1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2010 Red Hat, Inc.
4 * Copyright (C) 2016-2019 Christoph Hellwig.
5 */
6 #include <linux/module.h>
7 #include <linux/compiler.h>
8 #include <linux/fs.h>
9 #include <linux/iomap.h>
10 #include <linux/pagemap.h>
11 #include <linux/uio.h>
12 #include <linux/buffer_head.h>
13 #include <linux/dax.h>
14 #include <linux/writeback.h>
15 #include <linux/list_sort.h>
16 #include <linux/swap.h>
17 #include <linux/bio.h>
18 #include <linux/sched/signal.h>
19 #include <linux/migrate.h>
20 #include "trace.h"
21
22 #include "../internal.h"
23
24 #define IOEND_BATCH_SIZE 4096
25
26 typedef int (*iomap_punch_t)(struct inode *inode, loff_t offset, loff_t length);
27 /*
28 * Structure allocated for each folio to track per-block uptodate, dirty state
29 * and I/O completions.
30 */
31 struct iomap_folio_state {
32 atomic_t read_bytes_pending;
33 atomic_t write_bytes_pending;
34 spinlock_t state_lock;
35
36 /*
37 * Each block has two bits in this bitmap:
38 * Bits [0..blocks_per_folio) has the uptodate status.
39 * Bits [b_p_f...(2*b_p_f)) has the dirty status.
40 */
41 unsigned long state[];
42 };
43
44 static struct bio_set iomap_ioend_bioset;
45
ifs_is_fully_uptodate(struct folio * folio,struct iomap_folio_state * ifs)46 static inline bool ifs_is_fully_uptodate(struct folio *folio,
47 struct iomap_folio_state *ifs)
48 {
49 struct inode *inode = folio->mapping->host;
50
51 return bitmap_full(ifs->state, i_blocks_per_folio(inode, folio));
52 }
53
ifs_block_is_uptodate(struct iomap_folio_state * ifs,unsigned int block)54 static inline bool ifs_block_is_uptodate(struct iomap_folio_state *ifs,
55 unsigned int block)
56 {
57 return test_bit(block, ifs->state);
58 }
59
ifs_set_range_uptodate(struct folio * folio,struct iomap_folio_state * ifs,size_t off,size_t len)60 static void ifs_set_range_uptodate(struct folio *folio,
61 struct iomap_folio_state *ifs, size_t off, size_t len)
62 {
63 struct inode *inode = folio->mapping->host;
64 unsigned int first_blk = off >> inode->i_blkbits;
65 unsigned int last_blk = (off + len - 1) >> inode->i_blkbits;
66 unsigned int nr_blks = last_blk - first_blk + 1;
67 unsigned long flags;
68
69 spin_lock_irqsave(&ifs->state_lock, flags);
70 bitmap_set(ifs->state, first_blk, nr_blks);
71 if (ifs_is_fully_uptodate(folio, ifs))
72 folio_mark_uptodate(folio);
73 spin_unlock_irqrestore(&ifs->state_lock, flags);
74 }
75
iomap_set_range_uptodate(struct folio * folio,size_t off,size_t len)76 static void iomap_set_range_uptodate(struct folio *folio, size_t off,
77 size_t len)
78 {
79 struct iomap_folio_state *ifs = folio->private;
80
81 if (ifs)
82 ifs_set_range_uptodate(folio, ifs, off, len);
83 else
84 folio_mark_uptodate(folio);
85 }
86
ifs_block_is_dirty(struct folio * folio,struct iomap_folio_state * ifs,int block)87 static inline bool ifs_block_is_dirty(struct folio *folio,
88 struct iomap_folio_state *ifs, int block)
89 {
90 struct inode *inode = folio->mapping->host;
91 unsigned int blks_per_folio = i_blocks_per_folio(inode, folio);
92
93 return test_bit(block + blks_per_folio, ifs->state);
94 }
95
ifs_clear_range_dirty(struct folio * folio,struct iomap_folio_state * ifs,size_t off,size_t len)96 static void ifs_clear_range_dirty(struct folio *folio,
97 struct iomap_folio_state *ifs, size_t off, size_t len)
98 {
99 struct inode *inode = folio->mapping->host;
100 unsigned int blks_per_folio = i_blocks_per_folio(inode, folio);
101 unsigned int first_blk = (off >> inode->i_blkbits);
102 unsigned int last_blk = (off + len - 1) >> inode->i_blkbits;
103 unsigned int nr_blks = last_blk - first_blk + 1;
104 unsigned long flags;
105
106 spin_lock_irqsave(&ifs->state_lock, flags);
107 bitmap_clear(ifs->state, first_blk + blks_per_folio, nr_blks);
108 spin_unlock_irqrestore(&ifs->state_lock, flags);
109 }
110
iomap_clear_range_dirty(struct folio * folio,size_t off,size_t len)111 static void iomap_clear_range_dirty(struct folio *folio, size_t off, size_t len)
112 {
113 struct iomap_folio_state *ifs = folio->private;
114
115 if (ifs)
116 ifs_clear_range_dirty(folio, ifs, off, len);
117 }
118
ifs_set_range_dirty(struct folio * folio,struct iomap_folio_state * ifs,size_t off,size_t len)119 static void ifs_set_range_dirty(struct folio *folio,
120 struct iomap_folio_state *ifs, size_t off, size_t len)
121 {
122 struct inode *inode = folio->mapping->host;
123 unsigned int blks_per_folio = i_blocks_per_folio(inode, folio);
124 unsigned int first_blk = (off >> inode->i_blkbits);
125 unsigned int last_blk = (off + len - 1) >> inode->i_blkbits;
126 unsigned int nr_blks = last_blk - first_blk + 1;
127 unsigned long flags;
128
129 spin_lock_irqsave(&ifs->state_lock, flags);
130 bitmap_set(ifs->state, first_blk + blks_per_folio, nr_blks);
131 spin_unlock_irqrestore(&ifs->state_lock, flags);
132 }
133
iomap_set_range_dirty(struct folio * folio,size_t off,size_t len)134 static void iomap_set_range_dirty(struct folio *folio, size_t off, size_t len)
135 {
136 struct iomap_folio_state *ifs = folio->private;
137
138 if (ifs)
139 ifs_set_range_dirty(folio, ifs, off, len);
140 }
141
ifs_alloc(struct inode * inode,struct folio * folio,unsigned int flags)142 static struct iomap_folio_state *ifs_alloc(struct inode *inode,
143 struct folio *folio, unsigned int flags)
144 {
145 struct iomap_folio_state *ifs = folio->private;
146 unsigned int nr_blocks = i_blocks_per_folio(inode, folio);
147 gfp_t gfp;
148
149 if (ifs || nr_blocks <= 1)
150 return ifs;
151
152 if (flags & IOMAP_NOWAIT)
153 gfp = GFP_NOWAIT;
154 else
155 gfp = GFP_NOFS | __GFP_NOFAIL;
156
157 /*
158 * ifs->state tracks two sets of state flags when the
159 * filesystem block size is smaller than the folio size.
160 * The first state tracks per-block uptodate and the
161 * second tracks per-block dirty state.
162 */
163 ifs = kzalloc(struct_size(ifs, state,
164 BITS_TO_LONGS(2 * nr_blocks)), gfp);
165 if (!ifs)
166 return ifs;
167
168 spin_lock_init(&ifs->state_lock);
169 if (folio_test_uptodate(folio))
170 bitmap_set(ifs->state, 0, nr_blocks);
171 if (folio_test_dirty(folio))
172 bitmap_set(ifs->state, nr_blocks, nr_blocks);
173 folio_attach_private(folio, ifs);
174
175 return ifs;
176 }
177
ifs_free(struct folio * folio)178 static void ifs_free(struct folio *folio)
179 {
180 struct iomap_folio_state *ifs = folio_detach_private(folio);
181
182 if (!ifs)
183 return;
184 WARN_ON_ONCE(atomic_read(&ifs->read_bytes_pending));
185 WARN_ON_ONCE(atomic_read(&ifs->write_bytes_pending));
186 WARN_ON_ONCE(ifs_is_fully_uptodate(folio, ifs) !=
187 folio_test_uptodate(folio));
188 kfree(ifs);
189 }
190
191 /*
192 * Calculate the range inside the folio that we actually need to read.
193 */
iomap_adjust_read_range(struct inode * inode,struct folio * folio,loff_t * pos,loff_t length,size_t * offp,size_t * lenp)194 static void iomap_adjust_read_range(struct inode *inode, struct folio *folio,
195 loff_t *pos, loff_t length, size_t *offp, size_t *lenp)
196 {
197 struct iomap_folio_state *ifs = folio->private;
198 loff_t orig_pos = *pos;
199 loff_t isize = i_size_read(inode);
200 unsigned block_bits = inode->i_blkbits;
201 unsigned block_size = (1 << block_bits);
202 size_t poff = offset_in_folio(folio, *pos);
203 size_t plen = min_t(loff_t, folio_size(folio) - poff, length);
204 size_t orig_plen = plen;
205 unsigned first = poff >> block_bits;
206 unsigned last = (poff + plen - 1) >> block_bits;
207
208 /*
209 * If the block size is smaller than the page size, we need to check the
210 * per-block uptodate status and adjust the offset and length if needed
211 * to avoid reading in already uptodate ranges.
212 */
213 if (ifs) {
214 unsigned int i;
215
216 /* move forward for each leading block marked uptodate */
217 for (i = first; i <= last; i++) {
218 if (!ifs_block_is_uptodate(ifs, i))
219 break;
220 *pos += block_size;
221 poff += block_size;
222 plen -= block_size;
223 first++;
224 }
225
226 /* truncate len if we find any trailing uptodate block(s) */
227 for ( ; i <= last; i++) {
228 if (ifs_block_is_uptodate(ifs, i)) {
229 plen -= (last - i + 1) * block_size;
230 last = i - 1;
231 break;
232 }
233 }
234 }
235
236 /*
237 * If the extent spans the block that contains the i_size, we need to
238 * handle both halves separately so that we properly zero data in the
239 * page cache for blocks that are entirely outside of i_size.
