1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012 Red Hat. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9 #include "dm-bio-prison-v2.h"
10 #include "dm-bio-record.h"
11 #include "dm-cache-metadata.h"
12 #include "dm-io-tracker.h"
13 #include "dm-cache-background-tracker.h"
14
15 #include <linux/dm-io.h>
16 #include <linux/dm-kcopyd.h>
17 #include <linux/jiffies.h>
18 #include <linux/init.h>
19 #include <linux/mempool.h>
20 #include <linux/module.h>
21 #include <linux/rwsem.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24
25 #define DM_MSG_PREFIX "cache"
26
27 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
28 "A percentage of time allocated for copying to and/or from cache");
29
30 /*----------------------------------------------------------------*/
31
32 /*
33 * Glossary:
34 *
35 * oblock: index of an origin block
36 * cblock: index of a cache block
37 * promotion: movement of a block from origin to cache
38 * demotion: movement of a block from cache to origin
39 * migration: movement of a block between the origin and cache device,
40 * either direction
41 */
42
43 /*----------------------------------------------------------------*/
44
45 /*
46 * Represents a chunk of future work. 'input' allows continuations to pass
47 * values between themselves, typically error values.
48 */
49 struct continuation {
50 struct work_struct ws;
51 blk_status_t input;
52 };
53
init_continuation(struct continuation * k,void (* fn)(struct work_struct *))54 static inline void init_continuation(struct continuation *k,
55 void (*fn)(struct work_struct *))
56 {
57 INIT_WORK(&k->ws, fn);
58 k->input = 0;
59 }
60
queue_continuation(struct workqueue_struct * wq,struct continuation * k)61 static inline void queue_continuation(struct workqueue_struct *wq,
62 struct continuation *k)
63 {
64 queue_work(wq, &k->ws);
65 }
66
67 /*----------------------------------------------------------------*/
68
69 /*
70 * The batcher collects together pieces of work that need a particular
71 * operation to occur before they can proceed (typically a commit).
72 */
73 struct batcher {
74 /*
75 * The operation that everyone is waiting for.
76 */
77 blk_status_t (*commit_op)(void *context);
78 void *commit_context;
79
80 /*
81 * This is how bios should be issued once the commit op is complete
82 * (accounted_request).
83 */
84 void (*issue_op)(struct bio *bio, void *context);
85 void *issue_context;
86
87 /*
88 * Queued work gets put on here after commit.
89 */
90 struct workqueue_struct *wq;
91
92 spinlock_t lock;
93 struct list_head work_items;
94 struct bio_list bios;
95 struct work_struct commit_work;
96
97 bool commit_scheduled;
98 };
99
__commit(struct work_struct * _ws)100 static void __commit(struct work_struct *_ws)
101 {
102 struct batcher *b = container_of(_ws, struct batcher, commit_work);
103 blk_status_t r;
104 struct list_head work_items;
105 struct work_struct *ws, *tmp;
106 struct continuation *k;
107 struct bio *bio;
108 struct bio_list bios;
109
110 INIT_LIST_HEAD(&work_items);
111 bio_list_init(&bios);
112
113 /*
114 * We have to grab these before the commit_op to avoid a race
115 * condition.
116 */
117 spin_lock_irq(&b->lock);
118 list_splice_init(&b->work_items, &work_items);
119 bio_list_merge(&bios, &b->bios);
120 bio_list_init(&b->bios);
121 b->commit_scheduled = false;
122 spin_unlock_irq(&b->lock);
123
124 r = b->commit_op(b->commit_context);
125
126 list_for_each_entry_safe(ws, tmp, &work_items, entry) {
127 k = container_of(ws, struct continuation, ws);
128 k->input = r;
129 INIT_LIST_HEAD(&ws->entry); /* to avoid a WARN_ON */
130 queue_work(b->wq, ws);
131 }
132
133 while ((bio = bio_list_pop(&bios))) {
134 if (r) {
135 bio->bi_status = r;
136 bio_endio(bio);
137 } else
138 b->issue_op(bio, b->issue_context);
139 }
140 }
141
batcher_init(struct batcher * b,blk_status_t (* commit_op)(void *),void * commit_context,void (* issue_op)(struct bio * bio,void *),void * issue_context,struct workqueue_struct * wq)142 static void batcher_init(struct batcher *b,
143 blk_status_t (*commit_op)(void *),
144 void *commit_context,
145 void (*issue_op)(struct bio *bio, void *),
146 void *issue_context,
147 struct workqueue_struct *wq)
148 {
149 b->commit_op = commit_op;
150 b->commit_context = commit_context;
151 b->issue_op = issue_op;
152 b->issue_context = issue_context;
153 b->wq = wq;
154
155 spin_lock_init(&b->lock);
156 INIT_LIST_HEAD(&b->work_items);
157 bio_list_init(&b->bios);
158 INIT_WORK(&b->commit_work, __commit);
159 b->commit_scheduled = false;
160 }
161
async_commit(struct batcher * b)162 static void async_commit(struct batcher *b)
163 {
164 queue_work(b->wq, &b->commit_work);
165 }
166
continue_after_commit(struct batcher * b,struct continuation * k)167 static void continue_after_commit(struct batcher *b, struct continuation *k)
168 {
169 bool commit_scheduled;
170
171 spin_lock_irq(&b->lock);
172 commit_scheduled = b->commit_scheduled;
173 list_add_tail(&k->ws.entry, &b->work_items);
174 spin_unlock_irq(&b->lock);
175
176 if (commit_scheduled)
177 async_commit(b);
178 }
179
180 /*
181 * Bios are errored if commit failed.
182 */
issue_after_commit(struct batcher * b,struct bio * bio)183 static void issue_after_commit(struct batcher *b, struct bio *bio)
184 {
185 bool commit_scheduled;
186
187 spin_lock_irq(&b->lock);
188 commit_scheduled = b->commit_scheduled;
189 bio_list_add(&b->bios, bio);
190 spin_unlock_irq(&b->lock);
191
192 if (commit_scheduled)
193 async_commit(b);
194 }
195
196 /*
197 * Call this if some urgent work is waiting for the commit to complete.
198 */
schedule_commit(struct batcher * b)199 static void schedule_commit(struct batcher *b)
200 {
201 bool immediate;
202
203 spin_lock_irq(&b->lock);
204 immediate = !list_empty(&b->work_items) || !bio_list_empty(&b->bios);
205 b->commit_scheduled = true;
206 spin_unlock_irq(&b->lock);
207
208 if (immediate)
209 async_commit(b);
210 }
211
212 /*
213 * There are a couple of places where we let a bio run, but want to do some
214 * work before calling its endio function. We do this by temporarily
215 * changing the endio fn.
216 */
217 struct dm_hook_info {
218 bio_end_io_t *bi_end_io;
219 };
220
dm_hook_bio(struct dm_hook_info * h,struct bio * bio,bio_end_io_t * bi_end_io,void * bi_private)221 static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
222 bio_end_io_t *bi_end_io, void *bi_private)
223 {
224 h->bi_end_io = bio->bi_end_io;
225
226 bio->bi_end_io = bi_end_io;
227 bio->bi_private = bi_private;
228 }
229
dm_unhook_bio(struct dm_hook_info * h,struct bio * bio)230 static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
231 {
232 bio->bi_end_io = h->bi_end_io;
233 }
234
235 /*----------------------------------------------------------------*/
236
237 #define MIGRATION_POOL_SIZE 128
238 #define COMMIT_PERIOD HZ
239 #define MIGRATION_COUNT_WINDOW 10
240
241 /*
242 * The block size of the device holding cache data must be
243 * between 32KB and 1GB.
244 */
245 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
246 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
247
248 enum cache_metadata_mode {
249 CM_WRITE, /* metadata may be changed */
250 CM_READ_ONLY, /* metadata may not be changed */
251 CM_FAIL
252 };
253
254 enum cache_io_mode {
255 /*
256 * Data is written to cached blocks only. These blocks are marked
257 * dirty. If you lose the cache device you will lose data.
258 * Potential performance increase for both reads and writes.
259 */
260 CM_IO_WRITEBACK,
261
262 /*
263 * Data is written to both cache and origin. Blocks are never
264 * dirty. Potential performance benfit for reads only.
265 */
266 CM_IO_WRITETHROUGH,
267
268 /*
269 * A degraded mode useful for various cache coherency situations
270 * (eg, rolling back snapshots). Reads and writes always go to the
271 * origin. If a write goes to a cached oblock, then the cache
272 * block is invalidated.
273 */
274 CM_IO_PASSTHROUGH
275 };
276
277 struct cache_features {
278 enum cache_metadata_mode mode;
279 enum cache_io_mode io_mode;
280 unsigned int metadata_version;
281 bool discard_passdown:1;
282 };
283
284 struct cache_stats {
285 atomic_t read_hit;
286 atomic_t read_miss;
287 atomic_t write_hit;
288 atomic_t write_miss;
289 atomic_t demotion;
290 atomic_t promotion;
291 atomic_t writeback;
292 atomic_t copies_avoided;
293 atomic_t cache_cell_clash;
294 atomic_t commit_count;
295 atomic_t discard_count;
296 };
297
298 struct cache {
299 struct dm_target *ti;
300 spinlock_t lock;
301
302 /*
303 * Fields for converting from sectors to blocks.
304 */
305 int sectors_per_block_shift;
306 sector_t sectors_per_block;
307
308 struct dm_cache_metadata *cmd;
309
310 /*
311 * Metadata is written to this device.
312 */
313 struct dm_dev *metadata_dev;
314
315 /*
316 * The slower of the two data devices. Typically a spindle.
317 */
318 struct dm_dev *origin_dev;
319
320 /*
321 * The faster of the two data devices. Typically an SSD.
322 */
323 struct dm_dev *cache_dev;
324
325 /*
326 * Size of the origin device in _complete_ blocks and native sectors.
327 */
328 dm_oblock_t origin_blocks;
329 sector_t origin_sectors;
330
331 /*
332 * Size of the cache device in blocks.
333 */
334 dm_cblock_t cache_size;
335
336 /*
337 * Invalidation fields.
338 */
339 spinlock_t invalidation_lock;
340 struct list_head invalidation_requests;
341
342 sector_t migration_threshold;
343 wait_queue_head_t migration_wait;
344 atomic_t nr_allocated_migrations;
345
346 /*
347 * The number of in flight migrations that are performing
348 * background io. eg, promotion, writeback.
349 */
350 atomic_t nr_io_migrations;
351
352 struct bio_list deferred_bios;
353
354 struct rw_semaphore quiesce_lock;
355
356 /*
357 * origin_blocks entries, discarded if set.
358 */
359 dm_dblock_t discard_nr_blocks;
360 unsigned long *discard_bitset;
361 uint32_t discard_block_size; /* a power of 2 times sectors per block */
362
363 /*
364 * Rather than reconstructing the table line for the status we just
365 * save it and regurgitate.
366 */
367 unsigned int nr_ctr_args;
368 const char **ctr_args;
369
370 struct dm_kcopyd_client *copier;
371 struct work_struct deferred_bio_worker;
372 struct work_struct migration_worker;
373 struct workqueue_struct *wq;
374 struct delayed_work waker;
375 struct dm_bio_prison_v2 *prison;
376
377 /*
378 * cache_size entries, dirty if set
379 */
380 unsigned long *dirty_bitset;
381 atomic_t nr_dirty;
382
383 unsigned int policy_nr_args;
384 struct dm_cache_policy *policy;
385
386 /*
387 * Cache features such as write-through.
388 */
389 struct cache_features features;
390
391 struct cache_stats stats;
392
393 bool need_tick_bio:1;
394 bool sized:1;
395 bool invalidate:1;
396 bool commit_requested:1;
397 bool loaded_mappings:1;
398 bool loaded_discards:1;
399
400 struct rw_semaphore background_work_lock;
401
402 struct batcher committer;
403 struct work_struct commit_ws;
404
405 struct dm_io_tracker tracker;
406
407 mempool_t migration_pool;
408
409 struct bio_set bs;
410 };
411
412 struct per_bio_data {
413 bool tick:1;
414 unsigned int req_nr:2;
415 struct dm_bio_prison_cell_v2 *cell;
416 struct dm_hook_info hook_info;
417 sector_t len;
418 };
419
420 struct dm_cache_migration {
421 struct continuation k;
422 struct cache *cache;
423
424 struct policy_work *op;
425 struct bio *overwrite_bio;
426 struct dm_bio_prison_cell_v2 *cell;
427
428 dm_cblock_t invalidate_cblock;
429 dm_oblock_t invalidate_oblock;
430 };
431
432 /*----------------------------------------------------------------*/
433
writethrough_mode(struct cache * cache)434 static bool writethrough_mode(struct cache *cache)
435 {
436 return cache->features.io_mode == CM_IO_WRITETHROUGH;
437 }
438
writeback_mode(struct cache * cache)439 static bool writeback_mode(struct cache *cache)
440 {
441 return cache->features.io_mode == CM_IO_WRITEBACK;
442 }
443
passthrough_mode(struct cache * cache)444 static inline bool passthrough_mode(struct cache *cache)
445 {
446 return unlikely(cache->features.io_mode == CM_IO_PASSTHROUGH);
447 }
448
449 /*----------------------------------------------------------------*/
450
wake_deferred_bio_worker(struct cache * cache)451 static void wake_deferred_bio_worker(struct cache *cache)
452 {
453 queue_work(cache->wq, &cache->deferred_bio_worker);
454 }
455
wake_migration_worker(struct cache * cache)456 static void wake_migration_worker(struct cache *cache)
457 {
458 if (passthrough_mode(cache))
459 return;
460
461 queue_work(cache->wq, &cache->migration_worker);
462 }
463
464 /*----------------------------------------------------------------*/
465
alloc_prison_cell(struct cache * cache)466 static struct dm_bio_prison_cell_v2 *alloc_prison_cell(struct cache *cache)
467 {
468 return dm_bio_prison_alloc_cell_v2(cache->prison, GFP_NOIO);
469 }
470
free_prison_cell(struct cache * cache,struct dm_bio_prison_cell_v2 * cell)471 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell_v2 *cell)
472 {
473 dm_bio_prison_free_cell_v2(cache->prison, cell);
474 }
475
alloc_migration(struct cache * cache)476 static struct dm_cache_migration *alloc_migration(struct cache *cache)
477 {
478 struct dm_cache_migration *mg;
479
480 mg = mempool_alloc(&cache->migration_pool, GFP_NOIO);
481
482 memset(mg, 0, sizeof(*mg));
483
484 mg->cache = cache;
485 atomic_inc(&cache->nr_allocated_migrations);
486
487 return mg;
488 }
489
free_migration(struct dm_cache_migration * mg)490 static void free_migration(struct dm_cache_migration *mg)
491 {
492 struct cache *cache = mg->cache;
493
494 if (atomic_dec_and_test(&cache->nr_allocated_migrations))
495 wake_up(&cache->migration_wait);
496
497 mempool_free(mg, &cache->migration_pool);
498 }
499
500 /*----------------------------------------------------------------*/
501
oblock_succ(dm_oblock_t b)502 static inline dm_oblock_t oblock_succ(dm_oblock_t b)
503 {
504 return to_oblock(from_oblock(b) + 1ull);
505 }
506
build_key(dm_oblock_t begin,dm_oblock_t end,struct dm_cell_key_v2 * key)507 static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key_v2 *key)
508 {
509 key->virtual = 0;
510 key->dev = 0;
511 key->block_begin = from_oblock(begin);
512 key->block_end = from_oblock(end);
513 }
514
515 /*
516 * We have two lock levels. Level 0, which is used to prevent WRITEs, and
517 * level 1 which prevents *both* READs and WRITEs.
