1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3 
4 #include <linux/bitfield.h>
5 #include <linux/delay.h>
6 #include <linux/if_ether.h>
7 #include "e1000_mac.h"
8 #include "e1000_phy.h"
9 
10 static s32  igb_phy_setup_autoneg(struct e1000_hw *hw);
11 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
12 					     u16 *phy_ctrl);
13 static s32  igb_wait_autoneg(struct e1000_hw *hw);
14 static s32  igb_set_master_slave_mode(struct e1000_hw *hw);
15 
16 /* Cable length tables */
17 static const u16 e1000_m88_cable_length_table[] = {
18 	0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
19 
20 static const u16 e1000_igp_2_cable_length_table[] = {
21 	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
22 	0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
23 	6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
24 	21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
25 	40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
26 	60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
27 	83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
28 	104, 109, 114, 118, 121, 124};
29 
30 /**
31  *  igb_check_reset_block - Check if PHY reset is blocked
32  *  @hw: pointer to the HW structure
33  *
34  *  Read the PHY management control register and check whether a PHY reset
35  *  is blocked.  If a reset is not blocked return 0, otherwise
36  *  return E1000_BLK_PHY_RESET (12).
37  **/
igb_check_reset_block(struct e1000_hw * hw)38 s32 igb_check_reset_block(struct e1000_hw *hw)
39 {
40 	u32 manc;
41 
42 	manc = rd32(E1000_MANC);
43 
44 	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0;
45 }
46 
47 /**
48  *  igb_get_phy_id - Retrieve the PHY ID and revision
49  *  @hw: pointer to the HW structure
50  *
51  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
52  *  revision in the hardware structure.
53  **/
igb_get_phy_id(struct e1000_hw * hw)54 s32 igb_get_phy_id(struct e1000_hw *hw)
55 {
56 	struct e1000_phy_info *phy = &hw->phy;
57 	s32 ret_val = 0;
58 	u16 phy_id;
59 
60 	/* ensure PHY page selection to fix misconfigured i210 */
61 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
62 		phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0);
63 
64 	ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
65 	if (ret_val)
66 		goto out;
67 
68 	phy->id = (u32)(phy_id << 16);
69 	udelay(20);
70 	ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
71 	if (ret_val)
72 		goto out;
73 
74 	phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
75 	phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
76 
77 out:
78 	return ret_val;
79 }
80 
81 /**
82  *  igb_phy_reset_dsp - Reset PHY DSP
83  *  @hw: pointer to the HW structure
84  *
85  *  Reset the digital signal processor.
86  **/
igb_phy_reset_dsp(struct e1000_hw * hw)87 static s32 igb_phy_reset_dsp(struct e1000_hw *hw)
88 {
89 	s32 ret_val = 0;
90 
91 	if (!(hw->phy.ops.write_reg))
92 		goto out;
93 
94 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
95 	if (ret_val)
96 		goto out;
97 
98 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);
99 
100 out:
101 	return ret_val;
102 }
103 
104 /**
105  *  igb_read_phy_reg_mdic - Read MDI control register
106  *  @hw: pointer to the HW structure
107  *  @offset: register offset to be read
108  *  @data: pointer to the read data
109  *
110  *  Reads the MDI control register in the PHY at offset and stores the
111  *  information read to data.
112  **/
igb_read_phy_reg_mdic(struct e1000_hw * hw,u32 offset,u16 * data)113 s32 igb_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
114 {
115 	struct e1000_phy_info *phy = &hw->phy;
116 	u32 i, mdic = 0;
117 	s32 ret_val = 0;
118 
119 	if (offset > MAX_PHY_REG_ADDRESS) {
120 		hw_dbg("PHY Address %d is out of range\n", offset);
121 		ret_val = -E1000_ERR_PARAM;
122 		goto out;
123 	}
124 
125 	/* Set up Op-code, Phy Address, and register offset in the MDI
126 	 * Control register.  The MAC will take care of interfacing with the
127 	 * PHY to retrieve the desired data.
128 	 */
129 	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
130 		(phy->addr << E1000_MDIC_PHY_SHIFT) |
131 		(E1000_MDIC_OP_READ));
132 
133 	wr32(E1000_MDIC, mdic);
134 
135 	/* Poll the ready bit to see if the MDI read completed
136 	 * Increasing the time out as testing showed failures with
137 	 * the lower time out
138 	 */
139 	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
140 		udelay(50);
141 		mdic = rd32(E1000_MDIC);
142 		if (mdic & E1000_MDIC_READY)
143 			break;
144 	}
145 	if (!(mdic & E1000_MDIC_READY)) {
146 		hw_dbg("MDI Read did not complete\n");
147 		ret_val = -E1000_ERR_PHY;
148 		goto out;
149 	}
150 	if (mdic & E1000_MDIC_ERROR) {
151 		hw_dbg("MDI Error\n");
152 		ret_val = -E1000_ERR_PHY;
153 		goto out;
154 	}
155 	*data = (u16) mdic;
156 
157 out:
158 	return ret_val;
159 }
160 
161 /**
162  *  igb_write_phy_reg_mdic - Write MDI control register
163  *  @hw: pointer to the HW structure
164  *  @offset: register offset to write to
165  *  @data: data to write to register at offset
166  *
167  *  Writes data to MDI control register in the PHY at offset.
168  **/
igb_write_phy_reg_mdic(struct e1000_hw * hw,u32 offset,u16 data)169 s32 igb_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
170 {
171 	struct e1000_phy_info *phy = &hw->phy;
172 	u32 i, mdic = 0;
173 	s32 ret_val = 0;
174 
175 	if (offset > MAX_PHY_REG_ADDRESS) {
176 		hw_dbg("PHY Address %d is out of range\n", offset);
177 		ret_val = -E1000_ERR_PARAM;
178 		goto out;
179 	}
180 
181 	/* Set up Op-code, Phy Address, and register offset in the MDI
182 	 * Control register.  The MAC will take care of interfacing with the
183 	 * PHY to retrieve the desired data.
184 	 */
185 	mdic = (((u32)data) |
186 		(offset << E1000_MDIC_REG_SHIFT) |
187 		(phy->addr << E1000_MDIC_PHY_SHIFT) |
188 		(E1000_MDIC_OP_WRITE));
189 
190 	wr32(E1000_MDIC, mdic);
191 
192 	/* Poll the ready bit to see if the MDI read completed
193 	 * Increasing the time out as testing showed failures with
194 	 * the lower time out
195 	 */
196 	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
197 		udelay(50);
198 		mdic = rd32(E1000_MDIC);
199 		if (mdic & E1000_MDIC_READY)
200 			break;
201 	}
202 	if (!(mdic & E1000_MDIC_READY)) {
203 		hw_dbg("MDI Write did not complete\n");
204 		ret_val = -E1000_ERR_PHY;
205 		goto out;
206 	}
207 	if (mdic & E1000_MDIC_ERROR) {
208 		hw_dbg("MDI Error\n");
209 		ret_val = -E1000_ERR_PHY;
210 		goto out;
211 	}
212 
213 out:
214 	return ret_val;
215 }
216 
217 /**
218  *  igb_read_phy_reg_i2c - Read PHY register using i2c
219  *  @hw: pointer to the HW structure
220  *  @offset: register offset to be read
221  *  @data: pointer to the read data
222  *
223  *  Reads the PHY register at offset using the i2c interface and stores the
224  *  retrieved information in data.
225  **/
igb_read_phy_reg_i2c(struct e1000_hw * hw,u32 offset,u16 * data)226 s32 igb_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data)
227 {
228 	struct e1000_phy_info *phy = &hw->phy;
229 	u32 i, i2ccmd = 0;
230 
231 	/* Set up Op-code, Phy Address, and register address in the I2CCMD
232 	 * register.  The MAC will take care of interfacing with the
233 	 * PHY to retrieve the desired data.
234 	 */
235 	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
236 		  (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
237 		  (E1000_I2CCMD_OPCODE_READ));
238 
239 	wr32(E1000_I2CCMD, i2ccmd);
240 
241 	/* Poll the ready bit to see if the I2C read completed */
242 	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
243 		udelay(50);
244 		i2ccmd = rd32(E1000_I2CCMD);
245 		if (i2ccmd & E1000_I2CCMD_READY)
246 			break;
247 	}
248 	if (!(i2ccmd & E1000_I2CCMD_READY)) {
249 		hw_dbg("I2CCMD Read did not complete\n");
250 		return -E1000_ERR_PHY;
251 	}
252 	if (i2ccmd & E1000_I2CCMD_ERROR) {
253 		hw_dbg("I2CCMD Error bit set\n");
254 		return -E1000_ERR_PHY;
255 	}
256 
257 	/* Need to byte-swap the 16-bit value. */
258 	*data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
259 
260 	return 0;
261 }
262 
263 /**
264  *  igb_write_phy_reg_i2c - Write PHY register using i2c
265  *  @hw: pointer to the HW structure
266  *  @offset: register offset to write to
267  *  @data: data to write at register offset
268  *
269  *  Writes the data to PHY register at the offset using the i2c interface.
270  **/
igb_write_phy_reg_i2c(struct e1000_hw * hw,u32 offset,u16 data)271 s32 igb_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data)
272 {
273 	struct e1000_phy_info *phy = &hw->phy;
274 	u32 i, i2ccmd = 0;
275 	u16 phy_data_swapped;
276 
277 	/* Prevent overwriting SFP I2C EEPROM which is at A0 address.*/
278 	if ((hw->phy.addr == 0) || (hw->phy.addr > 7)) {
279 		hw_dbg("PHY I2C Address %d is out of range.\n",
280 			  hw->phy.addr);
281 		return -E1000_ERR_CONFIG;
282 	}
283 
284 	/* Swap the data bytes for the I2C interface */
285 	phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
286 
287 	/* Set up Op-code, Phy Address, and register address in the I2CCMD
288 	 * register.  The MAC will take care of interfacing with the
289 	 * PHY to retrieve the desired data.
290 	 */
291 	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
292 		  (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
293 		  E1000_I2CCMD_OPCODE_WRITE |
294 		  phy_data_swapped);
295 
296 	wr32(E1000_I2CCMD, i2ccmd);
297 
298 	/* Poll the ready bit to see if the I2C read completed */
299 	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
300 		udelay(50);
301 		i2ccmd = rd32(E1000_I2CCMD);
302 		if (i2ccmd & E1000_I2CCMD_READY)
303 			break;
304 	}
305 	if (!(i2ccmd & E1000_I2CCMD_READY)) {
306 		hw_dbg("I2CCMD Write did not complete\n");
307 		return -E1000_ERR_PHY;
308 	}
309 	if (i2ccmd & E1000_I2CCMD_ERROR) {
310 		hw_dbg("I2CCMD Error bit set\n");
311 		return -E1000_ERR_PHY;
312 	}
313 
314 	return 0;
315 }
316 
317 /**
318  *  igb_read_sfp_data_byte - Reads SFP module data.
319  *  @hw: pointer to the HW structure
320  *  @offset: byte location offset to be read
321  *  @data: read data buffer pointer
322  *
323  *  Reads one byte from SFP module data stored
324  *  in SFP resided EEPROM memory or SFP diagnostic area.
