1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2014 Hauke Mehrtens <hauke@hauke-m.de>
4  * Copyright (C) 2015 Broadcom Corporation
5  */
6 
7 #include <linux/kernel.h>
8 #include <linux/pci.h>
9 #include <linux/pci-ecam.h>
10 #include <linux/msi.h>
11 #include <linux/clk.h>
12 #include <linux/module.h>
13 #include <linux/mbus.h>
14 #include <linux/slab.h>
15 #include <linux/delay.h>
16 #include <linux/interrupt.h>
17 #include <linux/irqchip/arm-gic-v3.h>
18 #include <linux/platform_device.h>
19 #include <linux/of_address.h>
20 #include <linux/of_pci.h>
21 #include <linux/of_platform.h>
22 #include <linux/phy/phy.h>
23 
24 #include "pcie-iproc.h"
25 
26 #define EP_PERST_SOURCE_SELECT_SHIFT	2
27 #define EP_PERST_SOURCE_SELECT		BIT(EP_PERST_SOURCE_SELECT_SHIFT)
28 #define EP_MODE_SURVIVE_PERST_SHIFT	1
29 #define EP_MODE_SURVIVE_PERST		BIT(EP_MODE_SURVIVE_PERST_SHIFT)
30 #define RC_PCIE_RST_OUTPUT_SHIFT	0
31 #define RC_PCIE_RST_OUTPUT		BIT(RC_PCIE_RST_OUTPUT_SHIFT)
32 #define PAXC_RESET_MASK			0x7f
33 
34 #define GIC_V3_CFG_SHIFT		0
35 #define GIC_V3_CFG			BIT(GIC_V3_CFG_SHIFT)
36 
37 #define MSI_ENABLE_CFG_SHIFT		0
38 #define MSI_ENABLE_CFG			BIT(MSI_ENABLE_CFG_SHIFT)
39 
40 #define CFG_IND_ADDR_MASK		0x00001ffc
41 
42 #define CFG_ADDR_REG_NUM_MASK		0x00000ffc
43 #define CFG_ADDR_CFG_TYPE_1		1
44 
45 #define SYS_RC_INTX_MASK		0xf
46 
47 #define PCIE_PHYLINKUP_SHIFT		3
48 #define PCIE_PHYLINKUP			BIT(PCIE_PHYLINKUP_SHIFT)
49 #define PCIE_DL_ACTIVE_SHIFT		2
50 #define PCIE_DL_ACTIVE			BIT(PCIE_DL_ACTIVE_SHIFT)
51 
52 #define APB_ERR_EN_SHIFT		0
53 #define APB_ERR_EN			BIT(APB_ERR_EN_SHIFT)
54 
55 #define CFG_RD_SUCCESS			0
56 #define CFG_RD_UR			1
57 #define CFG_RD_CRS			2
58 #define CFG_RD_CA			3
59 #define CFG_RETRY_STATUS		0xffff0001
60 #define CFG_RETRY_STATUS_TIMEOUT_US	500000 /* 500 milliseconds */
61 
62 /* derive the enum index of the outbound/inbound mapping registers */
63 #define MAP_REG(base_reg, index)	((base_reg) + (index) * 2)
64 
65 /*
66  * Maximum number of outbound mapping window sizes that can be supported by any
67  * OARR/OMAP mapping pair
68  */
69 #define MAX_NUM_OB_WINDOW_SIZES		4
70 
71 #define OARR_VALID_SHIFT		0
72 #define OARR_VALID			BIT(OARR_VALID_SHIFT)
73 #define OARR_SIZE_CFG_SHIFT		1
74 
75 /*
76  * Maximum number of inbound mapping region sizes that can be supported by an
77  * IARR
78  */
79 #define MAX_NUM_IB_REGION_SIZES		9
80 
81 #define IMAP_VALID_SHIFT		0
82 #define IMAP_VALID			BIT(IMAP_VALID_SHIFT)
83 
84 #define IPROC_PCI_PM_CAP		0x48
85 #define IPROC_PCI_PM_CAP_MASK		0xffff
86 #define IPROC_PCI_EXP_CAP		0xac
87 
88 #define IPROC_PCIE_REG_INVALID		0xffff
89 
90 /**
91  * struct iproc_pcie_ob_map - iProc PCIe outbound mapping controller-specific
92  * parameters
93  * @window_sizes: list of supported outbound mapping window sizes in MB
94  * @nr_sizes: number of supported outbound mapping window sizes
95  */
96 struct iproc_pcie_ob_map {
97 	resource_size_t window_sizes[MAX_NUM_OB_WINDOW_SIZES];
98 	unsigned int nr_sizes;
99 };
100 
101 static const struct iproc_pcie_ob_map paxb_ob_map[] = {
102 	{
103 		/* OARR0/OMAP0 */
104 		.window_sizes = { 128, 256 },
105 		.nr_sizes = 2,
106 	},
107 	{
108 		/* OARR1/OMAP1 */
109 		.window_sizes = { 128, 256 },
110 		.nr_sizes = 2,
111 	},
112 };
113 
114 static const struct iproc_pcie_ob_map paxb_v2_ob_map[] = {
115 	{
116 		/* OARR0/OMAP0 */
117 		.window_sizes = { 128, 256 },
118 		.nr_sizes = 2,
119 	},
120 	{
121 		/* OARR1/OMAP1 */
122 		.window_sizes = { 128, 256 },
123 		.nr_sizes = 2,
124 	},
125 	{
126 		/* OARR2/OMAP2 */
127 		.window_sizes = { 128, 256, 512, 1024 },
128 		.nr_sizes = 4,
129 	},
130 	{
131 		/* OARR3/OMAP3 */
132 		.window_sizes = { 128, 256, 512, 1024 },
133 		.nr_sizes = 4,
134 	},
135 };
136 
137 /**
138  * enum iproc_pcie_ib_map_type - iProc PCIe inbound mapping type
139  * @IPROC_PCIE_IB_MAP_MEM: DDR memory
140  * @IPROC_PCIE_IB_MAP_IO: device I/O memory
141  * @IPROC_PCIE_IB_MAP_INVALID: invalid or unused
142  */
143 enum iproc_pcie_ib_map_type {
144 	IPROC_PCIE_IB_MAP_MEM = 0,
145 	IPROC_PCIE_IB_MAP_IO,
146 	IPROC_PCIE_IB_MAP_INVALID
147 };
148 
149 /**
150  * struct iproc_pcie_ib_map - iProc PCIe inbound mapping controller-specific
151  * parameters
152  * @type: inbound mapping region type
153  * @size_unit: inbound mapping region size unit, could be SZ_1K, SZ_1M, or
154  * SZ_1G
155  * @region_sizes: list of supported inbound mapping region sizes in KB, MB, or
156  * GB, depending on the size unit
157  * @nr_sizes: number of supported inbound mapping region sizes
158  * @nr_windows: number of supported inbound mapping windows for the region
159  * @imap_addr_offset: register offset between the upper and lower 32-bit
160  * IMAP address registers
161  * @imap_window_offset: register offset between each IMAP window
162  */
163 struct iproc_pcie_ib_map {
164 	enum iproc_pcie_ib_map_type type;
165 	unsigned int size_unit;
166 	resource_size_t region_sizes[MAX_NUM_IB_REGION_SIZES];
167 	unsigned int nr_sizes;
168 	unsigned int nr_windows;
169 	u16 imap_addr_offset;
170 	u16 imap_window_offset;
171 };
172 
173 static const struct iproc_pcie_ib_map paxb_v2_ib_map[] = {
174 	{
175 		/* IARR0/IMAP0 */
176 		.type = IPROC_PCIE_IB_MAP_IO,
177 		.size_unit = SZ_1K,
178 		.region_sizes = { 32 },
179 		.nr_sizes = 1,
180 		.nr_windows = 8,
181 		.imap_addr_offset = 0x40,
182 		.imap_window_offset = 0x4,
183 	},
184 	{
185 		/* IARR1/IMAP1 */
186 		.type = IPROC_PCIE_IB_MAP_MEM,
187 		.size_unit = SZ_1M,
188 		.region_sizes = { 8 },
189 		.nr_sizes = 1,
190 		.nr_windows = 8,
191 		.imap_addr_offset = 0x4,
192 		.imap_window_offset = 0x8,
193 
194 	},
195 	{
196 		/* IARR2/IMAP2 */
197 		.type = IPROC_PCIE_IB_MAP_MEM,
198 		.size_unit = SZ_1M,
199 		.region_sizes = { 64, 128, 256, 512, 1024, 2048, 4096, 8192,
200 				  16384 },
201 		.nr_sizes = 9,
202 		.nr_windows = 1,
203 		.imap_addr_offset = 0x4,
204 		.imap_window_offset = 0x8,
205 	},
206 	{
207 		/* IARR3/IMAP3 */
208 		.type = IPROC_PCIE_IB_MAP_MEM,
209 		.size_unit = SZ_1G,
210 		.region_sizes = { 1, 2, 4, 8, 16, 32 },
211 		.nr_sizes = 6,
212 		.nr_windows = 8,
213 		.imap_addr_offset = 0x4,
214 		.imap_window_offset = 0x8,
215 	},
216 	{
217 		/* IARR4/IMAP4 */
218 		.type = IPROC_PCIE_IB_MAP_MEM,
219 		.size_unit = SZ_1G,
220 		.region_sizes = { 32, 64, 128, 256, 512 },
221 		.nr_sizes = 5,
222 		.nr_windows = 8,
223 		.imap_addr_offset = 0x4,
224 		.imap_window_offset = 0x8,
225 	},
226 };
227 
228 /*
229  * iProc PCIe host registers
230  */
231 enum iproc_pcie_reg {
232 	/* clock/reset signal control */
233 	IPROC_PCIE_CLK_CTRL = 0,
234 
235 	/*
236 	 * To allow MSI to be steered to an external MSI controller (e.g., ARM
237 	 * GICv3 ITS)
238 	 */
239 	IPROC_PCIE_MSI_GIC_MODE,
240 
241 	/*
242 	 * IPROC_PCIE_MSI_BASE_ADDR and IPROC_PCIE_MSI_WINDOW_SIZE define the
243 	 * window where the MSI posted writes are written, for the writes to be
244 	 * interpreted as MSI writes.