518 */
519 #define WRITE_LOCK_LEVEL 0
520 #define READ_WRITE_LOCK_LEVEL 1
521
lock_level(struct bio * bio)522 static unsigned int lock_level(struct bio *bio)
523 {
524 return bio_data_dir(bio) == WRITE ?
525 WRITE_LOCK_LEVEL :
526 READ_WRITE_LOCK_LEVEL;
527 }
528
529 /*
530 *--------------------------------------------------------------
531 * Per bio data
532 *--------------------------------------------------------------
533 */
534
get_per_bio_data(struct bio * bio)535 static struct per_bio_data *get_per_bio_data(struct bio *bio)
536 {
537 struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
538
539 BUG_ON(!pb);
540 return pb;
541 }
542
init_per_bio_data(struct bio * bio)543 static struct per_bio_data *init_per_bio_data(struct bio *bio)
544 {
545 struct per_bio_data *pb = get_per_bio_data(bio);
546
547 pb->tick = false;
548 pb->req_nr = dm_bio_get_target_bio_nr(bio);
549 pb->cell = NULL;
550 pb->len = 0;
551
552 return pb;
553 }
554
555 /*----------------------------------------------------------------*/
556
defer_bio(struct cache * cache,struct bio * bio)557 static void defer_bio(struct cache *cache, struct bio *bio)
558 {
559 spin_lock_irq(&cache->lock);
560 bio_list_add(&cache->deferred_bios, bio);
561 spin_unlock_irq(&cache->lock);
562
563 wake_deferred_bio_worker(cache);
564 }
565
defer_bios(struct cache * cache,struct bio_list * bios)566 static void defer_bios(struct cache *cache, struct bio_list *bios)
567 {
568 spin_lock_irq(&cache->lock);
569 bio_list_merge(&cache->deferred_bios, bios);
570 bio_list_init(bios);
571 spin_unlock_irq(&cache->lock);
572
573 wake_deferred_bio_worker(cache);
574 }
575
576 /*----------------------------------------------------------------*/
577
bio_detain_shared(struct cache * cache,dm_oblock_t oblock,struct bio * bio)578 static bool bio_detain_shared(struct cache *cache, dm_oblock_t oblock, struct bio *bio)
579 {
580 bool r;
581 struct per_bio_data *pb;
582 struct dm_cell_key_v2 key;
583 dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
584 struct dm_bio_prison_cell_v2 *cell_prealloc, *cell;
585
586 cell_prealloc = alloc_prison_cell(cache); /* FIXME: allow wait if calling from worker */
587
588 build_key(oblock, end, &key);
589 r = dm_cell_get_v2(cache->prison, &key, lock_level(bio), bio, cell_prealloc, &cell);
590 if (!r) {
591 /*
592 * Failed to get the lock.
593 */
594 free_prison_cell(cache, cell_prealloc);
595 return r;
596 }
597
598 if (cell != cell_prealloc)
599 free_prison_cell(cache, cell_prealloc);
600
601 pb = get_per_bio_data(bio);
602 pb->cell = cell;
603
604 return r;
605 }
606
607 /*----------------------------------------------------------------*/
608
is_dirty(struct cache * cache,dm_cblock_t b)609 static bool is_dirty(struct cache *cache, dm_cblock_t b)
610 {
611 return test_bit(from_cblock(b), cache->dirty_bitset);
612 }
613
set_dirty(struct cache * cache,dm_cblock_t cblock)614 static void set_dirty(struct cache *cache, dm_cblock_t cblock)
615 {
616 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
617 atomic_inc(&cache->nr_dirty);
618 policy_set_dirty(cache->policy, cblock);
619 }
620 }
621
622 /*
623 * These two are called when setting after migrations to force the policy
624 * and dirty bitset to be in sync.
625 */
force_set_dirty(struct cache * cache,dm_cblock_t cblock)626 static void force_set_dirty(struct cache *cache, dm_cblock_t cblock)
627 {
628 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset))
629 atomic_inc(&cache->nr_dirty);
630 policy_set_dirty(cache->policy, cblock);
631 }
632
force_clear_dirty(struct cache * cache,dm_cblock_t cblock)633 static void force_clear_dirty(struct cache *cache, dm_cblock_t cblock)
634 {
635 if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
636 if (atomic_dec_return(&cache->nr_dirty) == 0)
637 dm_table_event(cache->ti->table);
638 }
639
640 policy_clear_dirty(cache->policy, cblock);
641 }
642
643 /*----------------------------------------------------------------*/
644
block_size_is_power_of_two(struct cache * cache)645 static bool block_size_is_power_of_two(struct cache *cache)
646 {
647 return cache->sectors_per_block_shift >= 0;
648 }
649
block_div(dm_block_t b,uint32_t n)650 static dm_block_t block_div(dm_block_t b, uint32_t n)
651 {
652 do_div(b, n);
653
654 return b;
655 }
656
oblocks_per_dblock(struct cache * cache)657 static dm_block_t oblocks_per_dblock(struct cache *cache)
658 {
659 dm_block_t oblocks = cache->discard_block_size;
660
661 if (block_size_is_power_of_two(cache))
662 oblocks >>= cache->sectors_per_block_shift;
663 else
664 oblocks = block_div(oblocks, cache->sectors_per_block);
665
666 return oblocks;
667 }
668
oblock_to_dblock(struct cache * cache,dm_oblock_t oblock)669 static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
670 {
671 return to_dblock(block_div(from_oblock(oblock),
672 oblocks_per_dblock(cache)));
673 }
674
set_discard(struct cache * cache,dm_dblock_t b)675 static void set_discard(struct cache *cache, dm_dblock_t b)
676 {
677 BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
678 atomic_inc(&cache->stats.discard_count);
679
680 spin_lock_irq(&cache->lock);
681 set_bit(from_dblock(b), cache->discard_bitset);
682 spin_unlock_irq(&cache->lock);
683 }
684
clear_discard(struct cache * cache,dm_dblock_t b)685 static void clear_discard(struct cache *cache, dm_dblock_t b)
686 {
687 spin_lock_irq(&cache->lock);
688 clear_bit(from_dblock(b), cache->discard_bitset);
689 spin_unlock_irq(&cache->lock);
690 }
691
is_discarded(struct cache * cache,dm_dblock_t b)692 static bool is_discarded(struct cache *cache, dm_dblock_t b)
693 {
694 int r;
695
696 spin_lock_irq(&cache->lock);
697 r = test_bit(from_dblock(b), cache->discard_bitset);
698 spin_unlock_irq(&cache->lock);
699
700 return r;
701 }
702
is_discarded_oblock(struct cache * cache,dm_oblock_t b)703 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
704 {
705 int r;
706
707 spin_lock_irq(&cache->lock);
708 r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
709 cache->discard_bitset);
710 spin_unlock_irq(&cache->lock);
711
712 return r;
713 }
714
715 /*
716 * -------------------------------------------------------------
717 * Remapping
718 *--------------------------------------------------------------
719 */
remap_to_origin(struct cache * cache,struct bio * bio)720 static void remap_to_origin(struct cache *cache, struct bio *bio)
721 {
722 bio_set_dev(bio, cache->origin_dev->bdev);
723 }
724
remap_to_cache(struct cache * cache,struct bio * bio,dm_cblock_t cblock)725 static void remap_to_cache(struct cache *cache, struct bio *bio,
726 dm_cblock_t cblock)
727 {
728 sector_t bi_sector = bio->bi_iter.bi_sector;
729 sector_t block = from_cblock(cblock);
730
731 bio_set_dev(bio, cache->cache_dev->bdev);
732 if (!block_size_is_power_of_two(cache))
733 bio->bi_iter.bi_sector =
734 (block * cache->sectors_per_block) +
735 sector_div(bi_sector, cache->sectors_per_block);
736 else
737 bio->bi_iter.bi_sector =
738 (block << cache->sectors_per_block_shift) |
739 (bi_sector & (cache->sectors_per_block - 1));
740 }
741
check_if_tick_bio_needed(struct cache * cache,struct bio * bio)742 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
743 {
744 struct per_bio_data *pb;
745
746 spin_lock_irq(&cache->lock);
747 if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) &&
748 bio_op(bio) != REQ_OP_DISCARD) {
749 pb = get_per_bio_data(bio);
750 pb->tick = true;
751 cache->need_tick_bio = false;
752 }
753 spin_unlock_irq(&cache->lock);
754 }
755
remap_to_origin_clear_discard(struct cache * cache,struct bio * bio,dm_oblock_t oblock)756 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
757 dm_oblock_t oblock)
758 {
759 // FIXME: check_if_tick_bio_needed() is called way too much through this interface
760 check_if_tick_bio_needed(cache, bio);
761 remap_to_origin(cache, bio);
762 if (bio_data_dir(bio) == WRITE)
763 clear_discard(cache, oblock_to_dblock(cache, oblock));
764 }
765
remap_to_cache_dirty(struct cache * cache,struct bio * bio,dm_oblock_t oblock,dm_cblock_t cblock)766 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
767 dm_oblock_t oblock, dm_cblock_t cblock)
768 {
769 check_if_tick_bio_needed(cache, bio);
770 remap_to_cache(cache, bio, cblock);
771 if (bio_data_dir(bio) == WRITE) {
772 set_dirty(cache, cblock);
773 clear_discard(cache, oblock_to_dblock(cache, oblock));
774 }
775 }
776
get_bio_block(struct cache * cache,struct bio * bio)777 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
778 {
779 sector_t block_nr = bio->bi_iter.bi_sector;
780
781 if (!block_size_is_power_of_two(cache))
782 (void) sector_div(block_nr, cache->sectors_per_block);
783 else
784 block_nr >>= cache->sectors_per_block_shift;
785
786 return to_oblock(block_nr);
787 }
788
accountable_bio(struct cache * cache,struct bio * bio)789 static bool accountable_bio(struct cache *cache, struct bio *bio)
790 {
791 return bio_op(bio) != REQ_OP_DISCARD;
792 }
793
accounted_begin(struct cache * cache,struct bio * bio)794 static void accounted_begin(struct cache *cache, struct bio *bio)
795 {
796 struct per_bio_data *pb;
797
798 if (accountable_bio(cache, bio)) {
799 pb = get_per_bio_data(bio);
800 pb->len = bio_sectors(bio);
801 dm_iot_io_begin(&cache->tracker, pb->len);
802 }
803 }
804
accounted_complete(struct cache * cache,struct bio * bio)805 static void accounted_complete(struct cache *cache, struct bio *bio)
806 {
807 struct per_bio_data *pb = get_per_bio_data(bio);
808
809 dm_iot_io_end(&cache->tracker, pb->len);
810 }
811
accounted_request(struct cache * cache,struct bio * bio)812 static void accounted_request(struct cache *cache, struct bio *bio)
813 {
814 accounted_begin(cache, bio);
815 dm_submit_bio_remap(bio, NULL);
816 }
817
issue_op(struct bio * bio,void * context)818 static void issue_op(struct bio *bio, void *context)
819 {
820 struct cache *cache = context;
821
822 accounted_request(cache, bio);
823 }
824
825 /*
826 * When running in writethrough mode we need to send writes to clean blocks
827 * to both the cache and origin devices. Clone the bio and send them in parallel.
