xref: /openbmc/linux/drivers/net/hyperv/netvsc_drv.c (revision 6f6249a599e52e1a5f0b632f8edff733cfa76450)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2009, Microsoft Corporation.
4  *
5  * Authors:
6  *   Haiyang Zhang <haiyangz@microsoft.com>
7  *   Hank Janssen  <hjanssen@microsoft.com>
8  */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/init.h>
12 #include <linux/atomic.h>
13 #include <linux/ethtool.h>
14 #include <linux/module.h>
15 #include <linux/highmem.h>
16 #include <linux/device.h>
17 #include <linux/io.h>
18 #include <linux/delay.h>
19 #include <linux/netdevice.h>
20 #include <linux/inetdevice.h>
21 #include <linux/etherdevice.h>
22 #include <linux/pci.h>
23 #include <linux/skbuff.h>
24 #include <linux/if_vlan.h>
25 #include <linux/in.h>
26 #include <linux/slab.h>
27 #include <linux/rtnetlink.h>
28 #include <linux/netpoll.h>
29 #include <linux/bpf.h>
30 
31 #include <net/arp.h>
32 #include <net/route.h>
33 #include <net/sock.h>
34 #include <net/pkt_sched.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 
38 #include "hyperv_net.h"
39 
40 #define RING_SIZE_MIN	64
41 
42 #define LINKCHANGE_INT (2 * HZ)
43 #define VF_TAKEOVER_INT (HZ / 10)
44 
45 /* Macros to define the context of vf registration */
46 #define VF_REG_IN_PROBE		1
47 #define VF_REG_IN_NOTIFIER	2
48 
49 static unsigned int ring_size __ro_after_init = 128;
50 module_param(ring_size, uint, 0444);
51 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of 4K pages)");
52 unsigned int netvsc_ring_bytes __ro_after_init;
53 
54 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
55 				NETIF_MSG_LINK | NETIF_MSG_IFUP |
56 				NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
57 				NETIF_MSG_TX_ERR;
58 
59 static int debug = -1;
60 module_param(debug, int, 0444);
61 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
62 
63 static LIST_HEAD(netvsc_dev_list);
64 
netvsc_change_rx_flags(struct net_device * net,int change)65 static void netvsc_change_rx_flags(struct net_device *net, int change)
66 {
67 	struct net_device_context *ndev_ctx = netdev_priv(net);
68 	struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
69 	int inc;
70 
71 	if (!vf_netdev)
72 		return;
73 
74 	if (change & IFF_PROMISC) {
75 		inc = (net->flags & IFF_PROMISC) ? 1 : -1;
76 		dev_set_promiscuity(vf_netdev, inc);
77 	}
78 
79 	if (change & IFF_ALLMULTI) {
80 		inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
81 		dev_set_allmulti(vf_netdev, inc);
82 	}
83 }
84 
netvsc_set_rx_mode(struct net_device * net)85 static void netvsc_set_rx_mode(struct net_device *net)
86 {
87 	struct net_device_context *ndev_ctx = netdev_priv(net);
88 	struct net_device *vf_netdev;
89 	struct netvsc_device *nvdev;
90 
91 	rcu_read_lock();
92 	vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
93 	if (vf_netdev) {
94 		dev_uc_sync(vf_netdev, net);
95 		dev_mc_sync(vf_netdev, net);
96 	}
97 
98 	nvdev = rcu_dereference(ndev_ctx->nvdev);
99 	if (nvdev)
100 		rndis_filter_update(nvdev);
101 	rcu_read_unlock();
102 }
103 
netvsc_tx_enable(struct netvsc_device * nvscdev,struct net_device * ndev)104 static void netvsc_tx_enable(struct netvsc_device *nvscdev,
105 			     struct net_device *ndev)
106 {
107 	nvscdev->tx_disable = false;
108 	virt_wmb(); /* ensure queue wake up mechanism is on */
109 
110 	netif_tx_wake_all_queues(ndev);
111 }
112 
netvsc_open(struct net_device * net)113 static int netvsc_open(struct net_device *net)
114 {
115 	struct net_device_context *ndev_ctx = netdev_priv(net);
116 	struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
117 	struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
118 	struct rndis_device *rdev;
119 	int ret = 0;
120 
121 	netif_carrier_off(net);
122 
123 	/* Open up the device */
124 	ret = rndis_filter_open(nvdev);
125 	if (ret != 0) {
126 		netdev_err(net, "unable to open device (ret %d).\n", ret);
127 		return ret;
128 	}
129 
130 	rdev = nvdev->extension;
131 	if (!rdev->link_state) {
132 		netif_carrier_on(net);
133 		netvsc_tx_enable(nvdev, net);
134 	}
135 
136 	if (vf_netdev) {
137 		/* Setting synthetic device up transparently sets
138 		 * slave as up. If open fails, then slave will be
139 		 * still be offline (and not used).
140 		 */
141 		ret = dev_open(vf_netdev, NULL);
142 		if (ret)
143 			netdev_warn(net,
144 				    "unable to open slave: %s: %d\n",
145 				    vf_netdev->name, ret);
146 	}
147 	return 0;
148 }
149 
netvsc_wait_until_empty(struct netvsc_device * nvdev)150 static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
151 {
152 	unsigned int retry = 0;
153 	int i;
154 
155 	/* Ensure pending bytes in ring are read */
156 	for (;;) {
157 		u32 aread = 0;
158 
159 		for (i = 0; i < nvdev->num_chn; i++) {
160 			struct vmbus_channel *chn
161 				= nvdev->chan_table[i].channel;
162 
163 			if (!chn)
164 				continue;
165 
166 			/* make sure receive not running now */
167 			napi_synchronize(&nvdev->chan_table[i].napi);
168 
169 			aread = hv_get_bytes_to_read(&chn->inbound);
170 			if (aread)
171 				break;
172 
173 			aread = hv_get_bytes_to_read(&chn->outbound);
174 			if (aread)
175 				break;
176 		}
177 
178 		if (aread == 0)
179 			return 0;
180 
181 		if (++retry > RETRY_MAX)
182 			return -ETIMEDOUT;
183 
184 		usleep_range(RETRY_US_LO, RETRY_US_HI);
185 	}
186 }
187 
netvsc_tx_disable(struct netvsc_device * nvscdev,struct net_device * ndev)188 static void netvsc_tx_disable(struct netvsc_device *nvscdev,
189 			      struct net_device *ndev)
190 {
191 	if (nvscdev) {
192 		nvscdev->tx_disable = true;
193 		virt_wmb(); /* ensure txq will not wake up after stop */
194 	}
195 
196 	netif_tx_disable(ndev);
197 }
198 
netvsc_close(struct net_device * net)199 static int netvsc_close(struct net_device *net)
200 {
201 	struct net_device_context *net_device_ctx = netdev_priv(net);
202 	struct net_device *vf_netdev
203 		= rtnl_dereference(net_device_ctx->vf_netdev);
204 	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
205 	int ret;
206 
207 	netvsc_tx_disable(nvdev, net);
208 
209 	/* No need to close rndis filter if it is removed already */
210 	if (!nvdev)
211 		return 0;
212 
213 	ret = rndis_filter_close(nvdev);
214 	if (ret != 0) {
215 		netdev_err(net, "unable to close device (ret %d).\n", ret);
216 		return ret;
217 	}
218 
219 	ret = netvsc_wait_until_empty(nvdev);
220 	if (ret)
221 		netdev_err(net, "Ring buffer not empty after closing rndis\n");
222 
223 	if (vf_netdev)
224 		dev_close(vf_netdev);
225 
226 	return ret;
227 }
228 
init_ppi_data(struct rndis_message * msg,u32 ppi_size,u32 pkt_type)229 static inline void *init_ppi_data(struct rndis_message *msg,
230 				  u32 ppi_size, u32 pkt_type)
231 {
232 	struct rndis_packet *rndis_pkt = &msg->msg.pkt;
233 	struct rndis_per_packet_info *ppi;
234 
235 	rndis_pkt->data_offset += ppi_size;
236 	ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
237 		+ rndis_pkt->per_pkt_info_len;
238 
239 	ppi->size = ppi_size;
240 	ppi->type = pkt_type;
241 	ppi->internal = 0;
242 	ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
243 
244 	rndis_pkt->per_pkt_info_len += ppi_size;
245 
246 	return ppi + 1;
247 }
248 
netvsc_get_tx_queue(struct net_device * ndev,struct sk_buff * skb,int old_idx)249 static inline int netvsc_get_tx_queue(struct net_device *ndev,
250 				      struct sk_buff *skb, int old_idx)
251 {
252 	const struct net_device_context *ndc = netdev_priv(ndev);
253 	struct sock *sk = skb->sk;
254 	int q_idx;
255 
256 	q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
257 			      (VRSS_SEND_TAB_SIZE - 1)];
258 
259 	/* If queue index changed record the new value */
260 	if (q_idx != old_idx &&
261 	    sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
262 		sk_tx_queue_set(sk, q_idx);
263 
264 	return q_idx;
265 }
266 
267 /*
268  * Select queue for transmit.
269  *
270  * If a valid queue has already been assigned, then use that.
271  * Otherwise compute tx queue based on hash and the send table.
272  *
273  * This is basically similar to default (netdev_pick_tx) with the added step
274  * of using the host send_table when no other queue has been assigned.
275  *
276  * TODO support XPS - but get_xps_queue not exported
277  */
netvsc_pick_tx(struct net_device * ndev,struct sk_buff * skb)278 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
279 {
280 	int q_idx = sk_tx_queue_get(skb->sk);
281 
282 	if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
283 		/* If forwarding a packet, we use the recorded queue when
284 		 * available for better cache locality.
285 		 */
286 		if (skb_rx_queue_recorded(skb))
287 			q_idx = skb_get_rx_queue(skb);
288 		else
289 			q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
290 	}
291 
292 	return q_idx;
293 }
294 
netvsc_select_queue(struct net_device * ndev,struct sk_buff * skb,struct net_device * sb_dev)295 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
296 			       struct net_device *sb_dev)
297 {
298 	struct net_device_context *ndc = netdev_priv(ndev);
299 	struct net_device *vf_netdev;
300 	u16 txq;
301 
302 	rcu_read_lock();
303 	vf_netdev = rcu_dereference(ndc->vf_netdev);
304 	if (vf_netdev) {
305 		const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
306 
307 		if (vf_ops->ndo_select_queue)
308 			txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev);
309 		else
310 			txq = netdev_pick_tx(vf_netdev, skb, NULL);
311 
312 		/* Record the queue selected by VF so that it can be
313 		 * used for common case where VF has more queues than
314 		 * the synthetic device.
315 		 */
316 		qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
317 	} else {
318 		txq = netvsc_pick_tx(ndev, skb);
319 	}
320 	rcu_read_unlock();
321 
322 	while (txq >= ndev->real_num_tx_queues)
323 		txq -= ndev->real_num_tx_queues;
324 
325 	return txq;
326 }
327 
init_page_array(void * hdr,u32 len,struct sk_buff * skb,struct hv_netvsc_packet * packet,struct hv_page_buffer * pb)328 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
329 			   struct hv_netvsc_packet *packet,
330 			   struct hv_page_buffer *pb)
331 {
332 	int frags = skb_shinfo(skb)->nr_frags;
333 	int i;
334 
335 	/* The packet is laid out thus:
336 	 * 1. hdr: RNDIS header and PPI
337 	 * 2. skb linear data
338 	 * 3. skb fragment data
339 	 */
340 
341 	pb[0].offset = offset_in_hvpage(hdr);
342 	pb[0].len = len;
343 	pb[0].pfn = virt_to_hvpfn(hdr);
344 	packet->rmsg_size = len;
345 
346 	pb[1].offset = offset_in_hvpage(skb->data);
347 	pb[1].len = skb_headlen(skb);
348 	pb[1].pfn = virt_to_hvpfn(skb->data);
349 
350 	for (i = 0; i < frags; i++) {
351 		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
352 		struct hv_page_buffer *cur_pb = &pb[i + 2];
353 		u64 pfn = page_to_hvpfn(skb_frag_page(frag));
354 		u32 offset = skb_frag_off(frag);
355 
356 		cur_pb->offset = offset_in_hvpage(offset);
357 		cur_pb->len = skb_frag_size(frag);
358 		cur_pb->pfn = pfn + (offset >> HV_HYP_PAGE_SHIFT);
359 	}
360 	return frags + 2;
361 }
362 
count_skb_frag_slots(struct sk_buff * skb)363 static int count_skb_frag_slots(struct sk_buff *skb)
364 {
365 	int i, frags = skb_shinfo(skb)->nr_frags;
366 	int pages = 0;
367 
368 	for (i = 0; i < frags; i++) {
369 		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
370 		unsigned long size = skb_frag_size(frag);
371 		unsigned long offset = skb_frag_off(frag);
372 
373 		/* Skip unused frames from start of page */
374 		offset &= ~HV_HYP_PAGE_MASK;
375 		pages += HVPFN_UP(offset + size);
376 	}
377 	return pages;
378 }
379 
netvsc_get_slots(struct sk_buff * skb)380 static int netvsc_get_slots(struct sk_buff *skb)
381 {
382 	char *data = skb->data;
383 	unsigned int offset = offset_in_hvpage(data);
384 	unsigned int len = skb_headlen(skb);
385 	int slots;
386 	int frag_slots;
387 
388 	slots = DIV_ROUND_UP(offset + len, HV_HYP_PAGE_SIZE);
389 	frag_slots = count_skb_frag_slots(skb);
390 	return slots + frag_slots;
391 }
392 
net_checksum_info(struct sk_buff * skb)393 static u32 net_checksum_info(struct sk_buff *skb)
394 {
395 	if (skb->protocol == htons(ETH_P_IP)) {
396 		struct iphdr *ip = ip_hdr(skb);
397 
398 		if (ip->protocol == IPPROTO_TCP)
399 			return TRANSPORT_INFO_IPV4_TCP;
400 		else if (ip->protocol == IPPROTO_UDP)
401 			return TRANSPORT_INFO_IPV4_UDP;
402 	} else {
403 		struct ipv6hdr *ip6 = ipv6_hdr(skb);
404 
405 		if (ip6->nexthdr == IPPROTO_TCP)
406 			return TRANSPORT_INFO_IPV6_TCP;
407 		else if (ip6->nexthdr == IPPROTO_UDP)
408 			return TRANSPORT_INFO_IPV6_UDP;
409 	}
410 
411 	return TRANSPORT_INFO_NOT_IP;
412 }
413 
414 /* Send skb on the slave VF device. */
netvsc_vf_xmit(struct net_device * net,struct net_device * vf_netdev,struct sk_buff * skb)415 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
416 			  struct sk_buff *skb)
417 {
418 	struct net_device_context *ndev_ctx = netdev_priv(net);
419 	unsigned int len = skb->len;
420 	int rc;
421 
422 	skb->dev = vf_netdev;
423 	skb_record_rx_queue(skb, qdisc_skb_cb(skb)->slave_dev_queue_mapping);
424 
425 	rc = dev_queue_xmit(skb);
426 	if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
427 		struct netvsc_vf_pcpu_stats *pcpu_stats
428 			= this_cpu_ptr(ndev_ctx->vf_stats);
429 
430 		u64_stats_update_begin(&pcpu_stats->syncp);
431 		pcpu_stats->tx_packets++;
432 		pcpu_stats->tx_bytes += len;
433 		u64_stats_update_end(&pcpu_stats->syncp);
434 	} else {
435 		this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
436 	}
437 
438 	return rc;
439 }
440 
netvsc_xmit(struct sk_buff * skb,struct net_device * net,bool xdp_tx)441 static int netvsc_xmit(struct sk_buff *skb, struct net_device *net, bool xdp_tx)
442 {
443 	struct net_device_context *net_device_ctx = netdev_priv(net);
444 	struct hv_netvsc_packet *packet = NULL;
445 	int ret;
446 	unsigned int num_data_pgs;
447 	struct rndis_message *rndis_msg;
448 	struct net_device *vf_netdev;
449 	u32 rndis_msg_size;
450 	u32 hash;
451 	struct hv_page_buffer pb[MAX_DATA_RANGES];
452 
453 	/* If VF is present and up then redirect packets to it.
