1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * inode.c
4 *
5 * PURPOSE
6 * Inode handling routines for the OSTA-UDF(tm) filesystem.
7 *
8 * COPYRIGHT
9 * (C) 1998 Dave Boynton
10 * (C) 1998-2004 Ben Fennema
11 * (C) 1999-2000 Stelias Computing Inc
12 *
13 * HISTORY
14 *
15 * 10/04/98 dgb Added rudimentary directory functions
16 * 10/07/98 Fully working udf_block_map! It works!
17 * 11/25/98 bmap altered to better support extents
18 * 12/06/98 blf partition support in udf_iget, udf_block_map
19 * and udf_read_inode
20 * 12/12/98 rewrote udf_block_map to handle next extents and descs across
21 * block boundaries (which is not actually allowed)
22 * 12/20/98 added support for strategy 4096
23 * 03/07/99 rewrote udf_block_map (again)
24 * New funcs, inode_bmap, udf_next_aext
25 * 04/19/99 Support for writing device EA's for major/minor #
26 */
27
28 #include "udfdecl.h"
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/pagemap.h>
32 #include <linux/writeback.h>
33 #include <linux/slab.h>
34 #include <linux/crc-itu-t.h>
35 #include <linux/mpage.h>
36 #include <linux/uio.h>
37 #include <linux/bio.h>
38
39 #include "udf_i.h"
40 #include "udf_sb.h"
41
42 #define EXTENT_MERGE_SIZE 5
43
44 #define FE_MAPPED_PERMS (FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
45 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
46 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
47
48 #define FE_DELETE_PERMS (FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
49 FE_PERM_O_DELETE)
50
51 struct udf_map_rq;
52
53 static umode_t udf_convert_permissions(struct fileEntry *);
54 static int udf_update_inode(struct inode *, int);
55 static int udf_sync_inode(struct inode *inode);
56 static int udf_alloc_i_data(struct inode *inode, size_t size);
57 static int inode_getblk(struct inode *inode, struct udf_map_rq *map);
58 static int udf_insert_aext(struct inode *, struct extent_position,
59 struct kernel_lb_addr, uint32_t);
60 static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
61 struct kernel_long_ad *, int *);
62 static void udf_prealloc_extents(struct inode *, int, int,
63 struct kernel_long_ad *, int *);
64 static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
65 static int udf_update_extents(struct inode *, struct kernel_long_ad *, int,
66 int, struct extent_position *);
67 static int udf_get_block_wb(struct inode *inode, sector_t block,
68 struct buffer_head *bh_result, int create);
69
__udf_clear_extent_cache(struct inode * inode)70 static void __udf_clear_extent_cache(struct inode *inode)
71 {
72 struct udf_inode_info *iinfo = UDF_I(inode);
73
74 if (iinfo->cached_extent.lstart != -1) {
75 brelse(iinfo->cached_extent.epos.bh);
76 iinfo->cached_extent.lstart = -1;
77 }
78 }
79
80 /* Invalidate extent cache */
udf_clear_extent_cache(struct inode * inode)81 static void udf_clear_extent_cache(struct inode *inode)
82 {
83 struct udf_inode_info *iinfo = UDF_I(inode);
84
85 spin_lock(&iinfo->i_extent_cache_lock);
86 __udf_clear_extent_cache(inode);
87 spin_unlock(&iinfo->i_extent_cache_lock);
88 }
89
90 /* Return contents of extent cache */
udf_read_extent_cache(struct inode * inode,loff_t bcount,loff_t * lbcount,struct extent_position * pos)91 static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
92 loff_t *lbcount, struct extent_position *pos)
93 {
94 struct udf_inode_info *iinfo = UDF_I(inode);
95 int ret = 0;
96
97 spin_lock(&iinfo->i_extent_cache_lock);
98 if ((iinfo->cached_extent.lstart <= bcount) &&
99 (iinfo->cached_extent.lstart != -1)) {
100 /* Cache hit */
101 *lbcount = iinfo->cached_extent.lstart;
102 memcpy(pos, &iinfo->cached_extent.epos,
103 sizeof(struct extent_position));
104 if (pos->bh)
105 get_bh(pos->bh);
106 ret = 1;
107 }
108 spin_unlock(&iinfo->i_extent_cache_lock);
109 return ret;
110 }
111
112 /* Add extent to extent cache */
udf_update_extent_cache(struct inode * inode,loff_t estart,struct extent_position * pos)113 static void udf_update_extent_cache(struct inode *inode, loff_t estart,
114 struct extent_position *pos)
115 {
116 struct udf_inode_info *iinfo = UDF_I(inode);
117
118 spin_lock(&iinfo->i_extent_cache_lock);
119 /* Invalidate previously cached extent */
120 __udf_clear_extent_cache(inode);
121 if (pos->bh)
122 get_bh(pos->bh);
123 memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
124 iinfo->cached_extent.lstart = estart;
125 switch (iinfo->i_alloc_type) {
126 case ICBTAG_FLAG_AD_SHORT:
127 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
128 break;
129 case ICBTAG_FLAG_AD_LONG:
130 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
131 break;
132 }
133 spin_unlock(&iinfo->i_extent_cache_lock);
134 }
135
udf_evict_inode(struct inode * inode)136 void udf_evict_inode(struct inode *inode)
137 {
138 struct udf_inode_info *iinfo = UDF_I(inode);
139 int want_delete = 0;
140
141 if (!is_bad_inode(inode)) {
142 if (!inode->i_nlink) {
143 want_delete = 1;
144 udf_setsize(inode, 0);
145 udf_update_inode(inode, IS_SYNC(inode));
146 }
147 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
148 inode->i_size != iinfo->i_lenExtents) {
149 udf_warn(inode->i_sb,
150 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
151 inode->i_ino, inode->i_mode,
152 (unsigned long long)inode->i_size,
153 (unsigned long long)iinfo->i_lenExtents);
154 }
155 }
156 truncate_inode_pages_final(&inode->i_data);
157 invalidate_inode_buffers(inode);
158 clear_inode(inode);
159 kfree(iinfo->i_data);
160 iinfo->i_data = NULL;
161 udf_clear_extent_cache(inode);
162 if (want_delete) {
163 udf_free_inode(inode);
164 }
165 }
166
udf_write_failed(struct address_space * mapping,loff_t to)167 static void udf_write_failed(struct address_space *mapping, loff_t to)
168 {
169 struct inode *inode = mapping->host;
170 struct udf_inode_info *iinfo = UDF_I(inode);
171 loff_t isize = inode->i_size;
172
173 if (to > isize) {
174 truncate_pagecache(inode, isize);
175 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
176 down_write(&iinfo->i_data_sem);
177 udf_clear_extent_cache(inode);
178 udf_truncate_extents(inode);
179 up_write(&iinfo->i_data_sem);
180 }
181 }
182 }
183
udf_adinicb_writepage(struct folio * folio,struct writeback_control * wbc,void * data)184 static int udf_adinicb_writepage(struct folio *folio,
185 struct writeback_control *wbc, void *data)
186 {
187 struct inode *inode = folio->mapping->host;
188 struct udf_inode_info *iinfo = UDF_I(inode);
189
190 BUG_ON(!folio_test_locked(folio));
191 BUG_ON(folio->index != 0);
192 memcpy_from_file_folio(iinfo->i_data + iinfo->i_lenEAttr, folio, 0,
193 i_size_read(inode));
194 folio_unlock(folio);
195 mark_inode_dirty(inode);
196
197 return 0;
198 }
199
udf_writepages(struct address_space * mapping,struct writeback_control * wbc)200 static int udf_writepages(struct address_space *mapping,
201 struct writeback_control *wbc)
202 {
203 struct inode *inode = mapping->host;
204 struct udf_inode_info *iinfo = UDF_I(inode);
205
206 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB)
207 return mpage_writepages(mapping, wbc, udf_get_block_wb);
208 return write_cache_pages(mapping, wbc, udf_adinicb_writepage, NULL);
209 }
210
udf_adinicb_readpage(struct page * page)211 static void udf_adinicb_readpage(struct page *page)
212 {
213 struct inode *inode = page->mapping->host;
214 char *kaddr;
215 struct udf_inode_info *iinfo = UDF_I(inode);
216 loff_t isize = i_size_read(inode);
217
218 kaddr = kmap_local_page(page);
219 memcpy(kaddr, iinfo->i_data + iinfo->i_lenEAttr, isize);
220 memset(kaddr + isize, 0, PAGE_SIZE - isize);
221 flush_dcache_page(page);
222 SetPageUptodate(page);
223 kunmap_local(kaddr);
224 }
225
udf_read_folio(struct file * file,struct folio * folio)226 static int udf_read_folio(struct file *file, struct folio *folio)
227 {
228 struct udf_inode_info *iinfo = UDF_I(file_inode(file));
229
230 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
231 udf_adinicb_readpage(&folio->page);
232 folio_unlock(folio);
233 return 0;
234 }
235 return mpage_read_folio(folio, udf_get_block);
236 }
237
udf_readahead(struct readahead_control * rac)238 static void udf_readahead(struct readahead_control *rac)
239 {
240 struct udf_inode_info *iinfo = UDF_I(rac->mapping->host);
241
242 /*
243 * No readahead needed for in-ICB files and udf_get_block() would get
244 * confused for such file anyway.
