7040000, 0xf, jit->exit_ip);
1553 else
1554 /* brcl 0xf, <exit> */
1555 EMIT6_PCREL_RILC(0xc0040000, 0xf, jit->exit_ip);
1556 break;
1557 /*
1558 * Branch relative (number of skipped instructions) to offset on
1559 * condition.
1560 *
1561 * Condition code to mask mapping:
1562 *
1563 * CC | Description | Mask
1564 * ------------------------------
1565 * 0 | Operands equal | 8
1566 * 1 | First operand low | 4
1567 * 2 | First operand high | 2
1568 * 3 | Unused | 1
1569 *
1570 * For s390x relative branches: ip = ip + off_bytes
1571 * For BPF relative branches: insn = insn + off_insns + 1
1572 *
1573 * For example for s390x with offset 0 we jump to the branch
1574 * instruction itself (loop) and for BPF with offset 0 we
1575 * branch to the instruction behind the branch.
1576 */
1577 case BPF_JMP | BPF_JA: /* if (true) */
1578 mask = 0xf000; /* j */
1579 goto branch_oc;
1580 case BPF_JMP | BPF_JSGT | BPF_K: /* ((s64) dst > (s64) imm) */
1581 case BPF_JMP32 | BPF_JSGT | BPF_K: /* ((s32) dst > (s32) imm) */
1582 mask = 0x2000; /* jh */
1583 goto branch_ks;
1584 case BPF_JMP | BPF_JSLT | BPF_K: /* ((s64) dst < (s64) imm) */
1585 case BPF_JMP32 | BPF_JSLT | BPF_K: /* ((s32) dst < (s32) imm) */
1586 mask = 0x4000; /* jl */
1587 goto branch_ks;
1588 case BPF_JMP | BPF_JSGE | BPF_K: /* ((s64) dst >= (s64) imm) */
1589 case BPF_JMP32 | BPF_JSGE | BPF_K: /* ((s32) dst >= (s32) imm) */
1590 mask = 0xa000; /* jhe */
1591 goto branch_ks;
1592 case BPF_JMP | BPF_JSLE | BPF_K: /* ((s64) dst <= (s64) imm) */
1593 case BPF_JMP32 | BPF_JSLE | BPF_K: /* ((s32) dst <= (s32) imm) */
1594 mask = 0xc000; /* jle */
1595 goto branch_ks;
1596 case BPF_JMP | BPF_JGT | BPF_K: /* (dst_reg > imm) */
1597 case BPF_JMP32 | BPF_JGT | BPF_K: /* ((u32) dst_reg > (u32) imm) */
1598 mask = 0x2000; /* jh */
1599 goto branch_ku;
1600 case BPF_JMP | BPF_JLT | BPF_K: /* (dst_reg < imm) */
1601 case BPF_JMP32 | BPF_JLT | BPF_K: /* ((u32) dst_reg < (u32) imm) */
1602 mask = 0x4000; /* jl */
1603 goto branch_ku;
1604 case BPF_JMP | BPF_JGE | BPF_K: /* (dst_reg >= imm) */
1605 case BPF_JMP32 | BPF_JGE | BPF_K: /* ((u32) dst_reg >= (u32) imm) */
1606 mask = 0xa000; /* jhe */
1607 goto branch_ku;
1608 case BPF_JMP | BPF_JLE | BPF_K: /* (dst_reg <= imm) */
1609 case BPF_JMP32 | BPF_JLE | BPF_K: /* ((u32) dst_reg <= (u32) imm) */
1610 mask = 0xc000; /* jle */
1611 goto branch_ku;
1612 case BPF_JMP | BPF_JNE | BPF_K: /* (dst_reg != imm) */
1613 case BPF_JMP32 | BPF_JNE | BPF_K: /* ((u32) dst_reg != (u32) imm) */
1614 mask = 0x7000; /* jne */
1615 goto branch_ku;
1616 case BPF_JMP | BPF_JEQ | BPF_K: /* (dst_reg == imm) */
1617 case BPF_JMP32 | BPF_JEQ | BPF_K: /* ((u32) dst_reg == (u32) imm) */
1618 mask = 0x8000; /* je */
1619 goto branch_ku;
1620 case BPF_JMP | BPF_JSET | BPF_K: /* (dst_reg & imm) */
1621 case BPF_JMP32 | BPF_JSET | BPF_K: /* ((u32) dst_reg & (u32) imm) */
1622 mask = 0x7000; /* jnz */
1623 if (BPF_CLASS(insn->code) == BPF_JMP32) {
1624 /* llilf %w1,imm (load zero extend imm) */
1625 EMIT6_IMM(0xc00f0000, REG_W1, imm);
1626 /* nr %w1,%dst */
1627 EMIT2(0x1400, REG_W1, dst_reg);
1628 } else {
1629 /* lgfi %w1,imm (load sign extend imm) */
1630 EMIT6_IMM(0xc0010000, REG_W1, imm);
1631 /* ngr %w1,%dst */
1632 EMIT4(0xb9800000, REG_W1, dst_reg);
1633 }
1634 goto branch_oc;
1635
1636 case BPF_JMP | BPF_JSGT | BPF_X: /* ((s64) dst > (s64) src) */
1637 case BPF_JMP32 | BPF_JSGT | BPF_X: /* ((s32) dst > (s32) src) */
1638 mask = 0x2000; /* jh */
1639 goto branch_xs;
1640 case BPF_JMP | BPF_JSLT | BPF_X: /* ((s64) dst < (s64) src) */
1641 case BPF_JMP32 | BPF_JSLT | BPF_X: /* ((s32) dst < (s32) src) */
1642 mask = 0x4000; /* jl */
1643 goto branch_xs;
1644 case BPF_JMP | BPF_JSGE | BPF_X: /* ((s64) dst >= (s64) src) */
1645 case BPF_JMP32 | BPF_JSGE | BPF_X: /* ((s32) dst >= (s32) src) */
1646 mask = 0xa000; /* jhe */
1647 goto branch_xs;
1648 case BPF_JMP | BPF_JSLE | BPF_X: /* ((s64) dst <= (s64) src) */
1649 case BPF_JMP32 | BPF_JSLE | BPF_X: /* ((s32) dst <= (s32) src) */
