1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * cfg80211 scan result handling
4 *
5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2016 Intel Deutschland GmbH
8 * Copyright (C) 2018-2023 Intel Corporation
9 */
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/netdevice.h>
14 #include <linux/wireless.h>
15 #include <linux/nl80211.h>
16 #include <linux/etherdevice.h>
17 #include <linux/crc32.h>
18 #include <linux/bitfield.h>
19 #include <net/arp.h>
20 #include <net/cfg80211.h>
21 #include <net/cfg80211-wext.h>
22 #include <net/iw_handler.h>
23 #include "core.h"
24 #include "nl80211.h"
25 #include "wext-compat.h"
26 #include "rdev-ops.h"
27
28 /**
29 * DOC: BSS tree/list structure
30 *
31 * At the top level, the BSS list is kept in both a list in each
32 * registered device (@bss_list) as well as an RB-tree for faster
33 * lookup. In the RB-tree, entries can be looked up using their
34 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
35 * for other BSSes.
36 *
37 * Due to the possibility of hidden SSIDs, there's a second level
38 * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
39 * The hidden_list connects all BSSes belonging to a single AP
40 * that has a hidden SSID, and connects beacon and probe response
41 * entries. For a probe response entry for a hidden SSID, the
42 * hidden_beacon_bss pointer points to the BSS struct holding the
43 * beacon's information.
44 *
45 * Reference counting is done for all these references except for
46 * the hidden_list, so that a beacon BSS struct that is otherwise
47 * not referenced has one reference for being on the bss_list and
48 * one for each probe response entry that points to it using the
49 * hidden_beacon_bss pointer. When a BSS struct that has such a
50 * pointer is get/put, the refcount update is also propagated to
51 * the referenced struct, this ensure that it cannot get removed
52 * while somebody is using the probe response version.
53 *
54 * Note that the hidden_beacon_bss pointer never changes, due to
55 * the reference counting. Therefore, no locking is needed for
56 * it.
57 *
58 * Also note that the hidden_beacon_bss pointer is only relevant
59 * if the driver uses something other than the IEs, e.g. private
60 * data stored in the BSS struct, since the beacon IEs are
61 * also linked into the probe response struct.
62 */
63
64 /*
65 * Limit the number of BSS entries stored in mac80211. Each one is
66 * a bit over 4k at most, so this limits to roughly 4-5M of memory.
67 * If somebody wants to really attack this though, they'd likely
68 * use small beacons, and only one type of frame, limiting each of
69 * the entries to a much smaller size (in order to generate more
70 * entries in total, so overhead is bigger.)
71 */
72 static int bss_entries_limit = 1000;
73 module_param(bss_entries_limit, int, 0644);
74 MODULE_PARM_DESC(bss_entries_limit,
75 "limit to number of scan BSS entries (per wiphy, default 1000)");
76
77 #define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ)
78
79 /**
80 * struct cfg80211_colocated_ap - colocated AP information
81 *
82 * @list: linked list to all colocated aPS
83 * @bssid: BSSID of the reported AP
84 * @ssid: SSID of the reported AP
85 * @ssid_len: length of the ssid
86 * @center_freq: frequency the reported AP is on
87 * @unsolicited_probe: the reported AP is part of an ESS, where all the APs
88 * that operate in the same channel as the reported AP and that might be
89 * detected by a STA receiving this frame, are transmitting unsolicited
90 * Probe Response frames every 20 TUs
91 * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP
92 * @same_ssid: the reported AP has the same SSID as the reporting AP
93 * @multi_bss: the reported AP is part of a multiple BSSID set
94 * @transmitted_bssid: the reported AP is the transmitting BSSID
95 * @colocated_ess: all the APs that share the same ESS as the reported AP are
96 * colocated and can be discovered via legacy bands.
97 * @short_ssid_valid: short_ssid is valid and can be used
98 * @short_ssid: the short SSID for this SSID
99 * @psd_20: The 20MHz PSD EIRP of the primary 20MHz channel for the reported AP
100 */
101 struct cfg80211_colocated_ap {
102 struct list_head list;
103 u8 bssid[ETH_ALEN];
104 u8 ssid[IEEE80211_MAX_SSID_LEN];
105 size_t ssid_len;
106 u32 short_ssid;
107 u32 center_freq;
108 u8 unsolicited_probe:1,
109 oct_recommended:1,
110 same_ssid:1,
111 multi_bss:1,
112 transmitted_bssid:1,
113 colocated_ess:1,
114 short_ssid_valid:1;
115 s8 psd_20;
116 };
117
bss_free(struct cfg80211_internal_bss * bss)118 static void bss_free(struct cfg80211_internal_bss *bss)
119 {
120 struct cfg80211_bss_ies *ies;
121
122 if (WARN_ON(atomic_read(&bss->hold)))
123 return;
124
125 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
126 if (ies && !bss->pub.hidden_beacon_bss)
127 kfree_rcu(ies, rcu_head);
128 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
129 if (ies)
130 kfree_rcu(ies, rcu_head);
131
132 /*
133 * This happens when the module is removed, it doesn't
134 * really matter any more save for completeness
135 */
136 if (!list_empty(&bss->hidden_list))
137 list_del(&bss->hidden_list);
138
139 kfree(bss);
140 }
141
bss_ref_get(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)142 static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
143 struct cfg80211_internal_bss *bss)
144 {
145 lockdep_assert_held(&rdev->bss_lock);
146
147 bss->refcount++;
148
149 if (bss->pub.hidden_beacon_bss)
150 bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++;
151
152 if (bss->pub.transmitted_bss)
153 bss_from_pub(bss->pub.transmitted_bss)->refcount++;
154 }
155
bss_ref_put(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)156 static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
157 struct cfg80211_internal_bss *bss)
158 {
159 lockdep_assert_held(&rdev->bss_lock);
160
161 if (bss->pub.hidden_beacon_bss) {
162 struct cfg80211_internal_bss *hbss;
163
164 hbss = bss_from_pub(bss->pub.hidden_beacon_bss);
165 hbss->refcount--;
166 if (hbss->refcount == 0)
167 bss_free(hbss);
168 }
169
170 if (bss->pub.transmitted_bss) {
171 struct cfg80211_internal_bss *tbss;
172
173 tbss = bss_from_pub(bss->pub.transmitted_bss);
174 tbss->refcount--;
175 if (tbss->refcount == 0)
176 bss_free(tbss);
177 }
178
179 bss->refcount--;
180 if (bss->refcount == 0)
181 bss_free(bss);
182 }
183
__cfg80211_unlink_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)184 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
185 struct cfg80211_internal_bss *bss)
186 {
187 lockdep_assert_held(&rdev->bss_lock);
188
189 if (!list_empty(&bss->hidden_list)) {
190 /*
191 * don't remove the beacon entry if it has
192 * probe responses associated with it
193 */
194 if (!bss->pub.hidden_beacon_bss)
195 return false;
196 /*
197 * if it's a probe response entry break its
198 * link to the other entries in the group
199 */
200 list_del_init(&bss->hidden_list);
201 }
202
203 list_del_init(&bss->list);
204 list_del_init(&bss->pub.nontrans_list);
205 rb_erase(&bss->rbn, &rdev->bss_tree);
206 rdev->bss_entries--;
207 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
208 "rdev bss entries[%d]/list[empty:%d] corruption\n",
209 rdev->bss_entries, list_empty(&rdev->bss_list));
210 bss_ref_put(rdev, bss);
211 return true;
212 }
213
cfg80211_is_element_inherited(const struct element * elem,const struct element * non_inherit_elem)214 bool cfg80211_is_element_inherited(const struct element *elem,
215 const struct element *non_inherit_elem)
216 {
217 u8 id_len, ext_id_len, i, loop_len, id;
218 const u8 *list;
219
220 if (elem->id == WLAN_EID_MULTIPLE_BSSID)
221 return false;
222
223 if (elem->id == WLAN_EID_EXTENSION && elem->datalen > 1 &&
224 elem->data[0] == WLAN_EID_EXT_EHT_MULTI_LINK)
225 return false;
226
227 if (!non_inherit_elem || non_inherit_elem->datalen < 2)
228 return true;
229
230 /*
231 * non inheritance element format is:
232 * ext ID (56) | IDs list len | list | extension IDs list len | list
233 * Both lists are optional. Both lengths are mandatory.
234 * This means valid length is:
235 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
236 */
237 id_len = non_inherit_elem->data[1];
238 if (non_inherit_elem->datalen < 3 + id_len)
239 return true;
240
241 ext_id_len = non_inherit_elem->data[2 + id_len];
242 if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
243 return true;
244
245 if (elem->id == WLAN_EID_EXTENSION) {
246 if (!ext_id_len)
247 return true;
248 loop_len = ext_id_len;
249 list = &non_inherit_elem->data[3 + id_len];
250 id = elem->data[0];
251 } else {
252 if (!id_len)
253 return true;
254 loop_len = id_len;
255 list = &non_inherit_elem->data[2];
256 id = elem->id;
257 }
258
259 for (i = 0; i < loop_len; i++) {
260 if (list[i] == id)
261 return false;
262 }
263
264 return true;
265 }
266 EXPORT_SYMBOL(cfg80211_is_element_inherited);
267
cfg80211_copy_elem_with_frags(const struct element * elem,const u8 * ie,size_t ie_len,u8 ** pos,u8 * buf,size_t buf_len)268 static size_t cfg80211_copy_elem_with_frags(const struct element *elem,
269 const u8 *ie, size_t ie_len,
270 u8 **pos, u8 *buf, size_t buf_len)
271 {
272 if (WARN_ON((u8 *)elem < ie || elem->data > ie + ie_len ||
273 elem->data + elem->datalen > ie + ie_len))
274 return 0;
275
276 if (elem->datalen + 2 > buf + buf_len - *pos)
277 return 0;
278
279 memcpy(*pos, elem, elem->datalen + 2);
280 *pos += elem->datalen + 2;
281
282 /* Finish if it is not fragmented */
283 if (elem->datalen != 255)
284 return *pos - buf;
285
286 ie_len = ie + ie_len - elem->data - elem->datalen;
287 ie = (const u8 *)elem->data + elem->datalen;
288
289 for_each_element(elem, ie, ie_len) {
290 if (elem->id != WLAN_EID_FRAGMENT)
291 break;
292
293 if (elem->datalen + 2 > buf + buf_len - *pos)
294 return 0;
295
296 memcpy(*pos, elem, elem->datalen + 2);
297 *pos += elem->datalen + 2;
298
299 if (elem->datalen != 255)
300 break;
301 }
302
303 return *pos - buf;
304 }
305
cfg80211_gen_new_ie(const u8 * ie,size_t ielen,const u8 * subie,size_t subie_len,u8 * new_ie,size_t new_ie_len)306 static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
307 const u8 *subie, size_t subie_len,
308 u8 *new_ie, size_t new_ie_len)
309 {
310 const struct element *non_inherit_elem, *parent, *sub;
311 u8 *pos = new_ie;
312 u8 id, ext_id;
313 unsigned int match_len;
314
315 non_inherit_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
316 subie, subie_len);
317
318 /* We copy the elements one by one from the parent to the generated
319 * elements.
320 * If they are not inherited (included in subie or in the non
321 * inheritance element), then we copy all occurrences the first time
322 * we see this element type.
323 */
324 for_each_element(parent, ie, ielen) {
325 if (parent->id == WLAN_EID_FRAGMENT)
326 continue;
327
328 if (parent->id == WLAN_EID_EXTENSION) {
329 if (parent->datalen < 1)
330 continue;
331
332 id = WLAN_EID_EXTENSION;
333 ext_id = parent->data[0];
334 match_len = 1;
335 } else {
336 id = parent->id;
337 match_len = 0;
338 }
339
340 /* Find first occurrence in subie */
341 sub = cfg80211_find_elem_match(id, subie, subie_len,
342 &ext_id, match_len, 0);
343
344 /* Copy from parent if not in subie and inherited */
345 if (!sub &&
346 cfg80211_is_element_inherited(parent, non_inherit_elem)) {
347 if (!cfg80211_copy_elem_with_frags(parent,
348 ie, ielen,
349 &pos, new_ie,
350 new_ie_len))
351 return 0;
352
353 continue;
354 }
355
356 /* Already copied if an earlier element had the same type */
357 if (cfg80211_find_elem_match(id, ie, (u8 *)parent - ie,
358 &ext_id, match_len, 0))
359 continue;
360
361 /* Not inheriting, copy all similar elements from subie */
362 while (sub) {
363 if (!cfg80211_copy_elem_with_frags(sub,
364 subie, subie_len,
365 &pos, new_ie,
366 new_ie_len))
367 return 0;
368
369 sub = cfg80211_find_elem_match(id,
370 sub->data + sub->datalen,
371 subie_len + subie -
372 (sub->data +
373 sub->datalen),
374 &ext_id, match_len, 0);
375 }
376 }
377
378 /* The above misses elements that are included in subie but not in the
379 * parent, so do a pass over subie and append those.
380 * Skip the non-tx BSSID caps and non-inheritance element.
381 */
382 for_each_element(sub, subie, subie_len) {
383 if (sub->id == WLAN_EID_NON_TX_BSSID_CAP)
384 continue;
385
386 if (sub->id == WLAN_EID_FRAGMENT)
387 continue;
388
389 if (sub->id == WLAN_EID_EXTENSION) {
390 if (sub->datalen < 1)
391 continue;
392
393 id = WLAN_EID_EXTENSION;
394 ext_id = sub->data[0];
395 match_len = 1;
396
397 if (ext_id == WLAN_EID_EXT_NON_INHERITANCE)
398 continue;
399 } else {
400 id = sub->id;
401 match_len = 0;
402 }
403
404 /* Processed if one was included in the parent */
405 if (cfg80211_find_elem_match(id, ie, ielen,
406 &ext_id, match_len, 0))
407 continue;
408
409 if (!cfg80211_copy_elem_with_frags(sub, subie, subie_len,
410 &pos, new_ie, new_ie_len))
411 return 0;
412 }
413
414 return pos - new_ie;
415 }
416
is_bss(struct cfg80211_bss * a,const u8 * bssid,const u8 * ssid,size_t ssid_len)417 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
418 const u8 *ssid, size_t ssid_len)
419 {
420 const struct cfg80211_bss_ies *ies;
421 const struct element *ssid_elem;
422
423 if (bssid && !ether_addr_equal(a->bssid, bssid))
424 return false;
425
426 if (!ssid)
427 return true;
428
429 ies = rcu_access_pointer(a->ies);
430 if (!ies)
431 return false;
432 ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
433 if (!ssid_elem)
434 return false;
435 if (ssid_elem->datalen != ssid_len)
436 return false;
437 return memcmp(ssid_elem->data, ssid, ssid_len) == 0;
438 }
439
440 static int
cfg80211_add_nontrans_list(struct cfg80211_bss * trans_bss,struct cfg80211_bss * nontrans_bss)441 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
442 struct cfg80211_bss *nontrans_bss)
443 {
444 const struct element *ssid_elem;
445 struct cfg80211_bss *bss = NULL;
446
447 rcu_read_lock();
448 ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
449 if (!ssid_elem) {
450 rcu_read_unlock();
451 return -EINVAL;
452 }
453
454 /* check if nontrans_bss is in the list */
455 list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
456 if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data,
457 ssid_elem->datalen)) {
458 rcu_read_unlock();
459 return 0;
460 }
461 }
462
463 rcu_read_unlock();
464
465 /*
466 * This is a bit weird - it's not on the list, but already on another
467 * one! The only way that could happen is if there's some BSSID/SSID
468 * shared by multiple APs in their multi-BSSID profiles, potentially
469 * with hidden SSID mixed in ... ignore it.
