xref: /openbmc/linux/arch/s390/net/bpf_jit_comp.c (revision 46f17e7d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * BPF Jit compiler for s390.
4  *
5  * Minimum build requirements:
6  *
7  *  - HAVE_MARCH_Z196_FEATURES: laal, laalg
8  *  - HAVE_MARCH_Z10_FEATURES: msfi, cgrj, clgrj
9  *  - HAVE_MARCH_Z9_109_FEATURES: alfi, llilf, clfi, oilf, nilf
10  *  - 64BIT
11  *
12  * Copyright IBM Corp. 2012,2015
13  *
14  * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
15  *	      Michael Holzheu <holzheu@linux.vnet.ibm.com>
16  */
17 
18 #define KMSG_COMPONENT "bpf_jit"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20 
21 #include <linux/netdevice.h>
22 #include <linux/filter.h>
23 #include <linux/init.h>
24 #include <linux/bpf.h>
25 #include <linux/mm.h>
26 #include <linux/kernel.h>
27 #include <asm/cacheflush.h>
28 #include <asm/extable.h>
29 #include <asm/dis.h>
30 #include <asm/facility.h>
31 #include <asm/nospec-branch.h>
32 #include <asm/set_memory.h>
33 #include <asm/text-patching.h>
34 #include "bpf_jit.h"
35 
36 struct bpf_jit {
37 	u32 seen;		/* Flags to remember seen eBPF instructions */
38 	u32 seen_reg[16];	/* Array to remember which registers are used */
39 	u32 *addrs;		/* Array with relative instruction addresses */
40 	u8 *prg_buf;		/* Start of program */
41 	int size;		/* Size of program and literal pool */
42 	int size_prg;		/* Size of program */
43 	int prg;		/* Current position in program */
44 	int lit32_start;	/* Start of 32-bit literal pool */
45 	int lit32;		/* Current position in 32-bit literal pool */
46 	int lit64_start;	/* Start of 64-bit literal pool */
47 	int lit64;		/* Current position in 64-bit literal pool */
48 	int base_ip;		/* Base address for literal pool */
49 	int exit_ip;		/* Address of exit */
50 	int r1_thunk_ip;	/* Address of expoline thunk for 'br %r1' */
51 	int r14_thunk_ip;	/* Address of expoline thunk for 'br %r14' */
52 	int tail_call_start;	/* Tail call start offset */
53 	int excnt;		/* Number of exception table entries */
54 	int prologue_plt_ret;	/* Return address for prologue hotpatch PLT */
55 	int prologue_plt;	/* Start of prologue hotpatch PLT */
56 };
57 
58 #define SEEN_MEM	BIT(0)		/* use mem[] for temporary storage */
59 #define SEEN_LITERAL	BIT(1)		/* code uses literals */
60 #define SEEN_FUNC	BIT(2)		/* calls C functions */
61 #define SEEN_STACK	(SEEN_FUNC | SEEN_MEM)
62 
63 /*
64  * s390 registers
65  */
66 #define REG_W0		(MAX_BPF_JIT_REG + 0)	/* Work register 1 (even) */
67 #define REG_W1		(MAX_BPF_JIT_REG + 1)	/* Work register 2 (odd) */
68 #define REG_L		(MAX_BPF_JIT_REG + 2)	/* Literal pool register */
69 #define REG_15		(MAX_BPF_JIT_REG + 3)	/* Register 15 */
70 #define REG_0		REG_W0			/* Register 0 */
71 #define REG_1		REG_W1			/* Register 1 */
72 #define REG_2		BPF_REG_1		/* Register 2 */
73 #define REG_3		BPF_REG_2		/* Register 3 */
74 #define REG_4		BPF_REG_3		/* Register 4 */
75 #define REG_7		BPF_REG_6		/* Register 7 */
76 #define REG_8		BPF_REG_7		/* Register 8 */
77 #define REG_14		BPF_REG_0		/* Register 14 */
78 
79 /*
80  * Mapping of BPF registers to s390 registers
81  */
82 static const int reg2hex[] = {
83 	/* Return code */
84 	[BPF_REG_0]	= 14,
85 	/* Function parameters */
86 	[BPF_REG_1]	= 2,
87 	[BPF_REG_2]	= 3,
88 	[BPF_REG_3]	= 4,
89 	[BPF_REG_4]	= 5,
90 	[BPF_REG_5]	= 6,
91 	/* Call saved registers */
92 	[BPF_REG_6]	= 7,
93 	[BPF_REG_7]	= 8,
94 	[BPF_REG_8]	= 9,
95 	[BPF_REG_9]	= 10,
96 	/* BPF stack pointer */
97 	[BPF_REG_FP]	= 13,
98 	/* Register for blinding */
99 	[BPF_REG_AX]	= 12,
100 	/* Work registers for s390x backend */
101 	[REG_W0]	= 0,
102 	[REG_W1]	= 1,
103 	[REG_L]		= 11,
104 	[REG_15]	= 15,
105 };
106 
reg(u32 dst_reg,u32 src_reg)107 static inline u32 reg(u32 dst_reg, u32 src_reg)
108 {
109 	return reg2hex[dst_reg] << 4 | reg2hex[src_reg];
110 }
111 
reg_high(u32 reg)112 static inline u32 reg_high(u32 reg)
113 {
114 	return reg2hex[reg] << 4;
115 }
116 
reg_set_seen(struct bpf_jit * jit,u32 b1)117 static inline void reg_set_seen(struct bpf_jit *jit, u32 b1)
118 {
119 	u32 r1 = reg2hex[b1];
120 
121 	if (r1 >= 6 && r1 <= 15 && !jit->seen_reg[r1])
122 		jit->seen_reg[r1] = 1;
123 }
124 
125 #define REG_SET_SEEN(b1)					\
126 ({								\
127 	reg_set_seen(jit, b1);					\
128 })
129 
130 #define REG_SEEN(b1) jit->seen_reg[reg2hex[(b1)]]
131 
132 /*
133  * EMIT macros for code generation
134  */
135 
136 #define _EMIT2(op)						\
137 ({								\
138 	if (jit->prg_buf)					\
139 		*(u16 *) (jit->prg_buf + jit->prg) = (op);	\
140 	jit->prg += 2;						\
141 })
142 
143 #define EMIT2(op, b1, b2)					\
144 ({								\
145 	_EMIT2((op) | reg(b1, b2));				\
146 	REG_SET_SEEN(b1);					\
147 	REG_SET_SEEN(b2);					\
148 })
149 
150 #define _EMIT4(op)						\
151 ({								\
152 	if (jit->prg_buf)					\
153 		*(u32 *) (jit->prg_buf + jit->prg) = (op);	\
154 	jit->prg += 4;						\
155 })
156 
157 #define EMIT4(op, b1, b2)					\
158 ({								\
159 	_EMIT4((op) | reg(b1, b2));				\
160 	REG_SET_SEEN(b1);					\
161 	REG_SET_SEEN(b2);					\
162 })
163 
164 #define EMIT4_RRF(op, b1, b2, b3)				\
165 ({								\
166 	_EMIT4((op) | reg_high(b3) << 8 | reg(b1, b2));		\
167 	REG_SET_SEEN(b1);					\
168 	REG_SET_SEEN(b2);					\
169 	REG_SET_SEEN(b3);					\
170 })
171 
172 #define _EMIT4_DISP(op, disp)					\
173 ({								\
174 	unsigned int __disp = (disp) & 0xfff;			\
175 	_EMIT4((op) | __disp);					\
176 })
177 
178 #define EMIT4_DISP(op, b1, b2, disp)				\
179 ({								\
180 	_EMIT4_DISP((op) | reg_high(b1) << 16 |			\
181 		    reg_high(b2) << 8, (disp));			\
182 	REG_SET_SEEN(b1);					\
183 	REG_SET_SEEN(b2);					\
184 })
185 
186 #define EMIT4_IMM(op, b1, imm)					\
187 ({								\
188 	unsigned int __imm = (imm) & 0xffff;			\
189 	_EMIT4((op) | reg_high(b1) << 16 | __imm);		\
190 	REG_SET_SEEN(b1);					\
191 })
192 
193 #define EMIT4_PCREL(op, pcrel)					\
194 ({								\
195 	long __pcrel = ((pcrel) >> 1) & 0xffff;			\
196 	_EMIT4((op) | __pcrel);					\
197 })
198 
199 #define EMIT4_PCREL_RIC(op, mask, target)			\
200 ({								\
201 	int __rel = ((target) - jit->prg) / 2;			\
202 	_EMIT4((op) | (mask) << 20 | (__rel & 0xffff));		\
203 })
204 
205 #define _EMIT6(op1, op2)					\
206 ({								\
207 	if (jit->prg_buf) {					\
208 		*(u32 *) (jit->prg_buf + jit->prg) = (op1);	\
209 		*(u16 *) (jit->prg_buf + jit->prg + 4) = (op2);	\
210 	}							\
211 	jit->prg += 6;						\
212 })
213 
214 #define _EMIT6_DISP(op1, op2, disp)				\
215 ({								\
216 	unsigned int __disp = (disp) & 0xfff;			\
217 	_EMIT6((op1) | __disp, op2);				\
218 })
219 
220 #define _EMIT6_DISP_LH(op1, op2, disp)				\
221 ({								\
222 	u32 _disp = (u32) (disp);				\
223 	unsigned int __disp_h = _disp & 0xff000;		\
224 	unsigned int __disp_l = _disp & 0x00fff;		\
225 	_EMIT6((op1) | __disp_l, (op2) | __disp_h >> 4);	\
226 })
227 
228 #define EMIT6_DISP_LH(op1, op2, b1, b2, b3, disp)		\
229 ({								\
230 	_EMIT6_DISP_LH((op1) | reg(b1, b2) << 16 |		\
231 		       reg_high(b3) << 8, op2, disp);		\
232 	REG_SET_SEEN(b1);					\
233 	REG_SET_SEEN(b2);					\
234 	REG_SET_SEEN(b3);					\
235 })
236 
237 #define EMIT6_PCREL_RIEB(op1, op2, b1, b2, mask, target)	\
238 ({								\
239 	unsigned int rel = (int)((target) - jit->prg) / 2;	\
240 	_EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff),	\
241 	       (op2) | (mask) << 12);				\
242 	REG_SET_SEEN(b1);					\
243 	REG_SET_SEEN(b2);					\
244 })
245 
246 #define EMIT6_PCREL_RIEC(op1, op2, b1, imm, mask, target)	\
247 ({								\
248 	unsigned int rel = (int)((target) - jit->prg) / 2;	\
249 	_EMIT6((op1) | (reg_high(b1) | (mask)) << 16 |		\
250 		(rel & 0xffff), (op2) | ((imm) & 0xff) << 8);	\
251 	REG_SET_SEEN(b1);					\
252 	BUILD_BUG_ON(((unsigned long) (imm)) > 0xff);		\
253 })
254 
255 #define EMIT6_PCREL(op1, op2, b1, b2, i, off, mask)		\
256 ({								\
257 	int rel = (addrs[(i) + (off) + 1] - jit->prg) / 2;	\
258 	_EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff), (op2) | (mask));\
259 	REG_SET_SEEN(b1);					\
260 	REG_SET_SEEN(b2);					\
261 })
262 
263 #define EMIT6_PCREL_RILB(op, b, target)				\
264 ({								\
265 	unsigned int rel = (int)((target) - jit->prg) / 2;	\
266 	_EMIT6((op) | reg_high(b) << 16 | rel >> 16, rel & 0xffff);\
267 	REG_SET_SEEN(b);					\
268 })
269 
270 #define EMIT6_PCREL_RIL(op, target)				\
271 ({								\
272 	unsigned int rel = (int)((target) - jit->prg) / 2;	\
273 	_EMIT6((op) | rel >> 16, rel & 0xffff);			\
274 })
275 
276 #define EMIT6_PCREL_RILC(op, mask, target)			\
277 ({								\
278 	EMIT6_PCREL_RIL((op) | (mask) << 20, (target));		\
279 })
280 
281 #define _EMIT6_IMM(op, imm)					\
282 ({								\
283 	unsigned int __imm = (imm);				\
284 	_EMIT6((op) | (__imm >> 16), __imm & 0xffff);		\
285 })
286 
287 #define EMIT6_IMM(op, b1, imm)					\
288 ({								\
289 	_EMIT6_IMM((op) | reg_high(b1) << 16, imm);		\
290 	REG_SET_SEEN(b1);					\
291 })
292 
293 #define _EMIT_CONST_U32(val)					\
294 ({								\
295 	unsigned int ret;					\
296 	ret = jit->lit32;					\
297 	if (jit->prg_buf)					\
298 		*(u32 *)(jit->prg_buf + jit->lit32) = (u32)(val);\
299 	jit->lit32 += 4;					\
300 	ret;							\
301 })
302 
303 #define EMIT_CONST_U32(val)					\
304 ({								\
305 	jit->seen |= SEEN_LITERAL;				\
306 	_EMIT_CONST_U32(val) - jit->base_ip;			\
307 })
308 
309 #define _EMIT_CONST_U64(val)					\
310 ({								\
311 	unsigned int ret;					\
312 	ret = jit->lit64;					\
313 	if (jit->prg_buf)					\
314 		*(u64 *)(jit->prg_buf + jit->lit64) = (u64)(val);\
315 	jit->lit64 += 8;					\
316 	ret;							\
317 })
318 
319 #define EMIT_CONST_U64(val)					\
320 ({								\
321 	jit->seen |= SEEN_LITERAL;				\
322 	_EMIT_CONST_U64(val) - jit->base_ip;			\
323 })
324 
325 #define EMIT_ZERO(b1)						\
326 ({								\
327 	if (!fp->aux->verifier_zext) {				\
328 		/* llgfr %dst,%dst (zero extend to 64 bit) */	\
329 		EMIT4(0xb9160000, b1, b1);			\
330 		REG_SET_SEEN(b1);				\
331 	}							\
332 })
333 
334 /*
335  * Return whether this is the first pass. The first pass is special, since we
336  * don't know any sizes yet, and thus must be conservative.
337  */
is_first_pass(struct bpf_jit * jit)338 static bool is_first_pass(struct bpf_jit *jit)
339 {
340 	return jit->size == 0;
341 }
342 
343 /*
344  * Return whether this is the code generation pass. The code generation pass is
345  * special, since we should change as little as possible.
