1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Support for INET connection oriented protocols.
8 *
9 * Authors: See the TCP sources
10 */
11
12 #include <linux/module.h>
13 #include <linux/jhash.h>
14
15 #include <net/inet_connection_sock.h>
16 #include <net/inet_hashtables.h>
17 #include <net/inet_timewait_sock.h>
18 #include <net/ip.h>
19 #include <net/route.h>
20 #include <net/tcp_states.h>
21 #include <net/xfrm.h>
22 #include <net/tcp.h>
23 #include <net/sock_reuseport.h>
24 #include <net/addrconf.h>
25
26 #if IS_ENABLED(CONFIG_IPV6)
27 /* match_sk*_wildcard == true: IPV6_ADDR_ANY equals to any IPv6 addresses
28 * if IPv6 only, and any IPv4 addresses
29 * if not IPv6 only
30 * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
31 * IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
32 * and 0.0.0.0 equals to 0.0.0.0 only
33 */
ipv6_rcv_saddr_equal(const struct in6_addr * sk1_rcv_saddr6,const struct in6_addr * sk2_rcv_saddr6,__be32 sk1_rcv_saddr,__be32 sk2_rcv_saddr,bool sk1_ipv6only,bool sk2_ipv6only,bool match_sk1_wildcard,bool match_sk2_wildcard)34 static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
35 const struct in6_addr *sk2_rcv_saddr6,
36 __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
37 bool sk1_ipv6only, bool sk2_ipv6only,
38 bool match_sk1_wildcard,
39 bool match_sk2_wildcard)
40 {
41 int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
42 int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
43
44 /* if both are mapped, treat as IPv4 */
45 if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
46 if (!sk2_ipv6only) {
47 if (sk1_rcv_saddr == sk2_rcv_saddr)
48 return true;
49 return (match_sk1_wildcard && !sk1_rcv_saddr) ||
50 (match_sk2_wildcard && !sk2_rcv_saddr);
51 }
52 return false;
53 }
54
55 if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
56 return true;
57
58 if (addr_type2 == IPV6_ADDR_ANY && match_sk2_wildcard &&
59 !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
60 return true;
61
62 if (addr_type == IPV6_ADDR_ANY && match_sk1_wildcard &&
63 !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
64 return true;
65
66 if (sk2_rcv_saddr6 &&
67 ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
68 return true;
69
70 return false;
71 }
72 #endif
73
74 /* match_sk*_wildcard == true: 0.0.0.0 equals to any IPv4 addresses
75 * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
76 * 0.0.0.0 only equals to 0.0.0.0
77 */
ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr,__be32 sk2_rcv_saddr,bool sk2_ipv6only,bool match_sk1_wildcard,bool match_sk2_wildcard)78 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
79 bool sk2_ipv6only, bool match_sk1_wildcard,
80 bool match_sk2_wildcard)
81 {
82 if (!sk2_ipv6only) {
83 if (sk1_rcv_saddr == sk2_rcv_saddr)
84 return true;
85 return (match_sk1_wildcard && !sk1_rcv_saddr) ||
86 (match_sk2_wildcard && !sk2_rcv_saddr);
87 }
88 return false;
89 }
90
inet_rcv_saddr_equal(const struct sock * sk,const struct sock * sk2,bool match_wildcard)91 bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
92 bool match_wildcard)
93 {
94 #if IS_ENABLED(CONFIG_IPV6)
95 if (sk->sk_family == AF_INET6)
96 return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
97 inet6_rcv_saddr(sk2),
98 sk->sk_rcv_saddr,
99 sk2->sk_rcv_saddr,
100 ipv6_only_sock(sk),
101 ipv6_only_sock(sk2),
102 match_wildcard,
103 match_wildcard);
104 #endif
105 return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
106 ipv6_only_sock(sk2), match_wildcard,
107 match_wildcard);
108 }
109 EXPORT_SYMBOL(inet_rcv_saddr_equal);
110
inet_rcv_saddr_any(const struct sock * sk)111 bool inet_rcv_saddr_any(const struct sock *sk)
112 {
113 #if IS_ENABLED(CONFIG_IPV6)
114 if (sk->sk_family == AF_INET6)
115 return ipv6_addr_any(&sk->sk_v6_rcv_saddr);
116 #endif
117 return !sk->sk_rcv_saddr;
118 }
119
inet_get_local_port_range(const struct net * net,int * low,int * high)120 void inet_get_local_port_range(const struct net *net, int *low, int *high)
121 {
122 unsigned int seq;
123
124 do {
125 seq = read_seqbegin(&net->ipv4.ip_local_ports.lock);
126
127 *low = net->ipv4.ip_local_ports.range[0];
128 *high = net->ipv4.ip_local_ports.range[1];
129 } while (read_seqretry(&net->ipv4.ip_local_ports.lock, seq));
130 }
131 EXPORT_SYMBOL(inet_get_local_port_range);
132
inet_sk_get_local_port_range(const struct sock * sk,int * low,int * high)133 void inet_sk_get_local_port_range(const struct sock *sk, int *low, int *high)
134 {
135 const struct inet_sock *inet = inet_sk(sk);
136 const struct net *net = sock_net(sk);
137 int lo, hi, sk_lo, sk_hi;
138
139 inet_get_local_port_range(net, &lo, &hi);
140
141 sk_lo = inet->local_port_range.lo;
142 sk_hi = inet->local_port_range.hi;
143
144 if (unlikely(lo <= sk_lo && sk_lo <= hi))
145 lo = sk_lo;
146 if (unlikely(lo <= sk_hi && sk_hi <= hi))
147 hi = sk_hi;
148
149 *low = lo;
150 *high = hi;
151 }
152 EXPORT_SYMBOL(inet_sk_get_local_port_range);
153
inet_use_bhash2_on_bind(const struct sock * sk)154 static bool inet_use_bhash2_on_bind(const struct sock *sk)
155 {
156 #if IS_ENABLED(CONFIG_IPV6)
157 if (sk->sk_family == AF_INET6) {
158 int addr_type = ipv6_addr_type(&sk->sk_v6_rcv_saddr);
159
160 return addr_type != IPV6_ADDR_ANY &&
161 addr_type != IPV6_ADDR_MAPPED;
162 }
163 #endif
164 return sk->sk_rcv_saddr != htonl(INADDR_ANY);
165 }
166
inet_bind_conflict(const struct sock * sk,struct sock * sk2,kuid_t sk_uid,bool relax,bool reuseport_cb_ok,bool reuseport_ok)167 static bool inet_bind_conflict(const struct sock *sk, struct sock *sk2,
168 kuid_t sk_uid, bool relax,
169 bool reuseport_cb_ok, bool reuseport_ok)
170 {
171 int bound_dev_if2;
172
173 if (sk == sk2)
174 return false;
175
176 bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if);
177
178 if (!sk->sk_bound_dev_if || !bound_dev_if2 ||
179 sk->sk_bound_dev_if == bound_dev_if2) {
180 if (sk->sk_reuse && sk2->sk_reuse &&
181 sk2->sk_state != TCP_LISTEN) {
182 if (!relax || (!reuseport_ok && sk->sk_reuseport &&
183 sk2->sk_reuseport && reuseport_cb_ok &&
184 (sk2->sk_state == TCP_TIME_WAIT ||
185 uid_eq(sk_uid, sock_i_uid(sk2)))))
186 return true;
187 } else if (!reuseport_ok || !sk->sk_reuseport ||