1650 mask = 0xc000; /* jle */
1651 goto branch_xs;
1652 case BPF_JMP | BPF_JGT | BPF_X: /* (dst > src) */
1653 case BPF_JMP32 | BPF_JGT | BPF_X: /* ((u32) dst > (u32) src) */
1654 mask = 0x2000; /* jh */
1655 goto branch_xu;
1656 case BPF_JMP | BPF_JLT | BPF_X: /* (dst < src) */
1657 case BPF_JMP32 | BPF_JLT | BPF_X: /* ((u32) dst < (u32) src) */
1658 mask = 0x4000; /* jl */
1659 goto branch_xu;
1660 case BPF_JMP | BPF_JGE | BPF_X: /* (dst >= src) */
1661 case BPF_JMP32 | BPF_JGE | BPF_X: /* ((u32) dst >= (u32) src) */
1662 mask = 0xa000; /* jhe */
1663 goto branch_xu;
1664 case BPF_JMP | BPF_JLE | BPF_X: /* (dst <= src) */
1665 case BPF_JMP32 | BPF_JLE | BPF_X: /* ((u32) dst <= (u32) src) */
1666 mask = 0xc000; /* jle */
1667 goto branch_xu;
1668 case BPF_JMP | BPF_JNE | BPF_X: /* (dst != src) */
1669 case BPF_JMP32 | BPF_JNE | BPF_X: /* ((u32) dst != (u32) src) */
1670 mask = 0x7000; /* jne */
1671 goto branch_xu;
1672 case BPF_JMP | BPF_JEQ | BPF_X: /* (dst == src) */
1673 case BPF_JMP32 | BPF_JEQ | BPF_X: /* ((u32) dst == (u32) src) */
1674 mask = 0x8000; /* je */
1675 goto branch_xu;
1676 case BPF_JMP | BPF_JSET | BPF_X: /* (dst & src) */
1677 case BPF_JMP32 | BPF_JSET | BPF_X: /* ((u32) dst & (u32) src) */
1678 {
1679 bool is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1680
1681 mask = 0x7000; /* jnz */
1682 /* nrk or ngrk %w1,%dst,%src */
1683 EMIT4_RRF((is_jmp32 ? 0xb9f40000 : 0xb9e40000),
1684 REG_W1, dst_reg, src_reg);
1685 goto branch_oc;
1686 branch_ks:
1687 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1688 /* cfi or cgfi %dst,imm */
1689 EMIT6_IMM(is_jmp32 ? 0xc20d0000 : 0xc20c0000,
1690 dst_reg, imm);
1691 if (!is_first_pass(jit) &&
1692 can_use_rel(jit, addrs[i + off + 1])) {
1693 /* brc mask,off */
1694 EMIT4_PCREL_RIC(0xa7040000,
1695 mask >> 12, addrs[i + off + 1]);
1696 } else {
1697 /* brcl mask,off */
1698 EMIT6_PCREL_RILC(0xc0040000,
1699 mask >> 12, addrs[i + off + 1]);
1700 }
1701 break;
1702 branch_ku:
1703 /* lgfi %w1,imm (load sign extend imm) */
1704 src_reg = REG_1;
1705 EMIT6_IMM(0xc0010000, src_reg, imm);
1706 goto branch_xu;
1707 branch_xs:
1708 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1709 if (!is_first_pass(jit) &&
1710 can_use_rel(jit, addrs[i + off + 1])) {
1711 /* crj or cgrj %dst,%src,mask,off */
1712 EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0076 : 0x0064),
1713 dst_reg, src_reg, i, off, mask);
1714 } else {
1715 /* cr or cgr %dst,%src */
1716 if (is_jmp32)
1717 EMIT2(0x1900, dst_reg, src_reg);
1718 else
1719 EMIT4(0xb9200000, dst_reg, src_reg);
1720 /* brcl mask,off */
1721 EMIT6_PCREL_RILC(0xc0040000,
1722 mask >> 12, addrs[i + off + 1]);
1723 }
1724 break;
1725 branch_xu:
1726 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1727 if (!is_first_pass(jit) &&
1728 can_use_rel(jit, addrs[i + off + 1])) {
1729 /* clrj or clgrj %dst,%src,mask,off */
1730 EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0077 : 0x0065),
1731 dst_reg, src_reg, i, off, mask);
1732 } else {
1733 /* clr or clgr %dst,%src */
1734 if (is_jmp32)
1735 EMIT2(0x1500, dst_reg, src_reg);
1736 else
1737 EMIT4(0xb9210000, dst_reg, src_reg);
1738 /* brcl mask,off */
1739 EMIT6_PCREL_RILC(0xc0040000,
1740 mask >> 12, addrs[i + off + 1]);
1741 }
1742 break;
1743 branch_oc:
1744 if (!is_first_pass(jit) &&
1745 can_use_rel(jit, addrs[i + off + 1])) {
1746 /* brc mask,off */
1747 EMIT4_PCREL_RIC(0xa7040000,
1748 mask >> 12, addrs[i + off + 1]);
1749 } else {
1750 /* brcl mask,off */
1751 EMIT6_PCREL_RILC(0xc0040000,
1752 mask >> 12, addrs[i + off + 1]);
1753 }
1754 break;
1755 }
1756 default: /* too complex, give up */
1757 pr_err("Unknown opcode %02x\n", insn->code);
1758 return -1;
1759 }
1760
1761 if (probe_prg != -1) {
1762 /*
1763 * Handlers of certain exceptions leave psw.addr pointing to
1764 * the instruction directly after the failing one. Therefore,
1765 * create two exception table entries and also add a nop in
1766 * case two probing instructions come directly after each
1767 * other.