325  *  Function should be called with
326  *  E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access
327  *  E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters
328  *  access
329  **/
igb_read_sfp_data_byte(struct e1000_hw * hw,u16 offset,u8 * data)330 s32 igb_read_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 *data)
331 {
332 	u32 i = 0;
333 	u32 i2ccmd = 0;
334 	u32 data_local = 0;
335 
336 	if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) {
337 		hw_dbg("I2CCMD command address exceeds upper limit\n");
338 		return -E1000_ERR_PHY;
339 	}
340 
341 	/* Set up Op-code, EEPROM Address,in the I2CCMD
342 	 * register. The MAC will take care of interfacing with the
343 	 * EEPROM to retrieve the desired data.
344 	 */
345 	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
346 		  E1000_I2CCMD_OPCODE_READ);
347 
348 	wr32(E1000_I2CCMD, i2ccmd);
349 
350 	/* Poll the ready bit to see if the I2C read completed */
351 	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
352 		udelay(50);
353 		data_local = rd32(E1000_I2CCMD);
354 		if (data_local & E1000_I2CCMD_READY)
355 			break;
356 	}
357 	if (!(data_local & E1000_I2CCMD_READY)) {
358 		hw_dbg("I2CCMD Read did not complete\n");
359 		return -E1000_ERR_PHY;
360 	}
361 	if (data_local & E1000_I2CCMD_ERROR) {
362 		hw_dbg("I2CCMD Error bit set\n");
363 		return -E1000_ERR_PHY;
364 	}
365 	*data = (u8) data_local & 0xFF;
366 
367 	return 0;
368 }
369 
370 /**
371  *  igb_read_phy_reg_igp - Read igp PHY register
372  *  @hw: pointer to the HW structure
373  *  @offset: register offset to be read
374  *  @data: pointer to the read data
375  *
376  *  Acquires semaphore, if necessary, then reads the PHY register at offset
377  *  and storing the retrieved information in data.  Release any acquired
378  *  semaphores before exiting.
379  **/
igb_read_phy_reg_igp(struct e1000_hw * hw,u32 offset,u16 * data)380 s32 igb_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
381 {
382 	s32 ret_val = 0;
383 
384 	if (!(hw->phy.ops.acquire))
385 		goto out;
386 
387 	ret_val = hw->phy.ops.acquire(hw);
388 	if (ret_val)
389 		goto out;
390 
391 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
392 		ret_val = igb_write_phy_reg_mdic(hw,
393 						 IGP01E1000_PHY_PAGE_SELECT,
394 						 (u16)offset);
395 		if (ret_val) {
396 			hw->phy.ops.release(hw);
397 			goto out;
398 		}
399 	}
400 
401 	ret_val = igb_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
402 					data);
403 
404 	hw->phy.ops.release(hw);
405 
406 out:
407 	return ret_val;
408 }
409 
410 /**
411  *  igb_write_phy_reg_igp - Write igp PHY register
412  *  @hw: pointer to the HW structure
413  *  @offset: register offset to write to
414  *  @data: data to write at register offset
415  *
416  *  Acquires semaphore, if necessary, then writes the data to PHY register
417  *  at the offset.  Release any acquired semaphores before exiting.
418  **/
igb_write_phy_reg_igp(struct e1000_hw * hw,u32 offset,u16 data)419 s32 igb_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
420 {
421 	s32 ret_val = 0;
422 
423 	if (!(hw->phy.ops.acquire))
424 		goto out;
425 
426 	ret_val = hw->phy.ops.acquire(hw);
427 	if (ret_val)
428 		goto out;
429 
430 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
431 		ret_val = igb_write_phy_reg_mdic(hw,
432 						 IGP01E1000_PHY_PAGE_SELECT,
433 						 (u16)offset);
434 		if (ret_val) {
435 			hw->phy.ops.release(hw);
436 			goto out;
437 		}
438 	}
439 
440 	ret_val = igb_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
441 					 data);
442 
443 	hw->phy.ops.release(hw);
444 
445 out:
446 	return ret_val;
447 }
448 
449 /**
450  *  igb_copper_link_setup_82580 - Setup 82580 PHY for copper link
451  *  @hw: pointer to the HW structure
452  *
453  *  Sets up Carrier-sense on Transmit and downshift values.
454  **/
igb_copper_link_setup_82580(struct e1000_hw * hw)455 s32 igb_copper_link_setup_82580(struct e1000_hw *hw)
456 {
457 	struct e1000_phy_info *phy = &hw->phy;
458 	s32 ret_val;
459 	u16 phy_data;
460 
461 	if (phy->reset_disable) {
462 		ret_val = 0;
463 		goto out;
464 	}
465 
466 	if (phy->type == e1000_phy_82580) {
467 		ret_val = hw->phy.ops.reset(hw);
468 		if (ret_val) {
469 			hw_dbg("Error resetting the PHY.\n");
470 			goto out;
471 		}
472 	}
473 
474 	/* Enable CRS on TX. This must be set for half-duplex operation. */
475 	ret_val = phy->ops.read_reg(hw, I82580_CFG_REG, &phy_data);
476 	if (ret_val)
477 		goto out;
478 
479 	phy_data |= I82580_CFG_ASSERT_CRS_ON_TX;
480 
481 	/* Enable downshift */
482 	phy_data |= I82580_CFG_ENABLE_DOWNSHIFT;
483 
484 	ret_val = phy->ops.write_reg(hw, I82580_CFG_REG, phy_data);
485 	if (ret_val)
486 		goto out;
487 
488 	/* Set MDI/MDIX mode */
489 	ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
490 	if (ret_val)
491 		goto out;
492 	phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK;
493 	/* Options:
494 	 *   0 - Auto (default)
495 	 *   1 - MDI mode
496 	 *   2 - MDI-X mode
497 	 */
498 	switch (hw->phy.mdix) {
499 	case 1:
500 		break;
501 	case 2:
502 		phy_data |= I82580_PHY_CTRL2_MANUAL_MDIX;
503 		break;
504 	case 0:
505 	default:
506 		phy_data |= I82580_PHY_CTRL2_AUTO_MDI_MDIX;
507 		break;
508 	}
509 	ret_val = hw->phy.ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
510 
511 out:
512 	return ret_val;
513 }
514 
515 /**
516  *  igb_copper_link_setup_m88 - Setup m88 PHY's for copper link
517  *  @hw: pointer to the HW structure
518  *
519  *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
520  *  and downshift values are set also.
521  **/
igb_copper_link_setup_m88(struct e1000_hw * hw)522 s32 igb_copper_link_setup_m88(struct e1000_hw *hw)
523 {
524 	struct e1000_phy_info *phy = &hw->phy;
525 	s32 ret_val;
526 	u16 phy_data;
527 
528 	if (phy->reset_disable) {
529 		ret_val = 0;
530 		goto out;
531 	}
532 
533 	/* Enable CRS on TX. This must be set for half-duplex operation. */
534 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
535 	if (ret_val)
536 		goto out;
537 
538 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
539 
540 	/* Options:
541 	 *   MDI/MDI-X = 0 (default)
542 	 *   0 - Auto for all speeds
543 	 *   1 - MDI mode
544 	 *   2 - MDI-X mode
545 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
546 	 */
547 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
548 
549 	switch (phy->mdix) {
550 	case 1:
551 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
552 		break;
553 	case 2:
554 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
555 		break;
556 	case 3:
557 		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
558 		break;
559 	case 0:
560 	default:
561 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
562 		break;
563 	}
564 
565 	/* Options:
566 	 *   disable_polarity_correction = 0 (default)
567 	 *       Automatic Correction for Reversed Cable Polarity
568 	 *   0 - Disabled
569 	 *   1 - Enabled
570 	 */
571 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
572 	if (phy->disable_polarity_correction == 1)
573 		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
574 
575 	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
576 	if (ret_val)
577 		goto out;
578 
579 	if (phy->revision < E1000_REVISION_4) {
580 		/* Force TX_CLK in the Extended PHY Specific Control Register
581 		 * to 25MHz clock.
582 		 */
583 		ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
584 					    &phy_data);
585 		if (ret_val)
586 			goto out;
587 
588 		phy_data |= M88E1000_EPSCR_TX_CLK_25;
589 
590 		if ((phy->revision == E1000_REVISION_2) &&
591 		    (phy->id == M88E1111_I_PHY_ID)) {
592 			/* 82573L PHY - set the downshift counter to 5x. */
593 			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
594 			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
595 		} else {
596 			/* Configure Master and Slave downshift values */
597 			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
598 				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
599 			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
600 				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
601 		}
602 		ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
603 					     phy_data);
604 		if (ret_val)
605 			goto out;
606 	}
607 
608 	/* Commit the changes. */
609 	ret_val = igb_phy_sw_reset(hw);
610 	if (ret_val) {
611 		hw_dbg("Error committing the PHY changes\n");
612 		goto out;
613 	}
614 
615 out:
616 	return ret_val;
617 }
618 
619 /**
620  *  igb_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link
621  *  @hw: pointer to the HW structure
622  *
623  *  Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's.
624  *  Also enables and sets the downshift parameters.
625  **/
igb_copper_link_setup_m88_gen2(struct e1000_hw * hw)626 s32 igb_copper_link_setup_m88_gen2(struct e1000_hw *hw)
627 {
628 	struct e1000_phy_info *phy = &hw->phy;
629 	s32 ret_val;
630 	u16 phy_data;
631 
632 	if (phy->reset_disable)
633 		return 0;
634 
635 	/* Enable CRS on Tx. This must be set for half-duplex operation. */
636 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
637 	if (ret_val)
638 		return ret_val;
639 
640 	/* Options:
641 	 *   MDI/MDI-X = 0 (default)
642 	 *   0 - Auto for all speeds
643 	 *   1 - MDI mode
644 	 *   2 - MDI-X mode
645 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
646 	 */
647 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
648 
649 	switch (phy->mdix) {
650 	case 1:
651 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
652 		break;
653 	case 2:
654 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
655 		break;
656 	case 3:
657 		/* M88E1112 does not support this mode) */
658 		if (phy->id != M88E1112_E_PHY_ID) {
659 			phy_data |= M88E1000_PSCR_AUTO_X_1000T;
660 			break;
661 		}
662 		fallthrough;
663 	case 0:
664 	default:
665 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
666 		break;
667 	}
668 
669 	/* Options:
670 	 *   disable_polarity_correction = 0 (default)
671 	 *       Automatic Correction for Reversed Cable Polarity
672 	 *   0 - Disabled
673 	 *   1 - Enabled
674 	 */
675 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
676 	if (phy->disable_polarity_correction == 1)
677 		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
678 
679 	/* Enable downshift and setting it to X6 */
680 	if (phy->id == M88E1543_E_PHY_ID) {
681 		phy_data &= ~I347AT4_PSCR_DOWNSHIFT_ENABLE;
682 		ret_val =
683 		    phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
684 		if (ret_val)
685 			return ret_val;
686 
687 		ret_val = igb_phy_sw_reset(hw);
688 		if (ret_val) {
689 			hw_dbg("Error committing the PHY changes\n");
690 			return ret_val;
691 		}
692 	}
693 
694 	phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK;
695 	phy_data |= I347AT4_PSCR_DOWNSHIFT_6X;
696 	phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE;
697 
698 	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
699 	if (ret_val)
700 		return ret_val;
701 
702 	/* Commit the changes. */
703 	ret_val = igb_phy_sw_reset(hw);
704 	if (ret_val) {
705 		hw_dbg("Error committing the PHY changes\n");
706 		return ret_val;
707 	}
708 	ret_val = igb_set_master_slave_mode(hw);
709 	if (ret_val)
710 		return ret_val;
711 
712 	return 0;
713 }
714 
715 /**
716  *  igb_copper_link_setup_igp - Setup igp PHY's for copper link
717  *  @hw: pointer to the HW structure
718  *
719  *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
720  *  igp PHY's.
