1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* 3 * x86_64/AVX2/AES-NI assembler implementation of Camellia 4 * 5 * Copyright © 2013 Jussi Kivilinna <jussi.kivilinna@iki.fi> 6 */ 7 8#include <linux/linkage.h> 9#include <asm/frame.h> 10 11#define CAMELLIA_TABLE_BYTE_LEN 272 12 13/* struct camellia_ctx: */ 14#define key_table 0 15#define key_length CAMELLIA_TABLE_BYTE_LEN 16 17/* register macros */ 18#define CTX %rdi 19#define RIO %r8 20 21/********************************************************************** 22 helper macros 23 **********************************************************************/ 24#define filter_8bit(x, lo_t, hi_t, mask4bit, tmp0) \ 25 vpand x, mask4bit, tmp0; \ 26 vpandn x, mask4bit, x; \ 27 vpsrld $4, x, x; \ 28 \ 29 vpshufb tmp0, lo_t, tmp0; \ 30 vpshufb x, hi_t, x; \ 31 vpxor tmp0, x, x; 32 33#define ymm0_x xmm0 34#define ymm1_x xmm1 35#define ymm2_x xmm2 36#define ymm3_x xmm3 37#define ymm4_x xmm4 38#define ymm5_x xmm5 39#define ymm6_x xmm6 40#define ymm7_x xmm7 41#define ymm8_x xmm8 42#define ymm9_x xmm9 43#define ymm10_x xmm10 44#define ymm11_x xmm11 45#define ymm12_x xmm12 46#define ymm13_x xmm13 47#define ymm14_x xmm14 48#define ymm15_x xmm15 49 50/********************************************************************** 51 32-way camellia 52 **********************************************************************/ 53 54/* 55 * IN: 56 * x0..x7: byte-sliced AB state 57 * mem_cd: register pointer storing CD state 58 * key: index for key material 59 * OUT: 60 * x0..x7: new byte-sliced CD state 61 */ 62#define roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, t0, t1, t2, t3, t4, t5, t6, \ 63 t7, mem_cd, key) \ 64 /* \ 65 * S-function with AES subbytes \ 66 */ \ 67 vbroadcasti128 .Linv_shift_row(%rip), t4; \ 68 vpbroadcastd .L0f0f0f0f(%rip), t7; \ 69 vbroadcasti128 .Lpre_tf_lo_s1(%rip), t5; \ 70 vbroadcasti128 .Lpre_tf_hi_s1(%rip), t6; \ 71 vbroadcasti128 .Lpre_tf_lo_s4(%rip), t2; \ 72 vbroadcasti128 .Lpre_tf_hi_s4(%rip), t3; \ 73 \ 74 /* AES inverse shift rows */ \ 75 vpshufb t4, x0, x0; \ 76 vpshufb t4, x7, x7; \ 77 vpshufb t4, x3, x3; \ 78 vpshufb t4, x6, x6; \ 79 vpshufb t4, x2, x2; \ 80 vpshufb t4, x5, x5; \ 81 vpshufb t4, x1, x1; \ 82 vpshufb t4, x4, x4; \ 83 \ 84 /* prefilter sboxes 1, 2 and 3 */ \ 85 /* prefilter sbox 4 */ \ 86 filter_8bit(x0, t5, t6, t7, t4); \ 87 filter_8bit(x7, t5, t6, t7, t4); \ 88 vextracti128 $1, x0, t0##_x; \ 89 vextracti128 $1, x7, t1##_x; \ 90 filter_8bit(x3, t2, t3, t7, t4); \ 91 filter_8bit(x6, t2, t3, t7, t4); \ 92 vextracti128 $1, x3, t3##_x; \ 93 vextracti128 $1, x6, t2##_x; \ 94 filter_8bit(x2, t5, t6, t7, t4); \ 95 filter_8bit(x5, t5, t6, t7, t4); \ 96 filter_8bit(x1, t5, t6, t7, t4); \ 97 filter_8bit(x4, t5, t6, t7, t4); \ 98 \ 99 vpxor t4##_x, t4##_x, t4##_x; \ 100 \ 101 /* AES subbytes + AES shift rows */ \ 102 vextracti128 $1, x2, t6##_x; \ 103 vextracti128 $1, x5, t5##_x; \ 104 vaesenclast t4##_x, x0##_x, x0##_x; \ 105 vaesenclast t4##_x, t0##_x, t0##_x; \ 106 vinserti128 $1, t0##_x, x0, x0; \ 107 vaesenclast t4##_x, x7##_x, x7##_x; \ 108 vaesenclast t4##_x, t1##_x, t1##_x; \ 109 vinserti128 $1, t1##_x, x7, x7; \ 110 vaesenclast t4##_x, x3##_x, x3##_x; \ 111 vaesenclast t4##_x, t3##_x, t3##_x; \ 112 vinserti128 $1, t3##_x, x3, x3; \ 113 vaesenclast t4##_x, x6##_x, x6##_x; \ 114 vaesenclast t4##_x, t2##_x, t2##_x; \ 115 vinserti128 $1, t2##_x, x6, x6; \ 116 vextracti128 $1, x1, t3##_x; \ 117 vextracti128 $1, x4, t2##_x; \ 118 vbroadcasti128 .Lpost_tf_lo_s1(%rip), t0; \ 119 vbroadcasti128 .Lpost_tf_hi_s1(%rip), t1; \ 120 vaesenclast t4##_x, x2##_x, x2##_x; \ 121 vaesenclast t4##_x, t6##_x, t6##_x; \ 122 vinserti128 $1, t6##_x, x2, x2; \ 123 vaesenclast t4##_x, x5##_x, x5##_x; \ 124 vaesenclast t4##_x, t5##_x, t5##_x; \ 125 vinserti128 $1, t5##_x, x5, x5; \ 126 vaesenclast t4##_x, x1##_x, x1##_x; \ 