245 	 */
246 	IPROC_PCIE_MSI_BASE_ADDR,
247 	IPROC_PCIE_MSI_WINDOW_SIZE,
248 
249 	/*
250 	 * To hold the address of the register where the MSI writes are
251 	 * programmed.  When ARM GICv3 ITS is used, this should be programmed
252 	 * with the address of the GITS_TRANSLATER register.
253 	 */
254 	IPROC_PCIE_MSI_ADDR_LO,
255 	IPROC_PCIE_MSI_ADDR_HI,
256 
257 	/* enable MSI */
258 	IPROC_PCIE_MSI_EN_CFG,
259 
260 	/* allow access to root complex configuration space */
261 	IPROC_PCIE_CFG_IND_ADDR,
262 	IPROC_PCIE_CFG_IND_DATA,
263 
264 	/* allow access to device configuration space */
265 	IPROC_PCIE_CFG_ADDR,
266 	IPROC_PCIE_CFG_DATA,
267 
268 	/* enable INTx */
269 	IPROC_PCIE_INTX_EN,
270 
271 	/* outbound address mapping */
272 	IPROC_PCIE_OARR0,
273 	IPROC_PCIE_OMAP0,
274 	IPROC_PCIE_OARR1,
275 	IPROC_PCIE_OMAP1,
276 	IPROC_PCIE_OARR2,
277 	IPROC_PCIE_OMAP2,
278 	IPROC_PCIE_OARR3,
279 	IPROC_PCIE_OMAP3,
280 
281 	/* inbound address mapping */
282 	IPROC_PCIE_IARR0,
283 	IPROC_PCIE_IMAP0,
284 	IPROC_PCIE_IARR1,
285 	IPROC_PCIE_IMAP1,
286 	IPROC_PCIE_IARR2,
287 	IPROC_PCIE_IMAP2,
288 	IPROC_PCIE_IARR3,
289 	IPROC_PCIE_IMAP3,
290 	IPROC_PCIE_IARR4,
291 	IPROC_PCIE_IMAP4,
292 
293 	/* config read status */
294 	IPROC_PCIE_CFG_RD_STATUS,
295 
296 	/* link status */
297 	IPROC_PCIE_LINK_STATUS,
298 
299 	/* enable APB error for unsupported requests */
300 	IPROC_PCIE_APB_ERR_EN,
301 
302 	/* total number of core registers */
303 	IPROC_PCIE_MAX_NUM_REG,
304 };
305 
306 /* iProc PCIe PAXB BCMA registers */
307 static const u16 iproc_pcie_reg_paxb_bcma[IPROC_PCIE_MAX_NUM_REG] = {
308 	[IPROC_PCIE_CLK_CTRL]		= 0x000,
309 	[IPROC_PCIE_CFG_IND_ADDR]	= 0x120,
310 	[IPROC_PCIE_CFG_IND_DATA]	= 0x124,
311 	[IPROC_PCIE_CFG_ADDR]		= 0x1f8,
312 	[IPROC_PCIE_CFG_DATA]		= 0x1fc,
313 	[IPROC_PCIE_INTX_EN]		= 0x330,
314 	[IPROC_PCIE_LINK_STATUS]	= 0xf0c,
315 };
316 
317 /* iProc PCIe PAXB registers */
318 static const u16 iproc_pcie_reg_paxb[IPROC_PCIE_MAX_NUM_REG] = {
319 	[IPROC_PCIE_CLK_CTRL]		= 0x000,
320 	[IPROC_PCIE_CFG_IND_ADDR]	= 0x120,
321 	[IPROC_PCIE_CFG_IND_DATA]	= 0x124,
322 	[IPROC_PCIE_CFG_ADDR]		= 0x1f8,
323 	[IPROC_PCIE_CFG_DATA]		= 0x1fc,
324 	[IPROC_PCIE_INTX_EN]		= 0x330,
325 	[IPROC_PCIE_OARR0]		= 0xd20,
326 	[IPROC_PCIE_OMAP0]		= 0xd40,
327 	[IPROC_PCIE_OARR1]		= 0xd28,
328 	[IPROC_PCIE_OMAP1]		= 0xd48,
329 	[IPROC_PCIE_LINK_STATUS]	= 0xf0c,
330 	[IPROC_PCIE_APB_ERR_EN]		= 0xf40,
331 };
332 
333 /* iProc PCIe PAXB v2 registers */
334 static const u16 iproc_pcie_reg_paxb_v2[IPROC_PCIE_MAX_NUM_REG] = {
335 	[IPROC_PCIE_CLK_CTRL]		= 0x000,
336 	[IPROC_PCIE_CFG_IND_ADDR]	= 0x120,
337 	[IPROC_PCIE_CFG_IND_DATA]	= 0x124,
338 	[IPROC_PCIE_CFG_ADDR]		= 0x1f8,
339 	[IPROC_PCIE_CFG_DATA]		= 0x1fc,
340 	[IPROC_PCIE_INTX_EN]		= 0x330,
341 	[IPROC_PCIE_OARR0]		= 0xd20,
342 	[IPROC_PCIE_OMAP0]		= 0xd40,
343 	[IPROC_PCIE_OARR1]		= 0xd28,
344 	[IPROC_PCIE_OMAP1]		= 0xd48,
345 	[IPROC_PCIE_OARR2]		= 0xd60,
346 	[IPROC_PCIE_OMAP2]		= 0xd68,
347 	[IPROC_PCIE_OARR3]		= 0xdf0,
348 	[IPROC_PCIE_OMAP3]		= 0xdf8,
349 	[IPROC_PCIE_IARR0]		= 0xd00,
350 	[IPROC_PCIE_IMAP0]		= 0xc00,
351 	[IPROC_PCIE_IARR1]		= 0xd08,
352 	[IPROC_PCIE_IMAP1]		= 0xd70,
353 	[IPROC_PCIE_IARR2]		= 0xd10,
354 	[IPROC_PCIE_IMAP2]		= 0xcc0,
355 	[IPROC_PCIE_IARR3]		= 0xe00,
356 	[IPROC_PCIE_IMAP3]		= 0xe08,
357 	[IPROC_PCIE_IARR4]		= 0xe68,
358 	[IPROC_PCIE_IMAP4]		= 0xe70,
359 	[IPROC_PCIE_CFG_RD_STATUS]	= 0xee0,
360 	[IPROC_PCIE_LINK_STATUS]	= 0xf0c,
361 	[IPROC_PCIE_APB_ERR_EN]		= 0xf40,
362 };
363 
364 /* iProc PCIe PAXC v1 registers */
365 static const u16 iproc_pcie_reg_paxc[IPROC_PCIE_MAX_NUM_REG] = {
366 	[IPROC_PCIE_CLK_CTRL]		= 0x000,
367 	[IPROC_PCIE_CFG_IND_ADDR]	= 0x1f0,
368 	[IPROC_PCIE_CFG_IND_DATA]	= 0x1f4,
369 	[IPROC_PCIE_CFG_ADDR]		= 0x1f8,
370 	[IPROC_PCIE_CFG_DATA]		= 0x1fc,
371 };
372 
373 /* iProc PCIe PAXC v2 registers */
374 static const u16 iproc_pcie_reg_paxc_v2[IPROC_PCIE_MAX_NUM_REG] = {
375 	[IPROC_PCIE_MSI_GIC_MODE]	= 0x050,
376 	[IPROC_PCIE_MSI_BASE_ADDR]	= 0x074,
377 	[IPROC_PCIE_MSI_WINDOW_SIZE]	= 0x078,
378 	[IPROC_PCIE_MSI_ADDR_LO]	= 0x07c,
379 	[IPROC_PCIE_MSI_ADDR_HI]	= 0x080,
380 	[IPROC_PCIE_MSI_EN_CFG]		= 0x09c,
381 	[IPROC_PCIE_CFG_IND_ADDR]	= 0x1f0,
382 	[IPROC_PCIE_CFG_IND_DATA]	= 0x1f4,
383 	[IPROC_PCIE_CFG_ADDR]		= 0x1f8,
384 	[IPROC_PCIE_CFG_DATA]		= 0x1fc,
385 };
386 
387 /*
388  * List of device IDs of controllers that have corrupted capability list that
389  * require SW fixup
390  */
391 static const u16 iproc_pcie_corrupt_cap_did[] = {
392 	0x16cd,
393 	0x16f0,
394 	0xd802,
395 	0xd804
396 };
397 
iproc_data(struct pci_bus * bus)398 static inline struct iproc_pcie *iproc_data(struct pci_bus *bus)
399 {
400 	struct iproc_pcie *pcie = bus->sysdata;
401 	return pcie;
402 }
403 
iproc_pcie_reg_is_invalid(u16 reg_offset)404 static inline bool iproc_pcie_reg_is_invalid(u16 reg_offset)
405 {
406 	return !!(reg_offset == IPROC_PCIE_REG_INVALID);
407 }
408 
iproc_pcie_reg_offset(struct iproc_pcie * pcie,enum iproc_pcie_reg reg)409 static inline u16 iproc_pcie_reg_offset(struct iproc_pcie *pcie,
410 					enum iproc_pcie_reg reg)
411 {
412 	return pcie->reg_offsets[reg];
413 }
414 
iproc_pcie_read_reg(struct iproc_pcie * pcie,enum iproc_pcie_reg reg)415 static inline u32 iproc_pcie_read_reg(struct iproc_pcie *pcie,
416 				      enum iproc_pcie_reg reg)
417 {
418 	u16 offset = iproc_pcie_reg_offset(pcie, reg);
419 
420 	if (iproc_pcie_reg_is_invalid(offset))
421 		return 0;
422 
423 	return readl(pcie->base + offset);
424 }
425 
iproc_pcie_write_reg(struct iproc_pcie * pcie,enum iproc_pcie_reg reg,u32 val)426 static inline void iproc_pcie_write_reg(struct iproc_pcie *pcie,
427 					enum iproc_pcie_reg reg, u32 val)
428 {
429 	u16 offset = iproc_pcie_reg_offset(pcie, reg);
430 
431 	if (iproc_pcie_reg_is_invalid(offset))
432 		return;
433 
434 	writel(val, pcie->base + offset);
435 }
436 
437 /*
438  * APB error forwarding can be disabled during access of configuration
439  * registers of the endpoint device, to prevent unsupported requests
440  * (typically seen during enumeration with multi-function devices) from
441  * triggering a system exception.