721  **/
igb_copper_link_setup_igp(struct e1000_hw * hw)722 s32 igb_copper_link_setup_igp(struct e1000_hw *hw)
723 {
724 	struct e1000_phy_info *phy = &hw->phy;
725 	s32 ret_val;
726 	u16 data;
727 
728 	if (phy->reset_disable) {
729 		ret_val = 0;
730 		goto out;
731 	}
732 
733 	ret_val = phy->ops.reset(hw);
734 	if (ret_val) {
735 		hw_dbg("Error resetting the PHY.\n");
736 		goto out;
737 	}
738 
739 	/* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
740 	 * timeout issues when LFS is enabled.
741 	 */
742 	msleep(100);
743 
744 	/* The NVM settings will configure LPLU in D3 for
745 	 * non-IGP1 PHYs.
746 	 */
747 	if (phy->type == e1000_phy_igp) {
748 		/* disable lplu d3 during driver init */
749 		if (phy->ops.set_d3_lplu_state)
750 			ret_val = phy->ops.set_d3_lplu_state(hw, false);
751 		if (ret_val) {
752 			hw_dbg("Error Disabling LPLU D3\n");
753 			goto out;
754 		}
755 	}
756 
757 	/* disable lplu d0 during driver init */
758 	ret_val = phy->ops.set_d0_lplu_state(hw, false);
759 	if (ret_val) {
760 		hw_dbg("Error Disabling LPLU D0\n");
761 		goto out;
762 	}
763 	/* Configure mdi-mdix settings */
764 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data);
765 	if (ret_val)
766 		goto out;
767 
768 	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
769 
770 	switch (phy->mdix) {
771 	case 1:
772 		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
773 		break;
774 	case 2:
775 		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
776 		break;
777 	case 0:
778 	default:
779 		data |= IGP01E1000_PSCR_AUTO_MDIX;
780 		break;
781 	}
782 	ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data);
783 	if (ret_val)
784 		goto out;
785 
786 	/* set auto-master slave resolution settings */
787 	if (hw->mac.autoneg) {
788 		/* when autonegotiation advertisement is only 1000Mbps then we
789 		 * should disable SmartSpeed and enable Auto MasterSlave
790 		 * resolution as hardware default.
791 		 */
792 		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
793 			/* Disable SmartSpeed */
794 			ret_val = phy->ops.read_reg(hw,
795 						    IGP01E1000_PHY_PORT_CONFIG,
796 						    &data);
797 			if (ret_val)
798 				goto out;
799 
800 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
801 			ret_val = phy->ops.write_reg(hw,
802 						     IGP01E1000_PHY_PORT_CONFIG,
803 						     data);
804 			if (ret_val)
805 				goto out;
806 
807 			/* Set auto Master/Slave resolution process */
808 			ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
809 			if (ret_val)
810 				goto out;
811 
812 			data &= ~CR_1000T_MS_ENABLE;
813 			ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
814 			if (ret_val)
815 				goto out;
816 		}
817 
818 		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
819 		if (ret_val)
820 			goto out;
821 
822 		/* load defaults for future use */
823 		phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
824 			((data & CR_1000T_MS_VALUE) ?
825 			e1000_ms_force_master :
826 			e1000_ms_force_slave) :
827 			e1000_ms_auto;
828 
829 		switch (phy->ms_type) {
830 		case e1000_ms_force_master:
831 			data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
832 			break;
833 		case e1000_ms_force_slave:
834 			data |= CR_1000T_MS_ENABLE;
835 			data &= ~(CR_1000T_MS_VALUE);
836 			break;
837 		case e1000_ms_auto:
838 			data &= ~CR_1000T_MS_ENABLE;
839 			break;
840 		default:
841 			break;
842 		}
843 		ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
844 		if (ret_val)
845 			goto out;
846 	}
847 
848 out:
849 	return ret_val;
850 }
851 
852 /**
853  *  igb_copper_link_autoneg - Setup/Enable autoneg for copper link
854  *  @hw: pointer to the HW structure
855  *
856  *  Performs initial bounds checking on autoneg advertisement parameter, then
857  *  configure to advertise the full capability.  Setup the PHY to autoneg
858  *  and restart the negotiation process between the link partner.  If
859  *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
860  **/
igb_copper_link_autoneg(struct e1000_hw * hw)861 static s32 igb_copper_link_autoneg(struct e1000_hw *hw)
862 {
863 	struct e1000_phy_info *phy = &hw->phy;
864 	s32 ret_val;
865 	u16 phy_ctrl;
866 
867 	/* Perform some bounds checking on the autoneg advertisement
868 	 * parameter.
869 	 */
870 	phy->autoneg_advertised &= phy->autoneg_mask;
871 
872 	/* If autoneg_advertised is zero, we assume it was not defaulted
873 	 * by the calling code so we set to advertise full capability.
874 	 */
875 	if (phy->autoneg_advertised == 0)
876 		phy->autoneg_advertised = phy->autoneg_mask;
877 
878 	hw_dbg("Reconfiguring auto-neg advertisement params\n");
879 	ret_val = igb_phy_setup_autoneg(hw);
880 	if (ret_val) {
881 		hw_dbg("Error Setting up Auto-Negotiation\n");
882 		goto out;
883 	}
884 	hw_dbg("Restarting Auto-Neg\n");
885 
886 	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
887 	 * the Auto Neg Restart bit in the PHY control register.
888 	 */
889 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
890 	if (ret_val)
891 		goto out;
892 
893 	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
894 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
895 	if (ret_val)
896 		goto out;
897 
898 	/* Does the user want to wait for Auto-Neg to complete here, or
899 	 * check at a later time (for example, callback routine).
900 	 */
901 	if (phy->autoneg_wait_to_complete) {
902 		ret_val = igb_wait_autoneg(hw);
903 		if (ret_val) {
904 			hw_dbg("Error while waiting for autoneg to complete\n");
905 			goto out;
906 		}
907 	}
908 
909 	hw->mac.get_link_status = true;
910 
911 out:
912 	return ret_val;
913 }
914 
915 /**
916  *  igb_phy_setup_autoneg - Configure PHY for auto-negotiation
917  *  @hw: pointer to the HW structure
918  *
919  *  Reads the MII auto-neg advertisement register and/or the 1000T control
920  *  register and if the PHY is already setup for auto-negotiation, then
921  *  return successful.  Otherwise, setup advertisement and flow control to
922  *  the appropriate values for the wanted auto-negotiation.
923  **/
igb_phy_setup_autoneg(struct e1000_hw * hw)924 static s32 igb_phy_setup_autoneg(struct e1000_hw *hw)
925 {
926 	struct e1000_phy_info *phy = &hw->phy;
927 	s32 ret_val;
928 	u16 mii_autoneg_adv_reg;
929 	u16 mii_1000t_ctrl_reg = 0;
930 
931 	phy->autoneg_advertised &= phy->autoneg_mask;
932 
933 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
934 	ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
935 	if (ret_val)
936 		goto out;
937 
938 	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
939 		/* Read the MII 1000Base-T Control Register (Address 9). */
940 		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
941 					    &mii_1000t_ctrl_reg);
942 		if (ret_val)
943 			goto out;
944 	}
945 
946 	/* Need to parse both autoneg_advertised and fc and set up
947 	 * the appropriate PHY registers.  First we will parse for
948 	 * autoneg_advertised software override.  Since we can advertise
949 	 * a plethora of combinations, we need to check each bit
950 	 * individually.
951 	 */
952 
953 	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
954 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
955 	 * the  1000Base-T Control Register (Address 9).
956 	 */
957 	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
958 				 NWAY_AR_100TX_HD_CAPS |
959 				 NWAY_AR_10T_FD_CAPS   |
960 				 NWAY_AR_10T_HD_CAPS);
961 	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
962 
963 	hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
964 
965 	/* Do we want to advertise 10 Mb Half Duplex? */
966 	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
967 		hw_dbg("Advertise 10mb Half duplex\n");
968 		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
969 	}
970 
971 	/* Do we want to advertise 10 Mb Full Duplex? */
972 	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
973 		hw_dbg("Advertise 10mb Full duplex\n");
974 		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
975 	}
976 
977 	/* Do we want to advertise 100 Mb Half Duplex? */
978 	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
979 		hw_dbg("Advertise 100mb Half duplex\n");
980 		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
981 	}
982 
983 	/* Do we want to advertise 100 Mb Full Duplex? */
984 	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
985 		hw_dbg("Advertise 100mb Full duplex\n");
986 		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
987 	}
988 
989 	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
990 	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
991 		hw_dbg("Advertise 1000mb Half duplex request denied!\n");
992 
993 	/* Do we want to advertise 1000 Mb Full Duplex? */
994 	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
995 		hw_dbg("Advertise 1000mb Full duplex\n");
996 		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
997 	}
998 
999 	/* Check for a software override of the flow control settings, and
1000 	 * setup the PHY advertisement registers accordingly.  If
1001 	 * auto-negotiation is enabled, then software will have to set the
1002 	 * "PAUSE" bits to the correct value in the Auto-Negotiation
1003 	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
1004 	 * negotiation.
1005 	 *
1006 	 * The possible values of the "fc" parameter are:
1007 	 *      0:  Flow control is completely disabled
1008 	 *      1:  Rx flow control is enabled (we can receive pause frames
1009 	 *          but not send pause frames).
1010 	 *      2:  Tx flow control is enabled (we can send pause frames
1011 	 *          but we do not support receiving pause frames).
1012 	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
1013 	 *  other:  No software override.  The flow control configuration
1014 	 *          in the EEPROM is used.
1015 	 */
1016 	switch (hw->fc.current_mode) {
1017 	case e1000_fc_none:
1018 		/* Flow control (RX & TX) is completely disabled by a
1019 		 * software over-ride.
1020 		 */
1021 		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1022 		break;
1023 	case e1000_fc_rx_pause:
1024 		/* RX Flow control is enabled, and TX Flow control is
1025 		 * disabled, by a software over-ride.
1026 		 *
1027 		 * Since there really isn't a way to advertise that we are
1028 		 * capable of RX Pause ONLY, we will advertise that we
1029 		 * support both symmetric and asymmetric RX PAUSE.  Later
1030 		 * (in e1000_config_fc_after_link_up) we will disable the
1031 		 * hw's ability to send PAUSE frames.