346  */
is_codegen_pass(struct bpf_jit * jit)347 static bool is_codegen_pass(struct bpf_jit *jit)
348 {
349 	return jit->prg_buf;
350 }
351 
352 /*
353  * Return whether "rel" can be encoded as a short PC-relative offset
354  */
is_valid_rel(int rel)355 static bool is_valid_rel(int rel)
356 {
357 	return rel >= -65536 && rel <= 65534;
358 }
359 
360 /*
361  * Return whether "off" can be reached using a short PC-relative offset
362  */
can_use_rel(struct bpf_jit * jit,int off)363 static bool can_use_rel(struct bpf_jit *jit, int off)
364 {
365 	return is_valid_rel(off - jit->prg);
366 }
367 
368 /*
369  * Return whether given displacement can be encoded using
370  * Long-Displacement Facility
371  */
is_valid_ldisp(int disp)372 static bool is_valid_ldisp(int disp)
373 {
374 	return disp >= -524288 && disp <= 524287;
375 }
376 
377 /*
378  * Return whether the next 32-bit literal pool entry can be referenced using
379  * Long-Displacement Facility
380  */
can_use_ldisp_for_lit32(struct bpf_jit * jit)381 static bool can_use_ldisp_for_lit32(struct bpf_jit *jit)
382 {
383 	return is_valid_ldisp(jit->lit32 - jit->base_ip);
384 }
385 
386 /*
387  * Return whether the next 64-bit literal pool entry can be referenced using
388  * Long-Displacement Facility
389  */
can_use_ldisp_for_lit64(struct bpf_jit * jit)390 static bool can_use_ldisp_for_lit64(struct bpf_jit *jit)
391 {
392 	return is_valid_ldisp(jit->lit64 - jit->base_ip);
393 }
394 
395 /*
396  * Fill whole space with illegal instructions
397  */
jit_fill_hole(void * area,unsigned int size)398 static void jit_fill_hole(void *area, unsigned int size)
399 {
400 	memset(area, 0, size);
401 }
402 
403 /*
404  * Save registers from "rs" (register start) to "re" (register end) on stack
405  */
save_regs(struct bpf_jit * jit,u32 rs,u32 re)406 static void save_regs(struct bpf_jit *jit, u32 rs, u32 re)
407 {
408 	u32 off = STK_OFF_R6 + (rs - 6) * 8;
409 
410 	if (rs == re)
411 		/* stg %rs,off(%r15) */
412 		_EMIT6(0xe300f000 | rs << 20 | off, 0x0024);
413 	else
414 		/* stmg %rs,%re,off(%r15) */
415 		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0024, off);
416 }
417 
418 /*
419  * Restore registers from "rs" (register start) to "re" (register end) on stack
420  */
restore_regs(struct bpf_jit * jit,u32 rs,u32 re,u32 stack_depth)421 static void restore_regs(struct bpf_jit *jit, u32 rs, u32 re, u32 stack_depth)
422 {
423 	u32 off = STK_OFF_R6 + (rs - 6) * 8;
424 
425 	if (jit->seen & SEEN_STACK)
426 		off += STK_OFF + stack_depth;
427 
428 	if (rs == re)
429 		/* lg %rs,off(%r15) */
430 		_EMIT6(0xe300f000 | rs << 20 | off, 0x0004);
431 	else
432 		/* lmg %rs,%re,off(%r15) */
433 		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0004, off);
434 }
435 
436 /*
437  * Return first seen register (from start)
438  */
get_start(struct bpf_jit * jit,int start)439 static int get_start(struct bpf_jit *jit, int start)
440 {
441 	int i;
442 
443 	for (i = start; i <= 15; i++) {
444 		if (jit->seen_reg[i])
445 			return i;
446 	}
447 	return 0;
448 }
449 
450 /*
451  * Return last seen register (from start) (gap >= 2)
452  */
get_end(struct bpf_jit * jit,int start)453 static int get_end(struct bpf_jit *jit, int start)
454 {
455 	int i;
456 
457 	for (i = start; i < 15; i++) {
458 		if (!jit->seen_reg[i] && !jit->seen_reg[i + 1])
459 			return i - 1;
460 	}
461 	return jit->seen_reg[15] ? 15 : 14;
462 }
463 
464 #define REGS_SAVE	1
465 #define REGS_RESTORE	0
466 /*
467  * Save and restore clobbered registers (6-15) on stack.
468  * We save/restore registers in chunks with gap >= 2 registers.
469  */
save_restore_regs(struct bpf_jit * jit,int op,u32 stack_depth)470 static void save_restore_regs(struct bpf_jit *jit, int op, u32 stack_depth)
471 {
472 	const int last = 15, save_restore_size = 6;
473 	int re = 6, rs;
474 
475 	if (is_first_pass(jit)) {
476 		/*
477 		 * We don't know yet which registers are used. Reserve space
478 		 * conservatively.
479 		 */
480 		jit->prg += (last - re + 1) * save_restore_size;
481 		return;
482 	}
483 
484 	do {
485 		rs = get_start(jit, re);
486 		if (!rs)
487 			break;
488 		re = get_end(jit, rs + 1);
489 		if (op == REGS_SAVE)
490 			save_regs(jit, rs, re);
491 		else
492 			restore_regs(jit, rs, re, stack_depth);
493 		re++;
494 	} while (re <= last);
495 }
496 
bpf_skip(struct bpf_jit * jit,int size)497 static void bpf_skip(struct bpf_jit *jit, int size)
498 {
499 	if (size >= 6 && !is_valid_rel(size)) {
500 		/* brcl 0xf,size */
501 		EMIT6_PCREL_RIL(0xc0f4000000, size);
502 		size -= 6;
503 	} else if (size >= 4 && is_valid_rel(size)) {
504 		/* brc 0xf,size */
505 		EMIT4_PCREL(0xa7f40000, size);
506 		size -= 4;
507 	}
508 	while (size >= 2) {
509 		/* bcr 0,%0 */
510 		_EMIT2(0x0700);
511 		size -= 2;
512 	}
513 }
514 
515 /*
516  * PLT for hotpatchable calls. The calling convention is the same as for the
517  * ftrace hotpatch trampolines: %r0 is return address, %r1 is clobbered.
518  */
519 struct bpf_plt {
520 	char code[16];
521 	void *ret;
522 	void *target;
523 } __packed;
524 extern const struct bpf_plt bpf_plt;
525 asm(
526 	".pushsection .rodata\n"
527 	"	.balign 8\n"
528 	"bpf_plt:\n"
529 	"	lgrl %r0,bpf_plt_ret\n"
530 	"	lgrl %r1,bpf_plt_target\n"
531 	"	br %r1\n"
532 	"	.balign 8\n"
533 	"bpf_plt_ret: .quad 0\n"
534 	"bpf_plt_target: .quad 0\n"
535 	"	.popsection\n"
536 );
537 
bpf_jit_plt(struct bpf_plt * plt,void * ret,void * target)538 static void bpf_jit_plt(struct bpf_plt *plt, void *ret, void *target)
539 {
540 	memcpy(plt, &bpf_plt, sizeof(*plt));
541 	plt->ret = ret;
542 	plt->target = target;
543 }
544 
545 /*
546  * Emit function prologue
547  *
548  * Save registers and create stack frame if necessary.
549  * See stack frame layout description in "bpf_jit.h"!
550  */
bpf_jit_prologue(struct bpf_jit * jit,struct bpf_prog * fp,u32 stack_depth)551 static void bpf_jit_prologue(struct bpf_jit *jit, struct bpf_prog *fp,
552 			     u32 stack_depth)
553 {
554 	/* No-op for hotpatching */
555 	/* brcl 0,prologue_plt */
556 	EMIT6_PCREL_RILC(0xc0040000, 0, jit->prologue_plt);
557 	jit->prologue_plt_ret = jit->prg;
558 
559 	if (fp->aux->func_idx == 0) {
560 		/* Initialize the tail call counter in the main program. */
561 		/* xc STK_OFF_TCCNT(4,%r15),STK_OFF_TCCNT(%r15) */
562 		_EMIT6(0xd703f000 | STK_OFF_TCCNT, 0xf000 | STK_OFF_TCCNT);
563 	} else {
564 		/*
565 		 * Skip the tail call counter initialization in subprograms.
566 		 * Insert nops in order to have tail_call_start at a
567 		 * predictable offset.
568 		 */
569 		bpf_skip(jit, 6);
570 	}
571 	/* Tail calls have to skip above initialization */
572 	jit->tail_call_start = jit->prg;
573 	/* Save registers */
574 	save_restore_regs(jit, REGS_SAVE, stack_depth);
575 	/* Setup literal pool */
576 	if (is_first_pass(jit) || (jit->seen & SEEN_LITERAL)) {
577 		if (!is_first_pass(jit) &&
578 		    is_valid_ldisp(jit->size - (jit->prg + 2))) {
579 			/* basr %l,0 */
580 			EMIT2(0x0d00, REG_L, REG_0);
581 			jit->base_ip = jit->prg;
582 		} else {
583 			/* larl %l,lit32_start */
584 			EMIT6_PCREL_RILB(0xc0000000, REG_L, jit->lit32_start);
585 			jit->base_ip = jit->lit32_start;
586 		}
587 	}
588 	/* Setup stack and backchain */
589 	if (is_first_pass(jit) || (jit->seen & SEEN_STACK)) {
590 		if (is_first_pass(jit) || (jit->seen & SEEN_FUNC))
591 			/* lgr %w1,%r15 (backchain) */
592 			EMIT4(0xb9040000, REG_W1, REG_15);
593 		/* la %bfp,STK_160_UNUSED(%r15) (BPF frame pointer) */
594 		EMIT4_DISP(0x41000000, BPF_REG_FP, REG_15, STK_160_UNUSED);
595 		/* aghi %r15,-STK_OFF */
596 		EMIT4_IMM(0xa70b0000, REG_15, -(STK_OFF + stack_depth));
597 		if (is_first_pass(jit) || (jit->seen & SEEN_FUNC))
598 			/* stg %w1,152(%r15) (backchain) */
599 			EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0,
600 				      REG_15, 152);
601 	}
602 }
603 
604 /*
605  * Emit an expoline for a jump that follows
606  */
emit_expoline(struct bpf_jit * jit)607 static void emit_expoline(struct bpf_jit *jit)
608 {
609 	/* exrl %r0,.+10 */
610 	EMIT6_PCREL_RIL(0xc6000000, jit->prg + 10);
611 	/* j . */
612 	EMIT4_PCREL(0xa7f40000, 0);
613 }
614 
615 /*
616  * Emit __s390_indirect_jump_r1 thunk if necessary
617  */
emit_r1_thunk(struct bpf_jit * jit)618 static void emit_r1_thunk(struct bpf_jit *jit)
619 {
620 	if (nospec_uses_trampoline()) {
621 		jit->r1_thunk_ip = jit->prg;
622 		emit_expoline(jit);
623 		/* br %r1 */
624 		_EMIT2(0x07f1);
625 	}
626 }
627 
628 /*
629  * Call r1 either directly or via __s390_indirect_jump_r1 thunk
630  */
call_r1(struct bpf_jit * jit)631 static void call_r1(struct bpf_jit *jit)
632 {
633 	if (nospec_uses_trampoline())
634 		/* brasl %r14,__s390_indirect_jump_r1 */
635 		EMIT6_PCREL_RILB(0xc0050000, REG_14, jit->r1_thunk_ip);
636 	else
637 		/* basr %r14,%r1 */
638 		EMIT2(0x0d00, REG_14, REG_1);
639 }
640 
641 /*
642  * Function epilogue
643  */
bpf_jit_epilogue(struct bpf_jit * jit,u32 stack_depth)644 static void bpf_jit_epilogue(struct bpf_jit *jit, u32 stack_depth)
645 {
646 	jit->exit_ip = jit->prg;
647 	/* Load exit code: lgr %r2,%b0 */
648 	EMIT4(0xb9040000, REG_2, BPF_REG_0);
649 	/* Restore registers */
650 	save_restore_regs(jit, REGS_RESTORE, stack_depth);
651 	if (nospec_uses_trampoline()) {
652 		jit->r14_thunk_ip = jit->prg;
653 		/* Generate __s390_indirect_jump_r14 thunk */
654 		emit_expoline(jit);
655 	}
656 	/* br %r14 */
657 	_EMIT2(0x07fe);
658 
659 	if (is_first_pass(jit) || (jit->seen & SEEN_FUNC))
660 		emit_r1_thunk(jit);
661 
662 	jit->prg = ALIGN(jit->prg, 8);
663 	jit->prologue_plt = jit->prg;
664 	if (jit->prg_buf)
665 		bpf_jit_plt((struct bpf_plt *)(jit->prg_buf + jit->prg),
666 			    jit->prg_buf + jit->prologue_plt_ret, NULL);
667 	jit->prg += sizeof(struct bpf_plt);
668 }
669 
get_probe_mem_regno(const u8 * insn)670 static int get_probe_mem_regno(const u8 *insn)
671 {
672 	/*
673 	 * insn must point to llgc, llgh, llgf or lg, which have destination
674 	 * register at the same position.
675 	 */
676 	if (insn[0] != 0xe3) /* common llgc, llgh, llgf and lg prefix */
677 		return -1;
678 	if (insn[5] != 0x90 && /* llgc */
679 	    insn[5] != 0x91 && /* llgh */
680 	    insn[5] != 0x16 && /* llgf */
681 	    insn[5] != 0x04) /* lg */
682 		return -1;
683 	return insn[1] >> 4;
684 }
685 
ex_handler_bpf(const struct exception_table_entry * x,struct pt_regs * regs)686 bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs)
687 {
688 	regs->psw.addr = extable_fixup(x);
689 	regs->gprs[x->data] = 0;
690 	return true;
691 }
692 
bpf_jit_probe_mem(struct bpf_jit * jit,struct bpf_prog * fp,int probe_prg,int nop_prg)693 static int bpf_jit_probe_mem(struct bpf_jit *jit, struct bpf_prog *fp,
694 			     int probe_prg, int nop_prg)
695 {
696 	struct exception_table_entry *ex;
697 	int reg, prg;
698 	s64 delta;
699 	u8 *insn;
700 	int i;
701 
702 	if (!fp->aux->extable)
703 		/* Do nothing during early JIT passes. */
704 		return 0;
705 	insn = jit->prg_buf + probe_prg;
706 	reg = get_probe_mem_regno(insn);
707 	if (WARN_ON_ONCE(reg < 0))
708 		/* JIT bug - unexpected probe instruction. */
709 		return -1;
710 	if (WARN_ON_ONCE(probe_prg + insn_length(*insn) != nop_prg))
711 		/* JIT bug - gap between probe and nop instructions. */
712 		return -1;
713 	for (i = 0; i < 2; i++) {
714 		if (WARN_ON_ONCE(jit->excnt >= fp->aux->num_exentries))
715 			/* Verifier bug - not enough entries. */
716 			return -1;
717 		ex = &fp->aux->extable[jit->excnt];
718 		/* Add extable entries for probe and nop instructions. */
719 		prg = i == 0 ? probe_prg : nop_prg;
720 		delta = jit->prg_buf + prg - (u8 *)&ex->insn;
721 		if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
722 			/* JIT bug - code and extable must be close. */
723 			return -1;
724 		ex->insn = delta;
725 		/*
726 		 * Always land on the nop. Note that extable infrastructure
727 		 * ignores fixup field, it is handled by ex_handler_bpf().