454 	 * Skip the VF if it is marked down or has no carrier.
455 	 * If netpoll is in uses, then VF can not be used either.
456 	 */
457 	vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
458 	if (vf_netdev && netif_running(vf_netdev) &&
459 	    netif_carrier_ok(vf_netdev) && !netpoll_tx_running(net) &&
460 	    net_device_ctx->data_path_is_vf)
461 		return netvsc_vf_xmit(net, vf_netdev, skb);
462 
463 	/* We will atmost need two pages to describe the rndis
464 	 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
465 	 * of pages in a single packet. If skb is scattered around
466 	 * more pages we try linearizing it.
467 	 */
468 
469 	num_data_pgs = netvsc_get_slots(skb) + 2;
470 
471 	if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
472 		++net_device_ctx->eth_stats.tx_scattered;
473 
474 		if (skb_linearize(skb))
475 			goto no_memory;
476 
477 		num_data_pgs = netvsc_get_slots(skb) + 2;
478 		if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
479 			++net_device_ctx->eth_stats.tx_too_big;
480 			goto drop;
481 		}
482 	}
483 
484 	/*
485 	 * Place the rndis header in the skb head room and
486 	 * the skb->cb will be used for hv_netvsc_packet
487 	 * structure.
488 	 */
489 	ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
490 	if (ret)
491 		goto no_memory;
492 
493 	/* Use the skb control buffer for building up the packet */
494 	BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
495 			sizeof_field(struct sk_buff, cb));
496 	packet = (struct hv_netvsc_packet *)skb->cb;
497 
498 	packet->q_idx = skb_get_queue_mapping(skb);
499 
500 	packet->total_data_buflen = skb->len;
501 	packet->total_bytes = skb->len;
502 	packet->total_packets = 1;
503 
504 	rndis_msg = (struct rndis_message *)skb->head;
505 
506 	/* Add the rndis header */
507 	rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
508 	rndis_msg->msg_len = packet->total_data_buflen;
509 
510 	rndis_msg->msg.pkt = (struct rndis_packet) {
511 		.data_offset = sizeof(struct rndis_packet),
512 		.data_len = packet->total_data_buflen,
513 		.per_pkt_info_offset = sizeof(struct rndis_packet),
514 	};
515 
516 	rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
517 
518 	hash = skb_get_hash_raw(skb);
519 	if (hash != 0 && net->real_num_tx_queues > 1) {
520 		u32 *hash_info;
521 
522 		rndis_msg_size += NDIS_HASH_PPI_SIZE;
523 		hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
524 					  NBL_HASH_VALUE);
525 		*hash_info = hash;
526 	}
527 
528 	/* When using AF_PACKET we need to drop VLAN header from
529 	 * the frame and update the SKB to allow the HOST OS
530 	 * to transmit the 802.1Q packet
531 	 */
532 	if (skb->protocol == htons(ETH_P_8021Q)) {
533 		u16 vlan_tci;
534 
535 		skb_reset_mac_header(skb);
536 		if (eth_type_vlan(eth_hdr(skb)->h_proto)) {
537 			if (unlikely(__skb_vlan_pop(skb, &vlan_tci) != 0)) {
538 				++net_device_ctx->eth_stats.vlan_error;
539 				goto drop;
540 			}
541 
542 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci);
543 			/* Update the NDIS header pkt lengths */
544 			packet->total_data_buflen -= VLAN_HLEN;
545 			packet->total_bytes -= VLAN_HLEN;
546 			rndis_msg->msg_len = packet->total_data_buflen;
547 			rndis_msg->msg.pkt.data_len = packet->total_data_buflen;
548 		}
549 	}
550 
551 	if (skb_vlan_tag_present(skb)) {
552 		struct ndis_pkt_8021q_info *vlan;
553 
554 		rndis_msg_size += NDIS_VLAN_PPI_SIZE;
555 		vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
556 				     IEEE_8021Q_INFO);
557 
558 		vlan->value = 0;
559 		vlan->vlanid = skb_vlan_tag_get_id(skb);
560 		vlan->cfi = skb_vlan_tag_get_cfi(skb);
561 		vlan->pri = skb_vlan_tag_get_prio(skb);
562 	}
563 
564 	if (skb_is_gso(skb)) {
565 		struct ndis_tcp_lso_info *lso_info;
566 
567 		rndis_msg_size += NDIS_LSO_PPI_SIZE;
568 		lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
569 					 TCP_LARGESEND_PKTINFO);
570 
571 		lso_info->value = 0;
572 		lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
573 		if (skb->protocol == htons(ETH_P_IP)) {
574 			lso_info->lso_v2_transmit.ip_version =
575 				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
576 			ip_hdr(skb)->tot_len = 0;
577 			ip_hdr(skb)->check = 0;
578 			tcp_hdr(skb)->check =
579 				~csum_tcpudp_magic(ip_hdr(skb)->saddr,
580 						   ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
581 		} else {
582 			lso_info->lso_v2_transmit.ip_version =
583 				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
584 			tcp_v6_gso_csum_prep(skb);
585 		}
586 		lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
587 		lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
588 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
589 		if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
590 			struct ndis_tcp_ip_checksum_info *csum_info;
591 
592 			rndis_msg_size += NDIS_CSUM_PPI_SIZE;
593 			csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
594 						  TCPIP_CHKSUM_PKTINFO);
595 
596 			csum_info->value = 0;
597 			csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
598 
599 			if (skb->protocol == htons(ETH_P_IP)) {
600 				csum_info->transmit.is_ipv4 = 1;
601 
602 				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
603 					csum_info->transmit.tcp_checksum = 1;
604 				else
605 					csum_info->transmit.udp_checksum = 1;
606 			} else {
607 				csum_info->transmit.is_ipv6 = 1;
608 
609 				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
610 					csum_info->transmit.tcp_checksum = 1;
611 				else
612 					csum_info->transmit.udp_checksum = 1;
613 			}
614 		} else {
615 			/* Can't do offload of this type of checksum */
616 			if (skb_checksum_help(skb))
617 				goto drop;
618 		}
619 	}
620 
621 	/* Start filling in the page buffers with the rndis hdr */
622 	rndis_msg->msg_len += rndis_msg_size;
623 	packet->total_data_buflen = rndis_msg->msg_len;
624 	packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
625 					       skb, packet, pb);
626 
627 	/* timestamp packet in software */
628 	skb_tx_timestamp(skb);
629 
630 	ret = netvsc_send(net, packet, rndis_msg, pb, skb, xdp_tx);
631 	if (likely(ret == 0))
632 		return NETDEV_TX_OK;
633 
634 	if (ret == -EAGAIN) {
635 		++net_device_ctx->eth_stats.tx_busy;
636 		return NETDEV_TX_BUSY;
637 	}
638 
639 	if (ret == -ENOSPC)
640 		++net_device_ctx->eth_stats.tx_no_space;
641 
642 drop:
643 	dev_kfree_skb_any(skb);
644 	net->stats.tx_dropped++;
645 
646 	return NETDEV_TX_OK;
647 
648 no_memory:
649 	++net_device_ctx->eth_stats.tx_no_memory;
650 	goto drop;
651 }
652 
netvsc_start_xmit(struct sk_buff * skb,struct net_device * ndev)653 static netdev_tx_t netvsc_start_xmit(struct sk_buff *skb,
654 				     struct net_device *ndev)
655 {
656 	return netvsc_xmit(skb, ndev, false);
657 }
658 
659 /*
660  * netvsc_linkstatus_callback - Link up/down notification
661  */
netvsc_linkstatus_callback(struct net_device * net,struct rndis_message * resp,void * data,u32 data_buflen)662 void netvsc_linkstatus_callback(struct net_device *net,
663 				struct rndis_message *resp,
664 				void *data, u32 data_buflen)
665 {
666 	struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
667 	struct net_device_context *ndev_ctx = netdev_priv(net);
668 	struct netvsc_reconfig *event;
669 	unsigned long flags;
670 
671 	/* Ensure the packet is big enough to access its fields */
672 	if (resp->msg_len - RNDIS_HEADER_SIZE < sizeof(struct rndis_indicate_status)) {
673 		netdev_err(net, "invalid rndis_indicate_status packet, len: %u\n",
674 			   resp->msg_len);
675 		return;
676 	}
677 
678 	/* Copy the RNDIS indicate status into nvchan->recv_buf */
679 	memcpy(indicate, data + RNDIS_HEADER_SIZE, sizeof(*indicate));
680 
681 	/* Update the physical link speed when changing to another vSwitch */
682 	if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
683 		u32 speed;
684 
685 		/* Validate status_buf_offset and status_buflen.
686 		 *
687 		 * Certain (pre-Fe) implementations of Hyper-V's vSwitch didn't account
688 		 * for the status buffer field in resp->msg_len; perform the validation
689 		 * using data_buflen (>= resp->msg_len).
690 		 */
691 		if (indicate->status_buflen < sizeof(speed) ||
692 		    indicate->status_buf_offset < sizeof(*indicate) ||
693 		    data_buflen - RNDIS_HEADER_SIZE < indicate->status_buf_offset ||
694 		    data_buflen - RNDIS_HEADER_SIZE - indicate->status_buf_offset
695 				< indicate->status_buflen) {
696 			netdev_err(net, "invalid rndis_indicate_status packet\n");
697 			return;
698 		}
699 
700 		speed = *(u32 *)(data + RNDIS_HEADER_SIZE + indicate->status_buf_offset) / 10000;
701 		ndev_ctx->speed = speed;
702 		return;
703 	}
704 
705 	/* Handle these link change statuses below */
706 	if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
707 	    indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
708 	    indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
709 		return;
710 
711 	if (net->reg_state != NETREG_REGISTERED)
712 		return;
713 
714 	event = kzalloc(sizeof(*event), GFP_ATOMIC);
715 	if (!event)
716 		return;
717 	event->event = indicate->status;
718 
719 	spin_lock_irqsave(&ndev_ctx->lock, flags);
720 	list_add_tail(&event->list, &ndev_ctx->reconfig_events);
721 	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
722 
723 	schedule_delayed_work(&ndev_ctx->dwork, 0);
724 }
725 
726 /* This function should only be called after skb_record_rx_queue() */
netvsc_xdp_xmit(struct sk_buff * skb,struct net_device * ndev)727 void netvsc_xdp_xmit(struct sk_buff *skb, struct net_device *ndev)
728 {
729 	int rc;
730 
731 	skb->queue_mapping = skb_get_rx_queue(skb);
732 	__skb_push(skb, ETH_HLEN);
733 
734 	rc = netvsc_xmit(skb, ndev, true);
735 
736 	if (dev_xmit_complete(rc))
737 		return;
738 
739 	dev_kfree_skb_any(skb);
740 	ndev->stats.tx_dropped++;
741 }
742 
netvsc_comp_ipcsum(struct sk_buff * skb)743 static void netvsc_comp_ipcsum(struct sk_buff *skb)
744 {
745 	struct iphdr *iph = (struct iphdr *)skb->data;
746 
747 	iph->check = 0;
748 	iph->check = ip_fast_csum(iph, iph->ihl);
749 }
750 
netvsc_alloc_recv_skb(struct net_device * net,struct netvsc_channel * nvchan,struct xdp_buff * xdp)751 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
752 					     struct netvsc_channel *nvchan,
753 					     struct xdp_buff *xdp)
754 {
755 	struct napi_struct *napi = &nvchan->napi;
756 	const struct ndis_pkt_8021q_info *vlan = &nvchan->rsc.vlan;
757 	const struct ndis_tcp_ip_checksum_info *csum_info =
758 						&nvchan->rsc.csum_info;
759 	const u32 *hash_info = &nvchan->rsc.hash_info;
760 	u8 ppi_flags = nvchan->rsc.ppi_flags;
761 	struct sk_buff *skb;
762 	void *xbuf = xdp->data_hard_start;
763 	int i;
764 
765 	if (xbuf) {
766 		unsigned int hdroom = xdp->data - xdp->data_hard_start;
767 		unsigned int xlen = xdp->data_end - xdp->data;
768 		unsigned int frag_size = xdp->frame_sz;
769 
770 		skb = build_skb(xbuf, frag_size);
771 
772 		if (!skb) {
773 			__free_page(virt_to_page(xbuf));
774 			return NULL;
775 		}
776 
777 		skb_reserve(skb, hdroom);
778 		skb_put(skb, xlen);
779 		skb->dev = napi->dev;
780 	} else {
781 		skb = napi_alloc_skb(napi, nvchan->rsc.pktlen);
782 
783 		if (!skb)
784 			return NULL;
785 
786 		/* Copy to skb. This copy is needed here since the memory
787 		 * pointed by hv_netvsc_packet cannot be deallocated.
