1 // SPDX-License-Identifier: GPL-2.0
2 /******************************************************************************
3 *
4 * Copyright(c) 2003 - 2004 Intel Corporation. All rights reserved.
5 *
6 * Contact Information:
7 * James P. Ketrenos <ipw2100-admin@linux.intel.com>
8 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
9 *
10 *
11 * Few modifications for Realtek's Wi-Fi drivers by
12 * Andrea Merello <andrea.merello@gmail.com>
13 *
14 * A special thanks goes to Realtek for their support !
15 *
16 ******************************************************************************/
17
18 #include <linux/compiler.h>
19 #include <linux/errno.h>
20 #include <linux/if_arp.h>
21 #include <linux/in6.h>
22 #include <linux/in.h>
23 #include <linux/ip.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/netdevice.h>
27 #include <linux/pci.h>
28 #include <linux/proc_fs.h>
29 #include <linux/skbuff.h>
30 #include <linux/slab.h>
31 #include <linux/tcp.h>
32 #include <linux/types.h>
33 #include <linux/wireless.h>
34 #include <linux/etherdevice.h>
35 #include <linux/uaccess.h>
36 #include <linux/if_vlan.h>
37
38 #include "ieee80211.h"
39
40
41 /*
42 *
43 *
44 * 802.11 Data Frame
45 *
46 *
47 * 802.11 frame_contorl for data frames - 2 bytes
48 * ,-----------------------------------------------------------------------------------------.
49 * bits | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | a | b | c | d | e |
50 * |----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
51 * val | 0 | 0 | 0 | 1 | x | 0 | 0 | 0 | 1 | 0 | x | x | x | x | x |
52 * |----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
53 * desc | ^-ver-^ | ^type-^ | ^-----subtype-----^ | to |from |more |retry| pwr |more |wep |
54 * | | | x=0 data,x=1 data+ack | DS | DS |frag | | mgm |data | |
55 * '-----------------------------------------------------------------------------------------'
56 * /\
57 * |
58 * 802.11 Data Frame |
59 * ,--------- 'ctrl' expands to >-----------'
60 * |
61 * ,--'---,-------------------------------------------------------------.
62 * Bytes | 2 | 2 | 6 | 6 | 6 | 2 | 0..2312 | 4 |
63 * |------|------|---------|---------|---------|------|---------|------|
64 * Desc. | ctrl | dura | DA/RA | TA | SA | Sequ | Frame | fcs |
65 * | | tion | (BSSID) | | | ence | data | |
66 * `--------------------------------------------------| |------'
67 * Total: 28 non-data bytes `----.----'
68 * |
69 * .- 'Frame data' expands to <---------------------------'
70 * |
71 * V
72 * ,---------------------------------------------------.
73 * Bytes | 1 | 1 | 1 | 3 | 2 | 0-2304 |
74 * |------|------|---------|----------|------|---------|
75 * Desc. | SNAP | SNAP | Control |Eth Tunnel| Type | IP |
76 * | DSAP | SSAP | | | | Packet |
77 * | 0xAA | 0xAA |0x03 (UI)|0x00-00-F8| | |
78 * `-----------------------------------------| |
79 * Total: 8 non-data bytes `----.----'
80 * |
81 * .- 'IP Packet' expands, if WEP enabled, to <--'
82 * |
83 * V
84 * ,-----------------------.
85 * Bytes | 4 | 0-2296 | 4 |
86 * |-----|-----------|-----|
87 * Desc. | IV | Encrypted | ICV |
88 * | | IP Packet | |
89 * `-----------------------'
90 * Total: 8 non-data bytes
91 *
92 *
93 * 802.3 Ethernet Data Frame
94 *
95 * ,-----------------------------------------.
96 * Bytes | 6 | 6 | 2 | Variable | 4 |
97 * |-------|-------|------|-----------|------|
98 * Desc. | Dest. | Source| Type | IP Packet | fcs |
99 * | MAC | MAC | | | |
100 * `-----------------------------------------'
101 * Total: 18 non-data bytes
102 *
103 * In the event that fragmentation is required, the incoming payload is split into
104 * N parts of size ieee->fts. The first fragment contains the SNAP header and the
105 * remaining packets are just data.
106 *
107 * If encryption is enabled, each fragment payload size is reduced by enough space
108 * to add the prefix and postfix (IV and ICV totalling 8 bytes in the case of WEP)
109 * So if you have 1500 bytes of payload with ieee->fts set to 500 without
110 * encryption it will take 3 frames. With WEP it will take 4 frames as the
111 * payload of each frame is reduced to 492 bytes.