127 vaesenclast t4##_x, t3##_x, t3##_x; \ 128 vinserti128 $1, t3##_x, x1, x1; \ 129 vaesenclast t4##_x, x4##_x, x4##_x; \ 130 vaesenclast t4##_x, t2##_x, t2##_x; \ 131 vinserti128 $1, t2##_x, x4, x4; \ 132 \ 133 /* postfilter sboxes 1 and 4 */ \ 134 vbroadcasti128 .Lpost_tf_lo_s3(%rip), t2; \ 135 vbroadcasti128 .Lpost_tf_hi_s3(%rip), t3; \ 136 filter_8bit(x0, t0, t1, t7, t6); \ 137 filter_8bit(x7, t0, t1, t7, t6); \ 138 filter_8bit(x3, t0, t1, t7, t6); \ 139 filter_8bit(x6, t0, t1, t7, t6); \ 140 \ 141 /* postfilter sbox 3 */ \ 142 vbroadcasti128 .Lpost_tf_lo_s2(%rip), t4; \ 143 vbroadcasti128 .Lpost_tf_hi_s2(%rip), t5; \ 144 filter_8bit(x2, t2, t3, t7, t6); \ 145 filter_8bit(x5, t2, t3, t7, t6); \ 146 \ 147 vpbroadcastq key, t0; /* higher 64-bit duplicate ignored */ \ 148 \ 149 /* postfilter sbox 2 */ \ 150 filter_8bit(x1, t4, t5, t7, t2); \ 151 filter_8bit(x4, t4, t5, t7, t2); \ 152 vpxor t7, t7, t7; \ 153 \ 154 vpsrldq $1, t0, t1; \ 155 vpsrldq $2, t0, t2; \ 156 vpshufb t7, t1, t1; \ 157 vpsrldq $3, t0, t3; \ 158 \ 159 /* P-function */ \ 160 vpxor x5, x0, x0; \ 161 vpxor x6, x1, x1; \ 162 vpxor x7, x2, x2; \ 163 vpxor x4, x3, x3; \ 164 \ 165 vpshufb t7, t2, t2; \ 166 vpsrldq $4, t0, t4; \ 167 vpshufb t7, t3, t3; \ 168 vpsrldq $5, t0, t5; \ 169 vpshufb t7, t4, t4; \ 170 \ 171 vpxor x2, x4, x4; \ 172 vpxor x3, x5, x5; \ 173 vpxor x0, x6, x6; \ 174 vpxor x1, x7, x7; \ 175 \ 176 vpsrldq $6, t0, t6; \ 177 vpshufb t7, t5, t5; \ 178 vpshufb t7, t6, t6; \ 179 \ 180 vpxor x7, x0, x0; \ 181 vpxor x4, x1, x1; \ 182 vpxor x5, x2, x2; \ 183 vpxor x6, x3, x3; \ 184 \ 185 vpxor x3, x4, x4; \ 186 vpxor x0, x5, x5; \ 187 vpxor x1, x6, x6; \ 188 vpxor x2, x7, x7; /* note: high and low parts swapped */ \ 189 \ 190 /* Add key material and result to CD (x becomes new CD) */ \ 191 \ 192 vpxor t6, x1, x1; \ 193 vpxor 5 * 32(mem_cd), x1, x1; \ 194 \ 195 vpsrldq $7, t0, t6; \ 196 vpshufb t7, t0, t0; \ 197 vpshufb t7, t6, t7; \ 198 \ 199 vpxor t7, x0, x0; \ 200 vpxor 4 * 32(mem_cd), x0, x0; \ 201 \ 202 vpxor t5, x2, x2; \ 203 vpxor 6 * 32(mem_cd), x2, x2; \ 204 \ 205 vpxor t4, x3, x3; \ 206 vpxor 7 * 32(mem_cd), x3, x3; \ 207 \ 208 vpxor t3, x4, x4; \ 209 vpxor 0 * 32(mem_cd), x4, x4; \ 210 \ 211 vpxor t2, x5, x5; \ 212 vpxor 1 * 32(mem_cd), x5, x5; \ 213 \ 214 vpxor t1, x6, x6; \ 215 vpxor 2 * 32(mem_cd), x6, x6; \ 216 \ 217 vpxor t0, x7, x7; \ 218 vpxor 3 * 32(mem_cd), x7, x7; 219 220/* 221 * Size optimization... with inlined roundsm32 binary would be over 5 times 222 * larger and would only marginally faster. 223 */ 224SYM_FUNC_START_LOCAL(roundsm32_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd) 225 roundsm32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, 226 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, %ymm15, 227 %rcx, (%r9)); 228 RET; 229SYM_FUNC_END(roundsm32_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd) 230 231SYM_FUNC_START_LOCAL(roundsm32_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab) 232 roundsm32(%ymm4, %ymm5, %ymm6, %ymm7, %ymm0, %ymm1, %ymm2, %ymm3, 233 %ymm12, %ymm13, %ymm14, %ymm15, %ymm8, %ymm9, %ymm10, %ymm11, 234 %rax, (%r9)); 235 RET; 236SYM_FUNC_END(roundsm32_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab) 237 238/* 239 * IN/OUT: 240 * x0..x7: byte-sliced AB state preloaded 241 * mem_ab: byte-sliced AB state in memory 242 * mem_cb: byte-sliced CD state in memory 243 */ 244#define two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ 245 y6, y7, mem_ab, mem_cd, i, dir, store_ab) \ 246 leaq (key_table + (i) * 8)(CTX), %r9; \ 247 call roundsm32_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd; \ 248 \ 249 vmovdqu x0, 4 * 32(mem_cd); \ 250 vmovdqu x1, 5 * 32(mem_cd); \ 251 vmovdqu x2, 6 * 32(mem_cd); \ 252 vmovdqu x3, 7 * 32(mem_cd); \ 253 vmovdqu x4, 0 * 32(mem_cd); \ 254 vmovdqu x5, 1 * 32(mem_cd); \ 