1768 */
1769 nop_prg = jit->prg;
1770 /* bcr 0,%0 */
1771 _EMIT2(0x0700);
1772 err = bpf_jit_probe_mem(jit, fp, probe_prg, nop_prg);
1773 if (err < 0)
1774 return err;
1775 }
1776
1777 return insn_count;
1778 }
1779
1780 /*
1781 * Return whether new i-th instruction address does not violate any invariant
1782 */
bpf_is_new_addr_sane(struct bpf_jit * jit,int i)1783 static bool bpf_is_new_addr_sane(struct bpf_jit *jit, int i)
1784 {
1785 /* On the first pass anything goes */
1786 if (is_first_pass(jit))
1787 return true;
1788
1789 /* The codegen pass must not change anything */
1790 if (is_codegen_pass(jit))
1791 return jit->addrs[i] == jit->prg;
1792
1793 /* Passes in between must not increase code size */
1794 return jit->addrs[i] >= jit->prg;
1795 }
1796
1797 /*
1798 * Update the address of i-th instruction
1799 */
bpf_set_addr(struct bpf_jit * jit,int i)1800 static int bpf_set_addr(struct bpf_jit *jit, int i)
1801 {
1802 int delta;
1803
1804 if (is_codegen_pass(jit)) {
1805 delta = jit->prg - jit->addrs[i];
1806 if (delta < 0)
1807 bpf_skip(jit, -delta);
1808 }
1809 if (WARN_ON_ONCE(!bpf_is_new_addr_sane(jit, i)))
1810 return -1;
1811 jit->addrs[i] = jit->prg;
1812 return 0;
1813 }
1814
1815 /*
1816 * Compile eBPF program into s390x code
1817 */
bpf_jit_prog(struct bpf_jit * jit,struct bpf_prog * fp,bool extra_pass,u32 stack_depth)1818 static int bpf_jit_prog(struct bpf_jit *jit, struct bpf_prog *fp,
1819 bool extra_pass, u32 stack_depth)
1820 {
1821 int i, insn_count, lit32_size, lit64_size;
1822
1823 jit->lit32 = jit->lit32_start;
1824 jit->lit64 = jit->lit64_start;
1825 jit->prg = 0;
1826 jit->excnt = 0;
1827
1828 bpf_jit_prologue(jit, fp, stack_depth);
1829 if (bpf_set_addr(jit, 0) < 0)
1830 return -1;
1831 for (i = 0; i < fp->len; i += insn_count) {
1832 insn_count = bpf_jit_insn(jit, fp, i, extra_pass, stack_depth);
1833 if (insn_count < 0)
1834 return -1;
1835 /* Next instruction address */
1836 if (bpf_set_addr(jit, i + insn_count) < 0)
1837 return -1;
1838 }
1839 bpf_jit_epilogue(jit, stack_depth);
1840
1841 lit32_size = jit->lit32 - jit->lit32_start;
1842 lit64_size = jit->lit64 - jit->lit64_start;
1843 jit->lit32_start = jit->prg;
1844 if (lit32_size)
1845 jit->lit32_start = ALIGN(jit->lit32_start, 4);
1846 jit->lit64_start = jit->lit32_start + lit32_size;
1847 if (lit64_size)
1848 jit->lit64_start = ALIGN(jit->lit64_start, 8);
1849 jit->size = jit->lit64_start + lit64_size;
1850 jit->size_prg = jit->prg;
1851
1852 if (WARN_ON_ONCE(fp->aux->extable &&
1853 jit->excnt != fp->aux->num_exentries))
1854 /* Verifier bug - too many entries. */
1855 return -1;
1856
1857 return 0;
1858 }
1859
bpf_jit_needs_zext(void)1860 bool bpf_jit_needs_zext(void)
1861 {
1862 return true;
1863 }
1864
1865 struct s390_jit_data {
1866 struct bpf_binary_header *header;
1867 struct bpf_jit ctx;
1868 int pass;
1869 };
1870
bpf_jit_alloc(struct bpf_jit * jit,struct bpf_prog * fp)1871 static struct bpf_binary_header *bpf_jit_alloc(struct bpf_jit *jit,
1872 struct bpf_prog *fp)
1873 {
1874 struct bpf_binary_header *header;
1875 u32 extable_size;
1876 u32 code_size;
1877
1878 /* We need two entries per insn. */
1879 fp->aux->num_exentries *= 2;
1880
1881 code_size = roundup(jit->size,
1882 __alignof__(struct exception_table_entry));
1883 extable_size = fp->aux->num_exentries *
1884 sizeof(struct exception_table_entry);
1885 header = bpf_jit_binary_alloc(code_size + extable_size, &jit->prg_buf,
1886 8, jit_fill_hole);
1887 if (!header)
1888 return NULL;
1889 fp->aux->extable = (struct exception_table_entry *)
1890 (jit->prg_buf + code_size);
1891 return header;
1892 }
1893
1894 /*
1895 * Compile eBPF program "fp"
1896 */
bpf_int_jit_compile(struct bpf_prog * fp)1897 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp)
1898 {
1899 u32 stack_depth = round_up(fp->aux->stack_depth, 8);
1900 struct bpf_prog *tmp, *orig_fp = fp;
1901 struct bpf_binary_header *header;
1902 struct s390_jit_data *jit_data;
1903 bool tmp_blinded = false;
1904 bool extra_pass = false;
1905 struct bpf_jit jit;
1906 int pass;
1907
1908 if (!fp->jit_requested)
1909 return orig_fp;
1910
1911 tmp = bpf_jit_blind_constants(fp);
1912 /*
1913 * If blinding was requested and we failed during blinding,
1914 * we must fall back to the interpreter.
