xref: /openbmc/linux/fs/xfs/libxfs/xfs_ialloc.c (revision 1ac731c529cd4d6adbce134754b51ff7d822b145)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4   * All Rights Reserved.
5   */
6  #include "xfs.h"
7  #include "xfs_fs.h"
8  #include "xfs_shared.h"
9  #include "xfs_format.h"
10  #include "xfs_log_format.h"
11  #include "xfs_trans_resv.h"
12  #include "xfs_bit.h"
13  #include "xfs_mount.h"
14  #include "xfs_inode.h"
15  #include "xfs_btree.h"
16  #include "xfs_ialloc.h"
17  #include "xfs_ialloc_btree.h"
18  #include "xfs_alloc.h"
19  #include "xfs_errortag.h"
20  #include "xfs_error.h"
21  #include "xfs_bmap.h"
22  #include "xfs_trans.h"
23  #include "xfs_buf_item.h"
24  #include "xfs_icreate_item.h"
25  #include "xfs_icache.h"
26  #include "xfs_trace.h"
27  #include "xfs_log.h"
28  #include "xfs_rmap.h"
29  #include "xfs_ag.h"
30  
31  /*
32   * Lookup a record by ino in the btree given by cur.
33   */
34  int					/* error */
xfs_inobt_lookup(struct xfs_btree_cur * cur,xfs_agino_t ino,xfs_lookup_t dir,int * stat)35  xfs_inobt_lookup(
36  	struct xfs_btree_cur	*cur,	/* btree cursor */
37  	xfs_agino_t		ino,	/* starting inode of chunk */
38  	xfs_lookup_t		dir,	/* <=, >=, == */
39  	int			*stat)	/* success/failure */
40  {
41  	cur->bc_rec.i.ir_startino = ino;
42  	cur->bc_rec.i.ir_holemask = 0;
43  	cur->bc_rec.i.ir_count = 0;
44  	cur->bc_rec.i.ir_freecount = 0;
45  	cur->bc_rec.i.ir_free = 0;
46  	return xfs_btree_lookup(cur, dir, stat);
47  }
48  
49  /*
50   * Update the record referred to by cur to the value given.
51   * This either works (return 0) or gets an EFSCORRUPTED error.
52   */
53  STATIC int				/* error */
xfs_inobt_update(struct xfs_btree_cur * cur,xfs_inobt_rec_incore_t * irec)54  xfs_inobt_update(
55  	struct xfs_btree_cur	*cur,	/* btree cursor */
56  	xfs_inobt_rec_incore_t	*irec)	/* btree record */
57  {
58  	union xfs_btree_rec	rec;
59  
60  	rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
61  	if (xfs_has_sparseinodes(cur->bc_mp)) {
62  		rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
63  		rec.inobt.ir_u.sp.ir_count = irec->ir_count;
64  		rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
65  	} else {
66  		/* ir_holemask/ir_count not supported on-disk */
67  		rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
68  	}
69  	rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
70  	return xfs_btree_update(cur, &rec);
71  }
72  
73  /* Convert on-disk btree record to incore inobt record. */
74  void
xfs_inobt_btrec_to_irec(struct xfs_mount * mp,const union xfs_btree_rec * rec,struct xfs_inobt_rec_incore * irec)75  xfs_inobt_btrec_to_irec(
76  	struct xfs_mount		*mp,
77  	const union xfs_btree_rec	*rec,
78  	struct xfs_inobt_rec_incore	*irec)
79  {
80  	irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
81  	if (xfs_has_sparseinodes(mp)) {
82  		irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
83  		irec->ir_count = rec->inobt.ir_u.sp.ir_count;
84  		irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
85  	} else {
86  		/*
87  		 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
88  		 * values for full inode chunks.
89  		 */
90  		irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
91  		irec->ir_count = XFS_INODES_PER_CHUNK;
92  		irec->ir_freecount =
93  				be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
94  	}
95  	irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
96  }
97  
98  /* Simple checks for inode records. */
99  xfs_failaddr_t
xfs_inobt_check_irec(struct xfs_btree_cur * cur,const struct xfs_inobt_rec_incore * irec)100  xfs_inobt_check_irec(
101  	struct xfs_btree_cur			*cur,
102  	const struct xfs_inobt_rec_incore	*irec)
103  {
104  	uint64_t			realfree;
105  
106  	/* Record has to be properly aligned within the AG. */
107  	if (!xfs_verify_agino(cur->bc_ag.pag, irec->ir_startino))
108  		return __this_address;
109  	if (!xfs_verify_agino(cur->bc_ag.pag,
110  				irec->ir_startino + XFS_INODES_PER_CHUNK - 1))
111  		return __this_address;
112  	if (irec->ir_count < XFS_INODES_PER_HOLEMASK_BIT ||
113  	    irec->ir_count > XFS_INODES_PER_CHUNK)
114  		return __this_address;
115  	if (irec->ir_freecount > XFS_INODES_PER_CHUNK)
116  		return __this_address;
117  
118  	/* if there are no holes, return the first available offset */
119  	if (!xfs_inobt_issparse(irec->ir_holemask))
120  		realfree = irec->ir_free;
121  	else
122  		realfree = irec->ir_free & xfs_inobt_irec_to_allocmask(irec);
123  	if (hweight64(realfree) != irec->ir_freecount)
124  		return __this_address;
125  
126  	return NULL;
127  }
128  
129  static inline int
xfs_inobt_complain_bad_rec(struct xfs_btree_cur * cur,xfs_failaddr_t fa,const struct xfs_inobt_rec_incore * irec)130  xfs_inobt_complain_bad_rec(
131  	struct xfs_btree_cur		*cur,
132  	xfs_failaddr_t			fa,
133  	const struct xfs_inobt_rec_incore *irec)
134  {
135  	struct xfs_mount		*mp = cur->bc_mp;
136  
137  	xfs_warn(mp,
138  		"%s Inode BTree record corruption in AG %d detected at %pS!",
139  		cur->bc_btnum == XFS_BTNUM_INO ? "Used" : "Free",
140  		cur->bc_ag.pag->pag_agno, fa);
141  	xfs_warn(mp,
142  "start inode 0x%x, count 0x%x, free 0x%x freemask 0x%llx, holemask 0x%x",
143  		irec->ir_startino, irec->ir_count, irec->ir_freecount,
144  		irec->ir_free, irec->ir_holemask);
145  	return -EFSCORRUPTED;
146  }
147  
148  /*
149   * Get the data from the pointed-to record.
150   */
151  int
xfs_inobt_get_rec(struct xfs_btree_cur * cur,struct xfs_inobt_rec_incore * irec,int * stat)152  xfs_inobt_get_rec(
153  	struct xfs_btree_cur		*cur,
154  	struct xfs_inobt_rec_incore	*irec,
155  	int				*stat)
156  {
157  	struct xfs_mount		*mp = cur->bc_mp;
158  	union xfs_btree_rec		*rec;
159  	xfs_failaddr_t			fa;
160  	int				error;
161  
162  	error = xfs_btree_get_rec(cur, &rec, stat);
163  	if (error || *stat == 0)
164  		return error;
165  
166  	xfs_inobt_btrec_to_irec(mp, rec, irec);
167  	fa = xfs_inobt_check_irec(cur, irec);
168  	if (fa)
169  		return xfs_inobt_complain_bad_rec(cur, fa, irec);
170  
171  	return 0;
172  }
173  
174  /*
175   * Insert a single inobt record. Cursor must already point to desired location.
176   */
177  int
xfs_inobt_insert_rec(struct xfs_btree_cur * cur,uint16_t holemask,uint8_t count,int32_t freecount,xfs_inofree_t free,int * stat)178  xfs_inobt_insert_rec(
179  	struct xfs_btree_cur	*cur,
180  	uint16_t		holemask,
181  	uint8_t			count,
182  	int32_t			freecount,
183  	xfs_inofree_t		free,
184  	int			*stat)
185  {
186  	cur->bc_rec.i.ir_holemask = holemask;
187  	cur->bc_rec.i.ir_count = count;
188  	cur->bc_rec.i.ir_freecount = freecount;
189  	cur->bc_rec.i.ir_free = free;
190  	return xfs_btree_insert(cur, stat);
191  }
192  
193  /*
194   * Insert records describing a newly allocated inode chunk into the inobt.
195   */
196  STATIC int
xfs_inobt_insert(struct xfs_perag * pag,struct xfs_trans * tp,struct xfs_buf * agbp,xfs_agino_t newino,xfs_agino_t newlen,xfs_btnum_t btnum)197  xfs_inobt_insert(
198  	struct xfs_perag	*pag,
199  	struct xfs_trans	*tp,
200  	struct xfs_buf		*agbp,
201  	xfs_agino_t		newino,
202  	xfs_agino_t		newlen,
203  	xfs_btnum_t		btnum)
204  {
205  	struct xfs_btree_cur	*cur;
206  	xfs_agino_t		thisino;
207  	int			i;
208  	int			error;
209  
210  	cur = xfs_inobt_init_cursor(pag, tp, agbp, btnum);
211  
212  	for (thisino = newino;
213  	     thisino < newino + newlen;
214  	     thisino += XFS_INODES_PER_CHUNK) {
215  		error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
216  		if (error) {
217  			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
218  			return error;
219  		}
220  		ASSERT(i == 0);
221  
222  		error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
223  					     XFS_INODES_PER_CHUNK,
224  					     XFS_INODES_PER_CHUNK,
225  					     XFS_INOBT_ALL_FREE, &i);
226  		if (error) {
227  			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
228  			return error;
229  		}
230  		ASSERT(i == 1);
231  	}
232  
233  	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
234  
235  	return 0;
236  }
237  
238  /*
239   * Verify that the number of free inodes in the AGI is correct.
240   */
241  #ifdef DEBUG
242  static int
xfs_check_agi_freecount(struct xfs_btree_cur * cur)243  xfs_check_agi_freecount(
244  	struct xfs_btree_cur	*cur)
245  {
246  	if (cur->bc_nlevels == 1) {
247  		xfs_inobt_rec_incore_t rec;
248  		int		freecount = 0;
249  		int		error;
250  		int		i;
251  
252  		error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
253  		if (error)
254  			return error;
255  
256  		do {
257  			error = xfs_inobt_get_rec(cur, &rec, &i);
258  			if (error)
259  				return error;
260  
261  			if (i) {
262  				freecount += rec.ir_freecount;
263  				error = xfs_btree_increment(cur, 0, &i);
264  				if (error)
265  					return error;
266  			}
267  		} while (i == 1);
268  
269  		if (!xfs_is_shutdown(cur->bc_mp))
270  			ASSERT(freecount == cur->bc_ag.pag->pagi_freecount);
271  	}
272  	return 0;
273  }
274  #else
275  #define xfs_check_agi_freecount(cur)	0
276  #endif
277  
278  /*
279   * Initialise a new set of inodes. When called without a transaction context
280   * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
281   * than logging them (which in a transaction context puts them into the AIL
282   * for writeback rather than the xfsbufd queue).
283   */
284  int
xfs_ialloc_inode_init(struct xfs_mount * mp,struct xfs_trans * tp,struct list_head * buffer_list,int icount,xfs_agnumber_t agno,xfs_agblock_t agbno,xfs_agblock_t length,unsigned int gen)285  xfs_ialloc_inode_init(
286  	struct xfs_mount	*mp,
287  	struct xfs_trans	*tp,
288  	struct list_head	*buffer_list,
289  	int			icount,
290  	xfs_agnumber_t		agno,
291  	xfs_agblock_t		agbno,
292  	xfs_agblock_t		length,
293  	unsigned int		gen)
294  {
295  	struct xfs_buf		*fbuf;
296  	struct xfs_dinode	*free;
297  	int			nbufs;
298  	int			version;
299  	int			i, j;
300  	xfs_daddr_t		d;
301  	xfs_ino_t		ino = 0;
302  	int			error;
303  
304  	/*
305  	 * Loop over the new block(s), filling in the inodes.  For small block
306  	 * sizes, manipulate the inodes in buffers  which are multiples of the
307  	 * blocks size.
308  	 */
309  	nbufs = length / M_IGEO(mp)->blocks_per_cluster;
310  
311  	/*
312  	 * Figure out what version number to use in the inodes we create.  If
313  	 * the superblock version has caught up to the one that supports the new
314  	 * inode format, then use the new inode version.  Otherwise use the old
315  	 * version so that old kernels will continue to be able to use the file
316  	 * system.
317  	 *
318  	 * For v3 inodes, we also need to write the inode number into the inode,
319  	 * so calculate the first inode number of the chunk here as
320  	 * XFS_AGB_TO_AGINO() only works within a filesystem block, not
321  	 * across multiple filesystem blocks (such as a cluster) and so cannot
322  	 * be used in the cluster buffer loop below.
323  	 *
324  	 * Further, because we are writing the inode directly into the buffer
325  	 * and calculating a CRC on the entire inode, we have ot log the entire
326  	 * inode so that the entire range the CRC covers is present in the log.
327  	 * That means for v3 inode we log the entire buffer rather than just the
328  	 * inode cores.
329  	 */
330  	if (xfs_has_v3inodes(mp)) {
331  		version = 3;
332  		ino = XFS_AGINO_TO_INO(mp, agno, XFS_AGB_TO_AGINO(mp, agbno));
333  
334  		/*
335  		 * log the initialisation that is about to take place as an
336  		 * logical operation. This means the transaction does not
337  		 * need to log the physical changes to the inode buffers as log
338  		 * recovery will know what initialisation is actually needed.
339  		 * Hence we only need to log the buffers as "ordered" buffers so
340  		 * they track in the AIL as if they were physically logged.
341  		 */
342  		if (tp)
343  			xfs_icreate_log(tp, agno, agbno, icount,
344  					mp->m_sb.sb_inodesize, length, gen);
345  	} else
346  		version = 2;
347  
348  	for (j = 0; j < nbufs; j++) {
349  		/*
350  		 * Get the block.