470 */
471 if (!list_empty(&nontrans_bss->nontrans_list))
472 return -EINVAL;
473
474 /* add to the list */
475 list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
476 return 0;
477 }
478
__cfg80211_bss_expire(struct cfg80211_registered_device * rdev,unsigned long expire_time)479 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
480 unsigned long expire_time)
481 {
482 struct cfg80211_internal_bss *bss, *tmp;
483 bool expired = false;
484
485 lockdep_assert_held(&rdev->bss_lock);
486
487 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
488 if (atomic_read(&bss->hold))
489 continue;
490 if (!time_after(expire_time, bss->ts))
491 continue;
492
493 if (__cfg80211_unlink_bss(rdev, bss))
494 expired = true;
495 }
496
497 if (expired)
498 rdev->bss_generation++;
499 }
500
cfg80211_bss_expire_oldest(struct cfg80211_registered_device * rdev)501 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
502 {
503 struct cfg80211_internal_bss *bss, *oldest = NULL;
504 bool ret;
505
506 lockdep_assert_held(&rdev->bss_lock);
507
508 list_for_each_entry(bss, &rdev->bss_list, list) {
509 if (atomic_read(&bss->hold))
510 continue;
511
512 if (!list_empty(&bss->hidden_list) &&
513 !bss->pub.hidden_beacon_bss)
514 continue;
515
516 if (oldest && time_before(oldest->ts, bss->ts))
517 continue;
518 oldest = bss;
519 }
520
521 if (WARN_ON(!oldest))
522 return false;
523
524 /*
525 * The callers make sure to increase rdev->bss_generation if anything
526 * gets removed (and a new entry added), so there's no need to also do
527 * it here.
528 */
529
530 ret = __cfg80211_unlink_bss(rdev, oldest);
531 WARN_ON(!ret);
532 return ret;
533 }
534
cfg80211_parse_bss_param(u8 data,struct cfg80211_colocated_ap * coloc_ap)535 static u8 cfg80211_parse_bss_param(u8 data,
536 struct cfg80211_colocated_ap *coloc_ap)
537 {
538 coloc_ap->oct_recommended =
539 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
540 coloc_ap->same_ssid =
541 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
542 coloc_ap->multi_bss =
543 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
544 coloc_ap->transmitted_bssid =
545 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
546 coloc_ap->unsolicited_probe =
547 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
548 coloc_ap->colocated_ess =
549 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
550
551 return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
552 }
553
cfg80211_calc_short_ssid(const struct cfg80211_bss_ies * ies,const struct element ** elem,u32 * s_ssid)554 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
555 const struct element **elem, u32 *s_ssid)
556 {
557
558 *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
559 if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
560 return -EINVAL;
561
562 *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
563 return 0;
564 }
565
cfg80211_free_coloc_ap_list(struct list_head * coloc_ap_list)566 static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
567 {
568 struct cfg80211_colocated_ap *ap, *tmp_ap;
569
570 list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
571 list_del(&ap->list);
572 kfree(ap);
573 }
574 }
575
cfg80211_parse_ap_info(struct cfg80211_colocated_ap * entry,const u8 * pos,u8 length,const struct element * ssid_elem,u32 s_ssid_tmp)576 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
577 const u8 *pos, u8 length,
578 const struct element *ssid_elem,
579 u32 s_ssid_tmp)
580 {
581 u8 bss_params;
582
583 entry->psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
584
585 /* The length is already verified by the caller to contain bss_params */
586 if (length > sizeof(struct ieee80211_tbtt_info_7_8_9)) {
587 struct ieee80211_tbtt_info_ge_11 *tbtt_info = (void *)pos;
588
589 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
590 entry->short_ssid = le32_to_cpu(tbtt_info->short_ssid);
591 entry->short_ssid_valid = true;
592
593 bss_params = tbtt_info->bss_params;
594
595 /* Ignore disabled links */
596 if (length >= offsetofend(typeof(*tbtt_info), mld_params)) {
597 if (le16_get_bits(tbtt_info->mld_params.params,
598 IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK))
599 return -EINVAL;
600 }
601
602 if (length >= offsetofend(struct ieee80211_tbtt_info_ge_11,
603 psd_20))
604 entry->psd_20 = tbtt_info->psd_20;
605 } else {
606 struct ieee80211_tbtt_info_7_8_9 *tbtt_info = (void *)pos;
607
608 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
609
610 bss_params = tbtt_info->bss_params;
611
612 if (length == offsetofend(struct ieee80211_tbtt_info_7_8_9,
613 psd_20))
614 entry->psd_20 = tbtt_info->psd_20;
615 }
616
617 /* ignore entries with invalid BSSID */
618 if (!is_valid_ether_addr(entry->bssid))
619 return -EINVAL;
620
621 /* skip non colocated APs */
622 if (!cfg80211_parse_bss_param(bss_params, entry))
623 return -EINVAL;
624
625 /* no information about the short ssid. Consider the entry valid
626 * for now. It would later be dropped in case there are explicit
627 * SSIDs that need to be matched
628 */
629 if (!entry->same_ssid && !entry->short_ssid_valid)
630 return 0;
631
632 if (entry->same_ssid) {
633 entry->short_ssid = s_ssid_tmp;
634 entry->short_ssid_valid = true;
635
636 /*
637 * This is safe because we validate datalen in
638 * cfg80211_parse_colocated_ap(), before calling this
639 * function.
640 */
641 memcpy(&entry->ssid, &ssid_elem->data, ssid_elem->datalen);
642 entry->ssid_len = ssid_elem->datalen;
643 }
644
645 return 0;
646 }
647
cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies * ies,struct list_head * list)648 static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
649 struct list_head *list)
650 {
651 struct ieee80211_neighbor_ap_info *ap_info;
652 const struct element *elem, *ssid_elem;
653 const u8 *pos, *end;
654 u32 s_ssid_tmp;
655 int n_coloc = 0, ret;
656 LIST_HEAD(ap_list);
657
658 ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp);
659 if (ret)
660 return 0;
661
662 for_each_element_id(elem, WLAN_EID_REDUCED_NEIGHBOR_REPORT,
663 ies->data, ies->len) {
664 pos = elem->data;
665 end = elem->data + elem->datalen;
666
667 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */
668 while (pos + sizeof(*ap_info) <= end) {
669 enum nl80211_band band;
670 int freq;
671 u8 length, i, count;
672
673 ap_info = (void *)pos;
674 count = u8_get_bits(ap_info->tbtt_info_hdr,
675 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
676 length = ap_info->tbtt_info_len;
677
678 pos += sizeof(*ap_info);
679
680 if (!ieee80211_operating_class_to_band(ap_info->op_class,
681 &band))
682 break;
683
684 freq = ieee80211_channel_to_frequency(ap_info->channel,
685 band);
686
687 if (end - pos < count * length)
688 break;
689
690 if (u8_get_bits(ap_info->tbtt_info_hdr,
691 IEEE80211_AP_INFO_TBTT_HDR_TYPE) !=
692 IEEE80211_TBTT_INFO_TYPE_TBTT) {
693 pos += count * length;
694 continue;
695 }
696
697 /* TBTT info must include bss param + BSSID +
698 * (short SSID or same_ssid bit to be set).
699 * ignore other options, and move to the
700 * next AP info
701 */
702 if (band != NL80211_BAND_6GHZ ||
703 !(length == offsetofend(struct ieee80211_tbtt_info_7_8_9,
704 bss_params) ||
705 length == sizeof(struct ieee80211_tbtt_info_7_8_9) ||
706 length >= offsetofend(struct ieee80211_tbtt_info_ge_11,
707 bss_params))) {
708 pos += count * length;
709 continue;
710 }
711
712 for (i = 0; i < count; i++) {
713 struct cfg80211_colocated_ap *entry;
714
715 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
716 GFP_ATOMIC);
717
718 if (!entry)
719 goto error;
720
721 entry->center_freq = freq;
722
723 if (!cfg80211_parse_ap_info(entry, pos, length,
724 ssid_elem,
725 s_ssid_tmp)) {
726 n_coloc++;
727 list_add_tail(&entry->list, &ap_list);
728 } else {
729 kfree(entry);
730 }
731
732 pos += length;
733 }
734 }
735
736 error:
737 if (pos != end) {
738 cfg80211_free_coloc_ap_list(&ap_list);
739 return 0;
740 }
741 }
742
743 list_splice_tail(&ap_list, list);
744 return n_coloc;
745 }
746
cfg80211_scan_req_add_chan(struct cfg80211_scan_request * request,struct ieee80211_channel * chan,bool add_to_6ghz)747 static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
748 struct ieee80211_channel *chan,
749 bool add_to_6ghz)
750 {
751 int i;
752 u32 n_channels = request->n_channels;
753 struct cfg80211_scan_6ghz_params *params =
754 &request->scan_6ghz_params[request->n_6ghz_params];
755
756 for (i = 0; i < n_channels; i++) {
757 if (request->channels[i] == chan) {
758 if (add_to_6ghz)
759 params->channel_idx = i;
760 return;
761 }
762 }
763
764 request->channels[n_channels] = chan;
765 if (add_to_6ghz)
766 request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
767 n_channels;
768
769 request->n_channels++;
770 }
771
cfg80211_find_ssid_match(struct cfg80211_colocated_ap * ap,struct cfg80211_scan_request * request)772 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
773 struct cfg80211_scan_request *request)
774 {
775 int i;
776 u32 s_ssid;
777
778 for (i = 0; i < request->n_ssids; i++) {
779 /* wildcard ssid in the scan request */
780 if (!request->ssids[i].ssid_len) {
781 if (ap->multi_bss && !ap->transmitted_bssid)
782 continue;
783
784 return true;
785 }
786
787 if (ap->ssid_len &&
788 ap->ssid_len == request->ssids[i].ssid_len) {
789 if (!memcmp(request->ssids[i].ssid, ap->ssid,
790 ap->ssid_len))
791 return true;
792 } else if (ap->short_ssid_valid) {
793 s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
794 request->ssids[i].ssid_len);
795
796 if (ap->short_ssid == s_ssid)
797 return true;
798 }
799 }
800
801 return false;
802 }
803
cfg80211_scan_6ghz(struct cfg80211_registered_device * rdev)804 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
805 {
806 u8 i;
807 struct cfg80211_colocated_ap *ap;
808 int n_channels, count = 0, err;
809 struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
810 LIST_HEAD(coloc_ap_list);
811 bool need_scan_psc = true;
812 const struct ieee80211_sband_iftype_data *iftd;
813 size_t size, offs_ssids, offs_6ghz_params, offs_ies;
814
815 rdev_req->scan_6ghz = true;
816
817 if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
818 return -EOPNOTSUPP;
819
820 iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
821 rdev_req->wdev->iftype);
822 if (!iftd || !iftd->he_cap.has_he)
823 return -EOPNOTSUPP;
824
825 n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
826
827 if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
828 struct cfg80211_internal_bss *intbss;
829
830 spin_lock_bh(&rdev->bss_lock);
831 list_for_each_entry(intbss, &rdev->bss_list, list) {
832 struct cfg80211_bss *res = &intbss->pub;
833 const struct cfg80211_bss_ies *ies;
834 const struct element *ssid_elem;
835 struct cfg80211_colocated_ap *entry;
836 u32 s_ssid_tmp;
837 int ret;
838
839 ies = rcu_access_pointer(res->ies);
840 count += cfg80211_parse_colocated_ap(ies,
841 &coloc_ap_list);
842
843 /* In case the scan request specified a specific BSSID
844 * and the BSS is found and operating on 6GHz band then
845 * add this AP to the collocated APs list.
846 * This is relevant for ML probe requests when the lower
847 * band APs have not been discovered.
848 */
849 if (is_broadcast_ether_addr(rdev_req->bssid) ||
850 !ether_addr_equal(rdev_req->bssid, res->bssid) ||
851 res->channel->band != NL80211_BAND_6GHZ)
852 continue;
853
854 ret = cfg80211_calc_short_ssid(ies, &ssid_elem,
855 &s_ssid_tmp);
856 if (ret)
857 continue;
858
859 entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
860 if (!entry)
861 continue;
862
863 memcpy(entry->bssid, res->bssid, ETH_ALEN);
864 entry->short_ssid = s_ssid_tmp;
865 memcpy(entry->ssid, ssid_elem->data,
866 ssid_elem->datalen);
867 entry->ssid_len = ssid_elem->datalen;
868 entry->short_ssid_valid = true;
869 entry->center_freq = res->channel->center_freq;
870
871 list_add_tail(&entry->list, &coloc_ap_list);
872 count++;
873 }
874 spin_unlock_bh(&rdev->bss_lock);
875 }
876
877 size = struct_size(request, channels, n_channels);
878 offs_ssids = size;
879 size += sizeof(*request->ssids) * rdev_req->n_ssids;
880 offs_6ghz_params = size;
881 size += sizeof(*request->scan_6ghz_params) * count;
882 offs_ies = size;
883 size += rdev_req->ie_len;
884
885 request = kzalloc(size, GFP_KERNEL);
886 if (!request) {
887 cfg80211_free_coloc_ap_list(&coloc_ap_list);
888 return -ENOMEM;
889 }
890
891 *request = *rdev_req;
892 request->n_channels = 0;
893 request->n_6ghz_params = 0;
894 if (rdev_req->n_ssids) {
895 /*
896 * Add the ssids from the parent scan request to the new
897 * scan request, so the driver would be able to use them
898 * in its probe requests to discover hidden APs on PSC
899 * channels.
900 */
901 request->ssids = (void *)request + offs_ssids;
902 memcpy(request->ssids, rdev_req->ssids,
903 sizeof(*request->ssids) * request->n_ssids);
904 }
905 request->scan_6ghz_params = (void *)request + offs_6ghz_params;
906
907 if (rdev_req->ie_len) {
908 void *ie = (void *)request + offs_ies;
909
910 memcpy(ie, rdev_req->ie, rdev_req->ie_len);
911 request->ie = ie;
912 }
913
914 /*
915 * PSC channels should not be scanned in case of direct scan with 1 SSID
916 * and at least one of the reported co-located APs with same SSID
917 * indicating that all APs in the same ESS are co-located
918 */
919 if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
920 list_for_each_entry(ap, &coloc_ap_list, list) {
921 if (ap->colocated_ess &&
922 cfg80211_find_ssid_match(ap, request)) {
923 need_scan_psc = false;
924 break;
925 }
926 }
927 }
928
929 /*
930 * add to the scan request the channels that need to be scanned
931 * regardless of the collocated APs (PSC channels or all channels
932 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
933 */
934 for (i = 0; i < rdev_req->n_channels; i++) {
935 if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
936 ((need_scan_psc &&
937 cfg80211_channel_is_psc(rdev_req->channels[i])) ||
938 !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
939 cfg80211_scan_req_add_chan(request,
940 rdev_req->channels[i],
941 false);
942 }
943 }
944
945 if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
946 goto skip;
947
948 list_for_each_entry(ap, &coloc_ap_list, list) {
949 bool found = false;
950 struct cfg80211_scan_6ghz_params *scan_6ghz_params =
951 &request->scan_6ghz_params[request->n_6ghz_params];
952 struct ieee80211_channel *chan =
953 ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
954
955 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
956 continue;
957
958 for (i = 0; i < rdev_req->n_channels; i++) {
959 if (rdev_req->channels[i] == chan)
960 found = true;
961 }
962
963 if (!found)
964 continue;
965
966 if (request->n_ssids > 0 &&
967 !cfg80211_find_ssid_match(ap, request))
968 continue;
969
970 if (!is_broadcast_ether_addr(request->bssid) &&
971 !ether_addr_equal(request->bssid, ap->bssid))
972 continue;
973
974 if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid)
975 continue;
976
977 cfg80211_scan_req_add_chan(request, chan, true);
978 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
979 scan_6ghz_params->short_ssid = ap->short_ssid;
980 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
981 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
982 scan_6ghz_params->psd_20 = ap->psd_20;
983
984 /*
985 * If a PSC channel is added to the scan and 'need_scan_psc' is
986 * set to false, then all the APs that the scan logic is
987 * interested with on the channel are collocated and thus there
988 * is no need to perform the initial PSC channel listen.