240 */
241 if (orig_pos <= isize && orig_pos + orig_plen > isize) {
242 unsigned end = offset_in_folio(folio, isize - 1) >> block_bits;
243
244 if (first <= end && last > end)
245 plen -= (last - end) * block_size;
246 }
247
248 *offp = poff;
249 *lenp = plen;
250 }
251
iomap_finish_folio_read(struct folio * folio,size_t offset,size_t len,int error)252 static void iomap_finish_folio_read(struct folio *folio, size_t offset,
253 size_t len, int error)
254 {
255 struct iomap_folio_state *ifs = folio->private;
256
257 if (unlikely(error)) {
258 folio_clear_uptodate(folio);
259 folio_set_error(folio);
260 } else {
261 iomap_set_range_uptodate(folio, offset, len);
262 }
263
264 if (!ifs || atomic_sub_and_test(len, &ifs->read_bytes_pending))
265 folio_unlock(folio);
266 }
267
iomap_read_end_io(struct bio * bio)268 static void iomap_read_end_io(struct bio *bio)
269 {
270 int error = blk_status_to_errno(bio->bi_status);
271 struct folio_iter fi;
272
273 bio_for_each_folio_all(fi, bio)
274 iomap_finish_folio_read(fi.folio, fi.offset, fi.length, error);
275 bio_put(bio);
276 }
277
278 struct iomap_readpage_ctx {
279 struct folio *cur_folio;
280 bool cur_folio_in_bio;
281 struct bio *bio;
282 struct readahead_control *rac;
283 };
284
285 /**
286 * iomap_read_inline_data - copy inline data into the page cache
287 * @iter: iteration structure
288 * @folio: folio to copy to
289 *
290 * Copy the inline data in @iter into @folio and zero out the rest of the folio.
291 * Only a single IOMAP_INLINE extent is allowed at the end of each file.
292 * Returns zero for success to complete the read, or the usual negative errno.
293 */
iomap_read_inline_data(const struct iomap_iter * iter,struct folio * folio)294 static int iomap_read_inline_data(const struct iomap_iter *iter,
295 struct folio *folio)
296 {
297 const struct iomap *iomap = iomap_iter_srcmap(iter);
298 size_t size = i_size_read(iter->inode) - iomap->offset;
299 size_t poff = offset_in_page(iomap->offset);
300 size_t offset = offset_in_folio(folio, iomap->offset);
301 void *addr;
302
303 if (folio_test_uptodate(folio))
304 return 0;
305
306 if (WARN_ON_ONCE(size > PAGE_SIZE - poff))
307 return -EIO;
308 if (WARN_ON_ONCE(size > PAGE_SIZE -
309 offset_in_page(iomap->inline_data)))
310 return -EIO;
311 if (WARN_ON_ONCE(size > iomap->length))
312 return -EIO;
313 if (offset > 0)
314 ifs_alloc(iter->inode, folio, iter->flags);
315
316 addr = kmap_local_folio(folio, offset);
317 memcpy(addr, iomap->inline_data, size);
318 memset(addr + size, 0, PAGE_SIZE - poff - size);
319 kunmap_local(addr);
320 iomap_set_range_uptodate(folio, offset, PAGE_SIZE - poff);
321 return 0;
322 }
323
iomap_block_needs_zeroing(const struct iomap_iter * iter,loff_t pos)324 static inline bool iomap_block_needs_zeroing(const struct iomap_iter *iter,
325 loff_t pos)
326 {
327 const struct iomap *srcmap = iomap_iter_srcmap(iter);
328
329 return srcmap->type != IOMAP_MAPPED ||
330 (srcmap->flags & IOMAP_F_NEW) ||
331 pos >= i_size_read(iter->inode);
332 }
333
iomap_readpage_iter(const struct iomap_iter * iter,struct iomap_readpage_ctx * ctx,loff_t offset)334 static loff_t iomap_readpage_iter(const struct iomap_iter *iter,
335 struct iomap_readpage_ctx *ctx, loff_t offset)
336 {
337 const struct iomap *iomap = &iter->iomap;
338 loff_t pos = iter->pos + offset;
339 loff_t length = iomap_length(iter) - offset;
340 struct folio *folio = ctx->cur_folio;
341 struct iomap_folio_state *ifs;
342 loff_t orig_pos = pos;
343 size_t poff, plen;
344 sector_t sector;
345
346 if (iomap->type == IOMAP_INLINE)
347 return iomap_read_inline_data(iter, folio);
348
349 /* zero post-eof blocks as the page may be mapped */
350 ifs = ifs_alloc(iter->inode, folio, iter->flags);
351 iomap_adjust_read_range(iter->inode, folio, &pos, length, &poff, &plen);
352 if (plen == 0)
353 goto done;
354
355 if (iomap_block_needs_zeroing(iter, pos)) {
356 folio_zero_range(folio, poff, plen);
357 iomap_set_range_uptodate(folio, poff, plen);
358 goto done;
359 }
360
361 ctx->cur_folio_in_bio = true;
362 if (ifs)
363 atomic_add(plen, &ifs->read_bytes_pending);
364
365 sector = iomap_sector(iomap, pos);
366 if (!ctx->bio ||
367 bio_end_sector(ctx->bio) != sector ||
368 !bio_add_folio(ctx->bio, folio, plen, poff)) {
369 gfp_t gfp = mapping_gfp_constraint(folio->mapping, GFP_KERNEL);
370 gfp_t orig_gfp = gfp;
371 unsigned int nr_vecs = DIV_ROUND_UP(length, PAGE_SIZE);
372
373 if (ctx->bio)
374 submit_bio(ctx->bio);
375
376 if (ctx->rac) /* same as readahead_gfp_mask */
377 gfp |= __GFP_NORETRY | __GFP_NOWARN;
378 ctx->bio = bio_alloc(iomap->bdev, bio_max_segs(nr_vecs),
379 REQ_OP_READ, gfp);
380 /*
381 * If the bio_alloc fails, try it again for a single page to
382 * avoid having to deal with partial page reads. This emulates
383 * what do_mpage_read_folio does.
384 */
385 if (!ctx->bio) {
386 ctx->bio = bio_alloc(iomap->bdev, 1, REQ_OP_READ,
387 orig_gfp);
388 }
389 if (ctx->rac)
390 ctx->bio->bi_opf |= REQ_RAHEAD;
391 ctx->bio->bi_iter.bi_sector = sector;
392 ctx->bio->bi_end_io = iomap_read_end_io;
393 bio_add_folio_nofail(ctx->bio, folio, plen, poff);
394 }
395
396 done:
397 /*
398 * Move the caller beyond our range so that it keeps making progress.
399 * For that, we have to include any leading non-uptodate ranges, but
400 * we can skip trailing ones as they will be handled in the next
401 * iteration.
402 */
403 return pos - orig_pos + plen;
404 }
405
iomap_read_folio(struct folio * folio,const struct iomap_ops * ops)406 int iomap_read_folio(struct folio *folio, const struct iomap_ops *ops)
407 {
408 struct iomap_iter iter = {
409 .inode = folio->mapping->host,
410 .pos = folio_pos(folio),
411 .len = folio_size(folio),
412 };
413 struct iomap_readpage_ctx ctx = {
414 .cur_folio = folio,
415 };
416 int ret;
417
418 trace_iomap_readpage(iter.inode, 1);
419
420 while ((ret = iomap_iter(&iter, ops)) > 0)
421 iter.processed = iomap_readpage_iter(&iter, &ctx, 0);
422
423 if (ret < 0)
424 folio_set_error(folio);
425
426 if (ctx.bio) {
427 submit_bio(ctx.bio);
428 WARN_ON_ONCE(!ctx.cur_folio_in_bio);
429 } else {
430 WARN_ON_ONCE(ctx.cur_folio_in_bio);
431 folio_unlock(folio);
432 }
433
434 /*
435 * Just like mpage_readahead and block_read_full_folio, we always
436 * return 0 and just set the folio error flag on errors. This
437 * should be cleaned up throughout the stack eventually.
438 */
439 return 0;
440 }
441 EXPORT_SYMBOL_GPL(iomap_read_folio);
442
iomap_readahead_iter(const struct iomap_iter * iter,struct iomap_readpage_ctx * ctx)443 static loff_t iomap_readahead_iter(const struct iomap_iter *iter,
444 struct iomap_readpage_ctx *ctx)
445 {
446 loff_t length = iomap_length(iter);
447 loff_t done, ret;
448
449 for (done = 0; done < length; done += ret) {
450 if (ctx->cur_folio &&
451 offset_in_folio(ctx->cur_folio, iter->pos + done) == 0) {
452 if (!ctx->cur_folio_in_bio)
453 folio_unlock(ctx->cur_folio);
454 ctx->cur_folio = NULL;
455 }
456 if (!ctx->cur_folio) {
457 ctx->cur_folio = readahead_folio(ctx->rac);
458 ctx->cur_folio_in_bio = false;
459 }
460 ret = iomap_readpage_iter(iter, ctx, done);
461 if (ret <= 0)
462 return ret;
463 }
464
465 return done;
466 }
467
468 /**
469 * iomap_readahead - Attempt to read pages from a file.
470 * @rac: Describes the pages to be read.
471 * @ops: The operations vector for the filesystem.
472 *
473 * This function is for filesystems to call to implement their readahead
474 * address_space operation.
475 *
476 * Context: The @ops callbacks may submit I/O (eg to read the addresses of
477 * blocks from disc), and may wait for it. The caller may be trying to
478 * access a different page, and so sleeping excessively should be avoided.
479 * It may allocate memory, but should avoid costly allocations. This
480 * function is called with memalloc_nofs set, so allocations will not cause
481 * the filesystem to be reentered.
482 */
iomap_readahead(struct readahead_control * rac,const struct iomap_ops * ops)483 void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops)
484 {
485 struct iomap_iter iter = {
486 .inode = rac->mapping->host,
487 .pos = readahead_pos(rac),
488 .len = readahead_length(rac),
489 };
490 struct iomap_readpage_ctx ctx = {
491 .rac = rac,
492 };
493
494 trace_iomap_readahead(rac->mapping->host, readahead_count(rac));
495
496 while (iomap_iter(&iter, ops) > 0)
497 iter.processed = iomap_readahead_iter(&iter, &ctx);
498
499 if (ctx.bio)
500 submit_bio(ctx.bio);
501 if (ctx.cur_folio) {
502 if (!ctx.cur_folio_in_bio)
503 folio_unlock(ctx.cur_folio);
504 }
505 }
506 EXPORT_SYMBOL_GPL(iomap_readahead);
507
508 /*
509 * iomap_is_partially_uptodate checks whether blocks within a folio are
510 * uptodate or not.