245 */
246 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
247 return;
248
249 mpage_readahead(rac, udf_get_block);
250 }
251
udf_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct page ** pagep,void ** fsdata)252 static int udf_write_begin(struct file *file, struct address_space *mapping,
253 loff_t pos, unsigned len,
254 struct page **pagep, void **fsdata)
255 {
256 struct udf_inode_info *iinfo = UDF_I(file_inode(file));
257 struct page *page;
258 int ret;
259
260 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
261 ret = block_write_begin(mapping, pos, len, pagep,
262 udf_get_block);
263 if (unlikely(ret))
264 udf_write_failed(mapping, pos + len);
265 return ret;
266 }
267 if (WARN_ON_ONCE(pos >= PAGE_SIZE))
268 return -EIO;
269 page = grab_cache_page_write_begin(mapping, 0);
270 if (!page)
271 return -ENOMEM;
272 *pagep = page;
273 if (!PageUptodate(page))
274 udf_adinicb_readpage(page);
275 return 0;
276 }
277
udf_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)278 static int udf_write_end(struct file *file, struct address_space *mapping,
279 loff_t pos, unsigned len, unsigned copied,
280 struct page *page, void *fsdata)
281 {
282 struct inode *inode = file_inode(file);
283 loff_t last_pos;
284
285 if (UDF_I(inode)->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB)
286 return generic_write_end(file, mapping, pos, len, copied, page,
287 fsdata);
288 last_pos = pos + copied;
289 if (last_pos > inode->i_size)
290 i_size_write(inode, last_pos);
291 set_page_dirty(page);
292 unlock_page(page);
293 put_page(page);
294
295 return copied;
296 }
297
udf_direct_IO(struct kiocb * iocb,struct iov_iter * iter)298 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
299 {
300 struct file *file = iocb->ki_filp;
301 struct address_space *mapping = file->f_mapping;
302 struct inode *inode = mapping->host;
303 size_t count = iov_iter_count(iter);
304 ssize_t ret;
305
306 /* Fallback to buffered IO for in-ICB files */
307 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
308 return 0;
309 ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
310 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
311 udf_write_failed(mapping, iocb->ki_pos + count);
312 return ret;
313 }
314
udf_bmap(struct address_space * mapping,sector_t block)315 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
316 {
317 struct udf_inode_info *iinfo = UDF_I(mapping->host);
318
319 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
320 return -EINVAL;
321 return generic_block_bmap(mapping, block, udf_get_block);
322 }
323
324 const struct address_space_operations udf_aops = {
325 .dirty_folio = block_dirty_folio,
326 .invalidate_folio = block_invalidate_folio,
327 .read_folio = udf_read_folio,
328 .readahead = udf_readahead,
329 .writepages = udf_writepages,
330 .write_begin = udf_write_begin,
331 .write_end = udf_write_end,
332 .direct_IO = udf_direct_IO,
333 .bmap = udf_bmap,
334 .migrate_folio = buffer_migrate_folio,
335 };
336
337 /*
338 * Expand file stored in ICB to a normal one-block-file
339 *
340 * This function requires i_mutex held
341 */
udf_expand_file_adinicb(struct inode * inode)342 int udf_expand_file_adinicb(struct inode *inode)
343 {
344 struct folio *folio;
345 struct udf_inode_info *iinfo = UDF_I(inode);
346 int err;
347
348 WARN_ON_ONCE(!inode_is_locked(inode));
349 if (!iinfo->i_lenAlloc) {
350 down_write(&iinfo->i_data_sem);
351 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
352 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
353 else
354 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
355 up_write(&iinfo->i_data_sem);
356 mark_inode_dirty(inode);
357 return 0;
358 }
359
360 folio = __filemap_get_folio(inode->i_mapping, 0,
361 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, GFP_KERNEL);
362 if (IS_ERR(folio))
363 return PTR_ERR(folio);
364
365 if (!folio_test_uptodate(folio))
366 udf_adinicb_readpage(&folio->page);
367 down_write(&iinfo->i_data_sem);
368 memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00,
369 iinfo->i_lenAlloc);
370 iinfo->i_lenAlloc = 0;
371 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
372 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
373 else
374 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
375 folio_mark_dirty(folio);
376 folio_unlock(folio);
377 up_write(&iinfo->i_data_sem);
378 err = filemap_fdatawrite(inode->i_mapping);
379 if (err) {
380 /* Restore everything back so that we don't lose data... */
381 folio_lock(folio);
382 down_write(&iinfo->i_data_sem);
383 memcpy_from_folio(iinfo->i_data + iinfo->i_lenEAttr,
384 folio, 0, inode->i_size);
385 folio_unlock(folio);
386 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
387 iinfo->i_lenAlloc = inode->i_size;
388 up_write(&iinfo->i_data_sem);
389 }
390 folio_put(folio);
391 mark_inode_dirty(inode);
392
393 return err;
394 }
395
396 #define UDF_MAP_CREATE 0x01 /* Mapping can allocate new blocks */
397 #define UDF_MAP_NOPREALLOC 0x02 /* Do not preallocate blocks */
398
399 #define UDF_BLK_MAPPED 0x01 /* Block was successfully mapped */
400 #define UDF_BLK_NEW 0x02 /* Block was freshly allocated */
401
402 struct udf_map_rq {
403 sector_t lblk;
404 udf_pblk_t pblk;
405 int iflags; /* UDF_MAP_ flags determining behavior */
406 int oflags; /* UDF_BLK_ flags reporting results */
407 };
408
udf_map_block(struct inode * inode,struct udf_map_rq * map)409 static int udf_map_block(struct inode *inode, struct udf_map_rq *map)
410 {
411 int ret;
412 struct udf_inode_info *iinfo = UDF_I(inode);
413
414 if (WARN_ON_ONCE(iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB))
415 return -EFSCORRUPTED;
416
417 map->oflags = 0;
418 if (!(map->iflags & UDF_MAP_CREATE)) {
419 struct kernel_lb_addr eloc;
420 uint32_t elen;
421 sector_t offset;
422 struct extent_position epos = {};
423 int8_t etype;
424
425 down_read(&iinfo->i_data_sem);
426 ret = inode_bmap(inode, map->lblk, &epos, &eloc, &elen, &offset,
427 &etype);
428 if (ret < 0)
429 goto out_read;
430 if (ret > 0 && etype == (EXT_RECORDED_ALLOCATED >> 30)) {
431 map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc,
432 offset);
433 map->oflags |= UDF_BLK_MAPPED;
434 ret = 0;
435 }
436 out_read:
437 up_read(&iinfo->i_data_sem);
438 brelse(epos.bh);
439
440 return ret;
441 }
442
443 down_write(&iinfo->i_data_sem);
444 /*
445 * Block beyond EOF and prealloc extents? Just discard preallocation
446 * as it is not useful and complicates things.
447 */
448 if (((loff_t)map->lblk) << inode->i_blkbits >= iinfo->i_lenExtents)
449 udf_discard_prealloc(inode);
450 udf_clear_extent_cache(inode);
451 ret = inode_getblk(inode, map);
452 up_write(&iinfo->i_data_sem);
453 return ret;
454 }
455
__udf_get_block(struct inode * inode,sector_t block,struct buffer_head * bh_result,int flags)456 static int __udf_get_block(struct inode *inode, sector_t block,
457 struct buffer_head *bh_result, int flags)
458 {
459 int err;
460 struct udf_map_rq map = {
461 .lblk = block,
462 .iflags = flags,
463 };
464
465 err = udf_map_block(inode, &map);
466 if (err < 0)
467 return err;
468 if (map.oflags & UDF_BLK_MAPPED) {
469 map_bh(bh_result, inode->i_sb, map.pblk);
470 if (map.oflags & UDF_BLK_NEW)
471 set_buffer_new(bh_result);
472 }
473 return 0;
474 }
475
udf_get_block(struct inode * inode,sector_t block,struct buffer_head * bh_result,int create)476 int udf_get_block(struct inode *inode, sector_t block,
477 struct buffer_head *bh_result, int create)
478 {
479 int flags = create ? UDF_MAP_CREATE : 0;
480
481 /*
482 * We preallocate blocks only for regular files. It also makes sense
483 * for directories but there's a problem when to drop the
484 * preallocation. We might use some delayed work for that but I feel
485 * it's overengineering for a filesystem like UDF.
486 */
487 if (!S_ISREG(inode->i_mode))
488 flags |= UDF_MAP_NOPREALLOC;
489 return __udf_get_block(inode, block, bh_result, flags);
490 }
491
492 /*
493 * We shouldn't be allocating blocks on page writeback since we allocate them
494 * on page fault. We can spot dirty buffers without allocated blocks though
495 * when truncate expands file. These however don't have valid data so we can
496 * safely ignore them. So never allocate blocks from page writeback.
497 */
udf_get_block_wb(struct inode * inode,sector_t block,struct buffer_head * bh_result,int create)498 static int udf_get_block_wb(struct inode *inode, sector_t block,
499 struct buffer_head *bh_result, int create)
500 {
501 return __udf_get_block(inode, block, bh_result, 0);
502 }
503
504 /* Extend the file with new blocks totaling 'new_block_bytes',
505 * return the number of extents added
506 */
udf_do_extend_file(struct inode * inode,struct extent_position * last_pos,struct kernel_long_ad * last_ext,loff_t new_block_bytes)507 static int udf_do_extend_file(struct inode *inode,
508 struct extent_position *last_pos,
509 struct kernel_long_ad *last_ext,
510 loff_t new_block_bytes)
511 {
512 uint32_t add;
513 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
514 struct super_block *sb = inode->i_sb;
515 struct udf_inode_info *iinfo;
516 int err;
517
518 /* The previous extent is fake and we should not extend by anything
519 * - there's nothing to do... */
520 if (!new_block_bytes && fake)
521 return 0;
522
523 iinfo = UDF_I(inode);
524 /* Round the last extent up to a multiple of block size */
525 if (last_ext->extLength & (sb->s_blocksize - 1)) {
526 last_ext->extLength =
527 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
528 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
529 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
530 iinfo->i_lenExtents =
531 (iinfo->i_lenExtents + sb->s_blocksize - 1) &
532 ~(sb->s_blocksize - 1);
533 }
534
535 add = 0;
536 /* Can we merge with the previous extent? */
537 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
538 EXT_NOT_RECORDED_NOT_ALLOCATED) {
539 add = (1 << 30) - sb->s_blocksize -
540 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
541 if (add > new_block_bytes)
542 add = new_block_bytes;
543 new_block_bytes -= add;
544 last_ext->extLength += add;
545 }
546
547 if (fake) {
548 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
549 last_ext->extLength, 1);
550 if (err < 0)
551 goto out_err;
552 count++;
553 } else {
554 struct kernel_lb_addr tmploc;
555 uint32_t tmplen;
556 int8_t tmptype;
557
558 udf_write_aext(inode, last_pos, &last_ext->extLocation,
559 last_ext->extLength, 1);
560
561 /*
562 * We've rewritten the last extent. If we are going to add
563 * more extents, we may need to enter possible following
564 * empty indirect extent.