728 		 */
729 		delta = jit->prg_buf + nop_prg - (u8 *)&ex->fixup;
730 		if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
731 			/* JIT bug - landing pad and extable must be close. */
732 			return -1;
733 		ex->fixup = delta;
734 		ex->type = EX_TYPE_BPF;
735 		ex->data = reg;
736 		jit->excnt++;
737 	}
738 	return 0;
739 }
740 
741 /*
742  * Sign-extend the register if necessary
743  */
sign_extend(struct bpf_jit * jit,int r,u8 size,u8 flags)744 static int sign_extend(struct bpf_jit *jit, int r, u8 size, u8 flags)
745 {
746 	if (!(flags & BTF_FMODEL_SIGNED_ARG))
747 		return 0;
748 
749 	switch (size) {
750 	case 1:
751 		/* lgbr %r,%r */
752 		EMIT4(0xb9060000, r, r);
753 		return 0;
754 	case 2:
755 		/* lghr %r,%r */
756 		EMIT4(0xb9070000, r, r);
757 		return 0;
758 	case 4:
759 		/* lgfr %r,%r */
760 		EMIT4(0xb9140000, r, r);
761 		return 0;
762 	case 8:
763 		return 0;
764 	default:
765 		return -1;
766 	}
767 }
768 
769 /*
770  * Compile one eBPF instruction into s390x code
771  *
772  * NOTE: Use noinline because for gcov (-fprofile-arcs) gcc allocates a lot of
773  * stack space for the large switch statement.
774  */
bpf_jit_insn(struct bpf_jit * jit,struct bpf_prog * fp,int i,bool extra_pass,u32 stack_depth)775 static noinline int bpf_jit_insn(struct bpf_jit *jit, struct bpf_prog *fp,
776 				 int i, bool extra_pass, u32 stack_depth)
777 {
778 	struct bpf_insn *insn = &fp->insnsi[i];
779 	u32 dst_reg = insn->dst_reg;
780 	u32 src_reg = insn->src_reg;
781 	int last, insn_count = 1;
782 	u32 *addrs = jit->addrs;
783 	s32 imm = insn->imm;
784 	s16 off = insn->off;
785 	int probe_prg = -1;
786 	unsigned int mask;
787 	int nop_prg;
788 	int err;
789 
790 	if (BPF_CLASS(insn->code) == BPF_LDX &&
791 	    BPF_MODE(insn->code) == BPF_PROBE_MEM)
792 		probe_prg = jit->prg;
793 
794 	switch (insn->code) {
795 	/*
796 	 * BPF_MOV
797 	 */
798 	case BPF_ALU | BPF_MOV | BPF_X: /* dst = (u32) src */
799 		/* llgfr %dst,%src */
800 		EMIT4(0xb9160000, dst_reg, src_reg);
801 		if (insn_is_zext(&insn[1]))
802 			insn_count = 2;
803 		break;
804 	case BPF_ALU64 | BPF_MOV | BPF_X: /* dst = src */
805 		/* lgr %dst,%src */
806 		EMIT4(0xb9040000, dst_reg, src_reg);
807 		break;
808 	case BPF_ALU | BPF_MOV | BPF_K: /* dst = (u32) imm */
809 		/* llilf %dst,imm */
810 		EMIT6_IMM(0xc00f0000, dst_reg, imm);
811 		if (insn_is_zext(&insn[1]))
812 			insn_count = 2;
813 		break;
814 	case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = imm */
815 		/* lgfi %dst,imm */
816 		EMIT6_IMM(0xc0010000, dst_reg, imm);
817 		break;
818 	/*
819 	 * BPF_LD 64
820 	 */
821 	case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
822 	{
823 		/* 16 byte instruction that uses two 'struct bpf_insn' */
824 		u64 imm64;
825 
826 		imm64 = (u64)(u32) insn[0].imm | ((u64)(u32) insn[1].imm) << 32;
827 		/* lgrl %dst,imm */
828 		EMIT6_PCREL_RILB(0xc4080000, dst_reg, _EMIT_CONST_U64(imm64));
829 		insn_count = 2;
830 		break;
831 	}
832 	/*
833 	 * BPF_ADD
834 	 */
835 	case BPF_ALU | BPF_ADD | BPF_X: /* dst = (u32) dst + (u32) src */
836 		/* ar %dst,%src */
837 		EMIT2(0x1a00, dst_reg, src_reg);
838 		EMIT_ZERO(dst_reg);
839 		break;
840 	case BPF_ALU64 | BPF_ADD | BPF_X: /* dst = dst + src */
841 		/* agr %dst,%src */
842 		EMIT4(0xb9080000, dst_reg, src_reg);
843 		break;
844 	case BPF_ALU | BPF_ADD | BPF_K: /* dst = (u32) dst + (u32) imm */
845 		if (imm != 0) {
846 			/* alfi %dst,imm */
847 			EMIT6_IMM(0xc20b0000, dst_reg, imm);
848 		}
849 		EMIT_ZERO(dst_reg);
850 		break;
851 	case BPF_ALU64 | BPF_ADD | BPF_K: /* dst = dst + imm */
852 		if (!imm)
853 			break;
854 		/* agfi %dst,imm */
855 		EMIT6_IMM(0xc2080000, dst_reg, imm);
856 		break;
857 	/*
858 	 * BPF_SUB
859 	 */
860 	case BPF_ALU | BPF_SUB | BPF_X: /* dst = (u32) dst - (u32) src */
861 		/* sr %dst,%src */
862 		EMIT2(0x1b00, dst_reg, src_reg);
863 		EMIT_ZERO(dst_reg);
864 		break;
865 	case BPF_ALU64 | BPF_SUB | BPF_X: /* dst = dst - src */
866 		/* sgr %dst,%src */
867 		EMIT4(0xb9090000, dst_reg, src_reg);
868 		break;
869 	case BPF_ALU | BPF_SUB | BPF_K: /* dst = (u32) dst - (u32) imm */
870 		if (imm != 0) {
871 			/* alfi %dst,-imm */
872 			EMIT6_IMM(0xc20b0000, dst_reg, -imm);
873 		}
874 		EMIT_ZERO(dst_reg);
875 		break;
876 	case BPF_ALU64 | BPF_SUB | BPF_K: /* dst = dst - imm */
877 		if (!imm)
878 			break;
879 		if (imm == -0x80000000) {
880 			/* algfi %dst,0x80000000 */
881 			EMIT6_IMM(0xc20a0000, dst_reg, 0x80000000);
882 		} else {
883 			/* agfi %dst,-imm */
884 			EMIT6_IMM(0xc2080000, dst_reg, -imm);
885 		}
886 		break;
887 	/*
888 	 * BPF_MUL
889 	 */
890 	case BPF_ALU | BPF_MUL | BPF_X: /* dst = (u32) dst * (u32) src */
891 		/* msr %dst,%src */
892 		EMIT4(0xb2520000, dst_reg, src_reg);
893 		EMIT_ZERO(dst_reg);
894 		break;
895 	case BPF_ALU64 | BPF_MUL | BPF_X: /* dst = dst * src */
896 		/* msgr %dst,%src */
897 		EMIT4(0xb90c0000, dst_reg, src_reg);
898 		break;
899 	case BPF_ALU | BPF_MUL | BPF_K: /* dst = (u32) dst * (u32) imm */
900 		if (imm != 1) {
901 			/* msfi %r5,imm */
902 			EMIT6_IMM(0xc2010000, dst_reg, imm);
903 		}
904 		EMIT_ZERO(dst_reg);
905 		break;
906 	case BPF_ALU64 | BPF_MUL | BPF_K: /* dst = dst * imm */
907 		if (imm == 1)
908 			break;
909 		/* msgfi %dst,imm */
910 		EMIT6_IMM(0xc2000000, dst_reg, imm);
911 		break;
912 	/*
913 	 * BPF_DIV / BPF_MOD
914 	 */
915 	case BPF_ALU | BPF_DIV | BPF_X: /* dst = (u32) dst / (u32) src */
916 	case BPF_ALU | BPF_MOD | BPF_X: /* dst = (u32) dst % (u32) src */
917 	{
918 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
919 
920 		/* lhi %w0,0 */
921 		EMIT4_IMM(0xa7080000, REG_W0, 0);
922 		/* lr %w1,%dst */
923 		EMIT2(0x1800, REG_W1, dst_reg);
924 		/* dlr %w0,%src */
925 		EMIT4(0xb9970000, REG_W0, src_reg);
926 		/* llgfr %dst,%rc */
927 		EMIT4(0xb9160000, dst_reg, rc_reg);
928 		if (insn_is_zext(&insn[1]))
929 			insn_count = 2;
930 		break;
931 	}
932 	case BPF_ALU64 | BPF_DIV | BPF_X: /* dst = dst / src */
933 	case BPF_ALU64 | BPF_MOD | BPF_X: /* dst = dst % src */
934 	{
935 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
936 
937 		/* lghi %w0,0 */
938 		EMIT4_IMM(0xa7090000, REG_W0, 0);
939 		/* lgr %w1,%dst */
940 		EMIT4(0xb9040000, REG_W1, dst_reg);
941 		/* dlgr %w0,%dst */
942 		EMIT4(0xb9870000, REG_W0, src_reg);
943 		/* lgr %dst,%rc */
944 		EMIT4(0xb9040000, dst_reg, rc_reg);
945 		break;
946 	}
947 	case BPF_ALU | BPF_DIV | BPF_K: /* dst = (u32) dst / (u32) imm */
948 	case BPF_ALU | BPF_MOD | BPF_K: /* dst = (u32) dst % (u32) imm */
949 	{
950 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
951 
952 		if (imm == 1) {
953 			if (BPF_OP(insn->code) == BPF_MOD)
954 				/* lhgi %dst,0 */
955 				EMIT4_IMM(0xa7090000, dst_reg, 0);
956 			else
957 				EMIT_ZERO(dst_reg);
958 			break;
959 		}
960 		/* lhi %w0,0 */
961 		EMIT4_IMM(0xa7080000, REG_W0, 0);
962 		/* lr %w1,%dst */
963 		EMIT2(0x1800, REG_W1, dst_reg);
964 		if (!is_first_pass(jit) && can_use_ldisp_for_lit32(jit)) {
965 			/* dl %w0,<d(imm)>(%l) */
966 			EMIT6_DISP_LH(0xe3000000, 0x0097, REG_W0, REG_0, REG_L,
967 				      EMIT_CONST_U32(imm));
968 		} else {
969 			/* lgfrl %dst,imm */
970 			EMIT6_PCREL_RILB(0xc40c0000, dst_reg,
971 					 _EMIT_CONST_U32(imm));
972 			jit->seen |= SEEN_LITERAL;
973 			/* dlr %w0,%dst */
974 			EMIT4(0xb9970000, REG_W0, dst_reg);
975 		}
976 		/* llgfr %dst,%rc */
977 		EMIT4(0xb9160000, dst_reg, rc_reg);
978 		if (insn_is_zext(&insn[1]))
979 			insn_count = 2;
980 		break;
981 	}
982 	case BPF_ALU64 | BPF_DIV | BPF_K: /* dst = dst / imm */
983 	case BPF_ALU64 | BPF_MOD | BPF_K: /* dst = dst % imm */
984 	{
985 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
986 
987 		if (imm == 1) {
988 			if (BPF_OP(insn->code) == BPF_MOD)
989 				/* lhgi %dst,0 */
990 				EMIT4_IMM(0xa7090000, dst_reg, 0);
991 			break;
992 		}
993 		/* lghi %w0,0 */
994 		EMIT4_IMM(0xa7090000, REG_W0, 0);
995 		/* lgr %w1,%dst */
996 		EMIT4(0xb9040000, REG_W1, dst_reg);
997 		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
998 			/* dlg %w0,<d(imm)>(%l) */
999 			EMIT6_DISP_LH(0xe3000000, 0x0087, REG_W0, REG_0, REG_L,
1000 				      EMIT_CONST_U64(imm));
1001 		} else {
1002 			/* lgrl %dst,imm */
1003 			EMIT6_PCREL_RILB(0xc4080000, dst_reg,
1004 					 _EMIT_CONST_U64(imm));
1005 			jit->seen |= SEEN_LITERAL;
1006 			/* dlgr %w0,%dst */
1007 			EMIT4(0xb9870000, REG_W0, dst_reg);
1008 		}
1009 		/* lgr %dst,%rc */
1010 		EMIT4(0xb9040000, dst_reg, rc_reg);
1011 		break;
1012 	}
1013 	/*
1014 	 * BPF_AND
1015 	 */
1016 	case BPF_ALU | BPF_AND | BPF_X: /* dst = (u32) dst & (u32) src */
1017 		/* nr %dst,%src */
1018 		EMIT2(0x1400, dst_reg, src_reg);
1019 		EMIT_ZERO(dst_reg);
1020 		break;
1021 	case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
1022 		/* ngr %dst,%src */
1023 		EMIT4(0xb9800000, dst_reg, src_reg);
1024 		break;
1025 	case BPF_ALU | BPF_AND | BPF_K: /* dst = (u32) dst & (u32) imm */
1026 		/* nilf %dst,imm */
1027 		EMIT6_IMM(0xc00b0000, dst_reg, imm);
1028 		EMIT_ZERO(dst_reg);
1029 		break;
1030 	case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
1031 		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1032 			/* ng %dst,<d(imm)>(%l) */
1033 			EMIT6_DISP_LH(0xe3000000, 0x0080,
1034 				      dst_reg, REG_0, REG_L,
1035 				      EMIT_CONST_U64(imm));
1036 		} else {
1037 			/* lgrl %w0,imm */
1038 			EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1039 					 _EMIT_CONST_U64(imm));
1040 			jit->seen |= SEEN_LITERAL;
1041 			/* ngr %dst,%w0 */
1042 			EMIT4(0xb9800000, dst_reg, REG_W0);
1043 		}
1044 		break;
1045 	/*
1046 	 * BPF_OR
1047 	 */
1048 	case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
1049 		/* or %dst,%src */
1050 		EMIT2(0x1600, dst_reg, src_reg);
1051 		EMIT_ZERO(dst_reg);
1052 		break;
1053 	case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
1054 		/* ogr %dst,%src */
1055 		EMIT4(0xb9810000, dst_reg, src_reg);
1056 		break;
1057 	case BPF_ALU | BPF_OR | BPF_K: /* dst = (u32) dst | (u32) imm */
1058 		/* oilf %dst,imm */
1059 		EMIT6_IMM(0xc00d0000, dst_reg, imm);
1060 		EMIT_ZERO(dst_reg);
1061 		break;
1062 	case BPF_ALU64 | BPF_OR | BPF_K: /* dst = dst | imm */
1063 		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1064 			/* og %dst,<d(imm)>(%l) */
1065 			EMIT6_DISP_LH(0xe3000000, 0x0081,
1066 				      dst_reg, REG_0, REG_L,
1067 				      EMIT_CONST_U64(imm));
1068 		} else {
1069 			/* lgrl %w0,imm */
1070 			EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1071 					 _EMIT_CONST_U64(imm));
1072 			jit->seen |= SEEN_LITERAL;
1073 			/* ogr %dst,%w0 */
1074 			EMIT4(0xb9810000, dst_reg, REG_W0);
1075 		}
1076 		break;
1077 	/*
1078 	 * BPF_XOR
1079 	 */
1080 	case BPF_ALU | BPF_XOR | BPF_X: /* dst = (u32) dst ^ (u32) src */
1081 		/* xr %dst,%src */
1082 		EMIT2(0x1700, dst_reg, src_reg);
1083 		EMIT_ZERO(dst_reg);
1084 		break;
1085 	case BPF_ALU64 | BPF_XOR | BPF_X: /* dst = dst ^ src */
1086 		/* xgr %dst,%src */
1087 		EMIT4(0xb9820000, dst_reg, src_reg);
1088 		break;
1089 	case BPF_ALU | BPF_XOR | BPF_K: /* dst = (u32) dst ^ (u32) imm */
1090 		if (imm != 0) {
1091 			/* xilf %dst,imm */
1092 			EMIT6_IMM(0xc0070000, dst_reg, imm);
1093 		}
1094 		EMIT_ZERO(dst_reg);