442  */
iproc_pcie_apb_err_disable(struct pci_bus * bus,bool disable)443 static inline void iproc_pcie_apb_err_disable(struct pci_bus *bus,
444 					      bool disable)
445 {
446 	struct iproc_pcie *pcie = iproc_data(bus);
447 	u32 val;
448 
449 	if (bus->number && pcie->has_apb_err_disable) {
450 		val = iproc_pcie_read_reg(pcie, IPROC_PCIE_APB_ERR_EN);
451 		if (disable)
452 			val &= ~APB_ERR_EN;
453 		else
454 			val |= APB_ERR_EN;
455 		iproc_pcie_write_reg(pcie, IPROC_PCIE_APB_ERR_EN, val);
456 	}
457 }
458 
iproc_pcie_map_ep_cfg_reg(struct iproc_pcie * pcie,unsigned int busno,unsigned int devfn,int where)459 static void __iomem *iproc_pcie_map_ep_cfg_reg(struct iproc_pcie *pcie,
460 					       unsigned int busno,
461 					       unsigned int devfn,
462 					       int where)
463 {
464 	u16 offset;
465 	u32 val;
466 
467 	/* EP device access */
468 	val = ALIGN_DOWN(PCIE_ECAM_OFFSET(busno, devfn, where), 4) |
469 		CFG_ADDR_CFG_TYPE_1;
470 
471 	iproc_pcie_write_reg(pcie, IPROC_PCIE_CFG_ADDR, val);
472 	offset = iproc_pcie_reg_offset(pcie, IPROC_PCIE_CFG_DATA);
473 
474 	if (iproc_pcie_reg_is_invalid(offset))
475 		return NULL;
476 
477 	return (pcie->base + offset);
478 }
479 
iproc_pcie_cfg_retry(struct iproc_pcie * pcie,void __iomem * cfg_data_p)480 static unsigned int iproc_pcie_cfg_retry(struct iproc_pcie *pcie,
481 					 void __iomem *cfg_data_p)
482 {
483 	int timeout = CFG_RETRY_STATUS_TIMEOUT_US;
484 	unsigned int data;
485 	u32 status;
486 
487 	/*
488 	 * As per PCIe spec r3.1, sec 2.3.2, CRS Software Visibility only
489 	 * affects config reads of the Vendor ID.  For config writes or any
490 	 * other config reads, the Root may automatically reissue the
491 	 * configuration request again as a new request.
492 	 *
493 	 * For config reads, this hardware returns CFG_RETRY_STATUS data
494 	 * when it receives a CRS completion, regardless of the address of
495 	 * the read or the CRS Software Visibility Enable bit.  As a
496 	 * partial workaround for this, we retry in software any read that
497 	 * returns CFG_RETRY_STATUS.
498 	 *
499 	 * Note that a non-Vendor ID config register may have a value of
500 	 * CFG_RETRY_STATUS.  If we read that, we can't distinguish it from
501 	 * a CRS completion, so we will incorrectly retry the read and
502 	 * eventually return the wrong data (0xffffffff).
503 	 */
504 	data = readl(cfg_data_p);
505 	while (data == CFG_RETRY_STATUS && timeout--) {
506 		/*
507 		 * CRS state is set in CFG_RD status register
508 		 * This will handle the case where CFG_RETRY_STATUS is
509 		 * valid config data.
510 		 */
511 		status = iproc_pcie_read_reg(pcie, IPROC_PCIE_CFG_RD_STATUS);
512 		if (status != CFG_RD_CRS)
513 			return data;
514 
515 		udelay(1);
516 		data = readl(cfg_data_p);
517 	}
518 
519 	if (data == CFG_RETRY_STATUS)
520 		data = 0xffffffff;
521 
522 	return data;
523 }
524 
iproc_pcie_fix_cap(struct iproc_pcie * pcie,int where,u32 * val)525 static void iproc_pcie_fix_cap(struct iproc_pcie *pcie, int where, u32 *val)
526 {
527 	u32 i, dev_id;
528 
529 	switch (where & ~0x3) {
530 	case PCI_VENDOR_ID:
531 		dev_id = *val >> 16;
532 
533 		/*
534 		 * Activate fixup for those controllers that have corrupted
535 		 * capability list registers
536 		 */
537 		for (i = 0; i < ARRAY_SIZE(iproc_pcie_corrupt_cap_did); i++)
538 			if (dev_id == iproc_pcie_corrupt_cap_did[i])
539 				pcie->fix_paxc_cap = true;
540 		break;
541 
542 	case IPROC_PCI_PM_CAP:
543 		if (pcie->fix_paxc_cap) {
544 			/* advertise PM, force next capability to PCIe */
545 			*val &= ~IPROC_PCI_PM_CAP_MASK;
546 			*val |= IPROC_PCI_EXP_CAP << 8 | PCI_CAP_ID_PM;
547 		}
548 		break;
549 
550 	case IPROC_PCI_EXP_CAP:
551 		if (pcie->fix_paxc_cap) {
552 			/* advertise root port, version 2, terminate here */
553 			*val = (PCI_EXP_TYPE_ROOT_PORT << 4 | 2) << 16 |
554 				PCI_CAP_ID_EXP;
555 		}
556 		break;
557 
558 	case IPROC_PCI_EXP_CAP + PCI_EXP_RTCTL:
559 		/* Don't advertise CRS SV support */
560 		*val &= ~(PCI_EXP_RTCAP_CRSVIS << 16);
561 		break;
562 
563 	default:
564 		break;
565 	}
566 }
567 
iproc_pcie_config_read(struct pci_bus * bus,unsigned int devfn,int where,int size,u32 * val)568 static int iproc_pcie_config_read(struct pci_bus *bus, unsigned int devfn,
569 				  int where, int size, u32 *val)
570 {
571 	struct iproc_pcie *pcie = iproc_data(bus);
572 	unsigned int busno = bus->number;
573 	void __iomem *cfg_data_p;
574 	unsigned int data;
575 	int ret;
576 
577 	/* root complex access */
578 	if (busno == 0) {
579 		ret = pci_generic_config_read32(bus, devfn, where, size, val);
580 		if (ret == PCIBIOS_SUCCESSFUL)
581 			iproc_pcie_fix_cap(pcie, where, val);
582 
583 		return ret;
584 	}
585 
586 	cfg_data_p = iproc_pcie_map_ep_cfg_reg(pcie, busno, devfn, where);
587 
588 	if (!cfg_data_p)
589 		return PCIBIOS_DEVICE_NOT_FOUND;
590 
591 	data = iproc_pcie_cfg_retry(pcie, cfg_data_p);
592 
593 	*val = data;
594 	if (size <= 2)
595 		*val = (data >> (8 * (where & 3))) & ((1 << (size * 8)) - 1);
596 
597 	/*
598 	 * For PAXC and PAXCv2, the total number of PFs that one can enumerate
599 	 * depends on the firmware configuration. Unfortunately, due to an ASIC
600 	 * bug, unconfigured PFs cannot be properly hidden from the root
601 	 * complex. As a result, write access to these PFs will cause bus lock
602 	 * up on the embedded processor
603 	 *
604 	 * Since all unconfigured PFs are left with an incorrect, staled device
605 	 * ID of 0x168e (PCI_DEVICE_ID_NX2_57810), we try to catch those access
606 	 * early here and reject them all