989 */
990 if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
991 scan_6ghz_params->psc_no_listen = true;
992
993 request->n_6ghz_params++;
994 }
995
996 skip:
997 cfg80211_free_coloc_ap_list(&coloc_ap_list);
998
999 if (request->n_channels) {
1000 struct cfg80211_scan_request *old = rdev->int_scan_req;
1001
1002 rdev->int_scan_req = request;
1003
1004 /*
1005 * If this scan follows a previous scan, save the scan start
1006 * info from the first part of the scan
1007 */
1008 if (old)
1009 rdev->int_scan_req->info = old->info;
1010
1011 err = rdev_scan(rdev, request);
1012 if (err) {
1013 rdev->int_scan_req = old;
1014 kfree(request);
1015 } else {
1016 kfree(old);
1017 }
1018
1019 return err;
1020 }
1021
1022 kfree(request);
1023 return -EINVAL;
1024 }
1025
cfg80211_scan(struct cfg80211_registered_device * rdev)1026 int cfg80211_scan(struct cfg80211_registered_device *rdev)
1027 {
1028 struct cfg80211_scan_request *request;
1029 struct cfg80211_scan_request *rdev_req = rdev->scan_req;
1030 u32 n_channels = 0, idx, i;
1031
1032 if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
1033 return rdev_scan(rdev, rdev_req);
1034
1035 for (i = 0; i < rdev_req->n_channels; i++) {
1036 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
1037 n_channels++;
1038 }
1039
1040 if (!n_channels)
1041 return cfg80211_scan_6ghz(rdev);
1042
1043 request = kzalloc(struct_size(request, channels, n_channels),
1044 GFP_KERNEL);
1045 if (!request)
1046 return -ENOMEM;
1047
1048 *request = *rdev_req;
1049 request->n_channels = n_channels;
1050
1051 for (i = idx = 0; i < rdev_req->n_channels; i++) {
1052 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
1053 request->channels[idx++] = rdev_req->channels[i];
1054 }
1055
1056 rdev_req->scan_6ghz = false;
1057 rdev->int_scan_req = request;
1058 return rdev_scan(rdev, request);
1059 }
1060
___cfg80211_scan_done(struct cfg80211_registered_device * rdev,bool send_message)1061 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
1062 bool send_message)
1063 {
1064 struct cfg80211_scan_request *request, *rdev_req;
1065 struct wireless_dev *wdev;
1066 struct sk_buff *msg;
1067 #ifdef CONFIG_CFG80211_WEXT
1068 union iwreq_data wrqu;
1069 #endif
1070
1071 lockdep_assert_held(&rdev->wiphy.mtx);
1072
1073 if (rdev->scan_msg) {
1074 nl80211_send_scan_msg(rdev, rdev->scan_msg);
1075 rdev->scan_msg = NULL;
1076 return;
1077 }
1078
1079 rdev_req = rdev->scan_req;
1080 if (!rdev_req)
1081 return;
1082
1083 wdev = rdev_req->wdev;
1084 request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
1085
1086 if (wdev_running(wdev) &&
1087 (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
1088 !rdev_req->scan_6ghz && !request->info.aborted &&
1089 !cfg80211_scan_6ghz(rdev))
1090 return;
1091
1092 /*
1093 * This must be before sending the other events!
1094 * Otherwise, wpa_supplicant gets completely confused with
1095 * wext events.
1096 */
1097 if (wdev->netdev)
1098 cfg80211_sme_scan_done(wdev->netdev);
1099
1100 if (!request->info.aborted &&
1101 request->flags & NL80211_SCAN_FLAG_FLUSH) {
1102 /* flush entries from previous scans */
1103 spin_lock_bh(&rdev->bss_lock);
1104 __cfg80211_bss_expire(rdev, request->scan_start);
1105 spin_unlock_bh(&rdev->bss_lock);
1106 }
1107
1108 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
1109
1110 #ifdef CONFIG_CFG80211_WEXT
1111 if (wdev->netdev && !request->info.aborted) {
1112 memset(&wrqu, 0, sizeof(wrqu));
1113
1114 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
1115 }
1116 #endif
1117
1118 dev_put(wdev->netdev);
1119
1120 kfree(rdev->int_scan_req);
1121 rdev->int_scan_req = NULL;
1122
1123 kfree(rdev->scan_req);
1124 rdev->scan_req = NULL;
1125
1126 if (!send_message)
1127 rdev->scan_msg = msg;
1128 else
1129 nl80211_send_scan_msg(rdev, msg);
1130 }
1131
__cfg80211_scan_done(struct wiphy * wiphy,struct wiphy_work * wk)1132 void __cfg80211_scan_done(struct wiphy *wiphy, struct wiphy_work *wk)
1133 {
1134 ___cfg80211_scan_done(wiphy_to_rdev(wiphy), true);
1135 }
1136
cfg80211_scan_done(struct cfg80211_scan_request * request,struct cfg80211_scan_info * info)1137 void cfg80211_scan_done(struct cfg80211_scan_request *request,
1138 struct cfg80211_scan_info *info)
1139 {
1140 struct cfg80211_scan_info old_info = request->info;
1141
1142 trace_cfg80211_scan_done(request, info);
1143 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1144 request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1145
1146 request->info = *info;
1147
1148 /*
1149 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1150 * be of the first part. In such a case old_info.scan_start_tsf should
1151 * be non zero.
1152 */
1153 if (request->scan_6ghz && old_info.scan_start_tsf) {
1154 request->info.scan_start_tsf = old_info.scan_start_tsf;
1155 memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1156 sizeof(request->info.tsf_bssid));
1157 }
1158
1159 request->notified = true;
1160 wiphy_work_queue(request->wiphy,
1161 &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1162 }
1163 EXPORT_SYMBOL(cfg80211_scan_done);
1164
cfg80211_add_sched_scan_req(struct cfg80211_registered_device * rdev,struct cfg80211_sched_scan_request * req)1165 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1166 struct cfg80211_sched_scan_request *req)
1167 {
1168 lockdep_assert_held(&rdev->wiphy.mtx);
1169
1170 list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1171 }
1172
cfg80211_del_sched_scan_req(struct cfg80211_registered_device * rdev,struct cfg80211_sched_scan_request * req)1173 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1174 struct cfg80211_sched_scan_request *req)
1175 {
1176 lockdep_assert_held(&rdev->wiphy.mtx);
1177
1178 list_del_rcu(&req->list);
1179 kfree_rcu(req, rcu_head);
1180 }
1181
1182 static struct cfg80211_sched_scan_request *
cfg80211_find_sched_scan_req(struct cfg80211_registered_device * rdev,u64 reqid)1183 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1184 {
1185 struct cfg80211_sched_scan_request *pos;
1186
1187 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1188 lockdep_is_held(&rdev->wiphy.mtx)) {
1189 if (pos->reqid == reqid)
1190 return pos;
1191 }
1192 return NULL;
1193 }
1194
1195 /*
1196 * Determines if a scheduled scan request can be handled. When a legacy
1197 * scheduled scan is running no other scheduled scan is allowed regardless
1198 * whether the request is for legacy or multi-support scan. When a multi-support
1199 * scheduled scan is running a request for legacy scan is not allowed. In this
1200 * case a request for multi-support scan can be handled if resources are
1201 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1202 */
cfg80211_sched_scan_req_possible(struct cfg80211_registered_device * rdev,bool want_multi)1203 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1204 bool want_multi)
1205 {
1206 struct cfg80211_sched_scan_request *pos;
1207 int i = 0;
1208
1209 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1210 /* request id zero means legacy in progress */
1211 if (!i && !pos->reqid)
1212 return -EINPROGRESS;
1213 i++;
1214 }
1215
1216 if (i) {
1217 /* no legacy allowed when multi request(s) are active */
1218 if (!want_multi)
1219 return -EINPROGRESS;
1220
1221 /* resource limit reached */
1222 if (i == rdev->wiphy.max_sched_scan_reqs)
1223 return -ENOSPC;
1224 }
1225 return 0;
1226 }
1227
cfg80211_sched_scan_results_wk(struct work_struct * work)1228 void cfg80211_sched_scan_results_wk(struct work_struct *work)
1229 {
1230 struct cfg80211_registered_device *rdev;
1231 struct cfg80211_sched_scan_request *req, *tmp;
1232
1233 rdev = container_of(work, struct cfg80211_registered_device,
1234 sched_scan_res_wk);
1235
1236 wiphy_lock(&rdev->wiphy);
1237 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1238 if (req->report_results) {
1239 req->report_results = false;
1240 if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1241 /* flush entries from previous scans */
1242 spin_lock_bh(&rdev->bss_lock);
1243 __cfg80211_bss_expire(rdev, req->scan_start);
1244 spin_unlock_bh(&rdev->bss_lock);
1245 req->scan_start = jiffies;
1246 }
1247 nl80211_send_sched_scan(req,
1248 NL80211_CMD_SCHED_SCAN_RESULTS);
1249 }
1250 }
1251 wiphy_unlock(&rdev->wiphy);
1252 }
1253
cfg80211_sched_scan_results(struct wiphy * wiphy,u64 reqid)1254 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1255 {
1256 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1257 struct cfg80211_sched_scan_request *request;
1258
1259 trace_cfg80211_sched_scan_results(wiphy, reqid);
1260 /* ignore if we're not scanning */
1261
1262 rcu_read_lock();
1263 request = cfg80211_find_sched_scan_req(rdev, reqid);
1264 if (request) {
1265 request->report_results = true;
1266 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1267 }
1268 rcu_read_unlock();
1269 }
1270 EXPORT_SYMBOL(cfg80211_sched_scan_results);
1271
cfg80211_sched_scan_stopped_locked(struct wiphy * wiphy,u64 reqid)1272 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1273 {
1274 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1275
1276 lockdep_assert_held(&wiphy->mtx);
1277
1278 trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1279
1280 __cfg80211_stop_sched_scan(rdev, reqid, true);
1281 }
1282 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1283
cfg80211_sched_scan_stopped(struct wiphy * wiphy,u64 reqid)1284 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1285 {
1286 wiphy_lock(wiphy);
1287 cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1288 wiphy_unlock(wiphy);
1289 }
1290 EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1291
cfg80211_stop_sched_scan_req(struct cfg80211_registered_device * rdev,struct cfg80211_sched_scan_request * req,bool driver_initiated)1292 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1293 struct cfg80211_sched_scan_request *req,
1294 bool driver_initiated)
1295 {
1296 lockdep_assert_held(&rdev->wiphy.mtx);
1297
1298 if (!driver_initiated) {
1299 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1300 if (err)
1301 return err;
1302 }
1303
1304 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1305
1306 cfg80211_del_sched_scan_req(rdev, req);
1307
1308 return 0;
1309 }
1310
__cfg80211_stop_sched_scan(struct cfg80211_registered_device * rdev,u64 reqid,bool driver_initiated)1311 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1312 u64 reqid, bool driver_initiated)
1313 {
1314 struct cfg80211_sched_scan_request *sched_scan_req;
1315
1316 lockdep_assert_held(&rdev->wiphy.mtx);
1317
1318 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1319 if (!sched_scan_req)
1320 return -ENOENT;
1321
1322 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1323 driver_initiated);
1324 }
1325
cfg80211_bss_age(struct cfg80211_registered_device * rdev,unsigned long age_secs)1326 void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1327 unsigned long age_secs)
1328 {
1329 struct cfg80211_internal_bss *bss;
1330 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1331
1332 spin_lock_bh(&rdev->bss_lock);
1333 list_for_each_entry(bss, &rdev->bss_list, list)
1334 bss->ts -= age_jiffies;
1335 spin_unlock_bh(&rdev->bss_lock);
1336 }
1337
cfg80211_bss_expire(struct cfg80211_registered_device * rdev)1338 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1339 {
1340 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1341 }
1342
cfg80211_bss_flush(struct wiphy * wiphy)1343 void cfg80211_bss_flush(struct wiphy *wiphy)
1344 {
1345 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1346
1347 spin_lock_bh(&rdev->bss_lock);
1348 __cfg80211_bss_expire(rdev, jiffies);
1349 spin_unlock_bh(&rdev->bss_lock);
1350 }
1351 EXPORT_SYMBOL(cfg80211_bss_flush);
1352
1353 const struct element *
cfg80211_find_elem_match(u8 eid,const u8 * ies,unsigned int len,const u8 * match,unsigned int match_len,unsigned int match_offset)1354 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1355 const u8 *match, unsigned int match_len,
1356 unsigned int match_offset)
1357 {
1358 const struct element *elem;
1359
1360 for_each_element_id(elem, eid, ies, len) {
1361 if (elem->datalen >= match_offset + match_len &&
1362 !memcmp(elem->data + match_offset, match, match_len))
1363 return elem;
1364 }
1365
1366 return NULL;
1367 }
1368 EXPORT_SYMBOL(cfg80211_find_elem_match);
1369
cfg80211_find_vendor_elem(unsigned int oui,int oui_type,const u8 * ies,unsigned int len)1370 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1371 const u8 *ies,
1372 unsigned int len)
1373 {
1374 const struct element *elem;
1375 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1376 int match_len = (oui_type < 0) ? 3 : sizeof(match);
1377
1378 if (WARN_ON(oui_type > 0xff))
1379 return NULL;
1380
1381 elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1382 match, match_len, 0);
1383
1384 if (!elem || elem->datalen < 4)
1385 return NULL;
1386
1387 return elem;
1388 }
1389 EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1390
1391 /**
1392 * enum bss_compare_mode - BSS compare mode
1393 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1394 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1395 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1396 */
1397 enum bss_compare_mode {
1398 BSS_CMP_REGULAR,
1399 BSS_CMP_HIDE_ZLEN,
1400 BSS_CMP_HIDE_NUL,
1401 };
1402
cmp_bss(struct cfg80211_bss * a,struct cfg80211_bss * b,enum bss_compare_mode mode)1403 static int cmp_bss(struct cfg80211_bss *a,
1404 struct cfg80211_bss *b,
1405 enum bss_compare_mode mode)
1406 {
1407 const struct cfg80211_bss_ies *a_ies, *b_ies;
1408 const u8 *ie1 = NULL;
1409 const u8 *ie2 = NULL;
1410 int i, r;
1411
1412 if (a->channel != b->channel)
1413 return (b->channel->center_freq * 1000 + b->channel->freq_offset) -
1414 (a->channel->center_freq * 1000 + a->channel->freq_offset);
1415
1416 a_ies = rcu_access_pointer(a->ies);
1417 if (!a_ies)
1418 return -1;
1419 b_ies = rcu_access_pointer(b->ies);
1420 if (!b_ies)
1421 return 1;
1422
1423 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1424 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1425 a_ies->data, a_ies->len);
1426 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1427 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1428 b_ies->data, b_ies->len);
1429 if (ie1 && ie2) {
1430 int mesh_id_cmp;
1431
1432 if (ie1[1] == ie2[1])
1433 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1434 else
1435 mesh_id_cmp = ie2[1] - ie1[1];
1436
1437 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1438 a_ies->data, a_ies->len);
1439 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1440 b_ies->data, b_ies->len);
1441 if (ie1 && ie2) {
1442 if (mesh_id_cmp)
1443 return mesh_id_cmp;
1444 if (ie1[1] != ie2[1])
1445 return ie2[1] - ie1[1];
1446 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1447 }
1448 }
1449
1450 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1451 if (r)
1452 return r;
1453
1454 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1455 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1456
1457 if (!ie1 && !ie2)
1458 return 0;
1459
1460 /*
1461 * Note that with "hide_ssid", the function returns a match if
1462 * the already-present BSS ("b") is a hidden SSID beacon for
1463 * the new BSS ("a").