351  		 */
352  		d = XFS_AGB_TO_DADDR(mp, agno, agbno +
353  				(j * M_IGEO(mp)->blocks_per_cluster));
354  		error = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
355  				mp->m_bsize * M_IGEO(mp)->blocks_per_cluster,
356  				XBF_UNMAPPED, &fbuf);
357  		if (error)
358  			return error;
359  
360  		/* Initialize the inode buffers and log them appropriately. */
361  		fbuf->b_ops = &xfs_inode_buf_ops;
362  		xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
363  		for (i = 0; i < M_IGEO(mp)->inodes_per_cluster; i++) {
364  			int	ioffset = i << mp->m_sb.sb_inodelog;
365  
366  			free = xfs_make_iptr(mp, fbuf, i);
367  			free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
368  			free->di_version = version;
369  			free->di_gen = cpu_to_be32(gen);
370  			free->di_next_unlinked = cpu_to_be32(NULLAGINO);
371  
372  			if (version == 3) {
373  				free->di_ino = cpu_to_be64(ino);
374  				ino++;
375  				uuid_copy(&free->di_uuid,
376  					  &mp->m_sb.sb_meta_uuid);
377  				xfs_dinode_calc_crc(mp, free);
378  			} else if (tp) {
379  				/* just log the inode core */
380  				xfs_trans_log_buf(tp, fbuf, ioffset,
381  					  ioffset + XFS_DINODE_SIZE(mp) - 1);
382  			}
383  		}
384  
385  		if (tp) {
386  			/*
387  			 * Mark the buffer as an inode allocation buffer so it
388  			 * sticks in AIL at the point of this allocation
389  			 * transaction. This ensures the they are on disk before
390  			 * the tail of the log can be moved past this
391  			 * transaction (i.e. by preventing relogging from moving
392  			 * it forward in the log).
393  			 */
394  			xfs_trans_inode_alloc_buf(tp, fbuf);
395  			if (version == 3) {
396  				/*
397  				 * Mark the buffer as ordered so that they are
398  				 * not physically logged in the transaction but
399  				 * still tracked in the AIL as part of the
400  				 * transaction and pin the log appropriately.
401  				 */
402  				xfs_trans_ordered_buf(tp, fbuf);
403  			}
404  		} else {
405  			fbuf->b_flags |= XBF_DONE;
406  			xfs_buf_delwri_queue(fbuf, buffer_list);
407  			xfs_buf_relse(fbuf);
408  		}
409  	}
410  	return 0;
411  }
412  
413  /*
414   * Align startino and allocmask for a recently allocated sparse chunk such that
415   * they are fit for insertion (or merge) into the on-disk inode btrees.
416   *
417   * Background:
418   *
419   * When enabled, sparse inode support increases the inode alignment from cluster
420   * size to inode chunk size. This means that the minimum range between two
421   * non-adjacent inode records in the inobt is large enough for a full inode
422   * record. This allows for cluster sized, cluster aligned block allocation
423   * without need to worry about whether the resulting inode record overlaps with
424   * another record in the tree. Without this basic rule, we would have to deal
425   * with the consequences of overlap by potentially undoing recent allocations in
426   * the inode allocation codepath.
427   *
428   * Because of this alignment rule (which is enforced on mount), there are two
429   * inobt possibilities for newly allocated sparse chunks. One is that the
430   * aligned inode record for the chunk covers a range of inodes not already
431   * covered in the inobt (i.e., it is safe to insert a new sparse record). The
432   * other is that a record already exists at the aligned startino that considers
433   * the newly allocated range as sparse. In the latter case, record content is
434   * merged in hope that sparse inode chunks fill to full chunks over time.
435   */
436  STATIC void
xfs_align_sparse_ino(struct xfs_mount * mp,xfs_agino_t * startino,uint16_t * allocmask)437  xfs_align_sparse_ino(
438  	struct xfs_mount		*mp,
439  	xfs_agino_t			*startino,
440  	uint16_t			*allocmask)
441  {
442  	xfs_agblock_t			agbno;
443  	xfs_agblock_t			mod;
444  	int				offset;
445  
446  	agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
447  	mod = agbno % mp->m_sb.sb_inoalignmt;
448  	if (!mod)
449  		return;
450  
451  	/* calculate the inode offset and align startino */
452  	offset = XFS_AGB_TO_AGINO(mp, mod);
453  	*startino -= offset;
454  
455  	/*
456  	 * Since startino has been aligned down, left shift allocmask such that
457  	 * it continues to represent the same physical inodes relative to the
458  	 * new startino.
459  	 */
460  	*allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
461  }
462  
463  /*
464   * Determine whether the source inode record can merge into the target. Both
465   * records must be sparse, the inode ranges must match and there must be no
466   * allocation overlap between the records.
467   */
468  STATIC bool
__xfs_inobt_can_merge(struct xfs_inobt_rec_incore * trec,struct xfs_inobt_rec_incore * srec)469  __xfs_inobt_can_merge(
470  	struct xfs_inobt_rec_incore	*trec,	/* tgt record */
471  	struct xfs_inobt_rec_incore	*srec)	/* src record */
472  {
473  	uint64_t			talloc;
474  	uint64_t			salloc;
475  
476  	/* records must cover the same inode range */
477  	if (trec->ir_startino != srec->ir_startino)
478  		return false;
479  
480  	/* both records must be sparse */
481  	if (!xfs_inobt_issparse(trec->ir_holemask) ||
482  	    !xfs_inobt_issparse(srec->ir_holemask))
483  		return false;
484  
485  	/* both records must track some inodes */
486  	if (!trec->ir_count || !srec->ir_count)
487  		return false;
488  
489  	/* can't exceed capacity of a full record */
490  	if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
491  		return false;
492  
493  	/* verify there is no allocation overlap */
494  	talloc = xfs_inobt_irec_to_allocmask(trec);
495  	salloc = xfs_inobt_irec_to_allocmask(srec);
496  	if (talloc & salloc)
497  		return false;
498  
499  	return true;
500  }
501  
502  /*
503   * Merge the source inode record into the target. The caller must call
504   * __xfs_inobt_can_merge() to ensure the merge is valid.
505   */
506  STATIC void
__xfs_inobt_rec_merge(struct xfs_inobt_rec_incore * trec,struct xfs_inobt_rec_incore * srec)507  __xfs_inobt_rec_merge(
508  	struct xfs_inobt_rec_incore	*trec,	/* target */
509  	struct xfs_inobt_rec_incore	*srec)	/* src */
510  {
511  	ASSERT(trec->ir_startino == srec->ir_startino);
512  
513  	/* combine the counts */
514  	trec->ir_count += srec->ir_count;
515  	trec->ir_freecount += srec->ir_freecount;
516  
517  	/*
518  	 * Merge the holemask and free mask. For both fields, 0 bits refer to
519  	 * allocated inodes. We combine the allocated ranges with bitwise AND.
520  	 */
521  	trec->ir_holemask &= srec->ir_holemask;
522  	trec->ir_free &= srec->ir_free;
523  }
524  
525  /*
526   * Insert a new sparse inode chunk into the associated inode btree. The inode
527   * record for the sparse chunk is pre-aligned to a startino that should match
528   * any pre-existing sparse inode record in the tree. This allows sparse chunks
529   * to fill over time.
530   *
531   * This function supports two modes of handling preexisting records depending on
532   * the merge flag. If merge is true, the provided record is merged with the
533   * existing record and updated in place. The merged record is returned in nrec.
534   * If merge is false, an existing record is replaced with the provided record.
535   * If no preexisting record exists, the provided record is always inserted.
536   *
537   * It is considered corruption if a merge is requested and not possible. Given
538   * the sparse inode alignment constraints, this should never happen.
539   */
540  STATIC int
xfs_inobt_insert_sprec(struct xfs_perag * pag,struct xfs_trans * tp,struct xfs_buf * agbp,int btnum,struct xfs_inobt_rec_incore * nrec,bool merge)541  xfs_inobt_insert_sprec(
542  	struct xfs_perag		*pag,
543  	struct xfs_trans		*tp,
544  	struct xfs_buf			*agbp,
545  	int				btnum,
546  	struct xfs_inobt_rec_incore	*nrec,	/* in/out: new/merged rec. */
547  	bool				merge)	/* merge or replace */
548  {
549  	struct xfs_mount		*mp = pag->pag_mount;
550  	struct xfs_btree_cur		*cur;
551  	int				error;
552  	int				i;
553  	struct xfs_inobt_rec_incore	rec;
554  
555  	cur = xfs_inobt_init_cursor(pag, tp, agbp, btnum);
556  
557  	/* the new record is pre-aligned so we know where to look */
558  	error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
559  	if (error)
560  		goto error;
561  	/* if nothing there, insert a new record and return */
562  	if (i == 0) {
563  		error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
564  					     nrec->ir_count, nrec->ir_freecount,
565  					     nrec->ir_free, &i);
566  		if (error)
567  			goto error;
568  		if (XFS_IS_CORRUPT(mp, i != 1)) {
569  			error = -EFSCORRUPTED;
570  			goto error;
571  		}
572  
573  		goto out;
574  	}
575  
576  	/*
577  	 * A record exists at this startino. Merge or replace the record
578  	 * depending on what we've been asked to do.
579  	 */
580  	if (merge) {
581  		error = xfs_inobt_get_rec(cur, &rec, &i);
582  		if (error)
583  			goto error;
584  		if (XFS_IS_CORRUPT(mp, i != 1)) {
585  			error = -EFSCORRUPTED;
586  			goto error;
587  		}
588  		if (XFS_IS_CORRUPT(mp, rec.ir_startino != nrec->ir_startino)) {
589  			error = -EFSCORRUPTED;
590  			goto error;
591  		}
592  
593  		/*
594  		 * This should never fail. If we have coexisting records that
595  		 * cannot merge, something is seriously wrong.
596  		 */
597  		if (XFS_IS_CORRUPT(mp, !__xfs_inobt_can_merge(nrec, &rec))) {
598  			error = -EFSCORRUPTED;
599  			goto error;
600  		}
601  
602  		trace_xfs_irec_merge_pre(mp, pag->pag_agno, rec.ir_startino,
603  					 rec.ir_holemask, nrec->ir_startino,
604  					 nrec->ir_holemask);
605  
606  		/* merge to nrec to output the updated record */
607  		__xfs_inobt_rec_merge(nrec, &rec);
608  
609  		trace_xfs_irec_merge_post(mp, pag->pag_agno, nrec->ir_startino,
610  					  nrec->ir_holemask);
611  
612  		error = xfs_inobt_rec_check_count(mp, nrec);
613  		if (error)
614  			goto error;
615  	}
616  
617  	error = xfs_inobt_update(cur, nrec);
618  	if (error)
619  		goto error;
620  
621  out:
622  	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
623  	return 0;
624  error:
625  	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
626  	return error;
627  }
628  
629  /*
630   * Allocate new inodes in the allocation group specified by agbp.  Returns 0 if
631   * inodes were allocated in this AG; -EAGAIN if there was no space in this AG so
632   * the caller knows it can try another AG, a hard -ENOSPC when over the maximum
633   * inode count threshold, or the usual negative error code for other errors.
634   */
635  STATIC int
xfs_ialloc_ag_alloc(struct xfs_perag * pag,struct xfs_trans * tp,struct xfs_buf * agbp)636  xfs_ialloc_ag_alloc(
637  	struct xfs_perag	*pag,
638  	struct xfs_trans	*tp,
639  	struct xfs_buf		*agbp)
640  {
641  	struct xfs_agi		*agi;
642  	struct xfs_alloc_arg	args;
643  	int			error;
644  	xfs_agino_t		newino;		/* new first inode's number */
645  	xfs_agino_t		newlen;		/* new number of inodes */
646  	int			isaligned = 0;	/* inode allocation at stripe */
647  						/* unit boundary */
648  	/* init. to full chunk */
649  	struct xfs_inobt_rec_incore rec;
650  	struct xfs_ino_geometry	*igeo = M_IGEO(tp->t_mountp);
651  	uint16_t		allocmask = (uint16_t) -1;
652  	int			do_sparse = 0;
653  
654  	memset(&args, 0, sizeof(args));
655  	args.tp = tp;
656  	args.mp = tp->t_mountp;
657  	args.fsbno = NULLFSBLOCK;
658  	args.oinfo = XFS_RMAP_OINFO_INODES;
659  	args.pag = pag;
660  
661  #ifdef DEBUG
662  	/* randomly do sparse inode allocations */
663  	if (xfs_has_sparseinodes(tp->t_mountp) &&
664  	    igeo->ialloc_min_blks < igeo->ialloc_blks)
665  		do_sparse = get_random_u32_below(2);
666  #endif
667  
668  	/*
669  	 * Locking will ensure that we don't have two callers in here
670  	 * at one time.
671  	 */
672  	newlen = igeo->ialloc_inos;
673  	if (igeo->maxicount &&
674  	    percpu_counter_read_positive(&args.mp->m_icount) + newlen >
675  							igeo->maxicount)
676  		return -ENOSPC;
677  	args.minlen = args.maxlen = igeo->ialloc_blks;
678  	/*
679  	 * First try to allocate inodes contiguous with the last-allocated
680  	 * chunk of inodes.  If the filesystem is striped, this will fill
681  	 * an entire stripe unit with inodes.
682  	 */
683  	agi = agbp->b_addr;
684  	newino = be32_to_cpu(agi->agi_newino);
685  	args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
686  		     igeo->ialloc_blks;
687  	if (do_sparse)
688  		goto sparse_alloc;
689  	if (likely(newino != NULLAGINO &&
690  		  (args.agbno < be32_to_cpu(agi->agi_length)))) {
691  		args.prod = 1;
692  
693  		/*
694  		 * We need to take into account alignment here to ensure that
695  		 * we don't modify the free list if we fail to have an exact
696  		 * block. If we don't have an exact match, and every oher
697  		 * attempt allocation attempt fails, we'll end up cancelling
698  		 * a dirty transaction and shutting down.
699  		 *
700  		 * For an exact allocation, alignment must be 1,
701  		 * however we need to take cluster alignment into account when
702  		 * fixing up the freelist. Use the minalignslop field to
703  		 * indicate that extra blocks might be required for alignment,
704  		 * but not to use them in the actual exact allocation.
705  		 */
706  		args.alignment = 1;
707  		args.minalignslop = igeo->cluster_align - 1;
708  
709  		/* Allow space for the inode btree to split. */
710  		args.minleft = igeo->inobt_maxlevels;
711  		error = xfs_alloc_vextent_exact_bno(&args,
712  				XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
713  						args.agbno));
714  		if (error)
715  			return error;
716  
717  		/*
718  		 * This request might have dirtied the transaction if the AG can
719  		 * satisfy the request, but the exact block was not available.
720  		 * If the allocation did fail, subsequent requests will relax
721  		 * the exact agbno requirement and increase the alignment
722  		 * instead. It is critical that the total size of the request
723  		 * (len + alignment + slop) does not increase from this point
724  		 * on, so reset minalignslop to ensure it is not included in
725  		 * subsequent requests.