828 */
remap_to_origin_and_cache(struct cache * cache,struct bio * bio,dm_oblock_t oblock,dm_cblock_t cblock)829 static void remap_to_origin_and_cache(struct cache *cache, struct bio *bio,
830 dm_oblock_t oblock, dm_cblock_t cblock)
831 {
832 struct bio *origin_bio = bio_alloc_clone(cache->origin_dev->bdev, bio,
833 GFP_NOIO, &cache->bs);
834
835 BUG_ON(!origin_bio);
836
837 bio_chain(origin_bio, bio);
838
839 if (bio_data_dir(origin_bio) == WRITE)
840 clear_discard(cache, oblock_to_dblock(cache, oblock));
841 submit_bio(origin_bio);
842
843 remap_to_cache(cache, bio, cblock);
844 }
845
846 /*
847 *--------------------------------------------------------------
848 * Failure modes
849 *--------------------------------------------------------------
850 */
get_cache_mode(struct cache * cache)851 static enum cache_metadata_mode get_cache_mode(struct cache *cache)
852 {
853 return cache->features.mode;
854 }
855
cache_device_name(struct cache * cache)856 static const char *cache_device_name(struct cache *cache)
857 {
858 return dm_table_device_name(cache->ti->table);
859 }
860
notify_mode_switch(struct cache * cache,enum cache_metadata_mode mode)861 static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
862 {
863 static const char *descs[] = {
864 "write",
865 "read-only",
866 "fail"
867 };
868
869 dm_table_event(cache->ti->table);
870 DMINFO("%s: switching cache to %s mode",
871 cache_device_name(cache), descs[(int)mode]);
872 }
873
set_cache_mode(struct cache * cache,enum cache_metadata_mode new_mode)874 static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
875 {
876 bool needs_check;
877 enum cache_metadata_mode old_mode = get_cache_mode(cache);
878
879 if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
880 DMERR("%s: unable to read needs_check flag, setting failure mode.",
881 cache_device_name(cache));
882 new_mode = CM_FAIL;
883 }
884
885 if (new_mode == CM_WRITE && needs_check) {
886 DMERR("%s: unable to switch cache to write mode until repaired.",
887 cache_device_name(cache));
888 if (old_mode != new_mode)
889 new_mode = old_mode;
890 else
891 new_mode = CM_READ_ONLY;
892 }
893
894 /* Never move out of fail mode */
895 if (old_mode == CM_FAIL)
896 new_mode = CM_FAIL;
897
898 switch (new_mode) {
899 case CM_FAIL:
900 case CM_READ_ONLY:
901 dm_cache_metadata_set_read_only(cache->cmd);
902 break;
903
904 case CM_WRITE:
905 dm_cache_metadata_set_read_write(cache->cmd);
906 break;
907 }
908
909 cache->features.mode = new_mode;
910
911 if (new_mode != old_mode)
912 notify_mode_switch(cache, new_mode);
913 }
914
abort_transaction(struct cache * cache)915 static void abort_transaction(struct cache *cache)
916 {
917 const char *dev_name = cache_device_name(cache);
918
919 if (get_cache_mode(cache) >= CM_READ_ONLY)
920 return;
921
922 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
923 if (dm_cache_metadata_abort(cache->cmd)) {
924 DMERR("%s: failed to abort metadata transaction", dev_name);
925 set_cache_mode(cache, CM_FAIL);
926 }
927
928 if (dm_cache_metadata_set_needs_check(cache->cmd)) {
929 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
930 set_cache_mode(cache, CM_FAIL);
931 }
932 }
933
metadata_operation_failed(struct cache * cache,const char * op,int r)934 static void metadata_operation_failed(struct cache *cache, const char *op, int r)
935 {
936 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
937 cache_device_name(cache), op, r);
938 abort_transaction(cache);
939 set_cache_mode(cache, CM_READ_ONLY);
940 }
941
942 /*----------------------------------------------------------------*/
943
load_stats(struct cache * cache)944 static void load_stats(struct cache *cache)
945 {
946 struct dm_cache_statistics stats;
947
948 dm_cache_metadata_get_stats(cache->cmd, &stats);
949 atomic_set(&cache->stats.read_hit, stats.read_hits);
950 atomic_set(&cache->stats.read_miss, stats.read_misses);
951 atomic_set(&cache->stats.write_hit, stats.write_hits);
952 atomic_set(&cache->stats.write_miss, stats.write_misses);
953 }
954
save_stats(struct cache * cache)955 static void save_stats(struct cache *cache)
956 {
957 struct dm_cache_statistics stats;
958
959 if (get_cache_mode(cache) >= CM_READ_ONLY)
960 return;
961
962 stats.read_hits = atomic_read(&cache->stats.read_hit);
963 stats.read_misses = atomic_read(&cache->stats.read_miss);
964 stats.write_hits = atomic_read(&cache->stats.write_hit);
965 stats.write_misses = atomic_read(&cache->stats.write_miss);
966
967 dm_cache_metadata_set_stats(cache->cmd, &stats);
968 }
969
update_stats(struct cache_stats * stats,enum policy_operation op)970 static void update_stats(struct cache_stats *stats, enum policy_operation op)
971 {
972 switch (op) {
973 case POLICY_PROMOTE:
974 atomic_inc(&stats->promotion);
975 break;
976
977 case POLICY_DEMOTE:
978 atomic_inc(&stats->demotion);
979 break;
980
981 case POLICY_WRITEBACK:
982 atomic_inc(&stats->writeback);
983 break;
984 }
985 }
986
987 /*
988 *---------------------------------------------------------------------
989 * Migration processing
990 *
991 * Migration covers moving data from the origin device to the cache, or
992 * vice versa.
993 *---------------------------------------------------------------------
994 */
inc_io_migrations(struct cache * cache)995 static void inc_io_migrations(struct cache *cache)
996 {
997 atomic_inc(&cache->nr_io_migrations);
998 }
999
dec_io_migrations(struct cache * cache)1000 static void dec_io_migrations(struct cache *cache)
1001 {
1002 atomic_dec(&cache->nr_io_migrations);
1003 }
1004
discard_or_flush(struct bio * bio)1005 static bool discard_or_flush(struct bio *bio)
1006 {
1007 return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf);
1008 }
1009
calc_discard_block_range(struct cache * cache,struct bio * bio,dm_dblock_t * b,dm_dblock_t * e)1010 static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1011 dm_dblock_t *b, dm_dblock_t *e)
1012 {
1013 sector_t sb = bio->bi_iter.bi_sector;
1014 sector_t se = bio_end_sector(bio);
1015
1016 *b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
1017
1018 if (se - sb < cache->discard_block_size)
1019 *e = *b;
1020 else
1021 *e = to_dblock(block_div(se, cache->discard_block_size));
1022 }
1023
1024 /*----------------------------------------------------------------*/
1025
prevent_background_work(struct cache * cache)1026 static void prevent_background_work(struct cache *cache)
1027 {
1028 lockdep_off();
1029 down_write(&cache->background_work_lock);
1030 lockdep_on();
1031 }
1032
allow_background_work(struct cache * cache)1033 static void allow_background_work(struct cache *cache)
1034 {
1035 lockdep_off();
1036 up_write(&cache->background_work_lock);
1037 lockdep_on();
1038 }
1039
background_work_begin(struct cache * cache)1040 static bool background_work_begin(struct cache *cache)
1041 {
1042 bool r;
1043
1044 lockdep_off();
1045 r = down_read_trylock(&cache->background_work_lock);
1046 lockdep_on();
1047
1048 return r;
1049 }
1050
background_work_end(struct cache * cache)1051 static void background_work_end(struct cache *cache)
1052 {
1053 lockdep_off();
1054 up_read(&cache->background_work_lock);
1055 lockdep_on();
1056 }
1057
1058 /*----------------------------------------------------------------*/
1059
bio_writes_complete_block(struct cache * cache,struct bio * bio)1060 static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1061 {
1062 return (bio_data_dir(bio) == WRITE) &&
1063 (bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1064 }
1065
optimisable_bio(struct cache * cache,struct bio * bio,dm_oblock_t block)1066 static bool optimisable_bio(struct cache *cache, struct bio *bio, dm_oblock_t block)
1067 {
1068 return writeback_mode(cache) &&
1069 (is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio));
1070 }
1071
quiesce(struct dm_cache_migration * mg,void (* continuation)(struct work_struct *))1072 static void quiesce(struct dm_cache_migration *mg,
1073 void (*continuation)(struct work_struct *))
1074 {
1075 init_continuation(&mg->k, continuation);
1076 dm_cell_quiesce_v2(mg->cache->prison, mg->cell, &mg->k.ws);
1077 }
1078
ws_to_mg(struct work_struct * ws)1079 static struct dm_cache_migration *ws_to_mg(struct work_struct *ws)
1080 {
1081 struct continuation *k = container_of(ws, struct continuation, ws);
1082
1083 return container_of(k, struct dm_cache_migration, k);
1084 }
1085
copy_complete(int read_err,unsigned long write_err,void * context)1086 static void copy_complete(int read_err, unsigned long write_err, void *context)
1087 {
1088 struct dm_cache_migration *mg = container_of(context, struct dm_cache_migration, k);
1089
1090 if (read_err || write_err)
1091 mg->k.input = BLK_STS_IOERR;
1092
1093 queue_continuation(mg->cache->wq, &mg->k);
1094 }
1095
copy(struct dm_cache_migration * mg,bool promote)1096 static void copy(struct dm_cache_migration *mg, bool promote)
1097 {
1098 struct dm_io_region o_region, c_region;
1099 struct cache *cache = mg->cache;
1100
1101 o_region.bdev = cache->origin_dev->bdev;
1102 o_region.sector = from_oblock(mg->op->oblock) * cache->sectors_per_block;
1103 o_region.count = cache->sectors_per_block;
1104
1105 c_region.bdev = cache->cache_dev->bdev;
1106 c_region.sector = from_cblock(mg->op->cblock) * cache->sectors_per_block;
1107 c_region.count = cache->sectors_per_block;
1108
1109 if (promote)
1110 dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, &mg->k);
1111 else
1112 dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, &mg->k);
1113 }
1114
bio_drop_shared_lock(struct cache * cache,struct bio * bio)1115 static void bio_drop_shared_lock(struct cache *cache, struct bio *bio)
1116 {
1117 struct per_bio_data *pb = get_per_bio_data(bio);
1118
1119 if (pb->cell && dm_cell_put_v2(cache->prison, pb->cell))
1120 free_prison_cell(cache, pb->cell);
1121 pb->cell = NULL;
1122 }
1123
overwrite_endio(struct bio * bio)1124 static void overwrite_endio(struct bio *bio)
1125 {
1126 struct dm_cache_migration *mg = bio->bi_private;
1127 struct cache *cache = mg->cache;
1128 struct per_bio_data *pb = get_per_bio_data(bio);
1129
1130 dm_unhook_bio(&pb->hook_info, bio);
1131
1132 if (bio->bi_status)
1133 mg->k.input = bio->bi_status;
1134
1135 queue_continuation(cache->wq, &mg->k);
1136 }
1137
overwrite(struct dm_cache_migration * mg,void (* continuation)(struct work_struct *))1138 static void overwrite(struct dm_cache_migration *mg,
1139 void (*continuation)(struct work_struct *))
1140 {
1141 struct bio *bio = mg->overwrite_bio;
1142 struct per_bio_data *pb = get_per_bio_data(bio);
1143
1144 dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1145
1146 /*
1147 * The overwrite bio is part of the copy operation, as such it does
1148 * not set/clear discard or dirty flags.
1149 */
1150 if (mg->op->op == POLICY_PROMOTE)
1151 remap_to_cache(mg->cache, bio, mg->op->cblock);
1152 else
1153 remap_to_origin(mg->cache, bio);
1154
1155 init_continuation(&mg->k, continuation);
1156 accounted_request(mg->cache, bio);
1157 }
1158
1159 /*
1160 * Migration steps:
1161 *
1162 * 1) exclusive lock preventing WRITEs
1163 * 2) quiesce
1164 * 3) copy or issue overwrite bio
1165 * 4) upgrade to exclusive lock preventing READs and WRITEs
1166 * 5) quiesce
1167 * 6) update metadata and commit
1168 * 7) unlock
1169 */
mg_complete(struct dm_cache_migration * mg,bool success)1170 static void mg_complete(struct dm_cache_migration *mg, bool success)
1171 {
1172 struct bio_list bios;
1173 struct cache *cache = mg->cache;
1174 struct policy_work *op = mg->op;
1175 dm_cblock_t cblock = op->cblock;
1176
1177 if (success)
1178 update_stats(&cache->stats, op->op);
1179
1180 switch (op->op) {
1181 case POLICY_PROMOTE:
1182 clear_discard(cache, oblock_to_dblock(cache, op->oblock));
1183 policy_complete_background_work(cache->policy, op, success);
1184
1185 if (mg->overwrite_bio) {
1186 if (success)
1187 force_set_dirty(cache, cblock);
1188 else if (mg->k.input)
1189 mg->overwrite_bio->bi_status = mg->k.input;
1190 else
1191 mg->overwrite_bio->bi_status = BLK_STS_IOERR;
1192 bio_endio(mg->overwrite_bio);
1193 } else {
1194 if (success)
1195 force_clear_dirty(cache, cblock);
1196 dec_io_migrations(cache);
1197 }
1198 break;
1199
1200 case POLICY_DEMOTE:
1201 /*
1202 * We clear dirty here to update the nr_dirty counter.
1203 */
1204 if (success)
1205 force_clear_dirty(cache, cblock);
1206 policy_complete_background_work(cache->policy, op, success);
1207 dec_io_migrations(cache);
1208 break;
1209
1210 case POLICY_WRITEBACK:
1211 if (success)
1212 force_clear_dirty(cache, cblock);
1213 policy_complete_background_work(cache->policy, op, success);
1214 dec_io_migrations(cache);
1215 break;
1216 }
1217
1218 bio_list_init(&bios);
1219 if (mg->cell) {
1220 if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1221 free_prison_cell(cache, mg->cell);
1222 }
1223
1224 free_migration(mg);
1225 defer_bios(cache, &bios);
1226 wake_migration_worker(cache);
1227
1228 background_work_end(cache);
1229 }
1230
mg_success(struct work_struct * ws)1231 static void mg_success(struct work_struct *ws)
1232 {
1233 struct dm_cache_migration *mg = ws_to_mg(ws);
1234
1235 mg_complete(mg, mg->k.input == 0);
1236 }
1237
mg_update_metadata(struct work_struct * ws)1238 static void mg_update_metadata(struct work_struct *ws)
1239 {
1240 int r;
1241 struct dm_cache_migration *mg = ws_to_mg(ws);
1242 struct cache *cache = mg->cache;
1243 struct policy_work *op = mg->op;
1244
1245 switch (op->op) {
1246 case POLICY_PROMOTE:
1247 r = dm_cache_insert_mapping(cache->cmd, op->cblock, op->oblock);
1248 if (r) {
1249 DMERR_LIMIT("%s: migration failed; couldn't insert mapping",
1250 cache_device_name(cache));
1251 metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1252
1253 mg_complete(mg, false);
1254 return;
1255 }
1256 mg_complete(mg, true);
1257 break;
1258
1259 case POLICY_DEMOTE:
1260 r = dm_cache_remove_mapping(cache->cmd, op->cblock);
1261 if (r) {
1262 DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata",
1263 cache_device_name(cache));
1264 metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1265
1266 mg_complete(mg, false);
1267 return;
1268 }
1269
1270 /*
1271 * It would be nice if we only had to commit when a REQ_FLUSH
1272 * comes through. But there's one scenario that we have to
1273 * look out for:
1274 *
1275 * - vblock x in a cache block
1276 * - domotion occurs
1277 * - cache block gets reallocated and over written
1278 * - crash
1279 *
1280 * When we recover, because there was no commit the cache will
1281 * rollback to having the data for vblock x in the cache block.
1282 * But the cache block has since been overwritten, so it'll end
1283 * up pointing to data that was never in 'x' during the history
1284 * of the device.
1285 *
1286 * To avoid this issue we require a commit as part of the
1287 * demotion operation.
1288 */
1289 init_continuation(&mg->k, mg_success);
1290 continue_after_commit(&cache->committer, &mg->k);
1291 schedule_commit(&cache->committer);
1292 break;
1293
1294 case POLICY_WRITEBACK:
1295 mg_complete(mg, true);
1296 break;
1297 }
1298 }
1299
mg_update_metadata_after_copy(struct work_struct * ws)1300 static void mg_update_metadata_after_copy(struct work_struct *ws)
1301 {
1302 struct dm_cache_migration *mg = ws_to_mg(ws);
1303
1304 /*
1305 * Did the copy succeed?