565 */
566 if (new_block_bytes) {
567 err = udf_next_aext(inode, last_pos, &tmploc, &tmplen,
568 &tmptype, 0);
569 if (err < 0)
570 goto out_err;
571 }
572 }
573 iinfo->i_lenExtents += add;
574
575 /* Managed to do everything necessary? */
576 if (!new_block_bytes)
577 goto out;
578
579 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
580 last_ext->extLocation.logicalBlockNum = 0;
581 last_ext->extLocation.partitionReferenceNum = 0;
582 add = (1 << 30) - sb->s_blocksize;
583 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
584
585 /* Create enough extents to cover the whole hole */
586 while (new_block_bytes > add) {
587 new_block_bytes -= add;
588 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
589 last_ext->extLength, 1);
590 if (err)
591 goto out_err;
592 iinfo->i_lenExtents += add;
593 count++;
594 }
595 if (new_block_bytes) {
596 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
597 new_block_bytes;
598 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
599 last_ext->extLength, 1);
600 if (err)
601 goto out_err;
602 iinfo->i_lenExtents += new_block_bytes;
603 count++;
604 }
605
606 out:
607 /* last_pos should point to the last written extent... */
608 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
609 last_pos->offset -= sizeof(struct short_ad);
610 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
611 last_pos->offset -= sizeof(struct long_ad);
612 else
613 return -EIO;
614
615 return count;
616 out_err:
617 /* Remove extents we've created so far */
618 udf_clear_extent_cache(inode);
619 udf_truncate_extents(inode);
620 return err;
621 }
622
623 /* Extend the final block of the file to final_block_len bytes */
udf_do_extend_final_block(struct inode * inode,struct extent_position * last_pos,struct kernel_long_ad * last_ext,uint32_t new_elen)624 static void udf_do_extend_final_block(struct inode *inode,
625 struct extent_position *last_pos,
626 struct kernel_long_ad *last_ext,
627 uint32_t new_elen)
628 {
629 uint32_t added_bytes;
630
631 /*
632 * Extent already large enough? It may be already rounded up to block
633 * size...
634 */
635 if (new_elen <= (last_ext->extLength & UDF_EXTENT_LENGTH_MASK))
636 return;
637 added_bytes = new_elen - (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
638 last_ext->extLength += added_bytes;
639 UDF_I(inode)->i_lenExtents += added_bytes;
640
641 udf_write_aext(inode, last_pos, &last_ext->extLocation,
642 last_ext->extLength, 1);
643 }
644
udf_extend_file(struct inode * inode,loff_t newsize)645 static int udf_extend_file(struct inode *inode, loff_t newsize)
646 {
647
648 struct extent_position epos;
649 struct kernel_lb_addr eloc;
650 uint32_t elen;
651 int8_t etype;
652 struct super_block *sb = inode->i_sb;
653 sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
654 loff_t new_elen;
655 int adsize;
656 struct udf_inode_info *iinfo = UDF_I(inode);
657 struct kernel_long_ad extent;
658 int err = 0;
659 bool within_last_ext;
660
661 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
662 adsize = sizeof(struct short_ad);
663 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
664 adsize = sizeof(struct long_ad);
665 else
666 BUG();
667
668 down_write(&iinfo->i_data_sem);
669 /*
670 * When creating hole in file, just don't bother with preserving
671 * preallocation. It likely won't be very useful anyway.
672 */
673 udf_discard_prealloc(inode);
674
675 err = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset, &etype);
676 if (err < 0)
677 goto out;
678 within_last_ext = (err == 1);
679 /* We don't expect extents past EOF... */
680 WARN_ON_ONCE(within_last_ext &&
681 elen > ((loff_t)offset + 1) << inode->i_blkbits);
682
683 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
684 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
685 /* File has no extents at all or has empty last
686 * indirect extent! Create a fake extent... */
687 extent.extLocation.logicalBlockNum = 0;
688 extent.extLocation.partitionReferenceNum = 0;
689 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
690 } else {
691 epos.offset -= adsize;
692 err = udf_next_aext(inode, &epos, &extent.extLocation,
693 &extent.extLength, &etype, 0);
694 if (err <= 0)
695 goto out;
696 extent.extLength |= etype << 30;
697 }
698
699 new_elen = ((loff_t)offset << inode->i_blkbits) |
700 (newsize & (sb->s_blocksize - 1));
701
702 /* File has extent covering the new size (could happen when extending
703 * inside a block)?
704 */
705 if (within_last_ext) {
706 /* Extending file within the last file block */
707 udf_do_extend_final_block(inode, &epos, &extent, new_elen);
708 } else {
709 err = udf_do_extend_file(inode, &epos, &extent, new_elen);
710 }
711
712 if (err < 0)
713 goto out;
714 err = 0;
715 out:
716 brelse(epos.bh);
717 up_write(&iinfo->i_data_sem);
718 return err;
719 }
720
inode_getblk(struct inode * inode,struct udf_map_rq * map)721 static int inode_getblk(struct inode *inode, struct udf_map_rq *map)
722 {
723 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
724 struct extent_position prev_epos, cur_epos, next_epos;
725 int count = 0, startnum = 0, endnum = 0;
726 uint32_t elen = 0, tmpelen;
727 struct kernel_lb_addr eloc, tmpeloc;
728 int c = 1;
729 loff_t lbcount = 0, b_off = 0;
730 udf_pblk_t newblocknum;
731 sector_t offset = 0;
732 int8_t etype, tmpetype;
733 struct udf_inode_info *iinfo = UDF_I(inode);
734 udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
735 int lastblock = 0;
736 bool isBeyondEOF = false;
737 int ret = 0;
738
739 prev_epos.offset = udf_file_entry_alloc_offset(inode);
740 prev_epos.block = iinfo->i_location;
741 prev_epos.bh = NULL;
742 cur_epos = next_epos = prev_epos;
743 b_off = (loff_t)map->lblk << inode->i_sb->s_blocksize_bits;
744
745 /* find the extent which contains the block we are looking for.
746 alternate between laarr[0] and laarr[1] for locations of the
747 current extent, and the previous extent */
748 do {
749 if (prev_epos.bh != cur_epos.bh) {
750 brelse(prev_epos.bh);
751 get_bh(cur_epos.bh);
752 prev_epos.bh = cur_epos.bh;
753 }
754 if (cur_epos.bh != next_epos.bh) {
755 brelse(cur_epos.bh);
756 get_bh(next_epos.bh);
757 cur_epos.bh = next_epos.bh;
758 }
759
760 lbcount += elen;
761
762 prev_epos.block = cur_epos.block;
763 cur_epos.block = next_epos.block;
764
765 prev_epos.offset = cur_epos.offset;
766 cur_epos.offset = next_epos.offset;
767
768 ret = udf_next_aext(inode, &next_epos, &eloc, &elen, &etype, 1);
769 if (ret < 0) {
770 goto out_free;
771 } else if (ret == 0) {
772 isBeyondEOF = true;
773 break;
774 }
775
776 c = !c;
777
778 laarr[c].extLength = (etype << 30) | elen;
779 laarr[c].extLocation = eloc;
780
781 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
782 pgoal = eloc.logicalBlockNum +
783 ((elen + inode->i_sb->s_blocksize - 1) >>
784 inode->i_sb->s_blocksize_bits);
785
786 count++;
787 } while (lbcount + elen <= b_off);
788
789 b_off -= lbcount;
790 offset = b_off >> inode->i_sb->s_blocksize_bits;
791 /*
792 * Move prev_epos and cur_epos into indirect extent if we are at
793 * the pointer to it
794 */
795 ret = udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, &tmpetype, 0);
796 if (ret < 0)
797 goto out_free;
798 ret = udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, &tmpetype, 0);
799 if (ret < 0)
800 goto out_free;
801
802 /* if the extent is allocated and recorded, return the block
803 if the extent is not a multiple of the blocksize, round up */
804
805 if (!isBeyondEOF && etype == (EXT_RECORDED_ALLOCATED >> 30)) {
806 if (elen & (inode->i_sb->s_blocksize - 1)) {
807 elen = EXT_RECORDED_ALLOCATED |
808 ((elen + inode->i_sb->s_blocksize - 1) &
809 ~(inode->i_sb->s_blocksize - 1));
810 iinfo->i_lenExtents =
811 ALIGN(iinfo->i_lenExtents,
812 inode->i_sb->s_blocksize);
813 udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
814 }
815 map->oflags = UDF_BLK_MAPPED;
816 map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
817 goto out_free;
818 }
819
820 /* Are we beyond EOF and preallocated extent? */
821 if (isBeyondEOF) {
822 loff_t hole_len;
823
824 if (count) {
825 if (c)
826 laarr[0] = laarr[1];
827 startnum = 1;
828 } else {
829 /* Create a fake extent when there's not one */
830 memset(&laarr[0].extLocation, 0x00,
831 sizeof(struct kernel_lb_addr));
832 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
833 /* Will udf_do_extend_file() create real extent from
834 a fake one? */
835 startnum = (offset > 0);
836 }
837 /* Create extents for the hole between EOF and offset */
838 hole_len = (loff_t)offset << inode->i_blkbits;
839 ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
840 if (ret < 0)
841 goto out_free;
842 c = 0;
843 offset = 0;
844 count += ret;
845 /*
846 * Is there any real extent? - otherwise we overwrite the fake
847 * one...