726  		 */
727  		args.minalignslop = 0;
728  	}
729  
730  	if (unlikely(args.fsbno == NULLFSBLOCK)) {
731  		/*
732  		 * Set the alignment for the allocation.
733  		 * If stripe alignment is turned on then align at stripe unit
734  		 * boundary.
735  		 * If the cluster size is smaller than a filesystem block
736  		 * then we're doing I/O for inodes in filesystem block size
737  		 * pieces, so don't need alignment anyway.
738  		 */
739  		isaligned = 0;
740  		if (igeo->ialloc_align) {
741  			ASSERT(!xfs_has_noalign(args.mp));
742  			args.alignment = args.mp->m_dalign;
743  			isaligned = 1;
744  		} else
745  			args.alignment = igeo->cluster_align;
746  		/*
747  		 * Allocate a fixed-size extent of inodes.
748  		 */
749  		args.prod = 1;
750  		/*
751  		 * Allow space for the inode btree to split.
752  		 */
753  		args.minleft = igeo->inobt_maxlevels;
754  		error = xfs_alloc_vextent_near_bno(&args,
755  				XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
756  						be32_to_cpu(agi->agi_root)));
757  		if (error)
758  			return error;
759  	}
760  
761  	/*
762  	 * If stripe alignment is turned on, then try again with cluster
763  	 * alignment.
764  	 */
765  	if (isaligned && args.fsbno == NULLFSBLOCK) {
766  		args.alignment = igeo->cluster_align;
767  		error = xfs_alloc_vextent_near_bno(&args,
768  				XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
769  						be32_to_cpu(agi->agi_root)));
770  		if (error)
771  			return error;
772  	}
773  
774  	/*
775  	 * Finally, try a sparse allocation if the filesystem supports it and
776  	 * the sparse allocation length is smaller than a full chunk.
777  	 */
778  	if (xfs_has_sparseinodes(args.mp) &&
779  	    igeo->ialloc_min_blks < igeo->ialloc_blks &&
780  	    args.fsbno == NULLFSBLOCK) {
781  sparse_alloc:
782  		args.alignment = args.mp->m_sb.sb_spino_align;
783  		args.prod = 1;
784  
785  		args.minlen = igeo->ialloc_min_blks;
786  		args.maxlen = args.minlen;
787  
788  		/*
789  		 * The inode record will be aligned to full chunk size. We must
790  		 * prevent sparse allocation from AG boundaries that result in
791  		 * invalid inode records, such as records that start at agbno 0
792  		 * or extend beyond the AG.
793  		 *
794  		 * Set min agbno to the first aligned, non-zero agbno and max to
795  		 * the last aligned agbno that is at least one full chunk from
796  		 * the end of the AG.
797  		 */
798  		args.min_agbno = args.mp->m_sb.sb_inoalignmt;
799  		args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
800  					    args.mp->m_sb.sb_inoalignmt) -
801  				 igeo->ialloc_blks;
802  
803  		error = xfs_alloc_vextent_near_bno(&args,
804  				XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
805  						be32_to_cpu(agi->agi_root)));
806  		if (error)
807  			return error;
808  
809  		newlen = XFS_AGB_TO_AGINO(args.mp, args.len);
810  		ASSERT(newlen <= XFS_INODES_PER_CHUNK);
811  		allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
812  	}
813  
814  	if (args.fsbno == NULLFSBLOCK)
815  		return -EAGAIN;
816  
817  	ASSERT(args.len == args.minlen);
818  
819  	/*
820  	 * Stamp and write the inode buffers.
821  	 *
822  	 * Seed the new inode cluster with a random generation number. This
823  	 * prevents short-term reuse of generation numbers if a chunk is
824  	 * freed and then immediately reallocated. We use random numbers
825  	 * rather than a linear progression to prevent the next generation
826  	 * number from being easily guessable.
827  	 */
828  	error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, pag->pag_agno,
829  			args.agbno, args.len, get_random_u32());
830  
831  	if (error)
832  		return error;
833  	/*
834  	 * Convert the results.
835  	 */
836  	newino = XFS_AGB_TO_AGINO(args.mp, args.agbno);
837  
838  	if (xfs_inobt_issparse(~allocmask)) {
839  		/*
840  		 * We've allocated a sparse chunk. Align the startino and mask.
841  		 */
842  		xfs_align_sparse_ino(args.mp, &newino, &allocmask);
843  
844  		rec.ir_startino = newino;
845  		rec.ir_holemask = ~allocmask;
846  		rec.ir_count = newlen;
847  		rec.ir_freecount = newlen;
848  		rec.ir_free = XFS_INOBT_ALL_FREE;
849  
850  		/*
851  		 * Insert the sparse record into the inobt and allow for a merge
852  		 * if necessary. If a merge does occur, rec is updated to the
853  		 * merged record.
854  		 */
855  		error = xfs_inobt_insert_sprec(pag, tp, agbp,
856  				XFS_BTNUM_INO, &rec, true);
857  		if (error == -EFSCORRUPTED) {
858  			xfs_alert(args.mp,
859  	"invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
860  				  XFS_AGINO_TO_INO(args.mp, pag->pag_agno,
861  						   rec.ir_startino),
862  				  rec.ir_holemask, rec.ir_count);
863  			xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
864  		}
865  		if (error)
866  			return error;
867  
868  		/*
869  		 * We can't merge the part we've just allocated as for the inobt
870  		 * due to finobt semantics. The original record may or may not
871  		 * exist independent of whether physical inodes exist in this
872  		 * sparse chunk.
873  		 *
874  		 * We must update the finobt record based on the inobt record.
875  		 * rec contains the fully merged and up to date inobt record
876  		 * from the previous call. Set merge false to replace any
877  		 * existing record with this one.
878  		 */
879  		if (xfs_has_finobt(args.mp)) {
880  			error = xfs_inobt_insert_sprec(pag, tp, agbp,
881  				       XFS_BTNUM_FINO, &rec, false);
882  			if (error)
883  				return error;
884  		}
885  	} else {
886  		/* full chunk - insert new records to both btrees */
887  		error = xfs_inobt_insert(pag, tp, agbp, newino, newlen,
888  					 XFS_BTNUM_INO);
889  		if (error)
890  			return error;
891  
892  		if (xfs_has_finobt(args.mp)) {
893  			error = xfs_inobt_insert(pag, tp, agbp, newino,
894  						 newlen, XFS_BTNUM_FINO);
895  			if (error)
896  				return error;
897  		}
898  	}
899  
900  	/*
901  	 * Update AGI counts and newino.
902  	 */
903  	be32_add_cpu(&agi->agi_count, newlen);
904  	be32_add_cpu(&agi->agi_freecount, newlen);
905  	pag->pagi_freecount += newlen;
906  	pag->pagi_count += newlen;
907  	agi->agi_newino = cpu_to_be32(newino);
908  
909  	/*
910  	 * Log allocation group header fields
911  	 */
912  	xfs_ialloc_log_agi(tp, agbp,
913  		XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
914  	/*
915  	 * Modify/log superblock values for inode count and inode free count.
916  	 */
917  	xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
918  	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
919  	return 0;
920  }
921  
922  /*
923   * Try to retrieve the next record to the left/right from the current one.
924   */
925  STATIC int
xfs_ialloc_next_rec(struct xfs_btree_cur * cur,xfs_inobt_rec_incore_t * rec,int * done,int left)926  xfs_ialloc_next_rec(
927  	struct xfs_btree_cur	*cur,
928  	xfs_inobt_rec_incore_t	*rec,
929  	int			*done,
930  	int			left)
931  {
932  	int                     error;
933  	int			i;
934  
935  	if (left)
936  		error = xfs_btree_decrement(cur, 0, &i);
937  	else
938  		error = xfs_btree_increment(cur, 0, &i);
939  
940  	if (error)
941  		return error;
942  	*done = !i;
943  	if (i) {
944  		error = xfs_inobt_get_rec(cur, rec, &i);
945  		if (error)
946  			return error;
947  		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
948  			return -EFSCORRUPTED;
949  	}
950  
951  	return 0;
952  }
953  
954  STATIC int
xfs_ialloc_get_rec(struct xfs_btree_cur * cur,xfs_agino_t agino,xfs_inobt_rec_incore_t * rec,int * done)955  xfs_ialloc_get_rec(
956  	struct xfs_btree_cur	*cur,
957  	xfs_agino_t		agino,
958  	xfs_inobt_rec_incore_t	*rec,
959  	int			*done)
960  {
961  	int                     error;
962  	int			i;
963  
964  	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
965  	if (error)
966  		return error;
967  	*done = !i;
968  	if (i) {
969  		error = xfs_inobt_get_rec(cur, rec, &i);
970  		if (error)
971  			return error;
972  		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
973  			return -EFSCORRUPTED;
974  	}
975  
976  	return 0;
977  }
978  
979  /*
980   * Return the offset of the first free inode in the record. If the inode chunk
981   * is sparsely allocated, we convert the record holemask to inode granularity
982   * and mask off the unallocated regions from the inode free mask.
983   */
984  STATIC int
xfs_inobt_first_free_inode(struct xfs_inobt_rec_incore * rec)985  xfs_inobt_first_free_inode(
986  	struct xfs_inobt_rec_incore	*rec)
987  {
988  	xfs_inofree_t			realfree;
989  
990  	/* if there are no holes, return the first available offset */
991  	if (!xfs_inobt_issparse(rec->ir_holemask))
992  		return xfs_lowbit64(rec->ir_free);
993  
994  	realfree = xfs_inobt_irec_to_allocmask(rec);
995  	realfree &= rec->ir_free;
996  
997  	return xfs_lowbit64(realfree);
998  }
999  
1000  /*
1001   * Allocate an inode using the inobt-only algorithm.
1002   */
1003  STATIC int
xfs_dialloc_ag_inobt(struct xfs_perag * pag,struct xfs_trans * tp,struct xfs_buf * agbp,xfs_ino_t parent,xfs_ino_t * inop)1004  xfs_dialloc_ag_inobt(
1005  	struct xfs_perag	*pag,
1006  	struct xfs_trans	*tp,
1007  	struct xfs_buf		*agbp,
1008  	xfs_ino_t		parent,
1009  	xfs_ino_t		*inop)
1010  {
1011  	struct xfs_mount	*mp = tp->t_mountp;
1012  	struct xfs_agi		*agi = agbp->b_addr;
1013  	xfs_agnumber_t		pagno = XFS_INO_TO_AGNO(mp, parent);
1014  	xfs_agino_t		pagino = XFS_INO_TO_AGINO(mp, parent);
1015  	struct xfs_btree_cur	*cur, *tcur;
1016  	struct xfs_inobt_rec_incore rec, trec;
1017  	xfs_ino_t		ino;
1018  	int			error;
1019  	int			offset;
1020  	int			i, j;
1021  	int			searchdistance = 10;
1022  
1023  	ASSERT(xfs_perag_initialised_agi(pag));
1024  	ASSERT(xfs_perag_allows_inodes(pag));
1025  	ASSERT(pag->pagi_freecount > 0);
1026  
1027   restart_pagno:
1028  	cur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_INO);
1029  	/*
1030  	 * If pagino is 0 (this is the root inode allocation) use newino.
1031  	 * This must work because we've just allocated some.
1032  	 */
1033  	if (!pagino)
1034  		pagino = be32_to_cpu(agi->agi_newino);
1035  
1036  	error = xfs_check_agi_freecount(cur);
1037  	if (error)
1038  		goto error0;
1039  
1040  	/*
1041  	 * If in the same AG as the parent, try to get near the parent.
1042  	 */
1043  	if (pagno == pag->pag_agno) {
1044  		int		doneleft;	/* done, to the left */
1045  		int		doneright;	/* done, to the right */
1046  
1047  		error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1048  		if (error)
1049  			goto error0;
1050  		if (XFS_IS_CORRUPT(mp, i != 1)) {
1051  			error = -EFSCORRUPTED;
1052  			goto error0;
1053  		}
1054  
1055  		error = xfs_inobt_get_rec(cur, &rec, &j);
1056  		if (error)
1057  			goto error0;
1058  		if (XFS_IS_CORRUPT(mp, j != 1)) {
1059  			error = -EFSCORRUPTED;
1060  			goto error0;
1061  		}
1062  
1063  		if (rec.ir_freecount > 0) {
1064  			/*
1065  			 * Found a free inode in the same chunk
1066  			 * as the parent, done.
1067  			 */
1068  			goto alloc_inode;
1069  		}
1070  
1071  
1072  		/*
1073  		 * In the same AG as parent, but parent's chunk is full.
1074  		 */
1075  
1076  		/* duplicate the cursor, search left & right simultaneously */
1077  		error = xfs_btree_dup_cursor(cur, &tcur);
1078  		if (error)
1079  			goto error0;
1080  
1081  		/*
1082  		 * Skip to last blocks looked up if same parent inode.
1083  		 */
1084  		if (pagino != NULLAGINO &&
1085  		    pag->pagl_pagino == pagino &&
1086  		    pag->pagl_leftrec != NULLAGINO &&
1087  		    pag->pagl_rightrec != NULLAGINO) {
1088  			error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1089  						   &trec, &doneleft);
1090  			if (error)
1091  				goto error1;
1092  
1093  			error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1094  						   &rec, &doneright);
1095  			if (error)
1096  				goto error1;
1097  		} else {
1098  			/* search left with tcur, back up 1 record */
1099  			error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1100  			if (error)
1101  				goto error1;
1102  
1103  			/* search right with cur, go forward 1 record. */
1104  			error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1105  			if (error)
1106  				goto error1;
1107  		}
1108  
1109  		/*
1110  		 * Loop until we find an inode chunk with a free inode.