1306 */
1307 if (mg->k.input)
1308 mg_complete(mg, false);
1309 else
1310 mg_update_metadata(ws);
1311 }
1312
mg_upgrade_lock(struct work_struct * ws)1313 static void mg_upgrade_lock(struct work_struct *ws)
1314 {
1315 int r;
1316 struct dm_cache_migration *mg = ws_to_mg(ws);
1317
1318 /*
1319 * Did the copy succeed?
1320 */
1321 if (mg->k.input)
1322 mg_complete(mg, false);
1323
1324 else {
1325 /*
1326 * Now we want the lock to prevent both reads and writes.
1327 */
1328 r = dm_cell_lock_promote_v2(mg->cache->prison, mg->cell,
1329 READ_WRITE_LOCK_LEVEL);
1330 if (r < 0)
1331 mg_complete(mg, false);
1332
1333 else if (r)
1334 quiesce(mg, mg_update_metadata);
1335
1336 else
1337 mg_update_metadata(ws);
1338 }
1339 }
1340
mg_full_copy(struct work_struct * ws)1341 static void mg_full_copy(struct work_struct *ws)
1342 {
1343 struct dm_cache_migration *mg = ws_to_mg(ws);
1344 struct cache *cache = mg->cache;
1345 struct policy_work *op = mg->op;
1346 bool is_policy_promote = (op->op == POLICY_PROMOTE);
1347
1348 if ((!is_policy_promote && !is_dirty(cache, op->cblock)) ||
1349 is_discarded_oblock(cache, op->oblock)) {
1350 mg_upgrade_lock(ws);
1351 return;
1352 }
1353
1354 init_continuation(&mg->k, mg_upgrade_lock);
1355 copy(mg, is_policy_promote);
1356 }
1357
mg_copy(struct work_struct * ws)1358 static void mg_copy(struct work_struct *ws)
1359 {
1360 struct dm_cache_migration *mg = ws_to_mg(ws);
1361
1362 if (mg->overwrite_bio) {
1363 /*
1364 * No exclusive lock was held when we last checked if the bio
1365 * was optimisable. So we have to check again in case things
1366 * have changed (eg, the block may no longer be discarded).
1367 */
1368 if (!optimisable_bio(mg->cache, mg->overwrite_bio, mg->op->oblock)) {
1369 /*
1370 * Fallback to a real full copy after doing some tidying up.
1371 */
1372 bool rb = bio_detain_shared(mg->cache, mg->op->oblock, mg->overwrite_bio);
1373
1374 BUG_ON(rb); /* An exclussive lock must _not_ be held for this block */
1375 mg->overwrite_bio = NULL;
1376 inc_io_migrations(mg->cache);
1377 mg_full_copy(ws);
1378 return;
1379 }
1380
1381 /*
1382 * It's safe to do this here, even though it's new data
1383 * because all IO has been locked out of the block.
1384 *
1385 * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL
1386 * so _not_ using mg_upgrade_lock() as continutation.
1387 */
1388 overwrite(mg, mg_update_metadata_after_copy);
1389
1390 } else
1391 mg_full_copy(ws);
1392 }
1393
mg_lock_writes(struct dm_cache_migration * mg)1394 static int mg_lock_writes(struct dm_cache_migration *mg)
1395 {
1396 int r;
1397 struct dm_cell_key_v2 key;
1398 struct cache *cache = mg->cache;
1399 struct dm_bio_prison_cell_v2 *prealloc;
1400
1401 prealloc = alloc_prison_cell(cache);
1402
1403 /*
1404 * Prevent writes to the block, but allow reads to continue.
1405 * Unless we're using an overwrite bio, in which case we lock
1406 * everything.
1407 */
1408 build_key(mg->op->oblock, oblock_succ(mg->op->oblock), &key);
1409 r = dm_cell_lock_v2(cache->prison, &key,
1410 mg->overwrite_bio ? READ_WRITE_LOCK_LEVEL : WRITE_LOCK_LEVEL,
1411 prealloc, &mg->cell);
1412 if (r < 0) {
1413 free_prison_cell(cache, prealloc);
1414 mg_complete(mg, false);
1415 return r;
1416 }
1417
1418 if (mg->cell != prealloc)
1419 free_prison_cell(cache, prealloc);
1420
1421 if (r == 0)
1422 mg_copy(&mg->k.ws);
1423 else
1424 quiesce(mg, mg_copy);
1425
1426 return 0;
1427 }
1428
mg_start(struct cache * cache,struct policy_work * op,struct bio * bio)1429 static int mg_start(struct cache *cache, struct policy_work *op, struct bio *bio)
1430 {
1431 struct dm_cache_migration *mg;
1432
1433 if (!background_work_begin(cache)) {
1434 policy_complete_background_work(cache->policy, op, false);
1435 return -EPERM;
1436 }
1437
1438 mg = alloc_migration(cache);
1439
1440 mg->op = op;
1441 mg->overwrite_bio = bio;
1442
1443 if (!bio)
1444 inc_io_migrations(cache);
1445
1446 return mg_lock_writes(mg);
1447 }
1448
1449 /*
1450 *--------------------------------------------------------------
1451 * invalidation processing
1452 *--------------------------------------------------------------
1453 */
1454
invalidate_complete(struct dm_cache_migration * mg,bool success)1455 static void invalidate_complete(struct dm_cache_migration *mg, bool success)
1456 {
1457 struct bio_list bios;
1458 struct cache *cache = mg->cache;
1459
1460 bio_list_init(&bios);
1461 if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1462 free_prison_cell(cache, mg->cell);
1463
1464 if (!success && mg->overwrite_bio)
1465 bio_io_error(mg->overwrite_bio);
1466
1467 free_migration(mg);
1468 defer_bios(cache, &bios);
1469
1470 background_work_end(cache);
1471 }
1472
invalidate_completed(struct work_struct * ws)1473 static void invalidate_completed(struct work_struct *ws)
1474 {
1475 struct dm_cache_migration *mg = ws_to_mg(ws);
1476
1477 invalidate_complete(mg, !mg->k.input);
1478 }
1479
invalidate_cblock(struct cache * cache,dm_cblock_t cblock)1480 static int invalidate_cblock(struct cache *cache, dm_cblock_t cblock)
1481 {
1482 int r;
1483
1484 r = policy_invalidate_mapping(cache->policy, cblock);
1485 if (!r) {
1486 r = dm_cache_remove_mapping(cache->cmd, cblock);
1487 if (r) {
1488 DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata",
1489 cache_device_name(cache));
1490 metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1491 }
1492
1493 } else if (r == -ENODATA) {
1494 /*
1495 * Harmless, already unmapped.
1496 */
1497 r = 0;
1498
1499 } else
1500 DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache));
1501
1502 return r;
1503 }
1504
invalidate_remove(struct work_struct * ws)1505 static void invalidate_remove(struct work_struct *ws)
1506 {
1507 int r;
1508 struct dm_cache_migration *mg = ws_to_mg(ws);
1509 struct cache *cache = mg->cache;
1510
1511 r = invalidate_cblock(cache, mg->invalidate_cblock);
1512 if (r) {
1513 invalidate_complete(mg, false);
1514 return;
1515 }
1516
1517 init_continuation(&mg->k, invalidate_completed);
1518 continue_after_commit(&cache->committer, &mg->k);
1519 remap_to_origin_clear_discard(cache, mg->overwrite_bio, mg->invalidate_oblock);
1520 mg->overwrite_bio = NULL;
1521 schedule_commit(&cache->committer);
1522 }
1523
invalidate_lock(struct dm_cache_migration * mg)1524 static int invalidate_lock(struct dm_cache_migration *mg)
1525 {
1526 int r;
1527 struct dm_cell_key_v2 key;
1528 struct cache *cache = mg->cache;
1529 struct dm_bio_prison_cell_v2 *prealloc;
1530
1531 prealloc = alloc_prison_cell(cache);
1532
1533 build_key(mg->invalidate_oblock, oblock_succ(mg->invalidate_oblock), &key);
1534 r = dm_cell_lock_v2(cache->prison, &key,
1535 READ_WRITE_LOCK_LEVEL, prealloc, &mg->cell);
1536 if (r < 0) {
1537 free_prison_cell(cache, prealloc);
1538 invalidate_complete(mg, false);
1539 return r;
1540 }
1541
1542 if (mg->cell != prealloc)
1543 free_prison_cell(cache, prealloc);
1544
1545 if (r)
1546 quiesce(mg, invalidate_remove);
1547
1548 else {
1549 /*
1550 * We can't call invalidate_remove() directly here because we
1551 * might still be in request context.
1552 */
1553 init_continuation(&mg->k, invalidate_remove);
1554 queue_work(cache->wq, &mg->k.ws);
1555 }
1556
1557 return 0;
1558 }
1559
invalidate_start(struct cache * cache,dm_cblock_t cblock,dm_oblock_t oblock,struct bio * bio)1560 static int invalidate_start(struct cache *cache, dm_cblock_t cblock,
1561 dm_oblock_t oblock, struct bio *bio)
1562 {
1563 struct dm_cache_migration *mg;
1564
1565 if (!background_work_begin(cache))
1566 return -EPERM;
1567
1568 mg = alloc_migration(cache);
1569
1570 mg->overwrite_bio = bio;
1571 mg->invalidate_cblock = cblock;
1572 mg->invalidate_oblock = oblock;
1573
1574 return invalidate_lock(mg);
1575 }
1576
1577 /*
1578 *--------------------------------------------------------------
1579 * bio processing
1580 *--------------------------------------------------------------
1581 */
1582
1583 enum busy {
1584 IDLE,
1585 BUSY
1586 };
1587
spare_migration_bandwidth(struct cache * cache)1588 static enum busy spare_migration_bandwidth(struct cache *cache)
1589 {
1590 bool idle = dm_iot_idle_for(&cache->tracker, HZ);
1591 sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1592 cache->sectors_per_block;
1593
1594 if (idle && current_volume <= cache->migration_threshold)
1595 return IDLE;
1596 else
1597 return BUSY;
1598 }
1599
inc_hit_counter(struct cache * cache,struct bio * bio)1600 static void inc_hit_counter(struct cache *cache, struct bio *bio)
1601 {
1602 atomic_inc(bio_data_dir(bio) == READ ?
1603 &cache->stats.read_hit : &cache->stats.write_hit);
1604 }
1605
inc_miss_counter(struct cache * cache,struct bio * bio)1606 static void inc_miss_counter(struct cache *cache, struct bio *bio)
1607 {
1608 atomic_inc(bio_data_dir(bio) == READ ?
1609 &cache->stats.read_miss : &cache->stats.write_miss);
1610 }
1611
1612 /*----------------------------------------------------------------*/
1613
map_bio(struct cache * cache,struct bio * bio,dm_oblock_t block,bool * commit_needed)1614 static int map_bio(struct cache *cache, struct bio *bio, dm_oblock_t block,
1615 bool *commit_needed)
1616 {
1617 int r, data_dir;
1618 bool rb, background_queued;
1619 dm_cblock_t cblock;
1620
1621 *commit_needed = false;
1622
1623 rb = bio_detain_shared(cache, block, bio);
1624 if (!rb) {
1625 /*
1626 * An exclusive lock is held for this block, so we have to
1627 * wait. We set the commit_needed flag so the current
1628 * transaction will be committed asap, allowing this lock
1629 * to be dropped.
1630 */
1631 *commit_needed = true;
1632 return DM_MAPIO_SUBMITTED;
1633 }
1634
1635 data_dir = bio_data_dir(bio);
1636
1637 if (optimisable_bio(cache, bio, block)) {
1638 struct policy_work *op = NULL;
1639
1640 r = policy_lookup_with_work(cache->policy, block, &cblock, data_dir, true, &op);
1641 if (unlikely(r && r != -ENOENT)) {
1642 DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d",
1643 cache_device_name(cache), r);
1644 bio_io_error(bio);
1645 return DM_MAPIO_SUBMITTED;
1646 }
1647
1648 if (r == -ENOENT && op) {
1649 bio_drop_shared_lock(cache, bio);
1650 BUG_ON(op->op != POLICY_PROMOTE);
1651 mg_start(cache, op, bio);
1652 return DM_MAPIO_SUBMITTED;
1653 }
1654 } else {
1655 r = policy_lookup(cache->policy, block, &cblock, data_dir, false, &background_queued);
1656 if (unlikely(r && r != -ENOENT)) {
1657 DMERR_LIMIT("%s: policy_lookup() failed with r = %d",
1658 cache_device_name(cache), r);
1659 bio_io_error(bio);
1660 return DM_MAPIO_SUBMITTED;
1661 }
1662
1663 if (background_queued)
1664 wake_migration_worker(cache);
1665 }
1666
1667 if (r == -ENOENT) {
1668 struct per_bio_data *pb = get_per_bio_data(bio);
1669
1670 /*
1671 * Miss.
1672 */
1673 inc_miss_counter(cache, bio);
1674 if (pb->req_nr == 0) {
1675 accounted_begin(cache, bio);
1676 remap_to_origin_clear_discard(cache, bio, block);
1677 } else {
1678 /*
1679 * This is a duplicate writethrough io that is no
1680 * longer needed because the block has been demoted.
1681 */
1682 bio_endio(bio);
1683 return DM_MAPIO_SUBMITTED;
1684 }
1685 } else {
1686 /*
1687 * Hit.
1688 */
1689 inc_hit_counter(cache, bio);
1690
1691 /*
1692 * Passthrough always maps to the origin, invalidating any
1693 * cache blocks that are written to.
1694 */
1695 if (passthrough_mode(cache)) {
1696 if (bio_data_dir(bio) == WRITE) {
1697 bio_drop_shared_lock(cache, bio);
1698 atomic_inc(&cache->stats.demotion);
1699 invalidate_start(cache, cblock, block, bio);
1700 } else
1701 remap_to_origin_clear_discard(cache, bio, block);
1702 } else {
1703 if (bio_data_dir(bio) == WRITE && writethrough_mode(cache) &&
1704 !is_dirty(cache, cblock)) {
1705 remap_to_origin_and_cache(cache, bio, block, cblock);
1706 accounted_begin(cache, bio);
1707 } else
1708 remap_to_cache_dirty(cache, bio, block, cblock);
1709 }
1710 }
1711
1712 /*
1713 * dm core turns FUA requests into a separate payload and FLUSH req.