848 */
849 if (count)
850 c = !c;
851 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
852 inode->i_sb->s_blocksize;
853 memset(&laarr[c].extLocation, 0x00,
854 sizeof(struct kernel_lb_addr));
855 count++;
856 endnum = c + 1;
857 lastblock = 1;
858 } else {
859 endnum = startnum = ((count > 2) ? 2 : count);
860
861 /* if the current extent is in position 0,
862 swap it with the previous */
863 if (!c && count != 1) {
864 laarr[2] = laarr[0];
865 laarr[0] = laarr[1];
866 laarr[1] = laarr[2];
867 c = 1;
868 }
869
870 /* if the current block is located in an extent,
871 read the next extent */
872 ret = udf_next_aext(inode, &next_epos, &eloc, &elen, &etype, 0);
873 if (ret > 0) {
874 laarr[c + 1].extLength = (etype << 30) | elen;
875 laarr[c + 1].extLocation = eloc;
876 count++;
877 startnum++;
878 endnum++;
879 } else if (ret == 0)
880 lastblock = 1;
881 else
882 goto out_free;
883 }
884
885 /* if the current extent is not recorded but allocated, get the
886 * block in the extent corresponding to the requested block */
887 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
888 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
889 else { /* otherwise, allocate a new block */
890 if (iinfo->i_next_alloc_block == map->lblk)
891 goal = iinfo->i_next_alloc_goal;
892
893 if (!goal) {
894 if (!(goal = pgoal)) /* XXX: what was intended here? */
895 goal = iinfo->i_location.logicalBlockNum + 1;
896 }
897
898 newblocknum = udf_new_block(inode->i_sb, inode,
899 iinfo->i_location.partitionReferenceNum,
900 goal, &ret);
901 if (!newblocknum)
902 goto out_free;
903 if (isBeyondEOF)
904 iinfo->i_lenExtents += inode->i_sb->s_blocksize;
905 }
906
907 /* if the extent the requsted block is located in contains multiple
908 * blocks, split the extent into at most three extents. blocks prior
909 * to requested block, requested block, and blocks after requested
910 * block */
911 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
912
913 if (!(map->iflags & UDF_MAP_NOPREALLOC))
914 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
915
916 /* merge any continuous blocks in laarr */
917 udf_merge_extents(inode, laarr, &endnum);
918
919 /* write back the new extents, inserting new extents if the new number
920 * of extents is greater than the old number, and deleting extents if
921 * the new number of extents is less than the old number */
922 ret = udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
923 if (ret < 0)
924 goto out_free;
925
926 map->pblk = udf_get_pblock(inode->i_sb, newblocknum,
927 iinfo->i_location.partitionReferenceNum, 0);
928 if (!map->pblk) {
929 ret = -EFSCORRUPTED;
930 goto out_free;
931 }
932 map->oflags = UDF_BLK_NEW | UDF_BLK_MAPPED;
933 iinfo->i_next_alloc_block = map->lblk + 1;
934 iinfo->i_next_alloc_goal = newblocknum + 1;
935 inode_set_ctime_current(inode);
936
937 if (IS_SYNC(inode))
938 udf_sync_inode(inode);
939 else
940 mark_inode_dirty(inode);
941 ret = 0;
942 out_free:
943 brelse(prev_epos.bh);
944 brelse(cur_epos.bh);
945 brelse(next_epos.bh);
946 return ret;
947 }
948
udf_split_extents(struct inode * inode,int * c,int offset,udf_pblk_t newblocknum,struct kernel_long_ad * laarr,int * endnum)949 static void udf_split_extents(struct inode *inode, int *c, int offset,
950 udf_pblk_t newblocknum,
951 struct kernel_long_ad *laarr, int *endnum)
952 {
953 unsigned long blocksize = inode->i_sb->s_blocksize;
954 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
955
956 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
957 (laarr[*c].extLength >> 30) ==
958 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
959 int curr = *c;
960 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
961 blocksize - 1) >> blocksize_bits;
962 int8_t etype = (laarr[curr].extLength >> 30);
963
964 if (blen == 1)
965 ;
966 else if (!offset || blen == offset + 1) {
967 laarr[curr + 2] = laarr[curr + 1];
968 laarr[curr + 1] = laarr[curr];
969 } else {
970 laarr[curr + 3] = laarr[curr + 1];
971 laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
972 }
973
974 if (offset) {
975 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
976 udf_free_blocks(inode->i_sb, inode,
977 &laarr[curr].extLocation,
978 0, offset);
979 laarr[curr].extLength =
980 EXT_NOT_RECORDED_NOT_ALLOCATED |
981 (offset << blocksize_bits);
982 laarr[curr].extLocation.logicalBlockNum = 0;
983 laarr[curr].extLocation.
984 partitionReferenceNum = 0;
985 } else
986 laarr[curr].extLength = (etype << 30) |
987 (offset << blocksize_bits);
988 curr++;
989 (*c)++;
990 (*endnum)++;
991 }
992
993 laarr[curr].extLocation.logicalBlockNum = newblocknum;
994 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
995 laarr[curr].extLocation.partitionReferenceNum =
996 UDF_I(inode)->i_location.partitionReferenceNum;
997 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
998 blocksize;
999 curr++;
1000
1001 if (blen != offset + 1) {
1002 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
1003 laarr[curr].extLocation.logicalBlockNum +=
1004 offset + 1;
1005 laarr[curr].extLength = (etype << 30) |
1006 ((blen - (offset + 1)) << blocksize_bits);
1007 curr++;
1008 (*endnum)++;
1009 }
1010 }
1011 }
1012
udf_prealloc_extents(struct inode * inode,int c,int lastblock,struct kernel_long_ad * laarr,int * endnum)1013 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
1014 struct kernel_long_ad *laarr,
1015 int *endnum)
1016 {
1017 int start, length = 0, currlength = 0, i;
1018
1019 if (*endnum >= (c + 1)) {
1020 if (!lastblock)
1021 return;
1022 else
1023 start = c;
1024 } else {
1025 if ((laarr[c + 1].extLength >> 30) ==
1026 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1027 start = c + 1;
1028 length = currlength =
1029 (((laarr[c + 1].extLength &
1030 UDF_EXTENT_LENGTH_MASK) +
1031 inode->i_sb->s_blocksize - 1) >>
1032 inode->i_sb->s_blocksize_bits);
1033 } else
1034 start = c;
1035 }
1036
1037 for (i = start + 1; i <= *endnum; i++) {
1038 if (i == *endnum) {
1039 if (lastblock)
1040 length += UDF_DEFAULT_PREALLOC_BLOCKS;
1041 } else if ((laarr[i].extLength >> 30) ==
1042 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
1043 length += (((laarr[i].extLength &
1044 UDF_EXTENT_LENGTH_MASK) +
1045 inode->i_sb->s_blocksize - 1) >>
1046 inode->i_sb->s_blocksize_bits);
1047 } else
1048 break;
1049 }
1050
1051 if (length) {
1052 int next = laarr[start].extLocation.logicalBlockNum +
1053 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1054 inode->i_sb->s_blocksize - 1) >>
1055 inode->i_sb->s_blocksize_bits);
1056 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1057 laarr[start].extLocation.partitionReferenceNum,
1058 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1059 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1060 currlength);
1061 if (numalloc) {
1062 if (start == (c + 1))
1063 laarr[start].extLength +=
1064 (numalloc <<
1065 inode->i_sb->s_blocksize_bits);
1066 else {
1067 memmove(&laarr[c + 2], &laarr[c + 1],
1068 sizeof(struct long_ad) * (*endnum - (c + 1)));
1069 (*endnum)++;
1070 laarr[c + 1].extLocation.logicalBlockNum = next;
1071 laarr[c + 1].extLocation.partitionReferenceNum =
1072 laarr[c].extLocation.
1073 partitionReferenceNum;
1074 laarr[c + 1].extLength =
1075 EXT_NOT_RECORDED_ALLOCATED |
1076 (numalloc <<
1077 inode->i_sb->s_blocksize_bits);
1078 start = c + 1;
1079 }
1080
1081 for (i = start + 1; numalloc && i < *endnum; i++) {
1082 int elen = ((laarr[i].extLength &
1083 UDF_EXTENT_LENGTH_MASK) +
1084 inode->i_sb->s_blocksize - 1) >>
1085 inode->i_sb->s_blocksize_bits;
1086
1087 if (elen > numalloc) {
1088 laarr[i].extLength -=
1089 (numalloc <<
1090 inode->i_sb->s_blocksize_bits);
1091 numalloc = 0;
1092 } else {
1093 numalloc -= elen;
1094 if (*endnum > (i + 1))
1095 memmove(&laarr[i],
1096 &laarr[i + 1],
1097 sizeof(struct long_ad) *
1098 (*endnum - (i + 1)));
1099 i--;
1100 (*endnum)--;
1101 }
1102 }
1103 UDF_I(inode)->i_lenExtents +=
1104 numalloc << inode->i_sb->s_blocksize_bits;
1105 }
1106 }
1107 }
1108
udf_merge_extents(struct inode * inode,struct kernel_long_ad * laarr,int * endnum)1109 static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1110 int *endnum)
1111 {
1112 int i;
1113 unsigned long blocksize = inode->i_sb->s_blocksize;
1114 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1115
1116 for (i = 0; i < (*endnum - 1); i++) {
1117 struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1118 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1119
1120 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1121 (((li->extLength >> 30) ==
1122 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1123 ((lip1->extLocation.logicalBlockNum -
1124 li->extLocation.logicalBlockNum) ==
1125 (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1126 blocksize - 1) >> blocksize_bits)))) {
1127
1128 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1129 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1130 blocksize - 1) <= UDF_EXTENT_LENGTH_MASK) {
1131 li->extLength = lip1->extLength +
1132 (((li->extLength &
1133 UDF_EXTENT_LENGTH_MASK) +
1134 blocksize - 1) & ~(blocksize - 1));
1135 if (*endnum > (i + 2))
1136 memmove(&laarr[i + 1], &laarr[i + 2],
1137 sizeof(struct long_ad) *
1138 (*endnum - (i + 2)));
1139 i--;
1140 (*endnum)--;
1141 }
1142 } else if (((li->extLength >> 30) ==
1143 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1144 ((lip1->extLength >> 30) ==
1145 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1146 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1147 ((li->extLength &
1148 UDF_EXTENT_LENGTH_MASK) +
1149 blocksize - 1) >> blocksize_bits);
1150 li->extLocation.logicalBlockNum = 0;
1151 li->extLocation.partitionReferenceNum = 0;
1152
1153 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1154 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1155 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1156 lip1->extLength = (lip1->extLength -
1157 (li->extLength &
1158 UDF_EXTENT_LENGTH_MASK) +
1159 UDF_EXTENT_LENGTH_MASK) &
1160 ~(blocksize - 1);
1161 li->extLength = (li->extLength &
1162 UDF_EXTENT_FLAG_MASK) +
1163 (UDF_EXTENT_LENGTH_MASK + 1) -
1164 blocksize;
1165 } else {
1166 li->extLength = lip1->extLength +
1167 (((li->extLength &
1168 UDF_EXTENT_LENGTH_MASK) +
1169 blocksize - 1) & ~(blocksize - 1));
1170 if (*endnum > (i + 2))
1171 memmove(&laarr[i + 1], &laarr[i + 2],
1172 sizeof(struct long_ad) *
1173 (*endnum - (i + 2)));
1174 i--;
1175 (*endnum)--;
1176 }
1177 } else if ((li->extLength >> 30) ==
1178 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1179 udf_free_blocks(inode->i_sb, inode,
1180 &li->extLocation, 0,
1181 ((li->extLength &
1182 UDF_EXTENT_LENGTH_MASK) +
1183 blocksize - 1) >> blocksize_bits);
1184 li->extLocation.logicalBlockNum = 0;
1185 li->extLocation.partitionReferenceNum = 0;
1186 li->extLength = (li->extLength &
1187 UDF_EXTENT_LENGTH_MASK) |
1188 EXT_NOT_RECORDED_NOT_ALLOCATED;
1189 }
1190 }
1191 }
1192
udf_update_extents(struct inode * inode,struct kernel_long_ad * laarr,int startnum,int endnum,struct extent_position * epos)1193 static int udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1194 int startnum, int endnum,
1195 struct extent_position *epos)
1196 {
1197 int start = 0, i;
1198 struct kernel_lb_addr tmploc;
1199 uint32_t tmplen;
1200 int8_t tmpetype;
1201 int err;
1202
1203 if (startnum > endnum) {
1204 for (i = 0; i < (startnum - endnum); i++)
1205 udf_delete_aext(inode, *epos);
1206 } else if (startnum < endnum) {
1207 for (i = 0; i < (endnum - startnum); i++) {
1208 err = udf_insert_aext(inode, *epos,
1209 laarr[i].extLocation,
1210 laarr[i].extLength);
1211 /*
1212 * If we fail here, we are likely corrupting the extent
1213 * list and leaking blocks. At least stop early to
1214 * limit the damage.