511 *
512 * Returns true if all blocks which correspond to the specified part
513 * of the folio are uptodate.
514 */
iomap_is_partially_uptodate(struct folio * folio,size_t from,size_t count)515 bool iomap_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
516 {
517 struct iomap_folio_state *ifs = folio->private;
518 struct inode *inode = folio->mapping->host;
519 unsigned first, last, i;
520
521 if (!ifs)
522 return false;
523
524 /* Caller's range may extend past the end of this folio */
525 count = min(folio_size(folio) - from, count);
526
527 /* First and last blocks in range within folio */
528 first = from >> inode->i_blkbits;
529 last = (from + count - 1) >> inode->i_blkbits;
530
531 for (i = first; i <= last; i++)
532 if (!ifs_block_is_uptodate(ifs, i))
533 return false;
534 return true;
535 }
536 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate);
537
538 /**
539 * iomap_get_folio - get a folio reference for writing
540 * @iter: iteration structure
541 * @pos: start offset of write
542 * @len: Suggested size of folio to create.
543 *
544 * Returns a locked reference to the folio at @pos, or an error pointer if the
545 * folio could not be obtained.
546 */
iomap_get_folio(struct iomap_iter * iter,loff_t pos,size_t len)547 struct folio *iomap_get_folio(struct iomap_iter *iter, loff_t pos, size_t len)
548 {
549 fgf_t fgp = FGP_WRITEBEGIN | FGP_NOFS;
550
551 if (iter->flags & IOMAP_NOWAIT)
552 fgp |= FGP_NOWAIT;
553 fgp |= fgf_set_order(len);
554
555 return __filemap_get_folio(iter->inode->i_mapping, pos >> PAGE_SHIFT,
556 fgp, mapping_gfp_mask(iter->inode->i_mapping));
557 }
558 EXPORT_SYMBOL_GPL(iomap_get_folio);
559
iomap_release_folio(struct folio * folio,gfp_t gfp_flags)560 bool iomap_release_folio(struct folio *folio, gfp_t gfp_flags)
561 {
562 trace_iomap_release_folio(folio->mapping->host, folio_pos(folio),
563 folio_size(folio));
564
565 /*
566 * If the folio is dirty, we refuse to release our metadata because
567 * it may be partially dirty. Once we track per-block dirty state,
568 * we can release the metadata if every block is dirty.
569 */
570 if (folio_test_dirty(folio))
571 return false;
572 ifs_free(folio);
573 return true;
574 }
575 EXPORT_SYMBOL_GPL(iomap_release_folio);
576
iomap_invalidate_folio(struct folio * folio,size_t offset,size_t len)577 void iomap_invalidate_folio(struct folio *folio, size_t offset, size_t len)
578 {
579 trace_iomap_invalidate_folio(folio->mapping->host,
580 folio_pos(folio) + offset, len);
581
582 /*
583 * If we're invalidating the entire folio, clear the dirty state
584 * from it and release it to avoid unnecessary buildup of the LRU.
585 */
586 if (offset == 0 && len == folio_size(folio)) {
587 WARN_ON_ONCE(folio_test_writeback(folio));
588 folio_cancel_dirty(folio);
589 ifs_free(folio);
590 }
591 }
592 EXPORT_SYMBOL_GPL(iomap_invalidate_folio);
593
iomap_dirty_folio(struct address_space * mapping,struct folio * folio)594 bool iomap_dirty_folio(struct address_space *mapping, struct folio *folio)
595 {
596 struct inode *inode = mapping->host;
597 size_t len = folio_size(folio);
598
599 ifs_alloc(inode, folio, 0);
600 iomap_set_range_dirty(folio, 0, len);
601 return filemap_dirty_folio(mapping, folio);
602 }
603 EXPORT_SYMBOL_GPL(iomap_dirty_folio);
604
605 static void
iomap_write_failed(struct inode * inode,loff_t pos,unsigned len)606 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
607 {
608 loff_t i_size = i_size_read(inode);
609
610 /*
611 * Only truncate newly allocated pages beyoned EOF, even if the
612 * write started inside the existing inode size.
613 */
614 if (pos + len > i_size)
615 truncate_pagecache_range(inode, max(pos, i_size),
616 pos + len - 1);
617 }
618
iomap_read_folio_sync(loff_t block_start,struct folio * folio,size_t poff,size_t plen,const struct iomap * iomap)619 static int iomap_read_folio_sync(loff_t block_start, struct folio *folio,
620 size_t poff, size_t plen, const struct iomap *iomap)
621 {
622 struct bio_vec bvec;
623 struct bio bio;
624
625 bio_init(&bio, iomap->bdev, &bvec, 1, REQ_OP_READ);
626 bio.bi_iter.bi_sector = iomap_sector(iomap, block_start);
627 bio_add_folio_nofail(&bio, folio, plen, poff);
628 return submit_bio_wait(&bio);
629 }
630
__iomap_write_begin(const struct iomap_iter * iter,loff_t pos,size_t len,struct folio * folio)631 static int __iomap_write_begin(const struct iomap_iter *iter, loff_t pos,
632 size_t len, struct folio *folio)
633 {
634 const struct iomap *srcmap = iomap_iter_srcmap(iter);
635 struct iomap_folio_state *ifs;
636 loff_t block_size = i_blocksize(iter->inode);
637 loff_t block_start = round_down(pos, block_size);
638 loff_t block_end = round_up(pos + len, block_size);
639 unsigned int nr_blocks = i_blocks_per_folio(iter->inode, folio);
640 size_t from = offset_in_folio(folio, pos), to = from + len;
641 size_t poff, plen;
642
643 /*
644 * If the write or zeroing completely overlaps the current folio, then
645 * entire folio will be dirtied so there is no need for
646 * per-block state tracking structures to be attached to this folio.
647 * For the unshare case, we must read in the ondisk contents because we
648 * are not changing pagecache contents.
649 */
650 if (!(iter->flags & IOMAP_UNSHARE) && pos <= folio_pos(folio) &&
651 pos + len >= folio_pos(folio) + folio_size(folio))
652 return 0;
653
654 ifs = ifs_alloc(iter->inode, folio, iter->flags);
655 if ((iter->flags & IOMAP_NOWAIT) && !ifs && nr_blocks > 1)
656 return -EAGAIN;
657
658 if (folio_test_uptodate(folio))
659 return 0;
660 folio_clear_error(folio);
661
662 do {
663 iomap_adjust_read_range(iter->inode, folio, &block_start,
664 block_end - block_start, &poff, &plen);
665 if (plen == 0)
666 break;
667
668 if (!(iter->flags & IOMAP_UNSHARE) &&
669 (from <= poff || from >= poff + plen) &&
670 (to <= poff || to >= poff + plen))
671 continue;
672
673 if (iomap_block_needs_zeroing(iter, block_start)) {
674 if (WARN_ON_ONCE(iter->flags & IOMAP_UNSHARE))
675 return -EIO;
676 folio_zero_segments(folio, poff, from, to, poff + plen);
677 } else {
678 int status;
679
680 if (iter->flags & IOMAP_NOWAIT)
681 return -EAGAIN;
682
683 status = iomap_read_folio_sync(block_start, folio,
684 poff, plen, srcmap);
685 if (status)
686 return status;
687 }
688 iomap_set_range_uptodate(folio, poff, plen);
689 } while ((block_start += plen) < block_end);
690
691 return 0;
692 }
693
__iomap_get_folio(struct iomap_iter * iter,loff_t pos,size_t len)694 static struct folio *__iomap_get_folio(struct iomap_iter *iter, loff_t pos,
695 size_t len)
696 {
697 const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops;
698
699 if (folio_ops && folio_ops->get_folio)
700 return folio_ops->get_folio(iter, pos, len);
701 else
702 return iomap_get_folio(iter, pos, len);
703 }
704
__iomap_put_folio(struct iomap_iter * iter,loff_t pos,size_t ret,struct folio * folio)705 static void __iomap_put_folio(struct iomap_iter *iter, loff_t pos, size_t ret,
706 struct folio *folio)
707 {
708 const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops;
709
710 if (folio_ops && folio_ops->put_folio) {
711 folio_ops->put_folio(iter->inode, pos, ret, folio);
712 } else {
713 folio_unlock(folio);
714 folio_put(folio);
715 }
716 }
717
iomap_write_begin_inline(const struct iomap_iter * iter,struct folio * folio)718 static int iomap_write_begin_inline(const struct iomap_iter *iter,
719 struct folio *folio)
720 {
721 /* needs more work for the tailpacking case; disable for now */
722 if (WARN_ON_ONCE(iomap_iter_srcmap(iter)->offset != 0))
723 return -EIO;
724 return iomap_read_inline_data(iter, folio);
725 }
726
iomap_write_begin(struct iomap_iter * iter,loff_t pos,size_t len,struct folio ** foliop)727 static int iomap_write_begin(struct iomap_iter *iter, loff_t pos,
728 size_t len, struct folio **foliop)
729 {
730 const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops;
731 const struct iomap *srcmap = iomap_iter_srcmap(iter);
732 struct folio *folio;
733 int status = 0;
734
735 BUG_ON(pos + len > iter->iomap.offset + iter->iomap.length);
736 if (srcmap != &iter->iomap)
737 BUG_ON(pos + len > srcmap->offset + srcmap->length);
738
739 if (fatal_signal_pending(current))
740 return -EINTR;
741
742 if (!mapping_large_folio_support(iter->inode->i_mapping))
743 len = min_t(size_t, len, PAGE_SIZE - offset_in_page(pos));
744
745 folio = __iomap_get_folio(iter, pos, len);
746 if (IS_ERR(folio))
747 return PTR_ERR(folio);
748
749 /*
750 * Now we have a locked folio, before we do anything with it we need to
751 * check that the iomap we have cached is not stale. The inode extent
752 * mapping can change due to concurrent IO in flight (e.g.