1714 */
1715 if (bio->bi_opf & REQ_FUA) {
1716 /*
1717 * issue_after_commit will call accounted_begin a second time. So
1718 * we call accounted_complete() to avoid double accounting.
1719 */
1720 accounted_complete(cache, bio);
1721 issue_after_commit(&cache->committer, bio);
1722 *commit_needed = true;
1723 return DM_MAPIO_SUBMITTED;
1724 }
1725
1726 return DM_MAPIO_REMAPPED;
1727 }
1728
process_bio(struct cache * cache,struct bio * bio)1729 static bool process_bio(struct cache *cache, struct bio *bio)
1730 {
1731 bool commit_needed;
1732
1733 if (map_bio(cache, bio, get_bio_block(cache, bio), &commit_needed) == DM_MAPIO_REMAPPED)
1734 dm_submit_bio_remap(bio, NULL);
1735
1736 return commit_needed;
1737 }
1738
1739 /*
1740 * A non-zero return indicates read_only or fail_io mode.
1741 */
commit(struct cache * cache,bool clean_shutdown)1742 static int commit(struct cache *cache, bool clean_shutdown)
1743 {
1744 int r;
1745
1746 if (get_cache_mode(cache) >= CM_READ_ONLY)
1747 return -EINVAL;
1748
1749 atomic_inc(&cache->stats.commit_count);
1750 r = dm_cache_commit(cache->cmd, clean_shutdown);
1751 if (r)
1752 metadata_operation_failed(cache, "dm_cache_commit", r);
1753
1754 return r;
1755 }
1756
1757 /*
1758 * Used by the batcher.
1759 */
commit_op(void * context)1760 static blk_status_t commit_op(void *context)
1761 {
1762 struct cache *cache = context;
1763
1764 if (dm_cache_changed_this_transaction(cache->cmd))
1765 return errno_to_blk_status(commit(cache, false));
1766
1767 return 0;
1768 }
1769
1770 /*----------------------------------------------------------------*/
1771
process_flush_bio(struct cache * cache,struct bio * bio)1772 static bool process_flush_bio(struct cache *cache, struct bio *bio)
1773 {
1774 struct per_bio_data *pb = get_per_bio_data(bio);
1775
1776 if (!pb->req_nr)
1777 remap_to_origin(cache, bio);
1778 else
1779 remap_to_cache(cache, bio, 0);
1780
1781 issue_after_commit(&cache->committer, bio);
1782 return true;
1783 }
1784
process_discard_bio(struct cache * cache,struct bio * bio)1785 static bool process_discard_bio(struct cache *cache, struct bio *bio)
1786 {
1787 dm_dblock_t b, e;
1788
1789 /*
1790 * FIXME: do we need to lock the region? Or can we just assume the
1791 * user wont be so foolish as to issue discard concurrently with
1792 * other IO?
1793 */
1794 calc_discard_block_range(cache, bio, &b, &e);
1795 while (b != e) {
1796 set_discard(cache, b);
1797 b = to_dblock(from_dblock(b) + 1);
1798 }
1799
1800 if (cache->features.discard_passdown) {
1801 remap_to_origin(cache, bio);
1802 dm_submit_bio_remap(bio, NULL);
1803 } else
1804 bio_endio(bio);
1805
1806 return false;
1807 }
1808
process_deferred_bios(struct work_struct * ws)1809 static void process_deferred_bios(struct work_struct *ws)
1810 {
1811 struct cache *cache = container_of(ws, struct cache, deferred_bio_worker);
1812
1813 bool commit_needed = false;
1814 struct bio_list bios;
1815 struct bio *bio;
1816
1817 bio_list_init(&bios);
1818
1819 spin_lock_irq(&cache->lock);
1820 bio_list_merge(&bios, &cache->deferred_bios);
1821 bio_list_init(&cache->deferred_bios);
1822 spin_unlock_irq(&cache->lock);
1823
1824 while ((bio = bio_list_pop(&bios))) {
1825 if (bio->bi_opf & REQ_PREFLUSH)
1826 commit_needed = process_flush_bio(cache, bio) || commit_needed;
1827
1828 else if (bio_op(bio) == REQ_OP_DISCARD)
1829 commit_needed = process_discard_bio(cache, bio) || commit_needed;
1830
1831 else
1832 commit_needed = process_bio(cache, bio) || commit_needed;
1833 cond_resched();
1834 }
1835
1836 if (commit_needed)
1837 schedule_commit(&cache->committer);
1838 }
1839
1840 /*
1841 *--------------------------------------------------------------
1842 * Main worker loop
1843 *--------------------------------------------------------------
1844 */
requeue_deferred_bios(struct cache * cache)1845 static void requeue_deferred_bios(struct cache *cache)
1846 {
1847 struct bio *bio;
1848 struct bio_list bios;
1849
1850 bio_list_init(&bios);
1851 bio_list_merge(&bios, &cache->deferred_bios);
1852 bio_list_init(&cache->deferred_bios);
1853
1854 while ((bio = bio_list_pop(&bios))) {
1855 bio->bi_status = BLK_STS_DM_REQUEUE;
1856 bio_endio(bio);
1857 cond_resched();
1858 }
1859 }
1860
1861 /*
1862 * We want to commit periodically so that not too much
1863 * unwritten metadata builds up.
1864 */
do_waker(struct work_struct * ws)1865 static void do_waker(struct work_struct *ws)
1866 {
1867 struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1868
1869 policy_tick(cache->policy, true);
1870 wake_migration_worker(cache);
1871 schedule_commit(&cache->committer);
1872 queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1873 }
1874
check_migrations(struct work_struct * ws)1875 static void check_migrations(struct work_struct *ws)
1876 {
1877 int r;
1878 struct policy_work *op;
1879 struct cache *cache = container_of(ws, struct cache, migration_worker);
1880 enum busy b;
1881
1882 for (;;) {
1883 b = spare_migration_bandwidth(cache);
1884
1885 r = policy_get_background_work(cache->policy, b == IDLE, &op);
1886 if (r == -ENODATA)
1887 break;
1888
1889 if (r) {
1890 DMERR_LIMIT("%s: policy_background_work failed",
1891 cache_device_name(cache));
1892 break;
1893 }
1894
1895 r = mg_start(cache, op, NULL);
1896 if (r)
1897 break;
1898
1899 cond_resched();
1900 }
1901 }
1902
1903 /*
1904 *--------------------------------------------------------------
1905 * Target methods
1906 *--------------------------------------------------------------
1907 */
1908
1909 /*
1910 * This function gets called on the error paths of the constructor, so we
1911 * have to cope with a partially initialised struct.
1912 */
__destroy(struct cache * cache)1913 static void __destroy(struct cache *cache)
1914 {
1915 mempool_exit(&cache->migration_pool);
1916
1917 if (cache->prison)
1918 dm_bio_prison_destroy_v2(cache->prison);
1919
1920 if (cache->wq)
1921 destroy_workqueue(cache->wq);
1922
1923 if (cache->dirty_bitset)
1924 free_bitset(cache->dirty_bitset);
1925
1926 if (cache->discard_bitset)
1927 free_bitset(cache->discard_bitset);
1928
1929 if (cache->copier)
1930 dm_kcopyd_client_destroy(cache->copier);
1931
1932 if (cache->cmd)
1933 dm_cache_metadata_close(cache->cmd);
1934
1935 if (cache->metadata_dev)
1936 dm_put_device(cache->ti, cache->metadata_dev);
1937
1938 if (cache->origin_dev)
1939 dm_put_device(cache->ti, cache->origin_dev);
1940
1941 if (cache->cache_dev)
1942 dm_put_device(cache->ti, cache->cache_dev);
1943
1944 if (cache->policy)
1945 dm_cache_policy_destroy(cache->policy);
1946
1947 bioset_exit(&cache->bs);
1948
1949 kfree(cache);
1950 }
1951
destroy(struct cache * cache)1952 static void destroy(struct cache *cache)
1953 {
1954 unsigned int i;
1955
1956 cancel_delayed_work_sync(&cache->waker);
1957
1958 for (i = 0; i < cache->nr_ctr_args ; i++)
1959 kfree(cache->ctr_args[i]);
1960 kfree(cache->ctr_args);
1961
1962 __destroy(cache);
1963 }
1964
cache_dtr(struct dm_target * ti)1965 static void cache_dtr(struct dm_target *ti)
1966 {
1967 struct cache *cache = ti->private;
1968
1969 destroy(cache);
1970 }
1971
get_dev_size(struct dm_dev * dev)1972 static sector_t get_dev_size(struct dm_dev *dev)
1973 {
1974 return bdev_nr_sectors(dev->bdev);
1975 }
1976
1977 /*----------------------------------------------------------------*/
1978
1979 /*
1980 * Construct a cache device mapping.
1981 *
1982 * cache <metadata dev> <cache dev> <origin dev> <block size>
1983 * <#feature args> [<feature arg>]*
1984 * <policy> <#policy args> [<policy arg>]*
1985 *
1986 * metadata dev : fast device holding the persistent metadata
1987 * cache dev : fast device holding cached data blocks
1988 * origin dev : slow device holding original data blocks
1989 * block size : cache unit size in sectors
1990 *
1991 * #feature args : number of feature arguments passed
1992 * feature args : writethrough. (The default is writeback.)
1993 *
1994 * policy : the replacement policy to use
1995 * #policy args : an even number of policy arguments corresponding
1996 * to key/value pairs passed to the policy
1997 * policy args : key/value pairs passed to the policy
1998 * E.g. 'sequential_threshold 1024'
1999 * See cache-policies.txt for details.
2000 *
2001 * Optional feature arguments are:
2002 * writethrough : write through caching that prohibits cache block
2003 * content from being different from origin block content.
2004 * Without this argument, the default behaviour is to write
2005 * back cache block contents later for performance reasons,
2006 * so they may differ from the corresponding origin blocks.
2007 */
2008 struct cache_args {
2009 struct dm_target *ti;
2010
2011 struct dm_dev *metadata_dev;
2012
2013 struct dm_dev *cache_dev;
2014 sector_t cache_sectors;
2015
2016 struct dm_dev *origin_dev;
2017
2018 uint32_t block_size;
2019
2020 const char *policy_name;
2021 int policy_argc;
2022 const char **policy_argv;
2023
2024 struct cache_features features;
2025 };
2026
destroy_cache_args(struct cache_args * ca)2027 static void destroy_cache_args(struct cache_args *ca)
2028 {
2029 if (ca->metadata_dev)
2030 dm_put_device(ca->ti, ca->metadata_dev);
2031
2032 if (ca->cache_dev)
2033 dm_put_device(ca->ti, ca->cache_dev);
2034
2035 if (ca->origin_dev)
2036 dm_put_device(ca->ti, ca->origin_dev);
2037
2038 kfree(ca);
2039 }
2040
at_least_one_arg(struct dm_arg_set * as,char ** error)2041 static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2042 {
2043 if (!as->argc) {
2044 *error = "Insufficient args";
2045 return false;
2046 }
2047
2048 return true;
2049 }
2050
parse_metadata_dev(struct cache_args * ca,struct dm_arg_set * as,char ** error)2051 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2052 char **error)
2053 {
2054 int r;
2055 sector_t metadata_dev_size;
2056
2057 if (!at_least_one_arg(as, error))
2058 return -EINVAL;
2059
2060 r = dm_get_device(ca->ti, dm_shift_arg(as),
2061 BLK_OPEN_READ | BLK_OPEN_WRITE, &ca->metadata_dev);
2062 if (r) {
2063 *error = "Error opening metadata device";
2064 return r;
2065 }
2066
2067 metadata_dev_size = get_dev_size(ca->metadata_dev);
2068 if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2069 DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.",
2070 ca->metadata_dev->bdev, THIN_METADATA_MAX_SECTORS);
2071
2072 return 0;
2073 }
2074
parse_cache_dev(struct cache_args * ca,struct dm_arg_set * as,char ** error)2075 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2076 char **error)
2077 {
2078 int r;
2079
2080 if (!at_least_one_arg(as, error))
2081 return -EINVAL;
2082
2083 r = dm_get_device(ca->ti, dm_shift_arg(as),
2084 BLK_OPEN_READ | BLK_OPEN_WRITE, &ca->cache_dev);
2085 if (r) {
2086 *error = "Error opening cache device";
2087 return r;
2088 }
2089 ca->cache_sectors = get_dev_size(ca->cache_dev);
2090
2091 return 0;
2092 }
2093
parse_origin_dev(struct cache_args * ca,struct dm_arg_set * as,char ** error)2094 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2095 char **error)
2096 {
2097 sector_t origin_sectors;
2098 int r;
2099
2100 if (!at_least_one_arg(as, error))
2101 return -EINVAL;
2102
2103 r = dm_get_device(ca->ti, dm_shift_arg(as),
2104 BLK_OPEN_READ | BLK_OPEN_WRITE, &ca->origin_dev);
2105 if (r) {
2106 *error = "Error opening origin device";
2107 return r;
2108 }
2109
2110 origin_sectors = get_dev_size(ca->origin_dev);
2111 if (ca->ti->len > origin_sectors) {
2112 *error = "Device size larger than cached device";
2113 return -EINVAL;
2114 }
2115
2116 return 0;
2117 }
2118
parse_block_size(struct cache_args * ca,struct dm_arg_set * as,char ** error)2119 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2120 char **error)
2121 {
2122 unsigned long block_size;
2123
2124 if (!at_least_one_arg(as, error))
2125 return -EINVAL;
2126
2127 if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2128 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2129 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2130 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2131 *error = "Invalid data block size";
2132 return -EINVAL;
2133 }
2134
2135 if (block_size > ca->cache_sectors) {
2136 *error = "Data block size is larger than the cache device";
2137 return -EINVAL;
2138 }
2139
2140 ca->block_size = block_size;
2141
2142 return 0;
2143 }
2144
init_features(struct cache_features * cf)2145 static void init_features(struct cache_features *cf)
2146 {
2147 cf->mode = CM_WRITE;
2148 cf->io_mode = CM_IO_WRITEBACK;
2149 cf->metadata_version = 1;
2150 cf->discard_passdown = true;
2151 }
2152
parse_features(struct cache_args * ca,struct dm_arg_set * as,char ** error)2153 static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2154 char **error)
2155 {
2156 static const struct dm_arg _args[] = {
2157 {0, 3, "Invalid number of cache feature arguments"},
2158 };
2159
2160 int r, mode_ctr = 0;
2161 unsigned int argc;
2162 const char *arg;
2163 struct cache_features *cf = &ca->features;
2164
2165 init_features(cf);
2166
2167 r = dm_read_arg_group(_args, as, &argc, error);
2168 if (r)
2169 return -EINVAL;
2170
2171 while (argc--) {
2172 arg = dm_shift_arg(as);
2173
2174 if (!strcasecmp(arg, "writeback")) {
2175 cf->io_mode = CM_IO_WRITEBACK;
2176 mode_ctr++;
2177 }
2178
2179 else if (!strcasecmp(arg, "writethrough")) {
2180 cf->io_mode = CM_IO_WRITETHROUGH;
2181 mode_ctr++;
2182 }
2183
2184 else if (!strcasecmp(arg, "passthrough")) {