1915 */
1916 if (IS_ERR(tmp))
1917 return orig_fp;
1918 if (tmp != fp) {
1919 tmp_blinded = true;
1920 fp = tmp;
1921 }
1922
1923 jit_data = fp->aux->jit_data;
1924 if (!jit_data) {
1925 jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
1926 if (!jit_data) {
1927 fp = orig_fp;
1928 goto out;
1929 }
1930 fp->aux->jit_data = jit_data;
1931 }
1932 if (jit_data->ctx.addrs) {
1933 jit = jit_data->ctx;
1934 header = jit_data->header;
1935 extra_pass = true;
1936 pass = jit_data->pass + 1;
1937 goto skip_init_ctx;
1938 }
1939
1940 memset(&jit, 0, sizeof(jit));
1941 jit.addrs = kvcalloc(fp->len + 1, sizeof(*jit.addrs), GFP_KERNEL);
1942 if (jit.addrs == NULL) {
1943 fp = orig_fp;
1944 goto free_addrs;
1945 }
1946 /*
1947 * Three initial passes:
1948 * - 1/2: Determine clobbered registers
1949 * - 3: Calculate program size and addrs array
1950 */
1951 for (pass = 1; pass <= 3; pass++) {
1952 if (bpf_jit_prog(&jit, fp, extra_pass, stack_depth)) {
1953 fp = orig_fp;
1954 goto free_addrs;
1955 }
1956 }
1957 /*
1958 * Final pass: Allocate and generate program
1959 */
1960 header = bpf_jit_alloc(&jit, fp);
1961 if (!header) {
1962 fp = orig_fp;
1963 goto free_addrs;
1964 }
1965 skip_init_ctx:
1966 if (bpf_jit_prog(&jit, fp, extra_pass, stack_depth)) {
1967 bpf_jit_binary_free(header);
1968 fp = orig_fp;
1969 goto free_addrs;
1970 }
1971 if (bpf_jit_enable > 1) {
1972 bpf_jit_dump(fp->len, jit.size, pass, jit.prg_buf);
1973 print_fn_code(jit.prg_buf, jit.size_prg);
1974 }
1975 if (!fp->is_func || extra_pass) {
1976 bpf_jit_binary_lock_ro(header);
1977 } else {
1978 jit_data->header = header;
1979 jit_data->ctx = jit;
1980 jit_data->pass = pass;
1981 }
1982 fp->bpf_func = (void *) jit.prg_buf;
1983 fp->jited = 1;
1984 fp->jited_len = jit.size;
1985
1986 if (!fp->is_func || extra_pass) {
1987 bpf_prog_fill_jited_linfo(fp, jit.addrs + 1);
1988 free_addrs:
1989 kvfree(jit.addrs);
1990 kfree(jit_data);
1991 fp->aux->jit_data = NULL;
1992 }
1993 out:
1994 if (tmp_blinded)
1995 bpf_jit_prog_release_other(fp, fp == orig_fp ?
1996 tmp : orig_fp);
1997 return fp;
1998 }
1999
bpf_jit_supports_kfunc_call(void)2000 bool bpf_jit_supports_kfunc_call(void)
2001 {
2002 return true;
2003 }
2004
bpf_jit_supports_far_kfunc_call(void)2005 bool bpf_jit_supports_far_kfunc_call(void)
2006 {
2007 return true;
2008 }
2009
bpf_arch_text_poke(void * ip,enum bpf_text_poke_type t,void * old_addr,void * new_addr)2010 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2011 void *old_addr, void *new_addr)
2012 {
2013 struct bpf_plt expected_plt, current_plt, new_plt, *plt;
2014 struct {
2015 u16 opc;
2016 s32 disp;
2017 } __packed insn;
2018 char *ret;
2019 int err;
2020
2021 /* Verify the branch to be patched. */
2022 err = copy_from_kernel_nofault(&insn, ip, sizeof(insn));
2023 if (err < 0)
2024 return err;
2025 if (insn.opc != (0xc004 | (old_addr ? 0xf0 : 0)))
2026 return -EINVAL;
2027
2028 if (t == BPF_MOD_JUMP &&
2029 insn.disp == ((char *)new_addr - (char *)ip) >> 1) {
2030 /*
2031 * The branch already points to the destination,
2032 * there is no PLT.