753 * IOMAP_UNWRITTEN state can change and memory reclaim could have
754 * reclaimed a previously partially written page at this index after IO
755 * completion before this write reaches this file offset) and hence we
756 * could do the wrong thing here (zero a page range incorrectly or fail
757 * to zero) and corrupt data.
758 */
759 if (folio_ops && folio_ops->iomap_valid) {
760 bool iomap_valid = folio_ops->iomap_valid(iter->inode,
761 &iter->iomap);
762 if (!iomap_valid) {
763 iter->iomap.flags |= IOMAP_F_STALE;
764 status = 0;
765 goto out_unlock;
766 }
767 }
768
769 if (pos + len > folio_pos(folio) + folio_size(folio))
770 len = folio_pos(folio) + folio_size(folio) - pos;
771
772 if (srcmap->type == IOMAP_INLINE)
773 status = iomap_write_begin_inline(iter, folio);
774 else if (srcmap->flags & IOMAP_F_BUFFER_HEAD)
775 status = __block_write_begin_int(folio, pos, len, NULL, srcmap);
776 else
777 status = __iomap_write_begin(iter, pos, len, folio);
778
779 if (unlikely(status))
780 goto out_unlock;
781
782 *foliop = folio;
783 return 0;
784
785 out_unlock:
786 __iomap_put_folio(iter, pos, 0, folio);
787 iomap_write_failed(iter->inode, pos, len);
788
789 return status;
790 }
791
__iomap_write_end(struct inode * inode,loff_t pos,size_t len,size_t copied,struct folio * folio)792 static size_t __iomap_write_end(struct inode *inode, loff_t pos, size_t len,
793 size_t copied, struct folio *folio)
794 {
795 flush_dcache_folio(folio);
796
797 /*
798 * The blocks that were entirely written will now be uptodate, so we
799 * don't have to worry about a read_folio reading them and overwriting a
800 * partial write. However, if we've encountered a short write and only
801 * partially written into a block, it will not be marked uptodate, so a
802 * read_folio might come in and destroy our partial write.
803 *
804 * Do the simplest thing and just treat any short write to a
805 * non-uptodate page as a zero-length write, and force the caller to
806 * redo the whole thing.
807 */
808 if (unlikely(copied < len && !folio_test_uptodate(folio)))
809 return 0;
810 iomap_set_range_uptodate(folio, offset_in_folio(folio, pos), len);
811 iomap_set_range_dirty(folio, offset_in_folio(folio, pos), copied);
812 filemap_dirty_folio(inode->i_mapping, folio);
813 return copied;
814 }
815
iomap_write_end_inline(const struct iomap_iter * iter,struct folio * folio,loff_t pos,size_t copied)816 static size_t iomap_write_end_inline(const struct iomap_iter *iter,
817 struct folio *folio, loff_t pos, size_t copied)
818 {
819 const struct iomap *iomap = &iter->iomap;
820 void *addr;
821
822 WARN_ON_ONCE(!folio_test_uptodate(folio));
823 BUG_ON(!iomap_inline_data_valid(iomap));
824
825 flush_dcache_folio(folio);
826 addr = kmap_local_folio(folio, pos);
827 memcpy(iomap_inline_data(iomap, pos), addr, copied);
828 kunmap_local(addr);
829
830 mark_inode_dirty(iter->inode);
831 return copied;
832 }
833
834 /* Returns the number of bytes copied. May be 0. Cannot be an errno. */
iomap_write_end(struct iomap_iter * iter,loff_t pos,size_t len,size_t copied,struct folio * folio)835 static size_t iomap_write_end(struct iomap_iter *iter, loff_t pos, size_t len,
836 size_t copied, struct folio *folio)
837 {
838 const struct iomap *srcmap = iomap_iter_srcmap(iter);
839 loff_t old_size = iter->inode->i_size;
840 size_t ret;
841
842 if (srcmap->type == IOMAP_INLINE) {
843 ret = iomap_write_end_inline(iter, folio, pos, copied);
844 } else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) {
845 ret = block_write_end(NULL, iter->inode->i_mapping, pos, len,
846 copied, &folio->page, NULL);
847 } else {
848 ret = __iomap_write_end(iter->inode, pos, len, copied, folio);
849 }
850
851 /*
852 * Update the in-memory inode size after copying the data into the page
853 * cache. It's up to the file system to write the updated size to disk,
854 * preferably after I/O completion so that no stale data is exposed.
855 */
856 if (pos + ret > old_size) {
857 i_size_write(iter->inode, pos + ret);
858 iter->iomap.flags |= IOMAP_F_SIZE_CHANGED;
859 }
860 __iomap_put_folio(iter, pos, ret, folio);
861
862 if (old_size < pos)
863 pagecache_isize_extended(iter->inode, old_size, pos);
864 if (ret < len)
865 iomap_write_failed(iter->inode, pos + ret, len - ret);
866 return ret;
867 }
868
iomap_write_iter(struct iomap_iter * iter,struct iov_iter * i)869 static loff_t iomap_write_iter(struct iomap_iter *iter, struct iov_iter *i)
870 {
871 loff_t length = iomap_length(iter);
872 loff_t pos = iter->pos;
873 ssize_t written = 0;
874 long status = 0;
875 struct address_space *mapping = iter->inode->i_mapping;
876 size_t chunk = mapping_max_folio_size(mapping);
877 unsigned int bdp_flags = (iter->flags & IOMAP_NOWAIT) ? BDP_ASYNC : 0;
878
879 do {
880 struct folio *folio;
881 size_t offset; /* Offset into folio */
882 size_t bytes; /* Bytes to write to folio */
883 size_t copied; /* Bytes copied from user */
884
885 bytes = iov_iter_count(i);
886 retry:
887 offset = pos & (chunk - 1);
888 bytes = min(chunk - offset, bytes);
889 status = balance_dirty_pages_ratelimited_flags(mapping,
890 bdp_flags);
891 if (unlikely(status))
892 break;
893
894 if (bytes > length)
895 bytes = length;
896
897 /*
898 * Bring in the user page that we'll copy from _first_.
899 * Otherwise there's a nasty deadlock on copying from the
900 * same page as we're writing to, without it being marked
901 * up-to-date.
902 *
903 * For async buffered writes the assumption is that the user
904 * page has already been faulted in. This can be optimized by
905 * faulting the user page.
906 */
907 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
908 status = -EFAULT;
909 break;
910 }
911
912 status = iomap_write_begin(iter, pos, bytes, &folio);
913 if (unlikely(status))
914 break;
915 if (iter->iomap.flags & IOMAP_F_STALE)
916 break;
917
918 offset = offset_in_folio(folio, pos);
919 if (bytes > folio_size(folio) - offset)
920 bytes = folio_size(folio) - offset;
921
922 if (mapping_writably_mapped(mapping))
923 flush_dcache_folio(folio);
924
925 copied = copy_folio_from_iter_atomic(folio, offset, bytes, i);
926 status = iomap_write_end(iter, pos, bytes, copied, folio);
927
928 if (unlikely(copied != status))
929 iov_iter_revert(i, copied - status);
930
931 cond_resched();
932 if (unlikely(status == 0)) {
933 /*
934 * A short copy made iomap_write_end() reject the
935 * thing entirely. Might be memory poisoning
936 * halfway through, might be a race with munmap,
937 * might be severe memory pressure.
938 */
939 if (chunk > PAGE_SIZE)
940 chunk /= 2;
941 if (copied) {
942 bytes = copied;
943 goto retry;
944 }
945 } else {
946 pos += status;
947 written += status;
948 length -= status;
949 }
950 } while (iov_iter_count(i) && length);
951
952 if (status == -EAGAIN) {
953 iov_iter_revert(i, written);
954 return -EAGAIN;
955 }
956 return written ? written : status;
957 }
958
959 ssize_t
iomap_file_buffered_write(struct kiocb * iocb,struct iov_iter * i,const struct iomap_ops * ops)960 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *i,
961 const struct iomap_ops *ops)
962 {
963 struct iomap_iter iter = {
964 .inode = iocb->ki_filp->f_mapping->host,
965 .pos = iocb->ki_pos,
966 .len = iov_iter_count(i),
967 .flags = IOMAP_WRITE,
968 };
969 ssize_t ret;
970
971 if (iocb->ki_flags & IOCB_NOWAIT)
972 iter.flags |= IOMAP_NOWAIT;
973
974 while ((ret = iomap_iter(&iter, ops)) > 0)
975 iter.processed = iomap_write_iter(&iter, i);
976
977 if (unlikely(iter.pos == iocb->ki_pos))
978 return ret;
979 ret = iter.pos - iocb->ki_pos;
980 iocb->ki_pos = iter.pos;
981 return ret;
982 }
983 EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
984
iomap_write_delalloc_ifs_punch(struct inode * inode,struct folio * folio,loff_t start_byte,loff_t end_byte,iomap_punch_t punch)985 static int iomap_write_delalloc_ifs_punch(struct inode *inode,
986 struct folio *folio, loff_t start_byte, loff_t end_byte,
987 iomap_punch_t punch)
988 {
989 unsigned int first_blk, last_blk, i;
990 loff_t last_byte;
991 u8 blkbits = inode->i_blkbits;
992 struct iomap_folio_state *ifs;
993 int ret = 0;
994
995 /*
996 * When we have per-block dirty tracking, there can be
997 * blocks within a folio which are marked uptodate
998 * but not dirty. In that case it is necessary to punch
999 * out such blocks to avoid leaking any delalloc blocks.