2185 cf->io_mode = CM_IO_PASSTHROUGH;
2186 mode_ctr++;
2187 }
2188
2189 else if (!strcasecmp(arg, "metadata2"))
2190 cf->metadata_version = 2;
2191
2192 else if (!strcasecmp(arg, "no_discard_passdown"))
2193 cf->discard_passdown = false;
2194
2195 else {
2196 *error = "Unrecognised cache feature requested";
2197 return -EINVAL;
2198 }
2199 }
2200
2201 if (mode_ctr > 1) {
2202 *error = "Duplicate cache io_mode features requested";
2203 return -EINVAL;
2204 }
2205
2206 return 0;
2207 }
2208
parse_policy(struct cache_args * ca,struct dm_arg_set * as,char ** error)2209 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2210 char **error)
2211 {
2212 static const struct dm_arg _args[] = {
2213 {0, 1024, "Invalid number of policy arguments"},
2214 };
2215
2216 int r;
2217
2218 if (!at_least_one_arg(as, error))
2219 return -EINVAL;
2220
2221 ca->policy_name = dm_shift_arg(as);
2222
2223 r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2224 if (r)
2225 return -EINVAL;
2226
2227 ca->policy_argv = (const char **)as->argv;
2228 dm_consume_args(as, ca->policy_argc);
2229
2230 return 0;
2231 }
2232
parse_cache_args(struct cache_args * ca,int argc,char ** argv,char ** error)2233 static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2234 char **error)
2235 {
2236 int r;
2237 struct dm_arg_set as;
2238
2239 as.argc = argc;
2240 as.argv = argv;
2241
2242 r = parse_metadata_dev(ca, &as, error);
2243 if (r)
2244 return r;
2245
2246 r = parse_cache_dev(ca, &as, error);
2247 if (r)
2248 return r;
2249
2250 r = parse_origin_dev(ca, &as, error);
2251 if (r)
2252 return r;
2253
2254 r = parse_block_size(ca, &as, error);
2255 if (r)
2256 return r;
2257
2258 r = parse_features(ca, &as, error);
2259 if (r)
2260 return r;
2261
2262 r = parse_policy(ca, &as, error);
2263 if (r)
2264 return r;
2265
2266 return 0;
2267 }
2268
2269 /*----------------------------------------------------------------*/
2270
2271 static struct kmem_cache *migration_cache = NULL;
2272
2273 #define NOT_CORE_OPTION 1
2274
process_config_option(struct cache * cache,const char * key,const char * value)2275 static int process_config_option(struct cache *cache, const char *key, const char *value)
2276 {
2277 unsigned long tmp;
2278
2279 if (!strcasecmp(key, "migration_threshold")) {
2280 if (kstrtoul(value, 10, &tmp))
2281 return -EINVAL;
2282
2283 cache->migration_threshold = tmp;
2284 return 0;
2285 }
2286
2287 return NOT_CORE_OPTION;
2288 }
2289
set_config_value(struct cache * cache,const char * key,const char * value)2290 static int set_config_value(struct cache *cache, const char *key, const char *value)
2291 {
2292 int r = process_config_option(cache, key, value);
2293
2294 if (r == NOT_CORE_OPTION)
2295 r = policy_set_config_value(cache->policy, key, value);
2296
2297 if (r)
2298 DMWARN("bad config value for %s: %s", key, value);
2299
2300 return r;
2301 }
2302
set_config_values(struct cache * cache,int argc,const char ** argv)2303 static int set_config_values(struct cache *cache, int argc, const char **argv)
2304 {
2305 int r = 0;
2306
2307 if (argc & 1) {
2308 DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2309 return -EINVAL;
2310 }
2311
2312 while (argc) {
2313 r = set_config_value(cache, argv[0], argv[1]);
2314 if (r)
2315 break;
2316
2317 argc -= 2;
2318 argv += 2;
2319 }
2320
2321 return r;
2322 }
2323
create_cache_policy(struct cache * cache,struct cache_args * ca,char ** error)2324 static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2325 char **error)
2326 {
2327 struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2328 cache->cache_size,
2329 cache->origin_sectors,
2330 cache->sectors_per_block);
2331 if (IS_ERR(p)) {
2332 *error = "Error creating cache's policy";
2333 return PTR_ERR(p);
2334 }
2335 cache->policy = p;
2336 BUG_ON(!cache->policy);
2337
2338 return 0;
2339 }
2340
2341 /*
2342 * We want the discard block size to be at least the size of the cache
2343 * block size and have no more than 2^14 discard blocks across the origin.
2344 */
2345 #define MAX_DISCARD_BLOCKS (1 << 14)
2346
too_many_discard_blocks(sector_t discard_block_size,sector_t origin_size)2347 static bool too_many_discard_blocks(sector_t discard_block_size,
2348 sector_t origin_size)
2349 {
2350 (void) sector_div(origin_size, discard_block_size);
2351
2352 return origin_size > MAX_DISCARD_BLOCKS;
2353 }
2354
calculate_discard_block_size(sector_t cache_block_size,sector_t origin_size)2355 static sector_t calculate_discard_block_size(sector_t cache_block_size,
2356 sector_t origin_size)
2357 {
2358 sector_t discard_block_size = cache_block_size;
2359
2360 if (origin_size)
2361 while (too_many_discard_blocks(discard_block_size, origin_size))
2362 discard_block_size *= 2;
2363
2364 return discard_block_size;
2365 }
2366
set_cache_size(struct cache * cache,dm_cblock_t size)2367 static void set_cache_size(struct cache *cache, dm_cblock_t size)
2368 {
2369 dm_block_t nr_blocks = from_cblock(size);
2370
2371 if (nr_blocks > (1 << 20) && cache->cache_size != size)
2372 DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2373 "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2374 "Please consider increasing the cache block size to reduce the overall cache block count.",
2375 (unsigned long long) nr_blocks);
2376
2377 cache->cache_size = size;
2378 }
2379
2380 #define DEFAULT_MIGRATION_THRESHOLD 2048
2381
cache_create(struct cache_args * ca,struct cache ** result)2382 static int cache_create(struct cache_args *ca, struct cache **result)
2383 {
2384 int r = 0;
2385 char **error = &ca->ti->error;
2386 struct cache *cache;
2387 struct dm_target *ti = ca->ti;
2388 dm_block_t origin_blocks;
2389 struct dm_cache_metadata *cmd;
2390 bool may_format = ca->features.mode == CM_WRITE;
2391
2392 cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2393 if (!cache)
2394 return -ENOMEM;
2395
2396 cache->ti = ca->ti;
2397 ti->private = cache;
2398 ti->accounts_remapped_io = true;
2399 ti->num_flush_bios = 2;
2400 ti->flush_supported = true;
2401
2402 ti->num_discard_bios = 1;
2403 ti->discards_supported = true;
2404
2405 ti->per_io_data_size = sizeof(struct per_bio_data);
2406
2407 cache->features = ca->features;
2408 if (writethrough_mode(cache)) {
2409 /* Create bioset for writethrough bios issued to origin */
2410 r = bioset_init(&cache->bs, BIO_POOL_SIZE, 0, 0);
2411 if (r)
2412 goto bad;
2413 }
2414
2415 cache->metadata_dev = ca->metadata_dev;
2416 cache->origin_dev = ca->origin_dev;
2417 cache->cache_dev = ca->cache_dev;
2418
2419 ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2420
2421 origin_blocks = cache->origin_sectors = ti->len;
2422 origin_blocks = block_div(origin_blocks, ca->block_size);
2423 cache->origin_blocks = to_oblock(origin_blocks);
2424
2425 cache->sectors_per_block = ca->block_size;
2426 if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2427 r = -EINVAL;
2428 goto bad;
2429 }
2430
2431 if (ca->block_size & (ca->block_size - 1)) {
2432 dm_block_t cache_size = ca->cache_sectors;
2433
2434 cache->sectors_per_block_shift = -1;
2435 cache_size = block_div(cache_size, ca->block_size);
2436 set_cache_size(cache, to_cblock(cache_size));
2437 } else {
2438 cache->sectors_per_block_shift = __ffs(ca->block_size);
2439 set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2440 }
2441
2442 r = create_cache_policy(cache, ca, error);
2443 if (r)
2444 goto bad;
2445
2446 cache->policy_nr_args = ca->policy_argc;
2447 cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2448
2449 r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2450 if (r) {
2451 *error = "Error setting cache policy's config values";
2452 goto bad;
2453 }
2454
2455 cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2456 ca->block_size, may_format,
2457 dm_cache_policy_get_hint_size(cache->policy),
2458 ca->features.metadata_version);
2459 if (IS_ERR(cmd)) {
2460 *error = "Error creating metadata object";
2461 r = PTR_ERR(cmd);
2462 goto bad;
2463 }
2464 cache->cmd = cmd;
2465 set_cache_mode(cache, CM_WRITE);
2466 if (get_cache_mode(cache) != CM_WRITE) {
2467 *error = "Unable to get write access to metadata, please check/repair metadata.";
2468 r = -EINVAL;
2469 goto bad;
2470 }
2471
2472 if (passthrough_mode(cache)) {
2473 bool all_clean;
2474
2475 r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2476 if (r) {
2477 *error = "dm_cache_metadata_all_clean() failed";
2478 goto bad;
2479 }
2480
2481 if (!all_clean) {
2482 *error = "Cannot enter passthrough mode unless all blocks are clean";
2483 r = -EINVAL;
2484 goto bad;
2485 }
2486
2487 policy_allow_migrations(cache->policy, false);
2488 }
2489
2490 spin_lock_init(&cache->lock);
2491 bio_list_init(&cache->deferred_bios);
2492 atomic_set(&cache->nr_allocated_migrations, 0);
2493 atomic_set(&cache->nr_io_migrations, 0);
2494 init_waitqueue_head(&cache->migration_wait);
2495
2496 r = -ENOMEM;
2497 atomic_set(&cache->nr_dirty, 0);
2498 cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2499 if (!cache->dirty_bitset) {
2500 *error = "could not allocate dirty bitset";
2501 goto bad;
2502 }
2503 clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2504
2505 cache->discard_block_size =
2506 calculate_discard_block_size(cache->sectors_per_block,
2507 cache->origin_sectors);
2508 cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2509 cache->discard_block_size));
2510 cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2511 if (!cache->discard_bitset) {
2512 *error = "could not allocate discard bitset";
2513 goto bad;
2514 }
2515 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2516
2517 cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2518 if (IS_ERR(cache->copier)) {
2519 *error = "could not create kcopyd client";
2520 r = PTR_ERR(cache->copier);
2521 goto bad;
2522 }
2523
2524 cache->wq = alloc_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM, 0);
2525 if (!cache->wq) {
2526 *error = "could not create workqueue for metadata object";
2527 goto bad;
2528 }
2529 INIT_WORK(&cache->deferred_bio_worker, process_deferred_bios);
2530 INIT_WORK(&cache->migration_worker, check_migrations);
2531 INIT_DELAYED_WORK(&cache->waker, do_waker);
2532
2533 cache->prison = dm_bio_prison_create_v2(cache->wq);
2534 if (!cache->prison) {
2535 *error = "could not create bio prison";
2536 goto bad;
2537 }
2538
2539 r = mempool_init_slab_pool(&cache->migration_pool, MIGRATION_POOL_SIZE,
2540 migration_cache);
2541 if (r) {
2542 *error = "Error creating cache's migration mempool";
2543 goto bad;
2544 }
2545
2546 cache->need_tick_bio = true;
2547 cache->sized = false;
2548 cache->invalidate = false;
2549 cache->commit_requested = false;
2550 cache->loaded_mappings = false;
2551 cache->loaded_discards = false;
2552
2553 load_stats(cache);
2554
2555 atomic_set(&cache->stats.demotion, 0);
2556 atomic_set(&cache->stats.promotion, 0);
2557 atomic_set(&cache->stats.copies_avoided, 0);
2558 atomic_set(&cache->stats.cache_cell_clash, 0);
2559 atomic_set(&cache->stats.commit_count, 0);
2560 atomic_set(&cache->stats.discard_count, 0);
2561
2562 spin_lock_init(&cache->invalidation_lock);
2563 INIT_LIST_HEAD(&cache->invalidation_requests);
2564
2565 batcher_init(&cache->committer, commit_op, cache,
2566 issue_op, cache, cache->wq);
2567 dm_iot_init(&cache->tracker);
2568
2569 init_rwsem(&cache->background_work_lock);
2570 prevent_background_work(cache);
2571
2572 *result = cache;
2573 return 0;
2574 bad:
2575 __destroy(cache);
2576 return r;
2577 }
2578
copy_ctr_args(struct cache * cache,int argc,const char ** argv)2579 static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2580 {
2581 unsigned int i;
2582 const char **copy;
2583
2584 copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2585 if (!copy)
2586 return -ENOMEM;
2587 for (i = 0; i < argc; i++) {
2588 copy[i] = kstrdup(argv[i], GFP_KERNEL);
2589 if (!copy[i]) {
2590 while (i--)
2591 kfree(copy[i]);
2592 kfree(copy);
2593 return -ENOMEM;
2594 }
2595 }
2596
2597 cache->nr_ctr_args = argc;
2598 cache->ctr_args = copy;
2599
2600 return 0;
2601 }
2602
cache_ctr(struct dm_target * ti,unsigned int argc,char ** argv)2603 static int cache_ctr(struct dm_target *ti, unsigned int argc, char **argv)
2604 {
2605 int r = -EINVAL;
2606 struct cache_args *ca;
2607 struct cache *cache = NULL;
2608
2609 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2610 if (!ca) {
2611 ti->error = "Error allocating memory for cache";
2612 return -ENOMEM;
2613 }
2614 ca->ti = ti;
2615
2616 r = parse_cache_args(ca, argc, argv, &ti->error);
2617 if (r)
2618 goto out;
2619
2620 r = cache_create(ca, &cache);
2621 if (r)
2622 goto out;
2623
2624 r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2625 if (r) {
2626 __destroy(cache);
2627 goto out;
2628 }
2629
2630 ti->private = cache;
2631 out:
2632 destroy_cache_args(ca);
2633 return r;
2634 }
2635
2636 /*----------------------------------------------------------------*/
2637
cache_map(struct dm_target * ti,struct bio * bio)2638 static int cache_map(struct dm_target *ti, struct bio *bio)
2639 {
2640 struct cache *cache = ti->private;
2641
2642 int r;
2643 bool commit_needed;
2644 dm_oblock_t block = get_bio_block(cache, bio);
2645
2646 init_per_bio_data(bio);
2647 if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
2648 /*
2649 * This can only occur if the io goes to a partial block at
2650 * the end of the origin device. We don't cache these.