1032 		 */
1033 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1034 		break;
1035 	case e1000_fc_tx_pause:
1036 		/* TX Flow control is enabled, and RX Flow control is
1037 		 * disabled, by a software over-ride.
1038 		 */
1039 		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1040 		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1041 		break;
1042 	case e1000_fc_full:
1043 		/* Flow control (both RX and TX) is enabled by a software
1044 		 * over-ride.
1045 		 */
1046 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1047 		break;
1048 	default:
1049 		hw_dbg("Flow control param set incorrectly\n");
1050 		ret_val = -E1000_ERR_CONFIG;
1051 		goto out;
1052 	}
1053 
1054 	ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1055 	if (ret_val)
1056 		goto out;
1057 
1058 	hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1059 
1060 	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
1061 		ret_val = phy->ops.write_reg(hw,
1062 					     PHY_1000T_CTRL,
1063 					     mii_1000t_ctrl_reg);
1064 		if (ret_val)
1065 			goto out;
1066 	}
1067 
1068 out:
1069 	return ret_val;
1070 }
1071 
1072 /**
1073  *  igb_setup_copper_link - Configure copper link settings
1074  *  @hw: pointer to the HW structure
1075  *
1076  *  Calls the appropriate function to configure the link for auto-neg or forced
1077  *  speed and duplex.  Then we check for link, once link is established calls
1078  *  to configure collision distance and flow control are called.  If link is
1079  *  not established, we return -E1000_ERR_PHY (-2).
1080  **/
igb_setup_copper_link(struct e1000_hw * hw)1081 s32 igb_setup_copper_link(struct e1000_hw *hw)
1082 {
1083 	s32 ret_val;
1084 	bool link;
1085 
1086 	if (hw->mac.autoneg) {
1087 		/* Setup autoneg and flow control advertisement and perform
1088 		 * autonegotiation.
1089 		 */
1090 		ret_val = igb_copper_link_autoneg(hw);
1091 		if (ret_val)
1092 			goto out;
1093 	} else {
1094 		/* PHY will be set to 10H, 10F, 100H or 100F
1095 		 * depending on user settings.
1096 		 */
1097 		hw_dbg("Forcing Speed and Duplex\n");
1098 		ret_val = hw->phy.ops.force_speed_duplex(hw);
1099 		if (ret_val) {
1100 			hw_dbg("Error Forcing Speed and Duplex\n");
1101 			goto out;
1102 		}
1103 	}
1104 
1105 	/* Check link status. Wait up to 100 microseconds for link to become
1106 	 * valid.
1107 	 */
1108 	ret_val = igb_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link);
1109 	if (ret_val)
1110 		goto out;
1111 
1112 	if (link) {
1113 		hw_dbg("Valid link established!!!\n");
1114 		igb_config_collision_dist(hw);
1115 		ret_val = igb_config_fc_after_link_up(hw);
1116 	} else {
1117 		hw_dbg("Unable to establish link!!!\n");
1118 	}
1119 
1120 out:
1121 	return ret_val;
1122 }
1123 
1124 /**
1125  *  igb_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1126  *  @hw: pointer to the HW structure
1127  *
1128  *  Calls the PHY setup function to force speed and duplex.  Clears the
1129  *  auto-crossover to force MDI manually.  Waits for link and returns
1130  *  successful if link up is successful, else -E1000_ERR_PHY (-2).
1131  **/
igb_phy_force_speed_duplex_igp(struct e1000_hw * hw)1132 s32 igb_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1133 {
1134 	struct e1000_phy_info *phy = &hw->phy;
1135 	s32 ret_val;
1136 	u16 phy_data;
1137 	bool link;
1138 
1139 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1140 	if (ret_val)
1141 		goto out;
1142 
1143 	igb_phy_force_speed_duplex_setup(hw, &phy_data);
1144 
1145 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1146 	if (ret_val)
1147 		goto out;
1148 
1149 	/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1150 	 * forced whenever speed and duplex are forced.
1151 	 */
1152 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1153 	if (ret_val)
1154 		goto out;
1155 
1156 	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1157 	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1158 
1159 	ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1160 	if (ret_val)
1161 		goto out;
1162 
1163 	hw_dbg("IGP PSCR: %X\n", phy_data);
1164 
1165 	udelay(1);
1166 
1167 	if (phy->autoneg_wait_to_complete) {
1168 		hw_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1169 
1170 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link);
1171 		if (ret_val)
1172 			goto out;
1173 
1174 		if (!link)
1175 			hw_dbg("Link taking longer than expected.\n");
1176 
1177 		/* Try once more */
1178 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link);
1179 		if (ret_val)
1180 			goto out;
1181 	}
1182 
1183 out:
1184 	return ret_val;
1185 }
1186 
1187 /**
1188  *  igb_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1189  *  @hw: pointer to the HW structure
1190  *
1191  *  Calls the PHY setup function to force speed and duplex.  Clears the
1192  *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1193  *  changes.  If time expires while waiting for link up, we reset the DSP.
1194  *  After reset, TX_CLK and CRS on TX must be set.  Return successful upon
1195  *  successful completion, else return corresponding error code.
1196  **/
igb_phy_force_speed_duplex_m88(struct e1000_hw * hw)1197 s32 igb_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1198 {
1199 	struct e1000_phy_info *phy = &hw->phy;
1200 	s32 ret_val;
1201 	u16 phy_data;
1202 	bool link;
1203 
1204 	/* I210 and I211 devices support Auto-Crossover in forced operation. */
1205 	if (phy->type != e1000_phy_i210) {
1206 		/* Clear Auto-Crossover to force MDI manually.  M88E1000
1207 		 * requires MDI forced whenever speed and duplex are forced.
1208 		 */
1209 		ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL,
1210 					    &phy_data);
1211 		if (ret_val)
1212 			goto out;
1213 
1214 		phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1215 		ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL,
1216 					     phy_data);
1217 		if (ret_val)
1218 			goto out;
1219 
1220 		hw_dbg("M88E1000 PSCR: %X\n", phy_data);
1221 	}
1222 
1223 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1224 	if (ret_val)
1225 		goto out;
1226 
1227 	igb_phy_force_speed_duplex_setup(hw, &phy_data);
1228 
1229 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1230 	if (ret_val)
1231 		goto out;
1232 
1233 	/* Reset the phy to commit changes. */
1234 	ret_val = igb_phy_sw_reset(hw);
1235 	if (ret_val)
1236 		goto out;
1237 
1238 	if (phy->autoneg_wait_to_complete) {
1239 		hw_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1240 
1241 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
1242 		if (ret_val)
1243 			goto out;
1244 
1245 		if (!link) {
1246 			bool reset_dsp = true;
1247 
1248 			switch (hw->phy.id) {
1249 			case I347AT4_E_PHY_ID:
1250 			case M88E1112_E_PHY_ID:
1251 			case M88E1543_E_PHY_ID:
1252 			case M88E1512_E_PHY_ID:
1253 			case I210_I_PHY_ID:
1254 				reset_dsp = false;
1255 				break;
1256 			default:
1257 				if (hw->phy.type != e1000_phy_m88)
1258 					reset_dsp = false;
1259 				break;
1260 			}
1261 			if (!reset_dsp) {
1262 				hw_dbg("Link taking longer than expected.\n");
1263 			} else {
1264 				/* We didn't get link.
1265 				 * Reset the DSP and cross our fingers.
1266 				 */
1267 				ret_val = phy->ops.write_reg(hw,
1268 						M88E1000_PHY_PAGE_SELECT,
1269 						0x001d);
1270 				if (ret_val)
1271 					goto out;
1272 				ret_val = igb_phy_reset_dsp(hw);
1273 				if (ret_val)
1274 					goto out;
1275 			}
1276 		}
1277 
1278 		/* Try once more */
1279 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT,
1280 					   100000, &link);
1281 		if (ret_val)
1282 			goto out;
1283 	}
1284 
1285 	if (hw->phy.type != e1000_phy_m88 ||
1286 	    hw->phy.id == I347AT4_E_PHY_ID ||
1287 	    hw->phy.id == M88E1112_E_PHY_ID ||
1288 	    hw->phy.id == M88E1543_E_PHY_ID ||
1289 	    hw->phy.id == M88E1512_E_PHY_ID ||
1290 	    hw->phy.id == I210_I_PHY_ID)
1291 		goto out;
1292 
1293 	ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1294 	if (ret_val)
1295 		goto out;
1296 
1297 	/* Resetting the phy means we need to re-force TX_CLK in the
1298 	 * Extended PHY Specific Control Register to 25MHz clock from
1299 	 * the reset value of 2.5MHz.
1300 	 */
1301 	phy_data |= M88E1000_EPSCR_TX_CLK_25;
1302 	ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1303 	if (ret_val)
1304 		goto out;
1305 
1306 	/* In addition, we must re-enable CRS on Tx for both half and full
1307 	 * duplex.
1308 	 */
1309 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1310 	if (ret_val)
1311 		goto out;
1312 
1313 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1314 	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1315 
1316 out:
1317 	return ret_val;
1318 }
1319 
1320 /**
1321  *  igb_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1322  *  @hw: pointer to the HW structure
1323  *  @phy_ctrl: pointer to current value of PHY_CONTROL
1324  *
1325  *  Forces speed and duplex on the PHY by doing the following: disable flow
1326  *  control, force speed/duplex on the MAC, disable auto speed detection,
1327  *  disable auto-negotiation, configure duplex, configure speed, configure
1328  *  the collision distance, write configuration to CTRL register.  The
1329  *  caller must write to the PHY_CONTROL register for these settings to
1330  *  take affect.
1331  **/
igb_phy_force_speed_duplex_setup(struct e1000_hw * hw,u16 * phy_ctrl)1332 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
1333 					     u16 *phy_ctrl)
1334 {
1335 	struct e1000_mac_info *mac = &hw->mac;
1336 	u32 ctrl;
1337 
1338 	/* Turn off flow control when forcing speed/duplex */
1339 	hw->fc.current_mode = e1000_fc_none;
1340 
1341 	/* Force speed/duplex on the mac */
1342 	ctrl = rd32(E1000_CTRL);
1343 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1344 	ctrl &= ~E1000_CTRL_SPD_SEL;
1345 
1346 	/* Disable Auto Speed Detection */
1347 	ctrl &= ~E1000_CTRL_ASDE;
1348 
1349 	/* Disable autoneg on the phy */
1350 	*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1351 
1352 	/* Forcing Full or Half Duplex? */
1353 	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1354 		ctrl &= ~E1000_CTRL_FD;
1355 		*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1356 		hw_dbg("Half Duplex\n");
1357 	} else {
1358 		ctrl |= E1000_CTRL_FD;
1359 		*phy_ctrl |= MII_CR_FULL_DUPLEX;
1360 		hw_dbg("Full Duplex\n");
1361 	}
1362 
1363 	/* Forcing 10mb or 100mb? */
1364 	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1365 		ctrl |= E1000_CTRL_SPD_100;
1366 		*phy_ctrl |= MII_CR_SPEED_100;
1367 		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1368 		hw_dbg("Forcing 100mb\n");
1369 	} else {
1370 		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1371 		*phy_ctrl |= MII_CR_SPEED_10;
1372 		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1373 		hw_dbg("Forcing 10mb\n");
1374 	}
1375 
1376 	igb_config_collision_dist(hw);
1377 
1378 	wr32(E1000_CTRL, ctrl);
1379 }
1380 
1381 /**
1382  *  igb_set_d3_lplu_state - Sets low power link up state for D3
1383  *  @hw: pointer to the HW structure
1384  *  @active: boolean used to enable/disable lplu
1385  *
1386  *  Success returns 0, Failure returns 1
1387  *
1388  *  The low power link up (lplu) state is set to the power management level D3
1389  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1390  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1391  *  is used during Dx states where the power conservation is most important.