255 vmovdqu x6, 2 * 32(mem_cd); \ 256 vmovdqu x7, 3 * 32(mem_cd); \ 257 \ 258 leaq (key_table + ((i) + (dir)) * 8)(CTX), %r9; \ 259 call roundsm32_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab; \ 260 \ 261 store_ab(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab); 262 263#define dummy_store(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) /* do nothing */ 264 265#define store_ab_state(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) \ 266 /* Store new AB state */ \ 267 vmovdqu x4, 4 * 32(mem_ab); \ 268 vmovdqu x5, 5 * 32(mem_ab); \ 269 vmovdqu x6, 6 * 32(mem_ab); \ 270 vmovdqu x7, 7 * 32(mem_ab); \ 271 vmovdqu x0, 0 * 32(mem_ab); \ 272 vmovdqu x1, 1 * 32(mem_ab); \ 273 vmovdqu x2, 2 * 32(mem_ab); \ 274 vmovdqu x3, 3 * 32(mem_ab); 275 276#define enc_rounds32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ 277 y6, y7, mem_ab, mem_cd, i) \ 278 two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ 279 y6, y7, mem_ab, mem_cd, (i) + 2, 1, store_ab_state); \ 280 two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ 281 y6, y7, mem_ab, mem_cd, (i) + 4, 1, store_ab_state); \ 282 two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ 283 y6, y7, mem_ab, mem_cd, (i) + 6, 1, dummy_store); 284 285#define dec_rounds32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ 286 y6, y7, mem_ab, mem_cd, i) \ 287 two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ 288 y6, y7, mem_ab, mem_cd, (i) + 7, -1, store_ab_state); \ 289 two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ 290 y6, y7, mem_ab, mem_cd, (i) + 5, -1, store_ab_state); \ 291 two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ 292 y6, y7, mem_ab, mem_cd, (i) + 3, -1, dummy_store); 293 294/* 295 * IN: 296 * v0..3: byte-sliced 32-bit integers 297 * OUT: 298 * v0..3: (IN <<< 1) 299 */ 300#define rol32_1_32(v0, v1, v2, v3, t0, t1, t2, zero) \ 301 vpcmpgtb v0, zero, t0; \ 302 vpaddb v0, v0, v0; \ 303 vpabsb t0, t0; \ 304 \ 305 vpcmpgtb v1, zero, t1; \ 306 vpaddb v1, v1, v1; \ 307 vpabsb t1, t1; \ 308 \ 309 vpcmpgtb v2, zero, t2; \ 310 vpaddb v2, v2, v2; \ 311 vpabsb t2, t2; \ 312 \ 313 vpor t0, v1, v1; \ 314 \ 315 vpcmpgtb v3, zero, t0; \ 316 vpaddb v3, v3, v3; \ 317 vpabsb t0, t0; \ 318 \ 319 vpor t1, v2, v2; \ 320 vpor t2, v3, v3; \ 321 vpor t0, v0, v0; 322 323/* 324 * IN: 325 * r: byte-sliced AB state in memory 326 * l: byte-sliced CD state in memory 327 * OUT: 328 * x0..x7: new byte-sliced CD state 329 */ 330#define fls32(l, l0, l1, l2, l3, l4, l5, l6, l7, r, t0, t1, t2, t3, tt0, \ 331 tt1, tt2, tt3, kll, klr, krl, krr) \ 332 /* \ 333 * t0 = kll; \ 334 * t0 &= ll; \ 335 * lr ^= rol32(t0, 1); \ 336 */ \ 337 vpbroadcastd kll, t0; /* only lowest 32-bit used */ \ 338 vpxor tt0, tt0, tt0; \ 339 vpshufb tt0, t0, t3; \ 340 vpsrldq $1, t0, t0; \ 341 vpshufb tt0, t0, t2; \ 342 vpsrldq $1, t0, t0; \ 343 vpshufb tt0, t0, t1; \ 344 vpsrldq $1, t0, t0; \ 345 vpshufb tt0, t0, t0; \ 346 \ 347 vpand l0, t0, t0; \ 348 vpand l1, t1, t1; \ 349 vpand l2, t2, t2; \ 350 vpand l3, t3, t3; \ 351 \ 352 rol32_1_32(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \ 353 \ 354 vpxor l4, t0, l4; \ 355 vpbroadcastd krr, t0; /* only lowest 32-bit used */ \ 356 vmovdqu l4, 4 * 32(l); \ 357 vpxor l5, t1, l5; \ 358 vmovdqu l5, 5 * 32(l); \ 359 vpxor l6, t2, l6; \ 360 vmovdqu l6, 6 * 32(l); \ 361 vpxor l7, t3, l7; \ 362 vmovdqu l7, 7 * 32(l); \ 363 \ 364 /* \ 365 * t2 = krr; \ 366 * t2 |= rr; \ 367 * rl ^= t2; \ 368 */ \ 369 \ 370 vpshufb tt0, t0, t3; \ 371 vpsrldq $1, t0, t0; \ 372 vpshufb tt0, t0, t2; \ 373 vpsrldq $1, t0, t0; \ 374 vpshufb tt0, t0, t1; \ 375 vpsrldq $1, t0, t0; \ 376 vpshufb tt0, t0, t0; \ 377 \ 378 vpor 4 * 32(r), t0, t0; \ 379 vpor 5 * 32(r), t1, t1; \ 380 vpor 6 * 32(r), t2, t2; \ 381 vpor 7 * 32(r), t3, t3; \ 382 \ 383 vpxor 0 * 32(r), t0, t0; \ 384 vpxor 1 * 32(r), t1, t1; \ 