1111  		 */
1112  		while (--searchdistance > 0 && (!doneleft || !doneright)) {
1113  			int	useleft;  /* using left inode chunk this time */
1114  
1115  			/* figure out the closer block if both are valid. */
1116  			if (!doneleft && !doneright) {
1117  				useleft = pagino -
1118  				 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1119  				  rec.ir_startino - pagino;
1120  			} else {
1121  				useleft = !doneleft;
1122  			}
1123  
1124  			/* free inodes to the left? */
1125  			if (useleft && trec.ir_freecount) {
1126  				xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1127  				cur = tcur;
1128  
1129  				pag->pagl_leftrec = trec.ir_startino;
1130  				pag->pagl_rightrec = rec.ir_startino;
1131  				pag->pagl_pagino = pagino;
1132  				rec = trec;
1133  				goto alloc_inode;
1134  			}
1135  
1136  			/* free inodes to the right? */
1137  			if (!useleft && rec.ir_freecount) {
1138  				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1139  
1140  				pag->pagl_leftrec = trec.ir_startino;
1141  				pag->pagl_rightrec = rec.ir_startino;
1142  				pag->pagl_pagino = pagino;
1143  				goto alloc_inode;
1144  			}
1145  
1146  			/* get next record to check */
1147  			if (useleft) {
1148  				error = xfs_ialloc_next_rec(tcur, &trec,
1149  								 &doneleft, 1);
1150  			} else {
1151  				error = xfs_ialloc_next_rec(cur, &rec,
1152  								 &doneright, 0);
1153  			}
1154  			if (error)
1155  				goto error1;
1156  		}
1157  
1158  		if (searchdistance <= 0) {
1159  			/*
1160  			 * Not in range - save last search
1161  			 * location and allocate a new inode
1162  			 */
1163  			xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1164  			pag->pagl_leftrec = trec.ir_startino;
1165  			pag->pagl_rightrec = rec.ir_startino;
1166  			pag->pagl_pagino = pagino;
1167  
1168  		} else {
1169  			/*
1170  			 * We've reached the end of the btree. because
1171  			 * we are only searching a small chunk of the
1172  			 * btree each search, there is obviously free
1173  			 * inodes closer to the parent inode than we
1174  			 * are now. restart the search again.
1175  			 */
1176  			pag->pagl_pagino = NULLAGINO;
1177  			pag->pagl_leftrec = NULLAGINO;
1178  			pag->pagl_rightrec = NULLAGINO;
1179  			xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1180  			xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1181  			goto restart_pagno;
1182  		}
1183  	}
1184  
1185  	/*
1186  	 * In a different AG from the parent.
1187  	 * See if the most recently allocated block has any free.
1188  	 */
1189  	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1190  		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1191  					 XFS_LOOKUP_EQ, &i);
1192  		if (error)
1193  			goto error0;
1194  
1195  		if (i == 1) {
1196  			error = xfs_inobt_get_rec(cur, &rec, &j);
1197  			if (error)
1198  				goto error0;
1199  
1200  			if (j == 1 && rec.ir_freecount > 0) {
1201  				/*
1202  				 * The last chunk allocated in the group
1203  				 * still has a free inode.
1204  				 */
1205  				goto alloc_inode;
1206  			}
1207  		}
1208  	}
1209  
1210  	/*
1211  	 * None left in the last group, search the whole AG
1212  	 */
1213  	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1214  	if (error)
1215  		goto error0;
1216  	if (XFS_IS_CORRUPT(mp, i != 1)) {
1217  		error = -EFSCORRUPTED;
1218  		goto error0;
1219  	}
1220  
1221  	for (;;) {
1222  		error = xfs_inobt_get_rec(cur, &rec, &i);
1223  		if (error)
1224  			goto error0;
1225  		if (XFS_IS_CORRUPT(mp, i != 1)) {
1226  			error = -EFSCORRUPTED;
1227  			goto error0;
1228  		}
1229  		if (rec.ir_freecount > 0)
1230  			break;
1231  		error = xfs_btree_increment(cur, 0, &i);
1232  		if (error)
1233  			goto error0;
1234  		if (XFS_IS_CORRUPT(mp, i != 1)) {
1235  			error = -EFSCORRUPTED;
1236  			goto error0;
1237  		}
1238  	}
1239  
1240  alloc_inode:
1241  	offset = xfs_inobt_first_free_inode(&rec);
1242  	ASSERT(offset >= 0);
1243  	ASSERT(offset < XFS_INODES_PER_CHUNK);
1244  	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1245  				   XFS_INODES_PER_CHUNK) == 0);
1246  	ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset);
1247  	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1248  	rec.ir_freecount--;
1249  	error = xfs_inobt_update(cur, &rec);
1250  	if (error)
1251  		goto error0;
1252  	be32_add_cpu(&agi->agi_freecount, -1);
1253  	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1254  	pag->pagi_freecount--;
1255  
1256  	error = xfs_check_agi_freecount(cur);
1257  	if (error)
1258  		goto error0;
1259  
1260  	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1261  	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1262  	*inop = ino;
1263  	return 0;
1264  error1:
1265  	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1266  error0:
1267  	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1268  	return error;
1269  }
1270  
1271  /*
1272   * Use the free inode btree to allocate an inode based on distance from the
1273   * parent. Note that the provided cursor may be deleted and replaced.
1274   */
1275  STATIC int
xfs_dialloc_ag_finobt_near(xfs_agino_t pagino,struct xfs_btree_cur ** ocur,struct xfs_inobt_rec_incore * rec)1276  xfs_dialloc_ag_finobt_near(
1277  	xfs_agino_t			pagino,
1278  	struct xfs_btree_cur		**ocur,
1279  	struct xfs_inobt_rec_incore	*rec)
1280  {
1281  	struct xfs_btree_cur		*lcur = *ocur;	/* left search cursor */
1282  	struct xfs_btree_cur		*rcur;	/* right search cursor */
1283  	struct xfs_inobt_rec_incore	rrec;
1284  	int				error;
1285  	int				i, j;
1286  
1287  	error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1288  	if (error)
1289  		return error;
1290  
1291  	if (i == 1) {
1292  		error = xfs_inobt_get_rec(lcur, rec, &i);
1293  		if (error)
1294  			return error;
1295  		if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1))
1296  			return -EFSCORRUPTED;
1297  
1298  		/*
1299  		 * See if we've landed in the parent inode record. The finobt
1300  		 * only tracks chunks with at least one free inode, so record
1301  		 * existence is enough.
1302  		 */
1303  		if (pagino >= rec->ir_startino &&
1304  		    pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1305  			return 0;
1306  	}
1307  
1308  	error = xfs_btree_dup_cursor(lcur, &rcur);
1309  	if (error)
1310  		return error;
1311  
1312  	error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1313  	if (error)
1314  		goto error_rcur;
1315  	if (j == 1) {
1316  		error = xfs_inobt_get_rec(rcur, &rrec, &j);
1317  		if (error)
1318  			goto error_rcur;
1319  		if (XFS_IS_CORRUPT(lcur->bc_mp, j != 1)) {
1320  			error = -EFSCORRUPTED;
1321  			goto error_rcur;
1322  		}
1323  	}
1324  
1325  	if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1 && j != 1)) {
1326  		error = -EFSCORRUPTED;
1327  		goto error_rcur;
1328  	}
1329  	if (i == 1 && j == 1) {
1330  		/*
1331  		 * Both the left and right records are valid. Choose the closer
1332  		 * inode chunk to the target.
1333  		 */
1334  		if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1335  		    (rrec.ir_startino - pagino)) {
1336  			*rec = rrec;
1337  			xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1338  			*ocur = rcur;
1339  		} else {
1340  			xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1341  		}
1342  	} else if (j == 1) {
1343  		/* only the right record is valid */
1344  		*rec = rrec;
1345  		xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1346  		*ocur = rcur;
1347  	} else if (i == 1) {
1348  		/* only the left record is valid */
1349  		xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1350  	}
1351  
1352  	return 0;
1353  
1354  error_rcur:
1355  	xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1356  	return error;
1357  }
1358  
1359  /*
1360   * Use the free inode btree to find a free inode based on a newino hint. If
1361   * the hint is NULL, find the first free inode in the AG.
1362   */
1363  STATIC int
xfs_dialloc_ag_finobt_newino(struct xfs_agi * agi,struct xfs_btree_cur * cur,struct xfs_inobt_rec_incore * rec)1364  xfs_dialloc_ag_finobt_newino(
1365  	struct xfs_agi			*agi,
1366  	struct xfs_btree_cur		*cur,
1367  	struct xfs_inobt_rec_incore	*rec)
1368  {
1369  	int error;
1370  	int i;
1371  
1372  	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1373  		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1374  					 XFS_LOOKUP_EQ, &i);
1375  		if (error)
1376  			return error;
1377  		if (i == 1) {
1378  			error = xfs_inobt_get_rec(cur, rec, &i);
1379  			if (error)
1380  				return error;
1381  			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1382  				return -EFSCORRUPTED;
1383  			return 0;
1384  		}
1385  	}
1386  
1387  	/*
1388  	 * Find the first inode available in the AG.
1389  	 */
1390  	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1391  	if (error)
1392  		return error;
1393  	if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1394  		return -EFSCORRUPTED;
1395  
1396  	error = xfs_inobt_get_rec(cur, rec, &i);
1397  	if (error)
1398  		return error;
1399  	if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1400  		return -EFSCORRUPTED;
1401  
1402  	return 0;
1403  }
1404  
1405  /*
1406   * Update the inobt based on a modification made to the finobt. Also ensure that
1407   * the records from both trees are equivalent post-modification.
1408   */
1409  STATIC int
xfs_dialloc_ag_update_inobt(struct xfs_btree_cur * cur,struct xfs_inobt_rec_incore * frec,int offset)1410  xfs_dialloc_ag_update_inobt(
1411  	struct xfs_btree_cur		*cur,	/* inobt cursor */
1412  	struct xfs_inobt_rec_incore	*frec,	/* finobt record */
1413  	int				offset) /* inode offset */
1414  {
1415  	struct xfs_inobt_rec_incore	rec;
1416  	int				error;
1417  	int				i;
1418  
1419  	error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1420  	if (error)
1421  		return error;
1422  	if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1423  		return -EFSCORRUPTED;
1424  
1425  	error = xfs_inobt_get_rec(cur, &rec, &i);
1426  	if (error)
1427  		return error;
1428  	if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1429  		return -EFSCORRUPTED;
1430  	ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1431  				   XFS_INODES_PER_CHUNK) == 0);
1432  
1433  	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1434  	rec.ir_freecount--;
1435  
1436  	if (XFS_IS_CORRUPT(cur->bc_mp,
1437  			   rec.ir_free != frec->ir_free ||
1438  			   rec.ir_freecount != frec->ir_freecount))
1439  		return -EFSCORRUPTED;
1440  
1441  	return xfs_inobt_update(cur, &rec);
1442  }
1443  
1444  /*
1445   * Allocate an inode using the free inode btree, if available. Otherwise, fall
1446   * back to the inobt search algorithm.
1447   *
1448   * The caller selected an AG for us, and made sure that free inodes are
1449   * available.
1450   */
1451  static int
xfs_dialloc_ag(struct xfs_perag * pag,struct xfs_trans * tp,struct xfs_buf * agbp,xfs_ino_t parent,xfs_ino_t * inop)1452  xfs_dialloc_ag(
1453  	struct xfs_perag	*pag,
1454  	struct xfs_trans	*tp,
1455  	struct xfs_buf		*agbp,
1456  	xfs_ino_t		parent,
1457  	xfs_ino_t		*inop)
1458  {
1459  	struct xfs_mount		*mp = tp->t_mountp;
1460  	struct xfs_agi			*agi = agbp->b_addr;
1461  	xfs_agnumber_t			pagno = XFS_INO_TO_AGNO(mp, parent);
1462  	xfs_agino_t			pagino = XFS_INO_TO_AGINO(mp, parent);
1463  	struct xfs_btree_cur		*cur;	/* finobt cursor */
1464  	struct xfs_btree_cur		*icur;	/* inobt cursor */
1465  	struct xfs_inobt_rec_incore	rec;
1466  	xfs_ino_t			ino;
1467  	int				error;
1468  	int				offset;
1469  	int				i;
1470  
1471  	if (!xfs_has_finobt(mp))
1472  		return xfs_dialloc_ag_inobt(pag, tp, agbp, parent, inop);
1473  
1474  	/*
1475  	 * If pagino is 0 (this is the root inode allocation) use newino.
1476  	 * This must work because we've just allocated some.
1477  	 */
1478  	if (!pagino)
1479  		pagino = be32_to_cpu(agi->agi_newino);
1480  
1481  	cur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_FINO);
1482  
1483  	error = xfs_check_agi_freecount(cur);
1484  	if (error)
1485  		goto error_cur;
1486  
1487  	/*
1488  	 * The search algorithm depends on whether we're in the same AG as the
1489  	 * parent. If so, find the closest available inode to the parent. If
1490  	 * not, consider the agi hint or find the first free inode in the AG.
1491  	 */
1492  	if (pag->pag_agno == pagno)
1493  		error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1494  	else
1495  		error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1496  	if (error)
1497  		goto error_cur;
1498  
1499  	offset = xfs_inobt_first_free_inode(&rec);
1500  	ASSERT(offset >= 0);
1501  	ASSERT(offset < XFS_INODES_PER_CHUNK);
1502  	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1503  				   XFS_INODES_PER_CHUNK) == 0);
1504  	ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset);
1505  
1506  	/*
1507  	 * Modify or remove the finobt record.
1508  	 */
1509  	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1510  	rec.ir_freecount--;
1511  	if (rec.ir_freecount)
1512  		error = xfs_inobt_update(cur, &rec);
1513  	else
1514  		error = xfs_btree_delete(cur, &i);
1515  	if (error)
1516  		goto error_cur;
1517  
1518  	/*
1519  	 * The finobt has now been updated appropriately. We haven't updated the
1520  	 * agi and superblock yet, so we can create an inobt cursor and validate
1521  	 * the original freecount. If all is well, make the equivalent update to
1522  	 * the inobt using the finobt record and offset information.
1523  	 */
1524  	icur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_INO);
1525  
1526  	error = xfs_check_agi_freecount(icur);
1527  	if (error)
1528  		goto error_icur;
1529  
1530  	error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1531  	if (error)
1532  		goto error_icur;
1533  
1534  	/*
1535  	 * Both trees have now been updated. We must update the perag and
1536  	 * superblock before we can check the freecount for each btree.