607 	 */
608 #define DEVICE_ID_MASK     0xffff0000
609 #define DEVICE_ID_SHIFT    16
610 	if (pcie->rej_unconfig_pf &&
611 	    (where & CFG_ADDR_REG_NUM_MASK) == PCI_VENDOR_ID)
612 		if ((*val & DEVICE_ID_MASK) ==
613 		    (PCI_DEVICE_ID_NX2_57810 << DEVICE_ID_SHIFT))
614 			return PCIBIOS_FUNC_NOT_SUPPORTED;
615 
616 	return PCIBIOS_SUCCESSFUL;
617 }
618 
619 /*
620  * Note access to the configuration registers are protected at the higher layer
621  * by 'pci_lock' in drivers/pci/access.c
622  */
iproc_pcie_map_cfg_bus(struct iproc_pcie * pcie,int busno,unsigned int devfn,int where)623 static void __iomem *iproc_pcie_map_cfg_bus(struct iproc_pcie *pcie,
624 					    int busno, unsigned int devfn,
625 					    int where)
626 {
627 	u16 offset;
628 
629 	/* root complex access */
630 	if (busno == 0) {
631 		if (PCIE_ECAM_DEVFN(devfn) > 0)
632 			return NULL;
633 
634 		iproc_pcie_write_reg(pcie, IPROC_PCIE_CFG_IND_ADDR,
635 				     where & CFG_IND_ADDR_MASK);
636 		offset = iproc_pcie_reg_offset(pcie, IPROC_PCIE_CFG_IND_DATA);
637 		if (iproc_pcie_reg_is_invalid(offset))
638 			return NULL;
639 		else
640 			return (pcie->base + offset);
641 	}
642 
643 	return iproc_pcie_map_ep_cfg_reg(pcie, busno, devfn, where);
644 }
645 
iproc_pcie_bus_map_cfg_bus(struct pci_bus * bus,unsigned int devfn,int where)646 static void __iomem *iproc_pcie_bus_map_cfg_bus(struct pci_bus *bus,
647 						unsigned int devfn,
648 						int where)
649 {
650 	return iproc_pcie_map_cfg_bus(iproc_data(bus), bus->number, devfn,
651 				      where);
652 }
653 
iproc_pci_raw_config_read32(struct iproc_pcie * pcie,unsigned int devfn,int where,int size,u32 * val)654 static int iproc_pci_raw_config_read32(struct iproc_pcie *pcie,
655 				       unsigned int devfn, int where,
656 				       int size, u32 *val)
657 {
658 	void __iomem *addr;
659 
660 	addr = iproc_pcie_map_cfg_bus(pcie, 0, devfn, where & ~0x3);
661 	if (!addr)
662 		return PCIBIOS_DEVICE_NOT_FOUND;
663 
664 	*val = readl(addr);
665 
666 	if (size <= 2)
667 		*val = (*val >> (8 * (where & 3))) & ((1 << (size * 8)) - 1);
668 
669 	return PCIBIOS_SUCCESSFUL;
670 }
671 
iproc_pci_raw_config_write32(struct iproc_pcie * pcie,unsigned int devfn,int where,int size,u32 val)672 static int iproc_pci_raw_config_write32(struct iproc_pcie *pcie,
673 					unsigned int devfn, int where,
674 					int size, u32 val)
675 {
676 	void __iomem *addr;
677 	u32 mask, tmp;
678 
679 	addr = iproc_pcie_map_cfg_bus(pcie, 0, devfn, where & ~0x3);
680 	if (!addr)
681 		return PCIBIOS_DEVICE_NOT_FOUND;
682 
683 	if (size == 4) {
684 		writel(val, addr);
685 		return PCIBIOS_SUCCESSFUL;
686 	}
687 
688 	mask = ~(((1 << (size * 8)) - 1) << ((where & 0x3) * 8));
689 	tmp = readl(addr) & mask;
690 	tmp |= val << ((where & 0x3) * 8);
691 	writel(tmp, addr);
692 
693 	return PCIBIOS_SUCCESSFUL;
694 }
695 
iproc_pcie_config_read32(struct pci_bus * bus,unsigned int devfn,int where,int size,u32 * val)696 static int iproc_pcie_config_read32(struct pci_bus *bus, unsigned int devfn,
697 				    int where, int size, u32 *val)
698 {
699 	int ret;
700 	struct iproc_pcie *pcie = iproc_data(bus);
701 
702 	iproc_pcie_apb_err_disable(bus, true);
703 	if (pcie->iproc_cfg_read)
704 		ret = iproc_pcie_config_read(bus, devfn, where, size, val);
705 	else
706 		ret = pci_generic_config_read32(bus, devfn, where, size, val);
707 	iproc_pcie_apb_err_disable(bus, false);
708 
709 	return ret;
710 }
711 
iproc_pcie_config_write32(struct pci_bus * bus,unsigned int devfn,int where,int size,u32 val)712 static int iproc_pcie_config_write32(struct pci_bus *bus, unsigned int devfn,
713 				     int where, int size, u32 val)
714 {
715 	int ret;
716 
717 	iproc_pcie_apb_err_disable(bus, true);
718 	ret = pci_generic_config_write32(bus, devfn, where, size, val);
719 	iproc_pcie_apb_err_disable(bus, false);
720 
721 	return ret;
722 }
723 
724 static struct pci_ops iproc_pcie_ops = {
725 	.map_bus = iproc_pcie_bus_map_cfg_bus,
726 	.read = iproc_pcie_config_read32,
727 	.write = iproc_pcie_config_write32,
728 };
729 
iproc_pcie_perst_ctrl(struct iproc_pcie * pcie,bool assert)730 static void iproc_pcie_perst_ctrl(struct iproc_pcie *pcie, bool assert)
731 {
732 	u32 val;
733 
734 	/*
735 	 * PAXC and the internal emulated endpoint device downstream should not
736 	 * be reset.  If firmware has been loaded on the endpoint device at an
737 	 * earlier boot stage, reset here causes issues.
738 	 */
739 	if (pcie->ep_is_internal)
740 		return;
741 
742 	if (assert) {
743 		val = iproc_pcie_read_reg(pcie, IPROC_PCIE_CLK_CTRL);
744 		val &= ~EP_PERST_SOURCE_SELECT & ~EP_MODE_SURVIVE_PERST &
745 			~RC_PCIE_RST_OUTPUT;
746 		iproc_pcie_write_reg(pcie, IPROC_PCIE_CLK_CTRL, val);
747 		udelay(250);
748 	} else {
749 		val = iproc_pcie_read_reg(pcie, IPROC_PCIE_CLK_CTRL);
750 		val |= RC_PCIE_RST_OUTPUT;
751 		iproc_pcie_write_reg(pcie, IPROC_PCIE_CLK_CTRL, val);
752 		msleep(100);
753 	}
754 }
755 
iproc_pcie_shutdown(struct iproc_pcie * pcie)756 int iproc_pcie_shutdown(struct iproc_pcie *pcie)
757 {
758 	iproc_pcie_perst_ctrl(pcie, true);
759 	msleep(500);
760 
761 	return 0;
762 }
763 EXPORT_SYMBOL_GPL(iproc_pcie_shutdown);
764 
iproc_pcie_check_link(struct iproc_pcie * pcie)765 static int iproc_pcie_check_link(struct iproc_pcie *pcie)
766 {
767 	struct device *dev = pcie->dev;
768 	u32 hdr_type, link_ctrl, link_status, class, val;
769 	bool link_is_active = false;
770 
771 	/*
772 	 * PAXC connects to emulated endpoint devices directly and does not
773 	 * have a Serdes.  Therefore skip the link detection logic here.