2033 */
2034 } else {
2035 /* Verify the PLT. */
2036 plt = ip + (insn.disp << 1);
2037 err = copy_from_kernel_nofault(¤t_plt, plt,
2038 sizeof(current_plt));
2039 if (err < 0)
2040 return err;
2041 ret = (char *)ip + 6;
2042 bpf_jit_plt(&expected_plt, ret, old_addr);
2043 if (memcmp(¤t_plt, &expected_plt, sizeof(current_plt)))
2044 return -EINVAL;
2045 /* Adjust the call address. */
2046 bpf_jit_plt(&new_plt, ret, new_addr);
2047 s390_kernel_write(&plt->target, &new_plt.target,
2048 sizeof(void *));
2049 }
2050
2051 /* Adjust the mask of the branch. */
2052 insn.opc = 0xc004 | (new_addr ? 0xf0 : 0);
2053 s390_kernel_write((char *)ip + 1, (char *)&insn.opc + 1, 1);
2054
2055 /* Make the new code visible to the other CPUs. */
2056 text_poke_sync_lock();
2057
2058 return 0;
2059 }
2060
2061 struct bpf_tramp_jit {
2062 struct bpf_jit common;
2063 int orig_stack_args_off;/* Offset of arguments placed on stack by the
2064 * func_addr's original caller
2065 */
2066 int stack_size; /* Trampoline stack size */
2067 int backchain_off; /* Offset of backchain */
2068 int stack_args_off; /* Offset of stack arguments for calling
2069 * func_addr, has to be at the top
2070 */
2071 int reg_args_off; /* Offset of register arguments for calling
2072 * func_addr
2073 */
2074 int ip_off; /* For bpf_get_func_ip(), has to be at
2075 * (ctx - 16)
2076 */
2077 int arg_cnt_off; /* For bpf_get_func_arg_cnt(), has to be at
2078 * (ctx - 8)
2079 */
2080 int bpf_args_off; /* Offset of BPF_PROG context, which consists
2081 * of BPF arguments followed by return value
2082 */
2083 int retval_off; /* Offset of return value (see above) */
2084 int r7_r8_off; /* Offset of saved %r7 and %r8, which are used
2085 * for __bpf_prog_enter() return value and
2086 * func_addr respectively
2087 */
2088 int run_ctx_off; /* Offset of struct bpf_tramp_run_ctx */
2089 int tccnt_off; /* Offset of saved tailcall counter */
2090 int r14_off; /* Offset of saved %r14, has to be at the
2091 * bottom */
2092 int do_fexit; /* do_fexit: label */
2093 };
2094
load_imm64(struct bpf_jit * jit,int dst_reg,u64 val)2095 static void load_imm64(struct bpf_jit *jit, int dst_reg, u64 val)
2096 {
2097 /* llihf %dst_reg,val_hi */
2098 EMIT6_IMM(0xc00e0000, dst_reg, (val >> 32));
2099 /* oilf %rdst_reg,val_lo */
2100 EMIT6_IMM(0xc00d0000, dst_reg, val);
2101 }
2102
invoke_bpf_prog(struct bpf_tramp_jit * tjit,const struct btf_func_model * m,struct bpf_tramp_link * tlink,bool save_ret)2103 static int invoke_bpf_prog(struct bpf_tramp_jit *tjit,
2104 const struct btf_func_model *m,
2105 struct bpf_tramp_link *tlink, bool save_ret)
2106 {
2107 struct bpf_jit *jit = &tjit->common;
2108 int cookie_off = tjit->run_ctx_off +
2109 offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
2110 struct bpf_prog *p = tlink->link.prog;
2111 int patch;
2112
2113 /*
2114 * run_ctx.cookie = tlink->cookie;
2115 */
2116
2117 /* %r0 = tlink->cookie */
2118 load_imm64(jit, REG_W0, tlink->cookie);
2119 /* stg %r0,cookie_off(%r15) */
2120 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, REG_0, REG_15, cookie_off);
2121
2122 /*
2123 * if ((start = __bpf_prog_enter(p, &run_ctx)) == 0)
2124 * goto skip;
2125 */
2126
2127 /* %r1 = __bpf_prog_enter */
2128 load_imm64(jit, REG_1, (u64)bpf_trampoline_enter(p));
2129 /* %r2 = p */
2130 load_imm64(jit, REG_2, (u64)p);
2131 /* la %r3,run_ctx_off(%r15) */
2132 EMIT4_DISP(0x41000000, REG_3, REG_15, tjit->run_ctx_off);
2133 /* %r1() */
2134 call_r1(jit);
2135 /* ltgr %r7,%r2 */
2136 EMIT4(0xb9020000, REG_7, REG_2);
2137 /* brcl 8,skip */
2138 patch = jit->prg;
2139 EMIT6_PCREL_RILC(0xc0040000, 8, 0);
2140
2141 /*
2142 * retval = bpf_func(args, p->insnsi);
2143 */
2144
2145 /* %r1 = p->bpf_func */
2146 load_imm64(jit, REG_1, (u64)p->bpf_func);
2147 /* la %r2,bpf_args_off(%r15) */
2148 EMIT4_DISP(0x41000000, REG_2, REG_15, tjit->bpf_args_off);
2149 /* %r3 = p->insnsi */
2150 if (!p->jited)
2151 load_imm64(jit, REG_3, (u64)p->insnsi);
2152 /* %r1() */
2153 call_r1(jit);
2154 /* stg %r2,retval_off(%r15) */
2155 if (save_ret) {
2156 if (sign_extend(jit, REG_2, m->ret_size, m->ret_flags))
2157 return -1;
2158 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_2, REG_0, REG_15,
