xref: /openbmc/linux/io_uring/io_uring.c (revision 44ad3baf1cca483e418b6aadf2d3994f69e0f16a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Shared application/kernel submission and completion ring pairs, for
4  * supporting fast/efficient IO.
5  *
6  * A note on the read/write ordering memory barriers that are matched between
7  * the application and kernel side.
8  *
9  * After the application reads the CQ ring tail, it must use an
10  * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11  * before writing the tail (using smp_load_acquire to read the tail will
12  * do). It also needs a smp_mb() before updating CQ head (ordering the
13  * entry load(s) with the head store), pairing with an implicit barrier
14  * through a control-dependency in io_get_cqe (smp_store_release to
15  * store head will do). Failure to do so could lead to reading invalid
16  * CQ entries.
17  *
18  * Likewise, the application must use an appropriate smp_wmb() before
19  * writing the SQ tail (ordering SQ entry stores with the tail store),
20  * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21  * to store the tail will do). And it needs a barrier ordering the SQ
22  * head load before writing new SQ entries (smp_load_acquire to read
23  * head will do).
24  *
25  * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26  * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27  * updating the SQ tail; a full memory barrier smp_mb() is needed
28  * between.
29  *
30  * Also see the examples in the liburing library:
31  *
32  *	git://git.kernel.dk/liburing
33  *
34  * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35  * from data shared between the kernel and application. This is done both
36  * for ordering purposes, but also to ensure that once a value is loaded from
37  * data that the application could potentially modify, it remains stable.
38  *
39  * Copyright (C) 2018-2019 Jens Axboe
40  * Copyright (c) 2018-2019 Christoph Hellwig
41  */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
50 
51 #include <linux/sched/signal.h>
52 #include <linux/fs.h>
53 #include <linux/file.h>
54 #include <linux/fdtable.h>
55 #include <linux/mm.h>
56 #include <linux/mman.h>
57 #include <linux/percpu.h>
58 #include <linux/slab.h>
59 #include <linux/bvec.h>
60 #include <linux/net.h>
61 #include <net/sock.h>
62 #include <net/af_unix.h>
63 #include <linux/anon_inodes.h>
64 #include <linux/sched/mm.h>
65 #include <linux/uaccess.h>
66 #include <linux/nospec.h>
67 #include <linux/fsnotify.h>
68 #include <linux/fadvise.h>
69 #include <linux/task_work.h>
70 #include <linux/io_uring.h>
71 #include <linux/audit.h>
72 #include <linux/security.h>
73 #include <linux/vmalloc.h>
74 #include <asm/shmparam.h>
75 
76 #define CREATE_TRACE_POINTS
77 #include <trace/events/io_uring.h>
78 
79 #include <uapi/linux/io_uring.h>
80 
81 #include "io-wq.h"
82 
83 #include "io_uring.h"
84 #include "opdef.h"
85 #include "refs.h"
86 #include "tctx.h"
87 #include "sqpoll.h"
88 #include "fdinfo.h"
89 #include "kbuf.h"
90 #include "rsrc.h"
91 #include "cancel.h"
92 #include "net.h"
93 #include "notif.h"
94 
95 #include "timeout.h"
96 #include "poll.h"
97 #include "rw.h"
98 #include "alloc_cache.h"
99 
100 #define IORING_MAX_ENTRIES	32768
101 #define IORING_MAX_CQ_ENTRIES	(2 * IORING_MAX_ENTRIES)
102 
103 #define IORING_MAX_RESTRICTIONS	(IORING_RESTRICTION_LAST + \
104 				 IORING_REGISTER_LAST + IORING_OP_LAST)
105 
106 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
107 			  IOSQE_IO_HARDLINK | IOSQE_ASYNC)
108 
109 #define SQE_VALID_FLAGS	(SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
110 			IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
111 
112 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
113 				REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
114 				REQ_F_ASYNC_DATA)
115 
116 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
117 				 IO_REQ_CLEAN_FLAGS)
118 
119 #define IO_TCTX_REFS_CACHE_NR	(1U << 10)
120 
121 #define IO_COMPL_BATCH			32
122 #define IO_REQ_ALLOC_BATCH		8
123 
124 enum {
125 	IO_CHECK_CQ_OVERFLOW_BIT,
126 	IO_CHECK_CQ_DROPPED_BIT,
127 };
128 
129 enum {
130 	IO_EVENTFD_OP_SIGNAL_BIT,
131 	IO_EVENTFD_OP_FREE_BIT,
132 };
133 
134 struct io_defer_entry {
135 	struct list_head	list;
136 	struct io_kiocb		*req;
137 	u32			seq;
138 };
139 
140 /* requests with any of those set should undergo io_disarm_next() */
141 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
142 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
143 
144 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
145 					 struct task_struct *task,
146 					 bool cancel_all);
147 
148 static void io_queue_sqe(struct io_kiocb *req);
149 
150 struct kmem_cache *req_cachep;
151 static struct workqueue_struct *iou_wq __ro_after_init;
152 
153 static int __read_mostly sysctl_io_uring_disabled;
154 static int __read_mostly sysctl_io_uring_group = -1;
155 
156 #ifdef CONFIG_SYSCTL
157 static struct ctl_table kernel_io_uring_disabled_table[] = {
158 	{
159 		.procname	= "io_uring_disabled",
160 		.data		= &sysctl_io_uring_disabled,
161 		.maxlen		= sizeof(sysctl_io_uring_disabled),
162 		.mode		= 0644,
163 		.proc_handler	= proc_dointvec_minmax,
164 		.extra1		= SYSCTL_ZERO,
165 		.extra2		= SYSCTL_TWO,
166 	},
167 	{
168 		.procname	= "io_uring_group",
169 		.data		= &sysctl_io_uring_group,
170 		.maxlen		= sizeof(gid_t),
171 		.mode		= 0644,
172 		.proc_handler	= proc_dointvec,
173 	},
174 	{},
175 };
176 #endif
177 
io_submit_flush_completions(struct io_ring_ctx * ctx)178 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
179 {
180 	if (!wq_list_empty(&ctx->submit_state.compl_reqs) ||
181 	    ctx->submit_state.cqes_count)
182 		__io_submit_flush_completions(ctx);
183 }
184 
__io_cqring_events(struct io_ring_ctx * ctx)185 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
186 {
187 	return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
188 }
189 
__io_cqring_events_user(struct io_ring_ctx * ctx)190 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
191 {
192 	return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
193 }
194 
io_match_linked(struct io_kiocb * head)195 static bool io_match_linked(struct io_kiocb *head)
196 {
197 	struct io_kiocb *req;
198 
199 	io_for_each_link(req, head) {
200 		if (req->flags & REQ_F_INFLIGHT)
201 			return true;
202 	}
203 	return false;
204 }
205 
206 /*
207  * As io_match_task() but protected against racing with linked timeouts.
208  * User must not hold timeout_lock.
209  */
io_match_task_safe(struct io_kiocb * head,struct task_struct * task,bool cancel_all)210 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
211 			bool cancel_all)
212 {
213 	bool matched;
214 
215 	if (task && head->task != task)
216 		return false;
217 	if (cancel_all)
218 		return true;
219 
220 	if (head->flags & REQ_F_LINK_TIMEOUT) {
221 		struct io_ring_ctx *ctx = head->ctx;
222 
223 		/* protect against races with linked timeouts */
224 		spin_lock_irq(&ctx->timeout_lock);
225 		matched = io_match_linked(head);
226 		spin_unlock_irq(&ctx->timeout_lock);
227 	} else {
228 		matched = io_match_linked(head);
229 	}
230 	return matched;
231 }
232 
req_fail_link_node(struct io_kiocb * req,int res)233 static inline void req_fail_link_node(struct io_kiocb *req, int res)
234 {
235 	req_set_fail(req);
236 	io_req_set_res(req, res, 0);
237 }
238 
io_req_add_to_cache(struct io_kiocb * req,struct io_ring_ctx * ctx)239 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
240 {
241 	wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
242 }
243 
io_ring_ctx_ref_free(struct percpu_ref * ref)244 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
245 {
246 	struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
247 
248 	complete(&ctx->ref_comp);
249 }
250 
io_fallback_req_func(struct work_struct * work)251 static __cold void io_fallback_req_func(struct work_struct *work)
252 {
253 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
254 						fallback_work.work);
255 	struct llist_node *node = llist_del_all(&ctx->fallback_llist);
256 	struct io_kiocb *req, *tmp;
257 	struct io_tw_state ts = { .locked = true, };
258 
259 	percpu_ref_get(&ctx->refs);
260 	mutex_lock(&ctx->uring_lock);
261 	llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
262 		req->io_task_work.func(req, &ts);
263 	if (WARN_ON_ONCE(!ts.locked))
264 		return;
265 	io_submit_flush_completions(ctx);
266 	mutex_unlock(&ctx->uring_lock);
267 	percpu_ref_put(&ctx->refs);
268 }
269 
io_alloc_hash_table(struct io_hash_table * table,unsigned bits)270 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
271 {
272 	unsigned hash_buckets = 1U << bits;
273 	size_t hash_size = hash_buckets * sizeof(table->hbs[0]);
274 
275 	table->hbs = kmalloc(hash_size, GFP_KERNEL);
276 	if (!table->hbs)
277 		return -ENOMEM;
278 
279 	table->hash_bits = bits;
280 	init_hash_table(table, hash_buckets);
281 	return 0;
282 }
283 
io_ring_ctx_alloc(struct io_uring_params * p)284 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
285 {
286 	struct io_ring_ctx *ctx;
287 	int hash_bits;
288 
289 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
290 	if (!ctx)
291 		return NULL;
292 
293 	xa_init(&ctx->io_bl_xa);
294 
295 	/*
296 	 * Use 5 bits less than the max cq entries, that should give us around
297 	 * 32 entries per hash list if totally full and uniformly spread, but
298 	 * don't keep too many buckets to not overconsume memory.
299 	 */
300 	hash_bits = ilog2(p->cq_entries) - 5;
301 	hash_bits = clamp(hash_bits, 1, 8);
302 	if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
303 		goto err;
304 	if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits))
305 		goto err;
306 	if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
307 			    0, GFP_KERNEL))
308 		goto err;
309 
310 	ctx->flags = p->flags;
311 	init_waitqueue_head(&ctx->sqo_sq_wait);
312 	INIT_LIST_HEAD(&ctx->sqd_list);
313 	INIT_LIST_HEAD(&ctx->cq_overflow_list);
314 	INIT_LIST_HEAD(&ctx->io_buffers_cache);
315 	io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX,
316 			    sizeof(struct io_rsrc_node));
317 	io_alloc_cache_init(&ctx->apoll_cache, IO_ALLOC_CACHE_MAX,
318 			    sizeof(struct async_poll));
319 	io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
320 			    sizeof(struct io_async_msghdr));
321 	init_completion(&ctx->ref_comp);
322 	xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
323 	mutex_init(&ctx->uring_lock);
324 	init_waitqueue_head(&ctx->cq_wait);
325 	init_waitqueue_head(&ctx->poll_wq);
326 	init_waitqueue_head(&ctx->rsrc_quiesce_wq);
327 	spin_lock_init(&ctx->completion_lock);
328 	spin_lock_init(&ctx->timeout_lock);
329 	INIT_WQ_LIST(&ctx->iopoll_list);
330 	INIT_LIST_HEAD(&ctx->io_buffers_pages);
331 	INIT_LIST_HEAD(&ctx->io_buffers_comp);
332 	INIT_LIST_HEAD(&ctx->defer_list);
333 	INIT_LIST_HEAD(&ctx->timeout_list);
334 	INIT_LIST_HEAD(&ctx->ltimeout_list);
335 	INIT_LIST_HEAD(&ctx->rsrc_ref_list);
336 	init_llist_head(&ctx->work_llist);
337 	INIT_LIST_HEAD(&ctx->tctx_list);
338 	ctx->submit_state.free_list.next = NULL;
339 	INIT_WQ_LIST(&ctx->locked_free_list);
340 	INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
341 	INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
342 	return ctx;
343 err:
344 	kfree(ctx->cancel_table.hbs);
345 	kfree(ctx->cancel_table_locked.hbs);
346 	xa_destroy(&ctx->io_bl_xa);
347 	kfree(ctx);
348 	return NULL;
349 }
350 
io_account_cq_overflow(struct io_ring_ctx * ctx)351 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
352 {
353 	struct io_rings *r = ctx->rings;
354 
355 	WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
356 	ctx->cq_extra--;
357 }
358 
req_need_defer(struct io_kiocb * req,u32 seq)359 static bool req_need_defer(struct io_kiocb *req, u32 seq)
360 {
361 	if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
362 		struct io_ring_ctx *ctx = req->ctx;
363 
364 		return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
365 	}
366 
367 	return false;
368 }
369 
io_clean_op(struct io_kiocb * req)370 static void io_clean_op(struct io_kiocb *req)
371 {
372 	if (req->flags & REQ_F_BUFFER_SELECTED) {
373 		spin_lock(&req->ctx->completion_lock);
374 		io_put_kbuf_comp(req);
375 		spin_unlock(&req->ctx->completion_lock);
376 	}
377 
378 	if (req->flags & REQ_F_NEED_CLEANUP) {
379 		const struct io_cold_def *def = &io_cold_defs[req->opcode];
380 
381 		if (def->cleanup)
382 			def->cleanup(req);
383 	}
384 	if ((req->flags & REQ_F_POLLED) && req->apoll) {
385 		kfree(req->apoll->double_poll);
386 		kfree(req->apoll);
387 		req->apoll = NULL;
388 	}
389 	if (req->flags & REQ_F_INFLIGHT) {
390 		struct io_uring_task *tctx = req->task->io_uring;
391 
392 		atomic_dec(&tctx->inflight_tracked);
393 	}
394 	if (req->flags & REQ_F_CREDS)
395 		put_cred(req->creds);
396 	if (req->flags & REQ_F_ASYNC_DATA) {
397 		kfree(req->async_data);
398 		req->async_data = NULL;
399 	}
400 	req->flags &= ~IO_REQ_CLEAN_FLAGS;
401 }
402 
io_req_track_inflight(struct io_kiocb * req)403 static inline void io_req_track_inflight(struct io_kiocb *req)
404 {
405 	if (!(req->flags & REQ_F_INFLIGHT)) {
406 		req->flags |= REQ_F_INFLIGHT;
407 		atomic_inc(&req->task->io_uring->inflight_tracked);
408 	}
409 }
410 
__io_prep_linked_timeout(struct io_kiocb * req)411 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
412 {
413 	if (WARN_ON_ONCE(!req->link))
414 		return NULL;
415 
416 	req->flags &= ~REQ_F_ARM_LTIMEOUT;
417 	req->flags |= REQ_F_LINK_TIMEOUT;
418 
419 	/* linked timeouts should have two refs once prep'ed */
420 	io_req_set_refcount(req);
421 	__io_req_set_refcount(req->link, 2);
422 	return req->link;
423 }
424 
io_prep_async_work(struct io_kiocb * req)425 static void io_prep_async_work(struct io_kiocb *req)
426 {
427 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
428 	struct io_ring_ctx *ctx = req->ctx;
429 
430 	if (!(req->flags & REQ_F_CREDS)) {
431 		req->flags |= REQ_F_CREDS;
432 		req->creds = get_current_cred();
433 	}
434 
435 	req->work.list.next = NULL;
436 	req->work.flags = 0;
437 	req->work.cancel_seq = atomic_read(&ctx->cancel_seq);
438 	if (req->flags & REQ_F_FORCE_ASYNC)
439 		req->work.flags |= IO_WQ_WORK_CONCURRENT;
440 
441 	if (req->file && !(req->flags & REQ_F_FIXED_FILE))
442 		req->flags |= io_file_get_flags(req->file);
443 
444 	if (req->file && (req->flags & REQ_F_ISREG)) {
445 		bool should_hash = def->hash_reg_file;
446 
447 		/* don't serialize this request if the fs doesn't need it */
448 		if (should_hash && (req->file->f_flags & O_DIRECT) &&
449 		    (req->file->f_mode & FMODE_DIO_PARALLEL_WRITE))
450 			should_hash = false;
451 		if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
452 			io_wq_hash_work(&req->work, file_inode(req->file));
453 	} else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
454 		if (def->unbound_nonreg_file)
455 			req->work.flags |= IO_WQ_WORK_UNBOUND;
456 	}
457 }
458 
io_prep_async_link(struct io_kiocb * req)459 static void io_prep_async_link(struct io_kiocb *req)
460 {
461 	struct io_kiocb *cur;
462 
463 	if (req->flags & REQ_F_LINK_TIMEOUT) {
464 		struct io_ring_ctx *ctx = req->ctx;
465 
466 		spin_lock_irq(&ctx->timeout_lock);
467 		io_for_each_link(cur, req)
468 			io_prep_async_work(cur);
469 		spin_unlock_irq(&ctx->timeout_lock);
470 	} else {
471 		io_for_each_link(cur, req)
472 			io_prep_async_work(cur);
473 	}
474 }
475 
io_queue_iowq(struct io_kiocb * req)476 static void io_queue_iowq(struct io_kiocb *req)
477 {
478 	struct io_uring_task *tctx = req->task->io_uring;
479 
480 	BUG_ON(!tctx);
481 
482 	if ((current->flags & PF_KTHREAD) || !tctx->io_wq) {
483 		io_req_task_queue_fail(req, -ECANCELED);
484 		return;
485 	}
486 
487 	/* init ->work of the whole link before punting */
488 	io_prep_async_link(req);
489 
490 	/*
491 	 * Not expected to happen, but if we do have a bug where this _can_
492 	 * happen, catch it here and ensure the request is marked as
493 	 * canceled. That will make io-wq go through the usual work cancel
494 	 * procedure rather than attempt to run this request (or create a new
495 	 * worker for it).
496 	 */
497 	if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
498 		req->work.flags |= IO_WQ_WORK_CANCEL;
499 
500 	trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
501 	io_wq_enqueue(tctx->io_wq, &req->work);
502 }
503 
io_queue_deferred(struct io_ring_ctx * ctx)504 static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
505 {
506 	while (!list_empty(&ctx->defer_list)) {
507 		struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
508 						struct io_defer_entry, list);
509 
510 		if (req_need_defer(de->req, de->seq))
511 			break;
512 		list_del_init(&de->list);
513 		io_req_task_queue(de->req);
514 		kfree(de);
515 	}
516 }
517 
io_eventfd_free(struct rcu_head * rcu)518 static void io_eventfd_free(struct rcu_head *rcu)
519 {
520 	struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu);
521 
522 	eventfd_ctx_put(ev_fd->cq_ev_fd);
523 	kfree(ev_fd);
524 }
525 
io_eventfd_ops(struct rcu_head * rcu)526 static void io_eventfd_ops(struct rcu_head *rcu)
527 {
528 	struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu);
529 	int ops = atomic_xchg(&ev_fd->ops, 0);
530 
531 	if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT))
532 		eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
533 
534 	/* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback
535 	 * ordering in a race but if references are 0 we know we have to free
536 	 * it regardless.
537 	 */
538 	if (atomic_dec_and_test(&ev_fd->refs))
539 		call_rcu(&ev_fd->rcu, io_eventfd_free);
540 }
541 
io_eventfd_signal(struct io_ring_ctx * ctx)542 static void io_eventfd_signal(struct io_ring_ctx *ctx)
543 {
544 	struct io_ev_fd *ev_fd = NULL;
545 
546 	rcu_read_lock();
547 	/*
548 	 * rcu_dereference ctx->io_ev_fd once and use it for both for checking
549 	 * and eventfd_signal
550 	 */
551 	ev_fd = rcu_dereference(ctx->io_ev_fd);
552 
553 	/*
554 	 * Check again if ev_fd exists incase an io_eventfd_unregister call
555 	 * completed between the NULL check of ctx->io_ev_fd at the start of
556 	 * the function and rcu_read_lock.
557 	 */
558 	if (unlikely(!ev_fd))
559 		goto out;
560 	if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
561 		goto out;
562 	if (ev_fd->eventfd_async && !io_wq_current_is_worker())
563 		goto out;
564 
565 	if (likely(eventfd_signal_allowed())) {
566 		eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
567 	} else {
568 		atomic_inc(&ev_fd->refs);
569 		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops))
570 			call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops);
571 		else
572 			atomic_dec(&ev_fd->refs);
573 	}
574 
575 out:
576 	rcu_read_unlock();
577 }
578 
io_eventfd_flush_signal(struct io_ring_ctx * ctx)579 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx)
580 {
581 	bool skip;
582 
583 	spin_lock(&ctx->completion_lock);
584 
585 	/*
586 	 * Eventfd should only get triggered when at least one event has been
587 	 * posted. Some applications rely on the eventfd notification count
588 	 * only changing IFF a new CQE has been added to the CQ ring. There's
589 	 * no depedency on 1:1 relationship between how many times this
590 	 * function is called (and hence the eventfd count) and number of CQEs
591 	 * posted to the CQ ring.