2651 * Just remap to the origin and carry on.
2652 */
2653 remap_to_origin(cache, bio);
2654 accounted_begin(cache, bio);
2655 return DM_MAPIO_REMAPPED;
2656 }
2657
2658 if (discard_or_flush(bio)) {
2659 defer_bio(cache, bio);
2660 return DM_MAPIO_SUBMITTED;
2661 }
2662
2663 r = map_bio(cache, bio, block, &commit_needed);
2664 if (commit_needed)
2665 schedule_commit(&cache->committer);
2666
2667 return r;
2668 }
2669
cache_end_io(struct dm_target * ti,struct bio * bio,blk_status_t * error)2670 static int cache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *error)
2671 {
2672 struct cache *cache = ti->private;
2673 unsigned long flags;
2674 struct per_bio_data *pb = get_per_bio_data(bio);
2675
2676 if (pb->tick) {
2677 policy_tick(cache->policy, false);
2678
2679 spin_lock_irqsave(&cache->lock, flags);
2680 cache->need_tick_bio = true;
2681 spin_unlock_irqrestore(&cache->lock, flags);
2682 }
2683
2684 bio_drop_shared_lock(cache, bio);
2685 accounted_complete(cache, bio);
2686
2687 return DM_ENDIO_DONE;
2688 }
2689
write_dirty_bitset(struct cache * cache)2690 static int write_dirty_bitset(struct cache *cache)
2691 {
2692 int r;
2693
2694 if (get_cache_mode(cache) >= CM_READ_ONLY)
2695 return -EINVAL;
2696
2697 r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset);
2698 if (r)
2699 metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r);
2700
2701 return r;
2702 }
2703
write_discard_bitset(struct cache * cache)2704 static int write_discard_bitset(struct cache *cache)
2705 {
2706 unsigned int i, r;
2707
2708 if (get_cache_mode(cache) >= CM_READ_ONLY)
2709 return -EINVAL;
2710
2711 r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2712 cache->discard_nr_blocks);
2713 if (r) {
2714 DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
2715 metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
2716 return r;
2717 }
2718
2719 for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2720 r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2721 is_discarded(cache, to_dblock(i)));
2722 if (r) {
2723 metadata_operation_failed(cache, "dm_cache_set_discard", r);
2724 return r;
2725 }
2726 }
2727
2728 return 0;
2729 }
2730
write_hints(struct cache * cache)2731 static int write_hints(struct cache *cache)
2732 {
2733 int r;
2734
2735 if (get_cache_mode(cache) >= CM_READ_ONLY)
2736 return -EINVAL;
2737
2738 r = dm_cache_write_hints(cache->cmd, cache->policy);
2739 if (r) {
2740 metadata_operation_failed(cache, "dm_cache_write_hints", r);
2741 return r;
2742 }
2743
2744 return 0;
2745 }
2746
2747 /*
2748 * returns true on success
2749 */
sync_metadata(struct cache * cache)2750 static bool sync_metadata(struct cache *cache)
2751 {
2752 int r1, r2, r3, r4;
2753
2754 r1 = write_dirty_bitset(cache);
2755 if (r1)
2756 DMERR("%s: could not write dirty bitset", cache_device_name(cache));
2757
2758 r2 = write_discard_bitset(cache);
2759 if (r2)
2760 DMERR("%s: could not write discard bitset", cache_device_name(cache));
2761
2762 save_stats(cache);
2763
2764 r3 = write_hints(cache);
2765 if (r3)
2766 DMERR("%s: could not write hints", cache_device_name(cache));
2767
2768 /*
2769 * If writing the above metadata failed, we still commit, but don't
2770 * set the clean shutdown flag. This will effectively force every
2771 * dirty bit to be set on reload.
2772 */
2773 r4 = commit(cache, !r1 && !r2 && !r3);
2774 if (r4)
2775 DMERR("%s: could not write cache metadata", cache_device_name(cache));
2776
2777 return !r1 && !r2 && !r3 && !r4;
2778 }
2779
cache_postsuspend(struct dm_target * ti)2780 static void cache_postsuspend(struct dm_target *ti)
2781 {
2782 struct cache *cache = ti->private;
2783
2784 prevent_background_work(cache);
2785 BUG_ON(atomic_read(&cache->nr_io_migrations));
2786
2787 cancel_delayed_work_sync(&cache->waker);
2788 drain_workqueue(cache->wq);
2789 WARN_ON(cache->tracker.in_flight);
2790
2791 /*
2792 * If it's a flush suspend there won't be any deferred bios, so this
2793 * call is harmless.
2794 */
2795 requeue_deferred_bios(cache);
2796
2797 if (get_cache_mode(cache) == CM_WRITE)
2798 (void) sync_metadata(cache);
2799 }
2800
load_mapping(void * context,dm_oblock_t oblock,dm_cblock_t cblock,bool dirty,uint32_t hint,bool hint_valid)2801 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2802 bool dirty, uint32_t hint, bool hint_valid)
2803 {
2804 struct cache *cache = context;
2805
2806 if (dirty) {
2807 set_bit(from_cblock(cblock), cache->dirty_bitset);
2808 atomic_inc(&cache->nr_dirty);
2809 } else
2810 clear_bit(from_cblock(cblock), cache->dirty_bitset);
2811
2812 return policy_load_mapping(cache->policy, oblock, cblock, dirty, hint, hint_valid);
2813 }
2814
2815 /*
2816 * The discard block size in the on disk metadata is not
2817 * necessarily the same as we're currently using. So we have to
2818 * be careful to only set the discarded attribute if we know it
2819 * covers a complete block of the new size.
2820 */
2821 struct discard_load_info {
2822 struct cache *cache;
2823
2824 /*
2825 * These blocks are sized using the on disk dblock size, rather
2826 * than the current one.
2827 */
2828 dm_block_t block_size;
2829 dm_block_t discard_begin, discard_end;
2830 };
2831
discard_load_info_init(struct cache * cache,struct discard_load_info * li)2832 static void discard_load_info_init(struct cache *cache,
2833 struct discard_load_info *li)
2834 {
2835 li->cache = cache;
2836 li->discard_begin = li->discard_end = 0;
2837 }
2838
set_discard_range(struct discard_load_info * li)2839 static void set_discard_range(struct discard_load_info *li)
2840 {
2841 sector_t b, e;
2842
2843 if (li->discard_begin == li->discard_end)
2844 return;
2845
2846 /*
2847 * Convert to sectors.
2848 */
2849 b = li->discard_begin * li->block_size;
2850 e = li->discard_end * li->block_size;
2851
2852 /*
2853 * Then convert back to the current dblock size.
2854 */
2855 b = dm_sector_div_up(b, li->cache->discard_block_size);
2856 sector_div(e, li->cache->discard_block_size);
2857
2858 /*
2859 * The origin may have shrunk, so we need to check we're still in
2860 * bounds.
2861 */
2862 if (e > from_dblock(li->cache->discard_nr_blocks))
2863 e = from_dblock(li->cache->discard_nr_blocks);
2864
2865 for (; b < e; b++)
2866 set_discard(li->cache, to_dblock(b));
2867 }
2868
load_discard(void * context,sector_t discard_block_size,dm_dblock_t dblock,bool discard)2869 static int load_discard(void *context, sector_t discard_block_size,
2870 dm_dblock_t dblock, bool discard)
2871 {
2872 struct discard_load_info *li = context;
2873
2874 li->block_size = discard_block_size;
2875
2876 if (discard) {
2877 if (from_dblock(dblock) == li->discard_end)
2878 /*
2879 * We're already in a discard range, just extend it.
2880 */
2881 li->discard_end = li->discard_end + 1ULL;
2882
2883 else {
2884 /*
2885 * Emit the old range and start a new one.
2886 */
2887 set_discard_range(li);
2888 li->discard_begin = from_dblock(dblock);
2889 li->discard_end = li->discard_begin + 1ULL;
2890 }
2891 } else {
2892 set_discard_range(li);
2893 li->discard_begin = li->discard_end = 0;
2894 }
2895
2896 return 0;
2897 }
2898
get_cache_dev_size(struct cache * cache)2899 static dm_cblock_t get_cache_dev_size(struct cache *cache)
2900 {
2901 sector_t size = get_dev_size(cache->cache_dev);
2902 (void) sector_div(size, cache->sectors_per_block);
2903 return to_cblock(size);
2904 }
2905
can_resize(struct cache * cache,dm_cblock_t new_size)2906 static bool can_resize(struct cache *cache, dm_cblock_t new_size)
2907 {
2908 if (from_cblock(new_size) > from_cblock(cache->cache_size)) {
2909 DMERR("%s: unable to extend cache due to missing cache table reload",
2910 cache_device_name(cache));
2911 return false;
2912 }
2913
2914 /*
2915 * We can't drop a dirty block when shrinking the cache.
2916 */
2917 if (cache->loaded_mappings) {
2918 new_size = to_cblock(find_next_bit(cache->dirty_bitset,
2919 from_cblock(cache->cache_size),
2920 from_cblock(new_size)));
2921 if (new_size != cache->cache_size) {
2922 DMERR("%s: unable to shrink cache; cache block %llu is dirty",
2923 cache_device_name(cache),
2924 (unsigned long long) from_cblock(new_size));
2925 return false;
2926 }
2927 }
2928
2929 return true;
2930 }
2931
resize_cache_dev(struct cache * cache,dm_cblock_t new_size)2932 static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
2933 {
2934 int r;
2935
2936 r = dm_cache_resize(cache->cmd, new_size);
2937 if (r) {
2938 DMERR("%s: could not resize cache metadata", cache_device_name(cache));
2939 metadata_operation_failed(cache, "dm_cache_resize", r);
2940 return r;
2941 }
2942
2943 set_cache_size(cache, new_size);
2944
2945 return 0;
2946 }
2947
cache_preresume(struct dm_target * ti)2948 static int cache_preresume(struct dm_target *ti)
2949 {
2950 int r = 0;
2951 struct cache *cache = ti->private;
2952 dm_cblock_t csize = get_cache_dev_size(cache);
2953
2954 /*
2955 * Check to see if the cache has resized.
2956 */
2957 if (!cache->sized || csize != cache->cache_size) {
2958 if (!can_resize(cache, csize))
2959 return -EINVAL;
2960
2961 r = resize_cache_dev(cache, csize);
2962 if (r)
2963 return r;
2964
2965 cache->sized = true;
2966 }
2967
2968 if (!cache->loaded_mappings) {
2969 r = dm_cache_load_mappings(cache->cmd, cache->policy,
2970 load_mapping, cache);
2971 if (r) {
2972 DMERR("%s: could not load cache mappings", cache_device_name(cache));
2973 metadata_operation_failed(cache, "dm_cache_load_mappings", r);
2974 return r;
2975 }
2976
2977 cache->loaded_mappings = true;
2978 }
2979
2980 if (!cache->loaded_discards) {
2981 struct discard_load_info li;
2982
2983 /*
2984 * The discard bitset could have been resized, or the
2985 * discard block size changed. To be safe we start by
2986 * setting every dblock to not discarded.