1537  	 */
1538  	be32_add_cpu(&agi->agi_freecount, -1);
1539  	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1540  	pag->pagi_freecount--;
1541  
1542  	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1543  
1544  	error = xfs_check_agi_freecount(icur);
1545  	if (error)
1546  		goto error_icur;
1547  	error = xfs_check_agi_freecount(cur);
1548  	if (error)
1549  		goto error_icur;
1550  
1551  	xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1552  	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1553  	*inop = ino;
1554  	return 0;
1555  
1556  error_icur:
1557  	xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1558  error_cur:
1559  	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1560  	return error;
1561  }
1562  
1563  static int
xfs_dialloc_roll(struct xfs_trans ** tpp,struct xfs_buf * agibp)1564  xfs_dialloc_roll(
1565  	struct xfs_trans	**tpp,
1566  	struct xfs_buf		*agibp)
1567  {
1568  	struct xfs_trans	*tp = *tpp;
1569  	struct xfs_dquot_acct	*dqinfo;
1570  	int			error;
1571  
1572  	/*
1573  	 * Hold to on to the agibp across the commit so no other allocation can
1574  	 * come in and take the free inodes we just allocated for our caller.
1575  	 */
1576  	xfs_trans_bhold(tp, agibp);
1577  
1578  	/*
1579  	 * We want the quota changes to be associated with the next transaction,
1580  	 * NOT this one. So, detach the dqinfo from this and attach it to the
1581  	 * next transaction.
1582  	 */
1583  	dqinfo = tp->t_dqinfo;
1584  	tp->t_dqinfo = NULL;
1585  
1586  	error = xfs_trans_roll(&tp);
1587  
1588  	/* Re-attach the quota info that we detached from prev trx. */
1589  	tp->t_dqinfo = dqinfo;
1590  
1591  	/*
1592  	 * Join the buffer even on commit error so that the buffer is released
1593  	 * when the caller cancels the transaction and doesn't have to handle
1594  	 * this error case specially.
1595  	 */
1596  	xfs_trans_bjoin(tp, agibp);
1597  	*tpp = tp;
1598  	return error;
1599  }
1600  
1601  static bool
xfs_dialloc_good_ag(struct xfs_perag * pag,struct xfs_trans * tp,umode_t mode,int flags,bool ok_alloc)1602  xfs_dialloc_good_ag(
1603  	struct xfs_perag	*pag,
1604  	struct xfs_trans	*tp,
1605  	umode_t			mode,
1606  	int			flags,
1607  	bool			ok_alloc)
1608  {
1609  	struct xfs_mount	*mp = tp->t_mountp;
1610  	xfs_extlen_t		ineed;
1611  	xfs_extlen_t		longest = 0;
1612  	int			needspace;
1613  	int			error;
1614  
1615  	if (!pag)
1616  		return false;
1617  	if (!xfs_perag_allows_inodes(pag))
1618  		return false;
1619  
1620  	if (!xfs_perag_initialised_agi(pag)) {
1621  		error = xfs_ialloc_read_agi(pag, tp, NULL);
1622  		if (error)
1623  			return false;
1624  	}
1625  
1626  	if (pag->pagi_freecount)
1627  		return true;
1628  	if (!ok_alloc)
1629  		return false;
1630  
1631  	if (!xfs_perag_initialised_agf(pag)) {
1632  		error = xfs_alloc_read_agf(pag, tp, flags, NULL);
1633  		if (error)
1634  			return false;
1635  	}
1636  
1637  	/*
1638  	 * Check that there is enough free space for the file plus a chunk of
1639  	 * inodes if we need to allocate some. If this is the first pass across
1640  	 * the AGs, take into account the potential space needed for alignment
1641  	 * of inode chunks when checking the longest contiguous free space in
1642  	 * the AG - this prevents us from getting ENOSPC because we have free
1643  	 * space larger than ialloc_blks but alignment constraints prevent us
1644  	 * from using it.
1645  	 *
1646  	 * If we can't find an AG with space for full alignment slack to be
1647  	 * taken into account, we must be near ENOSPC in all AGs.  Hence we
1648  	 * don't include alignment for the second pass and so if we fail
1649  	 * allocation due to alignment issues then it is most likely a real
1650  	 * ENOSPC condition.
1651  	 *
1652  	 * XXX(dgc): this calculation is now bogus thanks to the per-ag
1653  	 * reservations that xfs_alloc_fix_freelist() now does via
1654  	 * xfs_alloc_space_available(). When the AG fills up, pagf_freeblks will
1655  	 * be more than large enough for the check below to succeed, but
1656  	 * xfs_alloc_space_available() will fail because of the non-zero
1657  	 * metadata reservation and hence we won't actually be able to allocate
1658  	 * more inodes in this AG. We do soooo much unnecessary work near ENOSPC
1659  	 * because of this.
1660  	 */
1661  	ineed = M_IGEO(mp)->ialloc_min_blks;
1662  	if (flags && ineed > 1)
1663  		ineed += M_IGEO(mp)->cluster_align;
1664  	longest = pag->pagf_longest;
1665  	if (!longest)
1666  		longest = pag->pagf_flcount > 0;
1667  	needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
1668  
1669  	if (pag->pagf_freeblks < needspace + ineed || longest < ineed)
1670  		return false;
1671  	return true;
1672  }
1673  
1674  static int
xfs_dialloc_try_ag(struct xfs_perag * pag,struct xfs_trans ** tpp,xfs_ino_t parent,xfs_ino_t * new_ino,bool ok_alloc)1675  xfs_dialloc_try_ag(
1676  	struct xfs_perag	*pag,
1677  	struct xfs_trans	**tpp,
1678  	xfs_ino_t		parent,
1679  	xfs_ino_t		*new_ino,
1680  	bool			ok_alloc)
1681  {
1682  	struct xfs_buf		*agbp;
1683  	xfs_ino_t		ino;
1684  	int			error;
1685  
1686  	/*
1687  	 * Then read in the AGI buffer and recheck with the AGI buffer
1688  	 * lock held.
1689  	 */
1690  	error = xfs_ialloc_read_agi(pag, *tpp, &agbp);
1691  	if (error)
1692  		return error;
1693  
1694  	if (!pag->pagi_freecount) {
1695  		if (!ok_alloc) {
1696  			error = -EAGAIN;
1697  			goto out_release;
1698  		}
1699  
1700  		error = xfs_ialloc_ag_alloc(pag, *tpp, agbp);
1701  		if (error < 0)
1702  			goto out_release;
1703  
1704  		/*
1705  		 * We successfully allocated space for an inode cluster in this
1706  		 * AG.  Roll the transaction so that we can allocate one of the
1707  		 * new inodes.
1708  		 */
1709  		ASSERT(pag->pagi_freecount > 0);
1710  		error = xfs_dialloc_roll(tpp, agbp);
1711  		if (error)
1712  			goto out_release;
1713  	}
1714  
1715  	/* Allocate an inode in the found AG */
1716  	error = xfs_dialloc_ag(pag, *tpp, agbp, parent, &ino);
1717  	if (!error)
1718  		*new_ino = ino;
1719  	return error;
1720  
1721  out_release:
1722  	xfs_trans_brelse(*tpp, agbp);
1723  	return error;
1724  }
1725  
1726  /*
1727   * Allocate an on-disk inode.
1728   *
1729   * Mode is used to tell whether the new inode is a directory and hence where to
1730   * locate it. The on-disk inode that is allocated will be returned in @new_ino
1731   * on success, otherwise an error will be set to indicate the failure (e.g.
1732   * -ENOSPC).
1733   */
1734  int
xfs_dialloc(struct xfs_trans ** tpp,xfs_ino_t parent,umode_t mode,xfs_ino_t * new_ino)1735  xfs_dialloc(
1736  	struct xfs_trans	**tpp,
1737  	xfs_ino_t		parent,
1738  	umode_t			mode,
1739  	xfs_ino_t		*new_ino)
1740  {
1741  	struct xfs_mount	*mp = (*tpp)->t_mountp;
1742  	xfs_agnumber_t		agno;
1743  	int			error = 0;
1744  	xfs_agnumber_t		start_agno;
1745  	struct xfs_perag	*pag;
1746  	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
1747  	bool			ok_alloc = true;
1748  	bool			low_space = false;
1749  	int			flags;
1750  	xfs_ino_t		ino = NULLFSINO;
1751  
1752  	/*
1753  	 * Directories, symlinks, and regular files frequently allocate at least
1754  	 * one block, so factor that potential expansion when we examine whether
1755  	 * an AG has enough space for file creation.
1756  	 */
1757  	if (S_ISDIR(mode))
1758  		start_agno = (atomic_inc_return(&mp->m_agirotor) - 1) %
1759  				mp->m_maxagi;
1760  	else {
1761  		start_agno = XFS_INO_TO_AGNO(mp, parent);
1762  		if (start_agno >= mp->m_maxagi)
1763  			start_agno = 0;
1764  	}
1765  
1766  	/*
1767  	 * If we have already hit the ceiling of inode blocks then clear
1768  	 * ok_alloc so we scan all available agi structures for a free
1769  	 * inode.
1770  	 *
1771  	 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1772  	 * which will sacrifice the preciseness but improve the performance.
1773  	 */
1774  	if (igeo->maxicount &&
1775  	    percpu_counter_read_positive(&mp->m_icount) + igeo->ialloc_inos
1776  							> igeo->maxicount) {
1777  		ok_alloc = false;
1778  	}
1779  
1780  	/*
1781  	 * If we are near to ENOSPC, we want to prefer allocation from AGs that
1782  	 * have free inodes in them rather than use up free space allocating new
1783  	 * inode chunks. Hence we turn off allocation for the first non-blocking
1784  	 * pass through the AGs if we are near ENOSPC to consume free inodes
1785  	 * that we can immediately allocate, but then we allow allocation on the
1786  	 * second pass if we fail to find an AG with free inodes in it.
1787  	 */
1788  	if (percpu_counter_read_positive(&mp->m_fdblocks) <
1789  			mp->m_low_space[XFS_LOWSP_1_PCNT]) {
1790  		ok_alloc = false;
1791  		low_space = true;
1792  	}
1793  
1794  	/*
1795  	 * Loop until we find an allocation group that either has free inodes
1796  	 * or in which we can allocate some inodes.  Iterate through the
1797  	 * allocation groups upward, wrapping at the end.
1798  	 */
1799  	flags = XFS_ALLOC_FLAG_TRYLOCK;
1800  retry:
1801  	for_each_perag_wrap_at(mp, start_agno, mp->m_maxagi, agno, pag) {
1802  		if (xfs_dialloc_good_ag(pag, *tpp, mode, flags, ok_alloc)) {
1803  			error = xfs_dialloc_try_ag(pag, tpp, parent,
1804  					&ino, ok_alloc);
1805  			if (error != -EAGAIN)
1806  				break;
1807  			error = 0;
1808  		}
1809  
1810  		if (xfs_is_shutdown(mp)) {
1811  			error = -EFSCORRUPTED;
1812  			break;
1813  		}
1814  	}
1815  	if (pag)
1816  		xfs_perag_rele(pag);
1817  	if (error)
1818  		return error;
1819  	if (ino == NULLFSINO) {
1820  		if (flags) {
1821  			flags = 0;
1822  			if (low_space)
1823  				ok_alloc = true;
1824  			goto retry;
1825  		}
1826  		return -ENOSPC;
1827  	}
1828  	*new_ino = ino;
1829  	return 0;
1830  }
1831  
1832  /*
1833   * Free the blocks of an inode chunk. We must consider that the inode chunk
1834   * might be sparse and only free the regions that are allocated as part of the
1835   * chunk.
1836   */
1837  static int
xfs_difree_inode_chunk(struct xfs_trans * tp,xfs_agnumber_t agno,struct xfs_inobt_rec_incore * rec)1838  xfs_difree_inode_chunk(
1839  	struct xfs_trans		*tp,
1840  	xfs_agnumber_t			agno,
1841  	struct xfs_inobt_rec_incore	*rec)
1842  {
1843  	struct xfs_mount		*mp = tp->t_mountp;
1844  	xfs_agblock_t			sagbno = XFS_AGINO_TO_AGBNO(mp,
1845  							rec->ir_startino);
1846  	int				startidx, endidx;
1847  	int				nextbit;
1848  	xfs_agblock_t			agbno;
1849  	int				contigblk;
1850  	DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1851  
1852  	if (!xfs_inobt_issparse(rec->ir_holemask)) {
1853  		/* not sparse, calculate extent info directly */
1854  		return xfs_free_extent_later(tp,
1855  				XFS_AGB_TO_FSB(mp, agno, sagbno),
1856  				M_IGEO(mp)->ialloc_blks, &XFS_RMAP_OINFO_INODES,
1857  				XFS_AG_RESV_NONE);
1858  	}
1859  
1860  	/* holemask is only 16-bits (fits in an unsigned long) */
1861  	ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1862  	holemask[0] = rec->ir_holemask;
1863  
1864  	/*
1865  	 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1866  	 * holemask and convert the start/end index of each range to an extent.
1867  	 * We start with the start and end index both pointing at the first 0 in
1868  	 * the mask.
1869  	 */
1870  	startidx = endidx = find_first_zero_bit(holemask,
1871  						XFS_INOBT_HOLEMASK_BITS);
1872  	nextbit = startidx + 1;
1873  	while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1874  		int error;
1875  
1876  		nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1877  					     nextbit);
1878  		/*
1879  		 * If the next zero bit is contiguous, update the end index of
1880  		 * the current range and continue.
1881  		 */
1882  		if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1883  		    nextbit == endidx + 1) {
1884  			endidx = nextbit;
1885  			goto next;
1886  		}
1887  
1888  		/*
1889  		 * nextbit is not contiguous with the current end index. Convert
1890  		 * the current start/end to an extent and add it to the free
1891  		 * list.
1892  		 */
1893  		agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1894  				  mp->m_sb.sb_inopblock;
1895  		contigblk = ((endidx - startidx + 1) *
1896  			     XFS_INODES_PER_HOLEMASK_BIT) /
1897  			    mp->m_sb.sb_inopblock;
1898  
1899  		ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1900  		ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
1901  		error = xfs_free_extent_later(tp,
1902  				XFS_AGB_TO_FSB(mp, agno, agbno), contigblk,
1903  				&XFS_RMAP_OINFO_INODES, XFS_AG_RESV_NONE);
1904  		if (error)
1905  			return error;
1906  
1907  		/* reset range to current bit and carry on... */
1908  		startidx = endidx = nextbit;
1909  
1910  next:
1911  		nextbit++;
1912  	}
1913  	return 0;
1914  }
1915  
1916  STATIC int
xfs_difree_inobt(struct xfs_perag * pag,struct xfs_trans * tp,struct xfs_buf * agbp,xfs_agino_t agino,struct xfs_icluster * xic,struct xfs_inobt_rec_incore * orec)1917  xfs_difree_inobt(
1918  	struct xfs_perag		*pag,
1919  	struct xfs_trans		*tp,
1920  	struct xfs_buf			*agbp,
1921  	xfs_agino_t			agino,
1922  	struct xfs_icluster		*xic,
1923  	struct xfs_inobt_rec_incore	*orec)
1924  {
1925  	struct xfs_mount		*mp = pag->pag_mount;
1926  	struct xfs_agi			*agi = agbp->b_addr;
1927  	struct xfs_btree_cur		*cur;
1928  	struct xfs_inobt_rec_incore	rec;
1929  	int				ilen;
1930  	int				error;
1931  	int				i;
1932  	int				off;
1933  
1934  	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1935  	ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1936  
1937  	/*
1938  	 * Initialize the cursor.