592 	 */
593 	skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail;
594 	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
595 	spin_unlock(&ctx->completion_lock);
596 	if (skip)
597 		return;
598 
599 	io_eventfd_signal(ctx);
600 }
601 
__io_commit_cqring_flush(struct io_ring_ctx * ctx)602 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
603 {
604 	if (ctx->poll_activated)
605 		io_poll_wq_wake(ctx);
606 	if (ctx->off_timeout_used)
607 		io_flush_timeouts(ctx);
608 	if (ctx->drain_active) {
609 		spin_lock(&ctx->completion_lock);
610 		io_queue_deferred(ctx);
611 		spin_unlock(&ctx->completion_lock);
612 	}
613 	if (ctx->has_evfd)
614 		io_eventfd_flush_signal(ctx);
615 }
616 
__io_cq_lock(struct io_ring_ctx * ctx)617 static inline void __io_cq_lock(struct io_ring_ctx *ctx)
618 {
619 	if (!ctx->lockless_cq)
620 		spin_lock(&ctx->completion_lock);
621 }
622 
io_cq_lock(struct io_ring_ctx * ctx)623 static inline void io_cq_lock(struct io_ring_ctx *ctx)
624 	__acquires(ctx->completion_lock)
625 {
626 	spin_lock(&ctx->completion_lock);
627 }
628 
__io_cq_unlock_post(struct io_ring_ctx * ctx)629 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
630 {
631 	io_commit_cqring(ctx);
632 	if (!ctx->task_complete) {
633 		if (!ctx->lockless_cq)
634 			spin_unlock(&ctx->completion_lock);
635 		/* IOPOLL rings only need to wake up if it's also SQPOLL */
636 		if (!ctx->syscall_iopoll)
637 			io_cqring_wake(ctx);
638 	}
639 	io_commit_cqring_flush(ctx);
640 }
641 
io_cq_unlock_post(struct io_ring_ctx * ctx)642 static void io_cq_unlock_post(struct io_ring_ctx *ctx)
643 	__releases(ctx->completion_lock)
644 {
645 	io_commit_cqring(ctx);
646 	spin_unlock(&ctx->completion_lock);
647 	io_cqring_wake(ctx);
648 	io_commit_cqring_flush(ctx);
649 }
650 
651 /* Returns true if there are no backlogged entries after the flush */
io_cqring_overflow_kill(struct io_ring_ctx * ctx)652 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
653 {
654 	struct io_overflow_cqe *ocqe;
655 	LIST_HEAD(list);
656 
657 	lockdep_assert_held(&ctx->uring_lock);
658 
659 	spin_lock(&ctx->completion_lock);
660 	list_splice_init(&ctx->cq_overflow_list, &list);
661 	clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
662 	spin_unlock(&ctx->completion_lock);
663 
664 	while (!list_empty(&list)) {
665 		ocqe = list_first_entry(&list, struct io_overflow_cqe, list);
666 		list_del(&ocqe->list);
667 		kfree(ocqe);
668 	}
669 }
670 
__io_cqring_overflow_flush(struct io_ring_ctx * ctx)671 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx)
672 {
673 	size_t cqe_size = sizeof(struct io_uring_cqe);
674 
675 	lockdep_assert_held(&ctx->uring_lock);
676 
677 	if (__io_cqring_events(ctx) == ctx->cq_entries)
678 		return;
679 
680 	if (ctx->flags & IORING_SETUP_CQE32)
681 		cqe_size <<= 1;
682 
683 	io_cq_lock(ctx);
684 	while (!list_empty(&ctx->cq_overflow_list)) {
685 		struct io_uring_cqe *cqe;
686 		struct io_overflow_cqe *ocqe;
687 
688 		if (!io_get_cqe_overflow(ctx, &cqe, true))
689 			break;
690 		ocqe = list_first_entry(&ctx->cq_overflow_list,
691 					struct io_overflow_cqe, list);
692 		memcpy(cqe, &ocqe->cqe, cqe_size);
693 		list_del(&ocqe->list);
694 		kfree(ocqe);
695 
696 		/*
697 		 * For silly syzbot cases that deliberately overflow by huge
698 		 * amounts, check if we need to resched and drop and
699 		 * reacquire the locks if so. Nothing real would ever hit this.
700 		 * Ideally we'd have a non-posting unlock for this, but hard
701 		 * to care for a non-real case.
702 		 */
703 		if (need_resched()) {
704 			ctx->cqe_sentinel = ctx->cqe_cached;
705 			io_cq_unlock_post(ctx);
706 			mutex_unlock(&ctx->uring_lock);
707 			cond_resched();
708 			mutex_lock(&ctx->uring_lock);
709 			io_cq_lock(ctx);
710 		}
711 	}
712 
713 	if (list_empty(&ctx->cq_overflow_list)) {
714 		clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
715 		atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
716 	}
717 	io_cq_unlock_post(ctx);
718 }
719 
io_cqring_do_overflow_flush(struct io_ring_ctx * ctx)720 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
721 {
722 	mutex_lock(&ctx->uring_lock);
723 	__io_cqring_overflow_flush(ctx);
724 	mutex_unlock(&ctx->uring_lock);
725 }
726 
io_cqring_overflow_flush(struct io_ring_ctx * ctx)727 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx)
728 {
729 	if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
730 		io_cqring_do_overflow_flush(ctx);
731 }
732 
733 /* can be called by any task */
io_put_task_remote(struct task_struct * task)734 static void io_put_task_remote(struct task_struct *task)
735 {
736 	struct io_uring_task *tctx = task->io_uring;
737 
738 	percpu_counter_sub(&tctx->inflight, 1);
739 	if (unlikely(atomic_read(&tctx->in_cancel)))
740 		wake_up(&tctx->wait);
741 	put_task_struct(task);
742 }
743 
744 /* used by a task to put its own references */
io_put_task_local(struct task_struct * task)745 static void io_put_task_local(struct task_struct *task)
746 {
747 	task->io_uring->cached_refs++;
748 }
749 
750 /* must to be called somewhat shortly after putting a request */
io_put_task(struct task_struct * task)751 static inline void io_put_task(struct task_struct *task)
752 {
753 	if (likely(task == current))
754 		io_put_task_local(task);
755 	else
756 		io_put_task_remote(task);
757 }
758 
io_task_refs_refill(struct io_uring_task * tctx)759 void io_task_refs_refill(struct io_uring_task *tctx)
760 {
761 	unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
762 
763 	percpu_counter_add(&tctx->inflight, refill);
764 	refcount_add(refill, &current->usage);
765 	tctx->cached_refs += refill;
766 }
767 
io_uring_drop_tctx_refs(struct task_struct * task)768 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
769 {
770 	struct io_uring_task *tctx = task->io_uring;
771 	unsigned int refs = tctx->cached_refs;
772 
773 	if (refs) {
774 		tctx->cached_refs = 0;
775 		percpu_counter_sub(&tctx->inflight, refs);
776 		put_task_struct_many(task, refs);
777 	}
778 }
779 
io_cqring_event_overflow(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags,u64 extra1,u64 extra2)780 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
781 				     s32 res, u32 cflags, u64 extra1, u64 extra2)
782 {
783 	struct io_overflow_cqe *ocqe;
784 	size_t ocq_size = sizeof(struct io_overflow_cqe);
785 	bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
786 
787 	lockdep_assert_held(&ctx->completion_lock);
788 
789 	if (is_cqe32)
790 		ocq_size += sizeof(struct io_uring_cqe);
791 
792 	ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
793 	trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
794 	if (!ocqe) {
795 		/*
796 		 * If we're in ring overflow flush mode, or in task cancel mode,
797 		 * or cannot allocate an overflow entry, then we need to drop it
798 		 * on the floor.
799 		 */
800 		io_account_cq_overflow(ctx);
801 		set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
802 		return false;
803 	}
804 	if (list_empty(&ctx->cq_overflow_list)) {
805 		set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
806 		atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
807 
808 	}
809 	ocqe->cqe.user_data = user_data;
810 	ocqe->cqe.res = res;
811 	ocqe->cqe.flags = cflags;
812 	if (is_cqe32) {
813 		ocqe->cqe.big_cqe[0] = extra1;
814 		ocqe->cqe.big_cqe[1] = extra2;
815 	}
816 	list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
817 	return true;
818 }
819 
io_req_cqe_overflow(struct io_kiocb * req)820 void io_req_cqe_overflow(struct io_kiocb *req)
821 {
822 	io_cqring_event_overflow(req->ctx, req->cqe.user_data,
823 				req->cqe.res, req->cqe.flags,
824 				req->big_cqe.extra1, req->big_cqe.extra2);
825 	memset(&req->big_cqe, 0, sizeof(req->big_cqe));
826 }
827 
828 /*
829  * writes to the cq entry need to come after reading head; the
830  * control dependency is enough as we're using WRITE_ONCE to
831  * fill the cq entry
832  */
io_cqe_cache_refill(struct io_ring_ctx * ctx,bool overflow)833 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow)
834 {
835 	struct io_rings *rings = ctx->rings;
836 	unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
837 	unsigned int free, queued, len;
838 
839 	/*
840 	 * Posting into the CQ when there are pending overflowed CQEs may break
841 	 * ordering guarantees, which will affect links, F_MORE users and more.
842 	 * Force overflow the completion.
843 	 */
844 	if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
845 		return false;
846 
847 	/* userspace may cheat modifying the tail, be safe and do min */
848 	queued = min(__io_cqring_events(ctx), ctx->cq_entries);
849 	free = ctx->cq_entries - queued;
850 	/* we need a contiguous range, limit based on the current array offset */
851 	len = min(free, ctx->cq_entries - off);
852 	if (!len)
853 		return false;
854 
855 	if (ctx->flags & IORING_SETUP_CQE32) {
856 		off <<= 1;
857 		len <<= 1;
858 	}
859 
860 	ctx->cqe_cached = &rings->cqes[off];
861 	ctx->cqe_sentinel = ctx->cqe_cached + len;
862 	return true;
863 }
864 
io_fill_cqe_aux(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)865 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
866 			      u32 cflags)
867 {
868 	struct io_uring_cqe *cqe;
869 
870 	ctx->cq_extra++;
871 
872 	/*
873 	 * If we can't get a cq entry, userspace overflowed the
874 	 * submission (by quite a lot). Increment the overflow count in
875 	 * the ring.
876 	 */
877 	if (likely(io_get_cqe(ctx, &cqe))) {
878 		trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0);
879 
880 		WRITE_ONCE(cqe->user_data, user_data);
881 		WRITE_ONCE(cqe->res, res);
882 		WRITE_ONCE(cqe->flags, cflags);
883 
884 		if (ctx->flags & IORING_SETUP_CQE32) {
885 			WRITE_ONCE(cqe->big_cqe[0], 0);
886 			WRITE_ONCE(cqe->big_cqe[1], 0);
887 		}
888 		return true;
889 	}
890 	return false;
891 }
892 
__io_flush_post_cqes(struct io_ring_ctx * ctx)893 static void __io_flush_post_cqes(struct io_ring_ctx *ctx)
894 	__must_hold(&ctx->uring_lock)
895 {
896 	struct io_submit_state *state = &ctx->submit_state;
897 	unsigned int i;
898 
899 	lockdep_assert_held(&ctx->uring_lock);
900 	for (i = 0; i < state->cqes_count; i++) {
901 		struct io_uring_cqe *cqe = &ctx->completion_cqes[i];
902 
903 		if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) {
904 			if (ctx->lockless_cq) {
905 				spin_lock(&ctx->completion_lock);
906 				io_cqring_event_overflow(ctx, cqe->user_data,
907 							cqe->res, cqe->flags, 0, 0);
908 				spin_unlock(&ctx->completion_lock);
909 			} else {
910 				io_cqring_event_overflow(ctx, cqe->user_data,
911 							cqe->res, cqe->flags, 0, 0);
912 			}
913 		}
914 	}
915 	state->cqes_count = 0;
916 }
917 
__io_post_aux_cqe(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags,bool allow_overflow)918 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags,
919 			      bool allow_overflow)
920 {
921 	bool filled;
922 
923 	io_cq_lock(ctx);
924 	filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
925 	if (!filled && allow_overflow)
926 		filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
927 
928 	io_cq_unlock_post(ctx);
929 	return filled;
930 }
931 
io_post_aux_cqe(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)932 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
933 {
934 	return __io_post_aux_cqe(ctx, user_data, res, cflags, true);
935 }
936 
937 /*
938  * A helper for multishot requests posting additional CQEs.
939  * Should only be used from a task_work including IO_URING_F_MULTISHOT.
940  */
io_fill_cqe_req_aux(struct io_kiocb * req,bool defer,s32 res,u32 cflags)941 bool io_fill_cqe_req_aux(struct io_kiocb *req, bool defer, s32 res, u32 cflags)
942 {
943 	struct io_ring_ctx *ctx = req->ctx;
944 	u64 user_data = req->cqe.user_data;
945 	struct io_uring_cqe *cqe;
946 
947 	if (!defer)
948 		return __io_post_aux_cqe(ctx, user_data, res, cflags, false);
949 
950 	lockdep_assert_held(&ctx->uring_lock);
951 
952 	if (ctx->submit_state.cqes_count == ARRAY_SIZE(ctx->completion_cqes)) {
953 		__io_cq_lock(ctx);
954 		__io_flush_post_cqes(ctx);
955 		/* no need to flush - flush is deferred */
956 		__io_cq_unlock_post(ctx);
957 	}
958 
959 	/* For defered completions this is not as strict as it is otherwise,
960 	 * however it's main job is to prevent unbounded posted completions,
961 	 * and in that it works just as well.
962 	 */
963 	if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
964 		return false;
965 
966 	cqe = &ctx->completion_cqes[ctx->submit_state.cqes_count++];
967 	cqe->user_data = user_data;
968 	cqe->res = res;
969 	cqe->flags = cflags;
970 	return true;
971 }
972 
__io_req_complete_post(struct io_kiocb * req,unsigned issue_flags)973 static void __io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
974 {
975 	struct io_ring_ctx *ctx = req->ctx;
976 	struct io_rsrc_node *rsrc_node = NULL;
977 
978 	io_cq_lock(ctx);
979 	if (!(req->flags & REQ_F_CQE_SKIP)) {
980 		if (!io_fill_cqe_req(ctx, req))
981 			io_req_cqe_overflow(req);
982 	}
983 
984 	/*
985 	 * If we're the last reference to this request, add to our locked
986 	 * free_list cache.
987 	 */
988 	if (req_ref_put_and_test(req)) {
989 		if (req->flags & IO_REQ_LINK_FLAGS) {
990 			if (req->flags & IO_DISARM_MASK)
991 				io_disarm_next(req);
992 			if (req->link) {
993 				io_req_task_queue(req->link);
994 				req->link = NULL;
995 			}
996 		}
997 		io_put_kbuf_comp(req);
998 		if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
999 			io_clean_op(req);
1000 		io_put_file(req);
1001 
1002 		rsrc_node = req->rsrc_node;
1003 		/*
1004 		 * Selected buffer deallocation in io_clean_op() assumes that
1005 		 * we don't hold ->completion_lock. Clean them here to avoid
1006 		 * deadlocks.
1007 		 */
1008 		io_put_task_remote(req->task);
1009 		wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
1010 		ctx->locked_free_nr++;
1011 	}
1012 	io_cq_unlock_post(ctx);
1013 
1014 	if (rsrc_node) {
1015 		io_ring_submit_lock(ctx, issue_flags);
1016 		io_put_rsrc_node(ctx, rsrc_node);
1017 		io_ring_submit_unlock(ctx, issue_flags);
1018 	}
1019 }
1020 
io_req_complete_post(struct io_kiocb * req,unsigned issue_flags)1021 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
1022 {
1023 	if (req->ctx->task_complete && req->ctx->submitter_task != current) {
1024 		req->io_task_work.func = io_req_task_complete;
1025 		io_req_task_work_add(req);
1026 	} else if (!(issue_flags & IO_URING_F_UNLOCKED) ||
1027 		   !(req->ctx->flags & IORING_SETUP_IOPOLL)) {
1028 		__io_req_complete_post(req, issue_flags);
1029 	} else {
1030 		struct io_ring_ctx *ctx = req->ctx;
1031 
1032 		mutex_lock(&ctx->uring_lock);
1033 		__io_req_complete_post(req, issue_flags & ~IO_URING_F_UNLOCKED);
1034 		mutex_unlock(&ctx->uring_lock);
1035 	}
1036 }
1037 
io_req_defer_failed(struct io_kiocb * req,s32 res)1038 void io_req_defer_failed(struct io_kiocb *req, s32 res)
1039 	__must_hold(&ctx->uring_lock)
1040 {
1041 	const struct io_cold_def *def = &io_cold_defs[req->opcode];
1042 
1043 	lockdep_assert_held(&req->ctx->uring_lock);
1044 
1045 	req_set_fail(req);
1046 	io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED));
1047 	if (def->fail)
1048 		def->fail(req);
1049 	io_req_complete_defer(req);
1050 }
1051 
1052 /*
1053  * Don't initialise the fields below on every allocation, but do that in
1054  * advance and keep them valid across allocations.
1055  */
io_preinit_req(struct io_kiocb * req,struct io_ring_ctx * ctx)1056 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
1057 {
1058 	req->ctx = ctx;
1059 	req->link = NULL;
1060 	req->async_data = NULL;
1061 	/* not necessary, but safer to zero */
1062 	memset(&req->cqe, 0, sizeof(req->cqe));
1063 	memset(&req->big_cqe, 0, sizeof(req->big_cqe));
1064 }
1065 
io_flush_cached_locked_reqs(struct io_ring_ctx * ctx,struct io_submit_state * state)1066 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1067 					struct io_submit_state *state)
1068 {
1069 	spin_lock(&ctx->completion_lock);
1070 	wq_list_splice(&ctx->locked_free_list, &state->free_list);
1071 	ctx->locked_free_nr = 0;
1072 	spin_unlock(&ctx->completion_lock);
1073 }
1074 
1075 /*
1076  * A request might get retired back into the request caches even before opcode
1077  * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1078  * Because of that, io_alloc_req() should be called only under ->uring_lock
1079  * and with extra caution to not get a request that is still worked on.
1080  */
__io_alloc_req_refill(struct io_ring_ctx * ctx)1081 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
1082 	__must_hold(&ctx->uring_lock)
1083 {
1084 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1085 	void *reqs[IO_REQ_ALLOC_BATCH];
1086 	int ret, i;
1087 
1088 	/*
1089 	 * If we have more than a batch's worth of requests in our IRQ side
1090 	 * locked cache, grab the lock and move them over to our submission
1091 	 * side cache.
1092 	 */
1093 	if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) {
1094 		io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
1095 		if (!io_req_cache_empty(ctx))
1096 			return true;
1097 	}
1098 
1099 	ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
1100 
1101 	/*
1102 	 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1103 	 * retry single alloc to be on the safe side.
1104 	 */
1105 	if (unlikely(ret <= 0)) {
1106 		reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1107 		if (!reqs[0])
1108 			return false;
1109 		ret = 1;
1110 	}
1111 
1112 	percpu_ref_get_many(&ctx->refs, ret);
1113 	for (i = 0; i < ret; i++) {
1114 		struct io_kiocb *req = reqs[i];
1115 
1116 		io_preinit_req(req, ctx);
1117 		io_req_add_to_cache(req, ctx);
1118 	}
1119 	return true;
1120 }
1121 
io_free_req(struct io_kiocb * req)1122 __cold void io_free_req(struct io_kiocb *req)
1123 {
1124 	/* refs were already put, restore them for io_req_task_complete() */
1125 	req->flags &= ~REQ_F_REFCOUNT;
1126 	/* we only want to free it, don't post CQEs */
1127 	req->flags |= REQ_F_CQE_SKIP;
1128 	req->io_task_work.func = io_req_task_complete;
1129 	io_req_task_work_add(req);
1130 }
1131 
__io_req_find_next_prep(struct io_kiocb * req)1132 static void __io_req_find_next_prep(struct io_kiocb *req)
1133 {
1134 	struct io_ring_ctx *ctx = req->ctx;
1135 
1136 	spin_lock(&ctx->completion_lock);
1137 	io_disarm_next(req);
1138 	spin_unlock(&ctx->completion_lock);
1139 }
1140 
io_req_find_next(struct io_kiocb * req)1141 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1142 {
1143 	struct io_kiocb *nxt;
1144 
1145 	/*
1146 	 * If LINK is set, we have dependent requests in this chain. If we
1147 	 * didn't fail this request, queue the first one up, moving any other
1148 	 * dependencies to the next request. In case of failure, fail the rest
1149 	 * of the chain.
1150 	 */
1151 	if (unlikely(req->flags & IO_DISARM_MASK))
1152 		__io_req_find_next_prep(req);
1153 	nxt = req->link;
1154 	req->link = NULL;
1155 	return nxt;
1156 }
1157 
ctx_flush_and_put(struct io_ring_ctx * ctx,struct io_tw_state * ts)1158 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1159 {
1160 	if (!ctx)
1161 		return;
1162 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1163 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1164 	if (ts->locked) {
1165 		io_submit_flush_completions(ctx);
1166 		mutex_unlock(&ctx->uring_lock);
1167 		ts->locked = false;
1168 	}
1169 	percpu_ref_put(&ctx->refs);
1170 }
1171 
handle_tw_list(struct llist_node * node,struct io_ring_ctx ** ctx,struct io_tw_state * ts)1172 static unsigned int handle_tw_list(struct llist_node *node,
1173 				   struct io_ring_ctx **ctx,
1174 				   struct io_tw_state *ts)
1175 {
1176 	unsigned int count = 0;
1177 
1178 	do {
1179 		struct llist_node *next = node->next;
1180 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1181 						    io_task_work.node);
1182 
1183 		prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1184 
1185 		if (req->ctx != *ctx) {
1186 			ctx_flush_and_put(*ctx, ts);
1187 			*ctx = req->ctx;
1188 			/* if not contended, grab and improve batching */
1189 			ts->locked = mutex_trylock(&(*ctx)->uring_lock);
1190 			percpu_ref_get(&(*ctx)->refs);
1191 		}
1192 		INDIRECT_CALL_2(req->io_task_work.func,
1193 				io_poll_task_func, io_req_rw_complete,
1194 				req, ts);
1195 		node = next;
1196 		count++;
1197 		if (unlikely(need_resched())) {
1198 			ctx_flush_and_put(*ctx, ts);
1199 			*ctx = NULL;
1200 			cond_resched();
1201 		}
1202 	} while (node);
1203 
1204 	return count;
1205 }
1206 
1207 /**
1208  * io_llist_xchg - swap all entries in a lock-less list
1209  * @head:	the head of lock-less list to delete all entries
1210  * @new:	new entry as the head of the list
1211  *
1212  * If list is empty, return NULL, otherwise, return the pointer to the first entry.
1213  * The order of entries returned is from the newest to the oldest added one.