788 		 */
789 		for (i = 0; i < nvchan->rsc.cnt; i++)
790 			skb_put_data(skb, nvchan->rsc.data[i],
791 				     nvchan->rsc.len[i]);
792 	}
793 
794 	skb->protocol = eth_type_trans(skb, net);
795 
796 	/* skb is already created with CHECKSUM_NONE */
797 	skb_checksum_none_assert(skb);
798 
799 	/* Incoming packets may have IP header checksum verified by the host.
800 	 * They may not have IP header checksum computed after coalescing.
801 	 * We compute it here if the flags are set, because on Linux, the IP
802 	 * checksum is always checked.
803 	 */
804 	if ((ppi_flags & NVSC_RSC_CSUM_INFO) && csum_info->receive.ip_checksum_value_invalid &&
805 	    csum_info->receive.ip_checksum_succeeded &&
806 	    skb->protocol == htons(ETH_P_IP)) {
807 		/* Check that there is enough space to hold the IP header. */
808 		if (skb_headlen(skb) < sizeof(struct iphdr)) {
809 			kfree_skb(skb);
810 			return NULL;
811 		}
812 		netvsc_comp_ipcsum(skb);
813 	}
814 
815 	/* Do L4 checksum offload if enabled and present. */
816 	if ((ppi_flags & NVSC_RSC_CSUM_INFO) && (net->features & NETIF_F_RXCSUM)) {
817 		if (csum_info->receive.tcp_checksum_succeeded ||
818 		    csum_info->receive.udp_checksum_succeeded)
819 			skb->ip_summed = CHECKSUM_UNNECESSARY;
820 	}
821 
822 	if ((ppi_flags & NVSC_RSC_HASH_INFO) && (net->features & NETIF_F_RXHASH))
823 		skb_set_hash(skb, *hash_info, PKT_HASH_TYPE_L4);
824 
825 	if (ppi_flags & NVSC_RSC_VLAN) {
826 		u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) |
827 			(vlan->cfi ? VLAN_CFI_MASK : 0);
828 
829 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
830 				       vlan_tci);
831 	}
832 
833 	return skb;
834 }
835 
836 /*
837  * netvsc_recv_callback -  Callback when we receive a packet from the
838  * "wire" on the specified device.
839  */
netvsc_recv_callback(struct net_device * net,struct netvsc_device * net_device,struct netvsc_channel * nvchan)840 int netvsc_recv_callback(struct net_device *net,
841 			 struct netvsc_device *net_device,
842 			 struct netvsc_channel *nvchan)
843 {
844 	struct net_device_context *net_device_ctx = netdev_priv(net);
845 	struct vmbus_channel *channel = nvchan->channel;
846 	u16 q_idx = channel->offermsg.offer.sub_channel_index;
847 	struct sk_buff *skb;
848 	struct netvsc_stats_rx *rx_stats = &nvchan->rx_stats;
849 	struct xdp_buff xdp;
850 	u32 act;
851 
852 	if (net->reg_state != NETREG_REGISTERED)
853 		return NVSP_STAT_FAIL;
854 
855 	act = netvsc_run_xdp(net, nvchan, &xdp);
856 
857 	if (act == XDP_REDIRECT)
858 		return NVSP_STAT_SUCCESS;
859 
860 	if (act != XDP_PASS && act != XDP_TX) {
861 		u64_stats_update_begin(&rx_stats->syncp);
862 		rx_stats->xdp_drop++;
863 		u64_stats_update_end(&rx_stats->syncp);
864 
865 		return NVSP_STAT_SUCCESS; /* consumed by XDP */
866 	}
867 
868 	/* Allocate a skb - TODO direct I/O to pages? */
869 	skb = netvsc_alloc_recv_skb(net, nvchan, &xdp);
870 
871 	if (unlikely(!skb)) {
872 		++net_device_ctx->eth_stats.rx_no_memory;
873 		return NVSP_STAT_FAIL;
874 	}
875 
876 	skb_record_rx_queue(skb, q_idx);
877 
878 	/*
879 	 * Even if injecting the packet, record the statistics
880 	 * on the synthetic device because modifying the VF device
881 	 * statistics will not work correctly.
882 	 */
883 	u64_stats_update_begin(&rx_stats->syncp);
884 	if (act == XDP_TX)
885 		rx_stats->xdp_tx++;
886 
887 	rx_stats->packets++;
888 	rx_stats->bytes += nvchan->rsc.pktlen;
889 
890 	if (skb->pkt_type == PACKET_BROADCAST)
891 		++rx_stats->broadcast;
892 	else if (skb->pkt_type == PACKET_MULTICAST)
893 		++rx_stats->multicast;
894 	u64_stats_update_end(&rx_stats->syncp);
895 
896 	if (act == XDP_TX) {
897 		netvsc_xdp_xmit(skb, net);
898 		return NVSP_STAT_SUCCESS;
899 	}
900 
901 	napi_gro_receive(&nvchan->napi, skb);
902 	return NVSP_STAT_SUCCESS;
903 }
904 
netvsc_get_drvinfo(struct net_device * net,struct ethtool_drvinfo * info)905 static void netvsc_get_drvinfo(struct net_device *net,
906 			       struct ethtool_drvinfo *info)
907 {
908 	strscpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
909 	strscpy(info->fw_version, "N/A", sizeof(info->fw_version));
910 }
911 
netvsc_get_channels(struct net_device * net,struct ethtool_channels * channel)912 static void netvsc_get_channels(struct net_device *net,
913 				struct ethtool_channels *channel)
914 {
915 	struct net_device_context *net_device_ctx = netdev_priv(net);
916 	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
917 
918 	if (nvdev) {
919 		channel->max_combined	= nvdev->max_chn;
920 		channel->combined_count = nvdev->num_chn;
921 	}
922 }
923 
924 /* Alloc struct netvsc_device_info, and initialize it from either existing
925  * struct netvsc_device, or from default values.
926  */
927 static
netvsc_devinfo_get(struct netvsc_device * nvdev)928 struct netvsc_device_info *netvsc_devinfo_get(struct netvsc_device *nvdev)
929 {
930 	struct netvsc_device_info *dev_info;
931 	struct bpf_prog *prog;
932 
933 	dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC);
934 
935 	if (!dev_info)
936 		return NULL;
937 
938 	if (nvdev) {
939 		ASSERT_RTNL();
940 
941 		dev_info->num_chn = nvdev->num_chn;
942 		dev_info->send_sections = nvdev->send_section_cnt;
943 		dev_info->send_section_size = nvdev->send_section_size;
944 		dev_info->recv_sections = nvdev->recv_section_cnt;
945 		dev_info->recv_section_size = nvdev->recv_section_size;
946 
947 		memcpy(dev_info->rss_key, nvdev->extension->rss_key,
948 		       NETVSC_HASH_KEYLEN);
949 
950 		prog = netvsc_xdp_get(nvdev);
951 		if (prog) {
952 			bpf_prog_inc(prog);
953 			dev_info->bprog = prog;
954 		}
955 	} else {
956 		dev_info->num_chn = VRSS_CHANNEL_DEFAULT;
957 		dev_info->send_sections = NETVSC_DEFAULT_TX;
958 		dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE;
959 		dev_info->recv_sections = NETVSC_DEFAULT_RX;
960 		dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE;
961 	}
962 
963 	return dev_info;
964 }
965 
966 /* Free struct netvsc_device_info */
netvsc_devinfo_put(struct netvsc_device_info * dev_info)967 static void netvsc_devinfo_put(struct netvsc_device_info *dev_info)
968 {
969 	if (dev_info->bprog) {
970 		ASSERT_RTNL();
971 		bpf_prog_put(dev_info->bprog);
972 	}
973 
974 	kfree(dev_info);
975 }
976 
netvsc_detach(struct net_device * ndev,struct netvsc_device * nvdev)977 static int netvsc_detach(struct net_device *ndev,
978 			 struct netvsc_device *nvdev)
979 {
980 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
981 	struct hv_device *hdev = ndev_ctx->device_ctx;
982 	int ret;
983 
984 	/* Don't try continuing to try and setup sub channels */
985 	if (cancel_work_sync(&nvdev->subchan_work))
986 		nvdev->num_chn = 1;
987 
988 	netvsc_xdp_set(ndev, NULL, NULL, nvdev);
989 
990 	/* If device was up (receiving) then shutdown */
991 	if (netif_running(ndev)) {
992 		netvsc_tx_disable(nvdev, ndev);
993 
994 		ret = rndis_filter_close(nvdev);
995 		if (ret) {
996 			netdev_err(ndev,
997 				   "unable to close device (ret %d).\n", ret);
998 			return ret;
999 		}
1000 
1001 		ret = netvsc_wait_until_empty(nvdev);
1002 		if (ret) {
1003 			netdev_err(ndev,
1004 				   "Ring buffer not empty after closing rndis\n");
1005 			return ret;
1006 		}
1007 	}
1008 
1009 	netif_device_detach(ndev);
1010 
1011 	rndis_filter_device_remove(hdev, nvdev);
1012 
1013 	return 0;
1014 }
1015 
netvsc_attach(struct net_device * ndev,struct netvsc_device_info * dev_info)1016 static int netvsc_attach(struct net_device *ndev,
1017 			 struct netvsc_device_info *dev_info)
1018 {
1019 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1020 	struct hv_device *hdev = ndev_ctx->device_ctx;
1021 	struct netvsc_device *nvdev;
1022 	struct rndis_device *rdev;
1023 	struct bpf_prog *prog;
1024 	int ret = 0;
1025 
1026 	nvdev = rndis_filter_device_add(hdev, dev_info);
1027 	if (IS_ERR(nvdev))
1028 		return PTR_ERR(nvdev);
1029 
1030 	if (nvdev->num_chn > 1) {
1031 		ret = rndis_set_subchannel(ndev, nvdev, dev_info);
1032 
1033 		/* if unavailable, just proceed with one queue */
1034 		if (ret) {
1035 			nvdev->max_chn = 1;
1036 			nvdev->num_chn = 1;
1037 		}
1038 	}
1039 
1040 	prog = dev_info->bprog;
1041 	if (prog) {
1042 		bpf_prog_inc(prog);
1043 		ret = netvsc_xdp_set(ndev, prog, NULL, nvdev);
1044 		if (ret) {
1045 			bpf_prog_put(prog);
1046 			goto err1;
1047 		}
1048 	}
1049 
1050 	/* In any case device is now ready */
1051 	nvdev->tx_disable = false;
1052 	netif_device_attach(ndev);
1053 
1054 	/* Note: enable and attach happen when sub-channels setup */
1055 	netif_carrier_off(ndev);
1056 
1057 	if (netif_running(ndev)) {
1058 		ret = rndis_filter_open(nvdev);
1059 		if (ret)
1060 			goto err2;
1061 
1062 		rdev = nvdev->extension;
1063 		if (!rdev->link_state)
1064 			netif_carrier_on(ndev);
1065 	}
1066 
1067 	return 0;
1068 
1069 err2:
1070 	netif_device_detach(ndev);
1071 
1072 err1:
1073 	rndis_filter_device_remove(hdev, nvdev);
1074 
1075 	return ret;
1076 }
1077 
netvsc_set_channels(struct net_device * net,struct ethtool_channels * channels)1078 static int netvsc_set_channels(struct net_device *net,
1079 			       struct ethtool_channels *channels)
1080 {
1081 	struct net_device_context *net_device_ctx = netdev_priv(net);
1082 	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
1083 	unsigned int orig, count = channels->combined_count;
1084 	struct netvsc_device_info *device_info;
1085 	int ret;
1086 
1087 	/* We do not support separate count for rx, tx, or other */
1088 	if (count == 0 ||
1089 	    channels->rx_count || channels->tx_count || channels->other_count)
1090 		return -EINVAL;
1091 
1092 	if (!nvdev || nvdev->destroy)
1093 		return -ENODEV;
1094 
1095 	if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
1096 		return -EINVAL;
1097 
1098 	if (count > nvdev->max_chn)
1099 		return -EINVAL;
1100 
1101 	orig = nvdev->num_chn;
1102 
1103 	device_info = netvsc_devinfo_get(nvdev);
1104 
1105 	if (!device_info)
1106 		return -ENOMEM;
1107 
1108 	device_info->num_chn = count;
1109 
1110 	ret = netvsc_detach(net, nvdev);
1111 	if (ret)
1112 		goto out;
1113 
1114 	ret = netvsc_attach(net, device_info);
1115 	if (ret) {
1116 		device_info->num_chn = orig;
1117 		if (netvsc_attach(net, device_info))
1118 			netdev_err(net, "restoring channel setting failed\n");
1119 	}
1120 
1121 out:
1122 	netvsc_devinfo_put(device_info);
1123 	return ret;
1124 }
1125 
netvsc_init_settings(struct net_device * dev)1126 static void netvsc_init_settings(struct net_device *dev)
1127 {