1392  *  During driver activity, SmartSpeed should be enabled so performance is
1393  *  maintained.
1394  **/
igb_set_d3_lplu_state(struct e1000_hw * hw,bool active)1395 s32 igb_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1396 {
1397 	struct e1000_phy_info *phy = &hw->phy;
1398 	s32 ret_val = 0;
1399 	u16 data;
1400 
1401 	if (!(hw->phy.ops.read_reg))
1402 		goto out;
1403 
1404 	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1405 	if (ret_val)
1406 		goto out;
1407 
1408 	if (!active) {
1409 		data &= ~IGP02E1000_PM_D3_LPLU;
1410 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1411 					     data);
1412 		if (ret_val)
1413 			goto out;
1414 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1415 		 * during Dx states where the power conservation is most
1416 		 * important.  During driver activity we should enable
1417 		 * SmartSpeed, so performance is maintained.
1418 		 */
1419 		if (phy->smart_speed == e1000_smart_speed_on) {
1420 			ret_val = phy->ops.read_reg(hw,
1421 						    IGP01E1000_PHY_PORT_CONFIG,
1422 						    &data);
1423 			if (ret_val)
1424 				goto out;
1425 
1426 			data |= IGP01E1000_PSCFR_SMART_SPEED;
1427 			ret_val = phy->ops.write_reg(hw,
1428 						     IGP01E1000_PHY_PORT_CONFIG,
1429 						     data);
1430 			if (ret_val)
1431 				goto out;
1432 		} else if (phy->smart_speed == e1000_smart_speed_off) {
1433 			ret_val = phy->ops.read_reg(hw,
1434 						     IGP01E1000_PHY_PORT_CONFIG,
1435 						     &data);
1436 			if (ret_val)
1437 				goto out;
1438 
1439 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1440 			ret_val = phy->ops.write_reg(hw,
1441 						     IGP01E1000_PHY_PORT_CONFIG,
1442 						     data);
1443 			if (ret_val)
1444 				goto out;
1445 		}
1446 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1447 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1448 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1449 		data |= IGP02E1000_PM_D3_LPLU;
1450 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1451 					      data);
1452 		if (ret_val)
1453 			goto out;
1454 
1455 		/* When LPLU is enabled, we should disable SmartSpeed */
1456 		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1457 					    &data);
1458 		if (ret_val)
1459 			goto out;
1460 
1461 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1462 		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1463 					     data);
1464 	}
1465 
1466 out:
1467 	return ret_val;
1468 }
1469 
1470 /**
1471  *  igb_check_downshift - Checks whether a downshift in speed occurred
1472  *  @hw: pointer to the HW structure
1473  *
1474  *  Success returns 0, Failure returns 1
1475  *
1476  *  A downshift is detected by querying the PHY link health.
1477  **/
igb_check_downshift(struct e1000_hw * hw)1478 s32 igb_check_downshift(struct e1000_hw *hw)
1479 {
1480 	struct e1000_phy_info *phy = &hw->phy;
1481 	s32 ret_val;
1482 	u16 phy_data, offset, mask;
1483 
1484 	switch (phy->type) {
1485 	case e1000_phy_i210:
1486 	case e1000_phy_m88:
1487 	case e1000_phy_gg82563:
1488 		offset	= M88E1000_PHY_SPEC_STATUS;
1489 		mask	= M88E1000_PSSR_DOWNSHIFT;
1490 		break;
1491 	case e1000_phy_igp_2:
1492 	case e1000_phy_igp:
1493 	case e1000_phy_igp_3:
1494 		offset	= IGP01E1000_PHY_LINK_HEALTH;
1495 		mask	= IGP01E1000_PLHR_SS_DOWNGRADE;
1496 		break;
1497 	default:
1498 		/* speed downshift not supported */
1499 		phy->speed_downgraded = false;
1500 		ret_val = 0;
1501 		goto out;
1502 	}
1503 
1504 	ret_val = phy->ops.read_reg(hw, offset, &phy_data);
1505 
1506 	if (!ret_val)
1507 		phy->speed_downgraded = (phy_data & mask) ? true : false;
1508 
1509 out:
1510 	return ret_val;
1511 }
1512 
1513 /**
1514  *  igb_check_polarity_m88 - Checks the polarity.
1515  *  @hw: pointer to the HW structure
1516  *
1517  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1518  *
1519  *  Polarity is determined based on the PHY specific status register.
1520  **/
igb_check_polarity_m88(struct e1000_hw * hw)1521 s32 igb_check_polarity_m88(struct e1000_hw *hw)
1522 {
1523 	struct e1000_phy_info *phy = &hw->phy;
1524 	s32 ret_val;
1525 	u16 data;
1526 
1527 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data);
1528 
1529 	if (!ret_val)
1530 		phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1531 				      ? e1000_rev_polarity_reversed
1532 				      : e1000_rev_polarity_normal;
1533 
1534 	return ret_val;
1535 }
1536 
1537 /**
1538  *  igb_check_polarity_igp - Checks the polarity.
1539  *  @hw: pointer to the HW structure
1540  *
1541  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1542  *
1543  *  Polarity is determined based on the PHY port status register, and the
1544  *  current speed (since there is no polarity at 100Mbps).
1545  **/
igb_check_polarity_igp(struct e1000_hw * hw)1546 static s32 igb_check_polarity_igp(struct e1000_hw *hw)
1547 {
1548 	struct e1000_phy_info *phy = &hw->phy;
1549 	s32 ret_val;
1550 	u16 data, offset, mask;
1551 
1552 	/* Polarity is determined based on the speed of
1553 	 * our connection.
1554 	 */
1555 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1556 	if (ret_val)
1557 		goto out;
1558 
1559 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1560 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1561 		offset	= IGP01E1000_PHY_PCS_INIT_REG;
1562 		mask	= IGP01E1000_PHY_POLARITY_MASK;
1563 	} else {
1564 		/* This really only applies to 10Mbps since
1565 		 * there is no polarity for 100Mbps (always 0).
1566 		 */
1567 		offset	= IGP01E1000_PHY_PORT_STATUS;
1568 		mask	= IGP01E1000_PSSR_POLARITY_REVERSED;
1569 	}
1570 
1571 	ret_val = phy->ops.read_reg(hw, offset, &data);
1572 
1573 	if (!ret_val)
1574 		phy->cable_polarity = (data & mask)
1575 				      ? e1000_rev_polarity_reversed
1576 				      : e1000_rev_polarity_normal;
1577 
1578 out:
1579 	return ret_val;
1580 }
1581 
1582 /**
1583  *  igb_wait_autoneg - Wait for auto-neg completion
1584  *  @hw: pointer to the HW structure
1585  *
1586  *  Waits for auto-negotiation to complete or for the auto-negotiation time
1587  *  limit to expire, which ever happens first.
1588  **/
igb_wait_autoneg(struct e1000_hw * hw)1589 static s32 igb_wait_autoneg(struct e1000_hw *hw)
1590 {
1591 	s32 ret_val = 0;
1592 	u16 i, phy_status;
1593 
1594 	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1595 	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1596 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1597 		if (ret_val)
1598 			break;
1599 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1600 		if (ret_val)
1601 			break;
1602 		if (phy_status & MII_SR_AUTONEG_COMPLETE)
1603 			break;
1604 		msleep(100);
1605 	}
1606 
1607 	/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1608 	 * has completed.
1609 	 */
1610 	return ret_val;
1611 }
1612 
1613 /**
1614  *  igb_phy_has_link - Polls PHY for link
1615  *  @hw: pointer to the HW structure
1616  *  @iterations: number of times to poll for link
1617  *  @usec_interval: delay between polling attempts
1618  *  @success: pointer to whether polling was successful or not
1619  *
1620  *  Polls the PHY status register for link, 'iterations' number of times.
1621  **/
igb_phy_has_link(struct e1000_hw * hw,u32 iterations,u32 usec_interval,bool * success)1622 s32 igb_phy_has_link(struct e1000_hw *hw, u32 iterations,
1623 		     u32 usec_interval, bool *success)
1624 {
1625 	s32 ret_val = 0;
1626 	u16 i, phy_status;
1627 
1628 	for (i = 0; i < iterations; i++) {
1629 		/* Some PHYs require the PHY_STATUS register to be read
1630 		 * twice due to the link bit being sticky.  No harm doing
1631 		 * it across the board.
1632 		 */
1633 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1634 		if (ret_val && usec_interval > 0) {
1635 			/* If the first read fails, another entity may have
1636 			 * ownership of the resources, wait and try again to
1637 			 * see if they have relinquished the resources yet.