385 vpxor 2 * 32(r), t2, t2; \ 386 vpxor 3 * 32(r), t3, t3; \ 387 vmovdqu t0, 0 * 32(r); \ 388 vpbroadcastd krl, t0; /* only lowest 32-bit used */ \ 389 vmovdqu t1, 1 * 32(r); \ 390 vmovdqu t2, 2 * 32(r); \ 391 vmovdqu t3, 3 * 32(r); \ 392 \ 393 /* \ 394 * t2 = krl; \ 395 * t2 &= rl; \ 396 * rr ^= rol32(t2, 1); \ 397 */ \ 398 vpshufb tt0, t0, t3; \ 399 vpsrldq $1, t0, t0; \ 400 vpshufb tt0, t0, t2; \ 401 vpsrldq $1, t0, t0; \ 402 vpshufb tt0, t0, t1; \ 403 vpsrldq $1, t0, t0; \ 404 vpshufb tt0, t0, t0; \ 405 \ 406 vpand 0 * 32(r), t0, t0; \ 407 vpand 1 * 32(r), t1, t1; \ 408 vpand 2 * 32(r), t2, t2; \ 409 vpand 3 * 32(r), t3, t3; \ 410 \ 411 rol32_1_32(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \ 412 \ 413 vpxor 4 * 32(r), t0, t0; \ 414 vpxor 5 * 32(r), t1, t1; \ 415 vpxor 6 * 32(r), t2, t2; \ 416 vpxor 7 * 32(r), t3, t3; \ 417 vmovdqu t0, 4 * 32(r); \ 418 vpbroadcastd klr, t0; /* only lowest 32-bit used */ \ 419 vmovdqu t1, 5 * 32(r); \ 420 vmovdqu t2, 6 * 32(r); \ 421 vmovdqu t3, 7 * 32(r); \ 422 \ 423 /* \ 424 * t0 = klr; \ 425 * t0 |= lr; \ 426 * ll ^= t0; \ 427 */ \ 428 \ 429 vpshufb tt0, t0, t3; \ 430 vpsrldq $1, t0, t0; \ 431 vpshufb tt0, t0, t2; \ 432 vpsrldq $1, t0, t0; \ 433 vpshufb tt0, t0, t1; \ 434 vpsrldq $1, t0, t0; \ 435 vpshufb tt0, t0, t0; \ 436 \ 437 vpor l4, t0, t0; \ 438 vpor l5, t1, t1; \ 439 vpor l6, t2, t2; \ 440 vpor l7, t3, t3; \ 441 \ 442 vpxor l0, t0, l0; \ 443 vmovdqu l0, 0 * 32(l); \ 444 vpxor l1, t1, l1; \ 445 vmovdqu l1, 1 * 32(l); \ 446 vpxor l2, t2, l2; \ 447 vmovdqu l2, 2 * 32(l); \ 448 vpxor l3, t3, l3; \ 449 vmovdqu l3, 3 * 32(l); 450 451#define transpose_4x4(x0, x1, x2, x3, t1, t2) \ 452 vpunpckhdq x1, x0, t2; \ 453 vpunpckldq x1, x0, x0; \ 454 \ 455 vpunpckldq x3, x2, t1; \ 456 vpunpckhdq x3, x2, x2; \ 457 \ 458 vpunpckhqdq t1, x0, x1; \ 459 vpunpcklqdq t1, x0, x0; \ 460 \ 461 vpunpckhqdq x2, t2, x3; \ 462 vpunpcklqdq x2, t2, x2; 463 464#define byteslice_16x16b_fast(a0, b0, c0, d0, a1, b1, c1, d1, a2, b2, c2, d2, \ 465 a3, b3, c3, d3, st0, st1) \ 466 vmovdqu d2, st0; \ 467 vmovdqu d3, st1; \ 468 transpose_4x4(a0, a1, a2, a3, d2, d3); \ 469 transpose_4x4(b0, b1, b2, b3, d2, d3); \ 470 vmovdqu st0, d2; \ 471 vmovdqu st1, d3; \ 472 \ 473 vmovdqu a0, st0; \ 474 vmovdqu a1, st1; \ 475 transpose_4x4(c0, c1, c2, c3, a0, a1); \ 476 transpose_4x4(d0, d1, d2, d3, a0, a1); \ 477 \ 478 vbroadcasti128 .Lshufb_16x16b(%rip), a0; \ 479 vmovdqu st1, a1; \ 480 vpshufb a0, a2, a2; \ 481 vpshufb a0, a3, a3; \ 482 vpshufb a0, b0, b0; \ 483 vpshufb a0, b1, b1; \ 484 vpshufb a0, b2, b2; \ 485 vpshufb a0, b3, b3; \ 486 vpshufb a0, a1, a1; \ 487 vpshufb a0, c0, c0; \ 488 vpshufb a0, c1, c1; \ 489 vpshufb a0, c2, c2; \ 490 vpshufb a0, c3, c3; \ 491 vpshufb a0, d0, d0; \ 492 vpshufb a0, d1, d1; \ 493 vpshufb a0, d2, d2; \ 494 vpshufb a0, d3, d3; \ 495 vmovdqu d3, st1; \ 496 vmovdqu st0, d3; \ 497 vpshufb a0, d3, a0; \ 498 vmovdqu d2, st0; \ 499 \ 500 transpose_4x4(a0, b0, c0, d0, d2, d3); \ 501 transpose_4x4(a1, b1, c1, d1, d2, d3); \ 502 vmovdqu st0, d2; \ 503 vmovdqu st1, d3; \ 504 \ 505 vmovdqu b0, st0; \ 506 vmovdqu b1, st1; \ 507 transpose_4x4(a2, b2, c2, d2, b0, b1); \ 508 transpose_4x4(a3, b3, c3, d3, b0, b1); \ 509 vmovdqu st0, b0; \ 510 vmovdqu st1, b1; \ 511 /* does not adjust output bytes inside vectors */ 512 513/* load blocks to registers and apply pre-whitening */ 514#define inpack32_pre(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ 515 y6, y7, rio, key) \ 516 vpbroadcastq key, x0; \ 517 vpshufb .Lpack_bswap(%rip), x0, x0; \ 518 \ 519 vpxor 0 * 32(rio), x0, y7; \ 520 vpxor 1 * 32(rio), x0, y6; \ 521 vpxor 2 * 32(rio), x0, y5; \ 522 vpxor 3 * 32(rio), x0, y4; \ 523 vpxor 4 * 32(rio), x0, y3; \ 524 vpxor 5 * 32(rio), x0, y2; \ 525 vpxor 6 * 32(rio), x0, y1; \ 526 vpxor 7 * 32(rio), x0, y0; \ 527 vpxor 8 * 32(rio), x0, x7; \ 528 