1939  	 */
1940  	cur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_INO);
1941  
1942  	error = xfs_check_agi_freecount(cur);
1943  	if (error)
1944  		goto error0;
1945  
1946  	/*
1947  	 * Look for the entry describing this inode.
1948  	 */
1949  	if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1950  		xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1951  			__func__, error);
1952  		goto error0;
1953  	}
1954  	if (XFS_IS_CORRUPT(mp, i != 1)) {
1955  		error = -EFSCORRUPTED;
1956  		goto error0;
1957  	}
1958  	error = xfs_inobt_get_rec(cur, &rec, &i);
1959  	if (error) {
1960  		xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1961  			__func__, error);
1962  		goto error0;
1963  	}
1964  	if (XFS_IS_CORRUPT(mp, i != 1)) {
1965  		error = -EFSCORRUPTED;
1966  		goto error0;
1967  	}
1968  	/*
1969  	 * Get the offset in the inode chunk.
1970  	 */
1971  	off = agino - rec.ir_startino;
1972  	ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1973  	ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1974  	/*
1975  	 * Mark the inode free & increment the count.
1976  	 */
1977  	rec.ir_free |= XFS_INOBT_MASK(off);
1978  	rec.ir_freecount++;
1979  
1980  	/*
1981  	 * When an inode chunk is free, it becomes eligible for removal. Don't
1982  	 * remove the chunk if the block size is large enough for multiple inode
1983  	 * chunks (that might not be free).
1984  	 */
1985  	if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE &&
1986  	    mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
1987  		xic->deleted = true;
1988  		xic->first_ino = XFS_AGINO_TO_INO(mp, pag->pag_agno,
1989  				rec.ir_startino);
1990  		xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
1991  
1992  		/*
1993  		 * Remove the inode cluster from the AGI B+Tree, adjust the
1994  		 * AGI and Superblock inode counts, and mark the disk space
1995  		 * to be freed when the transaction is committed.
1996  		 */
1997  		ilen = rec.ir_freecount;
1998  		be32_add_cpu(&agi->agi_count, -ilen);
1999  		be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
2000  		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
2001  		pag->pagi_freecount -= ilen - 1;
2002  		pag->pagi_count -= ilen;
2003  		xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
2004  		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
2005  
2006  		if ((error = xfs_btree_delete(cur, &i))) {
2007  			xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
2008  				__func__, error);
2009  			goto error0;
2010  		}
2011  
2012  		error = xfs_difree_inode_chunk(tp, pag->pag_agno, &rec);
2013  		if (error)
2014  			goto error0;
2015  	} else {
2016  		xic->deleted = false;
2017  
2018  		error = xfs_inobt_update(cur, &rec);
2019  		if (error) {
2020  			xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
2021  				__func__, error);
2022  			goto error0;
2023  		}
2024  
2025  		/*
2026  		 * Change the inode free counts and log the ag/sb changes.
2027  		 */
2028  		be32_add_cpu(&agi->agi_freecount, 1);
2029  		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
2030  		pag->pagi_freecount++;
2031  		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2032  	}
2033  
2034  	error = xfs_check_agi_freecount(cur);
2035  	if (error)
2036  		goto error0;
2037  
2038  	*orec = rec;
2039  	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2040  	return 0;
2041  
2042  error0:
2043  	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2044  	return error;
2045  }
2046  
2047  /*
2048   * Free an inode in the free inode btree.
2049   */
2050  STATIC int
xfs_difree_finobt(struct xfs_perag * pag,struct xfs_trans * tp,struct xfs_buf * agbp,xfs_agino_t agino,struct xfs_inobt_rec_incore * ibtrec)2051  xfs_difree_finobt(
2052  	struct xfs_perag		*pag,
2053  	struct xfs_trans		*tp,
2054  	struct xfs_buf			*agbp,
2055  	xfs_agino_t			agino,
2056  	struct xfs_inobt_rec_incore	*ibtrec) /* inobt record */
2057  {
2058  	struct xfs_mount		*mp = pag->pag_mount;
2059  	struct xfs_btree_cur		*cur;
2060  	struct xfs_inobt_rec_incore	rec;
2061  	int				offset = agino - ibtrec->ir_startino;
2062  	int				error;
2063  	int				i;
2064  
2065  	cur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_FINO);
2066  
2067  	error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2068  	if (error)
2069  		goto error;
2070  	if (i == 0) {
2071  		/*
2072  		 * If the record does not exist in the finobt, we must have just
2073  		 * freed an inode in a previously fully allocated chunk. If not,
2074  		 * something is out of sync.
2075  		 */
2076  		if (XFS_IS_CORRUPT(mp, ibtrec->ir_freecount != 1)) {
2077  			error = -EFSCORRUPTED;
2078  			goto error;
2079  		}
2080  
2081  		error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2082  					     ibtrec->ir_count,
2083  					     ibtrec->ir_freecount,
2084  					     ibtrec->ir_free, &i);
2085  		if (error)
2086  			goto error;
2087  		ASSERT(i == 1);
2088  
2089  		goto out;
2090  	}
2091  
2092  	/*
2093  	 * Read and update the existing record. We could just copy the ibtrec
2094  	 * across here, but that would defeat the purpose of having redundant
2095  	 * metadata. By making the modifications independently, we can catch
2096  	 * corruptions that we wouldn't see if we just copied from one record
2097  	 * to another.
2098  	 */
2099  	error = xfs_inobt_get_rec(cur, &rec, &i);
2100  	if (error)
2101  		goto error;
2102  	if (XFS_IS_CORRUPT(mp, i != 1)) {
2103  		error = -EFSCORRUPTED;
2104  		goto error;
2105  	}
2106  
2107  	rec.ir_free |= XFS_INOBT_MASK(offset);
2108  	rec.ir_freecount++;
2109  
2110  	if (XFS_IS_CORRUPT(mp,
2111  			   rec.ir_free != ibtrec->ir_free ||
2112  			   rec.ir_freecount != ibtrec->ir_freecount)) {
2113  		error = -EFSCORRUPTED;
2114  		goto error;
2115  	}
2116  
2117  	/*
2118  	 * The content of inobt records should always match between the inobt
2119  	 * and finobt. The lifecycle of records in the finobt is different from
2120  	 * the inobt in that the finobt only tracks records with at least one
2121  	 * free inode. Hence, if all of the inodes are free and we aren't
2122  	 * keeping inode chunks permanently on disk, remove the record.
2123  	 * Otherwise, update the record with the new information.
2124  	 *
2125  	 * Note that we currently can't free chunks when the block size is large
2126  	 * enough for multiple chunks. Leave the finobt record to remain in sync
2127  	 * with the inobt.
2128  	 */
2129  	if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE &&
2130  	    mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
2131  		error = xfs_btree_delete(cur, &i);
2132  		if (error)
2133  			goto error;
2134  		ASSERT(i == 1);
2135  	} else {
2136  		error = xfs_inobt_update(cur, &rec);
2137  		if (error)
2138  			goto error;
2139  	}
2140  
2141  out:
2142  	error = xfs_check_agi_freecount(cur);
2143  	if (error)
2144  		goto error;
2145  
2146  	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2147  	return 0;
2148  
2149  error:
2150  	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2151  	return error;
2152  }
2153  
2154  /*
2155   * Free disk inode.  Carefully avoids touching the incore inode, all
2156   * manipulations incore are the caller's responsibility.
2157   * The on-disk inode is not changed by this operation, only the
2158   * btree (free inode mask) is changed.
2159   */
2160  int
xfs_difree(struct xfs_trans * tp,struct xfs_perag * pag,xfs_ino_t inode,struct xfs_icluster * xic)2161  xfs_difree(
2162  	struct xfs_trans	*tp,
2163  	struct xfs_perag	*pag,
2164  	xfs_ino_t		inode,
2165  	struct xfs_icluster	*xic)
2166  {
2167  	/* REFERENCED */
2168  	xfs_agblock_t		agbno;	/* block number containing inode */
2169  	struct xfs_buf		*agbp;	/* buffer for allocation group header */
2170  	xfs_agino_t		agino;	/* allocation group inode number */
2171  	int			error;	/* error return value */
2172  	struct xfs_mount	*mp = tp->t_mountp;
2173  	struct xfs_inobt_rec_incore rec;/* btree record */
2174  
2175  	/*
2176  	 * Break up inode number into its components.
2177  	 */
2178  	if (pag->pag_agno != XFS_INO_TO_AGNO(mp, inode)) {
2179  		xfs_warn(mp, "%s: agno != pag->pag_agno (%d != %d).",
2180  			__func__, XFS_INO_TO_AGNO(mp, inode), pag->pag_agno);
2181  		ASSERT(0);
2182  		return -EINVAL;
2183  	}
2184  	agino = XFS_INO_TO_AGINO(mp, inode);
2185  	if (inode != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino))  {
2186  		xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2187  			__func__, (unsigned long long)inode,
2188  			(unsigned long long)XFS_AGINO_TO_INO(mp, pag->pag_agno, agino));
2189  		ASSERT(0);
2190  		return -EINVAL;
2191  	}
2192  	agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2193  	if (agbno >= mp->m_sb.sb_agblocks)  {
2194  		xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2195  			__func__, agbno, mp->m_sb.sb_agblocks);
2196  		ASSERT(0);
2197  		return -EINVAL;
2198  	}
2199  	/*
2200  	 * Get the allocation group header.
2201  	 */
2202  	error = xfs_ialloc_read_agi(pag, tp, &agbp);
2203  	if (error) {
2204  		xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2205  			__func__, error);
2206  		return error;
2207  	}
2208  
2209  	/*
2210  	 * Fix up the inode allocation btree.
2211  	 */
2212  	error = xfs_difree_inobt(pag, tp, agbp, agino, xic, &rec);
2213  	if (error)
2214  		goto error0;
2215  
2216  	/*
2217  	 * Fix up the free inode btree.
2218  	 */
2219  	if (xfs_has_finobt(mp)) {
2220  		error = xfs_difree_finobt(pag, tp, agbp, agino, &rec);
2221  		if (error)
2222  			goto error0;
2223  	}
2224  
2225  	return 0;
2226  
2227  error0:
2228  	return error;
2229  }
2230  
2231  STATIC int
xfs_imap_lookup(struct xfs_perag * pag,struct xfs_trans * tp,xfs_agino_t agino,xfs_agblock_t agbno,xfs_agblock_t * chunk_agbno,xfs_agblock_t * offset_agbno,int flags)2232  xfs_imap_lookup(
2233  	struct xfs_perag	*pag,
2234  	struct xfs_trans	*tp,
2235  	xfs_agino_t		agino,
2236  	xfs_agblock_t		agbno,
2237  	xfs_agblock_t		*chunk_agbno,
2238  	xfs_agblock_t		*offset_agbno,
2239  	int			flags)
2240  {
2241  	struct xfs_mount	*mp = pag->pag_mount;
2242  	struct xfs_inobt_rec_incore rec;
2243  	struct xfs_btree_cur	*cur;
2244  	struct xfs_buf		*agbp;
2245  	int			error;
2246  	int			i;
2247  
2248  	error = xfs_ialloc_read_agi(pag, tp, &agbp);
2249  	if (error) {
2250  		xfs_alert(mp,
2251  			"%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2252  			__func__, error, pag->pag_agno);
2253  		return error;
2254  	}
2255  
2256  	/*
2257  	 * Lookup the inode record for the given agino. If the record cannot be
2258  	 * found, then it's an invalid inode number and we should abort. Once
2259  	 * we have a record, we need to ensure it contains the inode number
2260  	 * we are looking up.
2261  	 */
2262  	cur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_INO);
2263  	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2264  	if (!error) {
2265  		if (i)
2266  			error = xfs_inobt_get_rec(cur, &rec, &i);
2267  		if (!error && i == 0)
2268  			error = -EINVAL;
2269  	}
2270  
2271  	xfs_trans_brelse(tp, agbp);
2272  	xfs_btree_del_cursor(cur, error);
2273  	if (error)
2274  		return error;
2275  
2276  	/* check that the returned record contains the required inode */
2277  	if (rec.ir_startino > agino ||
2278  	    rec.ir_startino + M_IGEO(mp)->ialloc_inos <= agino)
2279  		return -EINVAL;
2280  
2281  	/* for untrusted inodes check it is allocated first */
2282  	if ((flags & XFS_IGET_UNTRUSTED) &&
2283  	    (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2284  		return -EINVAL;
2285  
2286  	*chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2287  	*offset_agbno = agbno - *chunk_agbno;
2288  	return 0;
2289  }
2290  
2291  /*
2292   * Return the location of the inode in imap, for mapping it into a buffer.
2293   */
2294  int
xfs_imap(struct xfs_perag * pag,struct xfs_trans * tp,xfs_ino_t ino,struct xfs_imap * imap,uint flags)2295  xfs_imap(
2296  	struct xfs_perag	*pag,
2297  	struct xfs_trans	*tp,
2298  	xfs_ino_t		ino,	/* inode to locate */
2299  	struct xfs_imap		*imap,	/* location map structure */
2300  	uint			flags)	/* flags for inode btree lookup */
2301  {
2302  	struct xfs_mount	*mp = pag->pag_mount;
2303  	xfs_agblock_t		agbno;	/* block number of inode in the alloc group */
2304  	xfs_agino_t		agino;	/* inode number within alloc group */
2305  	xfs_agblock_t		chunk_agbno;	/* first block in inode chunk */
2306  	xfs_agblock_t		cluster_agbno;	/* first block in inode cluster */
2307  	int			error;	/* error code */
2308  	int			offset;	/* index of inode in its buffer */
2309  	xfs_agblock_t		offset_agbno;	/* blks from chunk start to inode */
2310  
2311  	ASSERT(ino != NULLFSINO);
2312  
2313  	/*
2314  	 * Split up the inode number into its parts.