1128 	struct net_device_context *ndc = netdev_priv(dev);
1129 
1130 	ndc->l4_hash = HV_DEFAULT_L4HASH;
1131 
1132 	ndc->speed = SPEED_UNKNOWN;
1133 	ndc->duplex = DUPLEX_FULL;
1134 
1135 	dev->features = NETIF_F_LRO;
1136 }
1137 
netvsc_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)1138 static int netvsc_get_link_ksettings(struct net_device *dev,
1139 				     struct ethtool_link_ksettings *cmd)
1140 {
1141 	struct net_device_context *ndc = netdev_priv(dev);
1142 	struct net_device *vf_netdev;
1143 
1144 	vf_netdev = rtnl_dereference(ndc->vf_netdev);
1145 
1146 	if (vf_netdev)
1147 		return __ethtool_get_link_ksettings(vf_netdev, cmd);
1148 
1149 	cmd->base.speed = ndc->speed;
1150 	cmd->base.duplex = ndc->duplex;
1151 	cmd->base.port = PORT_OTHER;
1152 
1153 	return 0;
1154 }
1155 
netvsc_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)1156 static int netvsc_set_link_ksettings(struct net_device *dev,
1157 				     const struct ethtool_link_ksettings *cmd)
1158 {
1159 	struct net_device_context *ndc = netdev_priv(dev);
1160 	struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1161 
1162 	if (vf_netdev) {
1163 		if (!vf_netdev->ethtool_ops->set_link_ksettings)
1164 			return -EOPNOTSUPP;
1165 
1166 		return vf_netdev->ethtool_ops->set_link_ksettings(vf_netdev,
1167 								  cmd);
1168 	}
1169 
1170 	return ethtool_virtdev_set_link_ksettings(dev, cmd,
1171 						  &ndc->speed, &ndc->duplex);
1172 }
1173 
netvsc_change_mtu(struct net_device * ndev,int mtu)1174 static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1175 {
1176 	struct net_device_context *ndevctx = netdev_priv(ndev);
1177 	struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1178 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1179 	int orig_mtu = ndev->mtu;
1180 	struct netvsc_device_info *device_info;
1181 	int ret = 0;
1182 
1183 	if (!nvdev || nvdev->destroy)
1184 		return -ENODEV;
1185 
1186 	device_info = netvsc_devinfo_get(nvdev);
1187 
1188 	if (!device_info)
1189 		return -ENOMEM;
1190 
1191 	/* Change MTU of underlying VF netdev first. */
1192 	if (vf_netdev) {
1193 		ret = dev_set_mtu(vf_netdev, mtu);
1194 		if (ret)
1195 			goto out;
1196 	}
1197 
1198 	ret = netvsc_detach(ndev, nvdev);
1199 	if (ret)
1200 		goto rollback_vf;
1201 
1202 	ndev->mtu = mtu;
1203 
1204 	ret = netvsc_attach(ndev, device_info);
1205 	if (!ret)
1206 		goto out;
1207 
1208 	/* Attempt rollback to original MTU */
1209 	ndev->mtu = orig_mtu;
1210 
1211 	if (netvsc_attach(ndev, device_info))
1212 		netdev_err(ndev, "restoring mtu failed\n");
1213 rollback_vf:
1214 	if (vf_netdev)
1215 		dev_set_mtu(vf_netdev, orig_mtu);
1216 
1217 out:
1218 	netvsc_devinfo_put(device_info);
1219 	return ret;
1220 }
1221 
netvsc_get_vf_stats(struct net_device * net,struct netvsc_vf_pcpu_stats * tot)1222 static void netvsc_get_vf_stats(struct net_device *net,
1223 				struct netvsc_vf_pcpu_stats *tot)
1224 {
1225 	struct net_device_context *ndev_ctx = netdev_priv(net);
1226 	int i;
1227 
1228 	memset(tot, 0, sizeof(*tot));
1229 
1230 	for_each_possible_cpu(i) {
1231 		const struct netvsc_vf_pcpu_stats *stats
1232 			= per_cpu_ptr(ndev_ctx->vf_stats, i);
1233 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1234 		unsigned int start;
1235 
1236 		do {
1237 			start = u64_stats_fetch_begin(&stats->syncp);
1238 			rx_packets = stats->rx_packets;
1239 			tx_packets = stats->tx_packets;
1240 			rx_bytes = stats->rx_bytes;
1241 			tx_bytes = stats->tx_bytes;
1242 		} while (u64_stats_fetch_retry(&stats->syncp, start));
1243 
1244 		tot->rx_packets += rx_packets;
1245 		tot->tx_packets += tx_packets;
1246 		tot->rx_bytes   += rx_bytes;
1247 		tot->tx_bytes   += tx_bytes;
1248 		tot->tx_dropped += stats->tx_dropped;
1249 	}
1250 }
1251 
netvsc_get_pcpu_stats(struct net_device * net,struct netvsc_ethtool_pcpu_stats * pcpu_tot)1252 static void netvsc_get_pcpu_stats(struct net_device *net,
1253 				  struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1254 {
1255 	struct net_device_context *ndev_ctx = netdev_priv(net);
1256 	struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1257 	int i;
1258 
1259 	/* fetch percpu stats of vf */
1260 	for_each_possible_cpu(i) {
1261 		const struct netvsc_vf_pcpu_stats *stats =
1262 			per_cpu_ptr(ndev_ctx->vf_stats, i);
1263 		struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1264 		unsigned int start;
1265 
1266 		do {
1267 			start = u64_stats_fetch_begin(&stats->syncp);
1268 			this_tot->vf_rx_packets = stats->rx_packets;
1269 			this_tot->vf_tx_packets = stats->tx_packets;
1270 			this_tot->vf_rx_bytes = stats->rx_bytes;
1271 			this_tot->vf_tx_bytes = stats->tx_bytes;
1272 		} while (u64_stats_fetch_retry(&stats->syncp, start));
1273 		this_tot->rx_packets = this_tot->vf_rx_packets;
1274 		this_tot->tx_packets = this_tot->vf_tx_packets;
1275 		this_tot->rx_bytes   = this_tot->vf_rx_bytes;
1276 		this_tot->tx_bytes   = this_tot->vf_tx_bytes;
1277 	}
1278 
1279 	/* fetch percpu stats of netvsc */
1280 	for (i = 0; i < nvdev->num_chn; i++) {
1281 		const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1282 		const struct netvsc_stats_tx *tx_stats;
1283 		const struct netvsc_stats_rx *rx_stats;
1284 		struct netvsc_ethtool_pcpu_stats *this_tot =
1285 			&pcpu_tot[nvchan->channel->target_cpu];
1286 		u64 packets, bytes;
1287 		unsigned int start;
1288 
1289 		tx_stats = &nvchan->tx_stats;
1290 		do {
1291 			start = u64_stats_fetch_begin(&tx_stats->syncp);
1292 			packets = tx_stats->packets;
1293 			bytes = tx_stats->bytes;
1294 		} while (u64_stats_fetch_retry(&tx_stats->syncp, start));
1295 
1296 		this_tot->tx_bytes	+= bytes;
1297 		this_tot->tx_packets	+= packets;
1298 
1299 		rx_stats = &nvchan->rx_stats;
1300 		do {
1301 			start = u64_stats_fetch_begin(&rx_stats->syncp);
1302 			packets = rx_stats->packets;
1303 			bytes = rx_stats->bytes;
1304 		} while (u64_stats_fetch_retry(&rx_stats->syncp, start));
1305 
1306 		this_tot->rx_bytes	+= bytes;
1307 		this_tot->rx_packets	+= packets;
1308 	}
1309 }
1310 
netvsc_get_stats64(struct net_device * net,struct rtnl_link_stats64 * t)1311 static void netvsc_get_stats64(struct net_device *net,
1312 			       struct rtnl_link_stats64 *t)
1313 {
1314 	struct net_device_context *ndev_ctx = netdev_priv(net);
1315 	struct netvsc_device *nvdev;
1316 	struct netvsc_vf_pcpu_stats vf_tot;
1317 	int i;
1318 
1319 	rcu_read_lock();
1320 
1321 	nvdev = rcu_dereference(ndev_ctx->nvdev);
1322 	if (!nvdev)
1323 		goto out;
1324 
1325 	netdev_stats_to_stats64(t, &net->stats);
1326 
1327 	netvsc_get_vf_stats(net, &vf_tot);
1328 	t->rx_packets += vf_tot.rx_packets;
1329 	t->tx_packets += vf_tot.tx_packets;
1330 	t->rx_bytes   += vf_tot.rx_bytes;
1331 	t->tx_bytes   += vf_tot.tx_bytes;
1332 	t->tx_dropped += vf_tot.tx_dropped;
1333 
1334 	for (i = 0; i < nvdev->num_chn; i++) {
1335 		const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1336 		const struct netvsc_stats_tx *tx_stats;
1337 		const struct netvsc_stats_rx *rx_stats;
1338 		u64 packets, bytes, multicast;
1339 		unsigned int start;
1340 
1341 		tx_stats = &nvchan->tx_stats;
1342 		do {
1343 			start = u64_stats_fetch_begin(&tx_stats->syncp);
1344 			packets = tx_stats->packets;
1345 			bytes = tx_stats->bytes;
1346 		} while (u64_stats_fetch_retry(&tx_stats->syncp, start));
1347 
1348 		t->tx_bytes	+= bytes;
1349 		t->tx_packets	+= packets;
1350 
1351 		rx_stats = &nvchan->rx_stats;
1352 		do {
1353 			start = u64_stats_fetch_begin(&rx_stats->syncp);
1354 			packets = rx_stats->packets;
1355 			bytes = rx_stats->bytes;
1356 			multicast = rx_stats->multicast + rx_stats->broadcast;
1357 		} while (u64_stats_fetch_retry(&rx_stats->syncp, start));
1358 
1359 		t->rx_bytes	+= bytes;
1360 		t->rx_packets	+= packets;
1361 		t->multicast	+= multicast;
1362 	}
1363 out:
1364 	rcu_read_unlock();
1365 }
1366 
netvsc_set_mac_addr(struct net_device * ndev,void * p)1367 static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1368 {
1369 	struct net_device_context *ndc = netdev_priv(ndev);
1370 	struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1371 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1372 	struct sockaddr *addr = p;
1373 	int err;
1374 
1375 	err = eth_prepare_mac_addr_change(ndev, p);
1376 	if (err)
1377 		return err;
1378 
1379 	if (!nvdev)
1380 		return -ENODEV;
1381 
1382 	if (vf_netdev) {
1383 		err = dev_set_mac_address(vf_netdev, addr, NULL);
1384 		if (err)
1385 			return err;
1386 	}
1387 
1388 	err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1389 	if (!err) {
1390 		eth_commit_mac_addr_change(ndev, p);
1391 	} else if (vf_netdev) {
1392 		/* rollback change on VF */
1393 		memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1394 		dev_set_mac_address(vf_netdev, addr, NULL);
1395 	}
1396 
1397 	return err;
1398 }
1399 
1400 static const struct {
1401 	char name[ETH_GSTRING_LEN];
1402 	u16 offset;
1403 } netvsc_stats[] = {
1404 	{ "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1405 	{ "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1406 	{ "tx_no_space",  offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1407 	{ "tx_too_big",	  offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1408 	{ "tx_busy",	  offsetof(struct netvsc_ethtool_stats, tx_busy) },
1409 	{ "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1410 	{ "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1411 	{ "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1412 	{ "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1413 	{ "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1414 	{ "vlan_error", offsetof(struct netvsc_ethtool_stats, vlan_error) },
1415 }, pcpu_stats[] = {
1416 	{ "cpu%u_rx_packets",
1417 		offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1418 	{ "cpu%u_rx_bytes",
1419 		offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1420 	{ "cpu%u_tx_packets",
1421 		offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1422 	{ "cpu%u_tx_bytes",
1423 		offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1424 	{ "cpu%u_vf_rx_packets",
1425 		offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1426 	{ "cpu%u_vf_rx_bytes",
1427 		offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1428 	{ "cpu%u_vf_tx_packets",
1429 		offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1430 	{ "cpu%u_vf_tx_bytes",
1431 		offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1432 }, vf_stats[] = {