774 	 */
775 	if (pcie->ep_is_internal)
776 		return 0;
777 
778 	val = iproc_pcie_read_reg(pcie, IPROC_PCIE_LINK_STATUS);
779 	if (!(val & PCIE_PHYLINKUP) || !(val & PCIE_DL_ACTIVE)) {
780 		dev_err(dev, "PHY or data link is INACTIVE!\n");
781 		return -ENODEV;
782 	}
783 
784 	/* make sure we are not in EP mode */
785 	iproc_pci_raw_config_read32(pcie, 0, PCI_HEADER_TYPE, 1, &hdr_type);
786 	if ((hdr_type & 0x7f) != PCI_HEADER_TYPE_BRIDGE) {
787 		dev_err(dev, "in EP mode, hdr=%#02x\n", hdr_type);
788 		return -EFAULT;
789 	}
790 
791 	/* force class to PCI_CLASS_BRIDGE_PCI_NORMAL (0x060400) */
792 #define PCI_BRIDGE_CTRL_REG_OFFSET	0x43c
793 #define PCI_BRIDGE_CTRL_REG_CLASS_MASK	0xffffff
794 	iproc_pci_raw_config_read32(pcie, 0, PCI_BRIDGE_CTRL_REG_OFFSET,
795 				    4, &class);
796 	class &= ~PCI_BRIDGE_CTRL_REG_CLASS_MASK;
797 	class |= PCI_CLASS_BRIDGE_PCI_NORMAL;
798 	iproc_pci_raw_config_write32(pcie, 0, PCI_BRIDGE_CTRL_REG_OFFSET,
799 				     4, class);
800 
801 	/* check link status to see if link is active */
802 	iproc_pci_raw_config_read32(pcie, 0, IPROC_PCI_EXP_CAP + PCI_EXP_LNKSTA,
803 				    2, &link_status);
804 	if (link_status & PCI_EXP_LNKSTA_NLW)
805 		link_is_active = true;
806 
807 	if (!link_is_active) {
808 		/* try GEN 1 link speed */
809 #define PCI_TARGET_LINK_SPEED_MASK	0xf
810 #define PCI_TARGET_LINK_SPEED_GEN2	0x2
811 #define PCI_TARGET_LINK_SPEED_GEN1	0x1
812 		iproc_pci_raw_config_read32(pcie, 0,
813 					    IPROC_PCI_EXP_CAP + PCI_EXP_LNKCTL2,
814 					    4, &link_ctrl);
815 		if ((link_ctrl & PCI_TARGET_LINK_SPEED_MASK) ==
816 		    PCI_TARGET_LINK_SPEED_GEN2) {
817 			link_ctrl &= ~PCI_TARGET_LINK_SPEED_MASK;
818 			link_ctrl |= PCI_TARGET_LINK_SPEED_GEN1;
819 			iproc_pci_raw_config_write32(pcie, 0,
820 					IPROC_PCI_EXP_CAP + PCI_EXP_LNKCTL2,
821 					4, link_ctrl);
822 			msleep(100);
823 
824 			iproc_pci_raw_config_read32(pcie, 0,
825 					IPROC_PCI_EXP_CAP + PCI_EXP_LNKSTA,
826 					2, &link_status);
827 			if (link_status & PCI_EXP_LNKSTA_NLW)
828 				link_is_active = true;
829 		}
830 	}
831 
832 	dev_info(dev, "link: %s\n", link_is_active ? "UP" : "DOWN");
833 
834 	return link_is_active ? 0 : -ENODEV;
835 }
836 
iproc_pcie_enable(struct iproc_pcie * pcie)837 static void iproc_pcie_enable(struct iproc_pcie *pcie)
838 {
839 	iproc_pcie_write_reg(pcie, IPROC_PCIE_INTX_EN, SYS_RC_INTX_MASK);
840 }
841 
iproc_pcie_ob_is_valid(struct iproc_pcie * pcie,int window_idx)842 static inline bool iproc_pcie_ob_is_valid(struct iproc_pcie *pcie,
843 					  int window_idx)
844 {
845 	u32 val;
846 
847 	val = iproc_pcie_read_reg(pcie, MAP_REG(IPROC_PCIE_OARR0, window_idx));
848 
849 	return !!(val & OARR_VALID);
850 }
851 
iproc_pcie_ob_write(struct iproc_pcie * pcie,int window_idx,int size_idx,u64 axi_addr,u64 pci_addr)852 static inline int iproc_pcie_ob_write(struct iproc_pcie *pcie, int window_idx,
853 				      int size_idx, u64 axi_addr, u64 pci_addr)
854 {
855 	struct device *dev = pcie->dev;
856 	u16 oarr_offset, omap_offset;
857 
858 	/*
859 	 * Derive the OARR/OMAP offset from the first pair (OARR0/OMAP0) based
860 	 * on window index.
861 	 */
862 	oarr_offset = iproc_pcie_reg_offset(pcie, MAP_REG(IPROC_PCIE_OARR0,
863 							  window_idx));
864 	omap_offset = iproc_pcie_reg_offset(pcie, MAP_REG(IPROC_PCIE_OMAP0,
865 							  window_idx));
866 	if (iproc_pcie_reg_is_invalid(oarr_offset) ||
867 	    iproc_pcie_reg_is_invalid(omap_offset))
868 		return -EINVAL;
869 
870 	/*
871 	 * Program the OARR registers.  The upper 32-bit OARR register is
872 	 * always right after the lower 32-bit OARR register.
873 	 */
874 	writel(lower_32_bits(axi_addr) | (size_idx << OARR_SIZE_CFG_SHIFT) |
875 	       OARR_VALID, pcie->base + oarr_offset);
876 	writel(upper_32_bits(axi_addr), pcie->base + oarr_offset + 4);
877 
878 	/* now program the OMAP registers */
879 	writel(lower_32_bits(pci_addr), pcie->base + omap_offset);
880 	writel(upper_32_bits(pci_addr), pcie->base + omap_offset + 4);
881 
882 	dev_dbg(dev, "ob window [%d]: offset 0x%x axi %pap pci %pap\n",
883 		window_idx, oarr_offset, &axi_addr, &pci_addr);
884 	dev_dbg(dev, "oarr lo 0x%x oarr hi 0x%x\n",
885 		readl(pcie->base + oarr_offset),
886 		readl(pcie->base + oarr_offset + 4));
887 	dev_dbg(dev, "omap lo 0x%x omap hi 0x%x\n",
888 		readl(pcie->base + omap_offset),
889 		readl(pcie->base + omap_offset + 4));
890 
891 	return 0;
892 }
893 
894 /*
895  * Some iProc SoCs require the SW to configure the outbound address mapping
896  *
897  * Outbound address translation:
898  *
899  * iproc_pcie_address = axi_address - axi_offset
900  * OARR = iproc_pcie_address
901  * OMAP = pci_addr
902  *
903  * axi_addr -> iproc_pcie_address -> OARR -> OMAP -> pci_address
904  */
iproc_pcie_setup_ob(struct iproc_pcie * pcie,u64 axi_addr,u64 pci_addr,resource_size_t size)905 static int iproc_pcie_setup_ob(struct iproc_pcie *pcie, u64 axi_addr,
906 			       u64 pci_addr, resource_size_t size)
907 {
908 	struct iproc_pcie_ob *ob = &pcie->ob;
909 	struct device *dev = pcie->dev;
910 	int ret = -EINVAL, window_idx, size_idx;
911 
912 	if (axi_addr < ob->axi_offset) {
913 		dev_err(dev, "axi address %pap less than offset %pap\n",
914 			&axi_addr, &ob->axi_offset);
915 		return -EINVAL;
916 	}
917 
918 	/*
919 	 * Translate the AXI address to the internal address used by the iProc
920 	 * PCIe core before programming the OARR
921 	 */
922 	axi_addr -= ob->axi_offset;
923 
924 	/* iterate through all OARR/OMAP mapping windows */
925 	for (window_idx = ob->nr_windows - 1; window_idx >= 0; window_idx--) {
926 		const struct iproc_pcie_ob_map *ob_map =
927 			&pcie->ob_map[window_idx];
928 
929 		/*
930 		 * If current outbound window is already in use, move on to the
931 		 * next one.
932 		 */
933 		if (iproc_pcie_ob_is_valid(pcie, window_idx))
934 			continue;
935 
936 		/*
937 		 * Iterate through all supported window sizes within the
938 		 * OARR/OMAP pair to find a match.  Go through the window sizes
939 		 * in a descending order.
940 		 */
941 		for (size_idx = ob_map->nr_sizes - 1; size_idx >= 0;
942 		     size_idx--) {
943 			resource_size_t window_size =
944 				ob_map->window_sizes[size_idx] * SZ_1M;
945 
946 			/*
947 			 * Keep iterating until we reach the last window and
948 			 * with the minimal window size at index zero. In this
949 			 * case, we take a compromise by mapping it using the
950 			 * minimum window size that can be supported
951 			 */
952 			if (size < window_size) {
953 				if (size_idx > 0 || window_idx > 0)
954 					continue;
955 
956 				/*
957 				 * For the corner case of reaching the minimal
958 				 * window size that can be supported on the
959 				 * last window
960 				 */
961 				axi_addr = ALIGN_DOWN(axi_addr, window_size);
962 				pci_addr = ALIGN_DOWN(pci_addr, window_size);
963 				size = window_size;
964 			}
965 
966 			if (!IS_ALIGNED(axi_addr, window_size) ||
967 			    !IS_ALIGNED(pci_addr, window_size)) {
968 				dev_err(dev,
969 					"axi %pap or pci %pap not aligned\n",
970 					&axi_addr, &pci_addr);
971 				return -EINVAL;
972 			}
973 
974 			/*
975 			 * Match found!  Program both OARR and OMAP and mark
976 			 * them as a valid entry.