188 !sk2->sk_reuseport || !reuseport_cb_ok ||
189 (sk2->sk_state != TCP_TIME_WAIT &&
190 !uid_eq(sk_uid, sock_i_uid(sk2)))) {
191 return true;
192 }
193 }
194 return false;
195 }
196
__inet_bhash2_conflict(const struct sock * sk,struct sock * sk2,kuid_t sk_uid,bool relax,bool reuseport_cb_ok,bool reuseport_ok)197 static bool __inet_bhash2_conflict(const struct sock *sk, struct sock *sk2,
198 kuid_t sk_uid, bool relax,
199 bool reuseport_cb_ok, bool reuseport_ok)
200 {
201 if (sk->sk_family == AF_INET && ipv6_only_sock(sk2))
202 return false;
203
204 return inet_bind_conflict(sk, sk2, sk_uid, relax,
205 reuseport_cb_ok, reuseport_ok);
206 }
207
inet_bhash2_conflict(const struct sock * sk,const struct inet_bind2_bucket * tb2,kuid_t sk_uid,bool relax,bool reuseport_cb_ok,bool reuseport_ok)208 static bool inet_bhash2_conflict(const struct sock *sk,
209 const struct inet_bind2_bucket *tb2,
210 kuid_t sk_uid,
211 bool relax, bool reuseport_cb_ok,
212 bool reuseport_ok)
213 {
214 struct inet_timewait_sock *tw2;
215 struct sock *sk2;
216
217 sk_for_each_bound_bhash2(sk2, &tb2->owners) {
218 if (__inet_bhash2_conflict(sk, sk2, sk_uid, relax,
219 reuseport_cb_ok, reuseport_ok))
220 return true;
221 }
222
223 twsk_for_each_bound_bhash2(tw2, &tb2->deathrow) {
224 sk2 = (struct sock *)tw2;
225
226 if (__inet_bhash2_conflict(sk, sk2, sk_uid, relax,
227 reuseport_cb_ok, reuseport_ok))
228 return true;
229 }
230
231 return false;
232 }
233
234 /* This should be called only when the tb and tb2 hashbuckets' locks are held */
inet_csk_bind_conflict(const struct sock * sk,const struct inet_bind_bucket * tb,const struct inet_bind2_bucket * tb2,bool relax,bool reuseport_ok)235 static int inet_csk_bind_conflict(const struct sock *sk,
236 const struct inet_bind_bucket *tb,
237 const struct inet_bind2_bucket *tb2, /* may be null */
238 bool relax, bool reuseport_ok)
239 {
240 bool reuseport_cb_ok;
241 struct sock_reuseport *reuseport_cb;
242 kuid_t uid = sock_i_uid((struct sock *)sk);
243
244 rcu_read_lock();
245 reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
246 /* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
247 reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
248 rcu_read_unlock();
249
250 /*
251 * Unlike other sk lookup places we do not check
252 * for sk_net here, since _all_ the socks listed
253 * in tb->owners and tb2->owners list belong
254 * to the same net - the one this bucket belongs to.
255 */
256
257 if (!inet_use_bhash2_on_bind(sk)) {
258 struct sock *sk2;
259
260 sk_for_each_bound(sk2, &tb->owners)
261 if (inet_bind_conflict(sk, sk2, uid, relax,
262 reuseport_cb_ok, reuseport_ok) &&
263 inet_rcv_saddr_equal(sk, sk2, true))
264 return true;
265
266 return false;
267 }
268
269 /* Conflicts with an existing IPV6_ADDR_ANY (if ipv6) or INADDR_ANY (if
270 * ipv4) should have been checked already. We need to do these two
271 * checks separately because their spinlocks have to be acquired/released
272 * independently of each other, to prevent possible deadlocks
273 */
274 return tb2 && inet_bhash2_conflict(sk, tb2, uid, relax, reuseport_cb_ok,
275 reuseport_ok);
276 }
277
278 /* Determine if there is a bind conflict with an existing IPV6_ADDR_ANY (if ipv6) or
279 * INADDR_ANY (if ipv4) socket.
280 *
281 * Caller must hold bhash hashbucket lock with local bh disabled, to protect
282 * against concurrent binds on the port for addr any
283 */
inet_bhash2_addr_any_conflict(const struct sock * sk,int port,int l3mdev,bool relax,bool reuseport_ok)284 static bool inet_bhash2_addr_any_conflict(const struct sock *sk, int port, int l3mdev,
285 bool relax, bool reuseport_ok)
286 {
287 kuid_t uid = sock_i_uid((struct sock *)sk);
288 const struct net *net = sock_net(sk);
289 struct sock_reuseport *reuseport_cb;
290 struct inet_bind_hashbucket *head2;
291 struct inet_bind2_bucket *tb2;
292 bool conflict = false;
293 bool reuseport_cb_ok;
294
295 rcu_read_lock();
296 reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
297 /* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
298 reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
299 rcu_read_unlock();
300
301 head2 = inet_bhash2_addr_any_hashbucket(sk, net, port);
302
303 spin_lock(&head2->lock);
304
305 inet_bind_bucket_for_each(tb2, &head2->chain) {
306 if (!inet_bind2_bucket_match_addr_any(tb2, net, port, l3mdev, sk))
307 continue;
308
309 if (!inet_bhash2_conflict(sk, tb2, uid, relax, reuseport_cb_ok, reuseport_ok))
310 continue;
311
312 conflict = true;
313 break;
314 }
315
316 spin_unlock(&head2->lock);
317
318 return conflict;
319 }
320
321 /*
322 * Find an open port number for the socket. Returns with the
323 * inet_bind_hashbucket locks held if successful.
324 */
325 static struct inet_bind_hashbucket *
inet_csk_find_open_port(const struct sock * sk,struct inet_bind_bucket ** tb_ret,struct inet_bind2_bucket ** tb2_ret,struct inet_bind_hashbucket ** head2_ret,int * port_ret)326 inet_csk_find_open_port(const struct sock *sk, struct inet_bind_bucket **tb_ret,
327 struct inet_bind2_bucket **tb2_ret,
328 struct inet_bind_hashbucket **head2_ret, int *port_ret)
329 {
330 struct inet_hashinfo *hinfo = tcp_or_dccp_get_hashinfo(sk);
331 int i, low, high, attempt_half, port, l3mdev;
332 struct inet_bind_hashbucket *head, *head2;
333 struct net *net = sock_net(sk);
334 struct inet_bind2_bucket *tb2;
335 struct inet_bind_bucket *tb;
336 u32 remaining, offset;
337 bool relax = false;
338
339 l3mdev = inet_sk_bound_l3mdev(sk);
340 ports_exhausted:
341 attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
342 other_half_scan:
343 inet_sk_get_local_port_range(sk, &low, &high);
344 high++; /* [32768, 60999] -> [32768, 61000[ */
345 if (high - low < 4)
346 attempt_half = 0;
347 if (attempt_half) {
348 int half = low + (((high - low) >> 2) << 1);
349
350 if (attempt_half == 1)
351 high = half;
352 else
353 low = half;
354 }
355 remaining = high - low;
356 if (likely(remaining > 1))
357 remaining &= ~1U;
358
359 offset = get_random_u32_below(remaining);
360 /* __inet_hash_connect() favors ports having @low parity
361 * We do the opposite to not pollute connect() users.