1095 		break;
1096 	case BPF_ALU64 | BPF_XOR | BPF_K: /* dst = dst ^ imm */
1097 		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1098 			/* xg %dst,<d(imm)>(%l) */
1099 			EMIT6_DISP_LH(0xe3000000, 0x0082,
1100 				      dst_reg, REG_0, REG_L,
1101 				      EMIT_CONST_U64(imm));
1102 		} else {
1103 			/* lgrl %w0,imm */
1104 			EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1105 					 _EMIT_CONST_U64(imm));
1106 			jit->seen |= SEEN_LITERAL;
1107 			/* xgr %dst,%w0 */
1108 			EMIT4(0xb9820000, dst_reg, REG_W0);
1109 		}
1110 		break;
1111 	/*
1112 	 * BPF_LSH
1113 	 */
1114 	case BPF_ALU | BPF_LSH | BPF_X: /* dst = (u32) dst << (u32) src */
1115 		/* sll %dst,0(%src) */
1116 		EMIT4_DISP(0x89000000, dst_reg, src_reg, 0);
1117 		EMIT_ZERO(dst_reg);
1118 		break;
1119 	case BPF_ALU64 | BPF_LSH | BPF_X: /* dst = dst << src */
1120 		/* sllg %dst,%dst,0(%src) */
1121 		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, src_reg, 0);
1122 		break;
1123 	case BPF_ALU | BPF_LSH | BPF_K: /* dst = (u32) dst << (u32) imm */
1124 		if (imm != 0) {
1125 			/* sll %dst,imm(%r0) */
1126 			EMIT4_DISP(0x89000000, dst_reg, REG_0, imm);
1127 		}
1128 		EMIT_ZERO(dst_reg);
1129 		break;
1130 	case BPF_ALU64 | BPF_LSH | BPF_K: /* dst = dst << imm */
1131 		if (imm == 0)
1132 			break;
1133 		/* sllg %dst,%dst,imm(%r0) */
1134 		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, REG_0, imm);
1135 		break;
1136 	/*
1137 	 * BPF_RSH
1138 	 */
1139 	case BPF_ALU | BPF_RSH | BPF_X: /* dst = (u32) dst >> (u32) src */
1140 		/* srl %dst,0(%src) */
1141 		EMIT4_DISP(0x88000000, dst_reg, src_reg, 0);
1142 		EMIT_ZERO(dst_reg);
1143 		break;
1144 	case BPF_ALU64 | BPF_RSH | BPF_X: /* dst = dst >> src */
1145 		/* srlg %dst,%dst,0(%src) */
1146 		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, src_reg, 0);
1147 		break;
1148 	case BPF_ALU | BPF_RSH | BPF_K: /* dst = (u32) dst >> (u32) imm */
1149 		if (imm != 0) {
1150 			/* srl %dst,imm(%r0) */
1151 			EMIT4_DISP(0x88000000, dst_reg, REG_0, imm);
1152 		}
1153 		EMIT_ZERO(dst_reg);
1154 		break;
1155 	case BPF_ALU64 | BPF_RSH | BPF_K: /* dst = dst >> imm */
1156 		if (imm == 0)
1157 			break;
1158 		/* srlg %dst,%dst,imm(%r0) */
1159 		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, REG_0, imm);
1160 		break;
1161 	/*
1162 	 * BPF_ARSH
1163 	 */
1164 	case BPF_ALU | BPF_ARSH | BPF_X: /* ((s32) dst) >>= src */
1165 		/* sra %dst,%dst,0(%src) */
1166 		EMIT4_DISP(0x8a000000, dst_reg, src_reg, 0);
1167 		EMIT_ZERO(dst_reg);
1168 		break;
1169 	case BPF_ALU64 | BPF_ARSH | BPF_X: /* ((s64) dst) >>= src */
1170 		/* srag %dst,%dst,0(%src) */
1171 		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, src_reg, 0);
1172 		break;
1173 	case BPF_ALU | BPF_ARSH | BPF_K: /* ((s32) dst >> imm */
1174 		if (imm != 0) {
1175 			/* sra %dst,imm(%r0) */
1176 			EMIT4_DISP(0x8a000000, dst_reg, REG_0, imm);
1177 		}
1178 		EMIT_ZERO(dst_reg);
1179 		break;
1180 	case BPF_ALU64 | BPF_ARSH | BPF_K: /* ((s64) dst) >>= imm */
1181 		if (imm == 0)
1182 			break;
1183 		/* srag %dst,%dst,imm(%r0) */
1184 		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, REG_0, imm);
1185 		break;
1186 	/*
1187 	 * BPF_NEG
1188 	 */
1189 	case BPF_ALU | BPF_NEG: /* dst = (u32) -dst */
1190 		/* lcr %dst,%dst */
1191 		EMIT2(0x1300, dst_reg, dst_reg);
1192 		EMIT_ZERO(dst_reg);
1193 		break;
1194 	case BPF_ALU64 | BPF_NEG: /* dst = -dst */
1195 		/* lcgr %dst,%dst */
1196 		EMIT4(0xb9030000, dst_reg, dst_reg);
1197 		break;
1198 	/*
1199 	 * BPF_FROM_BE/LE
1200 	 */
1201 	case BPF_ALU | BPF_END | BPF_FROM_BE:
1202 		/* s390 is big endian, therefore only clear high order bytes */
1203 		switch (imm) {
1204 		case 16: /* dst = (u16) cpu_to_be16(dst) */
1205 			/* llghr %dst,%dst */
1206 			EMIT4(0xb9850000, dst_reg, dst_reg);
1207 			if (insn_is_zext(&insn[1]))
1208 				insn_count = 2;
1209 			break;
1210 		case 32: /* dst = (u32) cpu_to_be32(dst) */
1211 			if (!fp->aux->verifier_zext)
1212 				/* llgfr %dst,%dst */
1213 				EMIT4(0xb9160000, dst_reg, dst_reg);
1214 			break;
1215 		case 64: /* dst = (u64) cpu_to_be64(dst) */
1216 			break;
1217 		}
1218 		break;
1219 	case BPF_ALU | BPF_END | BPF_FROM_LE:
1220 		switch (imm) {
1221 		case 16: /* dst = (u16) cpu_to_le16(dst) */
1222 			/* lrvr %dst,%dst */
1223 			EMIT4(0xb91f0000, dst_reg, dst_reg);
1224 			/* srl %dst,16(%r0) */
1225 			EMIT4_DISP(0x88000000, dst_reg, REG_0, 16);
1226 			/* llghr %dst,%dst */
1227 			EMIT4(0xb9850000, dst_reg, dst_reg);
1228 			if (insn_is_zext(&insn[1]))
1229 				insn_count = 2;
1230 			break;
1231 		case 32: /* dst = (u32) cpu_to_le32(dst) */
1232 			/* lrvr %dst,%dst */
1233 			EMIT4(0xb91f0000, dst_reg, dst_reg);
1234 			if (!fp->aux->verifier_zext)
1235 				/* llgfr %dst,%dst */
1236 				EMIT4(0xb9160000, dst_reg, dst_reg);
1237 			break;
1238 		case 64: /* dst = (u64) cpu_to_le64(dst) */
1239 			/* lrvgr %dst,%dst */
1240 			EMIT4(0xb90f0000, dst_reg, dst_reg);
1241 			break;
1242 		}
1243 		break;
1244 	/*
1245 	 * BPF_NOSPEC (speculation barrier)
1246 	 */
1247 	case BPF_ST | BPF_NOSPEC:
1248 		break;
1249 	/*
1250 	 * BPF_ST(X)
1251 	 */
1252 	case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src_reg */
1253 		/* stcy %src,off(%dst) */
1254 		EMIT6_DISP_LH(0xe3000000, 0x0072, src_reg, dst_reg, REG_0, off);
1255 		jit->seen |= SEEN_MEM;
1256 		break;
1257 	case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
1258 		/* sthy %src,off(%dst) */
1259 		EMIT6_DISP_LH(0xe3000000, 0x0070, src_reg, dst_reg, REG_0, off);
1260 		jit->seen |= SEEN_MEM;
1261 		break;
1262 	case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
1263 		/* sty %src,off(%dst) */
1264 		EMIT6_DISP_LH(0xe3000000, 0x0050, src_reg, dst_reg, REG_0, off);
1265 		jit->seen |= SEEN_MEM;
1266 		break;
1267 	case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
1268 		/* stg %src,off(%dst) */
1269 		EMIT6_DISP_LH(0xe3000000, 0x0024, src_reg, dst_reg, REG_0, off);
1270 		jit->seen |= SEEN_MEM;
1271 		break;
1272 	case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
1273 		/* lhi %w0,imm */
1274 		EMIT4_IMM(0xa7080000, REG_W0, (u8) imm);
1275 		/* stcy %w0,off(dst) */
1276 		EMIT6_DISP_LH(0xe3000000, 0x0072, REG_W0, dst_reg, REG_0, off);
1277 		jit->seen |= SEEN_MEM;
1278 		break;
1279 	case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
1280 		/* lhi %w0,imm */
1281 		EMIT4_IMM(0xa7080000, REG_W0, (u16) imm);
1282 		/* sthy %w0,off(dst) */
1283 		EMIT6_DISP_LH(0xe3000000, 0x0070, REG_W0, dst_reg, REG_0, off);
1284 		jit->seen |= SEEN_MEM;
1285 		break;
1286 	case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
1287 		/* llilf %w0,imm  */
1288 		EMIT6_IMM(0xc00f0000, REG_W0, (u32) imm);
1289 		/* sty %w0,off(%dst) */
1290 		EMIT6_DISP_LH(0xe3000000, 0x0050, REG_W0, dst_reg, REG_0, off);
1291 		jit->seen |= SEEN_MEM;
1292 		break;
1293 	case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
1294 		/* lgfi %w0,imm */
1295 		EMIT6_IMM(0xc0010000, REG_W0, imm);
1296 		/* stg %w0,off(%dst) */
1297 		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, dst_reg, REG_0, off);
1298 		jit->seen |= SEEN_MEM;
1299 		break;
1300 	/*
1301 	 * BPF_ATOMIC
1302 	 */
1303 	case BPF_STX | BPF_ATOMIC | BPF_DW:
1304 	case BPF_STX | BPF_ATOMIC | BPF_W:
1305 	{
1306 		bool is32 = BPF_SIZE(insn->code) == BPF_W;
1307 
1308 		switch (insn->imm) {
1309 /* {op32|op64} {%w0|%src},%src,off(%dst) */
1310 #define EMIT_ATOMIC(op32, op64) do {					\
1311 	EMIT6_DISP_LH(0xeb000000, is32 ? (op32) : (op64),		\
1312 		      (insn->imm & BPF_FETCH) ? src_reg : REG_W0,	\
1313 		      src_reg, dst_reg, off);				\
1314 	if (insn->imm & BPF_FETCH) {					\
1315 		/* bcr 14,0 - see atomic_fetch_{add,and,or,xor}() */	\
1316 		_EMIT2(0x07e0);						\
1317 		if (is32)                                               \
1318 			EMIT_ZERO(src_reg);				\
1319 	}								\
1320 } while (0)
1321 		case BPF_ADD:
1322 		case BPF_ADD | BPF_FETCH:
1323 			/* {laal|laalg} */
1324 			EMIT_ATOMIC(0x00fa, 0x00ea);
1325 			break;
1326 		case BPF_AND:
1327 		case BPF_AND | BPF_FETCH:
1328 			/* {lan|lang} */
1329 			EMIT_ATOMIC(0x00f4, 0x00e4);
1330 			break;
1331 		case BPF_OR:
1332 		case BPF_OR | BPF_FETCH:
1333 			/* {lao|laog} */
1334 			EMIT_ATOMIC(0x00f6, 0x00e6);
1335 			break;
1336 		case BPF_XOR:
1337 		case BPF_XOR | BPF_FETCH:
1338 			/* {lax|laxg} */
1339 			EMIT_ATOMIC(0x00f7, 0x00e7);
1340 			break;
1341 #undef EMIT_ATOMIC
1342 		case BPF_XCHG:
1343 			/* {ly|lg} %w0,off(%dst) */
1344 			EMIT6_DISP_LH(0xe3000000,
1345 				      is32 ? 0x0058 : 0x0004, REG_W0, REG_0,
1346 				      dst_reg, off);
1347 			/* 0: {csy|csg} %w0,%src,off(%dst) */
1348 			EMIT6_DISP_LH(0xeb000000, is32 ? 0x0014 : 0x0030,
1349 				      REG_W0, src_reg, dst_reg, off);
1350 			/* brc 4,0b */
1351 			EMIT4_PCREL_RIC(0xa7040000, 4, jit->prg - 6);
1352 			/* {llgfr|lgr} %src,%w0 */
1353 			EMIT4(is32 ? 0xb9160000 : 0xb9040000, src_reg, REG_W0);
1354 			if (is32 && insn_is_zext(&insn[1]))
1355 				insn_count = 2;
1356 			break;
1357 		case BPF_CMPXCHG:
1358 			/* 0: {csy|csg} %b0,%src,off(%dst) */
1359 			EMIT6_DISP_LH(0xeb000000, is32 ? 0x0014 : 0x0030,
1360 				      BPF_REG_0, src_reg, dst_reg, off);
1361 			break;
1362 		default:
1363 			pr_err("Unknown atomic operation %02x\n", insn->imm);
1364 			return -1;
1365 		}
1366 
1367 		jit->seen |= SEEN_MEM;
1368 		break;
1369 	}
1370 	/*
1371 	 * BPF_LDX
1372 	 */
1373 	case BPF_LDX | BPF_MEM | BPF_B: /* dst = *(u8 *)(ul) (src + off) */
1374 	case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1375 		/* llgc %dst,0(off,%src) */
1376 		EMIT6_DISP_LH(0xe3000000, 0x0090, dst_reg, src_reg, REG_0, off);
1377 		jit->seen |= SEEN_MEM;
1378 		if (insn_is_zext(&insn[1]))
1379 			insn_count = 2;
1380 		break;
1381 	case BPF_LDX | BPF_MEM | BPF_H: /* dst = *(u16 *)(ul) (src + off) */
1382 	case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1383 		/* llgh %dst,0(off,%src) */
1384 		EMIT6_DISP_LH(0xe3000000, 0x0091, dst_reg, src_reg, REG_0, off);
1385 		jit->seen |= SEEN_MEM;
1386 		if (insn_is_zext(&insn[1]))
1387 			insn_count = 2;
1388 		break;
1389 	case BPF_LDX | BPF_MEM | BPF_W: /* dst = *(u32 *)(ul) (src + off) */
1390 	case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1391 		/* llgf %dst,off(%src) */
1392 		jit->seen |= SEEN_MEM;
1393 		EMIT6_DISP_LH(0xe3000000, 0x0016, dst_reg, src_reg, REG_0, off);
1394 		if (insn_is_zext(&insn[1]))
1395 			insn_count = 2;
1396 		break;
1397 	case BPF_LDX | BPF_MEM | BPF_DW: /* dst = *(u64 *)(ul) (src + off) */
1398 	case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1399 		/* lg %dst,0(off,%src) */
1400 		jit->seen |= SEEN_MEM;
1401 		EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, src_reg, REG_0, off);
1402 		break;
1403 	/*
1404 	 * BPF_JMP / CALL
1405 	 */
1406 	case BPF_JMP | BPF_CALL:
1407 	{
1408 		const struct btf_func_model *m;
1409 		bool func_addr_fixed;
1410 		int j, ret;
1411 		u64 func;
1412 
1413 		ret = bpf_jit_get_func_addr(fp, insn, extra_pass,
1414 					    &func, &func_addr_fixed);
1415 		if (ret < 0)
1416 			return -1;
1417 
1418 		REG_SET_SEEN(BPF_REG_5);
1419 		jit->seen |= SEEN_FUNC;
1420 		/*
1421 		 * Copy the tail call counter to where the callee expects it.