2159 tjit->retval_off);
2160 }
2161
2162 /* skip: */
2163 if (jit->prg_buf)
2164 *(u32 *)&jit->prg_buf[patch + 2] = (jit->prg - patch) >> 1;
2165
2166 /*
2167 * __bpf_prog_exit(p, start, &run_ctx);
2168 */
2169
2170 /* %r1 = __bpf_prog_exit */
2171 load_imm64(jit, REG_1, (u64)bpf_trampoline_exit(p));
2172 /* %r2 = p */
2173 load_imm64(jit, REG_2, (u64)p);
2174 /* lgr %r3,%r7 */
2175 EMIT4(0xb9040000, REG_3, REG_7);
2176 /* la %r4,run_ctx_off(%r15) */
2177 EMIT4_DISP(0x41000000, REG_4, REG_15, tjit->run_ctx_off);
2178 /* %r1() */
2179 call_r1(jit);
2180
2181 return 0;
2182 }
2183
alloc_stack(struct bpf_tramp_jit * tjit,size_t size)2184 static int alloc_stack(struct bpf_tramp_jit *tjit, size_t size)
2185 {
2186 int stack_offset = tjit->stack_size;
2187
2188 tjit->stack_size += size;
2189 return stack_offset;
2190 }
2191
2192 /* ABI uses %r2 - %r6 for parameter passing. */
2193 #define MAX_NR_REG_ARGS 5
2194
2195 /* The "L" field of the "mvc" instruction is 8 bits. */
2196 #define MAX_MVC_SIZE 256
2197 #define MAX_NR_STACK_ARGS (MAX_MVC_SIZE / sizeof(u64))
2198
2199 /* -mfentry generates a 6-byte nop on s390x. */
2200 #define S390X_PATCH_SIZE 6
2201
__arch_prepare_bpf_trampoline(struct bpf_tramp_image * im,struct bpf_tramp_jit * tjit,const struct btf_func_model * m,u32 flags,struct bpf_tramp_links * tlinks,void * func_addr)2202 static int __arch_prepare_bpf_trampoline(struct bpf_tramp_image *im,
2203 struct bpf_tramp_jit *tjit,
2204 const struct btf_func_model *m,
2205 u32 flags,
2206 struct bpf_tramp_links *tlinks,
2207 void *func_addr)
2208 {
2209 struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
2210 struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
2211 struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
2212 int nr_bpf_args, nr_reg_args, nr_stack_args;
2213 struct bpf_jit *jit = &tjit->common;
2214 int arg, bpf_arg_off;
2215 int i, j;
2216
2217 /* Support as many stack arguments as "mvc" instruction can handle. */
2218 nr_reg_args = min_t(int, m->nr_args, MAX_NR_REG_ARGS);
2219 nr_stack_args = m->nr_args - nr_reg_args;
2220 if (nr_stack_args > MAX_NR_STACK_ARGS)
2221 return -ENOTSUPP;
2222
2223 /* Return to %r14, since func_addr and %r0 are not available. */
2224 if (!func_addr && !(flags & BPF_TRAMP_F_ORIG_STACK))
2225 flags |= BPF_TRAMP_F_SKIP_FRAME;
2226
2227 /*
2228 * Compute how many arguments we need to pass to BPF programs.
2229 * BPF ABI mirrors that of x86_64: arguments that are 16 bytes or
2230 * smaller are packed into 1 or 2 registers; larger arguments are
2231 * passed via pointers.
2232 * In s390x ABI, arguments that are 8 bytes or smaller are packed into
2233 * a register; larger arguments are passed via pointers.
2234 * We need to deal with this difference.
2235 */
2236 nr_bpf_args = 0;
2237 for (i = 0; i < m->nr_args; i++) {
2238 if (m->arg_size[i] <= 8)
2239 nr_bpf_args += 1;
2240 else if (m->arg_size[i] <= 16)
2241 nr_bpf_args += 2;
2242 else
2243 return -ENOTSUPP;
2244 }
2245
2246 /*
2247 * Calculate the stack layout.
2248 */
2249
2250 /*
2251 * Allocate STACK_FRAME_OVERHEAD bytes for the callees. As the s390x
2252 * ABI requires, put our backchain at the end of the allocated memory.
2253 */
2254 tjit->stack_size = STACK_FRAME_OVERHEAD;
2255 tjit->backchain_off = tjit->stack_size - sizeof(u64);
2256 tjit->stack_args_off = alloc_stack(tjit, nr_stack_args * sizeof(u64));
2257 tjit->reg_args_off = alloc_stack(tjit, nr_reg_args * sizeof(u64));
2258 tjit->ip_off = alloc_stack(tjit, sizeof(u64));
2259 tjit->arg_cnt_off = alloc_stack(tjit, sizeof(u64));
2260 tjit->bpf_args_off = alloc_stack(tjit, nr_bpf_args * sizeof(u64));
2261 tjit->retval_off = alloc_stack(tjit, sizeof(u64));
2262 tjit->r7_r8_off = alloc_stack(tjit, 2 * sizeof(u64));
2263 tjit->run_ctx_off = alloc_stack(tjit,
2264 sizeof(struct bpf_tramp_run_ctx));
2265 tjit->tccnt_off = alloc_stack(tjit, sizeof(u64));
2266 tjit->r14_off = alloc_stack(tjit, sizeof(u64) * 2);
2267 /*
2268 * In accordance with the s390x ABI, the caller has allocated
2269 * STACK_FRAME_OVERHEAD bytes for us. 8 of them contain the caller's
2270 * backchain, and the rest we can use.