362 */
363 offset |= 1U;
364
365 other_parity_scan:
366 port = low + offset;
367 for (i = 0; i < remaining; i += 2, port += 2) {
368 if (unlikely(port >= high))
369 port -= remaining;
370 if (inet_is_local_reserved_port(net, port))
371 continue;
372 head = &hinfo->bhash[inet_bhashfn(net, port,
373 hinfo->bhash_size)];
374 spin_lock_bh(&head->lock);
375 if (inet_use_bhash2_on_bind(sk)) {
376 if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, relax, false))
377 goto next_port;
378 }
379
380 head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
381 spin_lock(&head2->lock);
382 tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
383 inet_bind_bucket_for_each(tb, &head->chain)
384 if (inet_bind_bucket_match(tb, net, port, l3mdev)) {
385 if (!inet_csk_bind_conflict(sk, tb, tb2,
386 relax, false))
387 goto success;
388 spin_unlock(&head2->lock);
389 goto next_port;
390 }
391 tb = NULL;
392 goto success;
393 next_port:
394 spin_unlock_bh(&head->lock);
395 cond_resched();
396 }
397
398 offset--;
399 if (!(offset & 1))
400 goto other_parity_scan;
401
402 if (attempt_half == 1) {
403 /* OK we now try the upper half of the range */
404 attempt_half = 2;
405 goto other_half_scan;
406 }
407
408 if (READ_ONCE(net->ipv4.sysctl_ip_autobind_reuse) && !relax) {
409 /* We still have a chance to connect to different destinations */
410 relax = true;
411 goto ports_exhausted;
412 }
413 return NULL;
414 success:
415 *port_ret = port;
416 *tb_ret = tb;
417 *tb2_ret = tb2;
418 *head2_ret = head2;
419 return head;
420 }
421
sk_reuseport_match(struct inet_bind_bucket * tb,struct sock * sk)422 static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
423 struct sock *sk)
424 {
425 kuid_t uid = sock_i_uid(sk);
426
427 if (tb->fastreuseport <= 0)
428 return 0;
429 if (!sk->sk_reuseport)
430 return 0;
431 if (rcu_access_pointer(sk->sk_reuseport_cb))
432 return 0;
433 if (!uid_eq(tb->fastuid, uid))
434 return 0;
435 /* We only need to check the rcv_saddr if this tb was once marked
436 * without fastreuseport and then was reset, as we can only know that
437 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
438 * owners list.
439 */
440 if (tb->fastreuseport == FASTREUSEPORT_ANY)
441 return 1;
442 #if IS_ENABLED(CONFIG_IPV6)
443 if (tb->fast_sk_family == AF_INET6)
444 return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
445 inet6_rcv_saddr(sk),
446 tb->fast_rcv_saddr,
447 sk->sk_rcv_saddr,
448 tb->fast_ipv6_only,
449 ipv6_only_sock(sk), true, false);
450 #endif
451 return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
452 ipv6_only_sock(sk), true, false);
453 }
454
inet_csk_update_fastreuse(struct inet_bind_bucket * tb,struct sock * sk)455 void inet_csk_update_fastreuse(struct inet_bind_bucket *tb,
456 struct sock *sk)
457 {
458 kuid_t uid = sock_i_uid(sk);
459 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
460
461 if (hlist_empty(&tb->owners)) {
462 tb->fastreuse = reuse;
463 if (sk->sk_reuseport) {
464 tb->fastreuseport = FASTREUSEPORT_ANY;
465 tb->fastuid = uid;
466 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
467 tb->fast_ipv6_only = ipv6_only_sock(sk);
468 tb->fast_sk_family = sk->sk_family;
469 #if IS_ENABLED(CONFIG_IPV6)
470 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
471 #endif
472 } else {
473 tb->fastreuseport = 0;
474 }
475 } else {
476 if (!reuse)
477 tb->fastreuse = 0;
478 if (sk->sk_reuseport) {
479 /* We didn't match or we don't have fastreuseport set on
480 * the tb, but we have sk_reuseport set on this socket
481 * and we know that there are no bind conflicts with
482 * this socket in this tb, so reset our tb's reuseport
483 * settings so that any subsequent sockets that match
484 * our current socket will be put on the fast path.
485 *
486 * If we reset we need to set FASTREUSEPORT_STRICT so we
487 * do extra checking for all subsequent sk_reuseport
488 * socks.
489 */
490 if (!sk_reuseport_match(tb, sk)) {
491 tb->fastreuseport = FASTREUSEPORT_STRICT;
492 tb->fastuid = uid;
493 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
494 tb->fast_ipv6_only = ipv6_only_sock(sk);
495 tb->fast_sk_family = sk->sk_family;
496 #if IS_ENABLED(CONFIG_IPV6)
497 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
498 #endif
499 }
500 } else {
501 tb->fastreuseport = 0;
502 }
503 }
504 }
505
506 /* Obtain a reference to a local port for the given sock,
507 * if snum is zero it means select any available local port.
508 * We try to allocate an odd port (and leave even ports for connect())
509 */
inet_csk_get_port(struct sock * sk,unsigned short snum)510 int inet_csk_get_port(struct sock *sk, unsigned short snum)
511 {
512 struct inet_hashinfo *hinfo = tcp_or_dccp_get_hashinfo(sk);
513 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
514 bool found_port = false, check_bind_conflict = true;
515 bool bhash_created = false, bhash2_created = false;
516 int ret = -EADDRINUSE, port = snum, l3mdev;
517 struct inet_bind_hashbucket *head, *head2;
518 struct inet_bind2_bucket *tb2 = NULL;
519 struct inet_bind_bucket *tb = NULL;
520 bool head2_lock_acquired = false;
521 struct net *net = sock_net(sk);
522
523 l3mdev = inet_sk_bound_l3mdev(sk);
524
525 if (!port) {
526 head = inet_csk_find_open_port(sk, &tb, &tb2, &head2, &port);
527 if (!head)
528 return ret;
529
530 head2_lock_acquired = true;
531
532 if (tb && tb2)
533 goto success;
534 found_port = true;
535 } else {
536 head = &hinfo->bhash[inet_bhashfn(net, port,
537 hinfo->bhash_size)];
538 spin_lock_bh(&head->lock);
539 inet_bind_bucket_for_each(tb, &head->chain)
540 if (inet_bind_bucket_match(tb, net, port, l3mdev))
541 break;
542 }
543
544 if (!tb) {
545 tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep, net,
546 head, port, l3mdev);
547 if (!tb)
548 goto fail_unlock;
549 bhash_created = true;
550 }
551
552 if (!found_port) {
553 if (!hlist_empty(&tb->owners)) {
554 if (sk->sk_reuse == SK_FORCE_REUSE ||
555 (tb->fastreuse > 0 && reuse) ||
556 sk_reuseport_match(tb, sk))
557 check_bind_conflict = false;
558 }
559
560 if (check_bind_conflict && inet_use_bhash2_on_bind(sk)) {
561 if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, true, true))
562 goto fail_unlock;
563 }
564
565 head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
566 spin_lock(&head2->lock);
567 head2_lock_acquired = true;
568 tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
569 }
570
571 if (!tb2) {
572 tb2 = inet_bind2_bucket_create(hinfo->bind2_bucket_cachep,
573 net, head2, port, l3mdev, sk);
574 if (!tb2)
575 goto fail_unlock;
576 bhash2_created = true;
577 }
578
579 if (!found_port && check_bind_conflict) {
580 if (inet_csk_bind_conflict(sk, tb, tb2, true, true))
581 goto fail_unlock;
582 }
583
584 success:
585 inet_csk_update_fastreuse(tb, sk);
586
587 if (!inet_csk(sk)->icsk_bind_hash)
588 inet_bind_hash(sk, tb, tb2, port);
589 WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
590 WARN_ON(inet_csk(sk)->icsk_bind2_hash != tb2);
591 ret = 0;
592
593 fail_unlock:
594 if (ret) {
595 if (bhash_created)
596 inet_bind_bucket_destroy(hinfo->bind_bucket_cachep, tb);
597 if (bhash2_created)
598 inet_bind2_bucket_destroy(hinfo->bind2_bucket_cachep,
599 tb2);
600 }
601 if (head2_lock_acquired)
602 spin_unlock(&head2->lock);
603 spin_unlock_bh(&head->lock);
604 return ret;
605 }
606 EXPORT_SYMBOL_GPL(inet_csk_get_port);
607
608 /*
609 * Wait for an incoming connection, avoid race conditions. This must be called
610 * with the socket locked.