1214  */
io_llist_xchg(struct llist_head * head,struct llist_node * new)1215 static inline struct llist_node *io_llist_xchg(struct llist_head *head,
1216 					       struct llist_node *new)
1217 {
1218 	return xchg(&head->first, new);
1219 }
1220 
io_fallback_tw(struct io_uring_task * tctx,bool sync)1221 static __cold void io_fallback_tw(struct io_uring_task *tctx, bool sync)
1222 {
1223 	struct llist_node *node = llist_del_all(&tctx->task_list);
1224 	struct io_ring_ctx *last_ctx = NULL;
1225 	struct io_kiocb *req;
1226 
1227 	while (node) {
1228 		req = container_of(node, struct io_kiocb, io_task_work.node);
1229 		node = node->next;
1230 		if (last_ctx != req->ctx) {
1231 			if (last_ctx) {
1232 				if (sync)
1233 					flush_delayed_work(&last_ctx->fallback_work);
1234 				percpu_ref_put(&last_ctx->refs);
1235 			}
1236 			last_ctx = req->ctx;
1237 			percpu_ref_get(&last_ctx->refs);
1238 		}
1239 		if (llist_add(&req->io_task_work.node, &last_ctx->fallback_llist))
1240 			schedule_delayed_work(&last_ctx->fallback_work, 1);
1241 	}
1242 
1243 	if (last_ctx) {
1244 		if (sync)
1245 			flush_delayed_work(&last_ctx->fallback_work);
1246 		percpu_ref_put(&last_ctx->refs);
1247 	}
1248 }
1249 
tctx_task_work(struct callback_head * cb)1250 void tctx_task_work(struct callback_head *cb)
1251 {
1252 	struct io_tw_state ts = {};
1253 	struct io_ring_ctx *ctx = NULL;
1254 	struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
1255 						  task_work);
1256 	struct llist_node *node;
1257 	unsigned int count = 0;
1258 
1259 	if (unlikely(current->flags & PF_EXITING)) {
1260 		io_fallback_tw(tctx, true);
1261 		return;
1262 	}
1263 
1264 	node = llist_del_all(&tctx->task_list);
1265 	if (node)
1266 		count = handle_tw_list(node, &ctx, &ts);
1267 
1268 	ctx_flush_and_put(ctx, &ts);
1269 
1270 	/* relaxed read is enough as only the task itself sets ->in_cancel */
1271 	if (unlikely(atomic_read(&tctx->in_cancel)))
1272 		io_uring_drop_tctx_refs(current);
1273 
1274 	trace_io_uring_task_work_run(tctx, count, 1);
1275 }
1276 
io_req_local_work_add(struct io_kiocb * req,unsigned flags)1277 static inline void io_req_local_work_add(struct io_kiocb *req, unsigned flags)
1278 {
1279 	struct io_ring_ctx *ctx = req->ctx;
1280 	unsigned nr_wait, nr_tw, nr_tw_prev;
1281 	struct llist_node *first;
1282 
1283 	if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK))
1284 		flags &= ~IOU_F_TWQ_LAZY_WAKE;
1285 
1286 	first = READ_ONCE(ctx->work_llist.first);
1287 	do {
1288 		nr_tw_prev = 0;
1289 		if (first) {
1290 			struct io_kiocb *first_req = container_of(first,
1291 							struct io_kiocb,
1292 							io_task_work.node);
1293 			/*
1294 			 * Might be executed at any moment, rely on
1295 			 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1296 			 */
1297 			nr_tw_prev = READ_ONCE(first_req->nr_tw);
1298 		}
1299 		nr_tw = nr_tw_prev + 1;
1300 		/* Large enough to fail the nr_wait comparison below */
1301 		if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1302 			nr_tw = INT_MAX;
1303 
1304 		req->nr_tw = nr_tw;
1305 		req->io_task_work.node.next = first;
1306 	} while (!try_cmpxchg(&ctx->work_llist.first, &first,
1307 			      &req->io_task_work.node));
1308 
1309 	if (!first) {
1310 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1311 			atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1312 		if (ctx->has_evfd)
1313 			io_eventfd_signal(ctx);
1314 	}
1315 
1316 	nr_wait = atomic_read(&ctx->cq_wait_nr);
1317 	/* no one is waiting */
1318 	if (!nr_wait)
1319 		return;
1320 	/* either not enough or the previous add has already woken it up */
1321 	if (nr_wait > nr_tw || nr_tw_prev >= nr_wait)
1322 		return;
1323 	/* pairs with set_current_state() in io_cqring_wait() */
1324 	smp_mb__after_atomic();
1325 	wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1326 }
1327 
io_req_normal_work_add(struct io_kiocb * req)1328 static void io_req_normal_work_add(struct io_kiocb *req)
1329 {
1330 	struct io_uring_task *tctx = req->task->io_uring;
1331 	struct io_ring_ctx *ctx = req->ctx;
1332 
1333 	/* task_work already pending, we're done */
1334 	if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1335 		return;
1336 
1337 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1338 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1339 
1340 	if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method)))
1341 		return;
1342 
1343 	io_fallback_tw(tctx, false);
1344 }
1345 
__io_req_task_work_add(struct io_kiocb * req,unsigned flags)1346 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1347 {
1348 	if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
1349 		rcu_read_lock();
1350 		io_req_local_work_add(req, flags);
1351 		rcu_read_unlock();
1352 	} else {
1353 		io_req_normal_work_add(req);
1354 	}
1355 }
1356 
io_move_task_work_from_local(struct io_ring_ctx * ctx)1357 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1358 {
1359 	struct llist_node *node;
1360 
1361 	node = llist_del_all(&ctx->work_llist);
1362 	while (node) {
1363 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1364 						    io_task_work.node);
1365 
1366 		node = node->next;
1367 		io_req_normal_work_add(req);
1368 	}
1369 }
1370 
io_run_local_work_continue(struct io_ring_ctx * ctx,int events,int min_events)1371 static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events,
1372 				       int min_events)
1373 {
1374 	if (llist_empty(&ctx->work_llist))
1375 		return false;
1376 	if (events < min_events)
1377 		return true;
1378 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1379 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1380 	return false;
1381 }
1382 
__io_run_local_work(struct io_ring_ctx * ctx,struct io_tw_state * ts,int min_events)1383 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts,
1384 			       int min_events)
1385 {
1386 	struct llist_node *node;
1387 	unsigned int loops = 0;
1388 	int ret = 0;
1389 
1390 	if (WARN_ON_ONCE(ctx->submitter_task != current))
1391 		return -EEXIST;
1392 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1393 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1394 again:
1395 	/*
1396 	 * llists are in reverse order, flip it back the right way before
1397 	 * running the pending items.
1398 	 */
1399 	node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL));
1400 	while (node) {
1401 		struct llist_node *next = node->next;
1402 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1403 						    io_task_work.node);
1404 		prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1405 		INDIRECT_CALL_2(req->io_task_work.func,
1406 				io_poll_task_func, io_req_rw_complete,
1407 				req, ts);
1408 		ret++;
1409 		node = next;
1410 	}
1411 	loops++;
1412 
1413 	if (io_run_local_work_continue(ctx, ret, min_events))
1414 		goto again;
1415 	if (ts->locked) {
1416 		io_submit_flush_completions(ctx);
1417 		if (io_run_local_work_continue(ctx, ret, min_events))
1418 			goto again;
1419 	}
1420 
1421 	trace_io_uring_local_work_run(ctx, ret, loops);
1422 	return ret;
1423 }
1424 
io_run_local_work_locked(struct io_ring_ctx * ctx,int min_events)1425 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx,
1426 					   int min_events)
1427 {
1428 	struct io_tw_state ts = { .locked = true, };
1429 	int ret;
1430 
1431 	if (llist_empty(&ctx->work_llist))
1432 		return 0;
1433 
1434 	ret = __io_run_local_work(ctx, &ts, min_events);
1435 	/* shouldn't happen! */
1436 	if (WARN_ON_ONCE(!ts.locked))
1437 		mutex_lock(&ctx->uring_lock);
1438 	return ret;
1439 }
1440 
io_run_local_work(struct io_ring_ctx * ctx,int min_events)1441 static int io_run_local_work(struct io_ring_ctx *ctx, int min_events)
1442 {
1443 	struct io_tw_state ts = {};
1444 	int ret;
1445 
1446 	ts.locked = mutex_trylock(&ctx->uring_lock);
1447 	ret = __io_run_local_work(ctx, &ts, min_events);
1448 	if (ts.locked)
1449 		mutex_unlock(&ctx->uring_lock);
1450 
1451 	return ret;
1452 }
1453 
io_req_task_cancel(struct io_kiocb * req,struct io_tw_state * ts)1454 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts)
1455 {
1456 	io_tw_lock(req->ctx, ts);
1457 	io_req_defer_failed(req, req->cqe.res);
1458 }
1459 
io_req_task_submit(struct io_kiocb * req,struct io_tw_state * ts)1460 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts)
1461 {
1462 	io_tw_lock(req->ctx, ts);
1463 	/* req->task == current here, checking PF_EXITING is safe */
1464 	if (unlikely(req->task->flags & PF_EXITING))
1465 		io_req_defer_failed(req, -EFAULT);
1466 	else if (req->flags & REQ_F_FORCE_ASYNC)
1467 		io_queue_iowq(req);
1468 	else
1469 		io_queue_sqe(req);
1470 }
1471 
io_req_task_queue_fail(struct io_kiocb * req,int ret)1472 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1473 {
1474 	io_req_set_res(req, ret, 0);
1475 	req->io_task_work.func = io_req_task_cancel;
1476 	io_req_task_work_add(req);
1477 }
1478 
io_req_task_queue(struct io_kiocb * req)1479 void io_req_task_queue(struct io_kiocb *req)
1480 {
1481 	req->io_task_work.func = io_req_task_submit;
1482 	io_req_task_work_add(req);
1483 }
1484 
io_queue_next(struct io_kiocb * req)1485 void io_queue_next(struct io_kiocb *req)
1486 {
1487 	struct io_kiocb *nxt = io_req_find_next(req);
1488 
1489 	if (nxt)
1490 		io_req_task_queue(nxt);
1491 }
1492 
io_free_batch_list(struct io_ring_ctx * ctx,struct io_wq_work_node * node)1493 static void io_free_batch_list(struct io_ring_ctx *ctx,
1494 			       struct io_wq_work_node *node)
1495 	__must_hold(&ctx->uring_lock)
1496 {
1497 	do {
1498 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1499 						    comp_list);
1500 
1501 		if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1502 			if (req->flags & REQ_F_REFCOUNT) {
1503 				node = req->comp_list.next;
1504 				if (!req_ref_put_and_test(req))
1505 					continue;
1506 			}
1507 			if ((req->flags & REQ_F_POLLED) && req->apoll) {
1508 				struct async_poll *apoll = req->apoll;
1509 
1510 				if (apoll->double_poll)
1511 					kfree(apoll->double_poll);
1512 				if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache))
1513 					kfree(apoll);
1514 				req->flags &= ~REQ_F_POLLED;
1515 			}
1516 			if (req->flags & IO_REQ_LINK_FLAGS)
1517 				io_queue_next(req);
1518 			if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1519 				io_clean_op(req);
1520 		}
1521 		io_put_file(req);
1522 
1523 		io_req_put_rsrc_locked(req, ctx);
1524 
1525 		io_put_task(req->task);
1526 		node = req->comp_list.next;
1527 		io_req_add_to_cache(req, ctx);
1528 	} while (node);
1529 }
1530 
__io_submit_flush_completions(struct io_ring_ctx * ctx)1531 void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1532 	__must_hold(&ctx->uring_lock)
1533 {
1534 	struct io_submit_state *state = &ctx->submit_state;
1535 	struct io_wq_work_node *node;
1536 
1537 	__io_cq_lock(ctx);
1538 	/* must come first to preserve CQE ordering in failure cases */
1539 	if (state->cqes_count)
1540 		__io_flush_post_cqes(ctx);
1541 	__wq_list_for_each(node, &state->compl_reqs) {
1542 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1543 					    comp_list);
1544 
1545 		if (!(req->flags & REQ_F_CQE_SKIP) &&
1546 		    unlikely(!io_fill_cqe_req(ctx, req))) {
1547 			if (ctx->lockless_cq) {
1548 				spin_lock(&ctx->completion_lock);
1549 				io_req_cqe_overflow(req);
1550 				spin_unlock(&ctx->completion_lock);
1551 			} else {
1552 				io_req_cqe_overflow(req);
1553 			}
1554 		}
1555 	}
1556 	__io_cq_unlock_post(ctx);
1557 
1558 	if (!wq_list_empty(&ctx->submit_state.compl_reqs)) {
1559 		io_free_batch_list(ctx, state->compl_reqs.first);
1560 		INIT_WQ_LIST(&state->compl_reqs);
1561 	}
1562 }
1563 
io_cqring_events(struct io_ring_ctx * ctx)1564 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1565 {
1566 	/* See comment at the top of this file */
1567 	smp_rmb();
1568 	return __io_cqring_events(ctx);
1569 }
1570 
1571 /*
1572  * We can't just wait for polled events to come to us, we have to actively
1573  * find and complete them.
1574  */
io_iopoll_try_reap_events(struct io_ring_ctx * ctx)1575 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1576 {
1577 	if (!(ctx->flags & IORING_SETUP_IOPOLL))
1578 		return;
1579 
1580 	mutex_lock(&ctx->uring_lock);
1581 	while (!wq_list_empty(&ctx->iopoll_list)) {
1582 		/* let it sleep and repeat later if can't complete a request */
1583 		if (io_do_iopoll(ctx, true) == 0)
1584 			break;
1585 		/*
1586 		 * Ensure we allow local-to-the-cpu processing to take place,
1587 		 * in this case we need to ensure that we reap all events.
1588 		 * Also let task_work, etc. to progress by releasing the mutex
1589 		 */
1590 		if (need_resched()) {
1591 			mutex_unlock(&ctx->uring_lock);
1592 			cond_resched();
1593 			mutex_lock(&ctx->uring_lock);
1594 		}
1595 	}
1596 	mutex_unlock(&ctx->uring_lock);
1597 }
1598 
io_iopoll_check(struct io_ring_ctx * ctx,long min)1599 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1600 {
1601 	unsigned int nr_events = 0;
1602 	unsigned long check_cq;
1603 
1604 	lockdep_assert_held(&ctx->uring_lock);
1605 
1606 	if (!io_allowed_run_tw(ctx))
1607 		return -EEXIST;
1608 
1609 	check_cq = READ_ONCE(ctx->check_cq);
1610 	if (unlikely(check_cq)) {
1611 		if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1612 			__io_cqring_overflow_flush(ctx);
1613 		/*
1614 		 * Similarly do not spin if we have not informed the user of any
1615 		 * dropped CQE.
1616 		 */
1617 		if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1618 			return -EBADR;
1619 	}
1620 	/*
1621 	 * Don't enter poll loop if we already have events pending.
1622 	 * If we do, we can potentially be spinning for commands that
1623 	 * already triggered a CQE (eg in error).
1624 	 */
1625 	if (io_cqring_events(ctx))
1626 		return 0;
1627 
1628 	do {
1629 		int ret = 0;
1630 
1631 		/*
1632 		 * If a submit got punted to a workqueue, we can have the
1633 		 * application entering polling for a command before it gets
1634 		 * issued. That app will hold the uring_lock for the duration
1635 		 * of the poll right here, so we need to take a breather every
1636 		 * now and then to ensure that the issue has a chance to add
1637 		 * the poll to the issued list. Otherwise we can spin here
1638 		 * forever, while the workqueue is stuck trying to acquire the
1639 		 * very same mutex.
1640 		 */
1641 		if (wq_list_empty(&ctx->iopoll_list) ||
1642 		    io_task_work_pending(ctx)) {
1643 			u32 tail = ctx->cached_cq_tail;
1644 
1645 			(void) io_run_local_work_locked(ctx, min);
1646 
1647 			if (task_work_pending(current) ||
1648 			    wq_list_empty(&ctx->iopoll_list)) {
1649 				mutex_unlock(&ctx->uring_lock);
1650 				io_run_task_work();
1651 				mutex_lock(&ctx->uring_lock);
1652 			}
1653 			/* some requests don't go through iopoll_list */
1654 			if (tail != ctx->cached_cq_tail ||
1655 			    wq_list_empty(&ctx->iopoll_list))
1656 				break;
1657 		}
1658 		ret = io_do_iopoll(ctx, !min);
1659 		if (unlikely(ret < 0))
1660 			return ret;
1661 
1662 		if (task_sigpending(current))
1663 			return -EINTR;
1664 		if (need_resched())
1665 			break;
1666 
1667 		nr_events += ret;
1668 	} while (nr_events < min);
1669 
1670 	return 0;
1671 }
1672 
io_req_task_complete(struct io_kiocb * req,struct io_tw_state * ts)1673 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts)
1674 {
1675 	if (ts->locked)
1676 		io_req_complete_defer(req);
1677 	else
1678 		io_req_complete_post(req, IO_URING_F_UNLOCKED);
1679 }
1680 
1681 /*
1682  * After the iocb has been issued, it's safe to be found on the poll list.
1683  * Adding the kiocb to the list AFTER submission ensures that we don't
1684  * find it from a io_do_iopoll() thread before the issuer is done
1685  * accessing the kiocb cookie.
1686  */
io_iopoll_req_issued(struct io_kiocb * req,unsigned int issue_flags)1687 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1688 {
1689 	struct io_ring_ctx *ctx = req->ctx;
1690 	const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1691 
1692 	/* workqueue context doesn't hold uring_lock, grab it now */
1693 	if (unlikely(needs_lock))
1694 		mutex_lock(&ctx->uring_lock);
1695 
1696 	/*
1697 	 * Track whether we have multiple files in our lists. This will impact
1698 	 * how we do polling eventually, not spinning if we're on potentially
1699 	 * different devices.
1700 	 */
1701 	if (wq_list_empty(&ctx->iopoll_list)) {
1702 		ctx->poll_multi_queue = false;
1703 	} else if (!ctx->poll_multi_queue) {
1704 		struct io_kiocb *list_req;
1705 
1706 		list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1707 					comp_list);
1708 		if (list_req->file != req->file)
1709 			ctx->poll_multi_queue = true;
1710 	}
1711 
1712 	/*
1713 	 * For fast devices, IO may have already completed. If it has, add
1714 	 * it to the front so we find it first.
1715 	 */
1716 	if (READ_ONCE(req->iopoll_completed))
1717 		wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1718 	else
1719 		wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1720 
1721 	if (unlikely(needs_lock)) {
1722 		/*
1723 		 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1724 		 * in sq thread task context or in io worker task context. If
1725 		 * current task context is sq thread, we don't need to check
1726 		 * whether should wake up sq thread.