977 			 */
978 			ret = iproc_pcie_ob_write(pcie, window_idx, size_idx,
979 						  axi_addr, pci_addr);
980 			if (ret)
981 				goto err_ob;
982 
983 			size -= window_size;
984 			if (size == 0)
985 				return 0;
986 
987 			/*
988 			 * If we are here, we are done with the current window,
989 			 * but not yet finished all mappings.  Need to move on
990 			 * to the next window.
991 			 */
992 			axi_addr += window_size;
993 			pci_addr += window_size;
994 			break;
995 		}
996 	}
997 
998 err_ob:
999 	dev_err(dev, "unable to configure outbound mapping\n");
1000 	dev_err(dev,
1001 		"axi %pap, axi offset %pap, pci %pap, res size %pap\n",
1002 		&axi_addr, &ob->axi_offset, &pci_addr, &size);
1003 
1004 	return ret;
1005 }
1006 
iproc_pcie_map_ranges(struct iproc_pcie * pcie,struct list_head * resources)1007 static int iproc_pcie_map_ranges(struct iproc_pcie *pcie,
1008 				 struct list_head *resources)
1009 {
1010 	struct device *dev = pcie->dev;
1011 	struct resource_entry *window;
1012 	int ret;
1013 
1014 	resource_list_for_each_entry(window, resources) {
1015 		struct resource *res = window->res;
1016 		u64 res_type = resource_type(res);
1017 
1018 		switch (res_type) {
1019 		case IORESOURCE_IO:
1020 		case IORESOURCE_BUS:
1021 			break;
1022 		case IORESOURCE_MEM:
1023 			ret = iproc_pcie_setup_ob(pcie, res->start,
1024 						  res->start - window->offset,
1025 						  resource_size(res));
1026 			if (ret)
1027 				return ret;
1028 			break;
1029 		default:
1030 			dev_err(dev, "invalid resource %pR\n", res);
1031 			return -EINVAL;
1032 		}
1033 	}
1034 
1035 	return 0;
1036 }
1037 
iproc_pcie_ib_is_in_use(struct iproc_pcie * pcie,int region_idx)1038 static inline bool iproc_pcie_ib_is_in_use(struct iproc_pcie *pcie,
1039 					   int region_idx)
1040 {
1041 	const struct iproc_pcie_ib_map *ib_map = &pcie->ib_map[region_idx];
1042 	u32 val;
1043 
1044 	val = iproc_pcie_read_reg(pcie, MAP_REG(IPROC_PCIE_IARR0, region_idx));
1045 
1046 	return !!(val & (BIT(ib_map->nr_sizes) - 1));
1047 }
1048 
iproc_pcie_ib_check_type(const struct iproc_pcie_ib_map * ib_map,enum iproc_pcie_ib_map_type type)1049 static inline bool iproc_pcie_ib_check_type(const struct iproc_pcie_ib_map *ib_map,
1050 					    enum iproc_pcie_ib_map_type type)
1051 {
1052 	return !!(ib_map->type == type);
1053 }
1054 
iproc_pcie_ib_write(struct iproc_pcie * pcie,int region_idx,int size_idx,int nr_windows,u64 axi_addr,u64 pci_addr,resource_size_t size)1055 static int iproc_pcie_ib_write(struct iproc_pcie *pcie, int region_idx,
1056 			       int size_idx, int nr_windows, u64 axi_addr,
1057 			       u64 pci_addr, resource_size_t size)
1058 {
1059 	struct device *dev = pcie->dev;
1060 	const struct iproc_pcie_ib_map *ib_map = &pcie->ib_map[region_idx];
1061 	u16 iarr_offset, imap_offset;
1062 	u32 val;
1063 	int window_idx;
1064 
1065 	iarr_offset = iproc_pcie_reg_offset(pcie,
1066 				MAP_REG(IPROC_PCIE_IARR0, region_idx));
1067 	imap_offset = iproc_pcie_reg_offset(pcie,
1068 				MAP_REG(IPROC_PCIE_IMAP0, region_idx));
1069 	if (iproc_pcie_reg_is_invalid(iarr_offset) ||
1070 	    iproc_pcie_reg_is_invalid(imap_offset))
1071 		return -EINVAL;
1072 
1073 	dev_dbg(dev, "ib region [%d]: offset 0x%x axi %pap pci %pap\n",
1074 		region_idx, iarr_offset, &axi_addr, &pci_addr);
1075 
1076 	/*
1077 	 * Program the IARR registers.  The upper 32-bit IARR register is
1078 	 * always right after the lower 32-bit IARR register.
1079 	 */
1080 	writel(lower_32_bits(pci_addr) | BIT(size_idx),
1081 	       pcie->base + iarr_offset);
1082 	writel(upper_32_bits(pci_addr), pcie->base + iarr_offset + 4);
1083 
1084 	dev_dbg(dev, "iarr lo 0x%x iarr hi 0x%x\n",
1085 		readl(pcie->base + iarr_offset),
1086 		readl(pcie->base + iarr_offset + 4));
1087 
1088 	/*
1089 	 * Now program the IMAP registers.  Each IARR region may have one or
1090 	 * more IMAP windows.
1091 	 */
1092 	size >>= ilog2(nr_windows);
1093 	for (window_idx = 0; window_idx < nr_windows; window_idx++) {
1094 		val = readl(pcie->base + imap_offset);
1095 		val |= lower_32_bits(axi_addr) | IMAP_VALID;
1096 		writel(val, pcie->base + imap_offset);
1097 		writel(upper_32_bits(axi_addr),
1098 		       pcie->base + imap_offset + ib_map->imap_addr_offset);
1099 
1100 		dev_dbg(dev, "imap window [%d] lo 0x%x hi 0x%x\n",
1101 			window_idx, readl(pcie->base + imap_offset),
1102 			readl(pcie->base + imap_offset +
1103 			      ib_map->imap_addr_offset));
1104 
1105 		imap_offset += ib_map->imap_window_offset;
1106 		axi_addr += size;
1107 	}
1108 
1109 	return 0;
1110 }
1111 
iproc_pcie_setup_ib(struct iproc_pcie * pcie,struct resource_entry * entry,enum iproc_pcie_ib_map_type type)1112 static int iproc_pcie_setup_ib(struct iproc_pcie *pcie,
1113 			       struct resource_entry *entry,
1114 			       enum iproc_pcie_ib_map_type type)
1115 {
1116 	struct device *dev = pcie->dev;
1117 	struct iproc_pcie_ib *ib = &pcie->ib;
1118 	int ret;
1119 	unsigned int region_idx, size_idx;
1120 	u64 axi_addr = entry->res->start;
1121 	u64 pci_addr = entry->res->start - entry->offset;
1122 	resource_size_t size = resource_size(entry->res);
1123 
1124 	/* iterate through all IARR mapping regions */
1125 	for (region_idx = 0; region_idx < ib->nr_regions; region_idx++) {
1126 		const struct iproc_pcie_ib_map *ib_map =
1127 			&pcie->ib_map[region_idx];
1128 
1129 		/*
1130 		 * If current inbound region is already in use or not a
1131 		 * compatible type, move on to the next.