112 *
113 * SKB visualization
114 *
115 * ,- skb->data
116 * |
117 * | ETHERNET HEADER ,-<-- PAYLOAD
118 * | | 14 bytes from skb->data
119 * | 2 bytes for Type --> ,T. | (sizeof ethhdr)
120 * | | | |
121 * |,-Dest.--. ,--Src.---. | | |
122 * | 6 bytes| | 6 bytes | | | |
123 * v | | | | | |
124 * 0 | v 1 | v | v 2
125 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
126 * ^ | ^ | ^ |
127 * | | | | | |
128 * | | | | `T' <---- 2 bytes for Type
129 * | | | |
130 * | | '---SNAP--' <-------- 6 bytes for SNAP
131 * | |
132 * `-IV--' <-------------------- 4 bytes for IV (WEP)
133 *
134 * SNAP HEADER
135 *
136 */
137
138 static u8 P802_1H_OUI[P80211_OUI_LEN] = { 0x00, 0x00, 0xf8 };
139 static u8 RFC1042_OUI[P80211_OUI_LEN] = { 0x00, 0x00, 0x00 };
140
ieee80211_put_snap(u8 * data,u16 h_proto)141 static inline int ieee80211_put_snap(u8 *data, u16 h_proto)
142 {
143 struct ieee80211_snap_hdr *snap;
144 u8 *oui;
145
146 snap = (struct ieee80211_snap_hdr *)data;
147 snap->dsap = 0xaa;
148 snap->ssap = 0xaa;
149 snap->ctrl = 0x03;
150
151 if (h_proto == 0x8137 || h_proto == 0x80f3)
152 oui = P802_1H_OUI;
153 else
154 oui = RFC1042_OUI;
155 snap->oui[0] = oui[0];
156 snap->oui[1] = oui[1];
157 snap->oui[2] = oui[2];
158
159 *(__be16 *)(data + SNAP_SIZE) = htons(h_proto);
160
161 return SNAP_SIZE + sizeof(u16);
162 }
163
ieee80211_encrypt_fragment(struct ieee80211_device * ieee,struct sk_buff * frag,int hdr_len)164 int ieee80211_encrypt_fragment(
165 struct ieee80211_device *ieee,
166 struct sk_buff *frag,
167 int hdr_len)
168 {
169 struct ieee80211_crypt_data *crypt = ieee->crypt[ieee->tx_keyidx];
170 int res;
171
172 if (!(crypt && crypt->ops)) {
173 printk("=========>%s(), crypt is null\n", __func__);
174 return -1;
175 }
176
177 if (ieee->tkip_countermeasures &&
178 crypt && crypt->ops && strcmp(crypt->ops->name, "TKIP") == 0) {
179 if (net_ratelimit()) {
180 struct rtl_80211_hdr_3addrqos *header;
181
182 header = (struct rtl_80211_hdr_3addrqos *)frag->data;
183 netdev_dbg(ieee->dev, "TKIP countermeasures: dropped "
184 "TX packet to %pM\n", header->addr1);
185 }
186 return -1;
187 }
188
189 /* To encrypt, frame format is:
190 * IV (4 bytes), clear payload (including SNAP), ICV (4 bytes)
191 */
192
193 // PR: FIXME: Copied from hostap. Check fragmentation/MSDU/MPDU encryption.
194 /* Host-based IEEE 802.11 fragmentation for TX is not yet supported, so
195 * call both MSDU and MPDU encryption functions from here.