1215 */
1216 if (err < 0)
1217 return err;
1218 err = udf_next_aext(inode, epos, &laarr[i].extLocation,
1219 &laarr[i].extLength, &tmpetype, 1);
1220 if (err < 0)
1221 return err;
1222 start++;
1223 }
1224 }
1225
1226 for (i = start; i < endnum; i++) {
1227 err = udf_next_aext(inode, epos, &tmploc, &tmplen, &tmpetype, 0);
1228 if (err < 0)
1229 return err;
1230
1231 udf_write_aext(inode, epos, &laarr[i].extLocation,
1232 laarr[i].extLength, 1);
1233 }
1234 return 0;
1235 }
1236
udf_bread(struct inode * inode,udf_pblk_t block,int create,int * err)1237 struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1238 int create, int *err)
1239 {
1240 struct buffer_head *bh = NULL;
1241 struct udf_map_rq map = {
1242 .lblk = block,
1243 .iflags = UDF_MAP_NOPREALLOC | (create ? UDF_MAP_CREATE : 0),
1244 };
1245
1246 *err = udf_map_block(inode, &map);
1247 if (*err || !(map.oflags & UDF_BLK_MAPPED))
1248 return NULL;
1249
1250 bh = sb_getblk(inode->i_sb, map.pblk);
1251 if (!bh) {
1252 *err = -ENOMEM;
1253 return NULL;
1254 }
1255 if (map.oflags & UDF_BLK_NEW) {
1256 lock_buffer(bh);
1257 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
1258 set_buffer_uptodate(bh);
1259 unlock_buffer(bh);
1260 mark_buffer_dirty_inode(bh, inode);
1261 return bh;
1262 }
1263
1264 if (bh_read(bh, 0) >= 0)
1265 return bh;
1266
1267 brelse(bh);
1268 *err = -EIO;
1269 return NULL;
1270 }
1271
udf_setsize(struct inode * inode,loff_t newsize)1272 int udf_setsize(struct inode *inode, loff_t newsize)
1273 {
1274 int err = 0;
1275 struct udf_inode_info *iinfo;
1276 unsigned int bsize = i_blocksize(inode);
1277
1278 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1279 S_ISLNK(inode->i_mode)))
1280 return -EINVAL;
1281 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1282 return -EPERM;
1283
1284 iinfo = UDF_I(inode);
1285 if (newsize > inode->i_size) {
1286 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1287 if (bsize >=
1288 (udf_file_entry_alloc_offset(inode) + newsize)) {
1289 down_write(&iinfo->i_data_sem);
1290 iinfo->i_lenAlloc = newsize;
1291 up_write(&iinfo->i_data_sem);
1292 goto set_size;
1293 }
1294 err = udf_expand_file_adinicb(inode);
1295 if (err)
1296 return err;
1297 }
1298 err = udf_extend_file(inode, newsize);
1299 if (err)
1300 return err;
1301 set_size:
1302 truncate_setsize(inode, newsize);
1303 } else {
1304 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1305 down_write(&iinfo->i_data_sem);
1306 udf_clear_extent_cache(inode);
1307 memset(iinfo->i_data + iinfo->i_lenEAttr + newsize,
1308 0x00, bsize - newsize -
1309 udf_file_entry_alloc_offset(inode));
1310 iinfo->i_lenAlloc = newsize;
1311 truncate_setsize(inode, newsize);
1312 up_write(&iinfo->i_data_sem);
1313 goto update_time;
1314 }
1315 err = block_truncate_page(inode->i_mapping, newsize,
1316 udf_get_block);
1317 if (err)
1318 return err;
1319 truncate_setsize(inode, newsize);
1320 down_write(&iinfo->i_data_sem);
1321 udf_clear_extent_cache(inode);
1322 err = udf_truncate_extents(inode);
1323 up_write(&iinfo->i_data_sem);
1324 if (err)
1325 return err;
1326 }
1327 update_time:
1328 inode->i_mtime = inode_set_ctime_current(inode);
1329 if (IS_SYNC(inode))
1330 udf_sync_inode(inode);
1331 else
1332 mark_inode_dirty(inode);
1333 return err;
1334 }
1335
1336 /*
1337 * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1338 * arbitrary - just that we hopefully don't limit any real use of rewritten
1339 * inode on write-once media but avoid looping for too long on corrupted media.
1340 */
1341 #define UDF_MAX_ICB_NESTING 1024
1342
udf_read_inode(struct inode * inode,bool hidden_inode)1343 static int udf_read_inode(struct inode *inode, bool hidden_inode)
1344 {
1345 struct buffer_head *bh = NULL;
1346 struct fileEntry *fe;
1347 struct extendedFileEntry *efe;
1348 uint16_t ident;
1349 struct udf_inode_info *iinfo = UDF_I(inode);
1350 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1351 struct kernel_lb_addr *iloc = &iinfo->i_location;
1352 unsigned int link_count;
1353 unsigned int indirections = 0;
1354 int bs = inode->i_sb->s_blocksize;
1355 int ret = -EIO;
1356 uint32_t uid, gid;
1357 struct timespec64 ctime;
1358
1359 reread:
1360 if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1361 udf_debug("partition reference: %u > logical volume partitions: %u\n",
1362 iloc->partitionReferenceNum, sbi->s_partitions);
1363 return -EIO;
1364 }
1365
1366 if (iloc->logicalBlockNum >=
1367 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1368 udf_debug("block=%u, partition=%u out of range\n",
1369 iloc->logicalBlockNum, iloc->partitionReferenceNum);
1370 return -EIO;
1371 }
1372
1373 /*
1374 * Set defaults, but the inode is still incomplete!
1375 * Note: get_new_inode() sets the following on a new inode:
1376 * i_sb = sb
1377 * i_no = ino
1378 * i_flags = sb->s_flags
1379 * i_state = 0
1380 * clean_inode(): zero fills and sets
1381 * i_count = 1
1382 * i_nlink = 1
1383 * i_op = NULL;
1384 */
1385 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1386 if (!bh) {
1387 udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1388 return -EIO;
1389 }
1390
1391 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1392 ident != TAG_IDENT_USE) {
1393 udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1394 inode->i_ino, ident);
1395 goto out;
1396 }
1397
1398 fe = (struct fileEntry *)bh->b_data;
1399 efe = (struct extendedFileEntry *)bh->b_data;
1400
1401 if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1402 struct buffer_head *ibh;
1403
1404 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1405 if (ident == TAG_IDENT_IE && ibh) {
1406 struct kernel_lb_addr loc;
1407 struct indirectEntry *ie;
1408
1409 ie = (struct indirectEntry *)ibh->b_data;
1410 loc = lelb_to_cpu(ie->indirectICB.extLocation);
1411
1412 if (ie->indirectICB.extLength) {
1413 brelse(ibh);
1414 memcpy(&iinfo->i_location, &loc,
1415 sizeof(struct kernel_lb_addr));
1416 if (++indirections > UDF_MAX_ICB_NESTING) {
1417 udf_err(inode->i_sb,
1418 "too many ICBs in ICB hierarchy"
1419 " (max %d supported)\n",
1420 UDF_MAX_ICB_NESTING);
1421 goto out;
1422 }
1423 brelse(bh);
1424 goto reread;
1425 }
1426 }
1427 brelse(ibh);
1428 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1429 udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1430 le16_to_cpu(fe->icbTag.strategyType));
1431 goto out;
1432 }
1433 if (fe->icbTag.strategyType == cpu_to_le16(4))
1434 iinfo->i_strat4096 = 0;
1435 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1436 iinfo->i_strat4096 = 1;
1437
1438 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1439 ICBTAG_FLAG_AD_MASK;
1440 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1441 iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1442 iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1443 ret = -EIO;
1444 goto out;
1445 }
1446 iinfo->i_hidden = hidden_inode;
1447 iinfo->i_unique = 0;
1448 iinfo->i_lenEAttr = 0;
1449 iinfo->i_lenExtents = 0;
1450 iinfo->i_lenAlloc = 0;
1451 iinfo->i_next_alloc_block = 0;
1452 iinfo->i_next_alloc_goal = 0;
1453 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1454 iinfo->i_efe = 1;
1455 iinfo->i_use = 0;
1456 ret = udf_alloc_i_data(inode, bs -
1457 sizeof(struct extendedFileEntry));
1458 if (ret)
1459 goto out;
1460 memcpy(iinfo->i_data,
1461 bh->b_data + sizeof(struct extendedFileEntry),
1462 bs - sizeof(struct extendedFileEntry));
1463 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1464 iinfo->i_efe = 0;
1465 iinfo->i_use = 0;
1466 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1467 if (ret)
1468 goto out;
1469 memcpy(iinfo->i_data,
1470 bh->b_data + sizeof(struct fileEntry),
1471 bs - sizeof(struct fileEntry));
1472 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1473 iinfo->i_efe = 0;
1474 iinfo->i_use = 1;
1475 iinfo->i_lenAlloc = le32_to_cpu(
1476 ((struct unallocSpaceEntry *)bh->b_data)->
1477 lengthAllocDescs);
1478 ret = udf_alloc_i_data(inode, bs -
1479 sizeof(struct unallocSpaceEntry));
1480 if (ret)
1481 goto out;
1482 memcpy(iinfo->i_data,
1483 bh->b_data + sizeof(struct unallocSpaceEntry),
1484 bs - sizeof(struct unallocSpaceEntry));
1485 return 0;
1486 }
1487
1488 ret = -EIO;
1489 read_lock(&sbi->s_cred_lock);
1490 uid = le32_to_cpu(fe->uid);
1491 if (uid == UDF_INVALID_ID ||
1492 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1493 inode->i_uid = sbi->s_uid;
1494 else
1495 i_uid_write(inode, uid);
1496
1497 gid = le32_to_cpu(fe->gid);
1498 if (gid == UDF_INVALID_ID ||
1499 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1500 inode->i_gid = sbi->s_gid;
1501 else
1502 i_gid_write(inode, gid);
1503
1504 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1505 sbi->s_fmode != UDF_INVALID_MODE)
1506 inode->i_mode = sbi->s_fmode;
1507 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1508 sbi->s_dmode != UDF_INVALID_MODE)
1509 inode->i_mode = sbi->s_dmode;
1510 else
1511 inode->i_mode = udf_convert_permissions(fe);
1512 inode->i_mode &= ~sbi->s_umask;
1513 iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1514
1515 read_unlock(&sbi->s_cred_lock);
1516
1517 link_count = le16_to_cpu(fe->fileLinkCount);
1518 if (!link_count) {
1519 if (!hidden_inode) {
1520 ret = -ESTALE;
1521 goto out;
1522 }
1523 link_count = 1;
1524 }
1525 set_nlink(inode, link_count);
1526
1527 inode->i_size = le64_to_cpu(fe->informationLength);
1528 iinfo->i_lenExtents = inode->i_size;
1529
1530 if (iinfo->i_efe == 0) {
1531 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1532 (inode->i_sb->s_blocksize_bits - 9);
1533
1534 udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime);
1535 udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime);
1536 udf_disk_stamp_to_time(&ctime, fe->attrTime);
1537 inode_set_ctime_to_ts(inode, ctime);
1538
1539 iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1540 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1541 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1542 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1543 iinfo->i_streamdir = 0;
1544 iinfo->i_lenStreams = 0;
1545 } else {
1546 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1547 (inode->i_sb->s_blocksize_bits - 9);
1548
1549 udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime);
1550 udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime);
1551 udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1552 udf_disk_stamp_to_time(&ctime, efe->attrTime);
1553 inode_set_ctime_to_ts(inode, ctime);
1554
1555 iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1556 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1557 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1558 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1559