1433 	{ "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1434 	{ "vf_rx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1435 	{ "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1436 	{ "vf_tx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1437 	{ "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1438 };
1439 
1440 #define NETVSC_GLOBAL_STATS_LEN	ARRAY_SIZE(netvsc_stats)
1441 #define NETVSC_VF_STATS_LEN	ARRAY_SIZE(vf_stats)
1442 
1443 /* statistics per queue (rx/tx packets/bytes) */
1444 #define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1445 
1446 /* 8 statistics per queue (rx/tx packets/bytes, XDP actions) */
1447 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 8)
1448 
netvsc_get_sset_count(struct net_device * dev,int string_set)1449 static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1450 {
1451 	struct net_device_context *ndc = netdev_priv(dev);
1452 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1453 
1454 	if (!nvdev)
1455 		return -ENODEV;
1456 
1457 	switch (string_set) {
1458 	case ETH_SS_STATS:
1459 		return NETVSC_GLOBAL_STATS_LEN
1460 			+ NETVSC_VF_STATS_LEN
1461 			+ NETVSC_QUEUE_STATS_LEN(nvdev)
1462 			+ NETVSC_PCPU_STATS_LEN;
1463 	default:
1464 		return -EINVAL;
1465 	}
1466 }
1467 
netvsc_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)1468 static void netvsc_get_ethtool_stats(struct net_device *dev,
1469 				     struct ethtool_stats *stats, u64 *data)
1470 {
1471 	struct net_device_context *ndc = netdev_priv(dev);
1472 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1473 	const void *nds = &ndc->eth_stats;
1474 	const struct netvsc_stats_tx *tx_stats;
1475 	const struct netvsc_stats_rx *rx_stats;
1476 	struct netvsc_vf_pcpu_stats sum;
1477 	struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1478 	unsigned int start;
1479 	u64 packets, bytes;
1480 	u64 xdp_drop;
1481 	u64 xdp_redirect;
1482 	u64 xdp_tx;
1483 	u64 xdp_xmit;
1484 	int i, j, cpu;
1485 
1486 	if (!nvdev)
1487 		return;
1488 
1489 	for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1490 		data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1491 
1492 	netvsc_get_vf_stats(dev, &sum);
1493 	for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1494 		data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1495 
1496 	for (j = 0; j < nvdev->num_chn; j++) {
1497 		tx_stats = &nvdev->chan_table[j].tx_stats;
1498 
1499 		do {
1500 			start = u64_stats_fetch_begin(&tx_stats->syncp);
1501 			packets = tx_stats->packets;
1502 			bytes = tx_stats->bytes;
1503 			xdp_xmit = tx_stats->xdp_xmit;
1504 		} while (u64_stats_fetch_retry(&tx_stats->syncp, start));
1505 		data[i++] = packets;
1506 		data[i++] = bytes;
1507 		data[i++] = xdp_xmit;
1508 
1509 		rx_stats = &nvdev->chan_table[j].rx_stats;
1510 		do {
1511 			start = u64_stats_fetch_begin(&rx_stats->syncp);
1512 			packets = rx_stats->packets;
1513 			bytes = rx_stats->bytes;
1514 			xdp_drop = rx_stats->xdp_drop;
1515 			xdp_redirect = rx_stats->xdp_redirect;
1516 			xdp_tx = rx_stats->xdp_tx;
1517 		} while (u64_stats_fetch_retry(&rx_stats->syncp, start));
1518 		data[i++] = packets;
1519 		data[i++] = bytes;
1520 		data[i++] = xdp_drop;
1521 		data[i++] = xdp_redirect;
1522 		data[i++] = xdp_tx;
1523 	}
1524 
1525 	pcpu_sum = kvmalloc_array(num_possible_cpus(),
1526 				  sizeof(struct netvsc_ethtool_pcpu_stats),
1527 				  GFP_KERNEL);
1528 	if (!pcpu_sum)
1529 		return;
1530 
1531 	netvsc_get_pcpu_stats(dev, pcpu_sum);
1532 	for_each_present_cpu(cpu) {
1533 		struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1534 
1535 		for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1536 			data[i++] = *(u64 *)((void *)this_sum
1537 					     + pcpu_stats[j].offset);
1538 	}
1539 	kvfree(pcpu_sum);
1540 }
1541 
netvsc_get_strings(struct net_device * dev,u32 stringset,u8 * data)1542 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1543 {
1544 	struct net_device_context *ndc = netdev_priv(dev);
1545 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1546 	u8 *p = data;
1547 	int i, cpu;
1548 
1549 	if (!nvdev)
1550 		return;
1551 
1552 	switch (stringset) {
1553 	case ETH_SS_STATS:
1554 		for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++)
1555 			ethtool_sprintf(&p, netvsc_stats[i].name);
1556 
1557 		for (i = 0; i < ARRAY_SIZE(vf_stats); i++)
1558 			ethtool_sprintf(&p, vf_stats[i].name);
1559 
1560 		for (i = 0; i < nvdev->num_chn; i++) {
1561 			ethtool_sprintf(&p, "tx_queue_%u_packets", i);
1562 			ethtool_sprintf(&p, "tx_queue_%u_bytes", i);
1563 			ethtool_sprintf(&p, "tx_queue_%u_xdp_xmit", i);
1564 			ethtool_sprintf(&p, "rx_queue_%u_packets", i);
1565 			ethtool_sprintf(&p, "rx_queue_%u_bytes", i);
1566 			ethtool_sprintf(&p, "rx_queue_%u_xdp_drop", i);
1567 			ethtool_sprintf(&p, "rx_queue_%u_xdp_redirect", i);
1568 			ethtool_sprintf(&p, "rx_queue_%u_xdp_tx", i);
1569 		}
1570 
1571 		for_each_present_cpu(cpu) {
1572 			for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++)
1573 				ethtool_sprintf(&p, pcpu_stats[i].name, cpu);
1574 		}
1575 
1576 		break;
1577 	}
1578 }
1579 
1580 static int
netvsc_get_rss_hash_opts(struct net_device_context * ndc,struct ethtool_rxnfc * info)1581 netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1582 			 struct ethtool_rxnfc *info)
1583 {
1584 	const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1585 
1586 	info->data = RXH_IP_SRC | RXH_IP_DST;
1587 
1588 	switch (info->flow_type) {
1589 	case TCP_V4_FLOW:
1590 		if (ndc->l4_hash & HV_TCP4_L4HASH)
1591 			info->data |= l4_flag;
1592 
1593 		break;
1594 
1595 	case TCP_V6_FLOW:
1596 		if (ndc->l4_hash & HV_TCP6_L4HASH)
1597 			info->data |= l4_flag;
1598 
1599 		break;
1600 
1601 	case UDP_V4_FLOW:
1602 		if (ndc->l4_hash & HV_UDP4_L4HASH)
1603 			info->data |= l4_flag;
1604 
1605 		break;
1606 
1607 	case UDP_V6_FLOW:
1608 		if (ndc->l4_hash & HV_UDP6_L4HASH)
1609 			info->data |= l4_flag;
1610 
1611 		break;
1612 
1613 	case IPV4_FLOW:
1614 	case IPV6_FLOW:
1615 		break;
1616 	default:
1617 		info->data = 0;
1618 		break;
1619 	}
1620 
1621 	return 0;
1622 }
1623 
1624 static int
netvsc_get_rxnfc(struct net_device * dev,struct ethtool_rxnfc * info,u32 * rules)1625 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1626 		 u32 *rules)
1627 {
1628 	struct net_device_context *ndc = netdev_priv(dev);
1629 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1630 
1631 	if (!nvdev)
1632 		return -ENODEV;
1633 
1634 	switch (info->cmd) {
1635 	case ETHTOOL_GRXRINGS:
1636 		info->data = nvdev->num_chn;
1637 		return 0;
1638 
1639 	case ETHTOOL_GRXFH:
1640 		return netvsc_get_rss_hash_opts(ndc, info);
1641 	}
1642 	return -EOPNOTSUPP;
1643 }
1644 
netvsc_set_rss_hash_opts(struct net_device_context * ndc,struct ethtool_rxnfc * info)1645 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1646 				    struct ethtool_rxnfc *info)
1647 {
1648 	if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1649 			   RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1650 		switch (info->flow_type) {
1651 		case TCP_V4_FLOW:
1652 			ndc->l4_hash |= HV_TCP4_L4HASH;
1653 			break;
1654 
1655 		case TCP_V6_FLOW:
1656 			ndc->l4_hash |= HV_TCP6_L4HASH;
1657 			break;
1658 
1659 		case UDP_V4_FLOW:
1660 			ndc->l4_hash |= HV_UDP4_L4HASH;
1661 			break;
1662 
1663 		case UDP_V6_FLOW:
1664 			ndc->l4_hash |= HV_UDP6_L4HASH;
1665 			break;
1666 
1667 		default:
1668 			return -EOPNOTSUPP;
1669 		}
1670 
1671 		return 0;
1672 	}
1673 
1674 	if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1675 		switch (info->flow_type) {
1676 		case TCP_V4_FLOW:
1677 			ndc->l4_hash &= ~HV_TCP4_L4HASH;
1678 			break;
1679 
1680 		case TCP_V6_FLOW:
1681 			ndc->l4_hash &= ~HV_TCP6_L4HASH;
1682 			break;
1683 
1684 		case UDP_V4_FLOW:
1685 			ndc->l4_hash &= ~HV_UDP4_L4HASH;
1686 			break;
1687 
1688 		case UDP_V6_FLOW:
1689 			ndc->l4_hash &= ~HV_UDP6_L4HASH;
1690 			break;
1691 
1692 		default:
1693 			return -EOPNOTSUPP;
1694 		}
1695 
1696 		return 0;
1697 	}
1698 
1699 	return -EOPNOTSUPP;
1700 }
1701 
1702 static int
netvsc_set_rxnfc(struct net_device * ndev,struct ethtool_rxnfc * info)1703 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1704 {
1705 	struct net_device_context *ndc = netdev_priv(ndev);
1706 
1707 	if (info->cmd == ETHTOOL_SRXFH)
1708 		return netvsc_set_rss_hash_opts(ndc, info);
1709 
1710 	return -EOPNOTSUPP;
1711 }
1712 
netvsc_get_rxfh_key_size(struct net_device * dev)1713 static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1714 {
1715 	return NETVSC_HASH_KEYLEN;
1716 }
1717 
netvsc_rss_indir_size(struct net_device * dev)1718 static u32 netvsc_rss_indir_size(struct net_device *dev)
1719 {
1720 	struct net_device_context *ndc = netdev_priv(dev);
1721 
1722 	return ndc->rx_table_sz;
1723 }
1724 
netvsc_get_rxfh(struct net_device * dev,u32 * indir,u8 * key,u8 * hfunc)1725 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1726 			   u8 *hfunc)
1727 {
1728 	struct net_device_context *ndc = netdev_priv(dev);
1729 	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1730 	struct rndis_device *rndis_dev;
1731 	int i;
1732 
1733 	if (!ndev)
1734 		return -ENODEV;
1735 
1736 	if (hfunc)
1737 		*hfunc = ETH_RSS_HASH_TOP;	/* Toeplitz */
1738 
1739 	rndis_dev = ndev->extension;
1740 	if (indir) {
1741 		for (i = 0; i < ndc->rx_table_sz; i++)
1742 			indir[i] = ndc->rx_table[i];
1743 	}
1744 
1745 	if (key)
1746 		memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1747 
1748 	return 0;
1749 }
1750 
netvsc_set_rxfh(struct net_device * dev,const u32 * indir,const u8 * key,const u8 hfunc)1751 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1752 			   const u8 *key, const u8 hfunc)
1753 {
1754 	struct net_device_context *ndc = netdev_priv(dev);
1755 	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1756 	struct rndis_device *rndis_dev;
1757 	int i;
1758 
1759 	if (!ndev)
1760 		return -ENODEV;
1761 
1762 	if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1763 		return -EOPNOTSUPP;
1764 
1765 	rndis_dev = ndev->extension;
1766 	if (indir) {
1767 		for (i = 0; i < ndc->rx_table_sz; i++)
1768 			if (indir[i] >= ndev->num_chn)
1769 				return -EINVAL;
1770 
1771 		for (i = 0; i < ndc->rx_table_sz; i++)
1772 			ndc->rx_table[i] = indir[i];
1773 	}
1774 
1775 	if (!key) {
1776 		if (!indir)
1777 			return 0;
1778 
1779 		key = rndis_dev->rss_key;
1780 	}
1781 
1782 	return rndis_filter_set_rss_param(rndis_dev, key);
1783 }
1784 
1785 /* Hyper-V RNDIS protocol does not have ring in the HW sense.
1786  * It does have pre-allocated receive area which is divided into sections.