1638 			 */
1639 			if (usec_interval >= 1000)
1640 				mdelay(usec_interval/1000);
1641 			else
1642 				udelay(usec_interval);
1643 		}
1644 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1645 		if (ret_val)
1646 			break;
1647 		if (phy_status & MII_SR_LINK_STATUS)
1648 			break;
1649 		if (usec_interval >= 1000)
1650 			mdelay(usec_interval/1000);
1651 		else
1652 			udelay(usec_interval);
1653 	}
1654 
1655 	*success = (i < iterations) ? true : false;
1656 
1657 	return ret_val;
1658 }
1659 
1660 /**
1661  *  igb_get_cable_length_m88 - Determine cable length for m88 PHY
1662  *  @hw: pointer to the HW structure
1663  *
1664  *  Reads the PHY specific status register to retrieve the cable length
1665  *  information.  The cable length is determined by averaging the minimum and
1666  *  maximum values to get the "average" cable length.  The m88 PHY has four
1667  *  possible cable length values, which are:
1668  *	Register Value		Cable Length
1669  *	0			< 50 meters
1670  *	1			50 - 80 meters
1671  *	2			80 - 110 meters
1672  *	3			110 - 140 meters
1673  *	4			> 140 meters
1674  **/
igb_get_cable_length_m88(struct e1000_hw * hw)1675 s32 igb_get_cable_length_m88(struct e1000_hw *hw)
1676 {
1677 	struct e1000_phy_info *phy = &hw->phy;
1678 	s32 ret_val;
1679 	u16 phy_data, index;
1680 
1681 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1682 	if (ret_val)
1683 		goto out;
1684 
1685 	index = FIELD_GET(M88E1000_PSSR_CABLE_LENGTH, phy_data);
1686 	if (index >= ARRAY_SIZE(e1000_m88_cable_length_table) - 1) {
1687 		ret_val = -E1000_ERR_PHY;
1688 		goto out;
1689 	}
1690 
1691 	phy->min_cable_length = e1000_m88_cable_length_table[index];
1692 	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1693 
1694 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1695 
1696 out:
1697 	return ret_val;
1698 }
1699 
igb_get_cable_length_m88_gen2(struct e1000_hw * hw)1700 s32 igb_get_cable_length_m88_gen2(struct e1000_hw *hw)
1701 {
1702 	struct e1000_phy_info *phy = &hw->phy;
1703 	s32 ret_val;
1704 	u16 phy_data, phy_data2, index, default_page, is_cm;
1705 	int len_tot = 0;
1706 	u16 len_min;
1707 	u16 len_max;
1708 
1709 	switch (hw->phy.id) {
1710 	case M88E1543_E_PHY_ID:
1711 	case M88E1512_E_PHY_ID:
1712 	case I347AT4_E_PHY_ID:
1713 	case I210_I_PHY_ID:
1714 		/* Remember the original page select and set it to 7 */
1715 		ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1716 					    &default_page);
1717 		if (ret_val)
1718 			goto out;
1719 
1720 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07);
1721 		if (ret_val)
1722 			goto out;
1723 
1724 		/* Check if the unit of cable length is meters or cm */
1725 		ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2);
1726 		if (ret_val)
1727 			goto out;
1728 
1729 		is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
1730 
1731 		/* Get cable length from Pair 0 length Regs */
1732 		ret_val = phy->ops.read_reg(hw, I347AT4_PCDL0, &phy_data);
1733 		if (ret_val)
1734 			goto out;
1735 
1736 		phy->pair_length[0] = phy_data / (is_cm ? 100 : 1);
1737 		len_tot = phy->pair_length[0];
1738 		len_min = phy->pair_length[0];
1739 		len_max = phy->pair_length[0];
1740 
1741 		/* Get cable length from Pair 1 length Regs */
1742 		ret_val = phy->ops.read_reg(hw, I347AT4_PCDL1, &phy_data);
1743 		if (ret_val)
1744 			goto out;
1745 
1746 		phy->pair_length[1] = phy_data / (is_cm ? 100 : 1);
1747 		len_tot += phy->pair_length[1];
1748 		len_min = min(len_min, phy->pair_length[1]);
1749 		len_max = max(len_max, phy->pair_length[1]);
1750 
1751 		/* Get cable length from Pair 2 length Regs */
1752 		ret_val = phy->ops.read_reg(hw, I347AT4_PCDL2, &phy_data);
1753 		if (ret_val)
1754 			goto out;
1755 
1756 		phy->pair_length[2] = phy_data / (is_cm ? 100 : 1);
1757 		len_tot += phy->pair_length[2];
1758 		len_min = min(len_min, phy->pair_length[2]);
1759 		len_max = max(len_max, phy->pair_length[2]);
1760 
1761 		/* Get cable length from Pair 3 length Regs */
1762 		ret_val = phy->ops.read_reg(hw, I347AT4_PCDL3, &phy_data);
1763 		if (ret_val)
1764 			goto out;
1765 
1766 		phy->pair_length[3] = phy_data / (is_cm ? 100 : 1);
1767 		len_tot += phy->pair_length[3];
1768 		len_min = min(len_min, phy->pair_length[3]);
1769 		len_max = max(len_max, phy->pair_length[3]);
1770 
1771 		/* Populate the phy structure with cable length in meters */
1772 		phy->min_cable_length = len_min;
1773 		phy->max_cable_length = len_max;
1774 		phy->cable_length = len_tot / 4;
1775 
1776 		/* Reset the page selec to its original value */
1777 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1778 					     default_page);
1779 		if (ret_val)
1780 			goto out;
1781 		break;
1782 	case M88E1112_E_PHY_ID:
1783 		/* Remember the original page select and set it to 5 */
1784 		ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1785 					    &default_page);
1786 		if (ret_val)
1787 			goto out;
1788 
1789 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05);
1790 		if (ret_val)
1791 			goto out;
1792 
1793 		ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE,
1794 					    &phy_data);
1795 		if (ret_val)
1796 			goto out;
1797 
1798 		index = FIELD_GET(M88E1000_PSSR_CABLE_LENGTH, phy_data);
1799 		if (index >= ARRAY_SIZE(e1000_m88_cable_length_table) - 1) {
1800 			ret_val = -E1000_ERR_PHY;
1801 			goto out;
1802 		}
1803 
1804 		phy->min_cable_length = e1000_m88_cable_length_table[index];
1805 		phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1806 
1807 		phy->cable_length = (phy->min_cable_length +
1808 				     phy->max_cable_length) / 2;
1809 
1810 		/* Reset the page select to its original value */
1811 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1812 					     default_page);
1813 		if (ret_val)
1814 			goto out;
1815 
1816 		break;
1817 	default:
1818 		ret_val = -E1000_ERR_PHY;
1819 		goto out;
1820 	}
1821 
1822 out:
1823 	return ret_val;
1824 }
1825 
1826 /**
1827  *  igb_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1828  *  @hw: pointer to the HW structure
1829  *
1830  *  The automatic gain control (agc) normalizes the amplitude of the
1831  *  received signal, adjusting for the attenuation produced by the
1832  *  cable.  By reading the AGC registers, which represent the
1833  *  combination of coarse and fine gain value, the value can be put
1834  *  into a lookup table to obtain the approximate cable length
1835  *  for each channel.
1836  **/
igb_get_cable_length_igp_2(struct e1000_hw * hw)1837 s32 igb_get_cable_length_igp_2(struct e1000_hw *hw)
1838 {
1839 	struct e1000_phy_info *phy = &hw->phy;
1840 	s32 ret_val = 0;
1841 	u16 phy_data, i, agc_value = 0;
1842 	u16 cur_agc_index, max_agc_index = 0;
1843 	u16 min_agc_index = ARRAY_SIZE(e1000_igp_2_cable_length_table) - 1;
1844 	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1845 		IGP02E1000_PHY_AGC_A,
1846 		IGP02E1000_PHY_AGC_B,
1847 		IGP02E1000_PHY_AGC_C,
1848 		IGP02E1000_PHY_AGC_D
1849 	};
1850 
1851 	/* Read the AGC registers for all channels */
1852 	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1853 		ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data);
1854 		if (ret_val)
1855 			goto out;
1856 
1857 		/* Getting bits 15:9, which represent the combination of
1858 		 * coarse and fine gain values.  The result is a number
1859 		 * that can be put into the lookup table to obtain the
1860 		 * approximate cable length.
1861 		 */
1862 		cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1863 				IGP02E1000_AGC_LENGTH_MASK;
1864 
1865 		/* Array index bound check. */
1866 		if ((cur_agc_index >= ARRAY_SIZE(e1000_igp_2_cable_length_table)) ||
1867 		    (cur_agc_index == 0)) {
1868 			ret_val = -E1000_ERR_PHY;
1869 			goto out;
1870 		}
1871 
1872 		/* Remove min & max AGC values from calculation. */
1873 		if (e1000_igp_2_cable_length_table[min_agc_index] >
1874 		    e1000_igp_2_cable_length_table[cur_agc_index])
1875 			min_agc_index = cur_agc_index;
1876 		if (e1000_igp_2_cable_length_table[max_agc_index] <
1877 		    e1000_igp_2_cable_length_table[cur_agc_index])
1878 			max_agc_index = cur_agc_index;
1879 
1880 		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1881 	}
1882 
1883 	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1884 		      e1000_igp_2_cable_length_table[max_agc_index]);
1885 	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1886 
1887 	/* Calculate cable length with the error range of +/- 10 meters. */
1888 	phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1889 				 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1890 	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1891 
1892 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1893 
1894 out:
1895 	return ret_val;
1896 }
1897 
1898 /**
1899  *  igb_get_phy_info_m88 - Retrieve PHY information
1900  *  @hw: pointer to the HW structure
1901  *
1902  *  Valid for only copper links.  Read the PHY status register (sticky read)
1903  *  to verify that link is up.  Read the PHY special control register to
1904  *  determine the polarity and 10base-T extended distance.  Read the PHY
1905  *  special status register to determine MDI/MDIx and current speed.  If
1906  *  speed is 1000, then determine cable length, local and remote receiver.
1907  **/
igb_get_phy_info_m88(struct e1000_hw * hw)1908 s32 igb_get_phy_info_m88(struct e1000_hw *hw)
1909 {
1910 	struct e1000_phy_info *phy = &hw->phy;
1911 	s32  ret_val;
1912 	u16 phy_data;
1913 	bool link;
1914 
1915 	if (phy->media_type != e1000_media_type_copper) {
1916 		hw_dbg("Phy info is only valid for copper media\n");
1917 		ret_val = -E1000_ERR_CONFIG;
1918 		goto out;
1919 	}
1920 
1921 	ret_val = igb_phy_has_link(hw, 1, 0, &link);
1922 	if (ret_val)
1923 		goto out;
1924 
1925 	if (!link) {
1926 		hw_dbg("Phy info is only valid if link is up\n");
1927 		ret_val = -E1000_ERR_CONFIG;
1928 		goto out;
1929 	}
1930 
1931 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1932 	if (ret_val)
1933 		goto out;
1934 
1935 	phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL)
1936 				   ? true : false;
1937 
1938 	ret_val = igb_check_polarity_m88(hw);
1939 	if (ret_val)
1940 		goto out;
1941 
1942 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1943 	if (ret_val)
1944 		goto out;
1945 
1946 	phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? true : false;
1947 
1948 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1949 		ret_val = phy->ops.get_cable_length(hw);
1950 		if (ret_val)
1951 			goto out;
1952 
1953 		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
1954 		if (ret_val)
1955 			goto out;
1956 
1957 		phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
1958 				? e1000_1000t_rx_status_ok
1959 				: e1000_1000t_rx_status_not_ok;
1960 
1961 		phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
1962 				 ? e1000_1000t_rx_status_ok
1963 				 : e1000_1000t_rx_status_not_ok;
1964 	} else {
1965 		/* Set values to "undefined" */
1966 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1967 		phy->local_rx = e1000_1000t_rx_status_undefined;
1968 		phy->remote_rx = e1000_1000t_rx_status_undefined;
1969 	}
1970 
1971 out:
1972 	return ret_val;
1973 }
1974 
1975 /**
1976  *  igb_get_phy_info_igp - Retrieve igp PHY information
1977  *  @hw: pointer to the HW structure
1978  *
1979  *  Read PHY status to determine if link is up.  If link is up, then
1980  *  set/determine 10base-T extended distance and polarity correction.  Read
1981  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
1982  *  determine on the cable length, local and remote receiver.