2315  	 */
2316  	agino = XFS_INO_TO_AGINO(mp, ino);
2317  	agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2318  	if (agbno >= mp->m_sb.sb_agblocks ||
2319  	    ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
2320  		error = -EINVAL;
2321  #ifdef DEBUG
2322  		/*
2323  		 * Don't output diagnostic information for untrusted inodes
2324  		 * as they can be invalid without implying corruption.
2325  		 */
2326  		if (flags & XFS_IGET_UNTRUSTED)
2327  			return error;
2328  		if (agbno >= mp->m_sb.sb_agblocks) {
2329  			xfs_alert(mp,
2330  		"%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2331  				__func__, (unsigned long long)agbno,
2332  				(unsigned long)mp->m_sb.sb_agblocks);
2333  		}
2334  		if (ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
2335  			xfs_alert(mp,
2336  		"%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2337  				__func__, ino,
2338  				XFS_AGINO_TO_INO(mp, pag->pag_agno, agino));
2339  		}
2340  		xfs_stack_trace();
2341  #endif /* DEBUG */
2342  		return error;
2343  	}
2344  
2345  	/*
2346  	 * For bulkstat and handle lookups, we have an untrusted inode number
2347  	 * that we have to verify is valid. We cannot do this just by reading
2348  	 * the inode buffer as it may have been unlinked and removed leaving
2349  	 * inodes in stale state on disk. Hence we have to do a btree lookup
2350  	 * in all cases where an untrusted inode number is passed.
2351  	 */
2352  	if (flags & XFS_IGET_UNTRUSTED) {
2353  		error = xfs_imap_lookup(pag, tp, agino, agbno,
2354  					&chunk_agbno, &offset_agbno, flags);
2355  		if (error)
2356  			return error;
2357  		goto out_map;
2358  	}
2359  
2360  	/*
2361  	 * If the inode cluster size is the same as the blocksize or
2362  	 * smaller we get to the buffer by simple arithmetics.
2363  	 */
2364  	if (M_IGEO(mp)->blocks_per_cluster == 1) {
2365  		offset = XFS_INO_TO_OFFSET(mp, ino);
2366  		ASSERT(offset < mp->m_sb.sb_inopblock);
2367  
2368  		imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, agbno);
2369  		imap->im_len = XFS_FSB_TO_BB(mp, 1);
2370  		imap->im_boffset = (unsigned short)(offset <<
2371  							mp->m_sb.sb_inodelog);
2372  		return 0;
2373  	}
2374  
2375  	/*
2376  	 * If the inode chunks are aligned then use simple maths to
2377  	 * find the location. Otherwise we have to do a btree
2378  	 * lookup to find the location.
2379  	 */
2380  	if (M_IGEO(mp)->inoalign_mask) {
2381  		offset_agbno = agbno & M_IGEO(mp)->inoalign_mask;
2382  		chunk_agbno = agbno - offset_agbno;
2383  	} else {
2384  		error = xfs_imap_lookup(pag, tp, agino, agbno,
2385  					&chunk_agbno, &offset_agbno, flags);
2386  		if (error)
2387  			return error;
2388  	}
2389  
2390  out_map:
2391  	ASSERT(agbno >= chunk_agbno);
2392  	cluster_agbno = chunk_agbno +
2393  		((offset_agbno / M_IGEO(mp)->blocks_per_cluster) *
2394  		 M_IGEO(mp)->blocks_per_cluster);
2395  	offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2396  		XFS_INO_TO_OFFSET(mp, ino);
2397  
2398  	imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, cluster_agbno);
2399  	imap->im_len = XFS_FSB_TO_BB(mp, M_IGEO(mp)->blocks_per_cluster);
2400  	imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
2401  
2402  	/*
2403  	 * If the inode number maps to a block outside the bounds
2404  	 * of the file system then return NULL rather than calling
2405  	 * read_buf and panicing when we get an error from the
2406  	 * driver.
2407  	 */
2408  	if ((imap->im_blkno + imap->im_len) >
2409  	    XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2410  		xfs_alert(mp,
2411  	"%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2412  			__func__, (unsigned long long) imap->im_blkno,
2413  			(unsigned long long) imap->im_len,
2414  			XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2415  		return -EINVAL;
2416  	}
2417  	return 0;
2418  }
2419  
2420  /*
2421   * Log specified fields for the ag hdr (inode section). The growth of the agi
2422   * structure over time requires that we interpret the buffer as two logical
2423   * regions delineated by the end of the unlinked list. This is due to the size
2424   * of the hash table and its location in the middle of the agi.
2425   *
2426   * For example, a request to log a field before agi_unlinked and a field after
2427   * agi_unlinked could cause us to log the entire hash table and use an excessive
2428   * amount of log space. To avoid this behavior, log the region up through
2429   * agi_unlinked in one call and the region after agi_unlinked through the end of
2430   * the structure in another.
2431   */
2432  void
xfs_ialloc_log_agi(struct xfs_trans * tp,struct xfs_buf * bp,uint32_t fields)2433  xfs_ialloc_log_agi(
2434  	struct xfs_trans	*tp,
2435  	struct xfs_buf		*bp,
2436  	uint32_t		fields)
2437  {
2438  	int			first;		/* first byte number */
2439  	int			last;		/* last byte number */
2440  	static const short	offsets[] = {	/* field starting offsets */
2441  					/* keep in sync with bit definitions */
2442  		offsetof(xfs_agi_t, agi_magicnum),
2443  		offsetof(xfs_agi_t, agi_versionnum),
2444  		offsetof(xfs_agi_t, agi_seqno),
2445  		offsetof(xfs_agi_t, agi_length),
2446  		offsetof(xfs_agi_t, agi_count),
2447  		offsetof(xfs_agi_t, agi_root),
2448  		offsetof(xfs_agi_t, agi_level),
2449  		offsetof(xfs_agi_t, agi_freecount),
2450  		offsetof(xfs_agi_t, agi_newino),
2451  		offsetof(xfs_agi_t, agi_dirino),
2452  		offsetof(xfs_agi_t, agi_unlinked),
2453  		offsetof(xfs_agi_t, agi_free_root),
2454  		offsetof(xfs_agi_t, agi_free_level),
2455  		offsetof(xfs_agi_t, agi_iblocks),
2456  		sizeof(xfs_agi_t)
2457  	};
2458  #ifdef DEBUG
2459  	struct xfs_agi		*agi = bp->b_addr;
2460  
2461  	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2462  #endif
2463  
2464  	/*
2465  	 * Compute byte offsets for the first and last fields in the first
2466  	 * region and log the agi buffer. This only logs up through
2467  	 * agi_unlinked.
2468  	 */
2469  	if (fields & XFS_AGI_ALL_BITS_R1) {
2470  		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2471  				  &first, &last);
2472  		xfs_trans_log_buf(tp, bp, first, last);
2473  	}
2474  
2475  	/*
2476  	 * Mask off the bits in the first region and calculate the first and
2477  	 * last field offsets for any bits in the second region.
2478  	 */
2479  	fields &= ~XFS_AGI_ALL_BITS_R1;
2480  	if (fields) {
2481  		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2482  				  &first, &last);
2483  		xfs_trans_log_buf(tp, bp, first, last);
2484  	}
2485  }
2486  
2487  static xfs_failaddr_t
xfs_agi_verify(struct xfs_buf * bp)2488  xfs_agi_verify(
2489  	struct xfs_buf		*bp)
2490  {
2491  	struct xfs_mount	*mp = bp->b_mount;
2492  	struct xfs_agi		*agi = bp->b_addr;
2493  	xfs_failaddr_t		fa;
2494  	uint32_t		agi_seqno = be32_to_cpu(agi->agi_seqno);
2495  	uint32_t		agi_length = be32_to_cpu(agi->agi_length);
2496  	int			i;
2497  
2498  	if (xfs_has_crc(mp)) {
2499  		if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2500  			return __this_address;
2501  		if (!xfs_log_check_lsn(mp, be64_to_cpu(agi->agi_lsn)))
2502  			return __this_address;
2503  	}
2504  
2505  	/*
2506  	 * Validate the magic number of the agi block.
2507  	 */
2508  	if (!xfs_verify_magic(bp, agi->agi_magicnum))
2509  		return __this_address;
2510  	if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2511  		return __this_address;
2512  
2513  	fa = xfs_validate_ag_length(bp, agi_seqno, agi_length);
2514  	if (fa)
2515  		return fa;
2516  
2517  	if (be32_to_cpu(agi->agi_level) < 1 ||
2518  	    be32_to_cpu(agi->agi_level) > M_IGEO(mp)->inobt_maxlevels)
2519  		return __this_address;
2520  
2521  	if (xfs_has_finobt(mp) &&
2522  	    (be32_to_cpu(agi->agi_free_level) < 1 ||
2523  	     be32_to_cpu(agi->agi_free_level) > M_IGEO(mp)->inobt_maxlevels))
2524  		return __this_address;
2525  
2526  	for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) {
2527  		if (agi->agi_unlinked[i] == cpu_to_be32(NULLAGINO))
2528  			continue;
2529  		if (!xfs_verify_ino(mp, be32_to_cpu(agi->agi_unlinked[i])))
2530  			return __this_address;
2531  	}
2532  
2533  	return NULL;
2534  }
2535  
2536  static void
xfs_agi_read_verify(struct xfs_buf * bp)2537  xfs_agi_read_verify(
2538  	struct xfs_buf	*bp)
2539  {
2540  	struct xfs_mount *mp = bp->b_mount;
2541  	xfs_failaddr_t	fa;
2542  
2543  	if (xfs_has_crc(mp) &&
2544  	    !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2545  		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
2546  	else {
2547  		fa = xfs_agi_verify(bp);
2548  		if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI))
2549  			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2550  	}
2551  }
2552  
2553  static void
xfs_agi_write_verify(struct xfs_buf * bp)2554  xfs_agi_write_verify(
2555  	struct xfs_buf	*bp)
2556  {
2557  	struct xfs_mount	*mp = bp->b_mount;
2558  	struct xfs_buf_log_item	*bip = bp->b_log_item;
2559  	struct xfs_agi		*agi = bp->b_addr;
2560  	xfs_failaddr_t		fa;
2561  
2562  	fa = xfs_agi_verify(bp);
2563  	if (fa) {
2564  		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2565  		return;
2566  	}
2567  
2568  	if (!xfs_has_crc(mp))
2569  		return;
2570  
2571  	if (bip)
2572  		agi->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2573  	xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2574  }
2575  
2576  const struct xfs_buf_ops xfs_agi_buf_ops = {
2577  	.name = "xfs_agi",
2578  	.magic = { cpu_to_be32(XFS_AGI_MAGIC), cpu_to_be32(XFS_AGI_MAGIC) },
2579  	.verify_read = xfs_agi_read_verify,
2580  	.verify_write = xfs_agi_write_verify,
2581  	.verify_struct = xfs_agi_verify,
2582  };
2583  
2584  /*
2585   * Read in the allocation group header (inode allocation section)
2586   */
2587  int
xfs_read_agi(struct xfs_perag * pag,struct xfs_trans * tp,struct xfs_buf ** agibpp)2588  xfs_read_agi(
2589  	struct xfs_perag	*pag,
2590  	struct xfs_trans	*tp,
2591  	struct xfs_buf		**agibpp)
2592  {
2593  	struct xfs_mount	*mp = pag->pag_mount;
2594  	int			error;
2595  
2596  	trace_xfs_read_agi(pag->pag_mount, pag->pag_agno);
2597  
2598  	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2599  			XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGI_DADDR(mp)),
2600  			XFS_FSS_TO_BB(mp, 1), 0, agibpp, &xfs_agi_buf_ops);
2601  	if (error)
2602  		return error;
2603  	if (tp)
2604  		xfs_trans_buf_set_type(tp, *agibpp, XFS_BLFT_AGI_BUF);
2605  
2606  	xfs_buf_set_ref(*agibpp, XFS_AGI_REF);
2607  	return 0;
2608  }
2609  
2610  /*
2611   * Read in the agi and initialise the per-ag data. If the caller supplies a
2612   * @agibpp, return the locked AGI buffer to them, otherwise release it.
2613   */
2614  int
xfs_ialloc_read_agi(struct xfs_perag * pag,struct xfs_trans * tp,struct xfs_buf ** agibpp)2615  xfs_ialloc_read_agi(
2616  	struct xfs_perag	*pag,
2617  	struct xfs_trans	*tp,
2618  	struct xfs_buf		**agibpp)
2619  {
2620  	struct xfs_buf		*agibp;
2621  	struct xfs_agi		*agi;
2622  	int			error;
2623  
2624  	trace_xfs_ialloc_read_agi(pag->pag_mount, pag->pag_agno);
2625  
2626  	error = xfs_read_agi(pag, tp, &agibp);
2627  	if (error)
2628  		return error;
2629  
2630  	agi = agibp->b_addr;
2631  	if (!xfs_perag_initialised_agi(pag)) {
2632  		pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2633  		pag->pagi_count = be32_to_cpu(agi->agi_count);
2634  		set_bit(XFS_AGSTATE_AGI_INIT, &pag->pag_opstate);
2635  	}
2636  
2637  	/*
2638  	 * It's possible for these to be out of sync if
2639  	 * we are in the middle of a forced shutdown.