1727 		 */
1728 		if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1729 		    wq_has_sleeper(&ctx->sq_data->wait))
1730 			wake_up(&ctx->sq_data->wait);
1731 
1732 		mutex_unlock(&ctx->uring_lock);
1733 	}
1734 }
1735 
io_file_get_flags(struct file * file)1736 unsigned int io_file_get_flags(struct file *file)
1737 {
1738 	unsigned int res = 0;
1739 
1740 	if (S_ISREG(file_inode(file)->i_mode))
1741 		res |= REQ_F_ISREG;
1742 	if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1743 		res |= REQ_F_SUPPORT_NOWAIT;
1744 	return res;
1745 }
1746 
io_alloc_async_data(struct io_kiocb * req)1747 bool io_alloc_async_data(struct io_kiocb *req)
1748 {
1749 	WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size);
1750 	req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL);
1751 	if (req->async_data) {
1752 		req->flags |= REQ_F_ASYNC_DATA;
1753 		return false;
1754 	}
1755 	return true;
1756 }
1757 
io_req_prep_async(struct io_kiocb * req)1758 int io_req_prep_async(struct io_kiocb *req)
1759 {
1760 	const struct io_cold_def *cdef = &io_cold_defs[req->opcode];
1761 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1762 	int ret;
1763 
1764 	/* assign early for deferred execution for non-fixed file */
1765 	if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file)
1766 		req->file = io_file_get_normal(req, req->cqe.fd);
1767 	if (!cdef->prep_async)
1768 		return 0;
1769 	if (WARN_ON_ONCE(req_has_async_data(req)))
1770 		return -EFAULT;
1771 	if (!def->manual_alloc) {
1772 		if (io_alloc_async_data(req))
1773 			return -EAGAIN;
1774 	}
1775 	ret = cdef->prep_async(req);
1776 	io_kbuf_recycle(req, 0);
1777 	return ret;
1778 }
1779 
io_get_sequence(struct io_kiocb * req)1780 static u32 io_get_sequence(struct io_kiocb *req)
1781 {
1782 	u32 seq = req->ctx->cached_sq_head;
1783 	struct io_kiocb *cur;
1784 
1785 	/* need original cached_sq_head, but it was increased for each req */
1786 	io_for_each_link(cur, req)
1787 		seq--;
1788 	return seq;
1789 }
1790 
io_drain_req(struct io_kiocb * req)1791 static __cold void io_drain_req(struct io_kiocb *req)
1792 	__must_hold(&ctx->uring_lock)
1793 {
1794 	struct io_ring_ctx *ctx = req->ctx;
1795 	struct io_defer_entry *de;
1796 	int ret;
1797 	u32 seq = io_get_sequence(req);
1798 
1799 	/* Still need defer if there is pending req in defer list. */
1800 	spin_lock(&ctx->completion_lock);
1801 	if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1802 		spin_unlock(&ctx->completion_lock);
1803 queue:
1804 		ctx->drain_active = false;
1805 		io_req_task_queue(req);
1806 		return;
1807 	}
1808 	spin_unlock(&ctx->completion_lock);
1809 
1810 	io_prep_async_link(req);
1811 	de = kmalloc(sizeof(*de), GFP_KERNEL);
1812 	if (!de) {
1813 		ret = -ENOMEM;
1814 		io_req_defer_failed(req, ret);
1815 		return;
1816 	}
1817 
1818 	spin_lock(&ctx->completion_lock);
1819 	if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1820 		spin_unlock(&ctx->completion_lock);
1821 		kfree(de);
1822 		goto queue;
1823 	}
1824 
1825 	trace_io_uring_defer(req);
1826 	de->req = req;
1827 	de->seq = seq;
1828 	list_add_tail(&de->list, &ctx->defer_list);
1829 	spin_unlock(&ctx->completion_lock);
1830 }
1831 
io_assign_file(struct io_kiocb * req,const struct io_issue_def * def,unsigned int issue_flags)1832 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1833 			   unsigned int issue_flags)
1834 {
1835 	if (req->file || !def->needs_file)
1836 		return true;
1837 
1838 	if (req->flags & REQ_F_FIXED_FILE)
1839 		req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1840 	else
1841 		req->file = io_file_get_normal(req, req->cqe.fd);
1842 
1843 	return !!req->file;
1844 }
1845 
1846 #define REQ_ISSUE_SLOW_FLAGS	(REQ_F_CREDS | REQ_F_ARM_LTIMEOUT)
1847 
io_issue_sqe(struct io_kiocb * req,unsigned int issue_flags)1848 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1849 {
1850 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1851 	const struct cred *creds = NULL;
1852 	struct io_kiocb *link = NULL;
1853 	int ret;
1854 
1855 	if (unlikely(!io_assign_file(req, def, issue_flags)))
1856 		return -EBADF;
1857 
1858 	if (unlikely(req->flags & REQ_ISSUE_SLOW_FLAGS)) {
1859 		if ((req->flags & REQ_F_CREDS) && req->creds != current_cred())
1860 			creds = override_creds(req->creds);
1861 		if (req->flags & REQ_F_ARM_LTIMEOUT)
1862 			link = __io_prep_linked_timeout(req);
1863 	}
1864 
1865 	if (!def->audit_skip)
1866 		audit_uring_entry(req->opcode);
1867 
1868 	ret = def->issue(req, issue_flags);
1869 
1870 	if (!def->audit_skip)
1871 		audit_uring_exit(!ret, ret);
1872 
1873 	if (unlikely(creds || link)) {
1874 		if (creds)
1875 			revert_creds(creds);
1876 		if (link)
1877 			io_queue_linked_timeout(link);
1878 	}
1879 
1880 	if (ret == IOU_OK) {
1881 		if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1882 			io_req_complete_defer(req);
1883 		else
1884 			io_req_complete_post(req, issue_flags);
1885 
1886 		return 0;
1887 	}
1888 
1889 	if (ret != IOU_ISSUE_SKIP_COMPLETE)
1890 		return ret;
1891 
1892 	/* If the op doesn't have a file, we're not polling for it */
1893 	if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1894 		io_iopoll_req_issued(req, issue_flags);
1895 
1896 	return 0;
1897 }
1898 
io_poll_issue(struct io_kiocb * req,struct io_tw_state * ts)1899 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts)
1900 {
1901 	io_tw_lock(req->ctx, ts);
1902 	return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT|
1903 				 IO_URING_F_COMPLETE_DEFER);
1904 }
1905 
io_wq_free_work(struct io_wq_work * work)1906 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1907 {
1908 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1909 	struct io_kiocb *nxt = NULL;
1910 
1911 	if (req_ref_put_and_test_atomic(req)) {
1912 		if (req->flags & IO_REQ_LINK_FLAGS)
1913 			nxt = io_req_find_next(req);
1914 		io_free_req(req);
1915 	}
1916 	return nxt ? &nxt->work : NULL;
1917 }
1918 
io_wq_submit_work(struct io_wq_work * work)1919 void io_wq_submit_work(struct io_wq_work *work)
1920 {
1921 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1922 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1923 	unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1924 	bool needs_poll = false;
1925 	int ret = 0, err = -ECANCELED;
1926 
1927 	/* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1928 	if (!(req->flags & REQ_F_REFCOUNT))
1929 		__io_req_set_refcount(req, 2);
1930 	else
1931 		req_ref_get(req);
1932 
1933 	/* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1934 	if (work->flags & IO_WQ_WORK_CANCEL) {
1935 fail:
1936 		io_req_task_queue_fail(req, err);
1937 		return;
1938 	}
1939 	if (!io_assign_file(req, def, issue_flags)) {
1940 		err = -EBADF;
1941 		work->flags |= IO_WQ_WORK_CANCEL;
1942 		goto fail;
1943 	}
1944 
1945 	if (req->flags & REQ_F_FORCE_ASYNC) {
1946 		bool opcode_poll = def->pollin || def->pollout;
1947 
1948 		if (opcode_poll && io_file_can_poll(req)) {
1949 			needs_poll = true;
1950 			issue_flags |= IO_URING_F_NONBLOCK;
1951 		}
1952 	}
1953 
1954 	do {
1955 		ret = io_issue_sqe(req, issue_flags);
1956 		if (ret != -EAGAIN)
1957 			break;
1958 
1959 		/*
1960 		 * If REQ_F_NOWAIT is set, then don't wait or retry with
1961 		 * poll. -EAGAIN is final for that case.
1962 		 */
1963 		if (req->flags & REQ_F_NOWAIT)
1964 			break;
1965 
1966 		/*
1967 		 * We can get EAGAIN for iopolled IO even though we're
1968 		 * forcing a sync submission from here, since we can't
1969 		 * wait for request slots on the block side.
1970 		 */
1971 		if (!needs_poll) {
1972 			if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1973 				break;
1974 			if (io_wq_worker_stopped())
1975 				break;
1976 			cond_resched();
1977 			continue;
1978 		}
1979 
1980 		if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1981 			return;
1982 		/* aborted or ready, in either case retry blocking */
1983 		needs_poll = false;
1984 		issue_flags &= ~IO_URING_F_NONBLOCK;
1985 	} while (1);
1986 
1987 	/* avoid locking problems by failing it from a clean context */
1988 	if (ret < 0)
1989 		io_req_task_queue_fail(req, ret);
1990 }
1991 
io_file_get_fixed(struct io_kiocb * req,int fd,unsigned int issue_flags)1992 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
1993 				      unsigned int issue_flags)
1994 {
1995 	struct io_ring_ctx *ctx = req->ctx;
1996 	struct io_fixed_file *slot;
1997 	struct file *file = NULL;
1998 
1999 	io_ring_submit_lock(ctx, issue_flags);
2000 
2001 	if (unlikely((unsigned int)fd >= ctx->nr_user_files))
2002 		goto out;
2003 	fd = array_index_nospec(fd, ctx->nr_user_files);
2004 	slot = io_fixed_file_slot(&ctx->file_table, fd);
2005 	file = io_slot_file(slot);
2006 	req->flags |= io_slot_flags(slot);
2007 	io_req_set_rsrc_node(req, ctx, 0);
2008 out:
2009 	io_ring_submit_unlock(ctx, issue_flags);
2010 	return file;
2011 }
2012 
io_file_get_normal(struct io_kiocb * req,int fd)2013 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
2014 {
2015 	struct file *file = fget(fd);
2016 
2017 	trace_io_uring_file_get(req, fd);
2018 
2019 	/* we don't allow fixed io_uring files */
2020 	if (file && io_is_uring_fops(file))
2021 		io_req_track_inflight(req);
2022 	return file;
2023 }
2024 
io_queue_async(struct io_kiocb * req,int ret)2025 static void io_queue_async(struct io_kiocb *req, int ret)
2026 	__must_hold(&req->ctx->uring_lock)
2027 {
2028 	if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
2029 		io_req_defer_failed(req, ret);
2030 		return;
2031 	}
2032 
2033 	switch (io_arm_poll_handler(req, 0)) {
2034 	case IO_APOLL_READY:
2035 		io_kbuf_recycle(req, 0);
2036 		io_req_task_queue(req);
2037 		break;
2038 	case IO_APOLL_ABORTED:
2039 		io_kbuf_recycle(req, 0);
2040 		io_queue_iowq(req);
2041 		break;
2042 	case IO_APOLL_OK:
2043 		break;
2044 	}
2045 }
2046 
io_queue_sqe(struct io_kiocb * req)2047 static inline void io_queue_sqe(struct io_kiocb *req)
2048 	__must_hold(&req->ctx->uring_lock)
2049 {
2050 	int ret;
2051 
2052 	ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
2053 
2054 	/*
2055 	 * We async punt it if the file wasn't marked NOWAIT, or if the file
2056 	 * doesn't support non-blocking read/write attempts
2057 	 */
2058 	if (unlikely(ret))
2059 		io_queue_async(req, ret);
2060 }
2061 
io_queue_sqe_fallback(struct io_kiocb * req)2062 static void io_queue_sqe_fallback(struct io_kiocb *req)
2063 	__must_hold(&req->ctx->uring_lock)
2064 {
2065 	if (unlikely(req->flags & REQ_F_FAIL)) {
2066 		/*
2067 		 * We don't submit, fail them all, for that replace hardlinks
2068 		 * with normal links. Extra REQ_F_LINK is tolerated.
2069 		 */
2070 		req->flags &= ~REQ_F_HARDLINK;
2071 		req->flags |= REQ_F_LINK;
2072 		io_req_defer_failed(req, req->cqe.res);
2073 	} else {
2074 		int ret = io_req_prep_async(req);
2075 
2076 		if (unlikely(ret)) {
2077 			io_req_defer_failed(req, ret);
2078 			return;
2079 		}
2080 
2081 		if (unlikely(req->ctx->drain_active))
2082 			io_drain_req(req);
2083 		else
2084 			io_queue_iowq(req);
2085 	}
2086 }
2087 
2088 /*
2089  * Check SQE restrictions (opcode and flags).
2090  *
2091  * Returns 'true' if SQE is allowed, 'false' otherwise.
2092  */
io_check_restriction(struct io_ring_ctx * ctx,struct io_kiocb * req,unsigned int sqe_flags)2093 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
2094 					struct io_kiocb *req,
2095 					unsigned int sqe_flags)
2096 {
2097 	if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
2098 		return false;
2099 
2100 	if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
2101 	    ctx->restrictions.sqe_flags_required)
2102 		return false;
2103 
2104 	if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
2105 			  ctx->restrictions.sqe_flags_required))
2106 		return false;
2107 
2108 	return true;
2109 }
2110 
io_init_req_drain(struct io_kiocb * req)2111 static void io_init_req_drain(struct io_kiocb *req)
2112 {
2113 	struct io_ring_ctx *ctx = req->ctx;
2114 	struct io_kiocb *head = ctx->submit_state.link.head;
2115 
2116 	ctx->drain_active = true;
2117 	if (head) {
2118 		/*
2119 		 * If we need to drain a request in the middle of a link, drain
2120 		 * the head request and the next request/link after the current
2121 		 * link. Considering sequential execution of links,
2122 		 * REQ_F_IO_DRAIN will be maintained for every request of our
2123 		 * link.
2124 		 */
2125 		head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2126 		ctx->drain_next = true;
2127 	}
2128 }
2129 
io_init_fail_req(struct io_kiocb * req,int err)2130 static __cold int io_init_fail_req(struct io_kiocb *req, int err)
2131 {
2132 	/* ensure per-opcode data is cleared if we fail before prep */
2133 	memset(&req->cmd.data, 0, sizeof(req->cmd.data));
2134 	return err;
2135 }
2136 
io_init_req(struct io_ring_ctx * ctx,struct io_kiocb * req,const struct io_uring_sqe * sqe)2137 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2138 		       const struct io_uring_sqe *sqe)
2139 	__must_hold(&ctx->uring_lock)
2140 {
2141 	const struct io_issue_def *def;
2142 	unsigned int sqe_flags;
2143 	int personality;
2144 	u8 opcode;
2145 
2146 	/* req is partially pre-initialised, see io_preinit_req() */
2147 	req->opcode = opcode = READ_ONCE(sqe->opcode);
2148 	/* same numerical values with corresponding REQ_F_*, safe to copy */
2149 	req->flags = sqe_flags = READ_ONCE(sqe->flags);
2150 	req->cqe.user_data = READ_ONCE(sqe->user_data);
2151 	req->file = NULL;
2152 	req->rsrc_node = NULL;
2153 	req->task = current;
2154 
2155 	if (unlikely(opcode >= IORING_OP_LAST)) {
2156 		req->opcode = 0;
2157 		return io_init_fail_req(req, -EINVAL);
2158 	}
2159 	opcode = array_index_nospec(opcode, IORING_OP_LAST);
2160 
2161 	def = &io_issue_defs[opcode];
2162 	if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2163 		/* enforce forwards compatibility on users */
2164 		if (sqe_flags & ~SQE_VALID_FLAGS)
2165 			return io_init_fail_req(req, -EINVAL);
2166 		if (sqe_flags & IOSQE_BUFFER_SELECT) {
2167 			if (!def->buffer_select)
2168 				return io_init_fail_req(req, -EOPNOTSUPP);
2169 			req->buf_index = READ_ONCE(sqe->buf_group);
2170 		}
2171 		if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2172 			ctx->drain_disabled = true;
2173 		if (sqe_flags & IOSQE_IO_DRAIN) {
2174 			if (ctx->drain_disabled)
2175 				return io_init_fail_req(req, -EOPNOTSUPP);
2176 			io_init_req_drain(req);
2177 		}
2178 	}
2179 	if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2180 		if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2181 			return io_init_fail_req(req, -EACCES);
2182 		/* knock it to the slow queue path, will be drained there */
2183 		if (ctx->drain_active)
2184 			req->flags |= REQ_F_FORCE_ASYNC;
2185 		/* if there is no link, we're at "next" request and need to drain */
2186 		if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2187 			ctx->drain_next = false;
2188 			ctx->drain_active = true;
2189 			req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2190 		}
2191 	}
2192 
2193 	if (!def->ioprio && sqe->ioprio)
2194 		return io_init_fail_req(req, -EINVAL);
2195 	if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2196 		return io_init_fail_req(req, -EINVAL);
2197 
2198 	if (def->needs_file) {
2199 		struct io_submit_state *state = &ctx->submit_state;
2200 
2201 		req->cqe.fd = READ_ONCE(sqe->fd);
2202 
2203 		/*
2204 		 * Plug now if we have more than 2 IO left after this, and the
2205 		 * target is potentially a read/write to block based storage.
2206 		 */
2207 		if (state->need_plug && def->plug) {
2208 			state->plug_started = true;
2209 			state->need_plug = false;
2210 			blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2211 		}
2212 	}
2213 
2214 	personality = READ_ONCE(sqe->personality);
2215 	if (personality) {
2216 		int ret;
2217 
2218 		req->creds = xa_load(&ctx->personalities, personality);
2219 		if (!req->creds)
2220 			return io_init_fail_req(req, -EINVAL);
2221 		get_cred(req->creds);
2222 		ret = security_uring_override_creds(req->creds);
2223 		if (ret) {
2224 			put_cred(req->creds);
2225 			return io_init_fail_req(req, ret);
2226 		}
2227 		req->flags |= REQ_F_CREDS;
2228 	}
2229 
2230 	return def->prep(req, sqe);
2231 }
2232 
io_submit_fail_init(const struct io_uring_sqe * sqe,struct io_kiocb * req,int ret)2233 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2234 				      struct io_kiocb *req, int ret)
2235 {
2236 	struct io_ring_ctx *ctx = req->ctx;
2237 	struct io_submit_link *link = &ctx->submit_state.link;
2238 	struct io_kiocb *head = link->head;
2239 
2240 	trace_io_uring_req_failed(sqe, req, ret);
2241 
2242 	/*
2243 	 * Avoid breaking links in the middle as it renders links with SQPOLL
2244 	 * unusable. Instead of failing eagerly, continue assembling the link if
2245 	 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2246 	 * should find the flag and handle the rest.
2247 	 */
2248 	req_fail_link_node(req, ret);
2249 	if (head && !(head->flags & REQ_F_FAIL))
2250 		req_fail_link_node(head, -ECANCELED);
2251 
2252 	if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2253 		if (head) {
2254 			link->last->link = req;
2255 			link->head = NULL;
2256 			req = head;
2257 		}
2258 		io_queue_sqe_fallback(req);
2259 		return ret;
2260 	}
2261 
2262 	if (head)
2263 		link->last->link = req;
2264 	else
2265 		link->head = req;
2266 	link->last = req;
2267 	return 0;
2268 }
2269 
io_submit_sqe(struct io_ring_ctx * ctx,struct io_kiocb * req,const struct io_uring_sqe * sqe)2270 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2271 			 const struct io_uring_sqe *sqe)
2272 	__must_hold(&ctx->uring_lock)
2273 {
2274 	struct io_submit_link *link = &ctx->submit_state.link;
2275 	int ret;
2276 
2277 	ret = io_init_req(ctx, req, sqe);
2278 	if (unlikely(ret))
2279 		return io_submit_fail_init(sqe, req, ret);
2280 
2281 	trace_io_uring_submit_req(req);
2282 
2283 	/*
2284 	 * If we already have a head request, queue this one for async
2285 	 * submittal once the head completes. If we don't have a head but
2286 	 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2287 	 * submitted sync once the chain is complete. If none of those
2288 	 * conditions are true (normal request), then just queue it.
2289 	 */
2290 	if (unlikely(link->head)) {
2291 		ret = io_req_prep_async(req);
2292 		if (unlikely(ret))
2293 			return io_submit_fail_init(sqe, req, ret);
2294 
2295 		trace_io_uring_link(req, link->head);
2296 		link->last->link = req;
2297 		link->last = req;
2298 
2299 		if (req->flags & IO_REQ_LINK_FLAGS)
2300 			return 0;
2301 		/* last request of the link, flush it */
2302 		req = link->head;
2303 		link->head = NULL;
2304 		if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2305 			goto fallback;
2306 
2307 	} else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2308 					  REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2309 		if (req->flags & IO_REQ_LINK_FLAGS) {
2310 			link->head = req;
2311 			link->last = req;
2312 		} else {
2313 fallback:
2314 			io_queue_sqe_fallback(req);
2315 		}
2316 		return 0;
2317 	}
2318 
2319 	io_queue_sqe(req);
2320 	return 0;
2321 }
2322 
2323 /*
2324  * Batched submission is done, ensure local IO is flushed out.
2325  */
io_submit_state_end(struct io_ring_ctx * ctx)2326 static void io_submit_state_end(struct io_ring_ctx *ctx)
2327 {
2328 	struct io_submit_state *state = &ctx->submit_state;
2329 
2330 	if (unlikely(state->link.head))
2331 		io_queue_sqe_fallback(state->link.head);
2332 	/* flush only after queuing links as they can generate completions */
2333 	io_submit_flush_completions(ctx);
2334 	if (state->plug_started)
2335 		blk_finish_plug(&state->plug);
2336 }
2337 
2338 /*
2339  * Start submission side cache.
2340  */
io_submit_state_start(struct io_submit_state * state,unsigned int max_ios)2341 static void io_submit_state_start(struct io_submit_state *state,
2342 				  unsigned int max_ios)
2343 {
2344 	state->plug_started = false;
2345 	state->need_plug = max_ios > 2;
2346 	state->submit_nr = max_ios;
2347 	/* set only head, no need to init link_last in advance */
2348 	state->link.head = NULL;
2349 }
2350 
io_commit_sqring(struct io_ring_ctx * ctx)2351 static void io_commit_sqring(struct io_ring_ctx *ctx)
2352 {
2353 	struct io_rings *rings = ctx->rings;
2354 
2355 	/*
2356 	 * Ensure any loads from the SQEs are done at this point,
2357 	 * since once we write the new head, the application could
2358 	 * write new data to them.
2359 	 */
2360 	smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2361 }
2362 
2363 /*
2364  * Fetch an sqe, if one is available. Note this returns a pointer to memory
2365  * that is mapped by userspace. This means that care needs to be taken to
2366  * ensure that reads are stable, as we cannot rely on userspace always
2367  * being a good citizen. If members of the sqe are validated and then later
2368  * used, it's important that those reads are done through READ_ONCE() to
2369  * prevent a re-load down the line.
2370  */
io_get_sqe(struct io_ring_ctx * ctx,const struct io_uring_sqe ** sqe)2371 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2372 {
2373 	unsigned mask = ctx->sq_entries - 1;
2374 	unsigned head = ctx->cached_sq_head++ & mask;
2375 
2376 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) {
2377 		head = READ_ONCE(ctx->sq_array[head]);
2378 		if (unlikely(head >= ctx->sq_entries)) {
2379 			/* drop invalid entries */
2380 			spin_lock(&ctx->completion_lock);
2381 			ctx->cq_extra--;
2382 			spin_unlock(&ctx->completion_lock);
2383 			WRITE_ONCE(ctx->rings->sq_dropped,
2384 				   READ_ONCE(ctx->rings->sq_dropped) + 1);
2385 			return false;
2386 		}
2387 	}
2388 
2389 	/*
2390 	 * The cached sq head (or cq tail) serves two purposes:
2391 	 *
2392 	 * 1) allows us to batch the cost of updating the user visible
2393 	 *    head updates.
2394 	 * 2) allows the kernel side to track the head on its own, even
2395 	 *    though the application is the one updating it.