1000 */
1001 ifs = folio->private;
1002 if (!ifs)
1003 return ret;
1004
1005 last_byte = min_t(loff_t, end_byte - 1,
1006 folio_pos(folio) + folio_size(folio) - 1);
1007 first_blk = offset_in_folio(folio, start_byte) >> blkbits;
1008 last_blk = offset_in_folio(folio, last_byte) >> blkbits;
1009 for (i = first_blk; i <= last_blk; i++) {
1010 if (!ifs_block_is_dirty(folio, ifs, i)) {
1011 ret = punch(inode, folio_pos(folio) + (i << blkbits),
1012 1 << blkbits);
1013 if (ret)
1014 return ret;
1015 }
1016 }
1017
1018 return ret;
1019 }
1020
1021
iomap_write_delalloc_punch(struct inode * inode,struct folio * folio,loff_t * punch_start_byte,loff_t start_byte,loff_t end_byte,iomap_punch_t punch)1022 static int iomap_write_delalloc_punch(struct inode *inode, struct folio *folio,
1023 loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte,
1024 iomap_punch_t punch)
1025 {
1026 int ret = 0;
1027
1028 if (!folio_test_dirty(folio))
1029 return ret;
1030
1031 /* if dirty, punch up to offset */
1032 if (start_byte > *punch_start_byte) {
1033 ret = punch(inode, *punch_start_byte,
1034 start_byte - *punch_start_byte);
1035 if (ret)
1036 return ret;
1037 }
1038
1039 /* Punch non-dirty blocks within folio */
1040 ret = iomap_write_delalloc_ifs_punch(inode, folio, start_byte,
1041 end_byte, punch);
1042 if (ret)
1043 return ret;
1044
1045 /*
1046 * Make sure the next punch start is correctly bound to
1047 * the end of this data range, not the end of the folio.
1048 */
1049 *punch_start_byte = min_t(loff_t, end_byte,
1050 folio_pos(folio) + folio_size(folio));
1051
1052 return ret;
1053 }
1054
1055 /*
1056 * Scan the data range passed to us for dirty page cache folios. If we find a
1057 * dirty folio, punch out the preceding range and update the offset from which
1058 * the next punch will start from.
1059 *
1060 * We can punch out storage reservations under clean pages because they either
1061 * contain data that has been written back - in which case the delalloc punch
1062 * over that range is a no-op - or they have been read faults in which case they
1063 * contain zeroes and we can remove the delalloc backing range and any new
1064 * writes to those pages will do the normal hole filling operation...
1065 *
1066 * This makes the logic simple: we only need to keep the delalloc extents only
1067 * over the dirty ranges of the page cache.
1068 *
1069 * This function uses [start_byte, end_byte) intervals (i.e. open ended) to
1070 * simplify range iterations.
1071 */
iomap_write_delalloc_scan(struct inode * inode,loff_t * punch_start_byte,loff_t start_byte,loff_t end_byte,iomap_punch_t punch)1072 static int iomap_write_delalloc_scan(struct inode *inode,
1073 loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte,
1074 iomap_punch_t punch)
1075 {
1076 while (start_byte < end_byte) {
1077 struct folio *folio;
1078 int ret;
1079
1080 /* grab locked page */
1081 folio = filemap_lock_folio(inode->i_mapping,
1082 start_byte >> PAGE_SHIFT);
1083 if (IS_ERR(folio)) {
1084 start_byte = ALIGN_DOWN(start_byte, PAGE_SIZE) +
1085 PAGE_SIZE;
1086 continue;
1087 }
1088
1089 ret = iomap_write_delalloc_punch(inode, folio, punch_start_byte,
1090 start_byte, end_byte, punch);
1091 if (ret) {
1092 folio_unlock(folio);
1093 folio_put(folio);
1094 return ret;
1095 }
1096
1097 /* move offset to start of next folio in range */
1098 start_byte = folio_next_index(folio) << PAGE_SHIFT;
1099 folio_unlock(folio);
1100 folio_put(folio);
1101 }
1102 return 0;
1103 }
1104
1105 /*
1106 * Punch out all the delalloc blocks in the range given except for those that
1107 * have dirty data still pending in the page cache - those are going to be
1108 * written and so must still retain the delalloc backing for writeback.
1109 *
1110 * As we are scanning the page cache for data, we don't need to reimplement the
1111 * wheel - mapping_seek_hole_data() does exactly what we need to identify the
1112 * start and end of data ranges correctly even for sub-folio block sizes. This
1113 * byte range based iteration is especially convenient because it means we
1114 * don't have to care about variable size folios, nor where the start or end of
1115 * the data range lies within a folio, if they lie within the same folio or even
1116 * if there are multiple discontiguous data ranges within the folio.
1117 *
1118 * It should be noted that mapping_seek_hole_data() is not aware of EOF, and so
1119 * can return data ranges that exist in the cache beyond EOF. e.g. a page fault
1120 * spanning EOF will initialise the post-EOF data to zeroes and mark it up to
1121 * date. A write page fault can then mark it dirty. If we then fail a write()
1122 * beyond EOF into that up to date cached range, we allocate a delalloc block
1123 * beyond EOF and then have to punch it out. Because the range is up to date,
1124 * mapping_seek_hole_data() will return it, and we will skip the punch because
1125 * the folio is dirty. THis is incorrect - we always need to punch out delalloc
1126 * beyond EOF in this case as writeback will never write back and covert that
1127 * delalloc block beyond EOF. Hence we limit the cached data scan range to EOF,
1128 * resulting in always punching out the range from the EOF to the end of the
1129 * range the iomap spans.
1130 *
1131 * Intervals are of the form [start_byte, end_byte) (i.e. open ended) because it
1132 * matches the intervals returned by mapping_seek_hole_data(). i.e. SEEK_DATA
1133 * returns the start of a data range (start_byte), and SEEK_HOLE(start_byte)
1134 * returns the end of the data range (data_end). Using closed intervals would
1135 * require sprinkling this code with magic "+ 1" and "- 1" arithmetic and expose
1136 * the code to subtle off-by-one bugs....
1137 */
iomap_write_delalloc_release(struct inode * inode,loff_t start_byte,loff_t end_byte,iomap_punch_t punch)1138 static int iomap_write_delalloc_release(struct inode *inode,
1139 loff_t start_byte, loff_t end_byte, iomap_punch_t punch)
1140 {
1141 loff_t punch_start_byte = start_byte;
1142 loff_t scan_end_byte = min(i_size_read(inode), end_byte);
1143 int error = 0;
1144
1145 /*
1146 * Lock the mapping to avoid races with page faults re-instantiating
1147 * folios and dirtying them via ->page_mkwrite whilst we walk the
1148 * cache and perform delalloc extent removal. Failing to do this can
1149 * leave dirty pages with no space reservation in the cache.
1150 */
1151 filemap_invalidate_lock(inode->i_mapping);
1152 while (start_byte < scan_end_byte) {
1153 loff_t data_end;
1154
1155 start_byte = mapping_seek_hole_data(inode->i_mapping,
1156 start_byte, scan_end_byte, SEEK_DATA);
1157 /*
1158 * If there is no more data to scan, all that is left is to
1159 * punch out the remaining range.
1160 */
1161 if (start_byte == -ENXIO || start_byte == scan_end_byte)
1162 break;
1163 if (start_byte < 0) {
1164 error = start_byte;
1165 goto out_unlock;
1166 }
1167 WARN_ON_ONCE(start_byte < punch_start_byte);
1168 WARN_ON_ONCE(start_byte > scan_end_byte);
1169
1170 /*
1171 * We find the end of this contiguous cached data range by
1172 * seeking from start_byte to the beginning of the next hole.
1173 */
1174 data_end = mapping_seek_hole_data(inode->i_mapping, start_byte,
1175 scan_end_byte, SEEK_HOLE);
1176 if (data_end < 0) {
1177 error = data_end;
1178 goto out_unlock;
1179 }
1180
1181 /*
1182 * If we race with post-direct I/O invalidation of the page cache,
1183 * there might be no data left at start_byte.
1184 */
1185 if (data_end == start_byte)
1186 continue;
1187
1188 WARN_ON_ONCE(data_end < start_byte);
1189 WARN_ON_ONCE(data_end > scan_end_byte);
1190
1191 error = iomap_write_delalloc_scan(inode, &punch_start_byte,
1192 start_byte, data_end, punch);
1193 if (error)
1194 goto out_unlock;
1195
1196 /* The next data search starts at the end of this one. */
1197 start_byte = data_end;
1198 }
1199
1200 if (punch_start_byte < end_byte)
1201 error = punch(inode, punch_start_byte,
1202 end_byte - punch_start_byte);
1203 out_unlock:
1204 filemap_invalidate_unlock(inode->i_mapping);
1205 return error;
1206 }
1207
1208 /*
1209 * When a short write occurs, the filesystem may need to remove reserved space
1210 * that was allocated in ->iomap_begin from it's ->iomap_end method. For
1211 * filesystems that use delayed allocation, we need to punch out delalloc
1212 * extents from the range that are not dirty in the page cache. As the write can
1213 * race with page faults, there can be dirty pages over the delalloc extent
1214 * outside the range of a short write but still within the delalloc extent
1215 * allocated for this iomap.
1216 *
1217 * This function uses [start_byte, end_byte) intervals (i.e. open ended) to
1218 * simplify range iterations.
1219 *
1220 * The punch() callback *must* only punch delalloc extents in the range passed
1221 * to it. It must skip over all other types of extents in the range and leave
1222 * them completely unchanged. It must do this punch atomically with respect to
1223 * other extent modifications.
1224 *
1225 * The punch() callback may be called with a folio locked to prevent writeback
1226 * extent allocation racing at the edge of the range we are currently punching.
1227 * The locked folio may or may not cover the range being punched, so it is not
1228 * safe for the punch() callback to lock folios itself.
1229 *
1230 * Lock order is:
1231 *
1232 * inode->i_rwsem (shared or exclusive)
1233 * inode->i_mapping->invalidate_lock (exclusive)
1234 * folio_lock()
1235 * ->punch
1236 * internal filesystem allocation lock
1237 */
iomap_file_buffered_write_punch_delalloc(struct inode * inode,struct iomap * iomap,loff_t pos,loff_t length,ssize_t written,iomap_punch_t punch)1238 int iomap_file_buffered_write_punch_delalloc(struct inode *inode,
1239 struct iomap *iomap, loff_t pos, loff_t length,
1240 ssize_t written, iomap_punch_t punch)
1241 {
1242 loff_t start_byte;
1243 loff_t end_byte;
1244 unsigned int blocksize = i_blocksize(inode);
1245
1246 if (iomap->type != IOMAP_DELALLOC)
1247 return 0;
1248
1249 /* If we didn't reserve the blocks, we're not allowed to punch them. */
1250 if (!(iomap->flags & IOMAP_F_NEW))
1251 return 0;
1252
1253 /*
1254 * start_byte refers to the first unused block after a short write. If
1255 * nothing was written, round offset down to point at the first block in
1256 * the range.