2640  	 */
2641  	ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2642  		xfs_is_shutdown(pag->pag_mount));
2643  	if (agibpp)
2644  		*agibpp = agibp;
2645  	else
2646  		xfs_trans_brelse(tp, agibp);
2647  	return 0;
2648  }
2649  
2650  /* How many inodes are backed by inode clusters ondisk? */
2651  STATIC int
xfs_ialloc_count_ondisk(struct xfs_btree_cur * cur,xfs_agino_t low,xfs_agino_t high,unsigned int * allocated)2652  xfs_ialloc_count_ondisk(
2653  	struct xfs_btree_cur		*cur,
2654  	xfs_agino_t			low,
2655  	xfs_agino_t			high,
2656  	unsigned int			*allocated)
2657  {
2658  	struct xfs_inobt_rec_incore	irec;
2659  	unsigned int			ret = 0;
2660  	int				has_record;
2661  	int				error;
2662  
2663  	error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record);
2664  	if (error)
2665  		return error;
2666  
2667  	while (has_record) {
2668  		unsigned int		i, hole_idx;
2669  
2670  		error = xfs_inobt_get_rec(cur, &irec, &has_record);
2671  		if (error)
2672  			return error;
2673  		if (irec.ir_startino > high)
2674  			break;
2675  
2676  		for (i = 0; i < XFS_INODES_PER_CHUNK; i++) {
2677  			if (irec.ir_startino + i < low)
2678  				continue;
2679  			if (irec.ir_startino + i > high)
2680  				break;
2681  
2682  			hole_idx = i / XFS_INODES_PER_HOLEMASK_BIT;
2683  			if (!(irec.ir_holemask & (1U << hole_idx)))
2684  				ret++;
2685  		}
2686  
2687  		error = xfs_btree_increment(cur, 0, &has_record);
2688  		if (error)
2689  			return error;
2690  	}
2691  
2692  	*allocated = ret;
2693  	return 0;
2694  }
2695  
2696  /* Is there an inode record covering a given extent? */
2697  int
xfs_ialloc_has_inodes_at_extent(struct xfs_btree_cur * cur,xfs_agblock_t bno,xfs_extlen_t len,enum xbtree_recpacking * outcome)2698  xfs_ialloc_has_inodes_at_extent(
2699  	struct xfs_btree_cur	*cur,
2700  	xfs_agblock_t		bno,
2701  	xfs_extlen_t		len,
2702  	enum xbtree_recpacking	*outcome)
2703  {
2704  	xfs_agino_t		agino;
2705  	xfs_agino_t		last_agino;
2706  	unsigned int		allocated;
2707  	int			error;
2708  
2709  	agino = XFS_AGB_TO_AGINO(cur->bc_mp, bno);
2710  	last_agino = XFS_AGB_TO_AGINO(cur->bc_mp, bno + len) - 1;
2711  
2712  	error = xfs_ialloc_count_ondisk(cur, agino, last_agino, &allocated);
2713  	if (error)
2714  		return error;
2715  
2716  	if (allocated == 0)
2717  		*outcome = XBTREE_RECPACKING_EMPTY;
2718  	else if (allocated == last_agino - agino + 1)
2719  		*outcome = XBTREE_RECPACKING_FULL;
2720  	else
2721  		*outcome = XBTREE_RECPACKING_SPARSE;
2722  	return 0;
2723  }
2724  
2725  struct xfs_ialloc_count_inodes {
2726  	xfs_agino_t			count;
2727  	xfs_agino_t			freecount;
2728  };
2729  
2730  /* Record inode counts across all inobt records. */
2731  STATIC int
xfs_ialloc_count_inodes_rec(struct xfs_btree_cur * cur,const union xfs_btree_rec * rec,void * priv)2732  xfs_ialloc_count_inodes_rec(
2733  	struct xfs_btree_cur		*cur,
2734  	const union xfs_btree_rec	*rec,
2735  	void				*priv)
2736  {
2737  	struct xfs_inobt_rec_incore	irec;
2738  	struct xfs_ialloc_count_inodes	*ci = priv;
2739  	xfs_failaddr_t			fa;
2740  
2741  	xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec);
2742  	fa = xfs_inobt_check_irec(cur, &irec);
2743  	if (fa)
2744  		return xfs_inobt_complain_bad_rec(cur, fa, &irec);
2745  
2746  	ci->count += irec.ir_count;
2747  	ci->freecount += irec.ir_freecount;
2748  
2749  	return 0;
2750  }
2751  
2752  /* Count allocated and free inodes under an inobt. */
2753  int
xfs_ialloc_count_inodes(struct xfs_btree_cur * cur,xfs_agino_t * count,xfs_agino_t * freecount)2754  xfs_ialloc_count_inodes(
2755  	struct xfs_btree_cur		*cur,
2756  	xfs_agino_t			*count,
2757  	xfs_agino_t			*freecount)
2758  {
2759  	struct xfs_ialloc_count_inodes	ci = {0};
2760  	int				error;
2761  
2762  	ASSERT(cur->bc_btnum == XFS_BTNUM_INO);
2763  	error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci);
2764  	if (error)
2765  		return error;
2766  
2767  	*count = ci.count;
2768  	*freecount = ci.freecount;
2769  	return 0;
2770  }
2771  
2772  /*
2773   * Initialize inode-related geometry information.
2774   *
2775   * Compute the inode btree min and max levels and set maxicount.
2776   *
2777   * Set the inode cluster size.  This may still be overridden by the file
2778   * system block size if it is larger than the chosen cluster size.
2779   *
2780   * For v5 filesystems, scale the cluster size with the inode size to keep a
2781   * constant ratio of inode per cluster buffer, but only if mkfs has set the
2782   * inode alignment value appropriately for larger cluster sizes.
2783   *
2784   * Then compute the inode cluster alignment information.
2785   */
2786  void
xfs_ialloc_setup_geometry(struct xfs_mount * mp)2787  xfs_ialloc_setup_geometry(
2788  	struct xfs_mount	*mp)
2789  {
2790  	struct xfs_sb		*sbp = &mp->m_sb;
2791  	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
2792  	uint64_t		icount;
2793  	uint			inodes;
2794  
2795  	igeo->new_diflags2 = 0;
2796  	if (xfs_has_bigtime(mp))
2797  		igeo->new_diflags2 |= XFS_DIFLAG2_BIGTIME;
2798  	if (xfs_has_large_extent_counts(mp))
2799  		igeo->new_diflags2 |= XFS_DIFLAG2_NREXT64;
2800  
2801  	/* Compute inode btree geometry. */
2802  	igeo->agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
2803  	igeo->inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
2804  	igeo->inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
2805  	igeo->inobt_mnr[0] = igeo->inobt_mxr[0] / 2;
2806  	igeo->inobt_mnr[1] = igeo->inobt_mxr[1] / 2;
2807  
2808  	igeo->ialloc_inos = max_t(uint16_t, XFS_INODES_PER_CHUNK,
2809  			sbp->sb_inopblock);
2810  	igeo->ialloc_blks = igeo->ialloc_inos >> sbp->sb_inopblog;
2811  
2812  	if (sbp->sb_spino_align)
2813  		igeo->ialloc_min_blks = sbp->sb_spino_align;
2814  	else
2815  		igeo->ialloc_min_blks = igeo->ialloc_blks;
2816  
2817  	/* Compute and fill in value of m_ino_geo.inobt_maxlevels. */
2818  	inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2819  	igeo->inobt_maxlevels = xfs_btree_compute_maxlevels(igeo->inobt_mnr,
2820  			inodes);
2821  	ASSERT(igeo->inobt_maxlevels <= xfs_iallocbt_maxlevels_ondisk());
2822  
2823  	/*
2824  	 * Set the maximum inode count for this filesystem, being careful not
2825  	 * to use obviously garbage sb_inopblog/sb_inopblock values.  Regular
2826  	 * users should never get here due to failing sb verification, but
2827  	 * certain users (xfs_db) need to be usable even with corrupt metadata.
2828  	 */
2829  	if (sbp->sb_imax_pct && igeo->ialloc_blks) {
2830  		/*
2831  		 * Make sure the maximum inode count is a multiple
2832  		 * of the units we allocate inodes in.
2833  		 */
2834  		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
2835  		do_div(icount, 100);
2836  		do_div(icount, igeo->ialloc_blks);
2837  		igeo->maxicount = XFS_FSB_TO_INO(mp,
2838  				icount * igeo->ialloc_blks);
2839  	} else {
2840  		igeo->maxicount = 0;
2841  	}
2842  
2843  	/*
2844  	 * Compute the desired size of an inode cluster buffer size, which
2845  	 * starts at 8K and (on v5 filesystems) scales up with larger inode
2846  	 * sizes.
2847  	 *
2848  	 * Preserve the desired inode cluster size because the sparse inodes
2849  	 * feature uses that desired size (not the actual size) to compute the
2850  	 * sparse inode alignment.  The mount code validates this value, so we
2851  	 * cannot change the behavior.
2852  	 */
2853  	igeo->inode_cluster_size_raw = XFS_INODE_BIG_CLUSTER_SIZE;
2854  	if (xfs_has_v3inodes(mp)) {
2855  		int	new_size = igeo->inode_cluster_size_raw;
2856  
2857  		new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
2858  		if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
2859  			igeo->inode_cluster_size_raw = new_size;
2860  	}
2861  
2862  	/* Calculate inode cluster ratios. */
2863  	if (igeo->inode_cluster_size_raw > mp->m_sb.sb_blocksize)
2864  		igeo->blocks_per_cluster = XFS_B_TO_FSBT(mp,
2865  				igeo->inode_cluster_size_raw);
2866  	else
2867  		igeo->blocks_per_cluster = 1;
2868  	igeo->inode_cluster_size = XFS_FSB_TO_B(mp, igeo->blocks_per_cluster);
2869  	igeo->inodes_per_cluster = XFS_FSB_TO_INO(mp, igeo->blocks_per_cluster);
2870  
2871  	/* Calculate inode cluster alignment. */
2872  	if (xfs_has_align(mp) &&
2873  	    mp->m_sb.sb_inoalignmt >= igeo->blocks_per_cluster)
2874  		igeo->cluster_align = mp->m_sb.sb_inoalignmt;
2875  	else
2876  		igeo->cluster_align = 1;
2877  	igeo->inoalign_mask = igeo->cluster_align - 1;
2878  	igeo->cluster_align_inodes = XFS_FSB_TO_INO(mp, igeo->cluster_align);
2879  
2880  	/*
2881  	 * If we are using stripe alignment, check whether
2882  	 * the stripe unit is a multiple of the inode alignment
2883  	 */
2884  	if (mp->m_dalign && igeo->inoalign_mask &&
2885  	    !(mp->m_dalign & igeo->inoalign_mask))
2886  		igeo->ialloc_align = mp->m_dalign;
2887  	else
2888  		igeo->ialloc_align = 0;
2889  }
2890  
2891  /* Compute the location of the root directory inode that is laid out by mkfs. */
2892  xfs_ino_t
xfs_ialloc_calc_rootino(struct xfs_mount * mp,int sunit)2893  xfs_ialloc_calc_rootino(
2894  	struct xfs_mount	*mp,
2895  	int			sunit)
2896  {
2897  	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
2898  	xfs_agblock_t		first_bno;
2899  
2900  	/*
2901  	 * Pre-calculate the geometry of AG 0.  We know what it looks like
2902  	 * because libxfs knows how to create allocation groups now.
2903  	 *
2904  	 * first_bno is the first block in which mkfs could possibly have
2905  	 * allocated the root directory inode, once we factor in the metadata
2906  	 * that mkfs formats before it.  Namely, the four AG headers...
2907  	 */
2908  	first_bno = howmany(4 * mp->m_sb.sb_sectsize, mp->m_sb.sb_blocksize);
2909  
2910  	/* ...the two free space btree roots... */
2911  	first_bno += 2;
2912  
2913  	/* ...the inode btree root... */
2914  	first_bno += 1;
2915  
2916  	/* ...the initial AGFL... */
2917  	first_bno += xfs_alloc_min_freelist(mp, NULL);
2918  
2919  	/* ...the free inode btree root... */
2920  	if (xfs_has_finobt(mp))
2921  		first_bno++;
2922  
2923  	/* ...the reverse mapping btree root... */
2924  	if (xfs_has_rmapbt(mp))
2925  		first_bno++;
2926  
2927  	/* ...the reference count btree... */
2928  	if (xfs_has_reflink(mp))
2929  		first_bno++;
2930  
2931  	/*
2932  	 * ...and the log, if it is allocated in the first allocation group.
2933  	 *
2934  	 * This can happen with filesystems that only have a single
2935  	 * allocation group, or very odd geometries created by old mkfs
2936  	 * versions on very small filesystems.
2937  	 */
2938  	if (xfs_ag_contains_log(mp, 0))
2939  		 first_bno += mp->m_sb.sb_logblocks;
2940  
2941  	/*
2942  	 * Now round first_bno up to whatever allocation alignment is given
2943  	 * by the filesystem or was passed in.
2944  	 */
2945  	if (xfs_has_dalign(mp) && igeo->ialloc_align > 0)
2946  		first_bno = roundup(first_bno, sunit);
2947  	else if (xfs_has_align(mp) &&
2948  			mp->m_sb.sb_inoalignmt > 1)
2949  		first_bno = roundup(first_bno, mp->m_sb.sb_inoalignmt);
2950  
2951  	return XFS_AGINO_TO_INO(mp, 0, XFS_AGB_TO_AGINO(mp, first_bno));
2952  }
2953  
2954  /*
2955   * Ensure there are not sparse inode clusters that cross the new EOAG.
2956   *
2957   * This is a no-op for non-spinode filesystems since clusters are always fully
2958   * allocated and checking the bnobt suffices.  However, a spinode filesystem
2959   * could have a record where the upper inodes are free blocks.  If those blocks
2960   * were removed from the filesystem, the inode record would extend beyond EOAG,
2961   * which will be flagged as corruption.
2962   */
2963  int
xfs_ialloc_check_shrink(struct xfs_perag * pag,struct xfs_trans * tp,struct xfs_buf * agibp,xfs_agblock_t new_length)2964  xfs_ialloc_check_shrink(
2965  	struct xfs_perag	*pag,
2966  	struct xfs_trans	*tp,
2967  	struct xfs_buf		*agibp,
2968  	xfs_agblock_t		new_length)
2969  {
2970  	struct xfs_inobt_rec_incore rec;
2971  	struct xfs_btree_cur	*cur;
2972  	xfs_agino_t		agino;
2973  	int			has;
2974  	int			error;
2975  
2976  	if (!xfs_has_sparseinodes(pag->pag_mount))
2977  		return 0;
2978  
2979  	cur = xfs_inobt_init_cursor(pag, tp, agibp, XFS_BTNUM_INO);
2980  
2981  	/* Look up the inobt record that would correspond to the new EOFS. */
2982  	agino = XFS_AGB_TO_AGINO(pag->pag_mount, new_length);
2983  	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &has);
2984  	if (error || !has)
2985  		goto out;
2986  
2987  	error = xfs_inobt_get_rec(cur, &rec, &has);
2988  	if (error)
2989  		goto out;
2990  
2991  	if (!has) {
2992  		error = -EFSCORRUPTED;
2993  		goto out;
2994  	}
2995  
2996  	/* If the record covers inodes that would be beyond EOFS, bail out. */
2997  	if (rec.ir_startino + XFS_INODES_PER_CHUNK > agino) {
2998  		error = -ENOSPC;
2999  		goto out;
3000  	}
3001  out:
3002  	xfs_btree_del_cursor(cur, error);
3003  	return error;
3004  }
3005