1560 /* Named streams */
1561 iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1562 iinfo->i_locStreamdir =
1563 lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1564 iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1565 if (iinfo->i_lenStreams >= inode->i_size)
1566 iinfo->i_lenStreams -= inode->i_size;
1567 else
1568 iinfo->i_lenStreams = 0;
1569 }
1570 inode->i_generation = iinfo->i_unique;
1571
1572 /*
1573 * Sanity check length of allocation descriptors and extended attrs to
1574 * avoid integer overflows
1575 */
1576 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1577 goto out;
1578 /* Now do exact checks */
1579 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1580 goto out;
1581 /* Sanity checks for files in ICB so that we don't get confused later */
1582 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1583 /*
1584 * For file in ICB data is stored in allocation descriptor
1585 * so sizes should match
1586 */
1587 if (iinfo->i_lenAlloc != inode->i_size)
1588 goto out;
1589 /* File in ICB has to fit in there... */
1590 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1591 goto out;
1592 }
1593
1594 switch (fe->icbTag.fileType) {
1595 case ICBTAG_FILE_TYPE_DIRECTORY:
1596 inode->i_op = &udf_dir_inode_operations;
1597 inode->i_fop = &udf_dir_operations;
1598 inode->i_mode |= S_IFDIR;
1599 inc_nlink(inode);
1600 break;
1601 case ICBTAG_FILE_TYPE_REALTIME:
1602 case ICBTAG_FILE_TYPE_REGULAR:
1603 case ICBTAG_FILE_TYPE_UNDEF:
1604 case ICBTAG_FILE_TYPE_VAT20:
1605 inode->i_data.a_ops = &udf_aops;
1606 inode->i_op = &udf_file_inode_operations;
1607 inode->i_fop = &udf_file_operations;
1608 inode->i_mode |= S_IFREG;
1609 break;
1610 case ICBTAG_FILE_TYPE_BLOCK:
1611 inode->i_mode |= S_IFBLK;
1612 break;
1613 case ICBTAG_FILE_TYPE_CHAR:
1614 inode->i_mode |= S_IFCHR;
1615 break;
1616 case ICBTAG_FILE_TYPE_FIFO:
1617 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1618 break;
1619 case ICBTAG_FILE_TYPE_SOCKET:
1620 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1621 break;
1622 case ICBTAG_FILE_TYPE_SYMLINK:
1623 inode->i_data.a_ops = &udf_symlink_aops;
1624 inode->i_op = &udf_symlink_inode_operations;
1625 inode_nohighmem(inode);
1626 inode->i_mode = S_IFLNK | 0777;
1627 break;
1628 case ICBTAG_FILE_TYPE_MAIN:
1629 udf_debug("METADATA FILE-----\n");
1630 break;
1631 case ICBTAG_FILE_TYPE_MIRROR:
1632 udf_debug("METADATA MIRROR FILE-----\n");
1633 break;
1634 case ICBTAG_FILE_TYPE_BITMAP:
1635 udf_debug("METADATA BITMAP FILE-----\n");
1636 break;
1637 default:
1638 udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1639 inode->i_ino, fe->icbTag.fileType);
1640 goto out;
1641 }
1642 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1643 struct deviceSpec *dsea =
1644 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1645 if (dsea) {
1646 init_special_inode(inode, inode->i_mode,
1647 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1648 le32_to_cpu(dsea->minorDeviceIdent)));
1649 /* Developer ID ??? */
1650 } else
1651 goto out;
1652 }
1653 ret = 0;
1654 out:
1655 brelse(bh);
1656 return ret;
1657 }
1658
udf_alloc_i_data(struct inode * inode,size_t size)1659 static int udf_alloc_i_data(struct inode *inode, size_t size)
1660 {
1661 struct udf_inode_info *iinfo = UDF_I(inode);
1662 iinfo->i_data = kmalloc(size, GFP_KERNEL);
1663 if (!iinfo->i_data)
1664 return -ENOMEM;
1665 return 0;
1666 }
1667
udf_convert_permissions(struct fileEntry * fe)1668 static umode_t udf_convert_permissions(struct fileEntry *fe)
1669 {
1670 umode_t mode;
1671 uint32_t permissions;
1672 uint32_t flags;
1673
1674 permissions = le32_to_cpu(fe->permissions);
1675 flags = le16_to_cpu(fe->icbTag.flags);
1676
1677 mode = ((permissions) & 0007) |
1678 ((permissions >> 2) & 0070) |
1679 ((permissions >> 4) & 0700) |
1680 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1681 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1682 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1683
1684 return mode;
1685 }
1686
udf_update_extra_perms(struct inode * inode,umode_t mode)1687 void udf_update_extra_perms(struct inode *inode, umode_t mode)
1688 {
1689 struct udf_inode_info *iinfo = UDF_I(inode);
1690
1691 /*
1692 * UDF 2.01 sec. 3.3.3.3 Note 2:
1693 * In Unix, delete permission tracks write
1694 */
1695 iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1696 if (mode & 0200)
1697 iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1698 if (mode & 0020)
1699 iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1700 if (mode & 0002)
1701 iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1702 }
1703
udf_write_inode(struct inode * inode,struct writeback_control * wbc)1704 int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1705 {
1706 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1707 }
1708
udf_sync_inode(struct inode * inode)1709 static int udf_sync_inode(struct inode *inode)
1710 {
1711 return udf_update_inode(inode, 1);
1712 }
1713
udf_adjust_time(struct udf_inode_info * iinfo,struct timespec64 time)1714 static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1715 {
1716 if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1717 (iinfo->i_crtime.tv_sec == time.tv_sec &&
1718 iinfo->i_crtime.tv_nsec > time.tv_nsec))
1719 iinfo->i_crtime = time;
1720 }
1721
udf_update_inode(struct inode * inode,int do_sync)1722 static int udf_update_inode(struct inode *inode, int do_sync)
1723 {
1724 struct buffer_head *bh = NULL;
1725 struct fileEntry *fe;
1726 struct extendedFileEntry *efe;
1727 uint64_t lb_recorded;
1728 uint32_t udfperms;
1729 uint16_t icbflags;
1730 uint16_t crclen;
1731 int err = 0;
1732 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1733 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1734 struct udf_inode_info *iinfo = UDF_I(inode);
1735
1736 bh = sb_getblk(inode->i_sb,
1737 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1738 if (!bh) {
1739 udf_debug("getblk failure\n");
1740 return -EIO;
1741 }
1742
1743 lock_buffer(bh);
1744 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1745 fe = (struct fileEntry *)bh->b_data;
1746 efe = (struct extendedFileEntry *)bh->b_data;
1747
1748 if (iinfo->i_use) {
1749 struct unallocSpaceEntry *use =
1750 (struct unallocSpaceEntry *)bh->b_data;
1751
1752 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1753 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1754 iinfo->i_data, inode->i_sb->s_blocksize -
1755 sizeof(struct unallocSpaceEntry));
1756 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1757 crclen = sizeof(struct unallocSpaceEntry);
1758
1759 goto finish;
1760 }
1761
1762 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1763 fe->uid = cpu_to_le32(UDF_INVALID_ID);
1764 else
1765 fe->uid = cpu_to_le32(i_uid_read(inode));
1766
1767 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1768 fe->gid = cpu_to_le32(UDF_INVALID_ID);
1769 else
1770 fe->gid = cpu_to_le32(i_gid_read(inode));
1771
1772 udfperms = ((inode->i_mode & 0007)) |
1773 ((inode->i_mode & 0070) << 2) |
1774 ((inode->i_mode & 0700) << 4);
1775
1776 udfperms |= iinfo->i_extraPerms;
1777 fe->permissions = cpu_to_le32(udfperms);
1778
1779 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1780 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1781 else {
1782 if (iinfo->i_hidden)
1783 fe->fileLinkCount = cpu_to_le16(0);
1784 else
1785 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1786 }
1787
1788 fe->informationLength = cpu_to_le64(inode->i_size);
1789
1790 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1791 struct regid *eid;
1792 struct deviceSpec *dsea =
1793 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1794 if (!dsea) {
1795 dsea = (struct deviceSpec *)
1796 udf_add_extendedattr(inode,
1797 sizeof(struct deviceSpec) +
1798 sizeof(struct regid), 12, 0x3);
1799 dsea->attrType = cpu_to_le32(12);
1800 dsea->attrSubtype = 1;
1801 dsea->attrLength = cpu_to_le32(
1802 sizeof(struct deviceSpec) +
1803 sizeof(struct regid));
1804 dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1805 }
1806 eid = (struct regid *)dsea->impUse;
1807 memset(eid, 0, sizeof(*eid));
1808 strcpy(eid->ident, UDF_ID_DEVELOPER);
1809 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1810 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1811 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1812 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1813 }
1814
1815 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1816 lb_recorded = 0; /* No extents => no blocks! */
1817 else
1818 lb_recorded =
1819 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1820 (blocksize_bits - 9);
1821
1822 if (iinfo->i_efe == 0) {
1823 memcpy(bh->b_data + sizeof(struct fileEntry),
1824 iinfo->i_data,
1825 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1826 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1827
1828 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1829 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1830 udf_time_to_disk_stamp(&fe->attrTime, inode_get_ctime(inode));
1831 memset(&(fe->impIdent), 0, sizeof(struct regid));
1832 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1833 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1834 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1835 fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1836 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1837 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1838 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1839 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1840 crclen = sizeof(struct fileEntry);
1841 } else {
1842 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1843 iinfo->i_data,
1844 inode->i_sb->s_blocksize -
1845 sizeof(struct extendedFileEntry));
1846 efe->objectSize =
1847 cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1848 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1849
1850 if (iinfo->i_streamdir) {
1851 struct long_ad *icb_lad = &efe->streamDirectoryICB;
1852
1853 icb_lad->extLocation =
1854 cpu_to_lelb(iinfo->i_locStreamdir);
1855 icb_lad->extLength =
1856 cpu_to_le32(inode->i_sb->s_blocksize);
1857 }
1858
1859 udf_adjust_time(iinfo, inode->i_atime);
1860 udf_adjust_time(iinfo, inode->i_mtime);
1861 udf_adjust_time(iinfo, inode_get_ctime(inode));
1862
1863 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1864 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1865 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1866 udf_time_to_disk_stamp(&efe->attrTime, inode_get_ctime(inode));
1867