1132 		 */
1133 		if (iproc_pcie_ib_is_in_use(pcie, region_idx) ||
1134 		    !iproc_pcie_ib_check_type(ib_map, type))
1135 			continue;
1136 
1137 		/* iterate through all supported region sizes to find a match */
1138 		for (size_idx = 0; size_idx < ib_map->nr_sizes; size_idx++) {
1139 			resource_size_t region_size =
1140 			ib_map->region_sizes[size_idx] * ib_map->size_unit;
1141 
1142 			if (size != region_size)
1143 				continue;
1144 
1145 			if (!IS_ALIGNED(axi_addr, region_size) ||
1146 			    !IS_ALIGNED(pci_addr, region_size)) {
1147 				dev_err(dev,
1148 					"axi %pap or pci %pap not aligned\n",
1149 					&axi_addr, &pci_addr);
1150 				return -EINVAL;
1151 			}
1152 
1153 			/* Match found!  Program IARR and all IMAP windows. */
1154 			ret = iproc_pcie_ib_write(pcie, region_idx, size_idx,
1155 						  ib_map->nr_windows, axi_addr,
1156 						  pci_addr, size);
1157 			if (ret)
1158 				goto err_ib;
1159 			else
1160 				return 0;
1161 
1162 		}
1163 	}
1164 	ret = -EINVAL;
1165 
1166 err_ib:
1167 	dev_err(dev, "unable to configure inbound mapping\n");
1168 	dev_err(dev, "axi %pap, pci %pap, res size %pap\n",
1169 		&axi_addr, &pci_addr, &size);
1170 
1171 	return ret;
1172 }
1173 
iproc_pcie_map_dma_ranges(struct iproc_pcie * pcie)1174 static int iproc_pcie_map_dma_ranges(struct iproc_pcie *pcie)
1175 {
1176 	struct pci_host_bridge *host = pci_host_bridge_from_priv(pcie);
1177 	struct resource_entry *entry;
1178 	int ret = 0;
1179 
1180 	resource_list_for_each_entry(entry, &host->dma_ranges) {
1181 		/* Each range entry corresponds to an inbound mapping region */
1182 		ret = iproc_pcie_setup_ib(pcie, entry, IPROC_PCIE_IB_MAP_MEM);
1183 		if (ret)
1184 			break;
1185 	}
1186 
1187 	return ret;
1188 }
1189 
iproc_pcie_invalidate_mapping(struct iproc_pcie * pcie)1190 static void iproc_pcie_invalidate_mapping(struct iproc_pcie *pcie)
1191 {
1192 	struct iproc_pcie_ib *ib = &pcie->ib;
1193 	struct iproc_pcie_ob *ob = &pcie->ob;
1194 	int idx;
1195 
1196 	if (pcie->ep_is_internal)
1197 		return;
1198 
1199 	if (pcie->need_ob_cfg) {
1200 		/* iterate through all OARR mapping regions */
1201 		for (idx = ob->nr_windows - 1; idx >= 0; idx--) {
1202 			iproc_pcie_write_reg(pcie,
1203 					     MAP_REG(IPROC_PCIE_OARR0, idx), 0);
1204 		}
1205 	}
1206 
1207 	if (pcie->need_ib_cfg) {
1208 		/* iterate through all IARR mapping regions */
1209 		for (idx = 0; idx < ib->nr_regions; idx++) {
1210 			iproc_pcie_write_reg(pcie,
1211 					     MAP_REG(IPROC_PCIE_IARR0, idx), 0);
1212 		}
1213 	}
1214 }
1215 
iproce_pcie_get_msi(struct iproc_pcie * pcie,struct device_node * msi_node,u64 * msi_addr)1216 static int iproce_pcie_get_msi(struct iproc_pcie *pcie,
1217 			       struct device_node *msi_node,
1218 			       u64 *msi_addr)
1219 {
1220 	struct device *dev = pcie->dev;
1221 	int ret;
1222 	struct resource res;
1223 
1224 	/*
1225 	 * Check if 'msi-map' points to ARM GICv3 ITS, which is the only
1226 	 * supported external MSI controller that requires steering.
1227 	 */
1228 	if (!of_device_is_compatible(msi_node, "arm,gic-v3-its")) {
1229 		dev_err(dev, "unable to find compatible MSI controller\n");
1230 		return -ENODEV;
1231 	}
1232 
1233 	/* derive GITS_TRANSLATER address from GICv3 */
1234 	ret = of_address_to_resource(msi_node, 0, &res);
1235 	if (ret < 0) {
1236 		dev_err(dev, "unable to obtain MSI controller resources\n");
1237 		return ret;
1238 	}
1239 
1240 	*msi_addr = res.start + GITS_TRANSLATER;
1241 	return 0;
1242 }
1243 
iproc_pcie_paxb_v2_msi_steer(struct iproc_pcie * pcie,u64 msi_addr)1244 static int iproc_pcie_paxb_v2_msi_steer(struct iproc_pcie *pcie, u64 msi_addr)
1245 {
1246 	int ret;
1247 	struct resource_entry entry;
1248 
1249 	memset(&entry, 0, sizeof(entry));
1250 	entry.res = &entry.__res;
1251 
1252 	msi_addr &= ~(SZ_32K - 1);
1253 	entry.res->start = msi_addr;
1254 	entry.res->end = msi_addr + SZ_32K - 1;
1255 
1256 	ret = iproc_pcie_setup_ib(pcie, &entry, IPROC_PCIE_IB_MAP_IO);
1257 	return ret;
1258 }
1259 
iproc_pcie_paxc_v2_msi_steer(struct iproc_pcie * pcie,u64 msi_addr,bool enable)1260 static void iproc_pcie_paxc_v2_msi_steer(struct iproc_pcie *pcie, u64 msi_addr,
1261 					 bool enable)
1262 {
1263 	u32 val;
1264 
1265 	if (!enable) {
1266 		/*
1267 		 * Disable PAXC MSI steering. All write transfers will be
1268 		 * treated as non-MSI transfers
1269 		 */
1270 		val = iproc_pcie_read_reg(pcie, IPROC_PCIE_MSI_EN_CFG);
1271 		val &= ~MSI_ENABLE_CFG;
1272 		iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_EN_CFG, val);
1273 		return;
1274 	}
1275 
1276 	/*
1277 	 * Program bits [43:13] of address of GITS_TRANSLATER register into
1278 	 * bits [30:0] of the MSI base address register.  In fact, in all iProc
1279 	 * based SoCs, all I/O register bases are well below the 32-bit
1280 	 * boundary, so we can safely assume bits [43:32] are always zeros.
1281 	 */
1282 	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_BASE_ADDR,
1283 			     (u32)(msi_addr >> 13));
1284 
1285 	/* use a default 8K window size */
1286 	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_WINDOW_SIZE, 0);
1287 
1288 	/* steering MSI to GICv3 ITS */
1289 	val = iproc_pcie_read_reg(pcie, IPROC_PCIE_MSI_GIC_MODE);
1290 	val |= GIC_V3_CFG;
1291 	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_GIC_MODE, val);
1292 
1293 	/*
1294 	 * Program bits [43:2] of address of GITS_TRANSLATER register into the
1295 	 * iProc MSI address registers.
1296 	 */
1297 	msi_addr >>= 2;
1298 	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_ADDR_HI,
1299 			     upper_32_bits(msi_addr));
1300 	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_ADDR_LO,
1301 			     lower_32_bits(msi_addr));
1302 
1303 	/* enable MSI */
1304 	val = iproc_pcie_read_reg(pcie, IPROC_PCIE_MSI_EN_CFG);
1305 	val |= MSI_ENABLE_CFG;
1306 	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_EN_CFG, val);
1307 }
1308 
iproc_pcie_msi_steer(struct iproc_pcie * pcie,struct device_node * msi_node)1309 static int iproc_pcie_msi_steer(struct iproc_pcie *pcie,
1310 				struct device_node *msi_node)
1311 {
1312 	struct device *dev = pcie->dev;
1313 	int ret;
1314 	u64 msi_addr;
1315 
1316 	ret = iproce_pcie_get_msi(pcie, msi_node, &msi_addr);
1317 	if (ret < 0) {
1318 		dev_err(dev, "msi steering failed\n");
1319 		return ret;
1320 	}
1321 
1322 	switch (pcie->type) {
1323 	case IPROC_PCIE_PAXB_V2:
1324 		ret = iproc_pcie_paxb_v2_msi_steer(pcie, msi_addr);
1325 		if (ret)
1326 			return ret;
1327 		break;
1328 	case IPROC_PCIE_PAXC_V2:
1329 		iproc_pcie_paxc_v2_msi_steer(pcie, msi_addr, true);
1330 		break;
1331 	default:
1332 		return -EINVAL;
1333 	}
1334 
1335 	return 0;
1336 }
1337 
iproc_pcie_msi_enable(struct iproc_pcie * pcie)1338 static int iproc_pcie_msi_enable(struct iproc_pcie *pcie)
1339 {
1340 	struct device_node *msi_node;
1341 	int ret;
1342 
1343 	/*
1344 	 * Either the "msi-parent" or the "msi-map" phandle needs to exist
1345 	 * for us to obtain the MSI node.
1346 	 */
1347 
1348 	msi_node = of_parse_phandle(pcie->dev->of_node, "msi-parent", 0);
1349 	if (!msi_node) {
1350 		const __be32 *msi_map = NULL;
1351 		int len;
1352 		u32 phandle;
1353 
1354 		msi_map = of_get_property(pcie->dev->of_node, "msi-map", &len);
1355 		if (!msi_map)
1356 			return -ENODEV;
1357 
1358 		phandle = be32_to_cpup(msi_map + 1);
1359 		msi_node = of_find_node_by_phandle(phandle);
1360 		if (!msi_node)
1361 			return -ENODEV;
1362 	}
1363 
1364 	/*
1365 	 * Certain revisions of the iProc PCIe controller require additional
1366 	 * configurations to steer the MSI writes towards an external MSI
1367 	 * controller.