1422 		 *
1423 		 * Note 1: The callee can increment the tail call counter, but
1424 		 * we do not load it back, since the x86 JIT does not do this
1425 		 * either.
1426 		 *
1427 		 * Note 2: We assume that the verifier does not let us call the
1428 		 * main program, which clears the tail call counter on entry.
1429 		 */
1430 		/* mvc STK_OFF_TCCNT(4,%r15),N(%r15) */
1431 		_EMIT6(0xd203f000 | STK_OFF_TCCNT,
1432 		       0xf000 | (STK_OFF_TCCNT + STK_OFF + stack_depth));
1433 
1434 		/* Sign-extend the kfunc arguments. */
1435 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
1436 			m = bpf_jit_find_kfunc_model(fp, insn);
1437 			if (!m)
1438 				return -1;
1439 
1440 			for (j = 0; j < m->nr_args; j++) {
1441 				if (sign_extend(jit, BPF_REG_1 + j,
1442 						m->arg_size[j],
1443 						m->arg_flags[j]))
1444 					return -1;
1445 			}
1446 		}
1447 
1448 		/* lgrl %w1,func */
1449 		EMIT6_PCREL_RILB(0xc4080000, REG_W1, _EMIT_CONST_U64(func));
1450 		/* %r1() */
1451 		call_r1(jit);
1452 		/* lgr %b0,%r2: load return value into %b0 */
1453 		EMIT4(0xb9040000, BPF_REG_0, REG_2);
1454 		break;
1455 	}
1456 	case BPF_JMP | BPF_TAIL_CALL: {
1457 		int patch_1_clrj, patch_2_clij, patch_3_brc;
1458 
1459 		/*
1460 		 * Implicit input:
1461 		 *  B1: pointer to ctx
1462 		 *  B2: pointer to bpf_array
1463 		 *  B3: index in bpf_array
1464 		 *
1465 		 * if (index >= array->map.max_entries)
1466 		 *         goto out;
1467 		 */
1468 
1469 		/* llgf %w1,map.max_entries(%b2) */
1470 		EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_2,
1471 			      offsetof(struct bpf_array, map.max_entries));
1472 		/* if ((u32)%b3 >= (u32)%w1) goto out; */
1473 		/* clrj %b3,%w1,0xa,out */
1474 		patch_1_clrj = jit->prg;
1475 		EMIT6_PCREL_RIEB(0xec000000, 0x0077, BPF_REG_3, REG_W1, 0xa,
1476 				 jit->prg);
1477 
1478 		/*
1479 		 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
1480 		 *         goto out;
1481 		 */
1482 
1483 		if (jit->seen & SEEN_STACK)
1484 			off = STK_OFF_TCCNT + STK_OFF + stack_depth;
1485 		else
1486 			off = STK_OFF_TCCNT;
1487 		/* lhi %w0,1 */
1488 		EMIT4_IMM(0xa7080000, REG_W0, 1);
1489 		/* laal %w1,%w0,off(%r15) */
1490 		EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W1, REG_W0, REG_15, off);
1491 		/* clij %w1,MAX_TAIL_CALL_CNT-1,0x2,out */
1492 		patch_2_clij = jit->prg;
1493 		EMIT6_PCREL_RIEC(0xec000000, 0x007f, REG_W1, MAX_TAIL_CALL_CNT - 1,
1494 				 2, jit->prg);
1495 
1496 		/*
1497 		 * prog = array->ptrs[index];
1498 		 * if (prog == NULL)
1499 		 *         goto out;
1500 		 */
1501 
1502 		/* llgfr %r1,%b3: %r1 = (u32) index */
1503 		EMIT4(0xb9160000, REG_1, BPF_REG_3);
1504 		/* sllg %r1,%r1,3: %r1 *= 8 */
1505 		EMIT6_DISP_LH(0xeb000000, 0x000d, REG_1, REG_1, REG_0, 3);
1506 		/* ltg %r1,prog(%b2,%r1) */
1507 		EMIT6_DISP_LH(0xe3000000, 0x0002, REG_1, BPF_REG_2,
1508 			      REG_1, offsetof(struct bpf_array, ptrs));
1509 		/* brc 0x8,out */
1510 		patch_3_brc = jit->prg;
1511 		EMIT4_PCREL_RIC(0xa7040000, 8, jit->prg);
1512 
1513 		/*
1514 		 * Restore registers before calling function
1515 		 */
1516 		save_restore_regs(jit, REGS_RESTORE, stack_depth);
1517 
1518 		/*
1519 		 * goto *(prog->bpf_func + tail_call_start);
1520 		 */
1521 
1522 		/* lg %r1,bpf_func(%r1) */
1523 		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_1, REG_0,
1524 			      offsetof(struct bpf_prog, bpf_func));
1525 		if (nospec_uses_trampoline()) {
1526 			jit->seen |= SEEN_FUNC;
1527 			/* aghi %r1,tail_call_start */
1528 			EMIT4_IMM(0xa70b0000, REG_1, jit->tail_call_start);
1529 			/* brcl 0xf,__s390_indirect_jump_r1 */
1530 			EMIT6_PCREL_RILC(0xc0040000, 0xf, jit->r1_thunk_ip);
1531 		} else {
1532 			/* bc 0xf,tail_call_start(%r1) */
1533 			_EMIT4(0x47f01000 + jit->tail_call_start);
1534 		}
1535 		/* out: */
1536 		if (jit->prg_buf) {
1537 			*(u16 *)(jit->prg_buf + patch_1_clrj + 2) =
1538 				(jit->prg - patch_1_clrj) >> 1;
1539 			*(u16 *)(jit->prg_buf + patch_2_clij + 2) =
1540 				(jit->prg - patch_2_clij) >> 1;
1541 			*(u16 *)(jit->prg_buf + patch_3_brc + 2) =
1542 				(jit->prg - patch_3_brc) >> 1;
1543 		}
1544 		break;
1545 	}
1546 	case BPF_JMP | BPF_EXIT: /* return b0 */
1547 		last = (i == fp->len - 1) ? 1 : 0;
1548 		if (last)
1549 			break;
1550 		if (!is_first_pass(jit) && can_use_rel(jit, jit->exit_ip))
1551 			/* brc 0xf, <exit> */
1552 			EMIT4_PCREL_RIC(0xa7040000, 0xf, jit->exit_ip);
1553 		else
1554 			/* brcl 0xf, <exit> */
1555 			EMIT6_PCREL_RILC(0xc0040000, 0xf, jit->exit_ip);
1556 		break;
1557 	/*
1558 	 * Branch relative (number of skipped instructions) to offset on
1559 	 * condition.
1560 	 *
1561 	 * Condition code to mask mapping:
1562 	 *
1563 	 * CC | Description	   | Mask
1564 	 * ------------------------------
1565 	 * 0  | Operands equal	   |	8
1566 	 * 1  | First operand low  |	4
1567 	 * 2  | First operand high |	2
1568 	 * 3  | Unused		   |	1
1569 	 *
1570 	 * For s390x relative branches: ip = ip + off_bytes
1571 	 * For BPF relative branches:	insn = insn + off_insns + 1
1572 	 *
1573 	 * For example for s390x with offset 0 we jump to the branch
1574 	 * instruction itself (loop) and for BPF with offset 0 we
1575 	 * branch to the instruction behind the branch.