2987 */
2988 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2989
2990 discard_load_info_init(cache, &li);
2991 r = dm_cache_load_discards(cache->cmd, load_discard, &li);
2992 if (r) {
2993 DMERR("%s: could not load origin discards", cache_device_name(cache));
2994 metadata_operation_failed(cache, "dm_cache_load_discards", r);
2995 return r;
2996 }
2997 set_discard_range(&li);
2998
2999 cache->loaded_discards = true;
3000 }
3001
3002 return r;
3003 }
3004
cache_resume(struct dm_target * ti)3005 static void cache_resume(struct dm_target *ti)
3006 {
3007 struct cache *cache = ti->private;
3008
3009 cache->need_tick_bio = true;
3010 allow_background_work(cache);
3011 do_waker(&cache->waker.work);
3012 }
3013
emit_flags(struct cache * cache,char * result,unsigned int maxlen,ssize_t * sz_ptr)3014 static void emit_flags(struct cache *cache, char *result,
3015 unsigned int maxlen, ssize_t *sz_ptr)
3016 {
3017 ssize_t sz = *sz_ptr;
3018 struct cache_features *cf = &cache->features;
3019 unsigned int count = (cf->metadata_version == 2) + !cf->discard_passdown + 1;
3020
3021 DMEMIT("%u ", count);
3022
3023 if (cf->metadata_version == 2)
3024 DMEMIT("metadata2 ");
3025
3026 if (writethrough_mode(cache))
3027 DMEMIT("writethrough ");
3028
3029 else if (passthrough_mode(cache))
3030 DMEMIT("passthrough ");
3031
3032 else if (writeback_mode(cache))
3033 DMEMIT("writeback ");
3034
3035 else {
3036 DMEMIT("unknown ");
3037 DMERR("%s: internal error: unknown io mode: %d",
3038 cache_device_name(cache), (int) cf->io_mode);
3039 }
3040
3041 if (!cf->discard_passdown)
3042 DMEMIT("no_discard_passdown ");
3043
3044 *sz_ptr = sz;
3045 }
3046
3047 /*
3048 * Status format:
3049 *
3050 * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3051 * <cache block size> <#used cache blocks>/<#total cache blocks>
3052 * <#read hits> <#read misses> <#write hits> <#write misses>
3053 * <#demotions> <#promotions> <#dirty>
3054 * <#features> <features>*
3055 * <#core args> <core args>
3056 * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3057 */
cache_status(struct dm_target * ti,status_type_t type,unsigned int status_flags,char * result,unsigned int maxlen)3058 static void cache_status(struct dm_target *ti, status_type_t type,
3059 unsigned int status_flags, char *result, unsigned int maxlen)
3060 {
3061 int r = 0;
3062 unsigned int i;
3063 ssize_t sz = 0;
3064 dm_block_t nr_free_blocks_metadata = 0;
3065 dm_block_t nr_blocks_metadata = 0;
3066 char buf[BDEVNAME_SIZE];
3067 struct cache *cache = ti->private;
3068 dm_cblock_t residency;
3069 bool needs_check;
3070
3071 switch (type) {
3072 case STATUSTYPE_INFO:
3073 if (get_cache_mode(cache) == CM_FAIL) {
3074 DMEMIT("Fail");
3075 break;
3076 }
3077
3078 /* Commit to ensure statistics aren't out-of-date */
3079 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3080 (void) commit(cache, false);
3081
3082 r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3083 if (r) {
3084 DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3085 cache_device_name(cache), r);
3086 goto err;
3087 }
3088
3089 r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3090 if (r) {
3091 DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3092 cache_device_name(cache), r);
3093 goto err;
3094 }
3095
3096 residency = policy_residency(cache->policy);
3097
3098 DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ",
3099 (unsigned int)DM_CACHE_METADATA_BLOCK_SIZE,
3100 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3101 (unsigned long long)nr_blocks_metadata,
3102 (unsigned long long)cache->sectors_per_block,
3103 (unsigned long long) from_cblock(residency),
3104 (unsigned long long) from_cblock(cache->cache_size),
3105 (unsigned int) atomic_read(&cache->stats.read_hit),
3106 (unsigned int) atomic_read(&cache->stats.read_miss),
3107 (unsigned int) atomic_read(&cache->stats.write_hit),
3108 (unsigned int) atomic_read(&cache->stats.write_miss),
3109 (unsigned int) atomic_read(&cache->stats.demotion),
3110 (unsigned int) atomic_read(&cache->stats.promotion),
3111 (unsigned long) atomic_read(&cache->nr_dirty));
3112
3113 emit_flags(cache, result, maxlen, &sz);
3114
3115 DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3116
3117 DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3118 if (sz < maxlen) {
3119 r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3120 if (r)
3121 DMERR("%s: policy_emit_config_values returned %d",
3122 cache_device_name(cache), r);
3123 }
3124
3125 if (get_cache_mode(cache) == CM_READ_ONLY)
3126 DMEMIT("ro ");
3127 else
3128 DMEMIT("rw ");
3129
3130 r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
3131
3132 if (r || needs_check)
3133 DMEMIT("needs_check ");
3134 else
3135 DMEMIT("- ");
3136
3137 break;
3138
3139 case STATUSTYPE_TABLE:
3140 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3141 DMEMIT("%s ", buf);
3142 format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3143 DMEMIT("%s ", buf);
3144 format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3145 DMEMIT("%s", buf);
3146
3147 for (i = 0; i < cache->nr_ctr_args - 1; i++)
3148 DMEMIT(" %s", cache->ctr_args[i]);
3149 if (cache->nr_ctr_args)
3150 DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3151 break;
3152
3153 case STATUSTYPE_IMA:
3154 DMEMIT_TARGET_NAME_VERSION(ti->type);
3155 if (get_cache_mode(cache) == CM_FAIL)
3156 DMEMIT(",metadata_mode=fail");
3157 else if (get_cache_mode(cache) == CM_READ_ONLY)
3158 DMEMIT(",metadata_mode=ro");
3159 else
3160 DMEMIT(",metadata_mode=rw");
3161
3162 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3163 DMEMIT(",cache_metadata_device=%s", buf);
3164 format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3165 DMEMIT(",cache_device=%s", buf);
3166 format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3167 DMEMIT(",cache_origin_device=%s", buf);
3168 DMEMIT(",writethrough=%c", writethrough_mode(cache) ? 'y' : 'n');
3169 DMEMIT(",writeback=%c", writeback_mode(cache) ? 'y' : 'n');
3170 DMEMIT(",passthrough=%c", passthrough_mode(cache) ? 'y' : 'n');
3171 DMEMIT(",metadata2=%c", cache->features.metadata_version == 2 ? 'y' : 'n');
3172 DMEMIT(",no_discard_passdown=%c", cache->features.discard_passdown ? 'n' : 'y');
3173 DMEMIT(";");
3174 break;
3175 }
3176
3177 return;
3178
3179 err:
3180 DMEMIT("Error");
3181 }
3182
3183 /*
3184 * Defines a range of cblocks, begin to (end - 1) are in the range. end is
3185 * the one-past-the-end value.
3186 */
3187 struct cblock_range {
3188 dm_cblock_t begin;
3189 dm_cblock_t end;
3190 };
3191
3192 /*
3193 * A cache block range can take two forms:
3194 *
3195 * i) A single cblock, eg. '3456'
3196 * ii) A begin and end cblock with a dash between, eg. 123-234
3197 */
parse_cblock_range(struct cache * cache,const char * str,struct cblock_range * result)3198 static int parse_cblock_range(struct cache *cache, const char *str,
3199 struct cblock_range *result)
3200 {
3201 char dummy;
3202 uint64_t b, e;
3203 int r;
3204
3205 /*
3206 * Try and parse form (ii) first.
3207 */
3208 r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3209 if (r < 0)
3210 return r;
3211
3212 if (r == 2) {
3213 result->begin = to_cblock(b);
3214 result->end = to_cblock(e);
3215 return 0;
3216 }
3217
3218 /*
3219 * That didn't work, try form (i).
3220 */
3221 r = sscanf(str, "%llu%c", &b, &dummy);
3222 if (r < 0)
3223 return r;
3224
3225 if (r == 1) {
3226 result->begin = to_cblock(b);
3227 result->end = to_cblock(from_cblock(result->begin) + 1u);
3228 return 0;
3229 }
3230
3231 DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3232 return -EINVAL;
3233 }
3234
validate_cblock_range(struct cache * cache,struct cblock_range * range)3235 static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3236 {
3237 uint64_t b = from_cblock(range->begin);
3238 uint64_t e = from_cblock(range->end);
3239 uint64_t n = from_cblock(cache->cache_size);
3240
3241 if (b >= n) {
3242 DMERR("%s: begin cblock out of range: %llu >= %llu",
3243 cache_device_name(cache), b, n);
3244 return -EINVAL;
3245 }
3246
3247 if (e > n) {
3248 DMERR("%s: end cblock out of range: %llu > %llu",
3249 cache_device_name(cache), e, n);
3250 return -EINVAL;
3251 }
3252
3253 if (b >= e) {
3254 DMERR("%s: invalid cblock range: %llu >= %llu",
3255 cache_device_name(cache), b, e);
3256 return -EINVAL;
3257 }
3258
3259 return 0;
3260 }
3261
cblock_succ(dm_cblock_t b)3262 static inline dm_cblock_t cblock_succ(dm_cblock_t b)
3263 {
3264 return to_cblock(from_cblock(b) + 1);
3265 }
3266
request_invalidation(struct cache * cache,struct cblock_range * range)3267 static int request_invalidation(struct cache *cache, struct cblock_range *range)
3268 {
3269 int r = 0;
3270
3271 /*
3272 * We don't need to do any locking here because we know we're in
3273 * passthrough mode. There's is potential for a race between an
3274 * invalidation triggered by an io and an invalidation message. This
3275 * is harmless, we must not worry if the policy call fails.
3276 */
3277 while (range->begin != range->end) {
3278 r = invalidate_cblock(cache, range->begin);
3279 if (r)
3280 return r;
3281
3282 range->begin = cblock_succ(range->begin);
3283 }
3284
3285 cache->commit_requested = true;
3286 return r;
3287 }
3288
process_invalidate_cblocks_message(struct cache * cache,unsigned int count,const char ** cblock_ranges)3289 static int process_invalidate_cblocks_message(struct cache *cache, unsigned int count,
3290 const char **cblock_ranges)
3291 {
3292 int r = 0;
3293 unsigned int i;
3294 struct cblock_range range;
3295
3296 if (!passthrough_mode(cache)) {
3297 DMERR("%s: cache has to be in passthrough mode for invalidation",
3298 cache_device_name(cache));
3299 return -EPERM;
3300 }
3301
3302 for (i = 0; i < count; i++) {
3303 r = parse_cblock_range(cache, cblock_ranges[i], &range);
3304 if (r)
3305 break;
3306
3307 r = validate_cblock_range(cache, &range);
3308 if (r)
3309 break;
3310
3311 /*
3312 * Pass begin and end origin blocks to the worker and wake it.
3313 */
3314 r = request_invalidation(cache, &range);
3315 if (r)
3316 break;
3317 }
3318
3319 return r;
3320 }
3321
3322 /*
3323 * Supports
3324 * "<key> <value>"
3325 * and
3326 * "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3327 *
3328 * The key migration_threshold is supported by the cache target core.
3329 */
cache_message(struct dm_target * ti,unsigned int argc,char ** argv,char * result,unsigned int maxlen)3330 static int cache_message(struct dm_target *ti, unsigned int argc, char **argv,
3331 char *result, unsigned int maxlen)
3332 {
3333 struct cache *cache = ti->private;
3334
3335 if (!argc)
3336 return -EINVAL;
3337
3338 if (get_cache_mode(cache) >= CM_READ_ONLY) {
3339 DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3340 cache_device_name(cache));
3341 return -EOPNOTSUPP;
3342 }
3343
3344 if (!strcasecmp(argv[0], "invalidate_cblocks"))
3345 return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3346
3347 if (argc != 2)
3348 return -EINVAL;
3349
3350 return set_config_value(cache, argv[0], argv[1]);
3351 }
3352
cache_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)3353 static int cache_iterate_devices(struct dm_target *ti,
3354 iterate_devices_callout_fn fn, void *data)
3355 {
3356 int r = 0;
3357 struct cache *cache = ti->private;
3358
3359 r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3360 if (!r)
3361 r = fn(ti, cache->origin_dev, 0, ti->len, data);
3362
3363 return r;
3364 }
3365
3366 /*
3367 * If discard_passdown was enabled verify that the origin device
3368 * supports discards. Disable discard_passdown if not.
3369 */
disable_passdown_if_not_supported(struct cache * cache)3370 static void disable_passdown_if_not_supported(struct cache *cache)
3371 {
3372 struct block_device *origin_bdev = cache->origin_dev->bdev;
3373 struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3374 const char *reason = NULL;
3375
3376 if (!cache->features.discard_passdown)
3377 return;
3378
3379 if (!bdev_max_discard_sectors(origin_bdev))
3380 reason = "discard unsupported";
3381
3382 else if (origin_limits->max_discard_sectors < cache->sectors_per_block)
3383 reason = "max discard sectors smaller than a block";
3384
3385 if (reason) {
3386 DMWARN("Origin device (%pg) %s: Disabling discard passdown.",
3387 origin_bdev, reason);
3388 cache->features.discard_passdown = false;
3389 }
3390 }
3391
set_discard_limits(struct cache * cache,struct queue_limits * limits)3392 static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3393 {
3394 struct block_device *origin_bdev = cache->origin_dev->bdev;
3395 struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3396
3397 if (!cache->features.discard_passdown) {
3398 /* No passdown is done so setting own virtual limits */
3399 limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3400 cache->origin_sectors);
3401 limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3402 return;
3403 }
3404
3405 /*
3406 * cache_iterate_devices() is stacking both origin and fast device limits
3407 * but discards aren't passed to fast device, so inherit origin's limits.
3408 */
3409 limits->max_discard_sectors = origin_limits->max_discard_sectors;
3410 limits->max_hw_discard_sectors = origin_limits->max_hw_discard_sectors;
3411 limits->discard_granularity = origin_limits->discard_granularity;
3412 limits->discard_alignment = origin_limits->discard_alignment;
3413 limits->discard_misaligned = origin_limits->discard_misaligned;
3414 }
3415
cache_io_hints(struct dm_target * ti,struct queue_limits * limits)3416 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3417 {
3418 struct cache *cache = ti->private;
3419 uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3420
3421 /*
3422 * If the system-determined stacked limits are compatible with the
3423 * cache's blocksize (io_opt is a factor) do not override them.
3424 */
3425 if (io_opt_sectors < cache->sectors_per_block ||
3426 do_div(io_opt_sectors, cache->sectors_per_block)) {
3427 blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3428 blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3429 }
3430
3431 disable_passdown_if_not_supported(cache);
3432 set_discard_limits(cache, limits);
3433 }
3434
3435 /*----------------------------------------------------------------*/
3436
3437 static struct target_type cache_target = {
3438 .name = "cache",
3439 .version = {2, 2, 0},
3440 .module = THIS_MODULE,
3441 .ctr = cache_ctr,
3442 .dtr = cache_dtr,
3443 .map = cache_map,
3444 .end_io = cache_end_io,
3445 .postsuspend = cache_postsuspend,
3446 .preresume = cache_preresume,
3447 .resume = cache_resume,
3448 .status = cache_status,
3449 .message = cache_message,
3450 .iterate_devices = cache_iterate_devices,
3451 .io_hints = cache_io_hints,
3452 };
3453
dm_cache_init(void)3454 static int __init dm_cache_init(void)
3455 {
3456 int r;
3457
3458 migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3459 if (!migration_cache) {
3460 r = -ENOMEM;
3461 goto err;
3462 }
3463
3464 btracker_work_cache = kmem_cache_create("dm_cache_bt_work",
3465 sizeof(struct bt_work), __alignof__(struct bt_work), 0, NULL);
3466 if (!btracker_work_cache) {
3467 r = -ENOMEM;
3468 goto err;
3469 }
3470
3471 r = dm_register_target(&cache_target);
3472 if (r) {
3473 goto err;
3474 }
3475
3476 return 0;
3477
3478 err:
3479 kmem_cache_destroy(migration_cache);
3480 kmem_cache_destroy(btracker_work_cache);
3481 return r;
3482 }
3483
dm_cache_exit(void)3484 static void __exit dm_cache_exit(void)
3485 {
3486 dm_unregister_target(&cache_target);
3487 kmem_cache_destroy(migration_cache);
3488 kmem_cache_destroy(btracker_work_cache);
3489 }
3490
3491 module_init(dm_cache_init);
3492 module_exit(dm_cache_exit);
3493
3494 MODULE_DESCRIPTION(DM_NAME " cache target");
3495 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3496 MODULE_LICENSE("GPL");
3497