1464 */
1465
1466 /* sort missing IE before (left of) present IE */
1467 if (!ie1)
1468 return -1;
1469 if (!ie2)
1470 return 1;
1471
1472 switch (mode) {
1473 case BSS_CMP_HIDE_ZLEN:
1474 /*
1475 * In ZLEN mode we assume the BSS entry we're
1476 * looking for has a zero-length SSID. So if
1477 * the one we're looking at right now has that,
1478 * return 0. Otherwise, return the difference
1479 * in length, but since we're looking for the
1480 * 0-length it's really equivalent to returning
1481 * the length of the one we're looking at.
1482 *
1483 * No content comparison is needed as we assume
1484 * the content length is zero.
1485 */
1486 return ie2[1];
1487 case BSS_CMP_REGULAR:
1488 default:
1489 /* sort by length first, then by contents */
1490 if (ie1[1] != ie2[1])
1491 return ie2[1] - ie1[1];
1492 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1493 case BSS_CMP_HIDE_NUL:
1494 if (ie1[1] != ie2[1])
1495 return ie2[1] - ie1[1];
1496 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1497 for (i = 0; i < ie2[1]; i++)
1498 if (ie2[i + 2])
1499 return -1;
1500 return 0;
1501 }
1502 }
1503
cfg80211_bss_type_match(u16 capability,enum nl80211_band band,enum ieee80211_bss_type bss_type)1504 static bool cfg80211_bss_type_match(u16 capability,
1505 enum nl80211_band band,
1506 enum ieee80211_bss_type bss_type)
1507 {
1508 bool ret = true;
1509 u16 mask, val;
1510
1511 if (bss_type == IEEE80211_BSS_TYPE_ANY)
1512 return ret;
1513
1514 if (band == NL80211_BAND_60GHZ) {
1515 mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1516 switch (bss_type) {
1517 case IEEE80211_BSS_TYPE_ESS:
1518 val = WLAN_CAPABILITY_DMG_TYPE_AP;
1519 break;
1520 case IEEE80211_BSS_TYPE_PBSS:
1521 val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1522 break;
1523 case IEEE80211_BSS_TYPE_IBSS:
1524 val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1525 break;
1526 default:
1527 return false;
1528 }
1529 } else {
1530 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1531 switch (bss_type) {
1532 case IEEE80211_BSS_TYPE_ESS:
1533 val = WLAN_CAPABILITY_ESS;
1534 break;
1535 case IEEE80211_BSS_TYPE_IBSS:
1536 val = WLAN_CAPABILITY_IBSS;
1537 break;
1538 case IEEE80211_BSS_TYPE_MBSS:
1539 val = 0;
1540 break;
1541 default:
1542 return false;
1543 }
1544 }
1545
1546 ret = ((capability & mask) == val);
1547 return ret;
1548 }
1549
1550 /* Returned bss is reference counted and must be cleaned up appropriately. */
cfg80211_get_bss(struct wiphy * wiphy,struct ieee80211_channel * channel,const u8 * bssid,const u8 * ssid,size_t ssid_len,enum ieee80211_bss_type bss_type,enum ieee80211_privacy privacy)1551 struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
1552 struct ieee80211_channel *channel,
1553 const u8 *bssid,
1554 const u8 *ssid, size_t ssid_len,
1555 enum ieee80211_bss_type bss_type,
1556 enum ieee80211_privacy privacy)
1557 {
1558 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1559 struct cfg80211_internal_bss *bss, *res = NULL;
1560 unsigned long now = jiffies;
1561 int bss_privacy;
1562
1563 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1564 privacy);
1565
1566 spin_lock_bh(&rdev->bss_lock);
1567
1568 list_for_each_entry(bss, &rdev->bss_list, list) {
1569 if (!cfg80211_bss_type_match(bss->pub.capability,
1570 bss->pub.channel->band, bss_type))
1571 continue;
1572
1573 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1574 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1575 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1576 continue;
1577 if (channel && bss->pub.channel != channel)
1578 continue;
1579 if (!is_valid_ether_addr(bss->pub.bssid))
1580 continue;
1581 /* Don't get expired BSS structs */
1582 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1583 !atomic_read(&bss->hold))
1584 continue;
1585 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1586 res = bss;
1587 bss_ref_get(rdev, res);
1588 break;
1589 }
1590 }
1591
1592 spin_unlock_bh(&rdev->bss_lock);
1593 if (!res)
1594 return NULL;
1595 trace_cfg80211_return_bss(&res->pub);
1596 return &res->pub;
1597 }
1598 EXPORT_SYMBOL(cfg80211_get_bss);
1599
rb_insert_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)1600 static bool rb_insert_bss(struct cfg80211_registered_device *rdev,
1601 struct cfg80211_internal_bss *bss)
1602 {
1603 struct rb_node **p = &rdev->bss_tree.rb_node;
1604 struct rb_node *parent = NULL;
1605 struct cfg80211_internal_bss *tbss;
1606 int cmp;
1607
1608 while (*p) {
1609 parent = *p;
1610 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1611
1612 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1613
1614 if (WARN_ON(!cmp)) {
1615 /* will sort of leak this BSS */
1616 return false;
1617 }
1618
1619 if (cmp < 0)
1620 p = &(*p)->rb_left;
1621 else
1622 p = &(*p)->rb_right;
1623 }
1624
1625 rb_link_node(&bss->rbn, parent, p);
1626 rb_insert_color(&bss->rbn, &rdev->bss_tree);
1627 return true;
1628 }
1629
1630 static struct cfg80211_internal_bss *
rb_find_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * res,enum bss_compare_mode mode)1631 rb_find_bss(struct cfg80211_registered_device *rdev,
1632 struct cfg80211_internal_bss *res,
1633 enum bss_compare_mode mode)
1634 {
1635 struct rb_node *n = rdev->bss_tree.rb_node;
1636 struct cfg80211_internal_bss *bss;
1637 int r;
1638
1639 while (n) {
1640 bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1641 r = cmp_bss(&res->pub, &bss->pub, mode);
1642
1643 if (r == 0)
1644 return bss;
1645 else if (r < 0)
1646 n = n->rb_left;
1647 else
1648 n = n->rb_right;
1649 }
1650
1651 return NULL;
1652 }
1653
cfg80211_insert_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)1654 static void cfg80211_insert_bss(struct cfg80211_registered_device *rdev,
1655 struct cfg80211_internal_bss *bss)
1656 {
1657 lockdep_assert_held(&rdev->bss_lock);
1658
1659 if (!rb_insert_bss(rdev, bss))
1660 return;
1661 list_add_tail(&bss->list, &rdev->bss_list);
1662 rdev->bss_entries++;
1663 }
1664
cfg80211_rehash_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)1665 static void cfg80211_rehash_bss(struct cfg80211_registered_device *rdev,
1666 struct cfg80211_internal_bss *bss)
1667 {
1668 lockdep_assert_held(&rdev->bss_lock);
1669
1670 rb_erase(&bss->rbn, &rdev->bss_tree);
1671 if (!rb_insert_bss(rdev, bss)) {
1672 list_del(&bss->list);
1673 if (!list_empty(&bss->hidden_list))
1674 list_del_init(&bss->hidden_list);
1675 if (!list_empty(&bss->pub.nontrans_list))
1676 list_del_init(&bss->pub.nontrans_list);
1677 rdev->bss_entries--;
1678 }
1679 rdev->bss_generation++;
1680 }
1681
cfg80211_combine_bsses(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * new)1682 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1683 struct cfg80211_internal_bss *new)
1684 {
1685 const struct cfg80211_bss_ies *ies;
1686 struct cfg80211_internal_bss *bss;
1687 const u8 *ie;
1688 int i, ssidlen;
1689 u8 fold = 0;
1690 u32 n_entries = 0;
1691
1692 ies = rcu_access_pointer(new->pub.beacon_ies);
1693 if (WARN_ON(!ies))
1694 return false;
1695
1696 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1697 if (!ie) {
1698 /* nothing to do */
1699 return true;
1700 }
1701
1702 ssidlen = ie[1];
1703 for (i = 0; i < ssidlen; i++)
1704 fold |= ie[2 + i];
1705
1706 if (fold) {
1707 /* not a hidden SSID */
1708 return true;
1709 }
1710
1711 /* This is the bad part ... */
1712
1713 list_for_each_entry(bss, &rdev->bss_list, list) {
1714 /*
1715 * we're iterating all the entries anyway, so take the
1716 * opportunity to validate the list length accounting
1717 */
1718 n_entries++;
1719
1720 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1721 continue;
1722 if (bss->pub.channel != new->pub.channel)
1723 continue;
1724 if (bss->pub.scan_width != new->pub.scan_width)
1725 continue;
1726 if (rcu_access_pointer(bss->pub.beacon_ies))
1727 continue;
1728 ies = rcu_access_pointer(bss->pub.ies);
1729 if (!ies)
1730 continue;
1731 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1732 if (!ie)
1733 continue;
1734 if (ssidlen && ie[1] != ssidlen)
1735 continue;
1736 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1737 continue;
1738 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1739 list_del(&bss->hidden_list);
1740 /* combine them */
1741 list_add(&bss->hidden_list, &new->hidden_list);
1742 bss->pub.hidden_beacon_bss = &new->pub;
1743 new->refcount += bss->refcount;
1744 rcu_assign_pointer(bss->pub.beacon_ies,
1745 new->pub.beacon_ies);
1746 }
1747
1748 WARN_ONCE(n_entries != rdev->bss_entries,
1749 "rdev bss entries[%d]/list[len:%d] corruption\n",
1750 rdev->bss_entries, n_entries);
1751
1752 return true;
1753 }
1754
cfg80211_update_hidden_bsses(struct cfg80211_internal_bss * known,const struct cfg80211_bss_ies * new_ies,const struct cfg80211_bss_ies * old_ies)1755 static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known,
1756 const struct cfg80211_bss_ies *new_ies,
1757 const struct cfg80211_bss_ies *old_ies)
1758 {
1759 struct cfg80211_internal_bss *bss;
1760
1761 /* Assign beacon IEs to all sub entries */
1762 list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1763 const struct cfg80211_bss_ies *ies;
1764
1765 ies = rcu_access_pointer(bss->pub.beacon_ies);
1766 WARN_ON(ies != old_ies);
1767
1768 rcu_assign_pointer(bss->pub.beacon_ies, new_ies);
1769 }
1770 }
1771
1772 static bool
cfg80211_update_known_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * known,struct cfg80211_internal_bss * new,bool signal_valid)1773 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1774 struct cfg80211_internal_bss *known,
1775 struct cfg80211_internal_bss *new,
1776 bool signal_valid)
1777 {
1778 lockdep_assert_held(&rdev->bss_lock);
1779
1780 /* Update IEs */
1781 if (rcu_access_pointer(new->pub.proberesp_ies)) {
1782 const struct cfg80211_bss_ies *old;
1783
1784 old = rcu_access_pointer(known->pub.proberesp_ies);
1785
1786 rcu_assign_pointer(known->pub.proberesp_ies,
1787 new->pub.proberesp_ies);
1788 /* Override possible earlier Beacon frame IEs */
1789 rcu_assign_pointer(known->pub.ies,
1790 new->pub.proberesp_ies);
1791 if (old)
1792 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1793 } else if (rcu_access_pointer(new->pub.beacon_ies)) {
1794 const struct cfg80211_bss_ies *old;
1795
1796 if (known->pub.hidden_beacon_bss &&
1797 !list_empty(&known->hidden_list)) {
1798 const struct cfg80211_bss_ies *f;
1799
1800 /* The known BSS struct is one of the probe
1801 * response members of a group, but we're
1802 * receiving a beacon (beacon_ies in the new
1803 * bss is used). This can only mean that the
1804 * AP changed its beacon from not having an
1805 * SSID to showing it, which is confusing so
1806 * drop this information.
1807 */
1808
1809 f = rcu_access_pointer(new->pub.beacon_ies);
1810 kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1811 return false;
1812 }
1813
1814 old = rcu_access_pointer(known->pub.beacon_ies);
1815
1816 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1817
1818 /* Override IEs if they were from a beacon before */
1819 if (old == rcu_access_pointer(known->pub.ies))
1820 rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1821
1822 cfg80211_update_hidden_bsses(known,
1823 rcu_access_pointer(new->pub.beacon_ies),
1824 old);
1825
1826 if (old)
1827 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1828 }
1829
1830 known->pub.beacon_interval = new->pub.beacon_interval;
1831
1832 /* don't update the signal if beacon was heard on
1833 * adjacent channel.
1834 */
1835 if (signal_valid)
1836 known->pub.signal = new->pub.signal;
1837 known->pub.capability = new->pub.capability;
1838 known->ts = new->ts;
1839 known->ts_boottime = new->ts_boottime;
1840 known->parent_tsf = new->parent_tsf;
1841 known->pub.chains = new->pub.chains;
1842 memcpy(known->pub.chain_signal, new->pub.chain_signal,
1843 IEEE80211_MAX_CHAINS);
1844 ether_addr_copy(known->parent_bssid, new->parent_bssid);
1845 known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1846 known->pub.bssid_index = new->pub.bssid_index;
1847
1848 return true;
1849 }
1850
1851 /* Returned bss is reference counted and must be cleaned up appropriately. */
1852 static struct cfg80211_internal_bss *
__cfg80211_bss_update(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * tmp,bool signal_valid,unsigned long ts)1853 __cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1854 struct cfg80211_internal_bss *tmp,
1855 bool signal_valid, unsigned long ts)
1856 {
1857 struct cfg80211_internal_bss *found = NULL;
1858
1859 if (WARN_ON(!tmp->pub.channel))
1860 return NULL;
1861
1862 tmp->ts = ts;
1863
1864 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) {
1865 return NULL;
1866 }
1867
1868 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1869
1870 if (found) {
1871 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1872 return NULL;
1873 } else {
1874 struct cfg80211_internal_bss *new;
1875 struct cfg80211_internal_bss *hidden;
1876 struct cfg80211_bss_ies *ies;
1877
1878 /*
1879 * create a copy -- the "res" variable that is passed in
1880 * is allocated on the stack since it's not needed in the
1881 * more common case of an update
1882 */
1883 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1884 GFP_ATOMIC);
1885 if (!new) {
1886 ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1887 if (ies)
1888 kfree_rcu(ies, rcu_head);
1889 ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1890 if (ies)
1891 kfree_rcu(ies, rcu_head);
1892 return NULL;
1893 }
1894 memcpy(new, tmp, sizeof(*new));
1895 new->refcount = 1;
1896 INIT_LIST_HEAD(&new->hidden_list);
1897 INIT_LIST_HEAD(&new->pub.nontrans_list);
1898 /* we'll set this later if it was non-NULL */
1899 new->pub.transmitted_bss = NULL;
1900
1901 if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1902 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1903 if (!hidden)
1904 hidden = rb_find_bss(rdev, tmp,
1905 BSS_CMP_HIDE_NUL);
1906 if (hidden) {
1907 new->pub.hidden_beacon_bss = &hidden->pub;
1908 list_add(&new->hidden_list,
1909 &hidden->hidden_list);
1910 hidden->refcount++;
1911
1912 ies = (void *)rcu_access_pointer(new->pub.beacon_ies);
1913 rcu_assign_pointer(new->pub.beacon_ies,
1914 hidden->pub.beacon_ies);
1915 if (ies)
1916 kfree_rcu(ies, rcu_head);
1917 }
1918 } else {
1919 /*
1920 * Ok so we found a beacon, and don't have an entry. If
1921 * it's a beacon with hidden SSID, we might be in for an
1922 * expensive search for any probe responses that should
1923 * be grouped with this beacon for updates ...