1868 memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1869 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1870 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1871 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1872 efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1873 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1874 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1875 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1876 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1877 crclen = sizeof(struct extendedFileEntry);
1878 }
1879
1880 finish:
1881 if (iinfo->i_strat4096) {
1882 fe->icbTag.strategyType = cpu_to_le16(4096);
1883 fe->icbTag.strategyParameter = cpu_to_le16(1);
1884 fe->icbTag.numEntries = cpu_to_le16(2);
1885 } else {
1886 fe->icbTag.strategyType = cpu_to_le16(4);
1887 fe->icbTag.numEntries = cpu_to_le16(1);
1888 }
1889
1890 if (iinfo->i_use)
1891 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1892 else if (S_ISDIR(inode->i_mode))
1893 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1894 else if (S_ISREG(inode->i_mode))
1895 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1896 else if (S_ISLNK(inode->i_mode))
1897 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1898 else if (S_ISBLK(inode->i_mode))
1899 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1900 else if (S_ISCHR(inode->i_mode))
1901 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1902 else if (S_ISFIFO(inode->i_mode))
1903 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1904 else if (S_ISSOCK(inode->i_mode))
1905 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1906
1907 icbflags = iinfo->i_alloc_type |
1908 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1909 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1910 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1911 (le16_to_cpu(fe->icbTag.flags) &
1912 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1913 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1914
1915 fe->icbTag.flags = cpu_to_le16(icbflags);
1916 if (sbi->s_udfrev >= 0x0200)
1917 fe->descTag.descVersion = cpu_to_le16(3);
1918 else
1919 fe->descTag.descVersion = cpu_to_le16(2);
1920 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1921 fe->descTag.tagLocation = cpu_to_le32(
1922 iinfo->i_location.logicalBlockNum);
1923 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1924 fe->descTag.descCRCLength = cpu_to_le16(crclen);
1925 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1926 crclen));
1927 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1928
1929 set_buffer_uptodate(bh);
1930 unlock_buffer(bh);
1931
1932 /* write the data blocks */
1933 mark_buffer_dirty(bh);
1934 if (do_sync) {
1935 sync_dirty_buffer(bh);
1936 if (buffer_write_io_error(bh)) {
1937 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1938 inode->i_ino);
1939 err = -EIO;
1940 }
1941 }
1942 brelse(bh);
1943
1944 return err;
1945 }
1946
__udf_iget(struct super_block * sb,struct kernel_lb_addr * ino,bool hidden_inode)1947 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1948 bool hidden_inode)
1949 {
1950 unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1951 struct inode *inode = iget_locked(sb, block);
1952 int err;
1953
1954 if (!inode)
1955 return ERR_PTR(-ENOMEM);
1956
1957 if (!(inode->i_state & I_NEW)) {
1958 if (UDF_I(inode)->i_hidden != hidden_inode) {
1959 iput(inode);
1960 return ERR_PTR(-EFSCORRUPTED);
1961 }
1962 return inode;
1963 }
1964
1965 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1966 err = udf_read_inode(inode, hidden_inode);
1967 if (err < 0) {
1968 iget_failed(inode);
1969 return ERR_PTR(err);
1970 }
1971 unlock_new_inode(inode);
1972
1973 return inode;
1974 }
1975
udf_setup_indirect_aext(struct inode * inode,udf_pblk_t block,struct extent_position * epos)1976 int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1977 struct extent_position *epos)
1978 {
1979 struct super_block *sb = inode->i_sb;
1980 struct buffer_head *bh;
1981 struct allocExtDesc *aed;
1982 struct extent_position nepos;
1983 struct kernel_lb_addr neloc;
1984 int ver, adsize;
1985 int err = 0;
1986
1987 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1988 adsize = sizeof(struct short_ad);
1989 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1990 adsize = sizeof(struct long_ad);
1991 else
1992 return -EIO;
1993
1994 neloc.logicalBlockNum = block;
1995 neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1996
1997 bh = sb_getblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1998 if (!bh)
1999 return -EIO;
2000 lock_buffer(bh);
2001 memset(bh->b_data, 0x00, sb->s_blocksize);
2002 set_buffer_uptodate(bh);
2003 unlock_buffer(bh);
2004 mark_buffer_dirty_inode(bh, inode);
2005
2006 aed = (struct allocExtDesc *)(bh->b_data);
2007 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
2008 aed->previousAllocExtLocation =
2009 cpu_to_le32(epos->block.logicalBlockNum);
2010 }
2011 aed->lengthAllocDescs = cpu_to_le32(0);
2012 if (UDF_SB(sb)->s_udfrev >= 0x0200)
2013 ver = 3;
2014 else
2015 ver = 2;
2016 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
2017 sizeof(struct tag));
2018
2019 nepos.block = neloc;
2020 nepos.offset = sizeof(struct allocExtDesc);
2021 nepos.bh = bh;
2022
2023 /*
2024 * Do we have to copy current last extent to make space for indirect
2025 * one?
2026 */
2027 if (epos->offset + adsize > sb->s_blocksize) {
2028 struct kernel_lb_addr cp_loc;
2029 uint32_t cp_len;
2030 int8_t cp_type;
2031
2032 epos->offset -= adsize;
2033 err = udf_current_aext(inode, epos, &cp_loc, &cp_len, &cp_type, 0);
2034 if (err <= 0)
2035 goto err_out;
2036 cp_len |= ((uint32_t)cp_type) << 30;
2037
2038 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
2039 udf_write_aext(inode, epos, &nepos.block,
2040 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
2041 } else {
2042 __udf_add_aext(inode, epos, &nepos.block,
2043 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
2044 }
2045
2046 brelse(epos->bh);
2047 *epos = nepos;
2048
2049 return 0;
2050 err_out:
2051 brelse(bh);
2052 return err;
2053 }
2054
2055 /*
2056 * Append extent at the given position - should be the first free one in inode
2057 * / indirect extent. This function assumes there is enough space in the inode
2058 * or indirect extent. Use udf_add_aext() if you didn't check for this before.
2059 */
__udf_add_aext(struct inode * inode,struct extent_position * epos,struct kernel_lb_addr * eloc,uint32_t elen,int inc)2060 int __udf_add_aext(struct inode *inode, struct extent_position *epos,
2061 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2062 {
2063 struct udf_inode_info *iinfo = UDF_I(inode);
2064 struct allocExtDesc *aed;
2065 int adsize;
2066
2067 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2068 adsize = sizeof(struct short_ad);
2069 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2070 adsize = sizeof(struct long_ad);
2071 else
2072 return -EIO;
2073
2074 if (!epos->bh) {
2075 WARN_ON(iinfo->i_lenAlloc !=
2076 epos->offset - udf_file_entry_alloc_offset(inode));
2077 } else {
2078 aed = (struct allocExtDesc *)epos->bh->b_data;
2079 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2080 epos->offset - sizeof(struct allocExtDesc));
2081 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2082 }
2083
2084 udf_write_aext(inode, epos, eloc, elen, inc);
2085
2086 if (!epos->bh) {
2087 iinfo->i_lenAlloc += adsize;
2088 mark_inode_dirty(inode);
2089 } else {
2090 aed = (struct allocExtDesc *)epos->bh->b_data;
2091 le32_add_cpu(&aed->lengthAllocDescs, adsize);
2092 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2093 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2094 udf_update_tag(epos->bh->b_data,
2095 epos->offset + (inc ? 0 : adsize));
2096 else
2097 udf_update_tag(epos->bh->b_data,
2098 sizeof(struct allocExtDesc));
2099 mark_buffer_dirty_inode(epos->bh, inode);
2100 }
2101
2102 return 0;
2103 }
2104
2105 /*
2106 * Append extent at given position - should be the first free one in inode
2107 * / indirect extent. Takes care of allocating and linking indirect blocks.
2108 */
udf_add_aext(struct inode * inode,struct extent_position * epos,struct kernel_lb_addr * eloc,uint32_t elen,int inc)2109 int udf_add_aext(struct inode *inode, struct extent_position *epos,
2110 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2111 {
2112 int adsize;
2113 struct super_block *sb = inode->i_sb;
2114
2115 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2116 adsize = sizeof(struct short_ad);
2117 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2118 adsize = sizeof(struct long_ad);
2119 else
2120 return -EIO;
2121
2122 if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2123 int err;
2124 udf_pblk_t new_block;
2125
2126 new_block = udf_new_block(sb, NULL,
2127 epos->block.partitionReferenceNum,
2128 epos->block.logicalBlockNum, &err);
2129 if (!new_block)
2130 return -ENOSPC;
2131
2132 err = udf_setup_indirect_aext(inode, new_block, epos);
2133 if (err)
2134 return err;
2135 }
2136
2137 return __udf_add_aext(inode, epos, eloc, elen, inc);
2138 }
2139
udf_write_aext(struct inode * inode,struct extent_position * epos,struct kernel_lb_addr * eloc,uint32_t elen,int inc)2140 void udf_write_aext(struct inode *inode, struct extent_position *epos,
2141 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2142 {
2143 int adsize;
2144 uint8_t *ptr;
2145 struct short_ad *sad;
2146 struct long_ad *lad;
2147 struct udf_inode_info *iinfo = UDF_I(inode);
2148
2149 if (!epos->bh)
2150 ptr = iinfo->i_data + epos->offset -
2151 udf_file_entry_alloc_offset(inode) +
2152 iinfo->i_lenEAttr;
2153 else
2154 ptr = epos->bh->b_data + epos->offset;
2155
2156 switch (iinfo->i_alloc_type) {
2157 case ICBTAG_FLAG_AD_SHORT:
2158 sad = (struct short_ad *)ptr;
2159 sad->extLength = cpu_to_le32(elen);
2160 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2161 adsize = sizeof(struct short_ad);
2162 break;
2163 case ICBTAG_FLAG_AD_LONG:
2164 lad = (struct long_ad *)ptr;
2165 lad->extLength = cpu_to_le32(elen);
2166 lad->extLocation = cpu_to_lelb(*eloc);
2167 memset(lad->impUse, 0x00, sizeof(lad->impUse));
2168 adsize = sizeof(struct long_ad);
2169 break;
2170 default:
2171 return;
2172 }
2173
2174 if (epos->bh) {
2175 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2176 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2177 struct allocExtDesc *aed =
2178 (struct allocExtDesc *)epos->bh->b_data;
2179 udf_update_tag(epos->bh->b_data,
2180 le32_to_cpu(aed->lengthAllocDescs) +
2181 sizeof(struct allocExtDesc));
2182 }
2183 mark_buffer_dirty_inode(epos->bh, inode);
2184 } else {
2185 mark_inode_dirty(inode);
2186 }
2187
2188 if (inc)
2189 epos->offset += adsize;
2190 }
2191
2192 /*
2193 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2194 * someone does some weird stuff.