1576 	 */
1577 	case BPF_JMP | BPF_JA: /* if (true) */
1578 		mask = 0xf000; /* j */
1579 		goto branch_oc;
1580 	case BPF_JMP | BPF_JSGT | BPF_K: /* ((s64) dst > (s64) imm) */
1581 	case BPF_JMP32 | BPF_JSGT | BPF_K: /* ((s32) dst > (s32) imm) */
1582 		mask = 0x2000; /* jh */
1583 		goto branch_ks;
1584 	case BPF_JMP | BPF_JSLT | BPF_K: /* ((s64) dst < (s64) imm) */
1585 	case BPF_JMP32 | BPF_JSLT | BPF_K: /* ((s32) dst < (s32) imm) */
1586 		mask = 0x4000; /* jl */
1587 		goto branch_ks;
1588 	case BPF_JMP | BPF_JSGE | BPF_K: /* ((s64) dst >= (s64) imm) */
1589 	case BPF_JMP32 | BPF_JSGE | BPF_K: /* ((s32) dst >= (s32) imm) */
1590 		mask = 0xa000; /* jhe */
1591 		goto branch_ks;
1592 	case BPF_JMP | BPF_JSLE | BPF_K: /* ((s64) dst <= (s64) imm) */
1593 	case BPF_JMP32 | BPF_JSLE | BPF_K: /* ((s32) dst <= (s32) imm) */
1594 		mask = 0xc000; /* jle */
1595 		goto branch_ks;
1596 	case BPF_JMP | BPF_JGT | BPF_K: /* (dst_reg > imm) */
1597 	case BPF_JMP32 | BPF_JGT | BPF_K: /* ((u32) dst_reg > (u32) imm) */
1598 		mask = 0x2000; /* jh */
1599 		goto branch_ku;
1600 	case BPF_JMP | BPF_JLT | BPF_K: /* (dst_reg < imm) */
1601 	case BPF_JMP32 | BPF_JLT | BPF_K: /* ((u32) dst_reg < (u32) imm) */
1602 		mask = 0x4000; /* jl */
1603 		goto branch_ku;
1604 	case BPF_JMP | BPF_JGE | BPF_K: /* (dst_reg >= imm) */
1605 	case BPF_JMP32 | BPF_JGE | BPF_K: /* ((u32) dst_reg >= (u32) imm) */
1606 		mask = 0xa000; /* jhe */
1607 		goto branch_ku;
1608 	case BPF_JMP | BPF_JLE | BPF_K: /* (dst_reg <= imm) */
1609 	case BPF_JMP32 | BPF_JLE | BPF_K: /* ((u32) dst_reg <= (u32) imm) */
1610 		mask = 0xc000; /* jle */
1611 		goto branch_ku;
1612 	case BPF_JMP | BPF_JNE | BPF_K: /* (dst_reg != imm) */
1613 	case BPF_JMP32 | BPF_JNE | BPF_K: /* ((u32) dst_reg != (u32) imm) */
1614 		mask = 0x7000; /* jne */
1615 		goto branch_ku;
1616 	case BPF_JMP | BPF_JEQ | BPF_K: /* (dst_reg == imm) */
1617 	case BPF_JMP32 | BPF_JEQ | BPF_K: /* ((u32) dst_reg == (u32) imm) */
1618 		mask = 0x8000; /* je */
1619 		goto branch_ku;
1620 	case BPF_JMP | BPF_JSET | BPF_K: /* (dst_reg & imm) */
1621 	case BPF_JMP32 | BPF_JSET | BPF_K: /* ((u32) dst_reg & (u32) imm) */
1622 		mask = 0x7000; /* jnz */
1623 		if (BPF_CLASS(insn->code) == BPF_JMP32) {
1624 			/* llilf %w1,imm (load zero extend imm) */
1625 			EMIT6_IMM(0xc00f0000, REG_W1, imm);
1626 			/* nr %w1,%dst */
1627 			EMIT2(0x1400, REG_W1, dst_reg);
1628 		} else {
1629 			/* lgfi %w1,imm (load sign extend imm) */
1630 			EMIT6_IMM(0xc0010000, REG_W1, imm);
1631 			/* ngr %w1,%dst */
1632 			EMIT4(0xb9800000, REG_W1, dst_reg);
1633 		}
1634 		goto branch_oc;
1635 
1636 	case BPF_JMP | BPF_JSGT | BPF_X: /* ((s64) dst > (s64) src) */
1637 	case BPF_JMP32 | BPF_JSGT | BPF_X: /* ((s32) dst > (s32) src) */
1638 		mask = 0x2000; /* jh */
1639 		goto branch_xs;
1640 	case BPF_JMP | BPF_JSLT | BPF_X: /* ((s64) dst < (s64) src) */
1641 	case BPF_JMP32 | BPF_JSLT | BPF_X: /* ((s32) dst < (s32) src) */
1642 		mask = 0x4000; /* jl */
1643 		goto branch_xs;
1644 	case BPF_JMP | BPF_JSGE | BPF_X: /* ((s64) dst >= (s64) src) */
1645 	case BPF_JMP32 | BPF_JSGE | BPF_X: /* ((s32) dst >= (s32) src) */
1646 		mask = 0xa000; /* jhe */
1647 		goto branch_xs;
1648 	case BPF_JMP | BPF_JSLE | BPF_X: /* ((s64) dst <= (s64) src) */
1649 	case BPF_JMP32 | BPF_JSLE | BPF_X: /* ((s32) dst <= (s32) src) */
1650 		mask = 0xc000; /* jle */
1651 		goto branch_xs;
1652 	case BPF_JMP | BPF_JGT | BPF_X: /* (dst > src) */
1653 	case BPF_JMP32 | BPF_JGT | BPF_X: /* ((u32) dst > (u32) src) */
1654 		mask = 0x2000; /* jh */
1655 		goto branch_xu;
1656 	case BPF_JMP | BPF_JLT | BPF_X: /* (dst < src) */
1657 	case BPF_JMP32 | BPF_JLT | BPF_X: /* ((u32) dst < (u32) src) */
1658 		mask = 0x4000; /* jl */
1659 		goto branch_xu;
1660 	case BPF_JMP | BPF_JGE | BPF_X: /* (dst >= src) */
1661 	case BPF_JMP32 | BPF_JGE | BPF_X: /* ((u32) dst >= (u32) src) */
1662 		mask = 0xa000; /* jhe */
1663 		goto branch_xu;
1664 	case BPF_JMP | BPF_JLE | BPF_X: /* (dst <= src) */
1665 	case BPF_JMP32 | BPF_JLE | BPF_X: /* ((u32) dst <= (u32) src) */
1666 		mask = 0xc000; /* jle */
1667 		goto branch_xu;
1668 	case BPF_JMP | BPF_JNE | BPF_X: /* (dst != src) */
1669 	case BPF_JMP32 | BPF_JNE | BPF_X: /* ((u32) dst != (u32) src) */
1670 		mask = 0x7000; /* jne */
1671 		goto branch_xu;
1672 	case BPF_JMP | BPF_JEQ | BPF_X: /* (dst == src) */
1673 	case BPF_JMP32 | BPF_JEQ | BPF_X: /* ((u32) dst == (u32) src) */
1674 		mask = 0x8000; /* je */
1675 		goto branch_xu;
1676 	case BPF_JMP | BPF_JSET | BPF_X: /* (dst & src) */
1677 	case BPF_JMP32 | BPF_JSET | BPF_X: /* ((u32) dst & (u32) src) */
1678 	{
1679 		bool is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1680 
1681 		mask = 0x7000; /* jnz */
1682 		/* nrk or ngrk %w1,%dst,%src */
1683 		EMIT4_RRF((is_jmp32 ? 0xb9f40000 : 0xb9e40000),
1684 			  REG_W1, dst_reg, src_reg);
1685 		goto branch_oc;
1686 branch_ks:
1687 		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1688 		/* cfi or cgfi %dst,imm */
1689 		EMIT6_IMM(is_jmp32 ? 0xc20d0000 : 0xc20c0000,
1690 			  dst_reg, imm);
1691 		if (!is_first_pass(jit) &&
1692 		    can_use_rel(jit, addrs[i + off + 1])) {
1693 			/* brc mask,off */
1694 			EMIT4_PCREL_RIC(0xa7040000,
1695 					mask >> 12, addrs[i + off + 1]);
1696 		} else {
1697 			/* brcl mask,off */
1698 			EMIT6_PCREL_RILC(0xc0040000,
1699 					 mask >> 12, addrs[i + off + 1]);
1700 		}
1701 		break;
1702 branch_ku:
1703 		/* lgfi %w1,imm (load sign extend imm) */
1704 		src_reg = REG_1;
1705 		EMIT6_IMM(0xc0010000, src_reg, imm);
1706 		goto branch_xu;
1707 branch_xs:
1708 		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1709 		if (!is_first_pass(jit) &&
1710 		    can_use_rel(jit, addrs[i + off + 1])) {
1711 			/* crj or cgrj %dst,%src,mask,off */
1712 			EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0076 : 0x0064),
1713 				    dst_reg, src_reg, i, off, mask);
1714 		} else {
1715 			/* cr or cgr %dst,%src */
1716 			if (is_jmp32)
1717 				EMIT2(0x1900, dst_reg, src_reg);
1718 			else
1719 				EMIT4(0xb9200000, dst_reg, src_reg);
1720 			/* brcl mask,off */
1721 			EMIT6_PCREL_RILC(0xc0040000,
1722 					 mask >> 12, addrs[i + off + 1]);
1723 		}
1724 		break;
1725 branch_xu:
1726 		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1727 		if (!is_first_pass(jit) &&
1728 		    can_use_rel(jit, addrs[i + off + 1])) {
1729 			/* clrj or clgrj %dst,%src,mask,off */
1730 			EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0077 : 0x0065),
1731 				    dst_reg, src_reg, i, off, mask);
1732 		} else {
1733 			/* clr or clgr %dst,%src */
1734 			if (is_jmp32)
1735 				EMIT2(0x1500, dst_reg, src_reg);
1736 			else
1737 				EMIT4(0xb9210000, dst_reg, src_reg);
1738 			/* brcl mask,off */
1739 			EMIT6_PCREL_RILC(0xc0040000,
1740 					 mask >> 12, addrs[i + off + 1]);
1741 		}
1742 		break;
1743 branch_oc:
1744 		if (!is_first_pass(jit) &&
1745 		    can_use_rel(jit, addrs[i + off + 1])) {
1746 			/* brc mask,off */
1747 			EMIT4_PCREL_RIC(0xa7040000,
1748 					mask >> 12, addrs[i + off + 1]);
1749 		} else {
1750 			/* brcl mask,off */
1751 			EMIT6_PCREL_RILC(0xc0040000,
1752 					 mask >> 12, addrs[i + off + 1]);
1753 		}
1754 		break;
1755 	}
1756 	default: /* too complex, give up */
1757 		pr_err("Unknown opcode %02x\n", insn->code);
1758 		return -1;
1759 	}
1760 
1761 	if (probe_prg != -1) {
1762 		/*
1763 		 * Handlers of certain exceptions leave psw.addr pointing to
1764 		 * the instruction directly after the failing one. Therefore,
1765 		 * create two exception table entries and also add a nop in
1766 		 * case two probing instructions come directly after each
1767 		 * other.
1768 		 */
1769 		nop_prg = jit->prg;
1770 		/* bcr 0,%0 */
1771 		_EMIT2(0x0700);
1772 		err = bpf_jit_probe_mem(jit, fp, probe_prg, nop_prg);
1773 		if (err < 0)
1774 			return err;
1775 	}
1776 
1777 	return insn_count;
1778 }
1779 
1780 /*
1781  * Return whether new i-th instruction address does not violate any invariant
1782  */
bpf_is_new_addr_sane(struct bpf_jit * jit,int i)1783 static bool bpf_is_new_addr_sane(struct bpf_jit *jit, int i)
1784 {
1785 	/* On the first pass anything goes */
1786 	if (is_first_pass(jit))
1787 		return true;
1788 
1789 	/* The codegen pass must not change anything */
1790 	if (is_codegen_pass(jit))
1791 		return jit->addrs[i] == jit->prg;
1792 
1793 	/* Passes in between must not increase code size */
1794 	return jit->addrs[i] >= jit->prg;
1795 }
1796 
1797 /*
1798  * Update the address of i-th instruction
1799  */
bpf_set_addr(struct bpf_jit * jit,int i)1800 static int bpf_set_addr(struct bpf_jit *jit, int i)
1801 {
1802 	int delta;
1803 
1804 	if (is_codegen_pass(jit)) {
1805 		delta = jit->prg - jit->addrs[i];
1806 		if (delta < 0)
1807 			bpf_skip(jit, -delta);
1808 	}
1809 	if (WARN_ON_ONCE(!bpf_is_new_addr_sane(jit, i)))
1810 		return -1;
1811 	jit->addrs[i] = jit->prg;
1812 	return 0;
1813 }
1814 
1815 /*
1816  * Compile eBPF program into s390x code
1817  */
bpf_jit_prog(struct bpf_jit * jit,struct bpf_prog * fp,bool extra_pass,u32 stack_depth)1818 static int bpf_jit_prog(struct bpf_jit *jit, struct bpf_prog *fp,
1819 			bool extra_pass, u32 stack_depth)
1820 {
1821 	int i, insn_count, lit32_size, lit64_size;
1822 
1823 	jit->lit32 = jit->lit32_start;
1824 	jit->lit64 = jit->lit64_start;
1825 	jit->prg = 0;
1826 	jit->excnt = 0;
1827 
1828 	bpf_jit_prologue(jit, fp, stack_depth);
1829 	if (bpf_set_addr(jit, 0) < 0)
1830 		return -1;
1831 	for (i = 0; i < fp->len; i += insn_count) {
1832 		insn_count = bpf_jit_insn(jit, fp, i, extra_pass, stack_depth);
1833 		if (insn_count < 0)
1834 			return -1;
1835 		/* Next instruction address */
1836 		if (bpf_set_addr(jit, i + insn_count) < 0)
1837 			return -1;
1838 	}
1839 	bpf_jit_epilogue(jit, stack_depth);
1840 
1841 	lit32_size = jit->lit32 - jit->lit32_start;
1842 	lit64_size = jit->lit64 - jit->lit64_start;
1843 	jit->lit32_start = jit->prg;
1844 	if (lit32_size)
1845 		jit->lit32_start = ALIGN(jit->lit32_start, 4);
1846 	jit->lit64_start = jit->lit32_start + lit32_size;
1847 	if (lit64_size)
1848 		jit->lit64_start = ALIGN(jit->lit64_start, 8);
1849 	jit->size = jit->lit64_start + lit64_size;
1850 	jit->size_prg = jit->prg;
1851 
1852 	if (WARN_ON_ONCE(fp->aux->extable &&
1853 			 jit->excnt != fp->aux->num_exentries))
1854 		/* Verifier bug - too many entries. */
1855 		return -1;
1856 
1857 	return 0;
1858 }
1859 
bpf_jit_needs_zext(void)1860 bool bpf_jit_needs_zext(void)
1861 {
1862 	return true;
1863 }
1864 
1865 struct s390_jit_data {
1866 	struct bpf_binary_header *header;
1867 	struct bpf_jit ctx;
1868 	int pass;
1869 };
1870 
bpf_jit_alloc(struct bpf_jit * jit,struct bpf_prog * fp)1871 static struct bpf_binary_header *bpf_jit_alloc(struct bpf_jit *jit,
1872 					       struct bpf_prog *fp)
1873 {
1874 	struct bpf_binary_header *header;
1875 	u32 extable_size;
1876 	u32 code_size;
1877 
1878 	/* We need two entries per insn. */
1879 	fp->aux->num_exentries *= 2;
1880 
1881 	code_size = roundup(jit->size,
1882 			    __alignof__(struct exception_table_entry));
1883 	extable_size = fp->aux->num_exentries *
1884 		sizeof(struct exception_table_entry);
1885 	header = bpf_jit_binary_alloc(code_size + extable_size, &jit->prg_buf,
1886 				      8, jit_fill_hole);
1887 	if (!header)
1888 		return NULL;
1889 	fp->aux->extable = (struct exception_table_entry *)
1890 		(jit->prg_buf + code_size);
1891 	return header;
1892 }
1893 
1894 /*
1895  * Compile eBPF program "fp"
1896  */
bpf_int_jit_compile(struct bpf_prog * fp)1897 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp)
1898 {
1899 	u32 stack_depth = round_up(fp->aux->stack_depth, 8);
1900 	struct bpf_prog *tmp, *orig_fp = fp;
1901 	struct bpf_binary_header *header;
1902 	struct s390_jit_data *jit_data;
1903 	bool tmp_blinded = false;
1904 	bool extra_pass = false;
1905 	struct bpf_jit jit;
1906 	int pass;
1907 
1908 	if (!fp->jit_requested)
1909 		return orig_fp;
1910 
1911 	tmp = bpf_jit_blind_constants(fp);
1912 	/*
1913 	 * If blinding was requested and we failed during blinding,
1914 	 * we must fall back to the interpreter.