1924 */
1925 if (!cfg80211_combine_bsses(rdev, new)) {
1926 bss_ref_put(rdev, new);
1927 return NULL;
1928 }
1929 }
1930
1931 if (rdev->bss_entries >= bss_entries_limit &&
1932 !cfg80211_bss_expire_oldest(rdev)) {
1933 bss_ref_put(rdev, new);
1934 return NULL;
1935 }
1936
1937 /* This must be before the call to bss_ref_get */
1938 if (tmp->pub.transmitted_bss) {
1939 new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1940 bss_ref_get(rdev, bss_from_pub(tmp->pub.transmitted_bss));
1941 }
1942
1943 cfg80211_insert_bss(rdev, new);
1944 found = new;
1945 }
1946
1947 rdev->bss_generation++;
1948 bss_ref_get(rdev, found);
1949
1950 return found;
1951 }
1952
1953 struct cfg80211_internal_bss *
cfg80211_bss_update(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * tmp,bool signal_valid,unsigned long ts)1954 cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1955 struct cfg80211_internal_bss *tmp,
1956 bool signal_valid, unsigned long ts)
1957 {
1958 struct cfg80211_internal_bss *res;
1959
1960 spin_lock_bh(&rdev->bss_lock);
1961 res = __cfg80211_bss_update(rdev, tmp, signal_valid, ts);
1962 spin_unlock_bh(&rdev->bss_lock);
1963
1964 return res;
1965 }
1966
cfg80211_get_ies_channel_number(const u8 * ie,size_t ielen,enum nl80211_band band)1967 int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen,
1968 enum nl80211_band band)
1969 {
1970 const struct element *tmp;
1971
1972 if (band == NL80211_BAND_6GHZ) {
1973 struct ieee80211_he_operation *he_oper;
1974
1975 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie,
1976 ielen);
1977 if (tmp && tmp->datalen >= sizeof(*he_oper) &&
1978 tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) {
1979 const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
1980
1981 he_oper = (void *)&tmp->data[1];
1982
1983 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
1984 if (!he_6ghz_oper)
1985 return -1;
1986
1987 return he_6ghz_oper->primary;
1988 }
1989 } else if (band == NL80211_BAND_S1GHZ) {
1990 tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen);
1991 if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) {
1992 struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data;
1993
1994 return s1gop->oper_ch;
1995 }
1996 } else {
1997 tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen);
1998 if (tmp && tmp->datalen == 1)
1999 return tmp->data[0];
2000
2001 tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen);
2002 if (tmp &&
2003 tmp->datalen >= sizeof(struct ieee80211_ht_operation)) {
2004 struct ieee80211_ht_operation *htop = (void *)tmp->data;
2005
2006 return htop->primary_chan;
2007 }
2008 }
2009
2010 return -1;
2011 }
2012 EXPORT_SYMBOL(cfg80211_get_ies_channel_number);
2013
2014 /*
2015 * Update RX channel information based on the available frame payload
2016 * information. This is mainly for the 2.4 GHz band where frames can be received
2017 * from neighboring channels and the Beacon frames use the DSSS Parameter Set
2018 * element to indicate the current (transmitting) channel, but this might also
2019 * be needed on other bands if RX frequency does not match with the actual
2020 * operating channel of a BSS, or if the AP reports a different primary channel.
2021 */
2022 static struct ieee80211_channel *
cfg80211_get_bss_channel(struct wiphy * wiphy,const u8 * ie,size_t ielen,struct ieee80211_channel * channel,enum nl80211_bss_scan_width scan_width)2023 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
2024 struct ieee80211_channel *channel,
2025 enum nl80211_bss_scan_width scan_width)
2026 {
2027 u32 freq;
2028 int channel_number;
2029 struct ieee80211_channel *alt_channel;
2030
2031 channel_number = cfg80211_get_ies_channel_number(ie, ielen,
2032 channel->band);
2033
2034 if (channel_number < 0) {
2035 /* No channel information in frame payload */
2036 return channel;
2037 }
2038
2039 freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
2040
2041 /*
2042 * Frame info (beacon/prob res) is the same as received channel,
2043 * no need for further processing.
2044 */
2045 if (freq == ieee80211_channel_to_khz(channel))
2046 return channel;
2047
2048 alt_channel = ieee80211_get_channel_khz(wiphy, freq);
2049 if (!alt_channel) {
2050 if (channel->band == NL80211_BAND_2GHZ ||
2051 channel->band == NL80211_BAND_6GHZ) {
2052 /*
2053 * Better not allow unexpected channels when that could
2054 * be going beyond the 1-11 range (e.g., discovering
2055 * BSS on channel 12 when radio is configured for
2056 * channel 11) or beyond the 6 GHz channel range.
2057 */
2058 return NULL;
2059 }
2060
2061 /* No match for the payload channel number - ignore it */
2062 return channel;
2063 }
2064
2065 if (scan_width == NL80211_BSS_CHAN_WIDTH_10 ||
2066 scan_width == NL80211_BSS_CHAN_WIDTH_5) {
2067 /*
2068 * Ignore channel number in 5 and 10 MHz channels where there
2069 * may not be an n:1 or 1:n mapping between frequencies and
2070 * channel numbers.
2071 */
2072 return channel;
2073 }
2074
2075 /*
2076 * Use the channel determined through the payload channel number
2077 * instead of the RX channel reported by the driver.
2078 */
2079 if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
2080 return NULL;
2081 return alt_channel;
2082 }
2083
2084 struct cfg80211_inform_single_bss_data {
2085 struct cfg80211_inform_bss *drv_data;
2086 enum cfg80211_bss_frame_type ftype;
2087 struct ieee80211_channel *channel;
2088 u8 bssid[ETH_ALEN];
2089 u64 tsf;
2090 u16 capability;
2091 u16 beacon_interval;
2092 const u8 *ie;
2093 size_t ielen;
2094
2095 enum {
2096 BSS_SOURCE_DIRECT = 0,
2097 BSS_SOURCE_MBSSID,
2098 BSS_SOURCE_STA_PROFILE,
2099 } bss_source;
2100 /* Set if reporting bss_source != BSS_SOURCE_DIRECT */
2101 struct cfg80211_bss *source_bss;
2102 u8 max_bssid_indicator;
2103 u8 bssid_index;
2104 };
2105
2106 /* Returned bss is reference counted and must be cleaned up appropriately. */
2107 static struct cfg80211_bss *
cfg80211_inform_single_bss_data(struct wiphy * wiphy,struct cfg80211_inform_single_bss_data * data,gfp_t gfp)2108 cfg80211_inform_single_bss_data(struct wiphy *wiphy,
2109 struct cfg80211_inform_single_bss_data *data,
2110 gfp_t gfp)
2111 {
2112 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2113 struct cfg80211_inform_bss *drv_data = data->drv_data;
2114 struct cfg80211_bss_ies *ies;
2115 struct ieee80211_channel *channel;
2116 struct cfg80211_internal_bss tmp = {}, *res;
2117 int bss_type;
2118 bool signal_valid;
2119 unsigned long ts;
2120
2121 if (WARN_ON(!wiphy))
2122 return NULL;
2123
2124 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2125 (drv_data->signal < 0 || drv_data->signal > 100)))
2126 return NULL;
2127
2128 if (WARN_ON(data->bss_source != BSS_SOURCE_DIRECT && !data->source_bss))
2129 return NULL;
2130
2131 channel = data->channel;
2132 if (!channel)
2133 channel = cfg80211_get_bss_channel(wiphy, data->ie, data->ielen,
2134 drv_data->chan,
2135 drv_data->scan_width);
2136 if (!channel)
2137 return NULL;
2138
2139 memcpy(tmp.pub.bssid, data->bssid, ETH_ALEN);
2140 tmp.pub.channel = channel;
2141 tmp.pub.scan_width = drv_data->scan_width;
2142 if (data->bss_source != BSS_SOURCE_STA_PROFILE)
2143 tmp.pub.signal = drv_data->signal;
2144 else
2145 tmp.pub.signal = 0;
2146 tmp.pub.beacon_interval = data->beacon_interval;
2147 tmp.pub.capability = data->capability;
2148 tmp.ts_boottime = drv_data->boottime_ns;
2149 tmp.parent_tsf = drv_data->parent_tsf;
2150 ether_addr_copy(tmp.parent_bssid, drv_data->parent_bssid);
2151
2152 if (data->bss_source != BSS_SOURCE_DIRECT) {
2153 tmp.pub.transmitted_bss = data->source_bss;
2154 ts = bss_from_pub(data->source_bss)->ts;
2155 tmp.pub.bssid_index = data->bssid_index;
2156 tmp.pub.max_bssid_indicator = data->max_bssid_indicator;
2157 } else {
2158 ts = jiffies;
2159
2160 if (channel->band == NL80211_BAND_60GHZ) {
2161 bss_type = data->capability &
2162 WLAN_CAPABILITY_DMG_TYPE_MASK;
2163 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2164 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2165 regulatory_hint_found_beacon(wiphy, channel,
2166 gfp);
2167 } else {
2168 if (data->capability & WLAN_CAPABILITY_ESS)
2169 regulatory_hint_found_beacon(wiphy, channel,
2170 gfp);
2171 }
2172 }
2173
2174 /*
2175 * If we do not know here whether the IEs are from a Beacon or Probe
2176 * Response frame, we need to pick one of the options and only use it
2177 * with the driver that does not provide the full Beacon/Probe Response
2178 * frame. Use Beacon frame pointer to avoid indicating that this should
2179 * override the IEs pointer should we have received an earlier
2180 * indication of Probe Response data.
2181 */
2182 ies = kzalloc(sizeof(*ies) + data->ielen, gfp);
2183 if (!ies)
2184 return NULL;
2185 ies->len = data->ielen;
2186 ies->tsf = data->tsf;
2187 ies->from_beacon = false;
2188 memcpy(ies->data, data->ie, data->ielen);
2189
2190 switch (data->ftype) {
2191 case CFG80211_BSS_FTYPE_BEACON:
2192 ies->from_beacon = true;
2193 fallthrough;
2194 case CFG80211_BSS_FTYPE_UNKNOWN:
2195 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2196 break;
2197 case CFG80211_BSS_FTYPE_PRESP:
2198 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2199 break;
2200 }
2201 rcu_assign_pointer(tmp.pub.ies, ies);
2202
2203 signal_valid = drv_data->chan == channel;
2204 spin_lock_bh(&rdev->bss_lock);
2205 res = __cfg80211_bss_update(rdev, &tmp, signal_valid, ts);
2206 if (!res)
2207 goto drop;
2208
2209 rdev_inform_bss(rdev, &res->pub, ies, drv_data->drv_data);
2210
2211 if (data->bss_source == BSS_SOURCE_MBSSID) {
2212 /* this is a nontransmitting bss, we need to add it to
2213 * transmitting bss' list if it is not there
2214 */
2215 if (cfg80211_add_nontrans_list(data->source_bss, &res->pub)) {
2216 if (__cfg80211_unlink_bss(rdev, res)) {
2217 rdev->bss_generation++;
2218 res = NULL;
2219 }
2220 }
2221
2222 if (!res)
2223 goto drop;
2224 }
2225 spin_unlock_bh(&rdev->bss_lock);
2226
2227 trace_cfg80211_return_bss(&res->pub);
2228 /* __cfg80211_bss_update gives us a referenced result */
2229 return &res->pub;
2230
2231 drop:
2232 spin_unlock_bh(&rdev->bss_lock);
2233 return NULL;
2234 }
2235
2236 static const struct element
cfg80211_get_profile_continuation(const u8 * ie,size_t ielen,const struct element * mbssid_elem,const struct element * sub_elem)2237 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
2238 const struct element *mbssid_elem,
2239 const struct element *sub_elem)
2240 {
2241 const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
2242 const struct element *next_mbssid;
2243 const struct element *next_sub;
2244
2245 next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2246 mbssid_end,
2247 ielen - (mbssid_end - ie));
2248
2249 /*
2250 * If it is not the last subelement in current MBSSID IE or there isn't
2251 * a next MBSSID IE - profile is complete.
2252 */
2253 if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2254 !next_mbssid)
2255 return NULL;
2256
2257 /* For any length error, just return NULL */
2258
2259 if (next_mbssid->datalen < 4)
2260 return NULL;
2261
2262 next_sub = (void *)&next_mbssid->data[1];
2263
2264 if (next_mbssid->data + next_mbssid->datalen <
2265 next_sub->data + next_sub->datalen)
2266 return NULL;
2267
2268 if (next_sub->id != 0 || next_sub->datalen < 2)
2269 return NULL;
2270
2271 /*
2272 * Check if the first element in the next sub element is a start
2273 * of a new profile
2274 */
2275 return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2276 NULL : next_mbssid;
2277 }
2278
cfg80211_merge_profile(const u8 * ie,size_t ielen,const struct element * mbssid_elem,const struct element * sub_elem,u8 * merged_ie,size_t max_copy_len)2279 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2280 const struct element *mbssid_elem,
2281 const struct element *sub_elem,
2282 u8 *merged_ie, size_t max_copy_len)
2283 {
2284 size_t copied_len = sub_elem->datalen;
2285 const struct element *next_mbssid;
2286
2287 if (sub_elem->datalen > max_copy_len)
2288 return 0;
2289
2290 memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2291
2292 while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2293 mbssid_elem,
2294 sub_elem))) {
2295 const struct element *next_sub = (void *)&next_mbssid->data[1];
2296
2297 if (copied_len + next_sub->datalen > max_copy_len)
2298 break;
2299 memcpy(merged_ie + copied_len, next_sub->data,
2300 next_sub->datalen);
2301 copied_len += next_sub->datalen;
2302 }
2303
2304 return copied_len;
2305 }
2306 EXPORT_SYMBOL(cfg80211_merge_profile);
2307
2308 static void
cfg80211_parse_mbssid_data(struct wiphy * wiphy,struct cfg80211_inform_single_bss_data * tx_data,struct cfg80211_bss * source_bss,gfp_t gfp)2309 cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2310 struct cfg80211_inform_single_bss_data *tx_data,
2311 struct cfg80211_bss *source_bss,
2312 gfp_t gfp)
2313 {
2314 struct cfg80211_inform_single_bss_data data = {
2315 .drv_data = tx_data->drv_data,
2316 .ftype = tx_data->ftype,
2317 .tsf = tx_data->tsf,
2318 .beacon_interval = tx_data->beacon_interval,
2319 .source_bss = source_bss,
2320 .bss_source = BSS_SOURCE_MBSSID,
2321 };
2322 const u8 *mbssid_index_ie;
2323 const struct element *elem, *sub;
2324 u8 *new_ie, *profile;
2325 u64 seen_indices = 0;
2326 struct cfg80211_bss *bss;
2327
2328 if (!source_bss)
2329 return;
2330 if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2331 tx_data->ie, tx_data->ielen))
2332 return;
2333 if (!wiphy->support_mbssid)
2334 return;
2335 if (wiphy->support_only_he_mbssid &&
2336 !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY,
2337 tx_data->ie, tx_data->ielen))
2338 return;
2339
2340 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2341 if (!new_ie)
2342 return;
2343
2344 profile = kmalloc(tx_data->ielen, gfp);
2345 if (!profile)
2346 goto out;
2347
2348 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID,
2349 tx_data->ie, tx_data->ielen) {
2350 if (elem->datalen < 4)
2351 continue;
2352 if (elem->data[0] < 1 || (int)elem->data[0] > 8)
2353 continue;
2354 for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2355 u8 profile_len;
2356
2357 if (sub->id != 0 || sub->datalen < 4) {
2358 /* not a valid BSS profile */
2359 continue;
2360 }
2361
2362 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2363 sub->data[1] != 2) {
2364 /* The first element within the Nontransmitted
2365 * BSSID Profile is not the Nontransmitted
2366 * BSSID Capability element.