2396 	 */
2397 
2398 	/* double index for 128-byte SQEs, twice as long */
2399 	if (ctx->flags & IORING_SETUP_SQE128)
2400 		head <<= 1;
2401 	*sqe = &ctx->sq_sqes[head];
2402 	return true;
2403 }
2404 
io_submit_sqes(struct io_ring_ctx * ctx,unsigned int nr)2405 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2406 	__must_hold(&ctx->uring_lock)
2407 {
2408 	unsigned int entries = io_sqring_entries(ctx);
2409 	unsigned int left;
2410 	int ret;
2411 
2412 	if (unlikely(!entries))
2413 		return 0;
2414 	/* make sure SQ entry isn't read before tail */
2415 	ret = left = min(nr, entries);
2416 	io_get_task_refs(left);
2417 	io_submit_state_start(&ctx->submit_state, left);
2418 
2419 	do {
2420 		const struct io_uring_sqe *sqe;
2421 		struct io_kiocb *req;
2422 
2423 		if (unlikely(!io_alloc_req(ctx, &req)))
2424 			break;
2425 		if (unlikely(!io_get_sqe(ctx, &sqe))) {
2426 			io_req_add_to_cache(req, ctx);
2427 			break;
2428 		}
2429 
2430 		/*
2431 		 * Continue submitting even for sqe failure if the
2432 		 * ring was setup with IORING_SETUP_SUBMIT_ALL
2433 		 */
2434 		if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2435 		    !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2436 			left--;
2437 			break;
2438 		}
2439 	} while (--left);
2440 
2441 	if (unlikely(left)) {
2442 		ret -= left;
2443 		/* try again if it submitted nothing and can't allocate a req */
2444 		if (!ret && io_req_cache_empty(ctx))
2445 			ret = -EAGAIN;
2446 		current->io_uring->cached_refs += left;
2447 	}
2448 
2449 	io_submit_state_end(ctx);
2450 	 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2451 	io_commit_sqring(ctx);
2452 	return ret;
2453 }
2454 
2455 struct io_wait_queue {
2456 	struct wait_queue_entry wq;
2457 	struct io_ring_ctx *ctx;
2458 	unsigned cq_tail;
2459 	unsigned nr_timeouts;
2460 	ktime_t timeout;
2461 };
2462 
io_has_work(struct io_ring_ctx * ctx)2463 static inline bool io_has_work(struct io_ring_ctx *ctx)
2464 {
2465 	return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) ||
2466 	       !llist_empty(&ctx->work_llist);
2467 }
2468 
io_should_wake(struct io_wait_queue * iowq)2469 static inline bool io_should_wake(struct io_wait_queue *iowq)
2470 {
2471 	struct io_ring_ctx *ctx = iowq->ctx;
2472 	int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail;
2473 
2474 	/*
2475 	 * Wake up if we have enough events, or if a timeout occurred since we
2476 	 * started waiting. For timeouts, we always want to return to userspace,
2477 	 * regardless of event count.
2478 	 */
2479 	return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
2480 }
2481 
io_wake_function(struct wait_queue_entry * curr,unsigned int mode,int wake_flags,void * key)2482 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2483 			    int wake_flags, void *key)
2484 {
2485 	struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2486 
2487 	/*
2488 	 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2489 	 * the task, and the next invocation will do it.
2490 	 */
2491 	if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2492 		return autoremove_wake_function(curr, mode, wake_flags, key);
2493 	return -1;
2494 }
2495 
io_run_task_work_sig(struct io_ring_ctx * ctx)2496 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2497 {
2498 	if (!llist_empty(&ctx->work_llist)) {
2499 		__set_current_state(TASK_RUNNING);
2500 		if (io_run_local_work(ctx, INT_MAX) > 0)
2501 			return 0;
2502 	}
2503 	if (io_run_task_work() > 0)
2504 		return 0;
2505 	if (task_sigpending(current))
2506 		return -EINTR;
2507 	return 0;
2508 }
2509 
current_pending_io(void)2510 static bool current_pending_io(void)
2511 {
2512 	struct io_uring_task *tctx = current->io_uring;
2513 
2514 	if (!tctx)
2515 		return false;
2516 	return percpu_counter_read_positive(&tctx->inflight);
2517 }
2518 
2519 /* when returns >0, the caller should retry */
io_cqring_wait_schedule(struct io_ring_ctx * ctx,struct io_wait_queue * iowq)2520 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2521 					  struct io_wait_queue *iowq)
2522 {
2523 	int ret;
2524 
2525 	if (unlikely(READ_ONCE(ctx->check_cq)))
2526 		return 1;
2527 	if (unlikely(!llist_empty(&ctx->work_llist)))
2528 		return 1;
2529 	if (unlikely(task_work_pending(current)))
2530 		return 1;
2531 	if (unlikely(task_sigpending(current)))
2532 		return -EINTR;
2533 	if (unlikely(io_should_wake(iowq)))
2534 		return 0;
2535 
2536 	/*
2537 	 * Mark us as being in io_wait if we have pending requests, so cpufreq
2538 	 * can take into account that the task is waiting for IO - turns out
2539 	 * to be important for low QD IO.
2540 	 */
2541 	if (current_pending_io())
2542 		current->in_iowait = 1;
2543 	ret = 0;
2544 	if (iowq->timeout == KTIME_MAX)
2545 		schedule();
2546 	else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS))
2547 		ret = -ETIME;
2548 	current->in_iowait = 0;
2549 	return ret;
2550 }
2551 
2552 /*
2553  * Wait until events become available, if we don't already have some. The
2554  * application must reap them itself, as they reside on the shared cq ring.
2555  */
io_cqring_wait(struct io_ring_ctx * ctx,int min_events,const sigset_t __user * sig,size_t sigsz,struct __kernel_timespec __user * uts)2556 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
2557 			  const sigset_t __user *sig, size_t sigsz,
2558 			  struct __kernel_timespec __user *uts)
2559 {
2560 	struct io_wait_queue iowq;
2561 	struct io_rings *rings = ctx->rings;
2562 	int ret;
2563 
2564 	if (!io_allowed_run_tw(ctx))
2565 		return -EEXIST;
2566 	if (!llist_empty(&ctx->work_llist))
2567 		io_run_local_work(ctx, min_events);
2568 	io_run_task_work();
2569 	io_cqring_overflow_flush(ctx);
2570 	/* if user messes with these they will just get an early return */
2571 	if (__io_cqring_events_user(ctx) >= min_events)
2572 		return 0;
2573 
2574 	init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2575 	iowq.wq.private = current;
2576 	INIT_LIST_HEAD(&iowq.wq.entry);
2577 	iowq.ctx = ctx;
2578 	iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2579 	iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2580 	iowq.timeout = KTIME_MAX;
2581 
2582 	if (uts) {
2583 		struct timespec64 ts;
2584 
2585 		if (get_timespec64(&ts, uts))
2586 			return -EFAULT;
2587 		iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
2588 	}
2589 
2590 	if (sig) {
2591 #ifdef CONFIG_COMPAT
2592 		if (in_compat_syscall())
2593 			ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
2594 						      sigsz);
2595 		else
2596 #endif
2597 			ret = set_user_sigmask(sig, sigsz);
2598 
2599 		if (ret)
2600 			return ret;
2601 	}
2602 
2603 	trace_io_uring_cqring_wait(ctx, min_events);
2604 	do {
2605 		int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail);
2606 		unsigned long check_cq;
2607 
2608 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2609 			atomic_set(&ctx->cq_wait_nr, nr_wait);
2610 			set_current_state(TASK_INTERRUPTIBLE);
2611 		} else {
2612 			prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2613 							TASK_INTERRUPTIBLE);
2614 		}
2615 
2616 		ret = io_cqring_wait_schedule(ctx, &iowq);
2617 		__set_current_state(TASK_RUNNING);
2618 		atomic_set(&ctx->cq_wait_nr, 0);
2619 
2620 		/*
2621 		 * Run task_work after scheduling and before io_should_wake().
2622 		 * If we got woken because of task_work being processed, run it
2623 		 * now rather than let the caller do another wait loop.
2624 		 */
2625 		if (!llist_empty(&ctx->work_llist))
2626 			io_run_local_work(ctx, nr_wait);
2627 		io_run_task_work();
2628 
2629 		/*
2630 		 * Non-local task_work will be run on exit to userspace, but
2631 		 * if we're using DEFER_TASKRUN, then we could have waited
2632 		 * with a timeout for a number of requests. If the timeout
2633 		 * hits, we could have some requests ready to process. Ensure
2634 		 * this break is _after_ we have run task_work, to avoid
2635 		 * deferring running potentially pending requests until the
2636 		 * next time we wait for events.
2637 		 */
2638 		if (ret < 0)
2639 			break;
2640 
2641 		check_cq = READ_ONCE(ctx->check_cq);
2642 		if (unlikely(check_cq)) {
2643 			/* let the caller flush overflows, retry */
2644 			if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2645 				io_cqring_do_overflow_flush(ctx);
2646 			if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2647 				ret = -EBADR;
2648 				break;
2649 			}
2650 		}
2651 
2652 		if (io_should_wake(&iowq)) {
2653 			ret = 0;
2654 			break;
2655 		}
2656 		cond_resched();
2657 	} while (1);
2658 
2659 	if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2660 		finish_wait(&ctx->cq_wait, &iowq.wq);
2661 	restore_saved_sigmask_unless(ret == -EINTR);
2662 
2663 	return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2664 }
2665 
io_pages_unmap(void * ptr,struct page *** pages,unsigned short * npages,bool put_pages)2666 void io_pages_unmap(void *ptr, struct page ***pages, unsigned short *npages,
2667 		    bool put_pages)
2668 {
2669 	bool do_vunmap = false;
2670 
2671 	if (!ptr)
2672 		return;
2673 
2674 	if (put_pages && *npages) {
2675 		struct page **to_free = *pages;
2676 		int i;
2677 
2678 		/*
2679 		 * Only did vmap for the non-compound multiple page case.
2680 		 * For the compound page, we just need to put the head.
2681 		 */
2682 		if (PageCompound(to_free[0]))
2683 			*npages = 1;
2684 		else if (*npages > 1)
2685 			do_vunmap = true;
2686 		for (i = 0; i < *npages; i++)
2687 			put_page(to_free[i]);
2688 	}
2689 	if (do_vunmap)
2690 		vunmap(ptr);
2691 	kvfree(*pages);
2692 	*pages = NULL;
2693 	*npages = 0;
2694 }
2695 
io_pages_free(struct page *** pages,int npages)2696 static void io_pages_free(struct page ***pages, int npages)
2697 {
2698 	struct page **page_array;
2699 	int i;
2700 
2701 	if (!pages)
2702 		return;
2703 
2704 	page_array = *pages;
2705 	if (!page_array)
2706 		return;
2707 
2708 	for (i = 0; i < npages; i++)
2709 		unpin_user_page(page_array[i]);
2710 	kvfree(page_array);
2711 	*pages = NULL;
2712 }
2713 
io_pin_pages(unsigned long uaddr,unsigned long len,int * npages)2714 struct page **io_pin_pages(unsigned long uaddr, unsigned long len, int *npages)
2715 {
2716 	unsigned long start, end, nr_pages;
2717 	struct page **pages;
2718 	int ret;
2719 
2720 	end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2721 	start = uaddr >> PAGE_SHIFT;
2722 	nr_pages = end - start;
2723 	if (WARN_ON_ONCE(!nr_pages))
2724 		return ERR_PTR(-EINVAL);
2725 
2726 	pages = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
2727 	if (!pages)
2728 		return ERR_PTR(-ENOMEM);
2729 
2730 	ret = pin_user_pages_fast(uaddr, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
2731 					pages);
2732 	/* success, mapped all pages */
2733 	if (ret == nr_pages) {
2734 		*npages = nr_pages;
2735 		return pages;
2736 	}
2737 
2738 	/* partial map, or didn't map anything */
2739 	if (ret >= 0) {
2740 		/* if we did partial map, release any pages we did get */
2741 		if (ret)
2742 			unpin_user_pages(pages, ret);
2743 		ret = -EFAULT;
2744 	}
2745 	kvfree(pages);
2746 	return ERR_PTR(ret);
2747 }
2748 
__io_uaddr_map(struct page *** pages,unsigned short * npages,unsigned long uaddr,size_t size)2749 static void *__io_uaddr_map(struct page ***pages, unsigned short *npages,
2750 			    unsigned long uaddr, size_t size)
2751 {
2752 	struct page **page_array;
2753 	unsigned int nr_pages;
2754 	void *page_addr;
2755 
2756 	*npages = 0;
2757 
2758 	if (uaddr & (PAGE_SIZE - 1) || !size)
2759 		return ERR_PTR(-EINVAL);
2760 
2761 	nr_pages = 0;
2762 	page_array = io_pin_pages(uaddr, size, &nr_pages);
2763 	if (IS_ERR(page_array))
2764 		return page_array;
2765 
2766 	page_addr = vmap(page_array, nr_pages, VM_MAP, PAGE_KERNEL);
2767 	if (page_addr) {
2768 		*pages = page_array;
2769 		*npages = nr_pages;
2770 		return page_addr;
2771 	}
2772 
2773 	io_pages_free(&page_array, nr_pages);
2774 	return ERR_PTR(-ENOMEM);
2775 }
2776 
io_rings_map(struct io_ring_ctx * ctx,unsigned long uaddr,size_t size)2777 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2778 			  size_t size)
2779 {
2780 	return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr,
2781 				size);
2782 }
2783 
io_sqes_map(struct io_ring_ctx * ctx,unsigned long uaddr,size_t size)2784 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2785 			 size_t size)
2786 {
2787 	return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr,
2788 				size);
2789 }
2790 
io_rings_free(struct io_ring_ctx * ctx)2791 static void io_rings_free(struct io_ring_ctx *ctx)
2792 {
2793 	if (!(ctx->flags & IORING_SETUP_NO_MMAP)) {
2794 		io_pages_unmap(ctx->rings, &ctx->ring_pages, &ctx->n_ring_pages,
2795 				true);
2796 		io_pages_unmap(ctx->sq_sqes, &ctx->sqe_pages, &ctx->n_sqe_pages,
2797 				true);
2798 	} else {
2799 		io_pages_free(&ctx->ring_pages, ctx->n_ring_pages);
2800 		ctx->n_ring_pages = 0;
2801 		io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages);
2802 		ctx->n_sqe_pages = 0;
2803 		vunmap(ctx->rings);
2804 		vunmap(ctx->sq_sqes);
2805 	}
2806 
2807 	ctx->rings = NULL;
2808 	ctx->sq_sqes = NULL;
2809 }
2810 
io_mem_alloc_compound(struct page ** pages,int nr_pages,size_t size,gfp_t gfp)2811 static void *io_mem_alloc_compound(struct page **pages, int nr_pages,
2812 				   size_t size, gfp_t gfp)
2813 {
2814 	struct page *page;
2815 	int i, order;
2816 
2817 	order = get_order(size);
2818 	if (order > 10)
2819 		return ERR_PTR(-ENOMEM);
2820 	else if (order)
2821 		gfp |= __GFP_COMP;
2822 
2823 	page = alloc_pages(gfp, order);
2824 	if (!page)
2825 		return ERR_PTR(-ENOMEM);
2826 
2827 	for (i = 0; i < nr_pages; i++)
2828 		pages[i] = page + i;
2829 
2830 	return page_address(page);
2831 }
2832 
io_mem_alloc_single(struct page ** pages,int nr_pages,size_t size,gfp_t gfp)2833 static void *io_mem_alloc_single(struct page **pages, int nr_pages, size_t size,
2834 				 gfp_t gfp)
2835 {
2836 	void *ret;
2837 	int i;
2838 
2839 	for (i = 0; i < nr_pages; i++) {
2840 		pages[i] = alloc_page(gfp);
2841 		if (!pages[i])
2842 			goto err;
2843 	}
2844 
2845 	ret = vmap(pages, nr_pages, VM_MAP, PAGE_KERNEL);
2846 	if (ret)
2847 		return ret;
2848 err:
2849 	while (i--)
2850 		put_page(pages[i]);
2851 	return ERR_PTR(-ENOMEM);
2852 }
2853 
io_pages_map(struct page *** out_pages,unsigned short * npages,size_t size)2854 void *io_pages_map(struct page ***out_pages, unsigned short *npages,
2855 		   size_t size)
2856 {
2857 	gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN;
2858 	struct page **pages;
2859 	int nr_pages;
2860 	void *ret;
2861 
2862 	nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2863 	pages = kvmalloc_array(nr_pages, sizeof(struct page *), gfp);
2864 	if (!pages)
2865 		return ERR_PTR(-ENOMEM);
2866 
2867 	ret = io_mem_alloc_compound(pages, nr_pages, size, gfp);
2868 	if (!IS_ERR(ret))
2869 		goto done;
2870 	if (nr_pages == 1)
2871 		goto fail;
2872 
2873 	ret = io_mem_alloc_single(pages, nr_pages, size, gfp);
2874 	if (!IS_ERR(ret)) {
2875 done:
2876 		*out_pages = pages;
2877 		*npages = nr_pages;
2878 		return ret;
2879 	}
2880 fail:
2881 	kvfree(pages);
2882 	*out_pages = NULL;
2883 	*npages = 0;
2884 	return ret;
2885 }
2886 
rings_size(struct io_ring_ctx * ctx,unsigned int sq_entries,unsigned int cq_entries,size_t * sq_offset)2887 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries,
2888 				unsigned int cq_entries, size_t *sq_offset)
2889 {
2890 	struct io_rings *rings;
2891 	size_t off, sq_array_size;
2892 
2893 	off = struct_size(rings, cqes, cq_entries);
2894 	if (off == SIZE_MAX)
2895 		return SIZE_MAX;
2896 	if (ctx->flags & IORING_SETUP_CQE32) {
2897 		if (check_shl_overflow(off, 1, &off))
2898 			return SIZE_MAX;
2899 	}
2900 
2901 #ifdef CONFIG_SMP
2902 	off = ALIGN(off, SMP_CACHE_BYTES);
2903 	if (off == 0)
2904 		return SIZE_MAX;
2905 #endif
2906 
2907 	if (ctx->flags & IORING_SETUP_NO_SQARRAY) {
2908 		if (sq_offset)
2909 			*sq_offset = SIZE_MAX;
2910 		return off;
2911 	}
2912 
2913 	if (sq_offset)
2914 		*sq_offset = off;
2915 
2916 	sq_array_size = array_size(sizeof(u32), sq_entries);
2917 	if (sq_array_size == SIZE_MAX)
2918 		return SIZE_MAX;
2919 
2920 	if (check_add_overflow(off, sq_array_size, &off))
2921 		return SIZE_MAX;
2922 
2923 	return off;
2924 }
2925 
io_eventfd_register(struct io_ring_ctx * ctx,void __user * arg,unsigned int eventfd_async)2926 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg,
2927 			       unsigned int eventfd_async)
2928 {
2929 	struct io_ev_fd *ev_fd;
2930 	__s32 __user *fds = arg;
2931 	int fd;
2932 
2933 	ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2934 					lockdep_is_held(&ctx->uring_lock));
2935 	if (ev_fd)
2936 		return -EBUSY;
2937 
2938 	if (copy_from_user(&fd, fds, sizeof(*fds)))
2939 		return -EFAULT;
2940 
2941 	ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL);
2942 	if (!ev_fd)
2943 		return -ENOMEM;
2944 
2945 	ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd);
2946 	if (IS_ERR(ev_fd->cq_ev_fd)) {
2947 		int ret = PTR_ERR(ev_fd->cq_ev_fd);
2948 		kfree(ev_fd);
2949 		return ret;
2950 	}
2951 
2952 	spin_lock(&ctx->completion_lock);
2953 	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
2954 	spin_unlock(&ctx->completion_lock);
2955 
2956 	ev_fd->eventfd_async = eventfd_async;
2957 	ctx->has_evfd = true;
2958 	rcu_assign_pointer(ctx->io_ev_fd, ev_fd);
2959 	atomic_set(&ev_fd->refs, 1);
2960 	atomic_set(&ev_fd->ops, 0);
2961 	return 0;
2962 }
2963 
io_eventfd_unregister(struct io_ring_ctx * ctx)2964 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
2965 {
2966 	struct io_ev_fd *ev_fd;
2967 
2968 	ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2969 					lockdep_is_held(&ctx->uring_lock));
2970 	if (ev_fd) {
2971 		ctx->has_evfd = false;
2972 		rcu_assign_pointer(ctx->io_ev_fd, NULL);
2973 		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops))
2974 			call_rcu(&ev_fd->rcu, io_eventfd_ops);
2975 		return 0;
2976 	}
2977 
2978 	return -ENXIO;
2979 }
2980 
io_req_caches_free(struct io_ring_ctx * ctx)2981 static void io_req_caches_free(struct io_ring_ctx *ctx)
2982 {
2983 	struct io_kiocb *req;
2984 	int nr = 0;
2985 
2986 	mutex_lock(&ctx->uring_lock);
2987 	io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
2988 
2989 	while (!io_req_cache_empty(ctx)) {
2990 		req = io_extract_req(ctx);
2991 		kmem_cache_free(req_cachep, req);
2992 		nr++;
2993 	}
2994 	if (nr)
2995 		percpu_ref_put_many(&ctx->refs, nr);
2996 	mutex_unlock(&ctx->uring_lock);
2997 }
2998 
io_rsrc_node_cache_free(struct io_cache_entry * entry)2999 static void io_rsrc_node_cache_free(struct io_cache_entry *entry)
3000 {
3001 	kfree(container_of(entry, struct io_rsrc_node, cache));
3002 }
3003 
io_ring_ctx_free(struct io_ring_ctx * ctx)3004 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
3005 {
3006 	io_sq_thread_finish(ctx);
3007 	/* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
3008 	if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)))
3009 		return;
3010 
3011 	mutex_lock(&ctx->uring_lock);
3012 	if (ctx->buf_data)
3013 		__io_sqe_buffers_unregister(ctx);
3014 	if (ctx->file_data)
3015 		__io_sqe_files_unregister(ctx);
3016 	io_cqring_overflow_kill(ctx);
3017 	io_eventfd_unregister(ctx);
3018 	io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free);
3019 	io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
3020 	io_destroy_buffers(ctx);
3021 	mutex_unlock(&ctx->uring_lock);
3022 	if (ctx->sq_creds)
3023 		put_cred(ctx->sq_creds);
3024 	if (ctx->submitter_task)
3025 		put_task_struct(ctx->submitter_task);
3026 
3027 	/* there are no registered resources left, nobody uses it */
3028 	if (ctx->rsrc_node)
3029 		io_rsrc_node_destroy(ctx, ctx->rsrc_node);
3030 
3031 	WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
3032 	WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
3033 
3034 	io_alloc_cache_free(&ctx->rsrc_node_cache, io_rsrc_node_cache_free);
3035 	if (ctx->mm_account) {
3036 		mmdrop(ctx->mm_account);
3037 		ctx->mm_account = NULL;
3038 	}
3039 	io_rings_free(ctx);
3040 
3041 	percpu_ref_exit(&ctx->refs);
3042 	free_uid(ctx->user);
3043 	io_req_caches_free(ctx);
3044 	if (ctx->hash_map)
3045 		io_wq_put_hash(ctx->hash_map);
3046 	kfree(ctx->cancel_table.hbs);
3047 	kfree(ctx->cancel_table_locked.hbs);
3048 	xa_destroy(&ctx->io_bl_xa);
3049 	kfree(ctx);
3050 }
3051 
io_activate_pollwq_cb(struct callback_head * cb)3052 static __cold void io_activate_pollwq_cb(struct callback_head *cb)
3053 {
3054 	struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
3055 					       poll_wq_task_work);
3056 
3057 	mutex_lock(&ctx->uring_lock);
3058 	ctx->poll_activated = true;
3059 	mutex_unlock(&ctx->uring_lock);
3060 
3061 	/*
3062 	 * Wake ups for some events between start of polling and activation
3063 	 * might've been lost due to loose synchronisation.