1915 	 */
1916 	if (IS_ERR(tmp))
1917 		return orig_fp;
1918 	if (tmp != fp) {
1919 		tmp_blinded = true;
1920 		fp = tmp;
1921 	}
1922 
1923 	jit_data = fp->aux->jit_data;
1924 	if (!jit_data) {
1925 		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
1926 		if (!jit_data) {
1927 			fp = orig_fp;
1928 			goto out;
1929 		}
1930 		fp->aux->jit_data = jit_data;
1931 	}
1932 	if (jit_data->ctx.addrs) {
1933 		jit = jit_data->ctx;
1934 		header = jit_data->header;
1935 		extra_pass = true;
1936 		pass = jit_data->pass + 1;
1937 		goto skip_init_ctx;
1938 	}
1939 
1940 	memset(&jit, 0, sizeof(jit));
1941 	jit.addrs = kvcalloc(fp->len + 1, sizeof(*jit.addrs), GFP_KERNEL);
1942 	if (jit.addrs == NULL) {
1943 		fp = orig_fp;
1944 		goto free_addrs;
1945 	}
1946 	/*
1947 	 * Three initial passes:
1948 	 *   - 1/2: Determine clobbered registers
1949 	 *   - 3:   Calculate program size and addrs array
1950 	 */
1951 	for (pass = 1; pass <= 3; pass++) {
1952 		if (bpf_jit_prog(&jit, fp, extra_pass, stack_depth)) {
1953 			fp = orig_fp;
1954 			goto free_addrs;
1955 		}
1956 	}
1957 	/*
1958 	 * Final pass: Allocate and generate program
1959 	 */
1960 	header = bpf_jit_alloc(&jit, fp);
1961 	if (!header) {
1962 		fp = orig_fp;
1963 		goto free_addrs;
1964 	}
1965 skip_init_ctx:
1966 	if (bpf_jit_prog(&jit, fp, extra_pass, stack_depth)) {
1967 		bpf_jit_binary_free(header);
1968 		fp = orig_fp;
1969 		goto free_addrs;
1970 	}
1971 	if (bpf_jit_enable > 1) {
1972 		bpf_jit_dump(fp->len, jit.size, pass, jit.prg_buf);
1973 		print_fn_code(jit.prg_buf, jit.size_prg);
1974 	}
1975 	if (!fp->is_func || extra_pass) {
1976 		bpf_jit_binary_lock_ro(header);
1977 	} else {
1978 		jit_data->header = header;
1979 		jit_data->ctx = jit;
1980 		jit_data->pass = pass;
1981 	}
1982 	fp->bpf_func = (void *) jit.prg_buf;
1983 	fp->jited = 1;
1984 	fp->jited_len = jit.size;
1985 
1986 	if (!fp->is_func || extra_pass) {
1987 		bpf_prog_fill_jited_linfo(fp, jit.addrs + 1);
1988 free_addrs:
1989 		kvfree(jit.addrs);
1990 		kfree(jit_data);
1991 		fp->aux->jit_data = NULL;
1992 	}
1993 out:
1994 	if (tmp_blinded)
1995 		bpf_jit_prog_release_other(fp, fp == orig_fp ?
1996 					   tmp : orig_fp);
1997 	return fp;
1998 }
1999 
bpf_jit_supports_kfunc_call(void)2000 bool bpf_jit_supports_kfunc_call(void)
2001 {
2002 	return true;
2003 }
2004 
bpf_jit_supports_far_kfunc_call(void)2005 bool bpf_jit_supports_far_kfunc_call(void)
2006 {
2007 	return true;
2008 }
2009 
bpf_arch_text_poke(void * ip,enum bpf_text_poke_type t,void * old_addr,void * new_addr)2010 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2011 		       void *old_addr, void *new_addr)
2012 {
2013 	struct bpf_plt expected_plt, current_plt, new_plt, *plt;
2014 	struct {
2015 		u16 opc;
2016 		s32 disp;
2017 	} __packed insn;
2018 	char *ret;
2019 	int err;
2020 
2021 	/* Verify the branch to be patched. */
2022 	err = copy_from_kernel_nofault(&insn, ip, sizeof(insn));
2023 	if (err < 0)
2024 		return err;
2025 	if (insn.opc != (0xc004 | (old_addr ? 0xf0 : 0)))
2026 		return -EINVAL;
2027 
2028 	if (t == BPF_MOD_JUMP &&
2029 	    insn.disp == ((char *)new_addr - (char *)ip) >> 1) {
2030 		/*
2031 		 * The branch already points to the destination,
2032 		 * there is no PLT.
2033 		 */
2034 	} else {
2035 		/* Verify the PLT. */
2036 		plt = ip + (insn.disp << 1);
2037 		err = copy_from_kernel_nofault(&current_plt, plt,
2038 					       sizeof(current_plt));
2039 		if (err < 0)
2040 			return err;
2041 		ret = (char *)ip + 6;
2042 		bpf_jit_plt(&expected_plt, ret, old_addr);
2043 		if (memcmp(&current_plt, &expected_plt, sizeof(current_plt)))
2044 			return -EINVAL;
2045 		/* Adjust the call address. */
2046 		bpf_jit_plt(&new_plt, ret, new_addr);
2047 		s390_kernel_write(&plt->target, &new_plt.target,
2048 				  sizeof(void *));
2049 	}
2050 
2051 	/* Adjust the mask of the branch. */
2052 	insn.opc = 0xc004 | (new_addr ? 0xf0 : 0);
2053 	s390_kernel_write((char *)ip + 1, (char *)&insn.opc + 1, 1);
2054 
2055 	/* Make the new code visible to the other CPUs. */
2056 	text_poke_sync_lock();
2057 
2058 	return 0;
2059 }
2060 
2061 struct bpf_tramp_jit {
2062 	struct bpf_jit common;
2063 	int orig_stack_args_off;/* Offset of arguments placed on stack by the
2064 				 * func_addr's original caller
2065 				 */
2066 	int stack_size;		/* Trampoline stack size */
2067 	int backchain_off;	/* Offset of backchain */
2068 	int stack_args_off;	/* Offset of stack arguments for calling
2069 				 * func_addr, has to be at the top
2070 				 */
2071 	int reg_args_off;	/* Offset of register arguments for calling
2072 				 * func_addr
2073 				 */
2074 	int ip_off;		/* For bpf_get_func_ip(), has to be at
2075 				 * (ctx - 16)
2076 				 */
2077 	int arg_cnt_off;	/* For bpf_get_func_arg_cnt(), has to be at
2078 				 * (ctx - 8)
2079 				 */
2080 	int bpf_args_off;	/* Offset of BPF_PROG context, which consists
2081 				 * of BPF arguments followed by return value
2082 				 */
2083 	int retval_off;		/* Offset of return value (see above) */
2084 	int r7_r8_off;		/* Offset of saved %r7 and %r8, which are used
2085 				 * for __bpf_prog_enter() return value and
2086 				 * func_addr respectively
2087 				 */
2088 	int run_ctx_off;	/* Offset of struct bpf_tramp_run_ctx */
2089 	int tccnt_off;		/* Offset of saved tailcall counter */
2090 	int r14_off;		/* Offset of saved %r14, has to be at the
2091 				 * bottom */
2092 	int do_fexit;		/* do_fexit: label */
2093 };
2094 
load_imm64(struct bpf_jit * jit,int dst_reg,u64 val)2095 static void load_imm64(struct bpf_jit *jit, int dst_reg, u64 val)
2096 {
2097 	/* llihf %dst_reg,val_hi */
2098 	EMIT6_IMM(0xc00e0000, dst_reg, (val >> 32));
2099 	/* oilf %rdst_reg,val_lo */
2100 	EMIT6_IMM(0xc00d0000, dst_reg, val);
2101 }
2102 
invoke_bpf_prog(struct bpf_tramp_jit * tjit,const struct btf_func_model * m,struct bpf_tramp_link * tlink,bool save_ret)2103 static int invoke_bpf_prog(struct bpf_tramp_jit *tjit,
2104 			   const struct btf_func_model *m,
2105 			   struct bpf_tramp_link *tlink, bool save_ret)
2106 {
2107 	struct bpf_jit *jit = &tjit->common;
2108 	int cookie_off = tjit->run_ctx_off +
2109 			 offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
2110 	struct bpf_prog *p = tlink->link.prog;
2111 	int patch;
2112 
2113 	/*
2114 	 * run_ctx.cookie = tlink->cookie;
2115 	 */
2116 
2117 	/* %r0 = tlink->cookie */
2118 	load_imm64(jit, REG_W0, tlink->cookie);
2119 	/* stg %r0,cookie_off(%r15) */
2120 	EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, REG_0, REG_15, cookie_off);
2121 
2122 	/*
2123 	 * if ((start = __bpf_prog_enter(p, &run_ctx)) == 0)
2124 	 *         goto skip;
2125 	 */
2126 
2127 	/* %r1 = __bpf_prog_enter */
2128 	load_imm64(jit, REG_1, (u64)bpf_trampoline_enter(p));
2129 	/* %r2 = p */
2130 	load_imm64(jit, REG_2, (u64)p);
2131 	/* la %r3,run_ctx_off(%r15) */
2132 	EMIT4_DISP(0x41000000, REG_3, REG_15, tjit->run_ctx_off);
2133 	/* %r1() */
2134 	call_r1(jit);
2135 	/* ltgr %r7,%r2 */
2136 	EMIT4(0xb9020000, REG_7, REG_2);
2137 	/* brcl 8,skip */
2138 	patch = jit->prg;
2139 	EMIT6_PCREL_RILC(0xc0040000, 8, 0);
2140 
2141 	/*
2142 	 * retval = bpf_func(args, p->insnsi);
2143 	 */
2144 
2145 	/* %r1 = p->bpf_func */
2146 	load_imm64(jit, REG_1, (u64)p->bpf_func);
2147 	/* la %r2,bpf_args_off(%r15) */
2148 	EMIT4_DISP(0x41000000, REG_2, REG_15, tjit->bpf_args_off);
2149 	/* %r3 = p->insnsi */
2150 	if (!p->jited)
2151 		load_imm64(jit, REG_3, (u64)p->insnsi);
2152 	/* %r1() */
2153 	call_r1(jit);
2154 	/* stg %r2,retval_off(%r15) */
2155 	if (save_ret) {
2156 		if (sign_extend(jit, REG_2, m->ret_size, m->ret_flags))
2157 			return -1;
2158 		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_2, REG_0, REG_15,
2159 			      tjit->retval_off);
2160 	}
2161 
2162 	/* skip: */
2163 	if (jit->prg_buf)
2164 		*(u32 *)&jit->prg_buf[patch + 2] = (jit->prg - patch) >> 1;
2165 
2166 	/*
2167 	 * __bpf_prog_exit(p, start, &run_ctx);
2168 	 */
2169 
2170 	/* %r1 = __bpf_prog_exit */
2171 	load_imm64(jit, REG_1, (u64)bpf_trampoline_exit(p));
2172 	/* %r2 = p */
2173 	load_imm64(jit, REG_2, (u64)p);
2174 	/* lgr %r3,%r7 */
2175 	EMIT4(0xb9040000, REG_3, REG_7);
2176 	/* la %r4,run_ctx_off(%r15) */
2177 	EMIT4_DISP(0x41000000, REG_4, REG_15, tjit->run_ctx_off);
2178 	/* %r1() */
2179 	call_r1(jit);
2180 
2181 	return 0;
2182 }
2183 
alloc_stack(struct bpf_tramp_jit * tjit,size_t size)2184 static int alloc_stack(struct bpf_tramp_jit *tjit, size_t size)
2185 {
2186 	int stack_offset = tjit->stack_size;
2187 
2188 	tjit->stack_size += size;
2189 	return stack_offset;
2190 }
2191 
2192 /* ABI uses %r2 - %r6 for parameter passing. */
2193 #define MAX_NR_REG_ARGS 5
2194 
2195 /* The "L" field of the "mvc" instruction is 8 bits. */
2196 #define MAX_MVC_SIZE 256
2197 #define MAX_NR_STACK_ARGS (MAX_MVC_SIZE / sizeof(u64))
2198 
2199 /* -mfentry generates a 6-byte nop on s390x. */
2200 #define S390X_PATCH_SIZE 6
2201 
__arch_prepare_bpf_trampoline(struct bpf_tramp_image * im,struct bpf_tramp_jit * tjit,const struct btf_func_model * m,u32 flags,struct bpf_tramp_links * tlinks,void * func_addr)2202 static int __arch_prepare_bpf_trampoline(struct bpf_tramp_image *im,
2203 					 struct bpf_tramp_jit *tjit,
2204 					 const struct btf_func_model *m,
2205 					 u32 flags,
2206 					 struct bpf_tramp_links *tlinks,
2207 					 void *func_addr)
2208 {
2209 	struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
2210 	struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
2211 	struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
2212 	int nr_bpf_args, nr_reg_args, nr_stack_args;
2213 	struct bpf_jit *jit = &tjit->common;
2214 	int arg, bpf_arg_off;
2215 	int i, j;
2216 
2217 	/* Support as many stack arguments as "mvc" instruction can handle. */
2218 	nr_reg_args = min_t(int, m->nr_args, MAX_NR_REG_ARGS);
2219 	nr_stack_args = m->nr_args - nr_reg_args;
2220 	if (nr_stack_args > MAX_NR_STACK_ARGS)
2221 		return -ENOTSUPP;
2222 
2223 	/* Return to %r14, since func_addr and %r0 are not available. */
2224 	if (!func_addr && !(flags & BPF_TRAMP_F_ORIG_STACK))
2225 		flags |= BPF_TRAMP_F_SKIP_FRAME;
2226 
2227 	/*
2228 	 * Compute how many arguments we need to pass to BPF programs.
2229 	 * BPF ABI mirrors that of x86_64: arguments that are 16 bytes or
2230 	 * smaller are packed into 1 or 2 registers; larger arguments are
2231 	 * passed via pointers.
2232 	 * In s390x ABI, arguments that are 8 bytes or smaller are packed into
2233 	 * a register; larger arguments are passed via pointers.
2234 	 * We need to deal with this difference.
2235 	 */
2236 	nr_bpf_args = 0;
2237 	for (i = 0; i < m->nr_args; i++) {
2238 		if (m->arg_size[i] <= 8)
2239 			nr_bpf_args += 1;
2240 		else if (m->arg_size[i] <= 16)
2241 			nr_bpf_args += 2;
2242 		else
2243 			return -ENOTSUPP;
2244 	}
2245 
2246 	/*
2247 	 * Calculate the stack layout.