2367 */
2368 continue;
2369 }
2370
2371 memset(profile, 0, tx_data->ielen);
2372 profile_len = cfg80211_merge_profile(tx_data->ie,
2373 tx_data->ielen,
2374 elem,
2375 sub,
2376 profile,
2377 tx_data->ielen);
2378
2379 /* found a Nontransmitted BSSID Profile */
2380 mbssid_index_ie = cfg80211_find_ie
2381 (WLAN_EID_MULTI_BSSID_IDX,
2382 profile, profile_len);
2383 if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2384 mbssid_index_ie[2] == 0 ||
2385 mbssid_index_ie[2] > 46) {
2386 /* No valid Multiple BSSID-Index element */
2387 continue;
2388 }
2389
2390 if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2391 /* We don't support legacy split of a profile */
2392 net_dbg_ratelimited("Partial info for BSSID index %d\n",
2393 mbssid_index_ie[2]);
2394
2395 seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2396
2397 data.bssid_index = mbssid_index_ie[2];
2398 data.max_bssid_indicator = elem->data[0];
2399
2400 cfg80211_gen_new_bssid(tx_data->bssid,
2401 data.max_bssid_indicator,
2402 data.bssid_index,
2403 data.bssid);
2404
2405 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2406 data.ie = new_ie;
2407 data.ielen = cfg80211_gen_new_ie(tx_data->ie,
2408 tx_data->ielen,
2409 profile,
2410 profile_len,
2411 new_ie,
2412 IEEE80211_MAX_DATA_LEN);
2413 if (!data.ielen)
2414 continue;
2415
2416 data.capability = get_unaligned_le16(profile + 2);
2417 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
2418 if (!bss)
2419 break;
2420 cfg80211_put_bss(wiphy, bss);
2421 }
2422 }
2423
2424 out:
2425 kfree(new_ie);
2426 kfree(profile);
2427 }
2428
cfg80211_defragment_element(const struct element * elem,const u8 * ies,size_t ieslen,u8 * data,size_t data_len,u8 frag_id)2429 ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies,
2430 size_t ieslen, u8 *data, size_t data_len,
2431 u8 frag_id)
2432 {
2433 const struct element *next;
2434 ssize_t copied;
2435 u8 elem_datalen;
2436
2437 if (!elem)
2438 return -EINVAL;
2439
2440 /* elem might be invalid after the memmove */
2441 next = (void *)(elem->data + elem->datalen);
2442 elem_datalen = elem->datalen;
2443
2444 if (elem->id == WLAN_EID_EXTENSION) {
2445 copied = elem->datalen - 1;
2446 if (copied > data_len)
2447 return -ENOSPC;
2448
2449 memmove(data, elem->data + 1, copied);
2450 } else {
2451 copied = elem->datalen;
2452 if (copied > data_len)
2453 return -ENOSPC;
2454
2455 memmove(data, elem->data, copied);
2456 }
2457
2458 /* Fragmented elements must have 255 bytes */
2459 if (elem_datalen < 255)
2460 return copied;
2461
2462 for (elem = next;
2463 elem->data < ies + ieslen &&
2464 elem->data + elem->datalen <= ies + ieslen;
2465 elem = next) {
2466 /* elem might be invalid after the memmove */
2467 next = (void *)(elem->data + elem->datalen);
2468
2469 if (elem->id != frag_id)
2470 break;
2471
2472 elem_datalen = elem->datalen;
2473
2474 if (copied + elem_datalen > data_len)
2475 return -ENOSPC;
2476
2477 memmove(data + copied, elem->data, elem_datalen);
2478 copied += elem_datalen;
2479
2480 /* Only the last fragment may be short */
2481 if (elem_datalen != 255)
2482 break;
2483 }
2484
2485 return copied;
2486 }
2487 EXPORT_SYMBOL(cfg80211_defragment_element);
2488
2489 struct cfg80211_mle {
2490 struct ieee80211_multi_link_elem *mle;
2491 struct ieee80211_mle_per_sta_profile
2492 *sta_prof[IEEE80211_MLD_MAX_NUM_LINKS];
2493 ssize_t sta_prof_len[IEEE80211_MLD_MAX_NUM_LINKS];
2494
2495 u8 data[];
2496 };
2497
2498 static struct cfg80211_mle *
cfg80211_defrag_mle(const struct element * mle,const u8 * ie,size_t ielen,gfp_t gfp)2499 cfg80211_defrag_mle(const struct element *mle, const u8 *ie, size_t ielen,
2500 gfp_t gfp)
2501 {
2502 const struct element *elem;
2503 struct cfg80211_mle *res;
2504 size_t buf_len;
2505 ssize_t mle_len;
2506 u8 common_size, idx;
2507
2508 if (!mle || !ieee80211_mle_size_ok(mle->data + 1, mle->datalen - 1))
2509 return NULL;
2510
2511 /* Required length for first defragmentation */
2512 buf_len = mle->datalen - 1;
2513 for_each_element(elem, mle->data + mle->datalen,
2514 ielen - sizeof(*mle) + mle->datalen) {
2515 if (elem->id != WLAN_EID_FRAGMENT)
2516 break;
2517
2518 buf_len += elem->datalen;
2519 }
2520
2521 res = kzalloc(struct_size(res, data, buf_len), gfp);
2522 if (!res)
2523 return NULL;
2524
2525 mle_len = cfg80211_defragment_element(mle, ie, ielen,
2526 res->data, buf_len,
2527 WLAN_EID_FRAGMENT);
2528 if (mle_len < 0)
2529 goto error;
2530
2531 res->mle = (void *)res->data;
2532
2533 /* Find the sub-element area in the buffer */
2534 common_size = ieee80211_mle_common_size((u8 *)res->mle);
2535 ie = res->data + common_size;
2536 ielen = mle_len - common_size;
2537
2538 idx = 0;
2539 for_each_element_id(elem, IEEE80211_MLE_SUBELEM_PER_STA_PROFILE,
2540 ie, ielen) {
2541 res->sta_prof[idx] = (void *)elem->data;
2542 res->sta_prof_len[idx] = elem->datalen;
2543
2544 idx++;
2545 if (idx >= IEEE80211_MLD_MAX_NUM_LINKS)
2546 break;
2547 }
2548 if (!for_each_element_completed(elem, ie, ielen))
2549 goto error;
2550
2551 /* Defragment sta_info in-place */
2552 for (idx = 0; idx < IEEE80211_MLD_MAX_NUM_LINKS && res->sta_prof[idx];
2553 idx++) {
2554 if (res->sta_prof_len[idx] < 255)
2555 continue;
2556
2557 elem = (void *)res->sta_prof[idx] - 2;
2558
2559 if (idx + 1 < ARRAY_SIZE(res->sta_prof) &&
2560 res->sta_prof[idx + 1])
2561 buf_len = (u8 *)res->sta_prof[idx + 1] -
2562 (u8 *)res->sta_prof[idx];
2563 else
2564 buf_len = ielen + ie - (u8 *)elem;
2565
2566 res->sta_prof_len[idx] =
2567 cfg80211_defragment_element(elem,
2568 (u8 *)elem, buf_len,
2569 (u8 *)res->sta_prof[idx],
2570 buf_len,
2571 IEEE80211_MLE_SUBELEM_FRAGMENT);
2572 if (res->sta_prof_len[idx] < 0)
2573 goto error;
2574 }
2575
2576 return res;
2577
2578 error:
2579 kfree(res);
2580 return NULL;
2581 }
2582
2583 static bool
cfg80211_tbtt_info_for_mld_ap(const u8 * ie,size_t ielen,u8 mld_id,u8 link_id,const struct ieee80211_neighbor_ap_info ** ap_info,const u8 ** tbtt_info)2584 cfg80211_tbtt_info_for_mld_ap(const u8 *ie, size_t ielen, u8 mld_id, u8 link_id,
2585 const struct ieee80211_neighbor_ap_info **ap_info,
2586 const u8 **tbtt_info)
2587 {
2588 const struct ieee80211_neighbor_ap_info *info;
2589 const struct element *rnr;
2590 const u8 *pos, *end;
2591
2592 for_each_element_id(rnr, WLAN_EID_REDUCED_NEIGHBOR_REPORT, ie, ielen) {
2593 pos = rnr->data;
2594 end = rnr->data + rnr->datalen;
2595
2596 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */
2597 while (sizeof(*info) <= end - pos) {
2598 const struct ieee80211_rnr_mld_params *mld_params;
2599 u16 params;
2600 u8 length, i, count, mld_params_offset;
2601 u8 type, lid;
2602
2603 info = (void *)pos;
2604 count = u8_get_bits(info->tbtt_info_hdr,
2605 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
2606 length = info->tbtt_info_len;
2607
2608 pos += sizeof(*info);
2609
2610 if (count * length > end - pos)
2611 return false;
2612
2613 type = u8_get_bits(info->tbtt_info_hdr,
2614 IEEE80211_AP_INFO_TBTT_HDR_TYPE);
2615
2616 /* Only accept full TBTT information. NSTR mobile APs
2617 * use the shortened version, but we ignore them here.
2618 */
2619 if (type == IEEE80211_TBTT_INFO_TYPE_TBTT &&
2620 length >=
2621 offsetofend(struct ieee80211_tbtt_info_ge_11,
2622 mld_params)) {
2623 mld_params_offset =
2624 offsetof(struct ieee80211_tbtt_info_ge_11, mld_params);
2625 } else {
2626 pos += count * length;
2627 continue;
2628 }
2629
2630 for (i = 0; i < count; i++) {
2631 mld_params = (void *)pos + mld_params_offset;
2632 params = le16_to_cpu(mld_params->params);
2633
2634 lid = u16_get_bits(params,
2635 IEEE80211_RNR_MLD_PARAMS_LINK_ID);
2636
2637 if (mld_id == mld_params->mld_id &&
2638 link_id == lid) {
2639 *ap_info = info;
2640 *tbtt_info = pos;
2641
2642 return true;
2643 }
2644
2645 pos += length;
2646 }
2647 }
2648 }
2649
2650 return false;
2651 }
2652
2653 static void
cfg80211_parse_ml_elem_sta_data(struct wiphy * wiphy,struct cfg80211_inform_single_bss_data * tx_data,struct cfg80211_bss * source_bss,const struct element * elem,gfp_t gfp)2654 cfg80211_parse_ml_elem_sta_data(struct wiphy *wiphy,
2655 struct cfg80211_inform_single_bss_data *tx_data,
2656 struct cfg80211_bss *source_bss,
2657 const struct element *elem,
2658 gfp_t gfp)
2659 {
2660 struct cfg80211_inform_single_bss_data data = {
2661 .drv_data = tx_data->drv_data,
2662 .ftype = tx_data->ftype,
2663 .source_bss = source_bss,
2664 .bss_source = BSS_SOURCE_STA_PROFILE,
2665 };
2666 struct ieee80211_multi_link_elem *ml_elem;
2667 struct cfg80211_mle *mle;
2668 u16 control;
2669 u8 *new_ie;
2670 struct cfg80211_bss *bss;
2671 int mld_id;
2672 u16 seen_links = 0;
2673 const u8 *pos;
2674 u8 i;
2675
2676 if (!ieee80211_mle_size_ok(elem->data + 1, elem->datalen - 1))
2677 return;
2678
2679 ml_elem = (void *)elem->data + 1;
2680 control = le16_to_cpu(ml_elem->control);
2681 if (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE) !=
2682 IEEE80211_ML_CONTROL_TYPE_BASIC)
2683 return;
2684
2685 /* Must be present when transmitted by an AP (in a probe response) */
2686 if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) ||
2687 !(control & IEEE80211_MLC_BASIC_PRES_LINK_ID) ||
2688 !(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP))
2689 return;
2690
2691 /* length + MLD MAC address + link ID info + BSS Params Change Count */
2692 pos = ml_elem->variable + 1 + 6 + 1 + 1;
2693
2694 if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY))
2695 pos += 2;
2696 if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_EML_CAPA))
2697 pos += 2;
2698
2699 /* MLD capabilities and operations */
2700 pos += 2;
2701
2702 /*
2703 * The MLD ID of the reporting AP is always zero. It is set if the AP
2704 * is part of an MBSSID set and will be non-zero for ML Elements
2705 * relating to a nontransmitted BSS (matching the Multi-BSSID Index,
2706 * Draft P802.11be_D3.2, 35.3.4.2)
2707 */
2708 if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_MLD_ID)) {
2709 mld_id = *pos;
2710 pos += 1;
2711 } else {
2712 mld_id = 0;
2713 }
2714
2715 /* Extended MLD capabilities and operations */
2716 pos += 2;
2717
2718 /* Fully defrag the ML element for sta information/profile iteration */
2719 mle = cfg80211_defrag_mle(elem, tx_data->ie, tx_data->ielen, gfp);
2720 if (!mle)
2721 return;
2722
2723 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2724 if (!new_ie)
2725 goto out;
2726
2727 for (i = 0; i < ARRAY_SIZE(mle->sta_prof) && mle->sta_prof[i]; i++) {
2728 const struct ieee80211_neighbor_ap_info *ap_info;
2729 enum nl80211_band band;
2730 u32 freq;
2731 const u8 *profile;
2732 const u8 *tbtt_info;
2733 ssize_t profile_len;
2734 u8 link_id;
2735
2736 if (!ieee80211_mle_basic_sta_prof_size_ok((u8 *)mle->sta_prof[i],
2737 mle->sta_prof_len[i]))
2738 continue;
2739
2740 control = le16_to_cpu(mle->sta_prof[i]->control);
2741
2742 if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE))
2743 continue;
2744
2745 link_id = u16_get_bits(control,
2746 IEEE80211_MLE_STA_CONTROL_LINK_ID);
2747 if (seen_links & BIT(link_id))
2748 break;
2749 seen_links |= BIT(link_id);
2750
2751 if (!(control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) ||
2752 !(control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) ||
2753 !(control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT))
2754 continue;
2755
2756 memcpy(data.bssid, mle->sta_prof[i]->variable, ETH_ALEN);
2757 data.beacon_interval =
2758 get_unaligned_le16(mle->sta_prof[i]->variable + 6);
2759 data.tsf = tx_data->tsf +
2760 get_unaligned_le64(mle->sta_prof[i]->variable + 8);
2761
2762 /* sta_info_len counts itself */
2763 profile = mle->sta_prof[i]->variable +
2764 mle->sta_prof[i]->sta_info_len - 1;
2765 profile_len = (u8 *)mle->sta_prof[i] + mle->sta_prof_len[i] -
2766 profile;
2767
2768 if (profile_len < 2)
2769 continue;
2770
2771 data.capability = get_unaligned_le16(profile);
2772 profile += 2;
2773 profile_len -= 2;
2774
2775 /* Find in RNR to look up channel information */
2776 if (!cfg80211_tbtt_info_for_mld_ap(tx_data->ie, tx_data->ielen,
2777 mld_id, link_id,
2778 &ap_info, &tbtt_info))
2779 continue;
2780
2781 /* We could sanity check the BSSID is included */
2782
2783 if (!ieee80211_operating_class_to_band(ap_info->op_class,
2784 &band))
2785 continue;
2786
2787 freq = ieee80211_channel_to_freq_khz(ap_info->channel, band);
2788 data.channel = ieee80211_get_channel_khz(wiphy, freq);
2789
2790 /* Generate new elements */
2791 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2792 data.ie = new_ie;
2793 data.ielen = cfg80211_gen_new_ie(tx_data->ie, tx_data->ielen,
2794 profile, profile_len,
2795 new_ie,
2796 IEEE80211_MAX_DATA_LEN);
2797 if (!data.ielen)
2798 continue;
2799
2800 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
2801 if (!bss)
2802 break;
2803 cfg80211_put_bss(wiphy, bss);
2804 }
2805
2806 out:
2807 kfree(new_ie);
2808 kfree(mle);
2809 }
2810
cfg80211_parse_ml_sta_data(struct wiphy * wiphy,struct cfg80211_inform_single_bss_data * tx_data,struct cfg80211_bss * source_bss,gfp_t gfp)2811 static void cfg80211_parse_ml_sta_data(struct wiphy *wiphy,
2812 struct cfg80211_inform_single_bss_data *tx_data,
2813 struct cfg80211_bss *source_bss,
2814 gfp_t gfp)
2815 {
2816 const struct element *elem;
2817
2818 if (!source_bss)
2819 return;
2820
2821 if (tx_data->ftype != CFG80211_BSS_FTYPE_PRESP)
2822 return;
2823
2824 for_each_element_extid(elem, WLAN_EID_EXT_EHT_MULTI_LINK,
2825 tx_data->ie, tx_data->ielen)
2826 cfg80211_parse_ml_elem_sta_data(wiphy, tx_data, source_bss,
2827 elem, gfp);
2828 }
2829
2830 struct cfg80211_bss *
cfg80211_inform_bss_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,enum cfg80211_bss_frame_type ftype,const u8 * bssid,u64 tsf,u16 capability,u16 beacon_interval,const u8 * ie,size_t ielen,gfp_t gfp)2831 cfg80211_inform_bss_data(struct wiphy *wiphy,
2832 struct cfg80211_inform_bss *data,
2833 enum cfg80211_bss_frame_type ftype,
2834 const u8 *bssid, u64 tsf, u16 capability,
2835 u16 beacon_interval, const u8 *ie, size_t ielen,
2836 gfp_t gfp)
2837 {
2838 struct cfg80211_inform_single_bss_data inform_data = {