1257 */
1258 if (unlikely(!written))
1259 start_byte = round_down(pos, blocksize);
1260 else
1261 start_byte = round_up(pos + written, blocksize);
1262 end_byte = round_up(pos + length, blocksize);
1263
1264 /* Nothing to do if we've written the entire delalloc extent */
1265 if (start_byte >= end_byte)
1266 return 0;
1267
1268 return iomap_write_delalloc_release(inode, start_byte, end_byte,
1269 punch);
1270 }
1271 EXPORT_SYMBOL_GPL(iomap_file_buffered_write_punch_delalloc);
1272
iomap_unshare_iter(struct iomap_iter * iter)1273 static loff_t iomap_unshare_iter(struct iomap_iter *iter)
1274 {
1275 struct iomap *iomap = &iter->iomap;
1276 loff_t pos = iter->pos;
1277 loff_t length = iomap_length(iter);
1278 loff_t written = 0;
1279
1280 if (!iomap_want_unshare_iter(iter))
1281 return length;
1282
1283 do {
1284 struct folio *folio;
1285 int status;
1286 size_t offset;
1287 size_t bytes = min_t(u64, SIZE_MAX, length);
1288
1289 status = iomap_write_begin(iter, pos, bytes, &folio);
1290 if (unlikely(status))
1291 return status;
1292 if (iomap->flags & IOMAP_F_STALE)
1293 break;
1294
1295 offset = offset_in_folio(folio, pos);
1296 if (bytes > folio_size(folio) - offset)
1297 bytes = folio_size(folio) - offset;
1298
1299 bytes = iomap_write_end(iter, pos, bytes, bytes, folio);
1300 if (WARN_ON_ONCE(bytes == 0))
1301 return -EIO;
1302
1303 cond_resched();
1304
1305 pos += bytes;
1306 written += bytes;
1307 length -= bytes;
1308
1309 balance_dirty_pages_ratelimited(iter->inode->i_mapping);
1310 } while (length > 0);
1311
1312 return written;
1313 }
1314
1315 int
iomap_file_unshare(struct inode * inode,loff_t pos,loff_t len,const struct iomap_ops * ops)1316 iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len,
1317 const struct iomap_ops *ops)
1318 {
1319 struct iomap_iter iter = {
1320 .inode = inode,
1321 .pos = pos,
1322 .flags = IOMAP_WRITE | IOMAP_UNSHARE,
1323 };
1324 loff_t size = i_size_read(inode);
1325 int ret;
1326
1327 if (pos < 0 || pos >= size)
1328 return 0;
1329
1330 iter.len = min(len, size - pos);
1331 while ((ret = iomap_iter(&iter, ops)) > 0)
1332 iter.processed = iomap_unshare_iter(&iter);
1333 return ret;
1334 }
1335 EXPORT_SYMBOL_GPL(iomap_file_unshare);
1336
iomap_zero_iter(struct iomap_iter * iter,bool * did_zero)1337 static loff_t iomap_zero_iter(struct iomap_iter *iter, bool *did_zero)
1338 {
1339 const struct iomap *srcmap = iomap_iter_srcmap(iter);
1340 loff_t pos = iter->pos;
1341 loff_t length = iomap_length(iter);
1342 loff_t written = 0;
1343
1344 /* already zeroed? we're done. */
1345 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
1346 return length;
1347
1348 do {
1349 struct folio *folio;
1350 int status;
1351 size_t offset;
1352 size_t bytes = min_t(u64, SIZE_MAX, length);
1353
1354 status = iomap_write_begin(iter, pos, bytes, &folio);
1355 if (status)
1356 return status;
1357 if (iter->iomap.flags & IOMAP_F_STALE)
1358 break;
1359
1360 offset = offset_in_folio(folio, pos);
1361 if (bytes > folio_size(folio) - offset)
1362 bytes = folio_size(folio) - offset;
1363
1364 folio_zero_range(folio, offset, bytes);
1365 folio_mark_accessed(folio);
1366
1367 bytes = iomap_write_end(iter, pos, bytes, bytes, folio);
1368 if (WARN_ON_ONCE(bytes == 0))
1369 return -EIO;
1370
1371 pos += bytes;
1372 length -= bytes;
1373 written += bytes;
1374 } while (length > 0);
1375
1376 if (did_zero)
1377 *did_zero = true;
1378 return written;
1379 }
1380
1381 int
iomap_zero_range(struct inode * inode,loff_t pos,loff_t len,bool * did_zero,const struct iomap_ops * ops)1382 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
1383 const struct iomap_ops *ops)
1384 {
1385 struct iomap_iter iter = {
1386 .inode = inode,
1387 .pos = pos,
1388 .len = len,
1389 .flags = IOMAP_ZERO,
1390 };
1391 int ret;
1392
1393 while ((ret = iomap_iter(&iter, ops)) > 0)
1394 iter.processed = iomap_zero_iter(&iter, did_zero);
1395 return ret;
1396 }
1397 EXPORT_SYMBOL_GPL(iomap_zero_range);
1398
1399 int
iomap_truncate_page(struct inode * inode,loff_t pos,bool * did_zero,const struct iomap_ops * ops)1400 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1401 const struct iomap_ops *ops)
1402 {
1403 unsigned int blocksize = i_blocksize(inode);
1404 unsigned int off = pos & (blocksize - 1);
1405
1406 /* Block boundary? Nothing to do */
1407 if (!off)
1408 return 0;
1409 return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
1410 }
1411 EXPORT_SYMBOL_GPL(iomap_truncate_page);
1412
iomap_folio_mkwrite_iter(struct iomap_iter * iter,struct folio * folio)1413 static loff_t iomap_folio_mkwrite_iter(struct iomap_iter *iter,
1414 struct folio *folio)
1415 {
1416 loff_t length = iomap_length(iter);
1417 int ret;
1418
1419 if (iter->iomap.flags & IOMAP_F_BUFFER_HEAD) {
1420 ret = __block_write_begin_int(folio, iter->pos, length, NULL,
1421 &iter->iomap);
1422 if (ret)
1423 return ret;
1424 block_commit_write(&folio->page, 0, length);
1425 } else {
1426 WARN_ON_ONCE(!folio_test_uptodate(folio));
1427 folio_mark_dirty(folio);
1428 }
1429
1430 return length;
1431 }
1432
iomap_page_mkwrite(struct vm_fault * vmf,const struct iomap_ops * ops)1433 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops)
1434 {
1435 struct iomap_iter iter = {
1436 .inode = file_inode(vmf->vma->vm_file),
1437 .flags = IOMAP_WRITE | IOMAP_FAULT,
1438 };
1439 struct folio *folio = page_folio(vmf->page);
1440 ssize_t ret;
1441
1442 folio_lock(folio);
1443 ret = folio_mkwrite_check_truncate(folio, iter.inode);
1444 if (ret < 0)
1445 goto out_unlock;
1446 iter.pos = folio_pos(folio);
1447 iter.len = ret;
1448 while ((ret = iomap_iter(&iter, ops)) > 0)
1449 iter.processed = iomap_folio_mkwrite_iter(&iter, folio);
1450
1451 if (ret < 0)
1452 goto out_unlock;
1453 folio_wait_stable(folio);
1454 return VM_FAULT_LOCKED;
1455 out_unlock:
1456 folio_unlock(folio);
1457 return vmf_fs_error(ret);
1458 }
1459 EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
1460
iomap_finish_folio_write(struct inode * inode,struct folio * folio,size_t len,int error)1461 static void iomap_finish_folio_write(struct inode *inode, struct folio *folio,
1462 size_t len, int error)
1463 {
1464 struct iomap_folio_state *ifs = folio->private;
1465
1466 if (error) {
1467 folio_set_error(folio);
1468 mapping_set_error(inode->i_mapping, error);
1469 }
1470
1471 WARN_ON_ONCE(i_blocks_per_folio(inode, folio) > 1 && !ifs);
1472 WARN_ON_ONCE(ifs && atomic_read(&ifs->write_bytes_pending) <= 0);
1473
1474 if (!ifs || atomic_sub_and_test(len, &ifs->write_bytes_pending))
1475 folio_end_writeback(folio);
1476 }
1477
1478 /*
1479 * We're now finished for good with this ioend structure. Update the page
1480 * state, release holds on bios, and finally free up memory. Do not use the
1481 * ioend after this.
1482 */
1483 static u32
iomap_finish_ioend(struct iomap_ioend * ioend,int error)1484 iomap_finish_ioend(struct iomap_ioend *ioend, int error)
1485 {
1486 struct inode *inode = ioend->io_inode;
1487 struct bio *bio = &ioend->io_inline_bio;
1488 struct bio *last = ioend->io_bio, *next;
1489 u64 start = bio->bi_iter.bi_sector;
1490 loff_t offset = ioend->io_offset;
1491 bool quiet = bio_flagged(bio, BIO_QUIET);
1492 u32 folio_count = 0;
1493
1494 for (bio = &ioend->io_inline_bio; bio; bio = next) {
1495 struct folio_iter fi;
1496
1497 /*
1498 * For the last bio, bi_private points to the ioend, so we
1499 * need to explicitly end the iteration here.
1500 */
1501 if (bio == last)
1502 next = NULL;
1503 else
1504 next = bio->bi_private;
1505
1506 /* walk all folios in bio, ending page IO on them */
1507 bio_for_each_folio_all(fi, bio) {
1508 iomap_finish_folio_write(inode, fi.folio, fi.length,
1509 error);
1510 folio_count++;
1511 }
1512 bio_put(bio);
1513 }
1514 /* The ioend has been freed by bio_put() */
1515
1516 if (unlikely(error && !quiet)) {
1517 printk_ratelimited(KERN_ERR
1518 "%s: writeback error on inode %lu, offset %lld, sector %llu",
1519 inode->i_sb->s_id, inode->i_ino, offset, start);
1520 }
1521 return folio_count;
1522 }
1523
1524 /*
1525 * Ioend completion routine for merged bios. This can only be called from task
1526 * contexts as merged ioends can be of unbound length. Hence we have to break up
1527 * the writeback completions into manageable chunks to avoid long scheduler
1528 * holdoffs. We aim to keep scheduler holdoffs down below 10ms so that we get
1529 * good batch processing throughput without creating adverse scheduler latency
1530 * conditions.