vpxor 9 * 32(rio), x0, x6; \ 529 vpxor 10 * 32(rio), x0, x5; \ 530 vpxor 11 * 32(rio), x0, x4; \ 531 vpxor 12 * 32(rio), x0, x3; \ 532 vpxor 13 * 32(rio), x0, x2; \ 533 vpxor 14 * 32(rio), x0, x1; \ 534 vpxor 15 * 32(rio), x0, x0; 535 536/* byteslice pre-whitened blocks and store to temporary memory */ 537#define inpack32_post(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ 538 y6, y7, mem_ab, mem_cd) \ 539 byteslice_16x16b_fast(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, \ 540 y4, y5, y6, y7, (mem_ab), (mem_cd)); \ 541 \ 542 vmovdqu x0, 0 * 32(mem_ab); \ 543 vmovdqu x1, 1 * 32(mem_ab); \ 544 vmovdqu x2, 2 * 32(mem_ab); \ 545 vmovdqu x3, 3 * 32(mem_ab); \ 546 vmovdqu x4, 4 * 32(mem_ab); \ 547 vmovdqu x5, 5 * 32(mem_ab); \ 548 vmovdqu x6, 6 * 32(mem_ab); \ 549 vmovdqu x7, 7 * 32(mem_ab); \ 550 vmovdqu y0, 0 * 32(mem_cd); \ 551 vmovdqu y1, 1 * 32(mem_cd); \ 552 vmovdqu y2, 2 * 32(mem_cd); \ 553 vmovdqu y3, 3 * 32(mem_cd); \ 554 vmovdqu y4, 4 * 32(mem_cd); \ 555 vmovdqu y5, 5 * 32(mem_cd); \ 556 vmovdqu y6, 6 * 32(mem_cd); \ 557 vmovdqu y7, 7 * 32(mem_cd); 558 559/* de-byteslice, apply post-whitening and store blocks */ 560#define outunpack32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, \ 561 y5, y6, y7, key, stack_tmp0, stack_tmp1) \ 562 byteslice_16x16b_fast(y0, y4, x0, x4, y1, y5, x1, x5, y2, y6, x2, x6, \ 563 y3, y7, x3, x7, stack_tmp0, stack_tmp1); \ 564 \ 565 vmovdqu x0, stack_tmp0; \ 566 \ 567 vpbroadcastq key, x0; \ 568 vpshufb .Lpack_bswap(%rip), x0, x0; \ 569 \ 570 vpxor x0, y7, y7; \ 571 vpxor x0, y6, y6; \ 572 vpxor x0, y5, y5; \ 573 vpxor x0, y4, y4; \ 574 vpxor x0, y3, y3; \ 575 vpxor x0, y2, y2; \ 576 vpxor x0, y1, y1; \ 577 vpxor x0, y0, y0; \ 578 vpxor x0, x7, x7; \ 579 vpxor x0, x6, x6; \ 580 vpxor x0, x5, x5; \ 581 vpxor x0, x4, x4; \ 582 vpxor x0, x3, x3; \ 583 vpxor x0, x2, x2; \ 584 vpxor x0, x1, x1; \ 585 vpxor stack_tmp0, x0, x0; 586 587#define write_output(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ 588 y6, y7, rio) \ 589 vmovdqu x0, 0 * 32(rio); \ 590 vmovdqu x1, 1 * 32(rio); \ 591 vmovdqu x2, 2 * 32(rio); \ 592 vmovdqu x3, 3 * 32(rio); \ 593 vmovdqu x4, 4 * 32(rio); \ 594 vmovdqu x5, 5 * 32(rio); \ 595 vmovdqu x6, 6 * 32(rio); \ 596 vmovdqu x7, 7 * 32(rio); \ 597 vmovdqu y0, 8 * 32(rio); \ 598 vmovdqu y1, 9 * 32(rio); \ 599 vmovdqu y2, 10 * 32(rio); \ 600 vmovdqu y3, 11 * 32(rio); \ 601 vmovdqu y4, 12 * 32(rio); \ 602 vmovdqu y5, 13 * 32(rio); \ 603 vmovdqu y6, 14 * 32(rio); \ 604 vmovdqu y7, 15 * 32(rio); 605 606 607.section .rodata.cst32.shufb_16x16b, "aM", @progbits, 32 608.align 32 609#define SHUFB_BYTES(idx) \ 610 0 + (idx), 4 + (idx), 8 + (idx), 12 + (idx) 611.Lshufb_16x16b: 612 .byte SHUFB_BYTES(0), SHUFB_BYTES(1), SHUFB_BYTES(2), SHUFB_BYTES(3) 613 .byte SHUFB_BYTES(0), SHUFB_BYTES(1), SHUFB_BYTES(2), SHUFB_BYTES(3) 614 615.section .rodata.cst32.pack_bswap, "aM", @progbits, 32 616.align 32 617.Lpack_bswap: 618 .long 0x00010203, 0x04050607, 0x80808080, 0x80808080 619 .long 0x00010203, 0x04050607, 0x80808080, 0x80808080 620 621/* NB: section is mergeable, all elements must be aligned 16-byte blocks */ 622.section .rodata.cst16, "aM", @progbits, 16 623.align 16 624 625/* 626 * pre-SubByte transform 627 * 628 * pre-lookup for sbox1, sbox2, sbox3: 629 * swap_bitendianness( 630 * isom_map_camellia_to_aes( 631 * camellia_f( 632 * swap_bitendianess(in) 633 * ) 634 * ) 635 * ) 636 * 637 * (note: '⊕ 0xc5' inside camellia_f()) 638 */ 639.Lpre_tf_lo_s1: 640 .byte 0x45, 0xe8, 0x40, 0xed, 0x2e, 0x83, 0x2b, 0x86 641 .byte 0x4b, 0xe6, 0x4e, 0xe3, 0x20, 0x8d, 0x25, 0x88 642.Lpre_tf_hi_s1: 643 .byte 0x00, 0x51, 0xf1, 0xa0, 0x8a, 0xdb, 0x7b, 0x2a 644 .byte 0x09, 0x58, 0xf8, 0xa9, 0x83, 0xd2, 0x72, 0x23 645 646/* 647 * pre-SubByte transform 648 * 649 * pre-lookup for sbox4: 650 * swap_bitendianness( 651 * isom_map_camellia_to_aes( 