2839 .drv_data = data,
2840 .ftype = ftype,
2841 .tsf = tsf,
2842 .capability = capability,
2843 .beacon_interval = beacon_interval,
2844 .ie = ie,
2845 .ielen = ielen,
2846 };
2847 struct cfg80211_bss *res;
2848
2849 memcpy(inform_data.bssid, bssid, ETH_ALEN);
2850
2851 res = cfg80211_inform_single_bss_data(wiphy, &inform_data, gfp);
2852 if (!res)
2853 return NULL;
2854
2855 cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp);
2856
2857 cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp);
2858
2859 return res;
2860 }
2861 EXPORT_SYMBOL(cfg80211_inform_bss_data);
2862
2863 /* cfg80211_inform_bss_width_frame helper */
2864 static struct cfg80211_bss *
cfg80211_inform_single_bss_frame_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,struct ieee80211_mgmt * mgmt,size_t len,gfp_t gfp)2865 cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy,
2866 struct cfg80211_inform_bss *data,
2867 struct ieee80211_mgmt *mgmt, size_t len,
2868 gfp_t gfp)
2869 {
2870 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2871 struct cfg80211_internal_bss tmp = {}, *res;
2872 struct cfg80211_bss_ies *ies;
2873 struct ieee80211_channel *channel;
2874 bool signal_valid;
2875 struct ieee80211_ext *ext = NULL;
2876 u8 *bssid, *variable;
2877 u16 capability, beacon_int;
2878 size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt,
2879 u.probe_resp.variable);
2880 int bss_type;
2881
2882 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
2883 offsetof(struct ieee80211_mgmt, u.beacon.variable));
2884
2885 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
2886
2887 if (WARN_ON(!mgmt))
2888 return NULL;
2889
2890 if (WARN_ON(!wiphy))
2891 return NULL;
2892
2893 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2894 (data->signal < 0 || data->signal > 100)))
2895 return NULL;
2896
2897 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
2898 ext = (void *) mgmt;
2899 min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon);
2900 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2901 min_hdr_len = offsetof(struct ieee80211_ext,
2902 u.s1g_short_beacon.variable);
2903 }
2904
2905 if (WARN_ON(len < min_hdr_len))
2906 return NULL;
2907
2908 ielen = len - min_hdr_len;
2909 variable = mgmt->u.probe_resp.variable;
2910 if (ext) {
2911 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2912 variable = ext->u.s1g_short_beacon.variable;
2913 else
2914 variable = ext->u.s1g_beacon.variable;
2915 }
2916
2917 channel = cfg80211_get_bss_channel(wiphy, variable,
2918 ielen, data->chan, data->scan_width);
2919 if (!channel)
2920 return NULL;
2921
2922 if (ext) {
2923 const struct ieee80211_s1g_bcn_compat_ie *compat;
2924 const struct element *elem;
2925
2926 elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT,
2927 variable, ielen);
2928 if (!elem)
2929 return NULL;
2930 if (elem->datalen < sizeof(*compat))
2931 return NULL;
2932 compat = (void *)elem->data;
2933 bssid = ext->u.s1g_beacon.sa;
2934 capability = le16_to_cpu(compat->compat_info);
2935 beacon_int = le16_to_cpu(compat->beacon_int);
2936 } else {
2937 bssid = mgmt->bssid;
2938 beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
2939 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
2940 }
2941
2942 if (channel->band == NL80211_BAND_60GHZ) {
2943 bss_type = capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
2944 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2945 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2946 regulatory_hint_found_beacon(wiphy, channel, gfp);
2947 } else {
2948 if (capability & WLAN_CAPABILITY_ESS)
2949 regulatory_hint_found_beacon(wiphy, channel, gfp);
2950 }
2951
2952 ies = kzalloc(sizeof(*ies) + ielen, gfp);
2953 if (!ies)
2954 return NULL;
2955 ies->len = ielen;
2956 ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2957 ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) ||
2958 ieee80211_is_s1g_beacon(mgmt->frame_control);
2959 memcpy(ies->data, variable, ielen);
2960
2961 if (ieee80211_is_probe_resp(mgmt->frame_control))
2962 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2963 else
2964 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2965 rcu_assign_pointer(tmp.pub.ies, ies);
2966
2967 memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
2968 tmp.pub.beacon_interval = beacon_int;
2969 tmp.pub.capability = capability;
2970 tmp.pub.channel = channel;
2971 tmp.pub.scan_width = data->scan_width;
2972 tmp.pub.signal = data->signal;
2973 tmp.ts_boottime = data->boottime_ns;
2974 tmp.parent_tsf = data->parent_tsf;
2975 tmp.pub.chains = data->chains;
2976 memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
2977 ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
2978
2979 signal_valid = data->chan == channel;
2980 spin_lock_bh(&rdev->bss_lock);
2981 res = __cfg80211_bss_update(rdev, &tmp, signal_valid, jiffies);
2982 if (!res)
2983 goto drop;
2984
2985 rdev_inform_bss(rdev, &res->pub, ies, data->drv_data);
2986
2987 spin_unlock_bh(&rdev->bss_lock);
2988
2989 trace_cfg80211_return_bss(&res->pub);
2990 /* __cfg80211_bss_update gives us a referenced result */
2991 return &res->pub;
2992
2993 drop:
2994 spin_unlock_bh(&rdev->bss_lock);
2995 return NULL;
2996 }
2997
2998 struct cfg80211_bss *
cfg80211_inform_bss_frame_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,struct ieee80211_mgmt * mgmt,size_t len,gfp_t gfp)2999 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
3000 struct cfg80211_inform_bss *data,
3001 struct ieee80211_mgmt *mgmt, size_t len,
3002 gfp_t gfp)
3003 {
3004 struct cfg80211_inform_single_bss_data inform_data = {
3005 .drv_data = data,
3006 .ie = mgmt->u.probe_resp.variable,
3007 .ielen = len - offsetof(struct ieee80211_mgmt,
3008 u.probe_resp.variable),
3009 };
3010 struct cfg80211_bss *res;
3011
3012 res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt,
3013 len, gfp);
3014 if (!res)
3015 return NULL;
3016
3017 /* don't do any further MBSSID/ML handling for S1G */
3018 if (ieee80211_is_s1g_beacon(mgmt->frame_control))
3019 return res;
3020
3021 inform_data.ftype = ieee80211_is_beacon(mgmt->frame_control) ?
3022 CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP;
3023 memcpy(inform_data.bssid, mgmt->bssid, ETH_ALEN);
3024 inform_data.tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
3025 inform_data.beacon_interval =
3026 le16_to_cpu(mgmt->u.probe_resp.beacon_int);
3027
3028 /* process each non-transmitting bss */
3029 cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp);
3030
3031 cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp);
3032
3033 return res;
3034 }
3035 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
3036
cfg80211_ref_bss(struct wiphy * wiphy,struct cfg80211_bss * pub)3037 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3038 {
3039 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3040
3041 if (!pub)
3042 return;
3043
3044 spin_lock_bh(&rdev->bss_lock);
3045 bss_ref_get(rdev, bss_from_pub(pub));
3046 spin_unlock_bh(&rdev->bss_lock);
3047 }
3048 EXPORT_SYMBOL(cfg80211_ref_bss);
3049
cfg80211_put_bss(struct wiphy * wiphy,struct cfg80211_bss * pub)3050 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3051 {
3052 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3053
3054 if (!pub)
3055 return;
3056
3057 spin_lock_bh(&rdev->bss_lock);
3058 bss_ref_put(rdev, bss_from_pub(pub));
3059 spin_unlock_bh(&rdev->bss_lock);
3060 }
3061 EXPORT_SYMBOL(cfg80211_put_bss);
3062
cfg80211_unlink_bss(struct wiphy * wiphy,struct cfg80211_bss * pub)3063 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3064 {
3065 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3066 struct cfg80211_internal_bss *bss, *tmp1;
3067 struct cfg80211_bss *nontrans_bss, *tmp;
3068
3069 if (WARN_ON(!pub))
3070 return;
3071
3072 bss = bss_from_pub(pub);
3073
3074 spin_lock_bh(&rdev->bss_lock);
3075 if (list_empty(&bss->list))
3076 goto out;
3077
3078 list_for_each_entry_safe(nontrans_bss, tmp,
3079 &pub->nontrans_list,
3080 nontrans_list) {
3081 tmp1 = bss_from_pub(nontrans_bss);
3082 if (__cfg80211_unlink_bss(rdev, tmp1))
3083 rdev->bss_generation++;
3084 }
3085
3086 if (__cfg80211_unlink_bss(rdev, bss))
3087 rdev->bss_generation++;
3088 out:
3089 spin_unlock_bh(&rdev->bss_lock);
3090 }
3091 EXPORT_SYMBOL(cfg80211_unlink_bss);
3092
cfg80211_bss_iter(struct wiphy * wiphy,struct cfg80211_chan_def * chandef,void (* iter)(struct wiphy * wiphy,struct cfg80211_bss * bss,void * data),void * iter_data)3093 void cfg80211_bss_iter(struct wiphy *wiphy,
3094 struct cfg80211_chan_def *chandef,
3095 void (*iter)(struct wiphy *wiphy,
3096 struct cfg80211_bss *bss,
3097 void *data),
3098 void *iter_data)
3099 {
3100 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3101 struct cfg80211_internal_bss *bss;
3102
3103 spin_lock_bh(&rdev->bss_lock);
3104
3105 list_for_each_entry(bss, &rdev->bss_list, list) {
3106 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel,
3107 false))
3108 iter(wiphy, &bss->pub, iter_data);
3109 }
3110
3111 spin_unlock_bh(&rdev->bss_lock);
3112 }
3113 EXPORT_SYMBOL(cfg80211_bss_iter);
3114
cfg80211_update_assoc_bss_entry(struct wireless_dev * wdev,unsigned int link_id,struct ieee80211_channel * chan)3115 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
3116 unsigned int link_id,
3117 struct ieee80211_channel *chan)
3118 {
3119 struct wiphy *wiphy = wdev->wiphy;
3120 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3121 struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss;
3122 struct cfg80211_internal_bss *new = NULL;
3123 struct cfg80211_internal_bss *bss;
3124 struct cfg80211_bss *nontrans_bss;
3125 struct cfg80211_bss *tmp;
3126
3127 spin_lock_bh(&rdev->bss_lock);
3128
3129 /*
3130 * Some APs use CSA also for bandwidth changes, i.e., without actually
3131 * changing the control channel, so no need to update in such a case.
3132 */
3133 if (cbss->pub.channel == chan)
3134 goto done;
3135
3136 /* use transmitting bss */
3137 if (cbss->pub.transmitted_bss)
3138 cbss = bss_from_pub(cbss->pub.transmitted_bss);
3139
3140 cbss->pub.channel = chan;
3141
3142 list_for_each_entry(bss, &rdev->bss_list, list) {
3143 if (!cfg80211_bss_type_match(bss->pub.capability,
3144 bss->pub.channel->band,
3145 wdev->conn_bss_type))
3146 continue;
3147
3148 if (bss == cbss)
3149 continue;
3150
3151 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
3152 new = bss;
3153 break;
3154 }
3155 }
3156
3157 if (new) {
3158 /* to save time, update IEs for transmitting bss only */
3159 if (cfg80211_update_known_bss(rdev, cbss, new, false)) {
3160 new->pub.proberesp_ies = NULL;
3161 new->pub.beacon_ies = NULL;
3162 }
3163
3164 list_for_each_entry_safe(nontrans_bss, tmp,
3165 &new->pub.nontrans_list,
3166 nontrans_list) {
3167 bss = bss_from_pub(nontrans_bss);
3168 if (__cfg80211_unlink_bss(rdev, bss))
3169 rdev->bss_generation++;
3170 }
3171
3172 WARN_ON(atomic_read(&new->hold));
3173 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
3174 rdev->bss_generation++;
3175 }
3176 cfg80211_rehash_bss(rdev, cbss);
3177
3178 list_for_each_entry_safe(nontrans_bss, tmp,
3179 &cbss->pub.nontrans_list,
3180 nontrans_list) {
3181 bss = bss_from_pub(nontrans_bss);
3182 bss->pub.channel = chan;
3183 cfg80211_rehash_bss(rdev, bss);
3184 }
3185
3186 done:
3187 spin_unlock_bh(&rdev->bss_lock);
3188 }
3189
3190 #ifdef CONFIG_CFG80211_WEXT
3191 static struct cfg80211_registered_device *
cfg80211_get_dev_from_ifindex(struct net * net,int ifindex)3192 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
3193 {
3194 struct cfg80211_registered_device *rdev;
3195 struct net_device *dev;
3196
3197 ASSERT_RTNL();
3198
3199 dev = dev_get_by_index(net, ifindex);
3200 if (!dev)
3201 return ERR_PTR(-ENODEV);
3202 if (dev->ieee80211_ptr)
3203 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
3204 else
3205 rdev = ERR_PTR(-ENODEV);
3206 dev_put(dev);
3207 return rdev;
3208 }
3209
cfg80211_wext_siwscan(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)3210 int cfg80211_wext_siwscan(struct net_device *dev,
3211 struct iw_request_info *info,
3212 union iwreq_data *wrqu, char *extra)
3213 {
3214 struct cfg80211_registered_device *rdev;
3215 struct wiphy *wiphy;
3216 struct iw_scan_req *wreq = NULL;
3217 struct cfg80211_scan_request *creq;
3218 int i, err, n_channels = 0;
3219 enum nl80211_band band;
3220
3221 if (!netif_running(dev))
3222 return -ENETDOWN;
3223
3224 if (wrqu->data.length == sizeof(struct iw_scan_req))
3225 wreq = (struct iw_scan_req *)extra;
3226
3227 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3228
3229 if (IS_ERR(rdev))
3230 return PTR_ERR(rdev);
3231
3232 if (rdev->scan_req || rdev->scan_msg)
3233 return -EBUSY;
3234
3235 wiphy = &rdev->wiphy;
3236
3237 /* Determine number of channels, needed to allocate creq */
3238 if (wreq && wreq->num_channels) {
3239 /* Passed from userspace so should be checked */
3240 if (unlikely(wreq->num_channels > IW_MAX_FREQUENCIES))
3241 return -EINVAL;
3242 n_channels = wreq->num_channels;
3243 } else {
3244 n_channels = ieee80211_get_num_supported_channels(wiphy);
3245 }
3246
3247 creq = kzalloc(struct_size(creq, channels, n_channels) +
3248 sizeof(struct cfg80211_ssid),
3249 GFP_ATOMIC);
3250 if (!creq)
3251 return -ENOMEM;
3252
3253 creq->wiphy = wiphy;
3254 creq->wdev = dev->ieee80211_ptr;
3255 /* SSIDs come after channels */
3256 creq->ssids = (void *)creq + struct_size(creq, channels, n_channels);
3257 creq->n_channels = n_channels;
3258 creq->n_ssids = 1;
3259 creq->scan_start = jiffies;
3260
3261 /* translate "Scan on frequencies" request */
3262 i = 0;
3263 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3264 int j;
3265
3266 if (!wiphy->bands[band])
3267 continue;
3268
3269 for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
3270 /* ignore disabled channels */
3271 if (wiphy->bands[band]->channels[j].flags &
3272 IEEE80211_CHAN_DISABLED)
3273 continue;
3274
3275 /* If we have a wireless request structure and the
3276 * wireless request specifies frequencies, then search
3277 * for the matching hardware channel.