611 */
inet_csk_wait_for_connect(struct sock * sk,long timeo)612 static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
613 {
614 struct inet_connection_sock *icsk = inet_csk(sk);
615 DEFINE_WAIT(wait);
616 int err;
617
618 /*
619 * True wake-one mechanism for incoming connections: only
620 * one process gets woken up, not the 'whole herd'.
621 * Since we do not 'race & poll' for established sockets
622 * anymore, the common case will execute the loop only once.
623 *
624 * Subtle issue: "add_wait_queue_exclusive()" will be added
625 * after any current non-exclusive waiters, and we know that
626 * it will always _stay_ after any new non-exclusive waiters
627 * because all non-exclusive waiters are added at the
628 * beginning of the wait-queue. As such, it's ok to "drop"
629 * our exclusiveness temporarily when we get woken up without
630 * having to remove and re-insert us on the wait queue.
631 */
632 for (;;) {
633 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
634 TASK_INTERRUPTIBLE);
635 release_sock(sk);
636 if (reqsk_queue_empty(&icsk->icsk_accept_queue))
637 timeo = schedule_timeout(timeo);
638 sched_annotate_sleep();
639 lock_sock(sk);
640 err = 0;
641 if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
642 break;
643 err = -EINVAL;
644 if (sk->sk_state != TCP_LISTEN)
645 break;
646 err = sock_intr_errno(timeo);
647 if (signal_pending(current))
648 break;
649 err = -EAGAIN;
650 if (!timeo)
651 break;
652 }
653 finish_wait(sk_sleep(sk), &wait);
654 return err;
655 }
656
657 /*
658 * This will accept the next outstanding connection.
659 */
inet_csk_accept(struct sock * sk,int flags,int * err,bool kern)660 struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern)
661 {
662 struct inet_connection_sock *icsk = inet_csk(sk);
663 struct request_sock_queue *queue = &icsk->icsk_accept_queue;
664 struct request_sock *req;
665 struct sock *newsk;
666 int error;
667
668 lock_sock(sk);
669
670 /* We need to make sure that this socket is listening,
671 * and that it has something pending.
672 */
673 error = -EINVAL;
674 if (sk->sk_state != TCP_LISTEN)
675 goto out_err;
676
677 /* Find already established connection */
678 if (reqsk_queue_empty(queue)) {
679 long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
680
681 /* If this is a non blocking socket don't sleep */
682 error = -EAGAIN;
683 if (!timeo)
684 goto out_err;
685
686 error = inet_csk_wait_for_connect(sk, timeo);
687 if (error)
688 goto out_err;
689 }
690 req = reqsk_queue_remove(queue, sk);
691 newsk = req->sk;
692
693 if (sk->sk_protocol == IPPROTO_TCP &&
694 tcp_rsk(req)->tfo_listener) {
695 spin_lock_bh(&queue->fastopenq.lock);
696 if (tcp_rsk(req)->tfo_listener) {
697 /* We are still waiting for the final ACK from 3WHS
698 * so can't free req now. Instead, we set req->sk to
699 * NULL to signify that the child socket is taken
700 * so reqsk_fastopen_remove() will free the req
701 * when 3WHS finishes (or is aborted).
702 */
703 req->sk = NULL;
704 req = NULL;
705 }
706 spin_unlock_bh(&queue->fastopenq.lock);
707 }
708
709 out:
710 release_sock(sk);
711 if (newsk && mem_cgroup_sockets_enabled) {
712 int amt = 0;
713
714 /* atomically get the memory usage, set and charge the
715 * newsk->sk_memcg.
716 */
717 lock_sock(newsk);
718
719 mem_cgroup_sk_alloc(newsk);
720 if (newsk->sk_memcg) {
721 /* The socket has not been accepted yet, no need
722 * to look at newsk->sk_wmem_queued.
723 */
724 amt = sk_mem_pages(newsk->sk_forward_alloc +
725 atomic_read(&newsk->sk_rmem_alloc));
726 }
727
728 if (amt)
729 mem_cgroup_charge_skmem(newsk->sk_memcg, amt,
730 GFP_KERNEL | __GFP_NOFAIL);
731
732 release_sock(newsk);
733 }
734 if (req)
735 reqsk_put(req);
736
737 if (newsk)
738 inet_init_csk_locks(newsk);
739
740 return newsk;
741 out_err:
742 newsk = NULL;
743 req = NULL;
744 *err = error;
745 goto out;
746 }
747 EXPORT_SYMBOL(inet_csk_accept);
748
749 /*
750 * Using different timers for retransmit, delayed acks and probes
751 * We may wish use just one timer maintaining a list of expire jiffies
752 * to optimize.