1983  **/
igb_get_phy_info_igp(struct e1000_hw * hw)1984 s32 igb_get_phy_info_igp(struct e1000_hw *hw)
1985 {
1986 	struct e1000_phy_info *phy = &hw->phy;
1987 	s32 ret_val;
1988 	u16 data;
1989 	bool link;
1990 
1991 	ret_val = igb_phy_has_link(hw, 1, 0, &link);
1992 	if (ret_val)
1993 		goto out;
1994 
1995 	if (!link) {
1996 		hw_dbg("Phy info is only valid if link is up\n");
1997 		ret_val = -E1000_ERR_CONFIG;
1998 		goto out;
1999 	}
2000 
2001 	phy->polarity_correction = true;
2002 
2003 	ret_val = igb_check_polarity_igp(hw);
2004 	if (ret_val)
2005 		goto out;
2006 
2007 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
2008 	if (ret_val)
2009 		goto out;
2010 
2011 	phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? true : false;
2012 
2013 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
2014 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
2015 		ret_val = phy->ops.get_cable_length(hw);
2016 		if (ret_val)
2017 			goto out;
2018 
2019 		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2020 		if (ret_val)
2021 			goto out;
2022 
2023 		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2024 				? e1000_1000t_rx_status_ok
2025 				: e1000_1000t_rx_status_not_ok;
2026 
2027 		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2028 				 ? e1000_1000t_rx_status_ok
2029 				 : e1000_1000t_rx_status_not_ok;
2030 	} else {
2031 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2032 		phy->local_rx = e1000_1000t_rx_status_undefined;
2033 		phy->remote_rx = e1000_1000t_rx_status_undefined;
2034 	}
2035 
2036 out:
2037 	return ret_val;
2038 }
2039 
2040 /**
2041  *  igb_phy_sw_reset - PHY software reset
2042  *  @hw: pointer to the HW structure
2043  *
2044  *  Does a software reset of the PHY by reading the PHY control register and
2045  *  setting/write the control register reset bit to the PHY.
2046  **/
igb_phy_sw_reset(struct e1000_hw * hw)2047 s32 igb_phy_sw_reset(struct e1000_hw *hw)
2048 {
2049 	s32 ret_val = 0;
2050 	u16 phy_ctrl;
2051 
2052 	if (!(hw->phy.ops.read_reg))
2053 		goto out;
2054 
2055 	ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
2056 	if (ret_val)
2057 		goto out;
2058 
2059 	phy_ctrl |= MII_CR_RESET;
2060 	ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
2061 	if (ret_val)
2062 		goto out;
2063 
2064 	udelay(1);
2065 
2066 out:
2067 	return ret_val;
2068 }
2069 
2070 /**
2071  *  igb_phy_hw_reset - PHY hardware reset
2072  *  @hw: pointer to the HW structure
2073  *
2074  *  Verify the reset block is not blocking us from resetting.  Acquire
2075  *  semaphore (if necessary) and read/set/write the device control reset
2076  *  bit in the PHY.  Wait the appropriate delay time for the device to
2077  *  reset and release the semaphore (if necessary).
2078  **/
igb_phy_hw_reset(struct e1000_hw * hw)2079 s32 igb_phy_hw_reset(struct e1000_hw *hw)
2080 {
2081 	struct e1000_phy_info *phy = &hw->phy;
2082 	s32  ret_val;
2083 	u32 ctrl;
2084 
2085 	ret_val = igb_check_reset_block(hw);
2086 	if (ret_val) {
2087 		ret_val = 0;
2088 		goto out;
2089 	}
2090 
2091 	ret_val = phy->ops.acquire(hw);
2092 	if (ret_val)
2093 		goto out;
2094 
2095 	ctrl = rd32(E1000_CTRL);
2096 	wr32(E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
2097 	wrfl();
2098 
2099 	udelay(phy->reset_delay_us);
2100 
2101 	wr32(E1000_CTRL, ctrl);
2102 	wrfl();
2103 
2104 	udelay(150);
2105 
2106 	phy->ops.release(hw);
2107 
2108 	ret_val = phy->ops.get_cfg_done(hw);
2109 
2110 out:
2111 	return ret_val;
2112 }
2113 
2114 /**
2115  *  igb_phy_init_script_igp3 - Inits the IGP3 PHY
2116  *  @hw: pointer to the HW structure
2117  *
2118  *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2119  **/
igb_phy_init_script_igp3(struct e1000_hw * hw)2120 s32 igb_phy_init_script_igp3(struct e1000_hw *hw)
2121 {
2122 	hw_dbg("Running IGP 3 PHY init script\n");
2123 
2124 	/* PHY init IGP 3 */
2125 	/* Enable rise/fall, 10-mode work in class-A */
2126 	hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018);
2127 	/* Remove all caps from Replica path filter */
2128 	hw->phy.ops.write_reg(hw, 0x2F52, 0x0000);
2129 	/* Bias trimming for ADC, AFE and Driver (Default) */
2130 	hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24);
2131 	/* Increase Hybrid poly bias */
2132 	hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0);
2133 	/* Add 4% to TX amplitude in Giga mode */
2134 	hw->phy.ops.write_reg(hw, 0x2010, 0x10B0);
2135 	/* Disable trimming (TTT) */
2136 	hw->phy.ops.write_reg(hw, 0x2011, 0x0000);
2137 	/* Poly DC correction to 94.6% + 2% for all channels */
2138 	hw->phy.ops.write_reg(hw, 0x20DD, 0x249A);
2139 	/* ABS DC correction to 95.9% */
2140 	hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3);
2141 	/* BG temp curve trim */
2142 	hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE);
2143 	/* Increasing ADC OPAMP stage 1 currents to max */
2144 	hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4);
2145 	/* Force 1000 ( required for enabling PHY regs configuration) */
2146 	hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
2147 	/* Set upd_freq to 6 */
2148 	hw->phy.ops.write_reg(hw, 0x1F30, 0x1606);
2149 	/* Disable NPDFE */
2150 	hw->phy.ops.write_reg(hw, 0x1F31, 0xB814);
2151 	/* Disable adaptive fixed FFE (Default) */
2152 	hw->phy.ops.write_reg(hw, 0x1F35, 0x002A);
2153 	/* Enable FFE hysteresis */
2154 	hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067);
2155 	/* Fixed FFE for short cable lengths */
2156 	hw->phy.ops.write_reg(hw, 0x1F54, 0x0065);
2157 	/* Fixed FFE for medium cable lengths */
2158 	hw->phy.ops.write_reg(hw, 0x1F55, 0x002A);
2159 	/* Fixed FFE for long cable lengths */
2160 	hw->phy.ops.write_reg(hw, 0x1F56, 0x002A);
2161 	/* Enable Adaptive Clip Threshold */
2162 	hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0);
2163 	/* AHT reset limit to 1 */
2164 	hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF);
2165 	/* Set AHT master delay to 127 msec */
2166 	hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC);
2167 	/* Set scan bits for AHT */
2168 	hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF);
2169 	/* Set AHT Preset bits */
2170 	hw->phy.ops.write_reg(hw, 0x1F79, 0x0210);
2171 	/* Change integ_factor of channel A to 3 */
2172 	hw->phy.ops.write_reg(hw, 0x1895, 0x0003);
2173 	/* Change prop_factor of channels BCD to 8 */
2174 	hw->phy.ops.write_reg(hw, 0x1796, 0x0008);
2175 	/* Change cg_icount + enable integbp for channels BCD */
2176 	hw->phy.ops.write_reg(hw, 0x1798, 0xD008);
2177 	/* Change cg_icount + enable integbp + change prop_factor_master
2178 	 * to 8 for channel A
2179 	 */
2180 	hw->phy.ops.write_reg(hw, 0x1898, 0xD918);
2181 	/* Disable AHT in Slave mode on channel A */
2182 	hw->phy.ops.write_reg(hw, 0x187A, 0x0800);
2183 	/* Enable LPLU and disable AN to 1000 in non-D0a states,
2184 	 * Enable SPD+B2B
2185 	 */
2186 	hw->phy.ops.write_reg(hw, 0x0019, 0x008D);
2187 	/* Enable restart AN on an1000_dis change */
2188 	hw->phy.ops.write_reg(hw, 0x001B, 0x2080);
2189 	/* Enable wh_fifo read clock in 10/100 modes */
2190 	hw->phy.ops.write_reg(hw, 0x0014, 0x0045);
2191 	/* Restart AN, Speed selection is 1000 */
2192 	hw->phy.ops.write_reg(hw, 0x0000, 0x1340);
2193 
2194 	return 0;
2195 }
2196 
2197 /**
2198  *  igb_initialize_M88E1512_phy - Initialize M88E1512 PHY
2199  *  @hw: pointer to the HW structure
2200  *
2201  *  Initialize Marvel 1512 to work correctly with Avoton.
2202  **/
igb_initialize_M88E1512_phy(struct e1000_hw * hw)2203 s32 igb_initialize_M88E1512_phy(struct e1000_hw *hw)
2204 {
2205 	struct e1000_phy_info *phy = &hw->phy;
2206 	s32 ret_val = 0;
2207 
2208 	/* Switch to PHY page 0xFF. */
2209 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FF);
2210 	if (ret_val)
2211 		goto out;
2212 
2213 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x214B);
2214 	if (ret_val)
2215 		goto out;
2216 
2217 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2144);
2218 	if (ret_val)
2219 		goto out;
2220 
2221 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x0C28);
2222 	if (ret_val)
2223 		goto out;
2224 
2225 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2146);
2226 	if (ret_val)
2227 		goto out;
2228 
2229 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xB233);
2230 	if (ret_val)
2231 		goto out;
2232 
2233 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x214D);
2234 	if (ret_val)
2235 		goto out;
2236 
2237 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xCC0C);
2238 	if (ret_val)
2239 		goto out;
2240 
2241 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2159);
2242 	if (ret_val)
2243 		goto out;
2244 
2245 	/* Switch to PHY page 0xFB. */
2246 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FB);
2247 	if (ret_val)
2248 		goto out;
2249 
2250 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_3, 0x000D);
2251 	if (ret_val)
2252 		goto out;
2253 
2254 	/* Switch to PHY page 0x12. */
2255 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x12);
2256 	if (ret_val)
2257 		goto out;
2258 
2259 	/* Change mode to SGMII-to-Copper */
2260 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_MODE, 0x8001);
2261 	if (ret_val)
2262 		goto out;
2263 
2264 	/* Return the PHY to page 0. */
2265 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2266 	if (ret_val)
2267 		goto out;
2268 
2269 	ret_val = igb_phy_sw_reset(hw);
2270 	if (ret_val) {
2271 		hw_dbg("Error committing the PHY changes\n");
2272 		return ret_val;
2273 	}
2274 
2275 	/* msec_delay(1000); */
2276 	usleep_range(1000, 2000);
2277 out:
2278 	return ret_val;
2279 }
2280 
2281 /**
2282  *  igb_initialize_M88E1543_phy - Initialize M88E1512 PHY
2283  *  @hw: pointer to the HW structure
2284  *
2285  *  Initialize Marvell 1543 to work correctly with Avoton.