1368 	 */
1369 	if (pcie->need_msi_steer) {
1370 		ret = iproc_pcie_msi_steer(pcie, msi_node);
1371 		if (ret)
1372 			goto out_put_node;
1373 	}
1374 
1375 	/*
1376 	 * If another MSI controller is being used, the call below should fail
1377 	 * but that is okay
1378 	 */
1379 	ret = iproc_msi_init(pcie, msi_node);
1380 
1381 out_put_node:
1382 	of_node_put(msi_node);
1383 	return ret;
1384 }
1385 
iproc_pcie_msi_disable(struct iproc_pcie * pcie)1386 static void iproc_pcie_msi_disable(struct iproc_pcie *pcie)
1387 {
1388 	iproc_msi_exit(pcie);
1389 }
1390 
iproc_pcie_rev_init(struct iproc_pcie * pcie)1391 static int iproc_pcie_rev_init(struct iproc_pcie *pcie)
1392 {
1393 	struct device *dev = pcie->dev;
1394 	unsigned int reg_idx;
1395 	const u16 *regs;
1396 
1397 	switch (pcie->type) {
1398 	case IPROC_PCIE_PAXB_BCMA:
1399 		regs = iproc_pcie_reg_paxb_bcma;
1400 		break;
1401 	case IPROC_PCIE_PAXB:
1402 		regs = iproc_pcie_reg_paxb;
1403 		pcie->has_apb_err_disable = true;
1404 		if (pcie->need_ob_cfg) {
1405 			pcie->ob_map = paxb_ob_map;
1406 			pcie->ob.nr_windows = ARRAY_SIZE(paxb_ob_map);
1407 		}
1408 		break;
1409 	case IPROC_PCIE_PAXB_V2:
1410 		regs = iproc_pcie_reg_paxb_v2;
1411 		pcie->iproc_cfg_read = true;
1412 		pcie->has_apb_err_disable = true;
1413 		if (pcie->need_ob_cfg) {
1414 			pcie->ob_map = paxb_v2_ob_map;
1415 			pcie->ob.nr_windows = ARRAY_SIZE(paxb_v2_ob_map);
1416 		}
1417 		pcie->ib.nr_regions = ARRAY_SIZE(paxb_v2_ib_map);
1418 		pcie->ib_map = paxb_v2_ib_map;
1419 		pcie->need_msi_steer = true;
1420 		dev_warn(dev, "reads of config registers that contain %#x return incorrect data\n",
1421 			 CFG_RETRY_STATUS);
1422 		break;
1423 	case IPROC_PCIE_PAXC:
1424 		regs = iproc_pcie_reg_paxc;
1425 		pcie->ep_is_internal = true;
1426 		pcie->iproc_cfg_read = true;
1427 		pcie->rej_unconfig_pf = true;
1428 		break;
1429 	case IPROC_PCIE_PAXC_V2:
1430 		regs = iproc_pcie_reg_paxc_v2;
1431 		pcie->ep_is_internal = true;
1432 		pcie->iproc_cfg_read = true;
1433 		pcie->rej_unconfig_pf = true;
1434 		pcie->need_msi_steer = true;
1435 		break;
1436 	default:
1437 		dev_err(dev, "incompatible iProc PCIe interface\n");
1438 		return -EINVAL;
1439 	}
1440 
1441 	pcie->reg_offsets = devm_kcalloc(dev, IPROC_PCIE_MAX_NUM_REG,
1442 					 sizeof(*pcie->reg_offsets),
1443 					 GFP_KERNEL);
1444 	if (!pcie->reg_offsets)
1445 		return -ENOMEM;
1446 
1447 	/* go through the register table and populate all valid registers */
1448 	pcie->reg_offsets[0] = (pcie->type == IPROC_PCIE_PAXC_V2) ?
1449 		IPROC_PCIE_REG_INVALID : regs[0];
1450 	for (reg_idx = 1; reg_idx < IPROC_PCIE_MAX_NUM_REG; reg_idx++)
1451 		pcie->reg_offsets[reg_idx] = regs[reg_idx] ?
1452 			regs[reg_idx] : IPROC_PCIE_REG_INVALID;
1453 
1454 	return 0;
1455 }
1456 
iproc_pcie_setup(struct iproc_pcie * pcie,struct list_head * res)1457 int iproc_pcie_setup(struct iproc_pcie *pcie, struct list_head *res)
1458 {
1459 	struct device *dev;
1460 	int ret;
1461 	struct pci_dev *pdev;
1462 	struct pci_host_bridge *host = pci_host_bridge_from_priv(pcie);
1463 
1464 	dev = pcie->dev;
1465 
1466 	ret = iproc_pcie_rev_init(pcie);
1467 	if (ret) {
1468 		dev_err(dev, "unable to initialize controller parameters\n");
1469 		return ret;
1470 	}
1471 
1472 	ret = phy_init(pcie->phy);
1473 	if (ret) {
1474 		dev_err(dev, "unable to initialize PCIe PHY\n");
1475 		return ret;
1476 	}
1477 
1478 	ret = phy_power_on(pcie->phy);
1479 	if (ret) {
1480 		dev_err(dev, "unable to power on PCIe PHY\n");
1481 		goto err_exit_phy;
1482 	}
1483 
1484 	iproc_pcie_perst_ctrl(pcie, true);
1485 	iproc_pcie_perst_ctrl(pcie, false);
1486 
1487 	iproc_pcie_invalidate_mapping(pcie);
1488 
1489 	if (pcie->need_ob_cfg) {
1490 		ret = iproc_pcie_map_ranges(pcie, res);
1491 		if (ret) {
1492 			dev_err(dev, "map failed\n");
1493 			goto err_power_off_phy;
1494 		}
1495 	}
1496 
1497 	if (pcie->need_ib_cfg) {
1498 		ret = iproc_pcie_map_dma_ranges(pcie);
1499 		if (ret && ret != -ENOENT)
1500 			goto err_power_off_phy;
1501 	}
1502 
1503 	ret = iproc_pcie_check_link(pcie);
1504 	if (ret) {
1505 		dev_err(dev, "no PCIe EP device detected\n");
1506 		goto err_power_off_phy;
1507 	}
1508 
1509 	iproc_pcie_enable(pcie);
1510 
1511 	if (IS_ENABLED(CONFIG_PCI_MSI))
1512 		if (iproc_pcie_msi_enable(pcie))
1513 			dev_info(dev, "not using iProc MSI\n");
1514 
1515 	host->ops = &iproc_pcie_ops;
1516 	host->sysdata = pcie;
1517 	host->map_irq = pcie->map_irq;
1518 
1519 	ret = pci_host_probe(host);
1520 	if (ret < 0) {
1521 		dev_err(dev, "failed to scan host: %d\n", ret);
1522 		goto err_power_off_phy;
1523 	}
1524 
1525 	for_each_pci_bridge(pdev, host->bus) {
1526 		if (pci_pcie_type(pdev) == PCI_EXP_TYPE_ROOT_PORT)
1527 			pcie_print_link_status(pdev);
1528 	}
1529 
1530 	return 0;
1531 
1532 err_power_off_phy:
1533 	phy_power_off(pcie->phy);
1534 err_exit_phy:
1535 	phy_exit(pcie->phy);
1536 	return ret;
1537 }
1538 EXPORT_SYMBOL(iproc_pcie_setup);
1539 
iproc_pcie_remove(struct iproc_pcie * pcie)1540 void iproc_pcie_remove(struct iproc_pcie *pcie)
1541 {
1542 	struct pci_host_bridge *host = pci_host_bridge_from_priv(pcie);
1543 
1544 	pci_stop_root_bus(host->bus);
1545 	pci_remove_root_bus(host->bus);
1546 
1547 	iproc_pcie_msi_disable(pcie);
1548 
1549 	phy_power_off(pcie->phy);
1550 	phy_exit(pcie->phy);
1551 }
1552 EXPORT_SYMBOL(iproc_pcie_remove);
1553 
1554 /*
1555  * The MSI parsing logic in certain revisions of Broadcom PAXC based root
1556  * complex does not work and needs to be disabled
1557  */
quirk_paxc_disable_msi_parsing(struct pci_dev * pdev)1558 static void quirk_paxc_disable_msi_parsing(struct pci_dev *pdev)
1559 {
1560 	struct iproc_pcie *pcie = iproc_data(pdev->bus);
1561 
1562 	if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
1563 		iproc_pcie_paxc_v2_msi_steer(pcie, 0, false);
1564 }
1565 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0x16f0,
1566 			quirk_paxc_disable_msi_parsing);
1567 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd802,
1568 			quirk_paxc_disable_msi_parsing);
1569 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd804,
1570 			quirk_paxc_disable_msi_parsing);
1571 
quirk_paxc_bridge(struct pci_dev * pdev)1572 static void quirk_paxc_bridge(struct pci_dev *pdev)
1573 {
1574 	/*
1575 	 * The PCI config space is shared with the PAXC root port and the first
1576 	 * Ethernet device.  So, we need to workaround this by telling the PCI
1577 	 * code that the bridge is not an Ethernet device.
1578 	 */
1579 	if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
1580 		pdev->class = PCI_CLASS_BRIDGE_PCI_NORMAL;
1581 
1582 	/*
1583 	 * MPSS is not being set properly (as it is currently 0).  This is
1584 	 * because that area of the PCI config space is hard coded to zero, and
1585 	 * is not modifiable by firmware.  Set this to 2 (e.g., 512 byte MPS)
1586 	 * so that the MPS can be set to the real max value.
1587 	 */
1588 	pdev->pcie_mpss = 2;
1589 }
1590 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0x16cd, quirk_paxc_bridge);
1591 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0x16f0, quirk_paxc_bridge);
1592 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd750, quirk_paxc_bridge);
1593 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd802, quirk_paxc_bridge);
1594 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd804, quirk_paxc_bridge);
1595 
1596 MODULE_AUTHOR("Ray Jui <rjui@broadcom.com>");
1597 MODULE_DESCRIPTION("Broadcom iPROC PCIe common driver");
1598 MODULE_LICENSE("GPL v2");
1599