1787  */
__netvsc_get_ringparam(struct netvsc_device * nvdev,struct ethtool_ringparam * ring)1788 static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1789 				   struct ethtool_ringparam *ring)
1790 {
1791 	u32 max_buf_size;
1792 
1793 	ring->rx_pending = nvdev->recv_section_cnt;
1794 	ring->tx_pending = nvdev->send_section_cnt;
1795 
1796 	if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1797 		max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1798 	else
1799 		max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1800 
1801 	ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1802 	ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1803 		/ nvdev->send_section_size;
1804 }
1805 
netvsc_get_ringparam(struct net_device * ndev,struct ethtool_ringparam * ring,struct kernel_ethtool_ringparam * kernel_ring,struct netlink_ext_ack * extack)1806 static void netvsc_get_ringparam(struct net_device *ndev,
1807 				 struct ethtool_ringparam *ring,
1808 				 struct kernel_ethtool_ringparam *kernel_ring,
1809 				 struct netlink_ext_ack *extack)
1810 {
1811 	struct net_device_context *ndevctx = netdev_priv(ndev);
1812 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1813 
1814 	if (!nvdev)
1815 		return;
1816 
1817 	__netvsc_get_ringparam(nvdev, ring);
1818 }
1819 
netvsc_set_ringparam(struct net_device * ndev,struct ethtool_ringparam * ring,struct kernel_ethtool_ringparam * kernel_ring,struct netlink_ext_ack * extack)1820 static int netvsc_set_ringparam(struct net_device *ndev,
1821 				struct ethtool_ringparam *ring,
1822 				struct kernel_ethtool_ringparam *kernel_ring,
1823 				struct netlink_ext_ack *extack)
1824 {
1825 	struct net_device_context *ndevctx = netdev_priv(ndev);
1826 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1827 	struct netvsc_device_info *device_info;
1828 	struct ethtool_ringparam orig;
1829 	u32 new_tx, new_rx;
1830 	int ret = 0;
1831 
1832 	if (!nvdev || nvdev->destroy)
1833 		return -ENODEV;
1834 
1835 	memset(&orig, 0, sizeof(orig));
1836 	__netvsc_get_ringparam(nvdev, &orig);
1837 
1838 	new_tx = clamp_t(u32, ring->tx_pending,
1839 			 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1840 	new_rx = clamp_t(u32, ring->rx_pending,
1841 			 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1842 
1843 	if (new_tx == orig.tx_pending &&
1844 	    new_rx == orig.rx_pending)
1845 		return 0;	 /* no change */
1846 
1847 	device_info = netvsc_devinfo_get(nvdev);
1848 
1849 	if (!device_info)
1850 		return -ENOMEM;
1851 
1852 	device_info->send_sections = new_tx;
1853 	device_info->recv_sections = new_rx;
1854 
1855 	ret = netvsc_detach(ndev, nvdev);
1856 	if (ret)
1857 		goto out;
1858 
1859 	ret = netvsc_attach(ndev, device_info);
1860 	if (ret) {
1861 		device_info->send_sections = orig.tx_pending;
1862 		device_info->recv_sections = orig.rx_pending;
1863 
1864 		if (netvsc_attach(ndev, device_info))
1865 			netdev_err(ndev, "restoring ringparam failed");
1866 	}
1867 
1868 out:
1869 	netvsc_devinfo_put(device_info);
1870 	return ret;
1871 }
1872 
netvsc_fix_features(struct net_device * ndev,netdev_features_t features)1873 static netdev_features_t netvsc_fix_features(struct net_device *ndev,
1874 					     netdev_features_t features)
1875 {
1876 	struct net_device_context *ndevctx = netdev_priv(ndev);
1877 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1878 
1879 	if (!nvdev || nvdev->destroy)
1880 		return features;
1881 
1882 	if ((features & NETIF_F_LRO) && netvsc_xdp_get(nvdev)) {
1883 		features ^= NETIF_F_LRO;
1884 		netdev_info(ndev, "Skip LRO - unsupported with XDP\n");
1885 	}
1886 
1887 	return features;
1888 }
1889 
netvsc_set_features(struct net_device * ndev,netdev_features_t features)1890 static int netvsc_set_features(struct net_device *ndev,
1891 			       netdev_features_t features)
1892 {
1893 	netdev_features_t change = features ^ ndev->features;
1894 	struct net_device_context *ndevctx = netdev_priv(ndev);
1895 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1896 	struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1897 	struct ndis_offload_params offloads;
1898 	int ret = 0;
1899 
1900 	if (!nvdev || nvdev->destroy)
1901 		return -ENODEV;
1902 
1903 	if (!(change & NETIF_F_LRO))
1904 		goto syncvf;
1905 
1906 	memset(&offloads, 0, sizeof(struct ndis_offload_params));
1907 
1908 	if (features & NETIF_F_LRO) {
1909 		offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1910 		offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1911 	} else {
1912 		offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1913 		offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1914 	}
1915 
1916 	ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads);
1917 
1918 	if (ret) {
1919 		features ^= NETIF_F_LRO;
1920 		ndev->features = features;
1921 	}
1922 
1923 syncvf:
1924 	if (!vf_netdev)
1925 		return ret;
1926 
1927 	vf_netdev->wanted_features = features;
1928 	netdev_update_features(vf_netdev);
1929 
1930 	return ret;
1931 }
1932 
netvsc_get_regs_len(struct net_device * netdev)1933 static int netvsc_get_regs_len(struct net_device *netdev)
1934 {
1935 	return VRSS_SEND_TAB_SIZE * sizeof(u32);
1936 }
1937 
netvsc_get_regs(struct net_device * netdev,struct ethtool_regs * regs,void * p)1938 static void netvsc_get_regs(struct net_device *netdev,
1939 			    struct ethtool_regs *regs, void *p)
1940 {
1941 	struct net_device_context *ndc = netdev_priv(netdev);
1942 	u32 *regs_buff = p;
1943 
1944 	/* increase the version, if buffer format is changed. */
1945 	regs->version = 1;
1946 
1947 	memcpy(regs_buff, ndc->tx_table, VRSS_SEND_TAB_SIZE * sizeof(u32));
1948 }
1949 
netvsc_get_msglevel(struct net_device * ndev)1950 static u32 netvsc_get_msglevel(struct net_device *ndev)
1951 {
1952 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1953 
1954 	return ndev_ctx->msg_enable;
1955 }
1956 
netvsc_set_msglevel(struct net_device * ndev,u32 val)1957 static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
1958 {
1959 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1960 
1961 	ndev_ctx->msg_enable = val;
1962 }
1963 
1964 static const struct ethtool_ops ethtool_ops = {
1965 	.get_drvinfo	= netvsc_get_drvinfo,
1966 	.get_regs_len	= netvsc_get_regs_len,
1967 	.get_regs	= netvsc_get_regs,
1968 	.get_msglevel	= netvsc_get_msglevel,
1969 	.set_msglevel	= netvsc_set_msglevel,
1970 	.get_link	= ethtool_op_get_link,
1971 	.get_ethtool_stats = netvsc_get_ethtool_stats,
1972 	.get_sset_count = netvsc_get_sset_count,
1973 	.get_strings	= netvsc_get_strings,
1974 	.get_channels   = netvsc_get_channels,
1975 	.set_channels   = netvsc_set_channels,
1976 	.get_ts_info	= ethtool_op_get_ts_info,
1977 	.get_rxnfc	= netvsc_get_rxnfc,
1978 	.set_rxnfc	= netvsc_set_rxnfc,
1979 	.get_rxfh_key_size = netvsc_get_rxfh_key_size,
1980 	.get_rxfh_indir_size = netvsc_rss_indir_size,
1981 	.get_rxfh	= netvsc_get_rxfh,
1982 	.set_rxfh	= netvsc_set_rxfh,
1983 	.get_link_ksettings = netvsc_get_link_ksettings,
1984 	.set_link_ksettings = netvsc_set_link_ksettings,
1985 	.get_ringparam	= netvsc_get_ringparam,
1986 	.set_ringparam	= netvsc_set_ringparam,
1987 };
1988 
1989 static const struct net_device_ops device_ops = {
1990 	.ndo_open =			netvsc_open,
1991 	.ndo_stop =			netvsc_close,
1992 	.ndo_start_xmit =		netvsc_start_xmit,
1993 	.ndo_change_rx_flags =		netvsc_change_rx_flags,
1994 	.ndo_set_rx_mode =		netvsc_set_rx_mode,
1995 	.ndo_fix_features =		netvsc_fix_features,
1996 	.ndo_set_features =		netvsc_set_features,
1997 	.ndo_change_mtu =		netvsc_change_mtu,
1998 	.ndo_validate_addr =		eth_validate_addr,
1999 	.ndo_set_mac_address =		netvsc_set_mac_addr,
2000 	.ndo_select_queue =		netvsc_select_queue,
2001 	.ndo_get_stats64 =		netvsc_get_stats64,
2002 	.ndo_bpf =			netvsc_bpf,
2003 	.ndo_xdp_xmit =			netvsc_ndoxdp_xmit,
2004 };
2005 
2006 /*
2007  * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
2008  * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
2009  * present send GARP packet to network peers with netif_notify_peers().
2010  */
netvsc_link_change(struct work_struct * w)2011 static void netvsc_link_change(struct work_struct *w)
2012 {
2013 	struct net_device_context *ndev_ctx =
2014 		container_of(w, struct net_device_context, dwork.work);
2015 	struct hv_device *device_obj = ndev_ctx->device_ctx;
2016 	struct net_device *net = hv_get_drvdata(device_obj);
2017 	unsigned long flags, next_reconfig, delay;
2018 	struct netvsc_reconfig *event = NULL;
2019 	struct netvsc_device *net_device;
2020 	struct rndis_device *rdev;
2021 	bool reschedule = false;
2022 
2023 	/* if changes are happening, comeback later */
2024 	if (!rtnl_trylock()) {
2025 		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2026 		return;
2027 	}
2028 
2029 	net_device = rtnl_dereference(ndev_ctx->nvdev);
2030 	if (!net_device)
2031 		goto out_unlock;
2032 
2033 	rdev = net_device->extension;
2034 
2035 	next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
2036 	if (time_is_after_jiffies(next_reconfig)) {
2037 		/* link_watch only sends one notification with current state
2038 		 * per second, avoid doing reconfig more frequently. Handle
2039 		 * wrap around.
2040 		 */
2041 		delay = next_reconfig - jiffies;
2042 		delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
2043 		schedule_delayed_work(&ndev_ctx->dwork, delay);
2044 		goto out_unlock;
2045 	}
2046 	ndev_ctx->last_reconfig = jiffies;
2047 
2048 	spin_lock_irqsave(&ndev_ctx->lock, flags);
2049 	if (!list_empty(&ndev_ctx->reconfig_events)) {
2050 		event = list_first_entry(&ndev_ctx->reconfig_events,
2051 					 struct netvsc_reconfig, list);
2052 		list_del(&event->list);
2053 		reschedule = !list_empty(&ndev_ctx->reconfig_events);
2054 	}
2055 	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2056 
2057 	if (!event)
2058 		goto out_unlock;
2059 
2060 	switch (event->event) {
2061 		/* Only the following events are possible due to the check in
2062 		 * netvsc_linkstatus_callback()
2063 		 */
2064 	case RNDIS_STATUS_MEDIA_CONNECT:
2065 		if (rdev->link_state) {
2066 			rdev->link_state = false;
2067 			netif_carrier_on(net);
2068 			netvsc_tx_enable(net_device, net);
2069 		} else {
2070 			__netdev_notify_peers(net);
2071 		}
2072 		kfree(event);
2073 		break;
2074 	case RNDIS_STATUS_MEDIA_DISCONNECT:
2075 		if (!rdev->link_state) {
2076 			rdev->link_state = true;
2077 			netif_carrier_off(net);
2078 			netvsc_tx_disable(net_device, net);
2079 		}
2080 		kfree(event);
2081 		break;
2082 	case RNDIS_STATUS_NETWORK_CHANGE:
2083 		/* Only makes sense if carrier is present */
2084 		if (!rdev->link_state) {
2085 			rdev->link_state = true;
2086 			netif_carrier_off(net);
2087 			netvsc_tx_disable(net_device, net);
2088 			event->event = RNDIS_STATUS_MEDIA_CONNECT;
2089 			spin_lock_irqsave(&ndev_ctx->lock, flags);
2090 			list_add(&event->list, &ndev_ctx->reconfig_events);
2091 			spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2092 			reschedule = true;
2093 		}
2094 		break;
2095 	}
2096 
2097 	rtnl_unlock();
2098 
2099 	/* link_watch only sends one notification with current state per
2100 	 * second, handle next reconfig event in 2 seconds.
2101 	 */
2102 	if (reschedule)
2103 		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2104 
2105 	return;
2106 
2107 out_unlock:
2108 	rtnl_unlock();
2109 }
2110 
get_netvsc_byref(struct net_device * vf_netdev)2111 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
2112 {
2113 	struct net_device_context *net_device_ctx;
2114 	struct net_device *dev;
2115 
2116 	dev = netdev_master_upper_dev_get(vf_netdev);
2117 	if (!dev || dev->netdev_ops != &device_ops)
2118 		return NULL;	/* not a netvsc device */
2119 
2120 	net_device_ctx = netdev_priv(dev);
2121 	if (!rtnl_dereference(net_device_ctx->nvdev))
2122 		return NULL;	/* device is removed */
2123 
2124 	return dev;
2125 }
2126 
2127 /* Called when VF is injecting data into network stack.
2128  * Change the associated network device from VF to netvsc.
2129  * note: already called with rcu_read_lock
2130  */
netvsc_vf_handle_frame(struct sk_buff ** pskb)2131 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
2132 {
2133 	struct sk_buff *skb = *pskb;
2134 	struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
2135 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
2136 	struct netvsc_vf_pcpu_stats *pcpu_stats
2137 		 = this_cpu_ptr(ndev_ctx->vf_stats);
2138 
2139 	skb = skb_share_check(skb, GFP_ATOMIC);
2140 	if (unlikely(!skb))
2141 		return RX_HANDLER_CONSUMED;
2142 
2143 	*pskb = skb;
2144 
2145 	skb->dev = ndev;
2146 
2147 	u64_stats_update_begin(&pcpu_stats->syncp);
2148 	pcpu_stats->rx_packets++;
2149 	pcpu_stats->rx_bytes += skb->len;
2150 	u64_stats_update_end(&pcpu_stats->syncp);
2151 
2152 	return RX_HANDLER_ANOTHER;
2153 }
2154 
netvsc_vf_join(struct net_device * vf_netdev,struct net_device * ndev,int context)2155 static int netvsc_vf_join(struct net_device *vf_netdev,
2156 			  struct net_device *ndev, int context)
2157 {
2158 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
2159 	int ret;
2160 
2161 	ret = netdev_rx_handler_register(vf_netdev,
2162 					 netvsc_vf_handle_frame, ndev);
2163 	if (ret != 0) {
2164 		netdev_err(vf_netdev,
2165 			   "can not register netvsc VF receive handler (err = %d)\n",
2166 			   ret);
2167 		goto rx_handler_failed;
2168 	}
2169 
2170 	ret = netdev_master_upper_dev_link(vf_netdev, ndev,
2171 					   NULL, NULL, NULL);
2172 	if (ret != 0) {
2173 		netdev_err(vf_netdev,
2174 			   "can not set master device %s (err = %d)\n",
2175 			   ndev->name, ret);
2176 		goto upper_link_failed;
2177 	}
2178 
2179 	/* If this registration is called from probe context vf_takeover
2180 	 * is taken care of later in probe itself.