2195 */
2196 #define UDF_MAX_INDIR_EXTS 16
2197
2198 /*
2199 * Returns 1 on success, -errno on error, 0 on hit EOF.
2200 */
udf_next_aext(struct inode * inode,struct extent_position * epos,struct kernel_lb_addr * eloc,uint32_t * elen,int8_t * etype,int inc)2201 int udf_next_aext(struct inode *inode, struct extent_position *epos,
2202 struct kernel_lb_addr *eloc, uint32_t *elen, int8_t *etype,
2203 int inc)
2204 {
2205 unsigned int indirections = 0;
2206 int ret = 0;
2207 udf_pblk_t block;
2208
2209 while (1) {
2210 ret = udf_current_aext(inode, epos, eloc, elen,
2211 etype, inc);
2212 if (ret <= 0)
2213 return ret;
2214 if (*etype != (EXT_NEXT_EXTENT_ALLOCDESCS >> 30))
2215 return ret;
2216
2217 if (++indirections > UDF_MAX_INDIR_EXTS) {
2218 udf_err(inode->i_sb,
2219 "too many indirect extents in inode %lu\n",
2220 inode->i_ino);
2221 return -EFSCORRUPTED;
2222 }
2223
2224 epos->block = *eloc;
2225 epos->offset = sizeof(struct allocExtDesc);
2226 brelse(epos->bh);
2227 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2228 epos->bh = sb_bread(inode->i_sb, block);
2229 if (!epos->bh) {
2230 udf_debug("reading block %u failed!\n", block);
2231 return -EIO;
2232 }
2233 }
2234 }
2235
2236 /*
2237 * Returns 1 on success, -errno on error, 0 on hit EOF.
2238 */
udf_current_aext(struct inode * inode,struct extent_position * epos,struct kernel_lb_addr * eloc,uint32_t * elen,int8_t * etype,int inc)2239 int udf_current_aext(struct inode *inode, struct extent_position *epos,
2240 struct kernel_lb_addr *eloc, uint32_t *elen, int8_t *etype,
2241 int inc)
2242 {
2243 int alen;
2244 uint8_t *ptr;
2245 struct short_ad *sad;
2246 struct long_ad *lad;
2247 struct udf_inode_info *iinfo = UDF_I(inode);
2248
2249 if (!epos->bh) {
2250 if (!epos->offset)
2251 epos->offset = udf_file_entry_alloc_offset(inode);
2252 ptr = iinfo->i_data + epos->offset -
2253 udf_file_entry_alloc_offset(inode) +
2254 iinfo->i_lenEAttr;
2255 alen = udf_file_entry_alloc_offset(inode) +
2256 iinfo->i_lenAlloc;
2257 } else {
2258 struct allocExtDesc *header =
2259 (struct allocExtDesc *)epos->bh->b_data;
2260
2261 if (!epos->offset)
2262 epos->offset = sizeof(struct allocExtDesc);
2263 ptr = epos->bh->b_data + epos->offset;
2264 if (check_add_overflow(sizeof(struct allocExtDesc),
2265 le32_to_cpu(header->lengthAllocDescs), &alen))
2266 return -1;
2267 }
2268
2269 switch (iinfo->i_alloc_type) {
2270 case ICBTAG_FLAG_AD_SHORT:
2271 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2272 if (!sad)
2273 return 0;
2274 *etype = le32_to_cpu(sad->extLength) >> 30;
2275 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2276 eloc->partitionReferenceNum =
2277 iinfo->i_location.partitionReferenceNum;
2278 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2279 break;
2280 case ICBTAG_FLAG_AD_LONG:
2281 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2282 if (!lad)
2283 return 0;
2284 *etype = le32_to_cpu(lad->extLength) >> 30;
2285 *eloc = lelb_to_cpu(lad->extLocation);
2286 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2287 break;
2288 default:
2289 udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2290 return -EINVAL;
2291 }
2292
2293 return 1;
2294 }
2295
udf_insert_aext(struct inode * inode,struct extent_position epos,struct kernel_lb_addr neloc,uint32_t nelen)2296 static int udf_insert_aext(struct inode *inode, struct extent_position epos,
2297 struct kernel_lb_addr neloc, uint32_t nelen)
2298 {
2299 struct kernel_lb_addr oeloc;
2300 uint32_t oelen;
2301 int8_t etype;
2302 int ret;
2303
2304 if (epos.bh)
2305 get_bh(epos.bh);
2306
2307 while (1) {
2308 ret = udf_next_aext(inode, &epos, &oeloc, &oelen, &etype, 0);
2309 if (ret <= 0)
2310 break;
2311 udf_write_aext(inode, &epos, &neloc, nelen, 1);
2312 neloc = oeloc;
2313 nelen = (etype << 30) | oelen;
2314 }
2315 if (ret == 0)
2316 ret = udf_add_aext(inode, &epos, &neloc, nelen, 1);
2317 brelse(epos.bh);
2318
2319 return ret;
2320 }
2321
udf_delete_aext(struct inode * inode,struct extent_position epos)2322 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2323 {
2324 struct extent_position oepos;
2325 int adsize;
2326 int8_t etype;
2327 struct allocExtDesc *aed;
2328 struct udf_inode_info *iinfo;
2329 struct kernel_lb_addr eloc;
2330 uint32_t elen;
2331 int ret;
2332
2333 if (epos.bh) {
2334 get_bh(epos.bh);
2335 get_bh(epos.bh);
2336 }
2337
2338 iinfo = UDF_I(inode);
2339 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2340 adsize = sizeof(struct short_ad);
2341 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2342 adsize = sizeof(struct long_ad);
2343 else
2344 adsize = 0;
2345
2346 oepos = epos;
2347 if (udf_next_aext(inode, &epos, &eloc, &elen, &etype, 1) <= 0)
2348 return -1;
2349
2350 while (1) {
2351 ret = udf_next_aext(inode, &epos, &eloc, &elen, &etype, 1);
2352 if (ret < 0) {
2353 brelse(epos.bh);
2354 brelse(oepos.bh);
2355 return -1;
2356 }
2357 if (ret == 0)
2358 break;
2359 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2360 if (oepos.bh != epos.bh) {
2361 oepos.block = epos.block;
2362 brelse(oepos.bh);
2363 get_bh(epos.bh);
2364 oepos.bh = epos.bh;
2365 oepos.offset = epos.offset - adsize;
2366 }
2367 }
2368 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2369 elen = 0;
2370
2371 if (epos.bh != oepos.bh) {
2372 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2373 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2374 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2375 if (!oepos.bh) {
2376 iinfo->i_lenAlloc -= (adsize * 2);
2377 mark_inode_dirty(inode);
2378 } else {
2379 aed = (struct allocExtDesc *)oepos.bh->b_data;
2380 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2381 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2382 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2383 udf_update_tag(oepos.bh->b_data,
2384 oepos.offset - (2 * adsize));
2385 else
2386 udf_update_tag(oepos.bh->b_data,
2387 sizeof(struct allocExtDesc));
2388 mark_buffer_dirty_inode(oepos.bh, inode);
2389 }
2390 } else {
2391 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2392 if (!oepos.bh) {
2393 iinfo->i_lenAlloc -= adsize;
2394 mark_inode_dirty(inode);
2395 } else {
2396 aed = (struct allocExtDesc *)oepos.bh->b_data;
2397 le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2398 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2399 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2400 udf_update_tag(oepos.bh->b_data,
2401 epos.offset - adsize);
2402 else
2403 udf_update_tag(oepos.bh->b_data,
2404 sizeof(struct allocExtDesc));
2405 mark_buffer_dirty_inode(oepos.bh, inode);
2406 }
2407 }
2408
2409 brelse(epos.bh);
2410 brelse(oepos.bh);
2411
2412 return (elen >> 30);
2413 }
2414
2415 /*
2416 * Returns 1 on success, -errno on error, 0 on hit EOF.
2417 */
inode_bmap(struct inode * inode,sector_t block,struct extent_position * pos,struct kernel_lb_addr * eloc,uint32_t * elen,sector_t * offset,int8_t * etype)2418 int inode_bmap(struct inode *inode, sector_t block, struct extent_position *pos,
2419 struct kernel_lb_addr *eloc, uint32_t *elen, sector_t *offset,
2420 int8_t *etype)
2421 {
2422 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2423 loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2424 struct udf_inode_info *iinfo;
2425 int err = 0;
2426
2427 iinfo = UDF_I(inode);
2428 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2429 pos->offset = 0;
2430 pos->block = iinfo->i_location;
2431 pos->bh = NULL;
2432 }
2433 *elen = 0;
2434 do {
2435 err = udf_next_aext(inode, pos, eloc, elen, etype, 1);
2436 if (err <= 0) {
2437 if (err == 0) {
2438 *offset = (bcount - lbcount) >> blocksize_bits;
2439 iinfo->i_lenExtents = lbcount;
2440 }
2441 return err;
2442 }
2443 lbcount += *elen;
2444 } while (lbcount <= bcount);
2445 /* update extent cache */
2446 udf_update_extent_cache(inode, lbcount - *elen, pos);
2447 *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2448
2449 return 1;
2450 }
2451