652 * camellia_f( 653 * swap_bitendianess(in <<< 1) 654 * ) 655 * ) 656 * ) 657 * 658 * (note: '⊕ 0xc5' inside camellia_f()) 659 */ 660.Lpre_tf_lo_s4: 661 .byte 0x45, 0x40, 0x2e, 0x2b, 0x4b, 0x4e, 0x20, 0x25 662 .byte 0x14, 0x11, 0x7f, 0x7a, 0x1a, 0x1f, 0x71, 0x74 663.Lpre_tf_hi_s4: 664 .byte 0x00, 0xf1, 0x8a, 0x7b, 0x09, 0xf8, 0x83, 0x72 665 .byte 0xad, 0x5c, 0x27, 0xd6, 0xa4, 0x55, 0x2e, 0xdf 666 667/* 668 * post-SubByte transform 669 * 670 * post-lookup for sbox1, sbox4: 671 * swap_bitendianness( 672 * camellia_h( 673 * isom_map_aes_to_camellia( 674 * swap_bitendianness( 675 * aes_inverse_affine_transform(in) 676 * ) 677 * ) 678 * ) 679 * ) 680 * 681 * (note: '⊕ 0x6e' inside camellia_h()) 682 */ 683.Lpost_tf_lo_s1: 684 .byte 0x3c, 0xcc, 0xcf, 0x3f, 0x32, 0xc2, 0xc1, 0x31 685 .byte 0xdc, 0x2c, 0x2f, 0xdf, 0xd2, 0x22, 0x21, 0xd1 686.Lpost_tf_hi_s1: 687 .byte 0x00, 0xf9, 0x86, 0x7f, 0xd7, 0x2e, 0x51, 0xa8 688 .byte 0xa4, 0x5d, 0x22, 0xdb, 0x73, 0x8a, 0xf5, 0x0c 689 690/* 691 * post-SubByte transform 692 * 693 * post-lookup for sbox2: 694 * swap_bitendianness( 695 * camellia_h( 696 * isom_map_aes_to_camellia( 697 * swap_bitendianness( 698 * aes_inverse_affine_transform(in) 699 * ) 700 * ) 701 * ) 702 * ) <<< 1 703 * 704 * (note: '⊕ 0x6e' inside camellia_h()) 705 */ 706.Lpost_tf_lo_s2: 707 .byte 0x78, 0x99, 0x9f, 0x7e, 0x64, 0x85, 0x83, 0x62 708 .byte 0xb9, 0x58, 0x5e, 0xbf, 0xa5, 0x44, 0x42, 0xa3 709.Lpost_tf_hi_s2: 710 .byte 0x00, 0xf3, 0x0d, 0xfe, 0xaf, 0x5c, 0xa2, 0x51 711 .byte 0x49, 0xba, 0x44, 0xb7, 0xe6, 0x15, 0xeb, 0x18 712 713/* 714 * post-SubByte transform 715 * 716 * post-lookup for sbox3: 717 * swap_bitendianness( 718 * camellia_h( 719 * isom_map_aes_to_camellia( 720 * swap_bitendianness( 721 * aes_inverse_affine_transform(in) 722 * ) 723 * ) 724 * ) 725 * ) >>> 1 726 * 727 * (note: '⊕ 0x6e' inside camellia_h()) 728 */ 729.Lpost_tf_lo_s3: 730 .byte 0x1e, 0x66, 0xe7, 0x9f, 0x19, 0x61, 0xe0, 0x98 731 .byte 0x6e, 0x16, 0x97, 0xef, 0x69, 0x11, 0x90, 0xe8 732.Lpost_tf_hi_s3: 733 .byte 0x00, 0xfc, 0x43, 0xbf, 0xeb, 0x17, 0xa8, 0x54 734 .byte 0x52, 0xae, 0x11, 0xed, 0xb9, 0x45, 0xfa, 0x06 735 736/* For isolating SubBytes from AESENCLAST, inverse shift row */ 737.Linv_shift_row: 738 .byte 0x00, 0x0d, 0x0a, 0x07, 0x04, 0x01, 0x0e, 0x0b 739 .byte 0x08, 0x05, 0x02, 0x0f, 0x0c, 0x09, 0x06, 0x03 740 741.section .rodata.cst4.L0f0f0f0f, "aM", @progbits, 4 742.align 4 743/* 4-bit mask */ 744.L0f0f0f0f: 745 .long 0x0f0f0f0f 746 747.text 748 749SYM_FUNC_START_LOCAL(__camellia_enc_blk32) 750 /* input: 751 * %rdi: ctx, CTX 752 * %rax: temporary storage, 512 bytes 753 * %ymm0..%ymm15: 32 plaintext blocks 754 * output: 755 * %ymm0..%ymm15: 32 encrypted blocks, order swapped: 756 * 7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8 757 */ 758 FRAME_BEGIN 759 760 leaq 8 * 32(%rax), %rcx; 761 762 inpack32_post(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, 763 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, 764 %ymm15, %rax, %rcx); 765 766 enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, 767 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, 768 %ymm15, %rax, %rcx, 0); 769 770 fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, 771 %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, 772 %ymm15, 773 ((key_table + (8) * 8) + 0)(CTX), 774 ((key_table + (8) * 8) + 4)(CTX), 775 ((key_table + (8) * 8) + 8)(CTX), 776 ((key_table + (8) * 8) + 12)(CTX)); 777 778 enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, 779 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, 780 %ymm15, %rax, %rcx, 8); 781 782 fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, 783 %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, 784 %ymm15, 785 ((key_table + (16) * 8) + 0)(CTX), 786 ((key_table + (16) * 8) + 4)(CTX), 787 ((key_table + (16) * 