3064 	 */
3065 	wake_up_all(&ctx->poll_wq);
3066 	percpu_ref_put(&ctx->refs);
3067 }
3068 
io_activate_pollwq(struct io_ring_ctx * ctx)3069 static __cold void io_activate_pollwq(struct io_ring_ctx *ctx)
3070 {
3071 	spin_lock(&ctx->completion_lock);
3072 	/* already activated or in progress */
3073 	if (ctx->poll_activated || ctx->poll_wq_task_work.func)
3074 		goto out;
3075 	if (WARN_ON_ONCE(!ctx->task_complete))
3076 		goto out;
3077 	if (!ctx->submitter_task)
3078 		goto out;
3079 	/*
3080 	 * with ->submitter_task only the submitter task completes requests, we
3081 	 * only need to sync with it, which is done by injecting a tw
3082 	 */
3083 	init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
3084 	percpu_ref_get(&ctx->refs);
3085 	if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
3086 		percpu_ref_put(&ctx->refs);
3087 out:
3088 	spin_unlock(&ctx->completion_lock);
3089 }
3090 
io_uring_poll(struct file * file,poll_table * wait)3091 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
3092 {
3093 	struct io_ring_ctx *ctx = file->private_data;
3094 	__poll_t mask = 0;
3095 
3096 	if (unlikely(!ctx->poll_activated))
3097 		io_activate_pollwq(ctx);
3098 
3099 	poll_wait(file, &ctx->poll_wq, wait);
3100 	/*
3101 	 * synchronizes with barrier from wq_has_sleeper call in
3102 	 * io_commit_cqring
3103 	 */
3104 	smp_rmb();
3105 	if (!io_sqring_full(ctx))
3106 		mask |= EPOLLOUT | EPOLLWRNORM;
3107 
3108 	/*
3109 	 * Don't flush cqring overflow list here, just do a simple check.
3110 	 * Otherwise there could possible be ABBA deadlock:
3111 	 *      CPU0                    CPU1
3112 	 *      ----                    ----
3113 	 * lock(&ctx->uring_lock);
3114 	 *                              lock(&ep->mtx);
3115 	 *                              lock(&ctx->uring_lock);
3116 	 * lock(&ep->mtx);
3117 	 *
3118 	 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
3119 	 * pushes them to do the flush.
3120 	 */
3121 
3122 	if (__io_cqring_events_user(ctx) || io_has_work(ctx))
3123 		mask |= EPOLLIN | EPOLLRDNORM;
3124 
3125 	return mask;
3126 }
3127 
io_unregister_personality(struct io_ring_ctx * ctx,unsigned id)3128 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
3129 {
3130 	const struct cred *creds;
3131 
3132 	creds = xa_erase(&ctx->personalities, id);
3133 	if (creds) {
3134 		put_cred(creds);
3135 		return 0;
3136 	}
3137 
3138 	return -EINVAL;
3139 }
3140 
3141 struct io_tctx_exit {
3142 	struct callback_head		task_work;
3143 	struct completion		completion;
3144 	struct io_ring_ctx		*ctx;
3145 };
3146 
io_tctx_exit_cb(struct callback_head * cb)3147 static __cold void io_tctx_exit_cb(struct callback_head *cb)
3148 {
3149 	struct io_uring_task *tctx = current->io_uring;
3150 	struct io_tctx_exit *work;
3151 
3152 	work = container_of(cb, struct io_tctx_exit, task_work);
3153 	/*
3154 	 * When @in_cancel, we're in cancellation and it's racy to remove the
3155 	 * node. It'll be removed by the end of cancellation, just ignore it.
3156 	 * tctx can be NULL if the queueing of this task_work raced with
3157 	 * work cancelation off the exec path.
3158 	 */
3159 	if (tctx && !atomic_read(&tctx->in_cancel))
3160 		io_uring_del_tctx_node((unsigned long)work->ctx);
3161 	complete(&work->completion);
3162 }
3163 
io_cancel_ctx_cb(struct io_wq_work * work,void * data)3164 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
3165 {
3166 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3167 
3168 	return req->ctx == data;
3169 }
3170 
io_ring_exit_work(struct work_struct * work)3171 static __cold void io_ring_exit_work(struct work_struct *work)
3172 {
3173 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
3174 	unsigned long timeout = jiffies + HZ * 60 * 5;
3175 	unsigned long interval = HZ / 20;
3176 	struct io_tctx_exit exit;
3177 	struct io_tctx_node *node;
3178 	int ret;
3179 
3180 	/*
3181 	 * If we're doing polled IO and end up having requests being
3182 	 * submitted async (out-of-line), then completions can come in while
3183 	 * we're waiting for refs to drop. We need to reap these manually,
3184 	 * as nobody else will be looking for them.
3185 	 */
3186 	do {
3187 		if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
3188 			mutex_lock(&ctx->uring_lock);
3189 			io_cqring_overflow_kill(ctx);
3190 			mutex_unlock(&ctx->uring_lock);
3191 		}
3192 
3193 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3194 			io_move_task_work_from_local(ctx);
3195 
3196 		while (io_uring_try_cancel_requests(ctx, NULL, true))
3197 			cond_resched();
3198 
3199 		if (ctx->sq_data) {
3200 			struct io_sq_data *sqd = ctx->sq_data;
3201 			struct task_struct *tsk;
3202 
3203 			io_sq_thread_park(sqd);
3204 			tsk = sqd->thread;
3205 			if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
3206 				io_wq_cancel_cb(tsk->io_uring->io_wq,
3207 						io_cancel_ctx_cb, ctx, true);
3208 			io_sq_thread_unpark(sqd);
3209 		}
3210 
3211 		io_req_caches_free(ctx);
3212 
3213 		if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
3214 			/* there is little hope left, don't run it too often */
3215 			interval = HZ * 60;
3216 		}
3217 		/*
3218 		 * This is really an uninterruptible wait, as it has to be
3219 		 * complete. But it's also run from a kworker, which doesn't
3220 		 * take signals, so it's fine to make it interruptible. This
3221 		 * avoids scenarios where we knowingly can wait much longer
3222 		 * on completions, for example if someone does a SIGSTOP on
3223 		 * a task that needs to finish task_work to make this loop
3224 		 * complete. That's a synthetic situation that should not
3225 		 * cause a stuck task backtrace, and hence a potential panic
3226 		 * on stuck tasks if that is enabled.
3227 		 */
3228 	} while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
3229 
3230 	init_completion(&exit.completion);
3231 	init_task_work(&exit.task_work, io_tctx_exit_cb);
3232 	exit.ctx = ctx;
3233 
3234 	mutex_lock(&ctx->uring_lock);
3235 	while (!list_empty(&ctx->tctx_list)) {
3236 		WARN_ON_ONCE(time_after(jiffies, timeout));
3237 
3238 		node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
3239 					ctx_node);
3240 		/* don't spin on a single task if cancellation failed */
3241 		list_rotate_left(&ctx->tctx_list);
3242 		ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
3243 		if (WARN_ON_ONCE(ret))
3244 			continue;
3245 
3246 		mutex_unlock(&ctx->uring_lock);
3247 		/*
3248 		 * See comment above for
3249 		 * wait_for_completion_interruptible_timeout() on why this
3250 		 * wait is marked as interruptible.
3251 		 */
3252 		wait_for_completion_interruptible(&exit.completion);
3253 		mutex_lock(&ctx->uring_lock);
3254 	}
3255 	mutex_unlock(&ctx->uring_lock);
3256 	spin_lock(&ctx->completion_lock);
3257 	spin_unlock(&ctx->completion_lock);
3258 
3259 	/* pairs with RCU read section in io_req_local_work_add() */
3260 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3261 		synchronize_rcu();
3262 
3263 	io_ring_ctx_free(ctx);
3264 }
3265 
io_ring_ctx_wait_and_kill(struct io_ring_ctx * ctx)3266 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
3267 {
3268 	unsigned long index;
3269 	struct creds *creds;
3270 
3271 	mutex_lock(&ctx->uring_lock);
3272 	percpu_ref_kill(&ctx->refs);
3273 	xa_for_each(&ctx->personalities, index, creds)
3274 		io_unregister_personality(ctx, index);
3275 	if (ctx->rings)
3276 		io_poll_remove_all(ctx, NULL, true);
3277 	mutex_unlock(&ctx->uring_lock);
3278 
3279 	/*
3280 	 * If we failed setting up the ctx, we might not have any rings
3281 	 * and therefore did not submit any requests
3282 	 */
3283 	if (ctx->rings)
3284 		io_kill_timeouts(ctx, NULL, true);
3285 
3286 	flush_delayed_work(&ctx->fallback_work);
3287 
3288 	INIT_WORK(&ctx->exit_work, io_ring_exit_work);
3289 	/*
3290 	 * Use system_unbound_wq to avoid spawning tons of event kworkers
3291 	 * if we're exiting a ton of rings at the same time. It just adds
3292 	 * noise and overhead, there's no discernable change in runtime
3293 	 * over using system_wq.
3294 	 */
3295 	queue_work(iou_wq, &ctx->exit_work);
3296 }
3297 
io_uring_release(struct inode * inode,struct file * file)3298 static int io_uring_release(struct inode *inode, struct file *file)
3299 {
3300 	struct io_ring_ctx *ctx = file->private_data;
3301 
3302 	file->private_data = NULL;
3303 	io_ring_ctx_wait_and_kill(ctx);
3304 	return 0;
3305 }
3306 
3307 struct io_task_cancel {
3308 	struct task_struct *task;
3309 	bool all;
3310 };
3311 
io_cancel_task_cb(struct io_wq_work * work,void * data)3312 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
3313 {
3314 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3315 	struct io_task_cancel *cancel = data;
3316 
3317 	return io_match_task_safe(req, cancel->task, cancel->all);
3318 }
3319 
io_cancel_defer_files(struct io_ring_ctx * ctx,struct task_struct * task,bool cancel_all)3320 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
3321 					 struct task_struct *task,
3322 					 bool cancel_all)
3323 {
3324 	struct io_defer_entry *de;
3325 	LIST_HEAD(list);
3326 
3327 	spin_lock(&ctx->completion_lock);
3328 	list_for_each_entry_reverse(de, &ctx->defer_list, list) {
3329 		if (io_match_task_safe(de->req, task, cancel_all)) {
3330 			list_cut_position(&list, &ctx->defer_list, &de->list);
3331 			break;
3332 		}
3333 	}
3334 	spin_unlock(&ctx->completion_lock);
3335 	if (list_empty(&list))
3336 		return false;
3337 
3338 	while (!list_empty(&list)) {
3339 		de = list_first_entry(&list, struct io_defer_entry, list);
3340 		list_del_init(&de->list);
3341 		io_req_task_queue_fail(de->req, -ECANCELED);
3342 		kfree(de);
3343 	}
3344 	return true;
3345 }
3346 
io_uring_try_cancel_iowq(struct io_ring_ctx * ctx)3347 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3348 {
3349 	struct io_tctx_node *node;
3350 	enum io_wq_cancel cret;
3351 	bool ret = false;
3352 
3353 	mutex_lock(&ctx->uring_lock);
3354 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3355 		struct io_uring_task *tctx = node->task->io_uring;
3356 
3357 		/*
3358 		 * io_wq will stay alive while we hold uring_lock, because it's
3359 		 * killed after ctx nodes, which requires to take the lock.
3360 		 */
3361 		if (!tctx || !tctx->io_wq)
3362 			continue;
3363 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3364 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3365 	}
3366 	mutex_unlock(&ctx->uring_lock);
3367 
3368 	return ret;
3369 }
3370 
io_uring_try_cancel_requests(struct io_ring_ctx * ctx,struct task_struct * task,bool cancel_all)3371 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3372 						struct task_struct *task,
3373 						bool cancel_all)
3374 {
3375 	struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
3376 	struct io_uring_task *tctx = task ? task->io_uring : NULL;
3377 	enum io_wq_cancel cret;
3378 	bool ret = false;
3379 
3380 	/* set it so io_req_local_work_add() would wake us up */
3381 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
3382 		atomic_set(&ctx->cq_wait_nr, 1);
3383 		smp_mb();
3384 	}
3385 
3386 	/* failed during ring init, it couldn't have issued any requests */
3387 	if (!ctx->rings)
3388 		return false;
3389 
3390 	if (!task) {
3391 		ret |= io_uring_try_cancel_iowq(ctx);
3392 	} else if (tctx && tctx->io_wq) {
3393 		/*
3394 		 * Cancels requests of all rings, not only @ctx, but
3395 		 * it's fine as the task is in exit/exec.
3396 		 */
3397 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3398 				       &cancel, true);
3399 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3400 	}
3401 
3402 	/* SQPOLL thread does its own polling */
3403 	if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3404 	    (ctx->sq_data && ctx->sq_data->thread == current)) {
3405 		while (!wq_list_empty(&ctx->iopoll_list)) {
3406 			io_iopoll_try_reap_events(ctx);
3407 			ret = true;
3408 			cond_resched();
3409 		}
3410 	}
3411 
3412 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3413 	    io_allowed_defer_tw_run(ctx))
3414 		ret |= io_run_local_work(ctx, INT_MAX) > 0;
3415 	ret |= io_cancel_defer_files(ctx, task, cancel_all);
3416 	mutex_lock(&ctx->uring_lock);
3417 	ret |= io_poll_remove_all(ctx, task, cancel_all);
3418 	mutex_unlock(&ctx->uring_lock);
3419 	ret |= io_kill_timeouts(ctx, task, cancel_all);
3420 	if (task)
3421 		ret |= io_run_task_work() > 0;
3422 	return ret;
3423 }
3424 
tctx_inflight(struct io_uring_task * tctx,bool tracked)3425 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3426 {
3427 	if (tracked)
3428 		return atomic_read(&tctx->inflight_tracked);
3429 	return percpu_counter_sum(&tctx->inflight);
3430 }
3431 
3432 /*
3433  * Find any io_uring ctx that this task has registered or done IO on, and cancel
3434  * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3435  */
io_uring_cancel_generic(bool cancel_all,struct io_sq_data * sqd)3436 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3437 {
3438 	struct io_uring_task *tctx = current->io_uring;
3439 	struct io_ring_ctx *ctx;
3440 	struct io_tctx_node *node;
3441 	unsigned long index;
3442 	s64 inflight;
3443 	DEFINE_WAIT(wait);
3444 
3445 	WARN_ON_ONCE(sqd && sqd->thread != current);
3446 
3447 	if (!current->io_uring)
3448 		return;
3449 	if (tctx->io_wq)
3450 		io_wq_exit_start(tctx->io_wq);
3451 
3452 	atomic_inc(&tctx->in_cancel);
3453 	do {
3454 		bool loop = false;
3455 
3456 		io_uring_drop_tctx_refs(current);
3457 		if (!tctx_inflight(tctx, !cancel_all))
3458 			break;
3459 
3460 		/* read completions before cancelations */
3461 		inflight = tctx_inflight(tctx, false);
3462 		if (!inflight)
3463 			break;
3464 
3465 		if (!sqd) {
3466 			xa_for_each(&tctx->xa, index, node) {
3467 				/* sqpoll task will cancel all its requests */
3468 				if (node->ctx->sq_data)
3469 					continue;
3470 				loop |= io_uring_try_cancel_requests(node->ctx,
3471 							current, cancel_all);
3472 			}
3473 		} else {
3474 			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3475 				loop |= io_uring_try_cancel_requests(ctx,
3476 								     current,
3477 								     cancel_all);
3478 		}
3479 
3480 		if (loop) {
3481 			cond_resched();
3482 			continue;
3483 		}
3484 
3485 		prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3486 		io_run_task_work();
3487 		io_uring_drop_tctx_refs(current);
3488 		xa_for_each(&tctx->xa, index, node) {
3489 			if (!llist_empty(&node->ctx->work_llist)) {
3490 				WARN_ON_ONCE(node->ctx->submitter_task &&
3491 					     node->ctx->submitter_task != current);
3492 				goto end_wait;
3493 			}
3494 		}
3495 		/*
3496 		 * If we've seen completions, retry without waiting. This
3497 		 * avoids a race where a completion comes in before we did
3498 		 * prepare_to_wait().
3499 		 */
3500 		if (inflight == tctx_inflight(tctx, !cancel_all))
3501 			schedule();
3502 end_wait:
3503 		finish_wait(&tctx->wait, &wait);
3504 	} while (1);
3505 
3506 	io_uring_clean_tctx(tctx);
3507 	if (cancel_all) {
3508 		/*
3509 		 * We shouldn't run task_works after cancel, so just leave
3510 		 * ->in_cancel set for normal exit.
3511 		 */
3512 		atomic_dec(&tctx->in_cancel);
3513 		/* for exec all current's requests should be gone, kill tctx */
3514 		__io_uring_free(current);
3515 	}
3516 }
3517 
__io_uring_cancel(bool cancel_all)3518 void __io_uring_cancel(bool cancel_all)
3519 {
3520 	io_uring_unreg_ringfd();
3521 	io_uring_cancel_generic(cancel_all, NULL);
3522 }
3523 
io_uring_validate_mmap_request(struct file * file,loff_t pgoff,size_t sz)3524 static void *io_uring_validate_mmap_request(struct file *file,
3525 					    loff_t pgoff, size_t sz)
3526 {
3527 	struct io_ring_ctx *ctx = file->private_data;
3528 	loff_t offset = pgoff << PAGE_SHIFT;
3529 
3530 	switch ((pgoff << PAGE_SHIFT) & IORING_OFF_MMAP_MASK) {
3531 	case IORING_OFF_SQ_RING:
3532 	case IORING_OFF_CQ_RING:
3533 		/* Don't allow mmap if the ring was setup without it */
3534 		if (ctx->flags & IORING_SETUP_NO_MMAP)
3535 			return ERR_PTR(-EINVAL);
3536 		return ctx->rings;
3537 	case IORING_OFF_SQES:
3538 		/* Don't allow mmap if the ring was setup without it */
3539 		if (ctx->flags & IORING_SETUP_NO_MMAP)
3540 			return ERR_PTR(-EINVAL);
3541 		return ctx->sq_sqes;
3542 	case IORING_OFF_PBUF_RING: {
3543 		struct io_buffer_list *bl;
3544 		unsigned int bgid;
3545 		void *ptr;
3546 
3547 		bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT;
3548 		bl = io_pbuf_get_bl(ctx, bgid);
3549 		if (IS_ERR(bl))
3550 			return bl;
3551 		ptr = bl->buf_ring;
3552 		io_put_bl(ctx, bl);
3553 		return ptr;
3554 		}
3555 	}
3556 
3557 	return ERR_PTR(-EINVAL);
3558 }
3559 
io_uring_mmap_pages(struct io_ring_ctx * ctx,struct vm_area_struct * vma,struct page ** pages,int npages)3560 int io_uring_mmap_pages(struct io_ring_ctx *ctx, struct vm_area_struct *vma,
3561 			struct page **pages, int npages)
3562 {
3563 	unsigned long nr_pages = npages;
3564 
3565 	vm_flags_set(vma, VM_DONTEXPAND);
3566 	return vm_insert_pages(vma, vma->vm_start, pages, &nr_pages);
3567 }
3568 
3569 #ifdef CONFIG_MMU
3570 
io_uring_mmap(struct file * file,struct vm_area_struct * vma)3571 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3572 {
3573 	struct io_ring_ctx *ctx = file->private_data;
3574 	size_t sz = vma->vm_end - vma->vm_start;
3575 	long offset = vma->vm_pgoff << PAGE_SHIFT;
3576 	unsigned int npages;
3577 	void *ptr;
3578 
3579 	ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
3580 	if (IS_ERR(ptr))
3581 		return PTR_ERR(ptr);
3582 
3583 	switch (offset & IORING_OFF_MMAP_MASK) {
3584 	case IORING_OFF_SQ_RING:
3585 	case IORING_OFF_CQ_RING:
3586 		npages = min(ctx->n_ring_pages, (sz + PAGE_SIZE - 1) >> PAGE_SHIFT);
3587 		return io_uring_mmap_pages(ctx, vma, ctx->ring_pages, npages);
3588 	case IORING_OFF_SQES:
3589 		return io_uring_mmap_pages(ctx, vma, ctx->sqe_pages,
3590 						ctx->n_sqe_pages);
3591 	case IORING_OFF_PBUF_RING:
3592 		return io_pbuf_mmap(file, vma);
3593 	}
3594 
3595 	return -EINVAL;
3596 }
3597 
io_uring_mmu_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)3598 static unsigned long io_uring_mmu_get_unmapped_area(struct file *filp,
3599 			unsigned long addr, unsigned long len,
3600 			unsigned long pgoff, unsigned long flags)
3601 {
3602 	void *ptr;
3603 
3604 	/*
3605 	 * Do not allow to map to user-provided address to avoid breaking the
3606 	 * aliasing rules. Userspace is not able to guess the offset address of
3607 	 * kernel kmalloc()ed memory area.