2271 */
2272 tjit->stack_size -= STACK_FRAME_OVERHEAD - sizeof(u64);
2273 tjit->orig_stack_args_off = tjit->stack_size + STACK_FRAME_OVERHEAD;
2274
2275 /* lgr %r1,%r15 */
2276 EMIT4(0xb9040000, REG_1, REG_15);
2277 /* aghi %r15,-stack_size */
2278 EMIT4_IMM(0xa70b0000, REG_15, -tjit->stack_size);
2279 /* stg %r1,backchain_off(%r15) */
2280 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_1, REG_0, REG_15,
2281 tjit->backchain_off);
2282 /* mvc tccnt_off(4,%r15),stack_size+STK_OFF_TCCNT(%r15) */
2283 _EMIT6(0xd203f000 | tjit->tccnt_off,
2284 0xf000 | (tjit->stack_size + STK_OFF_TCCNT));
2285 /* stmg %r2,%rN,fwd_reg_args_off(%r15) */
2286 if (nr_reg_args)
2287 EMIT6_DISP_LH(0xeb000000, 0x0024, REG_2,
2288 REG_2 + (nr_reg_args - 1), REG_15,
2289 tjit->reg_args_off);
2290 for (i = 0, j = 0; i < m->nr_args; i++) {
2291 if (i < MAX_NR_REG_ARGS)
2292 arg = REG_2 + i;
2293 else
2294 arg = tjit->orig_stack_args_off +
2295 (i - MAX_NR_REG_ARGS) * sizeof(u64);
2296 bpf_arg_off = tjit->bpf_args_off + j * sizeof(u64);
2297 if (m->arg_size[i] <= 8) {
2298 if (i < MAX_NR_REG_ARGS)
2299 /* stg %arg,bpf_arg_off(%r15) */
2300 EMIT6_DISP_LH(0xe3000000, 0x0024, arg,
2301 REG_0, REG_15, bpf_arg_off);
2302 else
2303 /* mvc bpf_arg_off(8,%r15),arg(%r15) */
2304 _EMIT6(0xd207f000 | bpf_arg_off,
2305 0xf000 | arg);
2306 j += 1;
2307 } else {
2308 if (i < MAX_NR_REG_ARGS) {
2309 /* mvc bpf_arg_off(16,%r15),0(%arg) */
2310 _EMIT6(0xd20ff000 | bpf_arg_off,
2311 reg2hex[arg] << 12);
2312 } else {
2313 /* lg %r1,arg(%r15) */
2314 EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_0,
2315 REG_15, arg);
2316 /* mvc bpf_arg_off(16,%r15),0(%r1) */
2317 _EMIT6(0xd20ff000 | bpf_arg_off, 0x1000);
2318 }
2319 j += 2;
2320 }
2321 }
2322 /* stmg %r7,%r8,r7_r8_off(%r15) */
2323 EMIT6_DISP_LH(0xeb000000, 0x0024, REG_7, REG_8, REG_15,
2324 tjit->r7_r8_off);
2325 /* stg %r14,r14_off(%r15) */
2326 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_14, REG_0, REG_15, tjit->r14_off);
2327
2328 if (flags & BPF_TRAMP_F_ORIG_STACK) {
2329 /*
2330 * The ftrace trampoline puts the return address (which is the
2331 * address of the original function + S390X_PATCH_SIZE) into
2332 * %r0; see ftrace_shared_hotpatch_trampoline_br and
2333 * ftrace_init_nop() for details.
2334 */
2335
2336 /* lgr %r8,%r0 */
2337 EMIT4(0xb9040000, REG_8, REG_0);
2338 } else {
2339 /* %r8 = func_addr + S390X_PATCH_SIZE */
2340 load_imm64(jit, REG_8, (u64)func_addr + S390X_PATCH_SIZE);
2341 }
2342
2343 /*
2344 * ip = func_addr;
2345 * arg_cnt = m->nr_args;
2346 */
2347
2348 if (flags & BPF_TRAMP_F_IP_ARG) {
2349 /* %r0 = func_addr */
2350 load_imm64(jit, REG_0, (u64)func_addr);
2351 /* stg %r0,ip_off(%r15) */
2352 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_0, REG_0, REG_15,
2353 tjit->ip_off);
2354 }
2355 /* lghi %r0,nr_bpf_args */
2356 EMIT4_IMM(0xa7090000, REG_0, nr_bpf_args);
2357 /* stg %r0,arg_cnt_off(%r15) */
2358 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_0, REG_0, REG_15,
2359 tjit->arg_cnt_off);
2360
2361 if (flags & BPF_TRAMP_F_CALL_ORIG) {
2362 /*
2363 * __bpf_tramp_enter(im);
2364 */
2365
2366 /* %r1 = __bpf_tramp_enter */
2367 load_imm64(jit, REG_1, (u64)__bpf_tramp_enter);
2368 /* %r2 = im */
2369 load_imm64(jit, REG_2, (u64)im);
2370 /* %r1() */
2371 call_r1(jit);
2372 }
2373
2374 for (i = 0; i < fentry->nr_links; i++)
2375 if (invoke_bpf_prog(tjit, m, fentry->links[i],
2376 flags & BPF_TRAMP_F_RET_FENTRY_RET))
2377 return -EINVAL;
2378
2379 if (fmod_ret->nr_links) {
2380 /*
2381 * retval = 0;
2382 */
2383
2384 /* xc retval_off(8,%r15),retval_off(%r15) */
2385 _EMIT6(0xd707f000 | tjit->retval_off,
2386 0xf000 | tjit->retval_off);
2387
2388 for (i = 0; i < fmod_ret->nr_links; i++) {
2389 if (invoke_bpf_prog(tjit, m, fmod_ret->links[i], true))
2390 return -EINVAL;
2391
2392 /*
2393 * if (retval)
2394 * goto do_fexit;
2395 */
2396
2397 /* ltg %r0,retval_off(%r15) */
2398 EMIT6_DISP_LH(0xe3000000, 0x0002, REG_0, REG_0, REG_15,
2399 tjit->retval_off);
2400 /* brcl 7,do_fexit */
2401 EMIT6_PCREL_RILC(0xc0040000, 7, tjit->do_fexit);
2402 }
2403 }
2404
2405 if (flags & BPF_TRAMP_F_CALL_ORIG) {
2406 /*
2407 * retval = func_addr(args);
2408 */
2409
2410 /* lmg %r2,%rN,reg_args_off(%r15) */
2411 if (nr_reg_args)
2412 EMIT6_DISP_LH(0xeb000000, 0x0004, REG_2,
2413 REG_2 + (nr_reg_args - 1), REG_15,
2414 tjit->reg_args_off);
2415 /* mvc stack_args_off(N,%r15),orig_stack_args_off(%r15) */
2416 if (nr_stack_args)
2417 _EMIT6(0xd200f000 |
2418 (nr_stack_args * sizeof(u64) - 1) << 16 |
2419 tjit->stack_args_off,
2420 0xf000 | tjit->orig_stack_args_off);
2421 /* mvc STK_OFF_TCCNT(4,%r15),tccnt_off(%r15) */
2422 _EMIT6(0xd203f000 | STK_OFF_TCCNT, 0xf000 | tjit->tccnt_off);
2423 /* lgr %r1,%r8 */
2424 EMIT4(0xb9040000, REG_1, REG_8);
2425 /* %r1() */
2426 call_r1(jit);
2427 /* stg %r2,retval_off(%r15) */
2428 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_2, REG_0, REG_15,
2429 tjit->retval_off);
2430
2431 im->ip_after_call = jit->prg_buf + jit->prg;
2432
2433 /*
2434 * The following nop will be patched by bpf_tramp_image_put().