1531 */
1532 void
iomap_finish_ioends(struct iomap_ioend * ioend,int error)1533 iomap_finish_ioends(struct iomap_ioend *ioend, int error)
1534 {
1535 struct list_head tmp;
1536 u32 completions;
1537
1538 might_sleep();
1539
1540 list_replace_init(&ioend->io_list, &tmp);
1541 completions = iomap_finish_ioend(ioend, error);
1542
1543 while (!list_empty(&tmp)) {
1544 if (completions > IOEND_BATCH_SIZE * 8) {
1545 cond_resched();
1546 completions = 0;
1547 }
1548 ioend = list_first_entry(&tmp, struct iomap_ioend, io_list);
1549 list_del_init(&ioend->io_list);
1550 completions += iomap_finish_ioend(ioend, error);
1551 }
1552 }
1553 EXPORT_SYMBOL_GPL(iomap_finish_ioends);
1554
1555 /*
1556 * We can merge two adjacent ioends if they have the same set of work to do.
1557 */
1558 static bool
iomap_ioend_can_merge(struct iomap_ioend * ioend,struct iomap_ioend * next)1559 iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next)
1560 {
1561 if (ioend->io_bio->bi_status != next->io_bio->bi_status)
1562 return false;
1563 if ((ioend->io_flags & IOMAP_F_SHARED) ^
1564 (next->io_flags & IOMAP_F_SHARED))
1565 return false;
1566 if ((ioend->io_type == IOMAP_UNWRITTEN) ^
1567 (next->io_type == IOMAP_UNWRITTEN))
1568 return false;
1569 if (ioend->io_offset + ioend->io_size != next->io_offset)
1570 return false;
1571 /*
1572 * Do not merge physically discontiguous ioends. The filesystem
1573 * completion functions will have to iterate the physical
1574 * discontiguities even if we merge the ioends at a logical level, so
1575 * we don't gain anything by merging physical discontiguities here.
1576 *
1577 * We cannot use bio->bi_iter.bi_sector here as it is modified during
1578 * submission so does not point to the start sector of the bio at
1579 * completion.
1580 */
1581 if (ioend->io_sector + (ioend->io_size >> 9) != next->io_sector)
1582 return false;
1583 return true;
1584 }
1585
1586 void
iomap_ioend_try_merge(struct iomap_ioend * ioend,struct list_head * more_ioends)1587 iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends)
1588 {
1589 struct iomap_ioend *next;
1590
1591 INIT_LIST_HEAD(&ioend->io_list);
1592
1593 while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend,
1594 io_list))) {
1595 if (!iomap_ioend_can_merge(ioend, next))
1596 break;
1597 list_move_tail(&next->io_list, &ioend->io_list);
1598 ioend->io_size += next->io_size;
1599 }
1600 }
1601 EXPORT_SYMBOL_GPL(iomap_ioend_try_merge);
1602
1603 static int
iomap_ioend_compare(void * priv,const struct list_head * a,const struct list_head * b)1604 iomap_ioend_compare(void *priv, const struct list_head *a,
1605 const struct list_head *b)
1606 {
1607 struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list);
1608 struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list);
1609
1610 if (ia->io_offset < ib->io_offset)
1611 return -1;
1612 if (ia->io_offset > ib->io_offset)
1613 return 1;
1614 return 0;
1615 }
1616
1617 void
iomap_sort_ioends(struct list_head * ioend_list)1618 iomap_sort_ioends(struct list_head *ioend_list)
1619 {
1620 list_sort(NULL, ioend_list, iomap_ioend_compare);
1621 }
1622 EXPORT_SYMBOL_GPL(iomap_sort_ioends);
1623
iomap_writepage_end_bio(struct bio * bio)1624 static void iomap_writepage_end_bio(struct bio *bio)
1625 {
1626 struct iomap_ioend *ioend = bio->bi_private;
1627
1628 iomap_finish_ioend(ioend, blk_status_to_errno(bio->bi_status));
1629 }
1630
1631 /*
1632 * Submit the final bio for an ioend.
1633 *
1634 * If @error is non-zero, it means that we have a situation where some part of
1635 * the submission process has failed after we've marked pages for writeback
1636 * and unlocked them. In this situation, we need to fail the bio instead of
1637 * submitting it. This typically only happens on a filesystem shutdown.
1638 */
1639 static int
iomap_submit_ioend(struct iomap_writepage_ctx * wpc,struct iomap_ioend * ioend,int error)1640 iomap_submit_ioend(struct iomap_writepage_ctx *wpc, struct iomap_ioend *ioend,
1641 int error)
1642 {
1643 ioend->io_bio->bi_private = ioend;
1644 ioend->io_bio->bi_end_io = iomap_writepage_end_bio;
1645
1646 if (wpc->ops->prepare_ioend)
1647 error = wpc->ops->prepare_ioend(ioend, error);
1648 if (error) {
1649 /*
1650 * If we're failing the IO now, just mark the ioend with an
1651 * error and finish it. This will run IO completion immediately
1652 * as there is only one reference to the ioend at this point in
1653 * time.
1654 */
1655 ioend->io_bio->bi_status = errno_to_blk_status(error);
1656 bio_endio(ioend->io_bio);
1657 return error;
1658 }
1659
1660 submit_bio(ioend->io_bio);
1661 return 0;
1662 }
1663
1664 static struct iomap_ioend *
iomap_alloc_ioend(struct inode * inode,struct iomap_writepage_ctx * wpc,loff_t offset,sector_t sector,struct writeback_control * wbc)1665 iomap_alloc_ioend(struct inode *inode, struct iomap_writepage_ctx *wpc,
1666 loff_t offset, sector_t sector, struct writeback_control *wbc)
1667 {
1668 struct iomap_ioend *ioend;
1669 struct bio *bio;
1670
1671 bio = bio_alloc_bioset(wpc->iomap.bdev, BIO_MAX_VECS,
1672 REQ_OP_WRITE | wbc_to_write_flags(wbc),
1673 GFP_NOFS, &iomap_ioend_bioset);
1674 bio->bi_iter.bi_sector = sector;
1675 wbc_init_bio(wbc, bio);
1676
1677 ioend = container_of(bio, struct iomap_ioend, io_inline_bio);
1678 INIT_LIST_HEAD(&ioend->io_list);
1679 ioend->io_type = wpc->iomap.type;
1680 ioend->io_flags = wpc->iomap.flags;
1681 ioend->io_inode = inode;
1682 ioend->io_size = 0;
1683 ioend->io_folios = 0;
1684 ioend->io_offset = offset;
1685 ioend->io_bio = bio;
1686 ioend->io_sector = sector;
1687 return ioend;
1688 }
1689
1690 /*
1691 * Allocate a new bio, and chain the old bio to the new one.
1692 *
1693 * Note that we have to perform the chaining in this unintuitive order
1694 * so that the bi_private linkage is set up in the right direction for the
1695 * traversal in iomap_finish_ioend().
1696 */
1697 static struct bio *
iomap_chain_bio(struct bio * prev)1698 iomap_chain_bio(struct bio *prev)
1699 {
1700 struct bio *new;
1701
1702 new = bio_alloc(prev->bi_bdev, BIO_MAX_VECS, prev->bi_opf, GFP_NOFS);
1703 bio_clone_blkg_association(new, prev);
1704 new->bi_iter.bi_sector = bio_end_sector(prev);
1705
1706 bio_chain(prev, new);
1707 bio_get(prev); /* for iomap_finish_ioend */
1708 submit_bio(prev);
1709 return new;
1710 }
1711
1712 static bool
iomap_can_add_to_ioend(struct iomap_writepage_ctx * wpc,loff_t offset,sector_t sector)1713 iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t offset,
1714 sector_t sector)
1715 {
1716 if ((wpc->iomap.flags & IOMAP_F_SHARED) !=
1717 (wpc->ioend->io_flags & IOMAP_F_SHARED))
1718 return false;
1719 if (wpc->iomap.type != wpc->ioend->io_type)
1720 return false;
1721 if (offset != wpc->ioend->io_offset + wpc->ioend->io_size)
1722 return false;
1723 if (sector != bio_end_sector(wpc->ioend->io_bio))
1724 return false;
1725 /*
1726 * Limit ioend bio chain lengths to minimise IO completion latency. This
1727 * also prevents long tight loops ending page writeback on all the
1728 * folios in the ioend.
1729 */
1730 if (wpc->ioend->io_folios >= IOEND_BATCH_SIZE)
1731 return false;
1732 return true;
1733 }
1734
1735 /*
1736 * Test to see if we have an existing ioend structure that we could append to
1737 * first; otherwise finish off the current ioend and start another.
1738 */
1739 static void
iomap_add_to_ioend(struct inode * inode,loff_t pos,struct folio * folio,struct iomap_folio_state * ifs,struct iomap_writepage_ctx * wpc,struct writeback_control * wbc,struct list_head * iolist)1740 iomap_add_to_ioend(struct inode *inode, loff_t pos, struct folio *folio,
1741 struct iomap_folio_state *ifs, struct iomap_writepage_ctx *wpc,
1742 struct writeback_control *wbc, struct list_head *iolist)
1743 {
1744 sector_t sector = iomap_sector(&wpc->iomap, pos);
1745 unsigned len = i_blocksize(inode);
1746 size_t poff = offset_in_folio(folio, pos);
1747
1748 if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, pos, sector)) {
1749 if (wpc->ioend)
1750 list_add(&wpc->ioend->io_list, iolist);
1751 wpc->ioend = iomap_alloc_ioend(inode, wpc, pos, sector, wbc);
1752 }
1753
1754 if (!bio_add_folio(wpc->ioend->io_bio, folio, len, poff)) {
1755 wpc->ioend->io_bio = iomap_chain_bio(wpc->ioend->io_bio);
1756 bio_add_folio_nofail(wpc->ioend->io_bio, folio, len, poff);
1757 }
1758
1759 if (ifs)
1760 atomic_add(len, &ifs->write_bytes_pending);
1761 wpc->ioend->io_size += len;
1762 wbc_account_cgroup_owner(wbc, &folio->page, len);
1763 }
1764
1765 /*
1766 * We implement an immediate ioend submission policy here to avoid needing to
1767 * chain multiple ioends and hence nest mempool allocations which can violate
1768 * the forward progress guarantees we need to provide. The current ioend we're
1769 * adding blocks to is cached in the writepage context, and if the new block
1770 * doesn't append to the cached ioend, it will create a new ioend and cache that
1771 * instead.