3608 	 */
3609 	if (addr)
3610 		return -EINVAL;
3611 
3612 	ptr = io_uring_validate_mmap_request(filp, pgoff, len);
3613 	if (IS_ERR(ptr))
3614 		return -ENOMEM;
3615 
3616 	/*
3617 	 * Some architectures have strong cache aliasing requirements.
3618 	 * For such architectures we need a coherent mapping which aliases
3619 	 * kernel memory *and* userspace memory. To achieve that:
3620 	 * - use a NULL file pointer to reference physical memory, and
3621 	 * - use the kernel virtual address of the shared io_uring context
3622 	 *   (instead of the userspace-provided address, which has to be 0UL
3623 	 *   anyway).
3624 	 * - use the same pgoff which the get_unmapped_area() uses to
3625 	 *   calculate the page colouring.
3626 	 * For architectures without such aliasing requirements, the
3627 	 * architecture will return any suitable mapping because addr is 0.
3628 	 */
3629 	filp = NULL;
3630 	flags |= MAP_SHARED;
3631 	pgoff = 0;	/* has been translated to ptr above */
3632 #ifdef SHM_COLOUR
3633 	addr = (uintptr_t) ptr;
3634 	pgoff = addr >> PAGE_SHIFT;
3635 #else
3636 	addr = 0UL;
3637 #endif
3638 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
3639 }
3640 
3641 #else /* !CONFIG_MMU */
3642 
io_uring_mmap(struct file * file,struct vm_area_struct * vma)3643 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3644 {
3645 	return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL;
3646 }
3647 
io_uring_nommu_mmap_capabilities(struct file * file)3648 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
3649 {
3650 	return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
3651 }
3652 
io_uring_nommu_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)3653 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
3654 	unsigned long addr, unsigned long len,
3655 	unsigned long pgoff, unsigned long flags)
3656 {
3657 	void *ptr;
3658 
3659 	ptr = io_uring_validate_mmap_request(file, pgoff, len);
3660 	if (IS_ERR(ptr))
3661 		return PTR_ERR(ptr);
3662 
3663 	return (unsigned long) ptr;
3664 }
3665 
3666 #endif /* !CONFIG_MMU */
3667 
io_validate_ext_arg(unsigned flags,const void __user * argp,size_t argsz)3668 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz)
3669 {
3670 	if (flags & IORING_ENTER_EXT_ARG) {
3671 		struct io_uring_getevents_arg arg;
3672 
3673 		if (argsz != sizeof(arg))
3674 			return -EINVAL;
3675 		if (copy_from_user(&arg, argp, sizeof(arg)))
3676 			return -EFAULT;
3677 	}
3678 	return 0;
3679 }
3680 
io_get_ext_arg(unsigned flags,const void __user * argp,size_t * argsz,struct __kernel_timespec __user ** ts,const sigset_t __user ** sig)3681 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
3682 			  struct __kernel_timespec __user **ts,
3683 			  const sigset_t __user **sig)
3684 {
3685 	struct io_uring_getevents_arg arg;
3686 
3687 	/*
3688 	 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3689 	 * is just a pointer to the sigset_t.
3690 	 */
3691 	if (!(flags & IORING_ENTER_EXT_ARG)) {
3692 		*sig = (const sigset_t __user *) argp;
3693 		*ts = NULL;
3694 		return 0;
3695 	}
3696 
3697 	/*
3698 	 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3699 	 * timespec and sigset_t pointers if good.
3700 	 */
3701 	if (*argsz != sizeof(arg))
3702 		return -EINVAL;
3703 	if (copy_from_user(&arg, argp, sizeof(arg)))
3704 		return -EFAULT;
3705 	if (arg.pad)
3706 		return -EINVAL;
3707 	*sig = u64_to_user_ptr(arg.sigmask);
3708 	*argsz = arg.sigmask_sz;
3709 	*ts = u64_to_user_ptr(arg.ts);
3710 	return 0;
3711 }
3712 
SYSCALL_DEFINE6(io_uring_enter,unsigned int,fd,u32,to_submit,u32,min_complete,u32,flags,const void __user *,argp,size_t,argsz)3713 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3714 		u32, min_complete, u32, flags, const void __user *, argp,
3715 		size_t, argsz)
3716 {
3717 	struct io_ring_ctx *ctx;
3718 	struct file *file;
3719 	long ret;
3720 
3721 	if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3722 			       IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3723 			       IORING_ENTER_REGISTERED_RING)))
3724 		return -EINVAL;
3725 
3726 	/*
3727 	 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3728 	 * need only dereference our task private array to find it.
3729 	 */
3730 	if (flags & IORING_ENTER_REGISTERED_RING) {
3731 		struct io_uring_task *tctx = current->io_uring;
3732 
3733 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3734 			return -EINVAL;
3735 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3736 		file = tctx->registered_rings[fd];
3737 		if (unlikely(!file))
3738 			return -EBADF;
3739 	} else {
3740 		file = fget(fd);
3741 		if (unlikely(!file))
3742 			return -EBADF;
3743 		ret = -EOPNOTSUPP;
3744 		if (unlikely(!io_is_uring_fops(file)))
3745 			goto out;
3746 	}
3747 
3748 	ctx = file->private_data;
3749 	ret = -EBADFD;
3750 	if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3751 		goto out;
3752 
3753 	/*
3754 	 * For SQ polling, the thread will do all submissions and completions.
3755 	 * Just return the requested submit count, and wake the thread if
3756 	 * we were asked to.
3757 	 */
3758 	ret = 0;
3759 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3760 		io_cqring_overflow_flush(ctx);
3761 
3762 		if (unlikely(ctx->sq_data->thread == NULL)) {
3763 			ret = -EOWNERDEAD;
3764 			goto out;
3765 		}
3766 		if (flags & IORING_ENTER_SQ_WAKEUP)
3767 			wake_up(&ctx->sq_data->wait);
3768 		if (flags & IORING_ENTER_SQ_WAIT)
3769 			io_sqpoll_wait_sq(ctx);
3770 
3771 		ret = to_submit;
3772 	} else if (to_submit) {
3773 		ret = io_uring_add_tctx_node(ctx);
3774 		if (unlikely(ret))
3775 			goto out;
3776 
3777 		mutex_lock(&ctx->uring_lock);
3778 		ret = io_submit_sqes(ctx, to_submit);
3779 		if (ret != to_submit) {
3780 			mutex_unlock(&ctx->uring_lock);
3781 			goto out;
3782 		}
3783 		if (flags & IORING_ENTER_GETEVENTS) {
3784 			if (ctx->syscall_iopoll)
3785 				goto iopoll_locked;
3786 			/*
3787 			 * Ignore errors, we'll soon call io_cqring_wait() and
3788 			 * it should handle ownership problems if any.
3789 			 */
3790 			if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3791 				(void)io_run_local_work_locked(ctx, min_complete);
3792 		}
3793 		mutex_unlock(&ctx->uring_lock);
3794 	}
3795 
3796 	if (flags & IORING_ENTER_GETEVENTS) {
3797 		int ret2;
3798 
3799 		if (ctx->syscall_iopoll) {
3800 			/*
3801 			 * We disallow the app entering submit/complete with
3802 			 * polling, but we still need to lock the ring to
3803 			 * prevent racing with polled issue that got punted to
3804 			 * a workqueue.
3805 			 */
3806 			mutex_lock(&ctx->uring_lock);
3807 iopoll_locked:
3808 			ret2 = io_validate_ext_arg(flags, argp, argsz);
3809 			if (likely(!ret2)) {
3810 				min_complete = min(min_complete,
3811 						   ctx->cq_entries);
3812 				ret2 = io_iopoll_check(ctx, min_complete);
3813 			}
3814 			mutex_unlock(&ctx->uring_lock);
3815 		} else {
3816 			const sigset_t __user *sig;
3817 			struct __kernel_timespec __user *ts;
3818 
3819 			ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
3820 			if (likely(!ret2)) {
3821 				min_complete = min(min_complete,
3822 						   ctx->cq_entries);
3823 				ret2 = io_cqring_wait(ctx, min_complete, sig,
3824 						      argsz, ts);
3825 			}
3826 		}
3827 
3828 		if (!ret) {
3829 			ret = ret2;
3830 
3831 			/*
3832 			 * EBADR indicates that one or more CQE were dropped.
3833 			 * Once the user has been informed we can clear the bit
3834 			 * as they are obviously ok with those drops.
3835 			 */
3836 			if (unlikely(ret2 == -EBADR))
3837 				clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3838 					  &ctx->check_cq);
3839 		}
3840 	}
3841 out:
3842 	if (!(flags & IORING_ENTER_REGISTERED_RING))
3843 		fput(file);
3844 	return ret;
3845 }
3846 
3847 static const struct file_operations io_uring_fops = {
3848 	.release	= io_uring_release,
3849 	.mmap		= io_uring_mmap,
3850 #ifndef CONFIG_MMU
3851 	.get_unmapped_area = io_uring_nommu_get_unmapped_area,
3852 	.mmap_capabilities = io_uring_nommu_mmap_capabilities,
3853 #else
3854 	.get_unmapped_area = io_uring_mmu_get_unmapped_area,
3855 #endif
3856 	.poll		= io_uring_poll,
3857 #ifdef CONFIG_PROC_FS
3858 	.show_fdinfo	= io_uring_show_fdinfo,
3859 #endif
3860 };
3861 
io_is_uring_fops(struct file * file)3862 bool io_is_uring_fops(struct file *file)
3863 {
3864 	return file->f_op == &io_uring_fops;
3865 }
3866 
io_allocate_scq_urings(struct io_ring_ctx * ctx,struct io_uring_params * p)3867 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3868 					 struct io_uring_params *p)
3869 {
3870 	struct io_rings *rings;
3871 	size_t size, sq_array_offset;
3872 	void *ptr;
3873 
3874 	/* make sure these are sane, as we already accounted them */
3875 	ctx->sq_entries = p->sq_entries;
3876 	ctx->cq_entries = p->cq_entries;
3877 
3878 	size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset);
3879 	if (size == SIZE_MAX)
3880 		return -EOVERFLOW;
3881 
3882 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3883 		rings = io_pages_map(&ctx->ring_pages, &ctx->n_ring_pages, size);
3884 	else
3885 		rings = io_rings_map(ctx, p->cq_off.user_addr, size);
3886 
3887 	if (IS_ERR(rings))
3888 		return PTR_ERR(rings);
3889 
3890 	ctx->rings = rings;
3891 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3892 		ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3893 	rings->sq_ring_mask = p->sq_entries - 1;
3894 	rings->cq_ring_mask = p->cq_entries - 1;
3895 	rings->sq_ring_entries = p->sq_entries;
3896 	rings->cq_ring_entries = p->cq_entries;
3897 
3898 	if (p->flags & IORING_SETUP_SQE128)
3899 		size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3900 	else
3901 		size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3902 	if (size == SIZE_MAX) {
3903 		io_rings_free(ctx);
3904 		return -EOVERFLOW;
3905 	}
3906 
3907 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3908 		ptr = io_pages_map(&ctx->sqe_pages, &ctx->n_sqe_pages, size);
3909 	else
3910 		ptr = io_sqes_map(ctx, p->sq_off.user_addr, size);
3911 
3912 	if (IS_ERR(ptr)) {
3913 		io_rings_free(ctx);
3914 		return PTR_ERR(ptr);
3915 	}
3916 
3917 	ctx->sq_sqes = ptr;
3918 	return 0;
3919 }
3920 
io_uring_install_fd(struct file * file)3921 static int io_uring_install_fd(struct file *file)
3922 {
3923 	int fd;
3924 
3925 	fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3926 	if (fd < 0)
3927 		return fd;
3928 	fd_install(fd, file);
3929 	return fd;
3930 }
3931 
3932 /*
3933  * Allocate an anonymous fd, this is what constitutes the application
3934  * visible backing of an io_uring instance. The application mmaps this
3935  * fd to gain access to the SQ/CQ ring details.
3936  */
io_uring_get_file(struct io_ring_ctx * ctx)3937 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3938 {
3939 	return anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx,
3940 					 O_RDWR | O_CLOEXEC, NULL);
3941 }
3942 
io_uring_create(unsigned entries,struct io_uring_params * p,struct io_uring_params __user * params)3943 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3944 				  struct io_uring_params __user *params)
3945 {
3946 	struct io_ring_ctx *ctx;
3947 	struct io_uring_task *tctx;
3948 	struct file *file;
3949 	int ret;
3950 
3951 	if (!entries)
3952 		return -EINVAL;
3953 	if (entries > IORING_MAX_ENTRIES) {
3954 		if (!(p->flags & IORING_SETUP_CLAMP))
3955 			return -EINVAL;
3956 		entries = IORING_MAX_ENTRIES;
3957 	}
3958 
3959 	if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3960 	    && !(p->flags & IORING_SETUP_NO_MMAP))
3961 		return -EINVAL;
3962 
3963 	/*
3964 	 * Use twice as many entries for the CQ ring. It's possible for the
3965 	 * application to drive a higher depth than the size of the SQ ring,
3966 	 * since the sqes are only used at submission time. This allows for
3967 	 * some flexibility in overcommitting a bit. If the application has
3968 	 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3969 	 * of CQ ring entries manually.
3970 	 */
3971 	p->sq_entries = roundup_pow_of_two(entries);
3972 	if (p->flags & IORING_SETUP_CQSIZE) {
3973 		/*
3974 		 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3975 		 * to a power-of-two, if it isn't already. We do NOT impose
3976 		 * any cq vs sq ring sizing.
3977 		 */
3978 		if (!p->cq_entries)
3979 			return -EINVAL;
3980 		if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3981 			if (!(p->flags & IORING_SETUP_CLAMP))
3982 				return -EINVAL;
3983 			p->cq_entries = IORING_MAX_CQ_ENTRIES;
3984 		}
3985 		p->cq_entries = roundup_pow_of_two(p->cq_entries);
3986 		if (p->cq_entries < p->sq_entries)
3987 			return -EINVAL;
3988 	} else {
3989 		p->cq_entries = 2 * p->sq_entries;
3990 	}
3991 
3992 	ctx = io_ring_ctx_alloc(p);
3993 	if (!ctx)
3994 		return -ENOMEM;
3995 
3996 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3997 	    !(ctx->flags & IORING_SETUP_IOPOLL) &&
3998 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3999 		ctx->task_complete = true;
4000 
4001 	if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL))
4002 		ctx->lockless_cq = true;
4003 
4004 	/*
4005 	 * lazy poll_wq activation relies on ->task_complete for synchronisation
4006 	 * purposes, see io_activate_pollwq()
4007 	 */
4008 	if (!ctx->task_complete)
4009 		ctx->poll_activated = true;
4010 
4011 	/*
4012 	 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
4013 	 * space applications don't need to do io completion events
4014 	 * polling again, they can rely on io_sq_thread to do polling
4015 	 * work, which can reduce cpu usage and uring_lock contention.
4016 	 */
4017 	if (ctx->flags & IORING_SETUP_IOPOLL &&
4018 	    !(ctx->flags & IORING_SETUP_SQPOLL))
4019 		ctx->syscall_iopoll = 1;
4020 
4021 	ctx->compat = in_compat_syscall();
4022 	if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
4023 		ctx->user = get_uid(current_user());
4024 
4025 	/*
4026 	 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
4027 	 * COOP_TASKRUN is set, then IPIs are never needed by the app.
4028 	 */
4029 	ret = -EINVAL;
4030 	if (ctx->flags & IORING_SETUP_SQPOLL) {
4031 		/* IPI related flags don't make sense with SQPOLL */
4032 		if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
4033 				  IORING_SETUP_TASKRUN_FLAG |
4034 				  IORING_SETUP_DEFER_TASKRUN))
4035 			goto err;
4036 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
4037 	} else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
4038 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
4039 	} else {
4040 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
4041 		    !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
4042 			goto err;
4043 		ctx->notify_method = TWA_SIGNAL;
4044 	}
4045 
4046 	/*
4047 	 * For DEFER_TASKRUN we require the completion task to be the same as the
4048 	 * submission task. This implies that there is only one submitter, so enforce
4049 	 * that.
4050 	 */
4051 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
4052 	    !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
4053 		goto err;
4054 	}
4055 
4056 	/*
4057 	 * This is just grabbed for accounting purposes. When a process exits,
4058 	 * the mm is exited and dropped before the files, hence we need to hang
4059 	 * on to this mm purely for the purposes of being able to unaccount
4060 	 * memory (locked/pinned vm). It's not used for anything else.
4061 	 */
4062 	mmgrab(current->mm);
4063 	ctx->mm_account = current->mm;
4064 
4065 	ret = io_allocate_scq_urings(ctx, p);
4066 	if (ret)
4067 		goto err;
4068 
4069 	ret = io_sq_offload_create(ctx, p);
4070 	if (ret)
4071 		goto err;
4072 
4073 	ret = io_rsrc_init(ctx);
4074 	if (ret)
4075 		goto err;
4076 
4077 	p->sq_off.head = offsetof(struct io_rings, sq.head);
4078 	p->sq_off.tail = offsetof(struct io_rings, sq.tail);
4079 	p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
4080 	p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
4081 	p->sq_off.flags = offsetof(struct io_rings, sq_flags);
4082 	p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
4083 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
4084 		p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
4085 	p->sq_off.resv1 = 0;
4086 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
4087 		p->sq_off.user_addr = 0;
4088 
4089 	p->cq_off.head = offsetof(struct io_rings, cq.head);
4090 	p->cq_off.tail = offsetof(struct io_rings, cq.tail);
4091 	p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
4092 	p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
4093 	p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
4094 	p->cq_off.cqes = offsetof(struct io_rings, cqes);
4095 	p->cq_off.flags = offsetof(struct io_rings, cq_flags);
4096 	p->cq_off.resv1 = 0;
4097 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
4098 		p->cq_off.user_addr = 0;
4099 
4100 	p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
4101 			IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
4102 			IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
4103 			IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
4104 			IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
4105 			IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
4106 			IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING;
4107 
4108 	if (copy_to_user(params, p, sizeof(*p))) {
4109 		ret = -EFAULT;
4110 		goto err;
4111 	}
4112 
4113 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
4114 	    && !(ctx->flags & IORING_SETUP_R_DISABLED))
4115 		WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
4116 
4117 	file = io_uring_get_file(ctx);
4118 	if (IS_ERR(file)) {
4119 		ret = PTR_ERR(file);
4120 		goto err;
4121 	}
4122 
4123 	ret = __io_uring_add_tctx_node(ctx);
4124 	if (ret)
4125 		goto err_fput;
4126 	tctx = current->io_uring;
4127 
4128 	/*
4129 	 * Install ring fd as the very last thing, so we don't risk someone
4130 	 * having closed it before we finish setup
4131 	 */
4132 	if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
4133 		ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
4134 	else
4135 		ret = io_uring_install_fd(file);
4136 	if (ret < 0)
4137 		goto err_fput;
4138 
4139 	trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
4140 	return ret;
4141 err:
4142 	io_ring_ctx_wait_and_kill(ctx);
4143 	return ret;
4144 err_fput:
4145 	fput(file);
4146 	return ret;
4147 }
4148 
4149 /*
4150  * Sets up an aio uring context, and returns the fd. Applications asks for a
4151  * ring size, we return the actual sq/cq ring sizes (among other things) in the
4152  * params structure passed in.