753 */
inet_csk_init_xmit_timers(struct sock * sk,void (* retransmit_handler)(struct timer_list * t),void (* delack_handler)(struct timer_list * t),void (* keepalive_handler)(struct timer_list * t))754 void inet_csk_init_xmit_timers(struct sock *sk,
755 void (*retransmit_handler)(struct timer_list *t),
756 void (*delack_handler)(struct timer_list *t),
757 void (*keepalive_handler)(struct timer_list *t))
758 {
759 struct inet_connection_sock *icsk = inet_csk(sk);
760
761 timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
762 timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
763 timer_setup(&sk->sk_timer, keepalive_handler, 0);
764 icsk->icsk_pending = icsk->icsk_ack.pending = 0;
765 }
766 EXPORT_SYMBOL(inet_csk_init_xmit_timers);
767
inet_csk_clear_xmit_timers(struct sock * sk)768 void inet_csk_clear_xmit_timers(struct sock *sk)
769 {
770 struct inet_connection_sock *icsk = inet_csk(sk);
771
772 icsk->icsk_pending = icsk->icsk_ack.pending = 0;
773
774 sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
775 sk_stop_timer(sk, &icsk->icsk_delack_timer);
776 sk_stop_timer(sk, &sk->sk_timer);
777 }
778 EXPORT_SYMBOL(inet_csk_clear_xmit_timers);
779
inet_csk_clear_xmit_timers_sync(struct sock * sk)780 void inet_csk_clear_xmit_timers_sync(struct sock *sk)
781 {
782 struct inet_connection_sock *icsk = inet_csk(sk);
783
784 /* ongoing timer handlers need to acquire socket lock. */
785 sock_not_owned_by_me(sk);
786
787 icsk->icsk_pending = icsk->icsk_ack.pending = 0;
788
789 sk_stop_timer_sync(sk, &icsk->icsk_retransmit_timer);
790 sk_stop_timer_sync(sk, &icsk->icsk_delack_timer);
791 sk_stop_timer_sync(sk, &sk->sk_timer);
792 }
793
inet_csk_delete_keepalive_timer(struct sock * sk)794 void inet_csk_delete_keepalive_timer(struct sock *sk)
795 {
796 sk_stop_timer(sk, &sk->sk_timer);
797 }
798 EXPORT_SYMBOL(inet_csk_delete_keepalive_timer);
799
inet_csk_reset_keepalive_timer(struct sock * sk,unsigned long len)800 void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len)
801 {
802 sk_reset_timer(sk, &sk->sk_timer, jiffies + len);
803 }
804 EXPORT_SYMBOL(inet_csk_reset_keepalive_timer);
805
inet_csk_route_req(const struct sock * sk,struct flowi4 * fl4,const struct request_sock * req)806 struct dst_entry *inet_csk_route_req(const struct sock *sk,
807 struct flowi4 *fl4,
808 const struct request_sock *req)
809 {
810 const struct inet_request_sock *ireq = inet_rsk(req);
811 struct net *net = read_pnet(&ireq->ireq_net);
812 struct ip_options_rcu *opt;
813 struct rtable *rt;
814
815 rcu_read_lock();
816 opt = rcu_dereference(ireq->ireq_opt);
817
818 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
819 ip_sock_rt_tos(sk), ip_sock_rt_scope(sk),
820 sk->sk_protocol, inet_sk_flowi_flags(sk),
821 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
822 ireq->ir_loc_addr, ireq->ir_rmt_port,
823 htons(ireq->ir_num), sk->sk_uid);
824 security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
825 rt = ip_route_output_flow(net, fl4, sk);
826 if (IS_ERR(rt))
827 goto no_route;
828 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
829 goto route_err;
830 rcu_read_unlock();
831 return &rt->dst;
832
833 route_err:
834 ip_rt_put(rt);
835 no_route:
836 rcu_read_unlock();
837 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
838 return NULL;
839 }
840 EXPORT_SYMBOL_GPL(inet_csk_route_req);
841
inet_csk_route_child_sock(const struct sock * sk,struct sock * newsk,const struct request_sock * req)842 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
843 struct sock *newsk,
844 const struct request_sock *req)
845 {
846 const struct inet_request_sock *ireq = inet_rsk(req);
847 struct net *net = read_pnet(&ireq->ireq_net);
848 struct inet_sock *newinet = inet_sk(newsk);
849 struct ip_options_rcu *opt;
850 struct flowi4 *fl4;
851 struct rtable *rt;
852
853 opt = rcu_dereference(ireq->ireq_opt);
854 fl4 = &newinet->cork.fl.u.ip4;
855
856 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
857 ip_sock_rt_tos(sk), ip_sock_rt_scope(sk),
858 sk->sk_protocol, inet_sk_flowi_flags(sk),
859 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
860 ireq->ir_loc_addr, ireq->ir_rmt_port,
861 htons(ireq->ir_num), sk->sk_uid);
862 security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
863 rt = ip_route_output_flow(net, fl4, sk);
864 if (IS_ERR(rt))
865 goto no_route;
866 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
867 goto route_err;
868 return &rt->dst;
869
870 route_err:
871 ip_rt_put(rt);
872 no_route:
873 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
874 return NULL;
875 }
876 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
877
878 /* Decide when to expire the request and when to resend SYN-ACK */
syn_ack_recalc(struct request_sock * req,const int max_syn_ack_retries,const u8 rskq_defer_accept,int * expire,int * resend)879 static void syn_ack_recalc(struct request_sock *req,
880 const int max_syn_ack_retries,
881 const u8 rskq_defer_accept,
882 int *expire, int *resend)
883 {
884 if (!rskq_defer_accept) {
885 *expire = req->num_timeout >= max_syn_ack_retries;
886 *resend = 1;
887 return;
888 }
889 *expire = req->num_timeout >= max_syn_ack_retries &&
890 (!inet_rsk(req)->acked || req->num_timeout >= rskq_defer_accept);
891 /* Do not resend while waiting for data after ACK,
892 * start to resend on end of deferring period to give
893 * last chance for data or ACK to create established socket.
894 */
895 *resend = !inet_rsk(req)->acked ||
896 req->num_timeout >= rskq_defer_accept - 1;
897 }
898
inet_rtx_syn_ack(const struct sock * parent,struct request_sock * req)899 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
900 {
901 int err = req->rsk_ops->rtx_syn_ack(parent, req);
902
903 if (!err)
904 req->num_retrans++;
905 return err;
906 }
907 EXPORT_SYMBOL(inet_rtx_syn_ack);
908
inet_reqsk_clone(struct request_sock * req,struct sock * sk)909 static struct request_sock *inet_reqsk_clone(struct request_sock *req,
910 struct sock *sk)
911 {
912 struct sock *req_sk, *nreq_sk;
913 struct request_sock *nreq;
914
915 nreq = kmem_cache_alloc(req->rsk_ops->slab, GFP_ATOMIC | __GFP_NOWARN);
916 if (!nreq) {
917 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
918
919 /* paired with refcount_inc_not_zero() in reuseport_migrate_sock() */
920 sock_put(sk);
921 return NULL;
922 }
923
924 req_sk = req_to_sk(req);
925 nreq_sk = req_to_sk(nreq);
926
927 memcpy(nreq_sk, req_sk,
928 offsetof(struct sock, sk_dontcopy_begin));
929 memcpy(&nreq_sk->sk_dontcopy_end, &req_sk->sk_dontcopy_end,
930 req->rsk_ops->obj_size - offsetof(struct sock, sk_dontcopy_end));
931
932 sk_node_init(&nreq_sk->sk_node);
933 nreq_sk->sk_tx_queue_mapping = req_sk->sk_tx_queue_mapping;
934 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
935 nreq_sk->sk_rx_queue_mapping = req_sk->sk_rx_queue_mapping;
936 #endif
937 nreq_sk->sk_incoming_cpu = req_sk->sk_incoming_cpu;
938
939 nreq->rsk_listener = sk;
940
941 /* We need not acquire fastopenq->lock
942 * because the child socket is locked in inet_csk_listen_stop().