3278 */
3279 if (wreq && wreq->num_channels) {
3280 int k;
3281 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
3282 for (k = 0; k < wreq->num_channels; k++) {
3283 struct iw_freq *freq =
3284 &wreq->channel_list[k];
3285 int wext_freq =
3286 cfg80211_wext_freq(freq);
3287
3288 if (wext_freq == wiphy_freq)
3289 goto wext_freq_found;
3290 }
3291 goto wext_freq_not_found;
3292 }
3293
3294 wext_freq_found:
3295 creq->channels[i] = &wiphy->bands[band]->channels[j];
3296 i++;
3297 wext_freq_not_found: ;
3298 }
3299 }
3300 /* No channels found? */
3301 if (!i) {
3302 err = -EINVAL;
3303 goto out;
3304 }
3305
3306 /* Set real number of channels specified in creq->channels[] */
3307 creq->n_channels = i;
3308
3309 /* translate "Scan for SSID" request */
3310 if (wreq) {
3311 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
3312 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
3313 err = -EINVAL;
3314 goto out;
3315 }
3316 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
3317 creq->ssids[0].ssid_len = wreq->essid_len;
3318 }
3319 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE) {
3320 creq->ssids = NULL;
3321 creq->n_ssids = 0;
3322 }
3323 }
3324
3325 for (i = 0; i < NUM_NL80211_BANDS; i++)
3326 if (wiphy->bands[i])
3327 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
3328
3329 eth_broadcast_addr(creq->bssid);
3330
3331 wiphy_lock(&rdev->wiphy);
3332
3333 rdev->scan_req = creq;
3334 err = rdev_scan(rdev, creq);
3335 if (err) {
3336 rdev->scan_req = NULL;
3337 /* creq will be freed below */
3338 } else {
3339 nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
3340 /* creq now owned by driver */
3341 creq = NULL;
3342 dev_hold(dev);
3343 }
3344 wiphy_unlock(&rdev->wiphy);
3345 out:
3346 kfree(creq);
3347 return err;
3348 }
3349 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
3350
ieee80211_scan_add_ies(struct iw_request_info * info,const struct cfg80211_bss_ies * ies,char * current_ev,char * end_buf)3351 static char *ieee80211_scan_add_ies(struct iw_request_info *info,
3352 const struct cfg80211_bss_ies *ies,
3353 char *current_ev, char *end_buf)
3354 {
3355 const u8 *pos, *end, *next;
3356 struct iw_event iwe;
3357
3358 if (!ies)
3359 return current_ev;
3360
3361 /*
3362 * If needed, fragment the IEs buffer (at IE boundaries) into short
3363 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
3364 */
3365 pos = ies->data;
3366 end = pos + ies->len;
3367
3368 while (end - pos > IW_GENERIC_IE_MAX) {
3369 next = pos + 2 + pos[1];
3370 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
3371 next = next + 2 + next[1];
3372
3373 memset(&iwe, 0, sizeof(iwe));
3374 iwe.cmd = IWEVGENIE;
3375 iwe.u.data.length = next - pos;
3376 current_ev = iwe_stream_add_point_check(info, current_ev,
3377 end_buf, &iwe,
3378 (void *)pos);
3379 if (IS_ERR(current_ev))
3380 return current_ev;
3381 pos = next;
3382 }
3383
3384 if (end > pos) {
3385 memset(&iwe, 0, sizeof(iwe));
3386 iwe.cmd = IWEVGENIE;
3387 iwe.u.data.length = end - pos;
3388 current_ev = iwe_stream_add_point_check(info, current_ev,
3389 end_buf, &iwe,
3390 (void *)pos);
3391 if (IS_ERR(current_ev))
3392 return current_ev;
3393 }
3394
3395 return current_ev;
3396 }
3397
3398 static char *
ieee80211_bss(struct wiphy * wiphy,struct iw_request_info * info,struct cfg80211_internal_bss * bss,char * current_ev,char * end_buf)3399 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
3400 struct cfg80211_internal_bss *bss, char *current_ev,
3401 char *end_buf)
3402 {
3403 const struct cfg80211_bss_ies *ies;
3404 struct iw_event iwe;
3405 const u8 *ie;
3406 u8 buf[50];
3407 u8 *cfg, *p, *tmp;
3408 int rem, i, sig;
3409 bool ismesh = false;
3410
3411 memset(&iwe, 0, sizeof(iwe));
3412 iwe.cmd = SIOCGIWAP;
3413 iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
3414 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
3415 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3416 IW_EV_ADDR_LEN);
3417 if (IS_ERR(current_ev))
3418 return current_ev;
3419
3420 memset(&iwe, 0, sizeof(iwe));
3421 iwe.cmd = SIOCGIWFREQ;
3422 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
3423 iwe.u.freq.e = 0;
3424 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3425 IW_EV_FREQ_LEN);
3426 if (IS_ERR(current_ev))
3427 return current_ev;
3428
3429 memset(&iwe, 0, sizeof(iwe));
3430 iwe.cmd = SIOCGIWFREQ;
3431 iwe.u.freq.m = bss->pub.channel->center_freq;
3432 iwe.u.freq.e = 6;
3433 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3434 IW_EV_FREQ_LEN);
3435 if (IS_ERR(current_ev))
3436 return current_ev;
3437
3438 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
3439 memset(&iwe, 0, sizeof(iwe));
3440 iwe.cmd = IWEVQUAL;
3441 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
3442 IW_QUAL_NOISE_INVALID |
3443 IW_QUAL_QUAL_UPDATED;
3444 switch (wiphy->signal_type) {
3445 case CFG80211_SIGNAL_TYPE_MBM:
3446 sig = bss->pub.signal / 100;
3447 iwe.u.qual.level = sig;
3448 iwe.u.qual.updated |= IW_QUAL_DBM;
3449 if (sig < -110) /* rather bad */
3450 sig = -110;
3451 else if (sig > -40) /* perfect */
3452 sig = -40;
3453 /* will give a range of 0 .. 70 */
3454 iwe.u.qual.qual = sig + 110;
3455 break;
3456 case CFG80211_SIGNAL_TYPE_UNSPEC:
3457 iwe.u.qual.level = bss->pub.signal;
3458 /* will give range 0 .. 100 */
3459 iwe.u.qual.qual = bss->pub.signal;
3460 break;
3461 default:
3462 /* not reached */
3463 break;
3464 }
3465 current_ev = iwe_stream_add_event_check(info, current_ev,
3466 end_buf, &iwe,
3467 IW_EV_QUAL_LEN);
3468 if (IS_ERR(current_ev))
3469 return current_ev;
3470 }
3471
3472 memset(&iwe, 0, sizeof(iwe));
3473 iwe.cmd = SIOCGIWENCODE;
3474 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
3475 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
3476 else
3477 iwe.u.data.flags = IW_ENCODE_DISABLED;
3478 iwe.u.data.length = 0;
3479 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3480 &iwe, "");
3481 if (IS_ERR(current_ev))
3482 return current_ev;
3483
3484 rcu_read_lock();
3485 ies = rcu_dereference(bss->pub.ies);
3486 rem = ies->len;
3487 ie = ies->data;
3488
3489 while (rem >= 2) {
3490 /* invalid data */
3491 if (ie[1] > rem - 2)
3492 break;
3493
3494 switch (ie[0]) {
3495 case WLAN_EID_SSID:
3496 memset(&iwe, 0, sizeof(iwe));
3497 iwe.cmd = SIOCGIWESSID;
3498 iwe.u.data.length = ie[1];
3499 iwe.u.data.flags = 1;
3500 current_ev = iwe_stream_add_point_check(info,
3501 current_ev,
3502 end_buf, &iwe,
3503 (u8 *)ie + 2);
3504 if (IS_ERR(current_ev))
3505 goto unlock;
3506 break;
3507 case WLAN_EID_MESH_ID:
3508 memset(&iwe, 0, sizeof(iwe));
3509 iwe.cmd = SIOCGIWESSID;
3510 iwe.u.data.length = ie[1];
3511 iwe.u.data.flags = 1;
3512 current_ev = iwe_stream_add_point_check(info,
3513 current_ev,
3514 end_buf, &iwe,
3515 (u8 *)ie + 2);
3516 if (IS_ERR(current_ev))
3517 goto unlock;
3518 break;
3519 case WLAN_EID_MESH_CONFIG:
3520 ismesh = true;
3521 if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
3522 break;
3523 cfg = (u8 *)ie + 2;
3524 memset(&iwe, 0, sizeof(iwe));
3525 iwe.cmd = IWEVCUSTOM;
3526 sprintf(buf, "Mesh Network Path Selection Protocol ID: "
3527 "0x%02X", cfg[0]);
3528 iwe.u.data.length = strlen(buf);
3529 current_ev = iwe_stream_add_point_check(info,
3530 current_ev,
3531 end_buf,
3532 &iwe, buf);
3533 if (IS_ERR(current_ev))
3534 goto unlock;
3535 sprintf(buf, "Path Selection Metric ID: 0x%02X",
3536 cfg[1]);
3537 iwe.u.data.length = strlen(buf);
3538 current_ev = iwe_stream_add_point_check(info,
3539 current_ev,
3540 end_buf,
3541 &iwe, buf);
3542 if (IS_ERR(current_ev))
3543 goto unlock;
3544 sprintf(buf, "Congestion Control Mode ID: 0x%02X",
3545 cfg[2]);
3546 iwe.u.data.length = strlen(buf);
3547 current_ev = iwe_stream_add_point_check(info,
3548 current_ev,
3549 end_buf,
3550 &iwe, buf);
3551 if (IS_ERR(current_ev))
3552 goto unlock;
3553 sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]);
3554 iwe.u.data.length = strlen(buf);
3555 current_ev = iwe_stream_add_point_check(info,
3556 current_ev,
3557 end_buf,
3558 &iwe, buf);
3559 if (IS_ERR(current_ev))
3560 goto unlock;
3561 sprintf(buf, "Authentication ID: 0x%02X", cfg[4]);
3562 iwe.u.data.length = strlen(buf);
3563 current_ev = iwe_stream_add_point_check(info,
3564 current_ev,
3565 end_buf,
3566 &iwe, buf);
3567 if (IS_ERR(current_ev))
3568 goto unlock;
3569 sprintf(buf, "Formation Info: 0x%02X", cfg[5]);
3570 iwe.u.data.length = strlen(buf);
3571 current_ev = iwe_stream_add_point_check(info,
3572 current_ev,
3573 end_buf,
3574 &iwe, buf);
3575 if (IS_ERR(current_ev))
3576 goto unlock;
3577 sprintf(buf, "Capabilities: 0x%02X", cfg[6]);
3578 iwe.u.data.length = strlen(buf);
3579 current_ev = iwe_stream_add_point_check(info,
3580 current_ev,
3581 end_buf,
3582 &iwe, buf);
3583 if (IS_ERR(current_ev))
3584 goto unlock;
3585 break;
3586 case WLAN_EID_SUPP_RATES:
3587 case WLAN_EID_EXT_SUPP_RATES:
3588 /* display all supported rates in readable format */
3589 p = current_ev + iwe_stream_lcp_len(info);
3590
3591 memset(&iwe, 0, sizeof(iwe));
3592 iwe.cmd = SIOCGIWRATE;
3593 /* Those two flags are ignored... */
3594 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3595
3596 for (i = 0; i < ie[1]; i++) {
3597 iwe.u.bitrate.value =
3598 ((ie[i + 2] & 0x7f) * 500000);
3599 tmp = p;
3600 p = iwe_stream_add_value(info, current_ev, p,
3601 end_buf, &iwe,
3602 IW_EV_PARAM_LEN);
3603 if (p == tmp) {
3604 current_ev = ERR_PTR(-E2BIG);
3605 goto unlock;
3606 }
3607 }
3608 current_ev = p;
3609 break;
3610 }
3611 rem -= ie[1] + 2;
3612 ie += ie[1] + 2;
3613 }
3614
3615 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3616 ismesh) {
3617 memset(&iwe, 0, sizeof(iwe));
3618 iwe.cmd = SIOCGIWMODE;
3619 if (ismesh)
3620 iwe.u.mode = IW_MODE_MESH;
3621 else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3622 iwe.u.mode = IW_MODE_MASTER;
3623 else
3624 iwe.u.mode = IW_MODE_ADHOC;
3625 current_ev = iwe_stream_add_event_check(info, current_ev,
3626 end_buf, &iwe,
3627 IW_EV_UINT_LEN);
3628 if (IS_ERR(current_ev))
3629 goto unlock;
3630 }
3631
3632 memset(&iwe, 0, sizeof(iwe));
3633 iwe.cmd = IWEVCUSTOM;
3634 sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf));
3635 iwe.u.data.length = strlen(buf);
3636 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3637 &iwe, buf);
3638 if (IS_ERR(current_ev))
3639 goto unlock;
3640 memset(&iwe, 0, sizeof(iwe));
3641 iwe.cmd = IWEVCUSTOM;
3642 sprintf(buf, " Last beacon: %ums ago",
3643 elapsed_jiffies_msecs(bss->ts));
3644 iwe.u.data.length = strlen(buf);
3645 current_ev = iwe_stream_add_point_check(info, current_ev,
3646 end_buf, &iwe, buf);
3647 if (IS_ERR(current_ev))
3648 goto unlock;
3649
3650 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3651
3652 unlock:
3653 rcu_read_unlock();
3654 return current_ev;
3655 }
3656
3657
ieee80211_scan_results(struct cfg80211_registered_device * rdev,struct iw_request_info * info,char * buf,size_t len)3658 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3659 struct iw_request_info *info,
3660 char *buf, size_t len)
3661 {
3662 char *current_ev = buf;
3663 char *end_buf = buf + len;
3664 struct cfg80211_internal_bss *bss;
3665 int err = 0;
3666
3667 spin_lock_bh(&rdev->bss_lock);
3668 cfg80211_bss_expire(rdev);
3669
3670 list_for_each_entry(bss, &rdev->bss_list, list) {
3671 if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3672 err = -E2BIG;
3673 break;
3674 }
3675 current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3676 current_ev, end_buf);
3677 if (IS_ERR(current_ev)) {
3678 err = PTR_ERR(current_ev);
3679 break;
3680 }
3681 }
3682 spin_unlock_bh(&rdev->bss_lock);
3683
3684 if (err)
3685 return err;
3686 return current_ev - buf;
3687 }
3688
3689
cfg80211_wext_giwscan(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)3690 int cfg80211_wext_giwscan(struct net_device *dev,
3691 struct iw_request_info *info,
3692 union iwreq_data *wrqu, char *extra)
3693 {
3694 struct iw_point *data = &wrqu->data;
3695 struct cfg80211_registered_device *rdev;
3696 int res;
3697
3698 if (!netif_running(dev))
3699 return -ENETDOWN;
3700
3701 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3702
3703 if (IS_ERR(rdev))
3704 return PTR_ERR(rdev);
3705
3706 if (rdev->scan_req || rdev->scan_msg)
3707 return -EAGAIN;
3708
3709 res = ieee80211_scan_results(rdev, info, extra, data->length);
3710 data->length = 0;
3711 if (res >= 0) {
3712 data->length = res;
3713 res = 0;
3714 }
3715
3716 return res;
3717 }
3718 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
3719 #endif
3720