2286  **/
igb_initialize_M88E1543_phy(struct e1000_hw * hw)2287 s32 igb_initialize_M88E1543_phy(struct e1000_hw *hw)
2288 {
2289 	struct e1000_phy_info *phy = &hw->phy;
2290 	s32 ret_val = 0;
2291 
2292 	/* Switch to PHY page 0xFF. */
2293 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FF);
2294 	if (ret_val)
2295 		goto out;
2296 
2297 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x214B);
2298 	if (ret_val)
2299 		goto out;
2300 
2301 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2144);
2302 	if (ret_val)
2303 		goto out;
2304 
2305 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x0C28);
2306 	if (ret_val)
2307 		goto out;
2308 
2309 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2146);
2310 	if (ret_val)
2311 		goto out;
2312 
2313 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xB233);
2314 	if (ret_val)
2315 		goto out;
2316 
2317 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x214D);
2318 	if (ret_val)
2319 		goto out;
2320 
2321 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xDC0C);
2322 	if (ret_val)
2323 		goto out;
2324 
2325 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2159);
2326 	if (ret_val)
2327 		goto out;
2328 
2329 	/* Switch to PHY page 0xFB. */
2330 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FB);
2331 	if (ret_val)
2332 		goto out;
2333 
2334 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_3, 0x0C0D);
2335 	if (ret_val)
2336 		goto out;
2337 
2338 	/* Switch to PHY page 0x12. */
2339 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x12);
2340 	if (ret_val)
2341 		goto out;
2342 
2343 	/* Change mode to SGMII-to-Copper */
2344 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_MODE, 0x8001);
2345 	if (ret_val)
2346 		goto out;
2347 
2348 	/* Switch to PHY page 1. */
2349 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x1);
2350 	if (ret_val)
2351 		goto out;
2352 
2353 	/* Change mode to 1000BASE-X/SGMII and autoneg enable */
2354 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_FIBER_CTRL, 0x9140);
2355 	if (ret_val)
2356 		goto out;
2357 
2358 	/* Return the PHY to page 0. */
2359 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2360 	if (ret_val)
2361 		goto out;
2362 
2363 	ret_val = igb_phy_sw_reset(hw);
2364 	if (ret_val) {
2365 		hw_dbg("Error committing the PHY changes\n");
2366 		return ret_val;
2367 	}
2368 
2369 	/* msec_delay(1000); */
2370 	usleep_range(1000, 2000);
2371 out:
2372 	return ret_val;
2373 }
2374 
2375 /**
2376  * igb_power_up_phy_copper - Restore copper link in case of PHY power down
2377  * @hw: pointer to the HW structure
2378  *
2379  * In the case of a PHY power down to save power, or to turn off link during a
2380  * driver unload, restore the link to previous settings.
2381  **/
igb_power_up_phy_copper(struct e1000_hw * hw)2382 void igb_power_up_phy_copper(struct e1000_hw *hw)
2383 {
2384 	u16 mii_reg = 0;
2385 
2386 	/* The PHY will retain its settings across a power down/up cycle */
2387 	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2388 	mii_reg &= ~MII_CR_POWER_DOWN;
2389 	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2390 }
2391 
2392 /**
2393  * igb_power_down_phy_copper - Power down copper PHY
2394  * @hw: pointer to the HW structure
2395  *
2396  * Power down PHY to save power when interface is down and wake on lan
2397  * is not enabled.
2398  **/
igb_power_down_phy_copper(struct e1000_hw * hw)2399 void igb_power_down_phy_copper(struct e1000_hw *hw)
2400 {
2401 	u16 mii_reg = 0;
2402 
2403 	/* The PHY will retain its settings across a power down/up cycle */
2404 	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2405 	mii_reg |= MII_CR_POWER_DOWN;
2406 	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2407 	usleep_range(1000, 2000);
2408 }
2409 
2410 /**
2411  *  igb_check_polarity_82580 - Checks the polarity.
2412  *  @hw: pointer to the HW structure
2413  *
2414  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2415  *
2416  *  Polarity is determined based on the PHY specific status register.
2417  **/
igb_check_polarity_82580(struct e1000_hw * hw)2418 static s32 igb_check_polarity_82580(struct e1000_hw *hw)
2419 {
2420 	struct e1000_phy_info *phy = &hw->phy;
2421 	s32 ret_val;
2422 	u16 data;
2423 
2424 
2425 	ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2426 
2427 	if (!ret_val)
2428 		phy->cable_polarity = (data & I82580_PHY_STATUS2_REV_POLARITY)
2429 				      ? e1000_rev_polarity_reversed
2430 				      : e1000_rev_polarity_normal;
2431 
2432 	return ret_val;
2433 }
2434 
2435 /**
2436  *  igb_phy_force_speed_duplex_82580 - Force speed/duplex for I82580 PHY
2437  *  @hw: pointer to the HW structure
2438  *
2439  *  Calls the PHY setup function to force speed and duplex.  Clears the
2440  *  auto-crossover to force MDI manually.  Waits for link and returns
2441  *  successful if link up is successful, else -E1000_ERR_PHY (-2).
2442  **/
igb_phy_force_speed_duplex_82580(struct e1000_hw * hw)2443 s32 igb_phy_force_speed_duplex_82580(struct e1000_hw *hw)
2444 {
2445 	struct e1000_phy_info *phy = &hw->phy;
2446 	s32 ret_val;
2447 	u16 phy_data;
2448 	bool link;
2449 
2450 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
2451 	if (ret_val)
2452 		goto out;
2453 
2454 	igb_phy_force_speed_duplex_setup(hw, &phy_data);
2455 
2456 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
2457 	if (ret_val)
2458 		goto out;
2459 
2460 	/* Clear Auto-Crossover to force MDI manually.  82580 requires MDI
2461 	 * forced whenever speed and duplex are forced.
2462 	 */
2463 	ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
2464 	if (ret_val)
2465 		goto out;
2466 
2467 	phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK;
2468 
2469 	ret_val = phy->ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
2470 	if (ret_val)
2471 		goto out;
2472 
2473 	hw_dbg("I82580_PHY_CTRL_2: %X\n", phy_data);
2474 
2475 	udelay(1);
2476 
2477 	if (phy->autoneg_wait_to_complete) {
2478 		hw_dbg("Waiting for forced speed/duplex link on 82580 phy\n");
2479 
2480 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
2481 		if (ret_val)
2482 			goto out;
2483 
2484 		if (!link)
2485 			hw_dbg("Link taking longer than expected.\n");
2486 
2487 		/* Try once more */
2488 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
2489 		if (ret_val)
2490 			goto out;
2491 	}
2492 
2493 out:
2494 	return ret_val;
2495 }
2496 
2497 /**
2498  *  igb_get_phy_info_82580 - Retrieve I82580 PHY information
2499  *  @hw: pointer to the HW structure
2500  *
2501  *  Read PHY status to determine if link is up.  If link is up, then
2502  *  set/determine 10base-T extended distance and polarity correction.  Read
2503  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
2504  *  determine on the cable length, local and remote receiver.
2505  **/
igb_get_phy_info_82580(struct e1000_hw * hw)2506 s32 igb_get_phy_info_82580(struct e1000_hw *hw)
2507 {
2508 	struct e1000_phy_info *phy = &hw->phy;
2509 	s32 ret_val;
2510 	u16 data;
2511 	bool link;
2512 
2513 	ret_val = igb_phy_has_link(hw, 1, 0, &link);
2514 	if (ret_val)
2515 		goto out;
2516 
2517 	if (!link) {
2518 		hw_dbg("Phy info is only valid if link is up\n");
2519 		ret_val = -E1000_ERR_CONFIG;
2520 		goto out;
2521 	}
2522 
2523 	phy->polarity_correction = true;
2524 
2525 	ret_val = igb_check_polarity_82580(hw);
2526 	if (ret_val)
2527 		goto out;
2528 
2529 	ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2530 	if (ret_val)
2531 		goto out;
2532 
2533 	phy->is_mdix = (data & I82580_PHY_STATUS2_MDIX) ? true : false;
2534 
2535 	if ((data & I82580_PHY_STATUS2_SPEED_MASK) ==
2536 	    I82580_PHY_STATUS2_SPEED_1000MBPS) {
2537 		ret_val = hw->phy.ops.get_cable_length(hw);
2538 		if (ret_val)
2539 			goto out;
2540 
2541 		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2542 		if (ret_val)
2543 			goto out;
2544 
2545 		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2546 				? e1000_1000t_rx_status_ok
2547 				: e1000_1000t_rx_status_not_ok;
2548 
2549 		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2550 				 ? e1000_1000t_rx_status_ok
2551 				 : e1000_1000t_rx_status_not_ok;
2552 	} else {
2553 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2554 		phy->local_rx = e1000_1000t_rx_status_undefined;
2555 		phy->remote_rx = e1000_1000t_rx_status_undefined;
2556 	}
2557 
2558 out:
2559 	return ret_val;
2560 }
2561 
2562 /**
2563  *  igb_get_cable_length_82580 - Determine cable length for 82580 PHY
2564  *  @hw: pointer to the HW structure
2565  *
2566  * Reads the diagnostic status register and verifies result is valid before
2567  * placing it in the phy_cable_length field.
2568  **/
igb_get_cable_length_82580(struct e1000_hw * hw)2569 s32 igb_get_cable_length_82580(struct e1000_hw *hw)
2570 {
2571 	struct e1000_phy_info *phy = &hw->phy;
2572 	s32 ret_val;
2573 	u16 phy_data, length;
2574 
2575 	ret_val = phy->ops.read_reg(hw, I82580_PHY_DIAG_STATUS, &phy_data);
2576 	if (ret_val)
2577 		goto out;
2578 
2579 	length = FIELD_GET(I82580_DSTATUS_CABLE_LENGTH, phy_data);
2580 
2581 	if (length == E1000_CABLE_LENGTH_UNDEFINED)
2582 		ret_val = -E1000_ERR_PHY;
2583 
2584 	phy->cable_length = length;
2585 
2586 out:
2587 	return ret_val;
2588 }
2589 
2590 /**
2591  *  igb_set_master_slave_mode - Setup PHY for Master/slave mode
2592  *  @hw: pointer to the HW structure
2593  *
2594  *  Sets up Master/slave mode
2595  **/
igb_set_master_slave_mode(struct e1000_hw * hw)2596 static s32 igb_set_master_slave_mode(struct e1000_hw *hw)
2597 {
2598 	s32 ret_val;
2599 	u16 phy_data;
2600 
2601 	/* Resolve Master/Slave mode */
2602 	ret_val = hw->phy.ops.read_reg(hw, PHY_1000T_CTRL, &phy_data);
2603 	if (ret_val)
2604 		return ret_val;
2605 
2606 	/* load defaults for future use */
2607 	hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ?
2608 				   ((phy_data & CR_1000T_MS_VALUE) ?
2609 				    e1000_ms_force_master :
2610 				    e1000_ms_force_slave) : e1000_ms_auto;
2611 
2612 	switch (hw->phy.ms_type) {
2613 	case e1000_ms_force_master:
2614 		phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2615 		break;
2616 	case e1000_ms_force_slave:
2617 		phy_data |= CR_1000T_MS_ENABLE;
2618 		phy_data &= ~(CR_1000T_MS_VALUE);
2619 		break;
2620 	case e1000_ms_auto:
2621 		phy_data &= ~CR_1000T_MS_ENABLE;
2622 		fallthrough;
2623 	default:
2624 		break;
2625 	}
2626 
2627 	return hw->phy.ops.write_reg(hw, PHY_1000T_CTRL, phy_data);
2628 }
2629