8) + 8)(CTX), 788 ((key_table + (16) * 8) + 12)(CTX)); 789 790 enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, 791 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, 792 %ymm15, %rax, %rcx, 16); 793 794 movl $24, %r8d; 795 cmpl $16, key_length(CTX); 796 jne .Lenc_max32; 797 798.Lenc_done: 799 /* load CD for output */ 800 vmovdqu 0 * 32(%rcx), %ymm8; 801 vmovdqu 1 * 32(%rcx), %ymm9; 802 vmovdqu 2 * 32(%rcx), %ymm10; 803 vmovdqu 3 * 32(%rcx), %ymm11; 804 vmovdqu 4 * 32(%rcx), %ymm12; 805 vmovdqu 5 * 32(%rcx), %ymm13; 806 vmovdqu 6 * 32(%rcx), %ymm14; 807 vmovdqu 7 * 32(%rcx), %ymm15; 808 809 outunpack32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, 810 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, 811 %ymm15, (key_table)(CTX, %r8, 8), (%rax), 1 * 32(%rax)); 812 813 FRAME_END 814 RET; 815 816.align 8 817.Lenc_max32: 818 movl $32, %r8d; 819 820 fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, 821 %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, 822 %ymm15, 823 ((key_table + (24) * 8) + 0)(CTX), 824 ((key_table + (24) * 8) + 4)(CTX), 825 ((key_table + (24) * 8) + 8)(CTX), 826 ((key_table + (24) * 8) + 12)(CTX)); 827 828 enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, 829 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, 830 %ymm15, %rax, %rcx, 24); 831 832 jmp .Lenc_done; 833SYM_FUNC_END(__camellia_enc_blk32) 834 835SYM_FUNC_START_LOCAL(__camellia_dec_blk32) 836 /* input: 837 * %rdi: ctx, CTX 838 * %rax: temporary storage, 512 bytes 839 * %r8d: 24 for 16 byte key, 32 for larger 840 * %ymm0..%ymm15: 16 encrypted blocks 841 * output: 842 * %ymm0..%ymm15: 16 plaintext blocks, order swapped: 843 * 7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8 844 */ 845 FRAME_BEGIN 846 847 leaq 8 * 32(%rax), %rcx; 848 849 inpack32_post(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, 850 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, 851 %ymm15, %rax, %rcx); 852 853 cmpl $32, %r8d; 854 je .Ldec_max32; 855 856.Ldec_max24: 857 dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, 858 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, 859 %ymm15, %rax, %rcx, 16); 860 861 fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, 862 %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, 863 %ymm15, 864 ((key_table + (16) * 8) + 8)(CTX), 865 ((key_table + (16) * 8) + 12)(CTX), 866 ((key_table + (16) * 8) + 0)(CTX), 867 ((key_table + (16) * 8) + 4)(CTX)); 868 869 dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, 870 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, 871 %ymm15, %rax, %rcx, 8); 872 873 fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, 874 %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, 875 %ymm15, 876 ((key_table + (8) * 8) + 8)(CTX), 877 ((key_table + (8) * 8) + 12)(CTX), 878 ((key_table + (8) * 8) + 0)(CTX), 879 ((key_table + (8) * 8) + 4)(CTX)); 880 881 dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, 882 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, 883 %ymm15, %rax, %rcx, 0); 884 885 /* load CD for output */ 886 vmovdqu 0 * 32(%rcx), %ymm8; 887 vmovdqu 1 * 32(%rcx), %ymm9; 888 vmovdqu 2 * 32(%rcx), %ymm10; 889 vmovdqu 3 * 32(%rcx), %ymm11; 890 vmovdqu 4 * 32(%rcx), %ymm12; 891 vmovdqu 5 * 32(%rcx), %ymm13; 892 vmovdqu 6 * 32(%rcx), %ymm14; 893 vmovdqu 7 * 32(%rcx), %ymm15; 894 895 outunpack32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, 896 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, 897 %ymm15, (key_table)(CTX), (%rax), 1 * 32(%rax)); 898 899 FRAME_END 900 RET; 901 902.align 8 903.Ldec_max32: 904 dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, 905 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, 906 %ymm15, %rax, %rcx, 24); 907 908 fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, 909 %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, 