2435 */
2436
2437 /* brcl 0,im->ip_epilogue */
2438 EMIT6_PCREL_RILC(0xc0040000, 0, (u64)im->ip_epilogue);
2439 }
2440
2441 /* do_fexit: */
2442 tjit->do_fexit = jit->prg;
2443 for (i = 0; i < fexit->nr_links; i++)
2444 if (invoke_bpf_prog(tjit, m, fexit->links[i], false))
2445 return -EINVAL;
2446
2447 if (flags & BPF_TRAMP_F_CALL_ORIG) {
2448 im->ip_epilogue = jit->prg_buf + jit->prg;
2449
2450 /*
2451 * __bpf_tramp_exit(im);
2452 */
2453
2454 /* %r1 = __bpf_tramp_exit */
2455 load_imm64(jit, REG_1, (u64)__bpf_tramp_exit);
2456 /* %r2 = im */
2457 load_imm64(jit, REG_2, (u64)im);
2458 /* %r1() */
2459 call_r1(jit);
2460 }
2461
2462 /* lmg %r2,%rN,reg_args_off(%r15) */
2463 if ((flags & BPF_TRAMP_F_RESTORE_REGS) && nr_reg_args)
2464 EMIT6_DISP_LH(0xeb000000, 0x0004, REG_2,
2465 REG_2 + (nr_reg_args - 1), REG_15,
2466 tjit->reg_args_off);
2467 /* lgr %r1,%r8 */
2468 if (!(flags & BPF_TRAMP_F_SKIP_FRAME))
2469 EMIT4(0xb9040000, REG_1, REG_8);
2470 /* lmg %r7,%r8,r7_r8_off(%r15) */
2471 EMIT6_DISP_LH(0xeb000000, 0x0004, REG_7, REG_8, REG_15,
2472 tjit->r7_r8_off);
2473 /* lg %r14,r14_off(%r15) */
2474 EMIT6_DISP_LH(0xe3000000, 0x0004, REG_14, REG_0, REG_15, tjit->r14_off);
2475 /* lg %r2,retval_off(%r15) */
2476 if (flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET))
2477 EMIT6_DISP_LH(0xe3000000, 0x0004, REG_2, REG_0, REG_15,
2478 tjit->retval_off);
2479 /* mvc stack_size+STK_OFF_TCCNT(4,%r15),tccnt_off(%r15) */
2480 _EMIT6(0xd203f000 | (tjit->stack_size + STK_OFF_TCCNT),
2481 0xf000 | tjit->tccnt_off);
2482 /* aghi %r15,stack_size */
2483 EMIT4_IMM(0xa70b0000, REG_15, tjit->stack_size);
2484 /* Emit an expoline for the following indirect jump. */
2485 if (nospec_uses_trampoline())
2486 emit_expoline(jit);
2487 if (flags & BPF_TRAMP_F_SKIP_FRAME)
2488 /* br %r14 */
2489 _EMIT2(0x07fe);
2490 else
2491 /* br %r1 */
2492 _EMIT2(0x07f1);
2493
2494 emit_r1_thunk(jit);
2495
2496 return 0;
2497 }
2498
arch_prepare_bpf_trampoline(struct bpf_tramp_image * im,void * image,void * image_end,const struct btf_func_model * m,u32 flags,struct bpf_tramp_links * tlinks,void * func_addr)2499 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image,
2500 void *image_end, const struct btf_func_model *m,
2501 u32 flags, struct bpf_tramp_links *tlinks,
2502 void *func_addr)
2503 {
2504 struct bpf_tramp_jit tjit;
2505 int ret;
2506 int i;
2507
2508 for (i = 0; i < 2; i++) {
2509 if (i == 0) {
2510 /* Compute offsets, check whether the code fits. */
2511 memset(&tjit, 0, sizeof(tjit));
2512 } else {
2513 /* Generate the code. */
2514 tjit.common.prg = 0;
2515 tjit.common.prg_buf = image;
2516 }
2517 ret = __arch_prepare_bpf_trampoline(im, &tjit, m, flags,
2518 tlinks, func_addr);
2519 if (ret < 0)
2520 return ret;
2521 if (tjit.common.prg > (char *)image_end - (char *)image)
2522 /*
2523 * Use the same error code as for exceeding
2524 * BPF_MAX_TRAMP_LINKS.
2525 */
2526 return -E2BIG;
2527 }
2528
2529 return tjit.common.prg;
2530 }
2531
bpf_jit_supports_subprog_tailcalls(void)2532 bool bpf_jit_supports_subprog_tailcalls(void)
2533 {
2534 return true;
2535 }
2536