943 */
944 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(nreq)->tfo_listener)
945 rcu_assign_pointer(tcp_sk(nreq->sk)->fastopen_rsk, nreq);
946
947 return nreq;
948 }
949
reqsk_queue_migrated(struct request_sock_queue * queue,const struct request_sock * req)950 static void reqsk_queue_migrated(struct request_sock_queue *queue,
951 const struct request_sock *req)
952 {
953 if (req->num_timeout == 0)
954 atomic_inc(&queue->young);
955 atomic_inc(&queue->qlen);
956 }
957
reqsk_migrate_reset(struct request_sock * req)958 static void reqsk_migrate_reset(struct request_sock *req)
959 {
960 req->saved_syn = NULL;
961 #if IS_ENABLED(CONFIG_IPV6)
962 inet_rsk(req)->ipv6_opt = NULL;
963 inet_rsk(req)->pktopts = NULL;
964 #else
965 inet_rsk(req)->ireq_opt = NULL;
966 #endif
967 }
968
969 /* return true if req was found in the ehash table */
reqsk_queue_unlink(struct request_sock * req)970 static bool reqsk_queue_unlink(struct request_sock *req)
971 {
972 struct sock *sk = req_to_sk(req);
973 bool found = false;
974
975 if (sk_hashed(sk)) {
976 struct inet_hashinfo *hashinfo = tcp_or_dccp_get_hashinfo(sk);
977 spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
978
979 spin_lock(lock);
980 found = __sk_nulls_del_node_init_rcu(sk);
981 spin_unlock(lock);
982 }
983
984 return found;
985 }
986
__inet_csk_reqsk_queue_drop(struct sock * sk,struct request_sock * req,bool from_timer)987 static bool __inet_csk_reqsk_queue_drop(struct sock *sk,
988 struct request_sock *req,
989 bool from_timer)
990 {
991 bool unlinked = reqsk_queue_unlink(req);
992
993 if (!from_timer && timer_delete_sync(&req->rsk_timer))
994 reqsk_put(req);
995
996 if (unlinked) {
997 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
998 reqsk_put(req);
999 }
1000
1001 return unlinked;
1002 }
1003
inet_csk_reqsk_queue_drop(struct sock * sk,struct request_sock * req)1004 bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
1005 {
1006 return __inet_csk_reqsk_queue_drop(sk, req, false);
1007 }
1008 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop);
1009
inet_csk_reqsk_queue_drop_and_put(struct sock * sk,struct request_sock * req)1010 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
1011 {
1012 inet_csk_reqsk_queue_drop(sk, req);
1013 reqsk_put(req);
1014 }
1015 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put);
1016
reqsk_timer_handler(struct timer_list * t)1017 static void reqsk_timer_handler(struct timer_list *t)
1018 {
1019 struct request_sock *req = from_timer(req, t, rsk_timer);
1020 struct request_sock *nreq = NULL, *oreq = req;
1021 struct sock *sk_listener = req->rsk_listener;
1022 struct inet_connection_sock *icsk;
1023 struct request_sock_queue *queue;
1024 struct net *net;
1025 int max_syn_ack_retries, qlen, expire = 0, resend = 0;
1026
1027 if (inet_sk_state_load(sk_listener) != TCP_LISTEN) {
1028 struct sock *nsk;
1029
1030 nsk = reuseport_migrate_sock(sk_listener, req_to_sk(req), NULL);
1031 if (!nsk)
1032 goto drop;
1033
1034 nreq = inet_reqsk_clone(req, nsk);
1035 if (!nreq)
1036 goto drop;
1037
1038 /* The new timer for the cloned req can decrease the 2
1039 * by calling inet_csk_reqsk_queue_drop_and_put(), so
1040 * hold another count to prevent use-after-free and
1041 * call reqsk_put() just before return.
1042 */
1043 refcount_set(&nreq->rsk_refcnt, 2 + 1);
1044 timer_setup(&nreq->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
1045 reqsk_queue_migrated(&inet_csk(nsk)->icsk_accept_queue, req);
1046
1047 req = nreq;
1048 sk_listener = nsk;
1049 }
1050
1051 icsk = inet_csk(sk_listener);
1052 net = sock_net(sk_listener);
1053 max_syn_ack_retries = READ_ONCE(icsk->icsk_syn_retries) ? :
1054 READ_ONCE(net->ipv4.sysctl_tcp_synack_retries);
1055 /* Normally all the openreqs are young and become mature
1056 * (i.e. converted to established socket) for first timeout.
1057 * If synack was not acknowledged for 1 second, it means
1058 * one of the following things: synack was lost, ack was lost,
1059 * rtt is high or nobody planned to ack (i.e. synflood).
1060 * When server is a bit loaded, queue is populated with old
1061 * open requests, reducing effective size of queue.
1062 * When server is well loaded, queue size reduces to zero
1063 * after several minutes of work. It is not synflood,
1064 * it is normal operation. The solution is pruning
1065 * too old entries overriding normal timeout, when
1066 * situation becomes dangerous.
1067 *
1068 * Essentially, we reserve half of room for young
1069 * embrions; and abort old ones without pity, if old
1070 * ones are about to clog our table.
1071 */
1072 queue = &icsk->icsk_accept_queue;
1073 qlen = reqsk_queue_len(queue);
1074 if ((qlen << 1) > max(8U, READ_ONCE(sk_listener->sk_max_ack_backlog))) {
1075 int young = reqsk_queue_len_young(queue) << 1;
1076
1077 while (max_syn_ack_retries > 2) {
1078 if (qlen < young)
1079 break;
1080 max_syn_ack_retries--;
1081 young <<= 1;
1082 }
1083 }
1084 syn_ack_recalc(req, max_syn_ack_retries, READ_ONCE(queue->rskq_defer_accept),
1085 &expire, &resend);
1086 req->rsk_ops->syn_ack_timeout(req);
1087 if (!expire &&
1088 (!resend ||
1089 !inet_rtx_syn_ack(sk_listener, req) ||
1090 inet_rsk(req)->acked)) {
1091 if (req->num_timeout++ == 0)
1092 atomic_dec(&queue->young);
1093 mod_timer(&req->rsk_timer, jiffies + reqsk_timeout(req, TCP_RTO_MAX));
1094
1095 if (!nreq)
1096 return;
1097
1098 if (!inet_ehash_insert(req_to_sk(nreq), req_to_sk(oreq), NULL)) {
1099 /* delete timer */
1100 __inet_csk_reqsk_queue_drop(sk_listener, nreq, true);
1101 goto no_ownership;
1102 }
1103
1104 __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQSUCCESS);
1105 reqsk_migrate_reset(oreq);
1106 reqsk_queue_removed(&inet_csk(oreq->rsk_listener)->icsk_accept_queue, oreq);
1107 reqsk_put(oreq);
1108
1109 reqsk_put(nreq);
1110 return;
1111 }
1112
1113 /* Even if we can clone the req, we may need not retransmit any more
1114 * SYN+ACKs (nreq->num_timeout > max_syn_ack_retries, etc), or another
1115 * CPU may win the "own_req" race so that inet_ehash_insert() fails.
1116 */
1117 if (nreq) {
1118 __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQFAILURE);
1119 no_ownership:
1120 reqsk_migrate_reset(nreq);
1121 reqsk_queue_removed(queue, nreq);
1122 __reqsk_free(nreq);
1123 }
1124
1125 drop:
1126 __inet_csk_reqsk_queue_drop(sk_listener, oreq, true);
1127 reqsk_put(req);
1128 }
1129
reqsk_queue_hash_req(struct request_sock * req,unsigned long timeout)1130 static bool reqsk_queue_hash_req(struct request_sock *req,
1131 unsigned long timeout)
1132 {
1133 bool found_dup_sk = false;
1134
1135 if (!inet_ehash_insert(req_to_sk(req), NULL, &found_dup_sk))
1136 return false;
1137
1138 /* The timer needs to be setup after a successful insertion. */
1139 timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
1140 mod_timer(&req->rsk_timer, jiffies + timeout);
1141
1142 /* before letting lookups find us, make sure all req fields
1143 * are committed to memory and refcnt initialized.