2248 	 */
2249 
2250 	/*
2251 	 * Allocate STACK_FRAME_OVERHEAD bytes for the callees. As the s390x
2252 	 * ABI requires, put our backchain at the end of the allocated memory.
2253 	 */
2254 	tjit->stack_size = STACK_FRAME_OVERHEAD;
2255 	tjit->backchain_off = tjit->stack_size - sizeof(u64);
2256 	tjit->stack_args_off = alloc_stack(tjit, nr_stack_args * sizeof(u64));
2257 	tjit->reg_args_off = alloc_stack(tjit, nr_reg_args * sizeof(u64));
2258 	tjit->ip_off = alloc_stack(tjit, sizeof(u64));
2259 	tjit->arg_cnt_off = alloc_stack(tjit, sizeof(u64));
2260 	tjit->bpf_args_off = alloc_stack(tjit, nr_bpf_args * sizeof(u64));
2261 	tjit->retval_off = alloc_stack(tjit, sizeof(u64));
2262 	tjit->r7_r8_off = alloc_stack(tjit, 2 * sizeof(u64));
2263 	tjit->run_ctx_off = alloc_stack(tjit,
2264 					sizeof(struct bpf_tramp_run_ctx));
2265 	tjit->tccnt_off = alloc_stack(tjit, sizeof(u64));
2266 	tjit->r14_off = alloc_stack(tjit, sizeof(u64) * 2);
2267 	/*
2268 	 * In accordance with the s390x ABI, the caller has allocated
2269 	 * STACK_FRAME_OVERHEAD bytes for us. 8 of them contain the caller's
2270 	 * backchain, and the rest we can use.
2271 	 */
2272 	tjit->stack_size -= STACK_FRAME_OVERHEAD - sizeof(u64);
2273 	tjit->orig_stack_args_off = tjit->stack_size + STACK_FRAME_OVERHEAD;
2274 
2275 	/* lgr %r1,%r15 */
2276 	EMIT4(0xb9040000, REG_1, REG_15);
2277 	/* aghi %r15,-stack_size */
2278 	EMIT4_IMM(0xa70b0000, REG_15, -tjit->stack_size);
2279 	/* stg %r1,backchain_off(%r15) */
2280 	EMIT6_DISP_LH(0xe3000000, 0x0024, REG_1, REG_0, REG_15,
2281 		      tjit->backchain_off);
2282 	/* mvc tccnt_off(4,%r15),stack_size+STK_OFF_TCCNT(%r15) */
2283 	_EMIT6(0xd203f000 | tjit->tccnt_off,
2284 	       0xf000 | (tjit->stack_size + STK_OFF_TCCNT));
2285 	/* stmg %r2,%rN,fwd_reg_args_off(%r15) */
2286 	if (nr_reg_args)
2287 		EMIT6_DISP_LH(0xeb000000, 0x0024, REG_2,
2288 			      REG_2 + (nr_reg_args - 1), REG_15,
2289 			      tjit->reg_args_off);
2290 	for (i = 0, j = 0; i < m->nr_args; i++) {
2291 		if (i < MAX_NR_REG_ARGS)
2292 			arg = REG_2 + i;
2293 		else
2294 			arg = tjit->orig_stack_args_off +
2295 			      (i - MAX_NR_REG_ARGS) * sizeof(u64);
2296 		bpf_arg_off = tjit->bpf_args_off + j * sizeof(u64);
2297 		if (m->arg_size[i] <= 8) {
2298 			if (i < MAX_NR_REG_ARGS)
2299 				/* stg %arg,bpf_arg_off(%r15) */
2300 				EMIT6_DISP_LH(0xe3000000, 0x0024, arg,
2301 					      REG_0, REG_15, bpf_arg_off);
2302 			else
2303 				/* mvc bpf_arg_off(8,%r15),arg(%r15) */
2304 				_EMIT6(0xd207f000 | bpf_arg_off,
2305 				       0xf000 | arg);
2306 			j += 1;
2307 		} else {
2308 			if (i < MAX_NR_REG_ARGS) {
2309 				/* mvc bpf_arg_off(16,%r15),0(%arg) */
2310 				_EMIT6(0xd20ff000 | bpf_arg_off,
2311 				       reg2hex[arg] << 12);
2312 			} else {
2313 				/* lg %r1,arg(%r15) */
2314 				EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_0,
2315 					      REG_15, arg);
2316 				/* mvc bpf_arg_off(16,%r15),0(%r1) */
2317 				_EMIT6(0xd20ff000 | bpf_arg_off, 0x1000);
2318 			}
2319 			j += 2;
2320 		}
2321 	}
2322 	/* stmg %r7,%r8,r7_r8_off(%r15) */
2323 	EMIT6_DISP_LH(0xeb000000, 0x0024, REG_7, REG_8, REG_15,
2324 		      tjit->r7_r8_off);
2325 	/* stg %r14,r14_off(%r15) */
2326 	EMIT6_DISP_LH(0xe3000000, 0x0024, REG_14, REG_0, REG_15, tjit->r14_off);
2327 
2328 	if (flags & BPF_TRAMP_F_ORIG_STACK) {
2329 		/*
2330 		 * The ftrace trampoline puts the return address (which is the
2331 		 * address of the original function + S390X_PATCH_SIZE) into
2332 		 * %r0; see ftrace_shared_hotpatch_trampoline_br and
2333 		 * ftrace_init_nop() for details.
2334 		 */
2335 
2336 		/* lgr %r8,%r0 */
2337 		EMIT4(0xb9040000, REG_8, REG_0);
2338 	} else {
2339 		/* %r8 = func_addr + S390X_PATCH_SIZE */
2340 		load_imm64(jit, REG_8, (u64)func_addr + S390X_PATCH_SIZE);
2341 	}
2342 
2343 	/*
2344 	 * ip = func_addr;
2345 	 * arg_cnt = m->nr_args;
2346 	 */
2347 
2348 	if (flags & BPF_TRAMP_F_IP_ARG) {
2349 		/* %r0 = func_addr */
2350 		load_imm64(jit, REG_0, (u64)func_addr);
2351 		/* stg %r0,ip_off(%r15) */
2352 		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_0, REG_0, REG_15,
2353 			      tjit->ip_off);
2354 	}
2355 	/* lghi %r0,nr_bpf_args */
2356 	EMIT4_IMM(0xa7090000, REG_0, nr_bpf_args);
2357 	/* stg %r0,arg_cnt_off(%r15) */
2358 	EMIT6_DISP_LH(0xe3000000, 0x0024, REG_0, REG_0, REG_15,
2359 		      tjit->arg_cnt_off);
2360 
2361 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2362 		/*
2363 		 * __bpf_tramp_enter(im);
2364 		 */
2365 
2366 		/* %r1 = __bpf_tramp_enter */
2367 		load_imm64(jit, REG_1, (u64)__bpf_tramp_enter);
2368 		/* %r2 = im */
2369 		load_imm64(jit, REG_2, (u64)im);
2370 		/* %r1() */
2371 		call_r1(jit);
2372 	}
2373 
2374 	for (i = 0; i < fentry->nr_links; i++)
2375 		if (invoke_bpf_prog(tjit, m, fentry->links[i],
2376 				    flags & BPF_TRAMP_F_RET_FENTRY_RET))
2377 			return -EINVAL;
2378 
2379 	if (fmod_ret->nr_links) {
2380 		/*
2381 		 * retval = 0;
2382 		 */
2383 
2384 		/* xc retval_off(8,%r15),retval_off(%r15) */
2385 		_EMIT6(0xd707f000 | tjit->retval_off,
2386 		       0xf000 | tjit->retval_off);
2387 
2388 		for (i = 0; i < fmod_ret->nr_links; i++) {
2389 			if (invoke_bpf_prog(tjit, m, fmod_ret->links[i], true))
2390 				return -EINVAL;
2391 
2392 			/*
2393 			 * if (retval)
2394 			 *         goto do_fexit;
2395 			 */
2396 
2397 			/* ltg %r0,retval_off(%r15) */
2398 			EMIT6_DISP_LH(0xe3000000, 0x0002, REG_0, REG_0, REG_15,
2399 				      tjit->retval_off);
2400 			/* brcl 7,do_fexit */
2401 			EMIT6_PCREL_RILC(0xc0040000, 7, tjit->do_fexit);
2402 		}
2403 	}
2404 
2405 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2406 		/*
2407 		 * retval = func_addr(args);
2408 		 */
2409 
2410 		/* lmg %r2,%rN,reg_args_off(%r15) */
2411 		if (nr_reg_args)
2412 			EMIT6_DISP_LH(0xeb000000, 0x0004, REG_2,
2413 				      REG_2 + (nr_reg_args - 1), REG_15,
2414 				      tjit->reg_args_off);
2415 		/* mvc stack_args_off(N,%r15),orig_stack_args_off(%r15) */
2416 		if (nr_stack_args)
2417 			_EMIT6(0xd200f000 |
2418 				       (nr_stack_args * sizeof(u64) - 1) << 16 |
2419 				       tjit->stack_args_off,
2420 			       0xf000 | tjit->orig_stack_args_off);
2421 		/* mvc STK_OFF_TCCNT(4,%r15),tccnt_off(%r15) */
2422 		_EMIT6(0xd203f000 | STK_OFF_TCCNT, 0xf000 | tjit->tccnt_off);
2423 		/* lgr %r1,%r8 */
2424 		EMIT4(0xb9040000, REG_1, REG_8);
2425 		/* %r1() */
2426 		call_r1(jit);
2427 		/* stg %r2,retval_off(%r15) */
2428 		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_2, REG_0, REG_15,
2429 			      tjit->retval_off);
2430 
2431 		im->ip_after_call = jit->prg_buf + jit->prg;
2432 
2433 		/*
2434 		 * The following nop will be patched by bpf_tramp_image_put().
2435 		 */
2436 
2437 		/* brcl 0,im->ip_epilogue */
2438 		EMIT6_PCREL_RILC(0xc0040000, 0, (u64)im->ip_epilogue);
2439 	}
2440 
2441 	/* do_fexit: */
2442 	tjit->do_fexit = jit->prg;
2443 	for (i = 0; i < fexit->nr_links; i++)
2444 		if (invoke_bpf_prog(tjit, m, fexit->links[i], false))
2445 			return -EINVAL;
2446 
2447 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2448 		im->ip_epilogue = jit->prg_buf + jit->prg;
2449 
2450 		/*
2451 		 * __bpf_tramp_exit(im);
2452 		 */
2453 
2454 		/* %r1 = __bpf_tramp_exit */
2455 		load_imm64(jit, REG_1, (u64)__bpf_tramp_exit);
2456 		/* %r2 = im */
2457 		load_imm64(jit, REG_2, (u64)im);
2458 		/* %r1() */
2459 		call_r1(jit);
2460 	}
2461 
2462 	/* lmg %r2,%rN,reg_args_off(%r15) */
2463 	if ((flags & BPF_TRAMP_F_RESTORE_REGS) && nr_reg_args)
2464 		EMIT6_DISP_LH(0xeb000000, 0x0004, REG_2,
2465 			      REG_2 + (nr_reg_args - 1), REG_15,
2466 			      tjit->reg_args_off);
2467 	/* lgr %r1,%r8 */
2468 	if (!(flags & BPF_TRAMP_F_SKIP_FRAME))
2469 		EMIT4(0xb9040000, REG_1, REG_8);
2470 	/* lmg %r7,%r8,r7_r8_off(%r15) */
2471 	EMIT6_DISP_LH(0xeb000000, 0x0004, REG_7, REG_8, REG_15,
2472 		      tjit->r7_r8_off);
2473 	/* lg %r14,r14_off(%r15) */
2474 	EMIT6_DISP_LH(0xe3000000, 0x0004, REG_14, REG_0, REG_15, tjit->r14_off);
2475 	/* lg %r2,retval_off(%r15) */
2476 	if (flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET))
2477 		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_2, REG_0, REG_15,
2478 			      tjit->retval_off);
2479 	/* mvc stack_size+STK_OFF_TCCNT(4,%r15),tccnt_off(%r15) */
2480 	_EMIT6(0xd203f000 | (tjit->stack_size + STK_OFF_TCCNT),
2481 	       0xf000 | tjit->tccnt_off);
2482 	/* aghi %r15,stack_size */
2483 	EMIT4_IMM(0xa70b0000, REG_15, tjit->stack_size);
2484 	/* Emit an expoline for the following indirect jump. */
2485 	if (nospec_uses_trampoline())
2486 		emit_expoline(jit);
2487 	if (flags & BPF_TRAMP_F_SKIP_FRAME)
2488 		/* br %r14 */
2489 		_EMIT2(0x07fe);
2490 	else
2491 		/* br %r1 */
2492 		_EMIT2(0x07f1);
2493 
2494 	emit_r1_thunk(jit);
2495 
2496 	return 0;
2497 }
2498 
arch_prepare_bpf_trampoline(struct bpf_tramp_image * im,void * image,void * image_end,const struct btf_func_model * m,u32 flags,struct bpf_tramp_links * tlinks,void * func_addr)2499 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image,
2500 				void *image_end, const struct btf_func_model *m,
2501 				u32 flags, struct bpf_tramp_links *tlinks,
2502 				void *func_addr)
2503 {
2504 	struct bpf_tramp_jit tjit;
2505 	int ret;
2506 	int i;
2507 
2508 	for (i = 0; i < 2; i++) {
2509 		if (i == 0) {
2510 			/* Compute offsets, check whether the code fits. */
2511 			memset(&tjit, 0, sizeof(tjit));
2512 		} else {
2513 			/* Generate the code. */
2514 			tjit.common.prg = 0;
2515 			tjit.common.prg_buf = image;
2516 		}
2517 		ret = __arch_prepare_bpf_trampoline(im, &tjit, m, flags,
2518 						    tlinks, func_addr);
2519 		if (ret < 0)
2520 			return ret;
2521 		if (tjit.common.prg > (char *)image_end - (char *)image)
2522 			/*
2523 			 * Use the same error code as for exceeding
2524 			 * BPF_MAX_TRAMP_LINKS.
2525 			 */
2526 			return -E2BIG;
2527 	}
2528 
2529 	return tjit.common.prg;
2530 }
2531 
bpf_jit_supports_subprog_tailcalls(void)2532 bool bpf_jit_supports_subprog_tailcalls(void)
2533 {
2534 	return true;
2535 }
2536