910 %ymm15, 911 ((key_table + (24) * 8) + 8)(CTX), 912 ((key_table + (24) * 8) + 12)(CTX), 913 ((key_table + (24) * 8) + 0)(CTX), 914 ((key_table + (24) * 8) + 4)(CTX)); 915 916 jmp .Ldec_max24; 917SYM_FUNC_END(__camellia_dec_blk32) 918 919SYM_FUNC_START(camellia_ecb_enc_32way) 920 /* input: 921 * %rdi: ctx, CTX 922 * %rsi: dst (32 blocks) 923 * %rdx: src (32 blocks) 924 */ 925 FRAME_BEGIN 926 927 vzeroupper; 928 929 inpack32_pre(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, 930 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, 931 %ymm15, %rdx, (key_table)(CTX)); 932 933 /* now dst can be used as temporary buffer (even in src == dst case) */ 934 movq %rsi, %rax; 935 936 call __camellia_enc_blk32; 937 938 write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0, 939 %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9, 940 %ymm8, %rsi); 941 942 vzeroupper; 943 944 FRAME_END 945 RET; 946SYM_FUNC_END(camellia_ecb_enc_32way) 947 948SYM_FUNC_START(camellia_ecb_dec_32way) 949 /* input: 950 * %rdi: ctx, CTX 951 * %rsi: dst (32 blocks) 952 * %rdx: src (32 blocks) 953 */ 954 FRAME_BEGIN 955 956 vzeroupper; 957 958 cmpl $16, key_length(CTX); 959 movl $32, %r8d; 960 movl $24, %eax; 961 cmovel %eax, %r8d; /* max */ 962 963 inpack32_pre(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, 964 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, 965 %ymm15, %rdx, (key_table)(CTX, %r8, 8)); 966 967 /* now dst can be used as temporary buffer (even in src == dst case) */ 968 movq %rsi, %rax; 969 970 call __camellia_dec_blk32; 971 972 write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0, 973 %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9, 974 %ymm8, %rsi); 975 976 vzeroupper; 977 978 FRAME_END 979 RET; 980SYM_FUNC_END(camellia_ecb_dec_32way) 981 982SYM_FUNC_START(camellia_cbc_dec_32way) 983 /* input: 984 * %rdi: ctx, CTX 985 * %rsi: dst (32 blocks) 986 * %rdx: src (32 blocks) 987 */ 988 FRAME_BEGIN 989 subq $(16 * 32), %rsp; 990 991 vzeroupper; 992 993 cmpl $16, key_length(CTX); 994 movl $32, %r8d; 995 movl $24, %eax; 996 cmovel %eax, %r8d; /* max */ 997 998 inpack32_pre(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, 999 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, 1000 %ymm15, %rdx, (key_table)(CTX, %r8, 8)); 1001 1002 cmpq %rsi, %rdx; 1003 je .Lcbc_dec_use_stack; 1004 1005 /* dst can be used as temporary storage, src is not overwritten. */ 1006 movq %rsi, %rax; 1007 jmp .Lcbc_dec_continue; 1008 1009.Lcbc_dec_use_stack: 1010 /* 1011 * dst still in-use (because dst == src), so use stack for temporary 1012 * storage. 1013 */ 1014 movq %rsp, %rax; 1015 1016.Lcbc_dec_continue: 1017 call __camellia_dec_blk32; 1018 1019 vmovdqu %ymm7, (%rax); 1020 vpxor %ymm7, %ymm7, %ymm7; 1021 vinserti128 $1, (%rdx), %ymm7, %ymm7; 1022 vpxor (%rax), %ymm7, %ymm7; 1023 vpxor (0 * 32 + 16)(%rdx), %ymm6, %ymm6; 1024 vpxor (1 * 32 + 16)(%rdx), %ymm5, %ymm5; 1025 vpxor (2 * 32 + 16)(%rdx), %ymm4, %ymm4; 1026 vpxor (3 * 32 + 16)(%rdx), %ymm3, %ymm3; 1027 vpxor (4 * 32 + 16)(%rdx), %ymm2, %ymm2; 1028 vpxor (5 * 32 + 16)(%rdx), %ymm1, %ymm1; 1029 vpxor (6 * 32 + 16)(%rdx), %ymm0, %ymm0; 1030 vpxor (7 * 32 + 16)(%rdx), %ymm15, %ymm15; 1031 vpxor (8 * 32 + 16)(%rdx), %ymm14, %ymm14; 1032 vpxor (9 * 32 + 16)(%rdx), %ymm13, %ymm13; 1033 vpxor (10 * 32 + 16)(%rdx), %ymm12, %ymm12; 1034 vpxor (11 * 32 + 16)(%rdx), %ymm11, %ymm11; 1035 vpxor (12 * 32 + 16)(%rdx), %ymm10, %ymm10; 1036 vpxor (13 * 32 + 16)(%rdx), %ymm9, %ymm9; 1037 vpxor (14 * 32 + 16)(%rdx), %ymm8, %ymm8; 1038 write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0, 1039 %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9, 1040 %ymm8, %rsi); 1041 1042 vzeroupper; 1043 1044 addq $(16 * 32), %rsp; 1045 FRAME_END 1046 RET; 1047SYM_FUNC_END(camellia_cbc_dec_32way) 1048