1144 */
1145 smp_wmb();
1146 refcount_set(&req->rsk_refcnt, 2 + 1);
1147 return true;
1148 }
1149
inet_csk_reqsk_queue_hash_add(struct sock * sk,struct request_sock * req,unsigned long timeout)1150 bool inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
1151 unsigned long timeout)
1152 {
1153 if (!reqsk_queue_hash_req(req, timeout))
1154 return false;
1155
1156 inet_csk_reqsk_queue_added(sk);
1157 return true;
1158 }
1159 EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add);
1160
inet_clone_ulp(const struct request_sock * req,struct sock * newsk,const gfp_t priority)1161 static void inet_clone_ulp(const struct request_sock *req, struct sock *newsk,
1162 const gfp_t priority)
1163 {
1164 struct inet_connection_sock *icsk = inet_csk(newsk);
1165
1166 if (!icsk->icsk_ulp_ops)
1167 return;
1168
1169 icsk->icsk_ulp_ops->clone(req, newsk, priority);
1170 }
1171
1172 /**
1173 * inet_csk_clone_lock - clone an inet socket, and lock its clone
1174 * @sk: the socket to clone
1175 * @req: request_sock
1176 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1177 *
1178 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1179 */
inet_csk_clone_lock(const struct sock * sk,const struct request_sock * req,const gfp_t priority)1180 struct sock *inet_csk_clone_lock(const struct sock *sk,
1181 const struct request_sock *req,
1182 const gfp_t priority)
1183 {
1184 struct sock *newsk = sk_clone_lock(sk, priority);
1185
1186 if (newsk) {
1187 struct inet_connection_sock *newicsk = inet_csk(newsk);
1188
1189 inet_sk_set_state(newsk, TCP_SYN_RECV);
1190 newicsk->icsk_bind_hash = NULL;
1191 newicsk->icsk_bind2_hash = NULL;
1192
1193 inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port;
1194 inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num;
1195 inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num);
1196
1197 /* listeners have SOCK_RCU_FREE, not the children */
1198 sock_reset_flag(newsk, SOCK_RCU_FREE);
1199
1200 inet_sk(newsk)->mc_list = NULL;
1201
1202 newsk->sk_mark = inet_rsk(req)->ir_mark;
1203 atomic64_set(&newsk->sk_cookie,
1204 atomic64_read(&inet_rsk(req)->ir_cookie));
1205
1206 newicsk->icsk_retransmits = 0;
1207 newicsk->icsk_backoff = 0;
1208 newicsk->icsk_probes_out = 0;
1209 newicsk->icsk_probes_tstamp = 0;
1210
1211 /* Deinitialize accept_queue to trap illegal accesses. */
1212 memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue));
1213
1214 inet_clone_ulp(req, newsk, priority);
1215
1216 security_inet_csk_clone(newsk, req);
1217 }
1218 return newsk;
1219 }
1220 EXPORT_SYMBOL_GPL(inet_csk_clone_lock);
1221
1222 /*
1223 * At this point, there should be no process reference to this
1224 * socket, and thus no user references at all. Therefore we
1225 * can assume the socket waitqueue is inactive and nobody will
1226 * try to jump onto it.
1227 */
inet_csk_destroy_sock(struct sock * sk)1228 void inet_csk_destroy_sock(struct sock *sk)
1229 {
1230 WARN_ON(sk->sk_state != TCP_CLOSE);
1231 WARN_ON(!sock_flag(sk, SOCK_DEAD));
1232
1233 /* It cannot be in hash table! */
1234 WARN_ON(!sk_unhashed(sk));
1235
1236 /* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
1237 WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
1238
1239 sk->sk_prot->destroy(sk);
1240
1241 sk_stream_kill_queues(sk);
1242
1243 xfrm_sk_free_policy(sk);
1244
1245 this_cpu_dec(*sk->sk_prot->orphan_count);
1246
1247 sock_put(sk);
1248 }
1249 EXPORT_SYMBOL(inet_csk_destroy_sock);
1250
1251 /* This function allows to force a closure of a socket after the call to
1252 * tcp/dccp_create_openreq_child().
1253 */
inet_csk_prepare_forced_close(struct sock * sk)1254 void inet_csk_prepare_forced_close(struct sock *sk)
1255 __releases(&sk->sk_lock.slock)
1256 {
1257 /* sk_clone_lock locked the socket and set refcnt to 2 */
1258 bh_unlock_sock(sk);
1259 sock_put(sk);
1260 inet_csk_prepare_for_destroy_sock(sk);
1261 inet_sk(sk)->inet_num = 0;
1262 }
1263 EXPORT_SYMBOL(inet_csk_prepare_forced_close);
1264
inet_ulp_can_listen(const struct sock * sk)1265 static int inet_ulp_can_listen(const struct sock *sk)
1266 {
1267 const struct inet_connection_sock *icsk = inet_csk(sk);
1268
1269 if (icsk->icsk_ulp_ops && !icsk->icsk_ulp_ops->clone)
1270 return -EINVAL;
1271
1272 return 0;
1273 }
1274
inet_csk_listen_start(struct sock * sk)1275 int inet_csk_listen_start(struct sock *sk)
1276 {
1277 struct inet_connection_sock *icsk = inet_csk(sk);
1278 struct inet_sock *inet = inet_sk(sk);
1279 int err;
1280
1281 err = inet_ulp_can_listen(sk);
1282 if (unlikely(err))
1283 return err;
1284
1285 reqsk_queue_alloc(&icsk->icsk_accept_queue);
1286
1287 sk->sk_ack_backlog = 0;
1288 inet_csk_delack_init(sk);
1289
1290 /* There is race window here: we announce ourselves listening,
1291 * but this transition is still not validated by get_port().
1292 * It is OK, because this socket enters to hash table only
1293 * after validation is complete.
1294 */
1295 inet_sk_state_store(sk, TCP_LISTEN);
1296 err = sk->sk_prot->get_port(sk, inet->inet_num);
1297 if (!err) {
1298 inet->inet_sport = htons(inet->inet_num);
1299
1300 sk_dst_reset(sk);
1301 err = sk->sk_prot->hash(sk);
1302
1303 if (likely(!err))
1304 return 0;
1305 }
1306
1307 inet_sk_set_state(sk, TCP_CLOSE);
1308 return err;
1309 }
1310 EXPORT_SYMBOL_GPL(inet_csk_listen_start);
1311
inet_child_forget(struct sock * sk,struct request_sock * req,struct sock * child)1312 static void inet_child_forget(struct sock *sk, struct request_sock *req,
1313 struct sock *child)
1314 {
1315 sk->sk_prot->disconnect(child, O_NONBLOCK);
1316
1317 sock_orphan(child);
1318
1319 this_cpu_inc(*sk->sk_prot->orphan_count);
1320
1321 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
1322 BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req);
1323 BUG_ON(sk != req->rsk_listener);
1324
1325 /* Paranoid, to prevent race condition if
1326 * an inbound pkt destined for child is
1327 * blocked by sock lock in tcp_v4_rcv().
1328 * Also to satisfy an assertion in
1329 * tcp_v4_destroy_sock().