1772 *
1773 * If a new ioend is created and cached, the old ioend is returned and queued
1774 * locally for submission once the entire page is processed or an error has been
1775 * detected. While ioends are submitted immediately after they are completed,
1776 * batching optimisations are provided by higher level block plugging.
1777 *
1778 * At the end of a writeback pass, there will be a cached ioend remaining on the
1779 * writepage context that the caller will need to submit.
1780 */
1781 static int
iomap_writepage_map(struct iomap_writepage_ctx * wpc,struct writeback_control * wbc,struct inode * inode,struct folio * folio,u64 end_pos)1782 iomap_writepage_map(struct iomap_writepage_ctx *wpc,
1783 struct writeback_control *wbc, struct inode *inode,
1784 struct folio *folio, u64 end_pos)
1785 {
1786 struct iomap_folio_state *ifs = folio->private;
1787 struct iomap_ioend *ioend, *next;
1788 unsigned len = i_blocksize(inode);
1789 unsigned nblocks = i_blocks_per_folio(inode, folio);
1790 u64 pos = folio_pos(folio);
1791 int error = 0, count = 0, i;
1792 LIST_HEAD(submit_list);
1793
1794 WARN_ON_ONCE(end_pos <= pos);
1795
1796 if (!ifs && nblocks > 1) {
1797 ifs = ifs_alloc(inode, folio, 0);
1798 iomap_set_range_dirty(folio, 0, end_pos - pos);
1799 }
1800
1801 WARN_ON_ONCE(ifs && atomic_read(&ifs->write_bytes_pending) != 0);
1802
1803 /*
1804 * Walk through the folio to find areas to write back. If we
1805 * run off the end of the current map or find the current map
1806 * invalid, grab a new one.
1807 */
1808 for (i = 0; i < nblocks && pos < end_pos; i++, pos += len) {
1809 if (ifs && !ifs_block_is_dirty(folio, ifs, i))
1810 continue;
1811
1812 error = wpc->ops->map_blocks(wpc, inode, pos);
1813 if (error)
1814 break;
1815 trace_iomap_writepage_map(inode, &wpc->iomap);
1816 if (WARN_ON_ONCE(wpc->iomap.type == IOMAP_INLINE))
1817 continue;
1818 if (wpc->iomap.type == IOMAP_HOLE)
1819 continue;
1820 iomap_add_to_ioend(inode, pos, folio, ifs, wpc, wbc,
1821 &submit_list);
1822 count++;
1823 }
1824 if (count)
1825 wpc->ioend->io_folios++;
1826
1827 WARN_ON_ONCE(!wpc->ioend && !list_empty(&submit_list));
1828 WARN_ON_ONCE(!folio_test_locked(folio));
1829 WARN_ON_ONCE(folio_test_writeback(folio));
1830 WARN_ON_ONCE(folio_test_dirty(folio));
1831
1832 /*
1833 * We cannot cancel the ioend directly here on error. We may have
1834 * already set other pages under writeback and hence we have to run I/O
1835 * completion to mark the error state of the pages under writeback
1836 * appropriately.
1837 */
1838 if (unlikely(error)) {
1839 /*
1840 * Let the filesystem know what portion of the current page
1841 * failed to map.
1842 */
1843 if (wpc->ops->discard_folio)
1844 wpc->ops->discard_folio(folio, pos);
1845 }
1846
1847 /*
1848 * We can have dirty bits set past end of file in page_mkwrite path
1849 * while mapping the last partial folio. Hence it's better to clear
1850 * all the dirty bits in the folio here.
1851 */
1852 iomap_clear_range_dirty(folio, 0, folio_size(folio));
1853
1854 /*
1855 * If the page hasn't been added to the ioend, it won't be affected by
1856 * I/O completion and we must unlock it now.
1857 */
1858 if (error && !count) {
1859 folio_unlock(folio);
1860 goto done;
1861 }
1862
1863 folio_start_writeback(folio);
1864 folio_unlock(folio);
1865
1866 /*
1867 * Preserve the original error if there was one; catch
1868 * submission errors here and propagate into subsequent ioend
1869 * submissions.
1870 */
1871 list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
1872 int error2;
1873
1874 list_del_init(&ioend->io_list);
1875 error2 = iomap_submit_ioend(wpc, ioend, error);
1876 if (error2 && !error)
1877 error = error2;
1878 }
1879
1880 /*
1881 * We can end up here with no error and nothing to write only if we race
1882 * with a partial page truncate on a sub-page block sized filesystem.
1883 */
1884 if (!count)
1885 folio_end_writeback(folio);
1886 done:
1887 mapping_set_error(inode->i_mapping, error);
1888 return error;
1889 }
1890
1891 /*
1892 * Write out a dirty page.
1893 *
1894 * For delalloc space on the page, we need to allocate space and flush it.
1895 * For unwritten space on the page, we need to start the conversion to
1896 * regular allocated space.
1897 */
iomap_do_writepage(struct folio * folio,struct writeback_control * wbc,void * data)1898 static int iomap_do_writepage(struct folio *folio,
1899 struct writeback_control *wbc, void *data)
1900 {
1901 struct iomap_writepage_ctx *wpc = data;
1902 struct inode *inode = folio->mapping->host;
1903 u64 end_pos, isize;
1904
1905 trace_iomap_writepage(inode, folio_pos(folio), folio_size(folio));
1906
1907 /*
1908 * Refuse to write the folio out if we're called from reclaim context.
1909 *
1910 * This avoids stack overflows when called from deeply used stacks in
1911 * random callers for direct reclaim or memcg reclaim. We explicitly
1912 * allow reclaim from kswapd as the stack usage there is relatively low.
1913 *
1914 * This should never happen except in the case of a VM regression so
1915 * warn about it.
1916 */
1917 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1918 PF_MEMALLOC))
1919 goto redirty;
1920
1921 /*
1922 * Is this folio beyond the end of the file?
1923 *
1924 * The folio index is less than the end_index, adjust the end_pos
1925 * to the highest offset that this folio should represent.
1926 * -----------------------------------------------------
1927 * | file mapping | <EOF> |
1928 * -----------------------------------------------------
1929 * | Page ... | Page N-2 | Page N-1 | Page N | |
1930 * ^--------------------------------^----------|--------
1931 * | desired writeback range | see else |
1932 * ---------------------------------^------------------|
1933 */
1934 isize = i_size_read(inode);
1935 end_pos = folio_pos(folio) + folio_size(folio);
1936 if (end_pos > isize) {
1937 /*
1938 * Check whether the page to write out is beyond or straddles
1939 * i_size or not.
1940 * -------------------------------------------------------
1941 * | file mapping | <EOF> |
1942 * -------------------------------------------------------
1943 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
1944 * ^--------------------------------^-----------|---------
1945 * | | Straddles |
1946 * ---------------------------------^-----------|--------|
1947 */
1948 size_t poff = offset_in_folio(folio, isize);
1949 pgoff_t end_index = isize >> PAGE_SHIFT;
1950
1951 /*
1952 * Skip the page if it's fully outside i_size, e.g.
1953 * due to a truncate operation that's in progress. We've
1954 * cleaned this page and truncate will finish things off for
1955 * us.
1956 *
1957 * Note that the end_index is unsigned long. If the given
1958 * offset is greater than 16TB on a 32-bit system then if we
1959 * checked if the page is fully outside i_size with
1960 * "if (page->index >= end_index + 1)", "end_index + 1" would
1961 * overflow and evaluate to 0. Hence this page would be
1962 * redirtied and written out repeatedly, which would result in
1963 * an infinite loop; the user program performing this operation
1964 * would hang. Instead, we can detect this situation by
1965 * checking if the page is totally beyond i_size or if its
1966 * offset is just equal to the EOF.
1967 */
1968 if (folio->index > end_index ||
1969 (folio->index == end_index && poff == 0))
1970 goto unlock;
1971
1972 /*
1973 * The page straddles i_size. It must be zeroed out on each
1974 * and every writepage invocation because it may be mmapped.
1975 * "A file is mapped in multiples of the page size. For a file
1976 * that is not a multiple of the page size, the remaining
1977 * memory is zeroed when mapped, and writes to that region are
1978 * not written out to the file."
1979 */
1980 folio_zero_segment(folio, poff, folio_size(folio));
1981 end_pos = isize;
1982 }
1983
1984 return iomap_writepage_map(wpc, wbc, inode, folio, end_pos);
1985
1986 redirty:
1987 folio_redirty_for_writepage(wbc, folio);
1988 unlock:
1989 folio_unlock(folio);
1990 return 0;
1991 }
1992
1993 int
iomap_writepages(struct address_space * mapping,struct writeback_control * wbc,struct iomap_writepage_ctx * wpc,const struct iomap_writeback_ops * ops)1994 iomap_writepages(struct address_space *mapping, struct writeback_control *wbc,
1995 struct iomap_writepage_ctx *wpc,
1996 const struct iomap_writeback_ops *ops)
1997 {
1998 int ret;
1999
2000 wpc->ops = ops;
2001 ret = write_cache_pages(mapping, wbc, iomap_do_writepage, wpc);
2002 if (!wpc->ioend)
2003 return ret;
2004 return iomap_submit_ioend(wpc, wpc->ioend, ret);
2005 }
2006 EXPORT_SYMBOL_GPL(iomap_writepages);
2007
iomap_init(void)2008 static int __init iomap_init(void)
2009 {
2010 return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE),
2011 offsetof(struct iomap_ioend, io_inline_bio),
2012 BIOSET_NEED_BVECS);
2013 }
2014 fs_initcall(iomap_init);
2015