2181 	 */
2182 	if (context == VF_REG_IN_NOTIFIER)
2183 		schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
2184 
2185 	call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
2186 
2187 	netdev_info(vf_netdev, "joined to %s\n", ndev->name);
2188 	return 0;
2189 
2190 upper_link_failed:
2191 	netdev_rx_handler_unregister(vf_netdev);
2192 rx_handler_failed:
2193 	return ret;
2194 }
2195 
__netvsc_vf_setup(struct net_device * ndev,struct net_device * vf_netdev)2196 static void __netvsc_vf_setup(struct net_device *ndev,
2197 			      struct net_device *vf_netdev)
2198 {
2199 	int ret;
2200 
2201 	/* Align MTU of VF with master */
2202 	ret = dev_set_mtu(vf_netdev, ndev->mtu);
2203 	if (ret)
2204 		netdev_warn(vf_netdev,
2205 			    "unable to change mtu to %u\n", ndev->mtu);
2206 
2207 	/* set multicast etc flags on VF */
2208 	dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL);
2209 
2210 	/* sync address list from ndev to VF */
2211 	netif_addr_lock_bh(ndev);
2212 	dev_uc_sync(vf_netdev, ndev);
2213 	dev_mc_sync(vf_netdev, ndev);
2214 	netif_addr_unlock_bh(ndev);
2215 
2216 	if (netif_running(ndev)) {
2217 		ret = dev_open(vf_netdev, NULL);
2218 		if (ret)
2219 			netdev_warn(vf_netdev,
2220 				    "unable to open: %d\n", ret);
2221 	}
2222 }
2223 
2224 /* Setup VF as slave of the synthetic device.
2225  * Runs in workqueue to avoid recursion in netlink callbacks.
2226  */
netvsc_vf_setup(struct work_struct * w)2227 static void netvsc_vf_setup(struct work_struct *w)
2228 {
2229 	struct net_device_context *ndev_ctx
2230 		= container_of(w, struct net_device_context, vf_takeover.work);
2231 	struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2232 	struct net_device *vf_netdev;
2233 
2234 	if (!rtnl_trylock()) {
2235 		schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2236 		return;
2237 	}
2238 
2239 	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2240 	if (vf_netdev)
2241 		__netvsc_vf_setup(ndev, vf_netdev);
2242 
2243 	rtnl_unlock();
2244 }
2245 
2246 /* Find netvsc by VF serial number.
2247  * The PCI hyperv controller records the serial number as the slot kobj name.
2248  */
get_netvsc_byslot(const struct net_device * vf_netdev)2249 static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2250 {
2251 	struct device *parent = vf_netdev->dev.parent;
2252 	struct net_device_context *ndev_ctx;
2253 	struct net_device *ndev;
2254 	struct pci_dev *pdev;
2255 	u32 serial;
2256 
2257 	if (!parent || !dev_is_pci(parent))
2258 		return NULL; /* not a PCI device */
2259 
2260 	pdev = to_pci_dev(parent);
2261 	if (!pdev->slot) {
2262 		netdev_notice(vf_netdev, "no PCI slot information\n");
2263 		return NULL;
2264 	}
2265 
2266 	if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) {
2267 		netdev_notice(vf_netdev, "Invalid vf serial:%s\n",
2268 			      pci_slot_name(pdev->slot));
2269 		return NULL;
2270 	}
2271 
2272 	list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2273 		if (!ndev_ctx->vf_alloc)
2274 			continue;
2275 
2276 		if (ndev_ctx->vf_serial != serial)
2277 			continue;
2278 
2279 		ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2280 		if (ndev->addr_len != vf_netdev->addr_len ||
2281 		    memcmp(ndev->perm_addr, vf_netdev->perm_addr,
2282 			   ndev->addr_len) != 0)
2283 			continue;
2284 
2285 		return ndev;
2286 
2287 	}
2288 
2289 	/* Fallback path to check synthetic vf with help of mac addr.
2290 	 * Because this function can be called before vf_netdev is
2291 	 * initialized (NETDEV_POST_INIT) when its perm_addr has not been copied
2292 	 * from dev_addr, also try to match to its dev_addr.
2293 	 * Note: On Hyper-V and Azure, it's not possible to set a MAC address
2294 	 * on a VF that matches to the MAC of a unrelated NETVSC device.
2295 	 */
2296 	list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2297 		ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2298 		if (ether_addr_equal(vf_netdev->perm_addr, ndev->perm_addr) ||
2299 		    ether_addr_equal(vf_netdev->dev_addr, ndev->perm_addr))
2300 			return ndev;
2301 	}
2302 
2303 	netdev_notice(vf_netdev,
2304 		      "no netdev found for vf serial:%u\n", serial);
2305 	return NULL;
2306 }
2307 
netvsc_prepare_bonding(struct net_device * vf_netdev)2308 static int netvsc_prepare_bonding(struct net_device *vf_netdev)
2309 {
2310 	struct net_device *ndev;
2311 
2312 	ndev = get_netvsc_byslot(vf_netdev);
2313 	if (!ndev)
2314 		return NOTIFY_DONE;
2315 
2316 	/* set slave flag before open to prevent IPv6 addrconf */
2317 	vf_netdev->flags |= IFF_SLAVE;
2318 	return NOTIFY_DONE;
2319 }
2320 
netvsc_register_vf(struct net_device * vf_netdev,int context)2321 static int netvsc_register_vf(struct net_device *vf_netdev, int context)
2322 {
2323 	struct net_device_context *net_device_ctx;
2324 	struct netvsc_device *netvsc_dev;
2325 	struct bpf_prog *prog;
2326 	struct net_device *ndev;
2327 	int ret;
2328 
2329 	if (vf_netdev->addr_len != ETH_ALEN)
2330 		return NOTIFY_DONE;
2331 
2332 	ndev = get_netvsc_byslot(vf_netdev);
2333 	if (!ndev)
2334 		return NOTIFY_DONE;
2335 
2336 	net_device_ctx = netdev_priv(ndev);
2337 	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2338 	if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2339 		return NOTIFY_DONE;
2340 
2341 	/* if synthetic interface is a different namespace,
2342 	 * then move the VF to that namespace; join will be
2343 	 * done again in that context.
2344 	 */
2345 	if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2346 		ret = dev_change_net_namespace(vf_netdev,
2347 					       dev_net(ndev), "eth%d");
2348 		if (ret)
2349 			netdev_err(vf_netdev,
2350 				   "could not move to same namespace as %s: %d\n",
2351 				   ndev->name, ret);
2352 		else
2353 			netdev_info(vf_netdev,
2354 				    "VF moved to namespace with: %s\n",
2355 				    ndev->name);
2356 		return NOTIFY_DONE;
2357 	}
2358 
2359 	netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2360 
2361 	if (netvsc_vf_join(vf_netdev, ndev, context) != 0)
2362 		return NOTIFY_DONE;
2363 
2364 	dev_hold(vf_netdev);
2365 	rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2366 
2367 	if (ndev->needed_headroom < vf_netdev->needed_headroom)
2368 		ndev->needed_headroom = vf_netdev->needed_headroom;
2369 
2370 	vf_netdev->wanted_features = ndev->features;
2371 	netdev_update_features(vf_netdev);
2372 
2373 	prog = netvsc_xdp_get(netvsc_dev);
2374 	netvsc_vf_setxdp(vf_netdev, prog);
2375 
2376 	return NOTIFY_OK;
2377 }
2378 
2379 /* Change the data path when VF UP/DOWN/CHANGE are detected.
2380  *
2381  * Typically a UP or DOWN event is followed by a CHANGE event, so
2382  * net_device_ctx->data_path_is_vf is used to cache the current data path
2383  * to avoid the duplicate call of netvsc_switch_datapath() and the duplicate
2384  * message.
2385  *
2386  * During hibernation, if a VF NIC driver (e.g. mlx5) preserves the network
2387  * interface, there is only the CHANGE event and no UP or DOWN event.
2388  */
netvsc_vf_changed(struct net_device * vf_netdev,unsigned long event)2389 static int netvsc_vf_changed(struct net_device *vf_netdev, unsigned long event)
2390 {
2391 	struct net_device_context *net_device_ctx;
2392 	struct netvsc_device *netvsc_dev;
2393 	struct net_device *ndev;
2394 	bool vf_is_up = false;
2395 	int ret;
2396 
2397 	if (event != NETDEV_GOING_DOWN)
2398 		vf_is_up = netif_running(vf_netdev);
2399 
2400 	ndev = get_netvsc_byref(vf_netdev);
2401 	if (!ndev)
2402 		return NOTIFY_DONE;
2403 
2404 	net_device_ctx = netdev_priv(ndev);
2405 	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2406 	if (!netvsc_dev)
2407 		return NOTIFY_DONE;
2408 
2409 	if (net_device_ctx->data_path_is_vf == vf_is_up)
2410 		return NOTIFY_OK;
2411 
2412 	if (vf_is_up && !net_device_ctx->vf_alloc) {
2413 		netdev_info(ndev, "Waiting for the VF association from host\n");
2414 		wait_for_completion(&net_device_ctx->vf_add);
2415 	}
2416 
2417 	ret = netvsc_switch_datapath(ndev, vf_is_up);
2418 
2419 	if (ret) {
2420 		netdev_err(ndev,
2421 			   "Data path failed to switch %s VF: %s, err: %d\n",
2422 			   vf_is_up ? "to" : "from", vf_netdev->name, ret);
2423 		return NOTIFY_DONE;
2424 	} else {
2425 		netdev_info(ndev, "Data path switched %s VF: %s\n",
2426 			    vf_is_up ? "to" : "from", vf_netdev->name);
2427 	}
2428 
2429 	return NOTIFY_OK;
2430 }
2431 
netvsc_unregister_vf(struct net_device * vf_netdev)2432 static int netvsc_unregister_vf(struct net_device *vf_netdev)
2433 {
2434 	struct net_device *ndev;
2435 	struct net_device_context *net_device_ctx;
2436 
2437 	ndev = get_netvsc_byref(vf_netdev);
2438 	if (!ndev)
2439 		return NOTIFY_DONE;
2440 
2441 	net_device_ctx = netdev_priv(ndev);
2442 	cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2443 
2444 	netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2445 
2446 	netvsc_vf_setxdp(vf_netdev, NULL);
2447 
2448 	reinit_completion(&net_device_ctx->vf_add);
2449 	netdev_rx_handler_unregister(vf_netdev);
2450 	netdev_upper_dev_unlink(vf_netdev, ndev);
2451 	RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2452 	dev_put(vf_netdev);
2453 
2454 	ndev->needed_headroom = RNDIS_AND_PPI_SIZE;
2455 
2456 	return NOTIFY_OK;
2457 }
2458 
check_dev_is_matching_vf(struct net_device * event_ndev)2459 static int check_dev_is_matching_vf(struct net_device *event_ndev)
2460 {
2461 	/* Skip NetVSC interfaces */
2462 	if (event_ndev->netdev_ops == &device_ops)
2463 		return -ENODEV;
2464 
2465 	/* Avoid non-Ethernet type devices */
2466 	if (event_ndev->type != ARPHRD_ETHER)
2467 		return -ENODEV;
2468 
2469 	/* Avoid Vlan dev with same MAC registering as VF */
2470 	if (is_vlan_dev(event_ndev))
2471 		return -ENODEV;
2472 
2473 	/* Avoid Bonding master dev with same MAC registering as VF */
2474 	if (netif_is_bond_master(event_ndev))
2475 		return -ENODEV;
2476 
2477 	return 0;
2478 }
2479 
netvsc_probe(struct hv_device * dev,const struct hv_vmbus_device_id * dev_id)2480 static int netvsc_probe(struct hv_device *dev,
2481 			const struct hv_vmbus_device_id *dev_id)
2482 {
2483 	struct net_device *net = NULL, *vf_netdev;
2484 	struct net_device_context *net_device_ctx;
2485 	struct netvsc_device_info *device_info = NULL;
2486 	struct netvsc_device *nvdev;
2487 	int ret = -ENOMEM;
2488 
2489 	net = alloc_etherdev_mq(sizeof(struct net_device_context),
2490 				VRSS_CHANNEL_MAX);
2491 	if (!net)
2492 		goto no_net;
2493 
2494 	netif_carrier_off(net);
2495 
2496 	netvsc_init_settings(net);
2497 
2498 	net_device_ctx = netdev_priv(net);
2499 	net_device_ctx->device_ctx = dev;
2500 	net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2501 	if (netif_msg_probe(net_device_ctx))
2502 		netdev_dbg(net, "netvsc msg_enable: %d\n",
2503 			   net_device_ctx->msg_enable);
2504 
2505 	hv_set_drvdata(dev, net);
2506 
2507 	INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2508 
2509 	init_completion(&net_device_ctx->vf_add);
2510 	spin_lock_init(&net_device_ctx->lock);
2511 	INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2512 	INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2513 
2514 	net_device_ctx->vf_stats
2515 		= netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2516 	if (!net_device_ctx->vf_stats)
2517 		goto no_stats;
2518 
2519 	net->netdev_ops = &device_ops;
2520 	net->ethtool_ops = &ethtool_ops;
2521 	SET_NETDEV_DEV(net, &dev->device);
2522 	dma_set_min_align_mask(&dev->device, HV_HYP_PAGE_SIZE - 1);
2523 
2524 	/* We always need headroom for rndis header */
2525 	net->needed_headroom = RNDIS_AND_PPI_SIZE;
2526 
2527 	/* Initialize the number of queues to be 1, we may change it if more
2528 	 * channels are offered later.