1330 */
1331 RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL);
1332 }
1333 inet_csk_destroy_sock(child);
1334 }
1335
inet_csk_reqsk_queue_add(struct sock * sk,struct request_sock * req,struct sock * child)1336 struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
1337 struct request_sock *req,
1338 struct sock *child)
1339 {
1340 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1341
1342 spin_lock(&queue->rskq_lock);
1343 if (unlikely(sk->sk_state != TCP_LISTEN)) {
1344 inet_child_forget(sk, req, child);
1345 child = NULL;
1346 } else {
1347 req->sk = child;
1348 req->dl_next = NULL;
1349 if (queue->rskq_accept_head == NULL)
1350 WRITE_ONCE(queue->rskq_accept_head, req);
1351 else
1352 queue->rskq_accept_tail->dl_next = req;
1353 queue->rskq_accept_tail = req;
1354 sk_acceptq_added(sk);
1355 }
1356 spin_unlock(&queue->rskq_lock);
1357 return child;
1358 }
1359 EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
1360
inet_csk_complete_hashdance(struct sock * sk,struct sock * child,struct request_sock * req,bool own_req)1361 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
1362 struct request_sock *req, bool own_req)
1363 {
1364 if (own_req) {
1365 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
1366 reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
1367
1368 if (sk != req->rsk_listener) {
1369 /* another listening sk has been selected,
1370 * migrate the req to it.
1371 */
1372 struct request_sock *nreq;
1373
1374 /* hold a refcnt for the nreq->rsk_listener
1375 * which is assigned in inet_reqsk_clone()
1376 */
1377 sock_hold(sk);
1378 nreq = inet_reqsk_clone(req, sk);
1379 if (!nreq) {
1380 inet_child_forget(sk, req, child);
1381 goto child_put;
1382 }
1383
1384 refcount_set(&nreq->rsk_refcnt, 1);
1385 if (inet_csk_reqsk_queue_add(sk, nreq, child)) {
1386 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQSUCCESS);
1387 reqsk_migrate_reset(req);
1388 reqsk_put(req);
1389 return child;
1390 }
1391
1392 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
1393 reqsk_migrate_reset(nreq);
1394 __reqsk_free(nreq);
1395 } else if (inet_csk_reqsk_queue_add(sk, req, child)) {
1396 return child;
1397 }
1398 }
1399 /* Too bad, another child took ownership of the request, undo. */
1400 child_put:
1401 bh_unlock_sock(child);
1402 sock_put(child);
1403 return NULL;
1404 }
1405 EXPORT_SYMBOL(inet_csk_complete_hashdance);
1406
1407 /*
1408 * This routine closes sockets which have been at least partially
1409 * opened, but not yet accepted.
1410 */
inet_csk_listen_stop(struct sock * sk)1411 void inet_csk_listen_stop(struct sock *sk)
1412 {
1413 struct inet_connection_sock *icsk = inet_csk(sk);
1414 struct request_sock_queue *queue = &icsk->icsk_accept_queue;
1415 struct request_sock *next, *req;
1416
1417 /* Following specs, it would be better either to send FIN
1418 * (and enter FIN-WAIT-1, it is normal close)
1419 * or to send active reset (abort).
1420 * Certainly, it is pretty dangerous while synflood, but it is
1421 * bad justification for our negligence 8)
1422 * To be honest, we are not able to make either
1423 * of the variants now. --ANK
1424 */
1425 while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
1426 struct sock *child = req->sk, *nsk;
1427 struct request_sock *nreq;
1428
1429 local_bh_disable();
1430 bh_lock_sock(child);
1431 WARN_ON(sock_owned_by_user(child));
1432 sock_hold(child);
1433
1434 nsk = reuseport_migrate_sock(sk, child, NULL);
1435 if (nsk) {
1436 nreq = inet_reqsk_clone(req, nsk);
1437 if (nreq) {
1438 refcount_set(&nreq->rsk_refcnt, 1);
1439
1440 if (inet_csk_reqsk_queue_add(nsk, nreq, child)) {
1441 __NET_INC_STATS(sock_net(nsk),
1442 LINUX_MIB_TCPMIGRATEREQSUCCESS);
1443 reqsk_migrate_reset(req);
1444 } else {
1445 __NET_INC_STATS(sock_net(nsk),
1446 LINUX_MIB_TCPMIGRATEREQFAILURE);
1447 reqsk_migrate_reset(nreq);
1448 __reqsk_free(nreq);
1449 }
1450
1451 /* inet_csk_reqsk_queue_add() has already
1452 * called inet_child_forget() on failure case.
1453 */
1454 goto skip_child_forget;
1455 }
1456 }
1457
1458 inet_child_forget(sk, req, child);
1459 skip_child_forget:
1460 reqsk_put(req);
1461 bh_unlock_sock(child);
1462 local_bh_enable();
1463 sock_put(child);
1464
1465 cond_resched();
1466 }
1467 if (queue->fastopenq.rskq_rst_head) {
1468 /* Free all the reqs queued in rskq_rst_head. */
1469 spin_lock_bh(&queue->fastopenq.lock);
1470 req = queue->fastopenq.rskq_rst_head;
1471 queue->fastopenq.rskq_rst_head = NULL;
1472 spin_unlock_bh(&queue->fastopenq.lock);
1473 while (req != NULL) {
1474 next = req->dl_next;
1475 reqsk_put(req);
1476 req = next;
1477 }
1478 }
1479 WARN_ON_ONCE(sk->sk_ack_backlog);
1480 }
1481 EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1482
inet_csk_addr2sockaddr(struct sock * sk,struct sockaddr * uaddr)1483 void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr)
1484 {
1485 struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
1486 const struct inet_sock *inet = inet_sk(sk);
1487
1488 sin->sin_family = AF_INET;
1489 sin->sin_addr.s_addr = inet->inet_daddr;
1490 sin->sin_port = inet->inet_dport;
1491 }
1492 EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr);
1493
inet_csk_rebuild_route(struct sock * sk,struct flowi * fl)1494 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1495 {
1496 const struct inet_sock *inet = inet_sk(sk);
1497 const struct ip_options_rcu *inet_opt;
1498 __be32 daddr = inet->inet_daddr;
1499 struct flowi4 *fl4;
1500 struct rtable *rt;
1501
1502 rcu_read_lock();
1503 inet_opt = rcu_dereference(inet->inet_opt);
1504 if (inet_opt && inet_opt->opt.srr)
1505 daddr = inet_opt->opt.faddr;
1506 fl4 = &fl->u.ip4;
1507 rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr,
1508 inet->inet_saddr, inet->inet_dport,
1509 inet->inet_sport, sk->sk_protocol,
1510 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if);
1511 if (IS_ERR(rt))
1512 rt = NULL;
1513 if (rt)
1514 sk_setup_caps(sk, &rt->dst);
1515 rcu_read_unlock();
1516
1517 return &rt->dst;
1518 }
1519
inet_csk_update_pmtu(struct sock * sk,u32 mtu)1520 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1521 {
1522 struct dst_entry *dst = __sk_dst_check(sk, 0);
1523 struct inet_sock *inet = inet_sk(sk);
1524
1525 if (!dst) {
1526 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1527 if (!dst)
1528 goto out;
1529 }
1530 dst->ops->update_pmtu(dst, sk, NULL, mtu, true);
1531
1532 dst = __sk_dst_check(sk, 0);
1533 if (!dst)
1534 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1535 out:
1536 return dst;
1537 }
1538 EXPORT_SYMBOL_GPL(inet_csk_update_pmtu);
1539