4153  */
io_uring_setup(u32 entries,struct io_uring_params __user * params)4154 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
4155 {
4156 	struct io_uring_params p;
4157 	int i;
4158 
4159 	if (copy_from_user(&p, params, sizeof(p)))
4160 		return -EFAULT;
4161 	for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
4162 		if (p.resv[i])
4163 			return -EINVAL;
4164 	}
4165 
4166 	if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
4167 			IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
4168 			IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
4169 			IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
4170 			IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
4171 			IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
4172 			IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN |
4173 			IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY |
4174 			IORING_SETUP_NO_SQARRAY))
4175 		return -EINVAL;
4176 
4177 	return io_uring_create(entries, &p, params);
4178 }
4179 
io_uring_allowed(void)4180 static inline bool io_uring_allowed(void)
4181 {
4182 	int disabled = READ_ONCE(sysctl_io_uring_disabled);
4183 	kgid_t io_uring_group;
4184 
4185 	if (disabled == 2)
4186 		return false;
4187 
4188 	if (disabled == 0 || capable(CAP_SYS_ADMIN))
4189 		return true;
4190 
4191 	io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group);
4192 	if (!gid_valid(io_uring_group))
4193 		return false;
4194 
4195 	return in_group_p(io_uring_group);
4196 }
4197 
SYSCALL_DEFINE2(io_uring_setup,u32,entries,struct io_uring_params __user *,params)4198 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
4199 		struct io_uring_params __user *, params)
4200 {
4201 	if (!io_uring_allowed())
4202 		return -EPERM;
4203 
4204 	return io_uring_setup(entries, params);
4205 }
4206 
io_probe(struct io_ring_ctx * ctx,void __user * arg,unsigned nr_args)4207 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg,
4208 			   unsigned nr_args)
4209 {
4210 	struct io_uring_probe *p;
4211 	size_t size;
4212 	int i, ret;
4213 
4214 	size = struct_size(p, ops, nr_args);
4215 	if (size == SIZE_MAX)
4216 		return -EOVERFLOW;
4217 	p = kzalloc(size, GFP_KERNEL);
4218 	if (!p)
4219 		return -ENOMEM;
4220 
4221 	ret = -EFAULT;
4222 	if (copy_from_user(p, arg, size))
4223 		goto out;
4224 	ret = -EINVAL;
4225 	if (memchr_inv(p, 0, size))
4226 		goto out;
4227 
4228 	p->last_op = IORING_OP_LAST - 1;
4229 	if (nr_args > IORING_OP_LAST)
4230 		nr_args = IORING_OP_LAST;
4231 
4232 	for (i = 0; i < nr_args; i++) {
4233 		p->ops[i].op = i;
4234 		if (!io_issue_defs[i].not_supported)
4235 			p->ops[i].flags = IO_URING_OP_SUPPORTED;
4236 	}
4237 	p->ops_len = i;
4238 
4239 	ret = 0;
4240 	if (copy_to_user(arg, p, size))
4241 		ret = -EFAULT;
4242 out:
4243 	kfree(p);
4244 	return ret;
4245 }
4246 
io_register_personality(struct io_ring_ctx * ctx)4247 static int io_register_personality(struct io_ring_ctx *ctx)
4248 {
4249 	const struct cred *creds;
4250 	u32 id;
4251 	int ret;
4252 
4253 	creds = get_current_cred();
4254 
4255 	ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
4256 			XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
4257 	if (ret < 0) {
4258 		put_cred(creds);
4259 		return ret;
4260 	}
4261 	return id;
4262 }
4263 
io_register_restrictions(struct io_ring_ctx * ctx,void __user * arg,unsigned int nr_args)4264 static __cold int io_register_restrictions(struct io_ring_ctx *ctx,
4265 					   void __user *arg, unsigned int nr_args)
4266 {
4267 	struct io_uring_restriction *res;
4268 	size_t size;
4269 	int i, ret;
4270 
4271 	/* Restrictions allowed only if rings started disabled */
4272 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
4273 		return -EBADFD;
4274 
4275 	/* We allow only a single restrictions registration */
4276 	if (ctx->restrictions.registered)
4277 		return -EBUSY;
4278 
4279 	if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
4280 		return -EINVAL;
4281 
4282 	size = array_size(nr_args, sizeof(*res));
4283 	if (size == SIZE_MAX)
4284 		return -EOVERFLOW;
4285 
4286 	res = memdup_user(arg, size);
4287 	if (IS_ERR(res))
4288 		return PTR_ERR(res);
4289 
4290 	ret = 0;
4291 
4292 	for (i = 0; i < nr_args; i++) {
4293 		switch (res[i].opcode) {
4294 		case IORING_RESTRICTION_REGISTER_OP:
4295 			if (res[i].register_op >= IORING_REGISTER_LAST) {
4296 				ret = -EINVAL;
4297 				goto out;
4298 			}
4299 
4300 			__set_bit(res[i].register_op,
4301 				  ctx->restrictions.register_op);
4302 			break;
4303 		case IORING_RESTRICTION_SQE_OP:
4304 			if (res[i].sqe_op >= IORING_OP_LAST) {
4305 				ret = -EINVAL;
4306 				goto out;
4307 			}
4308 
4309 			__set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
4310 			break;
4311 		case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
4312 			ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
4313 			break;
4314 		case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
4315 			ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
4316 			break;
4317 		default:
4318 			ret = -EINVAL;
4319 			goto out;
4320 		}
4321 	}
4322 
4323 out:
4324 	/* Reset all restrictions if an error happened */
4325 	if (ret != 0)
4326 		memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
4327 	else
4328 		ctx->restrictions.registered = true;
4329 
4330 	kfree(res);
4331 	return ret;
4332 }
4333 
io_register_enable_rings(struct io_ring_ctx * ctx)4334 static int io_register_enable_rings(struct io_ring_ctx *ctx)
4335 {
4336 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
4337 		return -EBADFD;
4338 
4339 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) {
4340 		WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
4341 		/*
4342 		 * Lazy activation attempts would fail if it was polled before
4343 		 * submitter_task is set.
4344 		 */
4345 		if (wq_has_sleeper(&ctx->poll_wq))
4346 			io_activate_pollwq(ctx);
4347 	}
4348 
4349 	if (ctx->restrictions.registered)
4350 		ctx->restricted = 1;
4351 
4352 	ctx->flags &= ~IORING_SETUP_R_DISABLED;
4353 	if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
4354 		wake_up(&ctx->sq_data->wait);
4355 	return 0;
4356 }
4357 
__io_register_iowq_aff(struct io_ring_ctx * ctx,cpumask_var_t new_mask)4358 static __cold int __io_register_iowq_aff(struct io_ring_ctx *ctx,
4359 					 cpumask_var_t new_mask)
4360 {
4361 	int ret;
4362 
4363 	if (!(ctx->flags & IORING_SETUP_SQPOLL)) {
4364 		ret = io_wq_cpu_affinity(current->io_uring, new_mask);
4365 	} else {
4366 		mutex_unlock(&ctx->uring_lock);
4367 		ret = io_sqpoll_wq_cpu_affinity(ctx, new_mask);
4368 		mutex_lock(&ctx->uring_lock);
4369 	}
4370 
4371 	return ret;
4372 }
4373 
io_register_iowq_aff(struct io_ring_ctx * ctx,void __user * arg,unsigned len)4374 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx,
4375 				       void __user *arg, unsigned len)
4376 {
4377 	cpumask_var_t new_mask;
4378 	int ret;
4379 
4380 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4381 		return -ENOMEM;
4382 
4383 	cpumask_clear(new_mask);
4384 	if (len > cpumask_size())
4385 		len = cpumask_size();
4386 
4387 	if (in_compat_syscall()) {
4388 		ret = compat_get_bitmap(cpumask_bits(new_mask),
4389 					(const compat_ulong_t __user *)arg,
4390 					len * 8 /* CHAR_BIT */);
4391 	} else {
4392 		ret = copy_from_user(new_mask, arg, len);
4393 	}
4394 
4395 	if (ret) {
4396 		free_cpumask_var(new_mask);
4397 		return -EFAULT;
4398 	}
4399 
4400 	ret = __io_register_iowq_aff(ctx, new_mask);
4401 	free_cpumask_var(new_mask);
4402 	return ret;
4403 }
4404 
io_unregister_iowq_aff(struct io_ring_ctx * ctx)4405 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
4406 {
4407 	return __io_register_iowq_aff(ctx, NULL);
4408 }
4409 
io_register_iowq_max_workers(struct io_ring_ctx * ctx,void __user * arg)4410 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
4411 					       void __user *arg)
4412 	__must_hold(&ctx->uring_lock)
4413 {
4414 	struct io_tctx_node *node;
4415 	struct io_uring_task *tctx = NULL;
4416 	struct io_sq_data *sqd = NULL;
4417 	__u32 new_count[2];
4418 	int i, ret;
4419 
4420 	if (copy_from_user(new_count, arg, sizeof(new_count)))
4421 		return -EFAULT;
4422 	for (i = 0; i < ARRAY_SIZE(new_count); i++)
4423 		if (new_count[i] > INT_MAX)
4424 			return -EINVAL;
4425 
4426 	if (ctx->flags & IORING_SETUP_SQPOLL) {
4427 		sqd = ctx->sq_data;
4428 		if (sqd) {
4429 			/*
4430 			 * Observe the correct sqd->lock -> ctx->uring_lock
4431 			 * ordering. Fine to drop uring_lock here, we hold
4432 			 * a ref to the ctx.
4433 			 */
4434 			refcount_inc(&sqd->refs);
4435 			mutex_unlock(&ctx->uring_lock);
4436 			mutex_lock(&sqd->lock);
4437 			mutex_lock(&ctx->uring_lock);
4438 			if (sqd->thread)
4439 				tctx = sqd->thread->io_uring;
4440 		}
4441 	} else {
4442 		tctx = current->io_uring;
4443 	}
4444 
4445 	BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
4446 
4447 	for (i = 0; i < ARRAY_SIZE(new_count); i++)
4448 		if (new_count[i])
4449 			ctx->iowq_limits[i] = new_count[i];
4450 	ctx->iowq_limits_set = true;
4451 
4452 	if (tctx && tctx->io_wq) {
4453 		ret = io_wq_max_workers(tctx->io_wq, new_count);
4454 		if (ret)
4455 			goto err;
4456 	} else {
4457 		memset(new_count, 0, sizeof(new_count));
4458 	}
4459 
4460 	if (sqd) {
4461 		mutex_unlock(&ctx->uring_lock);
4462 		mutex_unlock(&sqd->lock);
4463 		io_put_sq_data(sqd);
4464 		mutex_lock(&ctx->uring_lock);
4465 	}
4466 
4467 	if (copy_to_user(arg, new_count, sizeof(new_count)))
4468 		return -EFAULT;
4469 
4470 	/* that's it for SQPOLL, only the SQPOLL task creates requests */
4471 	if (sqd)
4472 		return 0;
4473 
4474 	/* now propagate the restriction to all registered users */
4475 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
4476 		struct io_uring_task *tctx = node->task->io_uring;
4477 
4478 		if (WARN_ON_ONCE(!tctx->io_wq))
4479 			continue;
4480 
4481 		for (i = 0; i < ARRAY_SIZE(new_count); i++)
4482 			new_count[i] = ctx->iowq_limits[i];
4483 		/* ignore errors, it always returns zero anyway */
4484 		(void)io_wq_max_workers(tctx->io_wq, new_count);
4485 	}
4486 	return 0;
4487 err:
4488 	if (sqd) {
4489 		mutex_unlock(&ctx->uring_lock);
4490 		mutex_unlock(&sqd->lock);
4491 		io_put_sq_data(sqd);
4492 		mutex_lock(&ctx->uring_lock);
4493 
4494 	}
4495 	return ret;
4496 }
4497 
__io_uring_register(struct io_ring_ctx * ctx,unsigned opcode,void __user * arg,unsigned nr_args)4498 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
4499 			       void __user *arg, unsigned nr_args)
4500 	__releases(ctx->uring_lock)
4501 	__acquires(ctx->uring_lock)
4502 {
4503 	int ret;
4504 
4505 	/*
4506 	 * We don't quiesce the refs for register anymore and so it can't be
4507 	 * dying as we're holding a file ref here.
4508 	 */
4509 	if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs)))
4510 		return -ENXIO;
4511 
4512 	if (ctx->submitter_task && ctx->submitter_task != current)
4513 		return -EEXIST;
4514 
4515 	if (ctx->restricted) {
4516 		opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
4517 		if (!test_bit(opcode, ctx->restrictions.register_op))
4518 			return -EACCES;
4519 	}
4520 
4521 	switch (opcode) {
4522 	case IORING_REGISTER_BUFFERS:
4523 		ret = -EFAULT;
4524 		if (!arg)
4525 			break;
4526 		ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
4527 		break;
4528 	case IORING_UNREGISTER_BUFFERS:
4529 		ret = -EINVAL;
4530 		if (arg || nr_args)
4531 			break;
4532 		ret = io_sqe_buffers_unregister(ctx);
4533 		break;
4534 	case IORING_REGISTER_FILES:
4535 		ret = -EFAULT;
4536 		if (!arg)
4537 			break;
4538 		ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
4539 		break;
4540 	case IORING_UNREGISTER_FILES:
4541 		ret = -EINVAL;
4542 		if (arg || nr_args)
4543 			break;
4544 		ret = io_sqe_files_unregister(ctx);
4545 		break;
4546 	case IORING_REGISTER_FILES_UPDATE:
4547 		ret = io_register_files_update(ctx, arg, nr_args);
4548 		break;
4549 	case IORING_REGISTER_EVENTFD:
4550 		ret = -EINVAL;
4551 		if (nr_args != 1)
4552 			break;
4553 		ret = io_eventfd_register(ctx, arg, 0);
4554 		break;
4555 	case IORING_REGISTER_EVENTFD_ASYNC:
4556 		ret = -EINVAL;
4557 		if (nr_args != 1)
4558 			break;
4559 		ret = io_eventfd_register(ctx, arg, 1);
4560 		break;
4561 	case IORING_UNREGISTER_EVENTFD:
4562 		ret = -EINVAL;
4563 		if (arg || nr_args)
4564 			break;
4565 		ret = io_eventfd_unregister(ctx);
4566 		break;
4567 	case IORING_REGISTER_PROBE:
4568 		ret = -EINVAL;
4569 		if (!arg || nr_args > 256)
4570 			break;
4571 		ret = io_probe(ctx, arg, nr_args);
4572 		break;
4573 	case IORING_REGISTER_PERSONALITY:
4574 		ret = -EINVAL;
4575 		if (arg || nr_args)
4576 			break;
4577 		ret = io_register_personality(ctx);
4578 		break;
4579 	case IORING_UNREGISTER_PERSONALITY:
4580 		ret = -EINVAL;
4581 		if (arg)
4582 			break;
4583 		ret = io_unregister_personality(ctx, nr_args);
4584 		break;
4585 	case IORING_REGISTER_ENABLE_RINGS:
4586 		ret = -EINVAL;
4587 		if (arg || nr_args)
4588 			break;
4589 		ret = io_register_enable_rings(ctx);
4590 		break;
4591 	case IORING_REGISTER_RESTRICTIONS:
4592 		ret = io_register_restrictions(ctx, arg, nr_args);
4593 		break;
4594 	case IORING_REGISTER_FILES2:
4595 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
4596 		break;
4597 	case IORING_REGISTER_FILES_UPDATE2:
4598 		ret = io_register_rsrc_update(ctx, arg, nr_args,
4599 					      IORING_RSRC_FILE);
4600 		break;
4601 	case IORING_REGISTER_BUFFERS2:
4602 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
4603 		break;
4604 	case IORING_REGISTER_BUFFERS_UPDATE:
4605 		ret = io_register_rsrc_update(ctx, arg, nr_args,
4606 					      IORING_RSRC_BUFFER);
4607 		break;
4608 	case IORING_REGISTER_IOWQ_AFF:
4609 		ret = -EINVAL;
4610 		if (!arg || !nr_args)
4611 			break;
4612 		ret = io_register_iowq_aff(ctx, arg, nr_args);
4613 		break;
4614 	case IORING_UNREGISTER_IOWQ_AFF:
4615 		ret = -EINVAL;
4616 		if (arg || nr_args)
4617 			break;
4618 		ret = io_unregister_iowq_aff(ctx);
4619 		break;
4620 	case IORING_REGISTER_IOWQ_MAX_WORKERS:
4621 		ret = -EINVAL;
4622 		if (!arg || nr_args != 2)
4623 			break;
4624 		ret = io_register_iowq_max_workers(ctx, arg);
4625 		break;
4626 	case IORING_REGISTER_RING_FDS:
4627 		ret = io_ringfd_register(ctx, arg, nr_args);
4628 		break;
4629 	case IORING_UNREGISTER_RING_FDS:
4630 		ret = io_ringfd_unregister(ctx, arg, nr_args);
4631 		break;
4632 	case IORING_REGISTER_PBUF_RING:
4633 		ret = -EINVAL;
4634 		if (!arg || nr_args != 1)
4635 			break;
4636 		ret = io_register_pbuf_ring(ctx, arg);
4637 		break;
4638 	case IORING_UNREGISTER_PBUF_RING:
4639 		ret = -EINVAL;
4640 		if (!arg || nr_args != 1)
4641 			break;
4642 		ret = io_unregister_pbuf_ring(ctx, arg);
4643 		break;
4644 	case IORING_REGISTER_SYNC_CANCEL:
4645 		ret = -EINVAL;
4646 		if (!arg || nr_args != 1)
4647 			break;
4648 		ret = io_sync_cancel(ctx, arg);
4649 		break;
4650 	case IORING_REGISTER_FILE_ALLOC_RANGE:
4651 		ret = -EINVAL;
4652 		if (!arg || nr_args)
4653 			break;
4654 		ret = io_register_file_alloc_range(ctx, arg);
4655 		break;
4656 	default:
4657 		ret = -EINVAL;
4658 		break;
4659 	}
4660 
4661 	return ret;
4662 }
4663 
SYSCALL_DEFINE4(io_uring_register,unsigned int,fd,unsigned int,opcode,void __user *,arg,unsigned int,nr_args)4664 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
4665 		void __user *, arg, unsigned int, nr_args)
4666 {
4667 	struct io_ring_ctx *ctx;
4668 	long ret = -EBADF;
4669 	struct file *file;
4670 	bool use_registered_ring;
4671 
4672 	use_registered_ring = !!(opcode & IORING_REGISTER_USE_REGISTERED_RING);
4673 	opcode &= ~IORING_REGISTER_USE_REGISTERED_RING;
4674 
4675 	if (opcode >= IORING_REGISTER_LAST)
4676 		return -EINVAL;
4677 
4678 	if (use_registered_ring) {
4679 		/*
4680 		 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
4681 		 * need only dereference our task private array to find it.
4682 		 */
4683 		struct io_uring_task *tctx = current->io_uring;
4684 
4685 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
4686 			return -EINVAL;
4687 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
4688 		file = tctx->registered_rings[fd];
4689 		if (unlikely(!file))
4690 			return -EBADF;
4691 	} else {
4692 		file = fget(fd);
4693 		if (unlikely(!file))
4694 			return -EBADF;
4695 		ret = -EOPNOTSUPP;
4696 		if (!io_is_uring_fops(file))
4697 			goto out_fput;
4698 	}
4699 
4700 	ctx = file->private_data;
4701 
4702 	mutex_lock(&ctx->uring_lock);
4703 	ret = __io_uring_register(ctx, opcode, arg, nr_args);
4704 	mutex_unlock(&ctx->uring_lock);
4705 	trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret);
4706 out_fput:
4707 	if (!use_registered_ring)
4708 		fput(file);
4709 	return ret;
4710 }
4711 
io_uring_init(void)4712 static int __init io_uring_init(void)
4713 {
4714 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
4715 	BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
4716 	BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
4717 } while (0)
4718 
4719 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
4720 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
4721 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
4722 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
4723 	BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
4724 	BUILD_BUG_SQE_ELEM(0,  __u8,   opcode);
4725 	BUILD_BUG_SQE_ELEM(1,  __u8,   flags);
4726 	BUILD_BUG_SQE_ELEM(2,  __u16,  ioprio);
4727 	BUILD_BUG_SQE_ELEM(4,  __s32,  fd);
4728 	BUILD_BUG_SQE_ELEM(8,  __u64,  off);
4729 	BUILD_BUG_SQE_ELEM(8,  __u64,  addr2);
4730 	BUILD_BUG_SQE_ELEM(8,  __u32,  cmd_op);
4731 	BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
4732 	BUILD_BUG_SQE_ELEM(16, __u64,  addr);
4733 	BUILD_BUG_SQE_ELEM(16, __u64,  splice_off_in);
4734 	BUILD_BUG_SQE_ELEM(24, __u32,  len);
4735 	BUILD_BUG_SQE_ELEM(28,     __kernel_rwf_t, rw_flags);
4736 	BUILD_BUG_SQE_ELEM(28, /* compat */   int, rw_flags);
4737 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
4738 	BUILD_BUG_SQE_ELEM(28, __u32,  fsync_flags);
4739 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u16,  poll_events);
4740 	BUILD_BUG_SQE_ELEM(28, __u32,  poll32_events);
4741 	BUILD_BUG_SQE_ELEM(28, __u32,  sync_range_flags);
4742 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_flags);
4743 	BUILD_BUG_SQE_ELEM(28, __u32,  timeout_flags);
4744 	BUILD_BUG_SQE_ELEM(28, __u32,  accept_flags);
4745 	BUILD_BUG_SQE_ELEM(28, __u32,  cancel_flags);
4746 	BUILD_BUG_SQE_ELEM(28, __u32,  open_flags);
4747 	BUILD_BUG_SQE_ELEM(28, __u32,  statx_flags);
4748 	BUILD_BUG_SQE_ELEM(28, __u32,  fadvise_advice);
4749 	BUILD_BUG_SQE_ELEM(28, __u32,  splice_flags);
4750 	BUILD_BUG_SQE_ELEM(28, __u32,  rename_flags);
4751 	BUILD_BUG_SQE_ELEM(28, __u32,  unlink_flags);
4752 	BUILD_BUG_SQE_ELEM(28, __u32,  hardlink_flags);
4753 	BUILD_BUG_SQE_ELEM(28, __u32,  xattr_flags);
4754 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_ring_flags);
4755 	BUILD_BUG_SQE_ELEM(32, __u64,  user_data);
4756 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_index);
4757 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_group);
4758 	BUILD_BUG_SQE_ELEM(42, __u16,  personality);
4759 	BUILD_BUG_SQE_ELEM(44, __s32,  splice_fd_in);
4760 	BUILD_BUG_SQE_ELEM(44, __u32,  file_index);
4761 	BUILD_BUG_SQE_ELEM(44, __u16,  addr_len);
4762 	BUILD_BUG_SQE_ELEM(46, __u16,  __pad3[0]);
4763 	BUILD_BUG_SQE_ELEM(48, __u64,  addr3);
4764 	BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
4765 	BUILD_BUG_SQE_ELEM(56, __u64,  __pad2);
4766 
4767 	BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
4768 		     sizeof(struct io_uring_rsrc_update));
4769 	BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
4770 		     sizeof(struct io_uring_rsrc_update2));
4771 
4772 	/* ->buf_index is u16 */
4773 	BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
4774 	BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
4775 		     offsetof(struct io_uring_buf_ring, tail));
4776 
4777 	/* should fit into one byte */
4778 	BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
4779 	BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
4780 	BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
4781 
4782 	BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
4783 
4784 	BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
4785 
4786 	io_uring_optable_init();
4787 
4788 	/*
4789 	 * Allow user copy in the per-command field, which starts after the
4790 	 * file in io_kiocb and until the opcode field. The openat2 handling
4791 	 * requires copying in user memory into the io_kiocb object in that
4792 	 * range, and HARDENED_USERCOPY will complain if we haven't
4793 	 * correctly annotated this range.
4794 	 */
4795 	req_cachep = kmem_cache_create_usercopy("io_kiocb",
4796 				sizeof(struct io_kiocb), 0,
4797 				SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4798 				SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU,
4799 				offsetof(struct io_kiocb, cmd.data),
4800 				sizeof_field(struct io_kiocb, cmd.data), NULL);
4801 
4802 	iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64);
4803 
4804 #ifdef CONFIG_SYSCTL
4805 	register_sysctl_init("kernel", kernel_io_uring_disabled_table);
4806 #endif
4807 
4808 	return 0;
4809 };
4810 __initcall(io_uring_init);
4811