2529 	 */
2530 	netif_set_real_num_tx_queues(net, 1);
2531 	netif_set_real_num_rx_queues(net, 1);
2532 
2533 	/* Notify the netvsc driver of the new device */
2534 	device_info = netvsc_devinfo_get(NULL);
2535 
2536 	if (!device_info) {
2537 		ret = -ENOMEM;
2538 		goto devinfo_failed;
2539 	}
2540 
2541 	/* We must get rtnl lock before scheduling nvdev->subchan_work,
2542 	 * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2543 	 * all subchannels to show up, but that may not happen because
2544 	 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2545 	 * -> ... -> device_add() -> ... -> __device_attach() can't get
2546 	 * the device lock, so all the subchannels can't be processed --
2547 	 * finally netvsc_subchan_work() hangs forever.
2548 	 *
2549 	 * The rtnl lock also needs to be held before rndis_filter_device_add()
2550 	 * which advertises nvsp_2_vsc_capability / sriov bit, and triggers
2551 	 * VF NIC offering and registering. If VF NIC finished register_netdev()
2552 	 * earlier it may cause name based config failure.
2553 	 */
2554 	rtnl_lock();
2555 
2556 	nvdev = rndis_filter_device_add(dev, device_info);
2557 	if (IS_ERR(nvdev)) {
2558 		ret = PTR_ERR(nvdev);
2559 		netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2560 		goto rndis_failed;
2561 	}
2562 
2563 	eth_hw_addr_set(net, device_info->mac_adr);
2564 
2565 	if (nvdev->num_chn > 1)
2566 		schedule_work(&nvdev->subchan_work);
2567 
2568 	/* hw_features computed in rndis_netdev_set_hwcaps() */
2569 	net->features = net->hw_features |
2570 		NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX |
2571 		NETIF_F_HW_VLAN_CTAG_RX;
2572 	net->vlan_features = net->features;
2573 
2574 	netdev_lockdep_set_classes(net);
2575 
2576 	net->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
2577 			    NETDEV_XDP_ACT_NDO_XMIT;
2578 
2579 	/* MTU range: 68 - 1500 or 65521 */
2580 	net->min_mtu = NETVSC_MTU_MIN;
2581 	if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2582 		net->max_mtu = NETVSC_MTU - ETH_HLEN;
2583 	else
2584 		net->max_mtu = ETH_DATA_LEN;
2585 
2586 	nvdev->tx_disable = false;
2587 
2588 	ret = register_netdevice(net);
2589 	if (ret != 0) {
2590 		pr_err("Unable to register netdev.\n");
2591 		goto register_failed;
2592 	}
2593 
2594 	list_add(&net_device_ctx->list, &netvsc_dev_list);
2595 
2596 	/* When the hv_netvsc driver is unloaded and reloaded, the
2597 	 * NET_DEVICE_REGISTER for the vf device is replayed before probe
2598 	 * is complete. This is because register_netdevice_notifier() gets
2599 	 * registered before vmbus_driver_register() so that callback func
2600 	 * is set before probe and we don't miss events like NETDEV_POST_INIT
2601 	 * So, in this section we try to register the matching vf device that
2602 	 * is present as a netdevice, knowing that its register call is not
2603 	 * processed in the netvsc_netdev_notifier(as probing is progress and
2604 	 * get_netvsc_byslot fails).
2605 	 */
2606 	for_each_netdev(dev_net(net), vf_netdev) {
2607 		ret = check_dev_is_matching_vf(vf_netdev);
2608 		if (ret != 0)
2609 			continue;
2610 
2611 		if (net != get_netvsc_byslot(vf_netdev))
2612 			continue;
2613 
2614 		netvsc_prepare_bonding(vf_netdev);
2615 		netvsc_register_vf(vf_netdev, VF_REG_IN_PROBE);
2616 		__netvsc_vf_setup(net, vf_netdev);
2617 		break;
2618 	}
2619 	rtnl_unlock();
2620 
2621 	netvsc_devinfo_put(device_info);
2622 	return 0;
2623 
2624 register_failed:
2625 	rndis_filter_device_remove(dev, nvdev);
2626 rndis_failed:
2627 	rtnl_unlock();
2628 	netvsc_devinfo_put(device_info);
2629 devinfo_failed:
2630 	free_percpu(net_device_ctx->vf_stats);
2631 no_stats:
2632 	hv_set_drvdata(dev, NULL);
2633 	free_netdev(net);
2634 no_net:
2635 	return ret;
2636 }
2637 
netvsc_remove(struct hv_device * dev)2638 static void netvsc_remove(struct hv_device *dev)
2639 {
2640 	struct net_device_context *ndev_ctx;
2641 	struct net_device *vf_netdev, *net;
2642 	struct netvsc_device *nvdev;
2643 
2644 	net = hv_get_drvdata(dev);
2645 	if (net == NULL) {
2646 		dev_err(&dev->device, "No net device to remove\n");
2647 		return;
2648 	}
2649 
2650 	ndev_ctx = netdev_priv(net);
2651 
2652 	cancel_delayed_work_sync(&ndev_ctx->dwork);
2653 
2654 	rtnl_lock();
2655 	nvdev = rtnl_dereference(ndev_ctx->nvdev);
2656 	if (nvdev) {
2657 		cancel_work_sync(&nvdev->subchan_work);
2658 		netvsc_xdp_set(net, NULL, NULL, nvdev);
2659 	}
2660 
2661 	/*
2662 	 * Call to the vsc driver to let it know that the device is being
2663 	 * removed. Also blocks mtu and channel changes.
2664 	 */
2665 	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2666 	if (vf_netdev)
2667 		netvsc_unregister_vf(vf_netdev);
2668 
2669 	if (nvdev)
2670 		rndis_filter_device_remove(dev, nvdev);
2671 
2672 	unregister_netdevice(net);
2673 	list_del(&ndev_ctx->list);
2674 
2675 	rtnl_unlock();
2676 
2677 	hv_set_drvdata(dev, NULL);
2678 
2679 	free_percpu(ndev_ctx->vf_stats);
2680 	free_netdev(net);
2681 }
2682 
netvsc_suspend(struct hv_device * dev)2683 static int netvsc_suspend(struct hv_device *dev)
2684 {
2685 	struct net_device_context *ndev_ctx;
2686 	struct netvsc_device *nvdev;
2687 	struct net_device *net;
2688 	int ret;
2689 
2690 	net = hv_get_drvdata(dev);
2691 
2692 	ndev_ctx = netdev_priv(net);
2693 	cancel_delayed_work_sync(&ndev_ctx->dwork);
2694 
2695 	rtnl_lock();
2696 
2697 	nvdev = rtnl_dereference(ndev_ctx->nvdev);
2698 	if (nvdev == NULL) {
2699 		ret = -ENODEV;
2700 		goto out;
2701 	}
2702 
2703 	/* Save the current config info */
2704 	ndev_ctx->saved_netvsc_dev_info = netvsc_devinfo_get(nvdev);
2705 	if (!ndev_ctx->saved_netvsc_dev_info) {
2706 		ret = -ENOMEM;
2707 		goto out;
2708 	}
2709 	ret = netvsc_detach(net, nvdev);
2710 out:
2711 	rtnl_unlock();
2712 
2713 	return ret;
2714 }
2715 
netvsc_resume(struct hv_device * dev)2716 static int netvsc_resume(struct hv_device *dev)
2717 {
2718 	struct net_device *net = hv_get_drvdata(dev);
2719 	struct net_device_context *net_device_ctx;
2720 	struct netvsc_device_info *device_info;
2721 	int ret;
2722 
2723 	rtnl_lock();
2724 
2725 	net_device_ctx = netdev_priv(net);
2726 
2727 	/* Reset the data path to the netvsc NIC before re-opening the vmbus
2728 	 * channel. Later netvsc_netdev_event() will switch the data path to
2729 	 * the VF upon the UP or CHANGE event.
2730 	 */
2731 	net_device_ctx->data_path_is_vf = false;
2732 	device_info = net_device_ctx->saved_netvsc_dev_info;
2733 
2734 	ret = netvsc_attach(net, device_info);
2735 
2736 	netvsc_devinfo_put(device_info);
2737 	net_device_ctx->saved_netvsc_dev_info = NULL;
2738 
2739 	rtnl_unlock();
2740 
2741 	return ret;
2742 }
2743 static const struct hv_vmbus_device_id id_table[] = {
2744 	/* Network guid */
2745 	{ HV_NIC_GUID, },
2746 	{ },
2747 };
2748 
2749 MODULE_DEVICE_TABLE(vmbus, id_table);
2750 
2751 /* The one and only one */
2752 static struct  hv_driver netvsc_drv = {
2753 	.name = KBUILD_MODNAME,
2754 	.id_table = id_table,
2755 	.probe = netvsc_probe,
2756 	.remove = netvsc_remove,
2757 	.suspend = netvsc_suspend,
2758 	.resume = netvsc_resume,
2759 	.driver = {
2760 		.probe_type = PROBE_FORCE_SYNCHRONOUS,
2761 	},
2762 };
2763 
2764 /* Set VF's namespace same as the synthetic NIC */
netvsc_event_set_vf_ns(struct net_device * ndev)2765 static void netvsc_event_set_vf_ns(struct net_device *ndev)
2766 {
2767 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
2768 	struct net_device *vf_netdev;
2769 	int ret;
2770 
2771 	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2772 	if (!vf_netdev)
2773 		return;
2774 
2775 	if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2776 		ret = dev_change_net_namespace(vf_netdev, dev_net(ndev),
2777 					       "eth%d");
2778 		if (ret)
2779 			netdev_err(vf_netdev,
2780 				   "Cannot move to same namespace as %s: %d\n",
2781 				   ndev->name, ret);
2782 		else
2783 			netdev_info(vf_netdev,
2784 				    "Moved VF to namespace with: %s\n",
2785 				    ndev->name);
2786 	}
2787 }
2788 
2789 /*
2790  * On Hyper-V, every VF interface is matched with a corresponding
2791  * synthetic interface. The synthetic interface is presented first
2792  * to the guest. When the corresponding VF instance is registered,
2793  * we will take care of switching the data path.
2794  */
netvsc_netdev_event(struct notifier_block * this,unsigned long event,void * ptr)2795 static int netvsc_netdev_event(struct notifier_block *this,
2796 			       unsigned long event, void *ptr)
2797 {
2798 	struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2799 	int ret = 0;
2800 
2801 	if (event_dev->netdev_ops == &device_ops && event == NETDEV_REGISTER) {
2802 		netvsc_event_set_vf_ns(event_dev);
2803 		return NOTIFY_DONE;
2804 	}
2805 
2806 	ret = check_dev_is_matching_vf(event_dev);
2807 	if (ret != 0)
2808 		return NOTIFY_DONE;
2809 
2810 	switch (event) {
2811 	case NETDEV_POST_INIT:
2812 		return netvsc_prepare_bonding(event_dev);
2813 	case NETDEV_REGISTER:
2814 		return netvsc_register_vf(event_dev, VF_REG_IN_NOTIFIER);
2815 	case NETDEV_UNREGISTER:
2816 		return netvsc_unregister_vf(event_dev);
2817 	case NETDEV_UP:
2818 	case NETDEV_DOWN:
2819 	case NETDEV_CHANGE:
2820 	case NETDEV_GOING_DOWN:
2821 		return netvsc_vf_changed(event_dev, event);
2822 	default:
2823 		return NOTIFY_DONE;
2824 	}
2825 }
2826 
2827 static struct notifier_block netvsc_netdev_notifier = {
2828 	.notifier_call = netvsc_netdev_event,
2829 };
2830 
netvsc_drv_exit(void)2831 static void __exit netvsc_drv_exit(void)
2832 {
2833 	unregister_netdevice_notifier(&netvsc_netdev_notifier);
2834 	vmbus_driver_unregister(&netvsc_drv);
2835 }
2836 
netvsc_drv_init(void)2837 static int __init netvsc_drv_init(void)
2838 {
2839 	int ret;
2840 
2841 	if (ring_size < RING_SIZE_MIN) {
2842 		ring_size = RING_SIZE_MIN;
2843 		pr_info("Increased ring_size to %u (min allowed)\n",
2844 			ring_size);
2845 	}
2846 	netvsc_ring_bytes = VMBUS_RING_SIZE(ring_size * 4096);
2847 
2848 	register_netdevice_notifier(&netvsc_netdev_notifier);
2849 
2850 	ret = vmbus_driver_register(&netvsc_drv);
2851 	if (ret)
2852 		goto err_vmbus_reg;
2853 
2854 	return 0;
2855 
2856 err_vmbus_reg:
2857 	unregister_netdevice_notifier(&netvsc_netdev_notifier);
2858 	return ret;
2859 }
2860 
2861 MODULE_LICENSE("GPL");
2862 MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2863 
2864 module_init(netvsc_drv_init);
2865 module_exit(netvsc_drv_exit);
2866