196 */
197 atomic_inc(&crypt->refcnt);
198 res = 0;
199 if (crypt->ops->encrypt_msdu)
200 res = crypt->ops->encrypt_msdu(frag, hdr_len, crypt->priv);
201 if (res == 0 && crypt->ops->encrypt_mpdu)
202 res = crypt->ops->encrypt_mpdu(frag, hdr_len, crypt->priv);
203
204 atomic_dec(&crypt->refcnt);
205 if (res < 0) {
206 netdev_info(ieee->dev, "Encryption failed: len=%d.\n",
207 frag->len);
208 ieee->ieee_stats.tx_discards++;
209 return -1;
210 }
211
212 return 0;
213 }
214
215
ieee80211_txb_free(struct ieee80211_txb * txb)216 void ieee80211_txb_free(struct ieee80211_txb *txb)
217 {
218 //int i;
219 if (unlikely(!txb))
220 return;
221 kfree(txb);
222 }
223 EXPORT_SYMBOL(ieee80211_txb_free);
224
ieee80211_alloc_txb(int nr_frags,int txb_size,gfp_t gfp_mask)225 static struct ieee80211_txb *ieee80211_alloc_txb(int nr_frags, int txb_size,
226 gfp_t gfp_mask)
227 {
228 struct ieee80211_txb *txb;
229 int i;
230 txb = kmalloc(
231 sizeof(struct ieee80211_txb) + (sizeof(u8 *) * nr_frags),
232 gfp_mask);
233 if (!txb)
234 return NULL;
235
236 memset(txb, 0, sizeof(struct ieee80211_txb));
237 txb->nr_frags = nr_frags;
238 txb->frag_size = __cpu_to_le16(txb_size);
239
240 for (i = 0; i < nr_frags; i++) {
241 txb->fragments[i] = dev_alloc_skb(txb_size);
242 if (unlikely(!txb->fragments[i])) {
243 i--;
244 break;
245 }
246 memset(txb->fragments[i]->cb, 0, sizeof(txb->fragments[i]->cb));
247 }
248 if (unlikely(i != nr_frags)) {
249 while (i >= 0)
250 dev_kfree_skb_any(txb->fragments[i--]);
251 kfree(txb);
252 return NULL;
253 }
254 return txb;
255 }
256
257 // Classify the to-be send data packet
258 // Need to acquire the sent queue index.
259 static int
ieee80211_classify(struct sk_buff * skb,struct ieee80211_network * network)260 ieee80211_classify(struct sk_buff *skb, struct ieee80211_network *network)
261 {
262 struct ethhdr *eth;
263 struct iphdr *ip;
264 eth = (struct ethhdr *)skb->data;
265 if (eth->h_proto != htons(ETH_P_IP))
266 return 0;
267
268 ip = ip_hdr(skb);
269 switch (ip->tos & 0xfc) {
270 case 0x20:
271 return 2;
272 case 0x40:
273 return 1;
274 case 0x60:
275 return 3;
276 case 0x80:
277 return 4;
278 case 0xa0:
279 return 5;
280 case 0xc0:
281 return 6;
282 case 0xe0:
283 return 7;
284 default:
285 return 0;
286 }
287 }
288
ieee80211_tx_query_agg_cap(struct ieee80211_device * ieee,struct sk_buff * skb,struct cb_desc * tcb_desc)289 static void ieee80211_tx_query_agg_cap(struct ieee80211_device *ieee,
290 struct sk_buff *skb, struct cb_desc *tcb_desc)
291 {
292 PRT_HIGH_THROUGHPUT pHTInfo = ieee->pHTInfo;
293 struct tx_ts_record *pTxTs = NULL;
294 struct rtl_80211_hdr_1addr *hdr = (struct rtl_80211_hdr_1addr *)skb->data;
295
296 if (!pHTInfo->bCurrentHTSupport || !pHTInfo->bEnableHT)
297 return;
298 if (!IsQoSDataFrame(skb->data))
299 return;
300
301 if (is_multicast_ether_addr(hdr->addr1))
302 return;
303 //check packet and mode later
304 if (!ieee->GetNmodeSupportBySecCfg(ieee->dev))
305 return;
306
307 if (pHTInfo->bCurrentAMPDUEnable) {
308 if (!GetTs(ieee, (struct ts_common_info **)(&pTxTs), hdr->addr1, skb->priority, TX_DIR, true)) {
309 printk("===>can't get TS\n");
310 return;
311 }
312 if (!pTxTs->tx_admitted_ba_record.valid) {
313 TsStartAddBaProcess(ieee, pTxTs);
314 goto FORCED_AGG_SETTING;
315 } else if (!pTxTs->using_ba) {
316 if (SN_LESS(pTxTs->tx_admitted_ba_record.start_seq_ctrl.field.seq_num, (pTxTs->tx_cur_seq + 1) % 4096))
317 pTxTs->using_ba = true;
318 else
319 goto FORCED_AGG_SETTING;
320 }
321
322 if (ieee->iw_mode == IW_MODE_INFRA) {
323 tcb_desc->bAMPDUEnable = true;
324 tcb_desc->ampdu_factor = pHTInfo->CurrentAMPDUFactor;
325 tcb_desc->ampdu_density = pHTInfo->CurrentMPDUDensity;
326 }
327 }
328 FORCED_AGG_SETTING:
329 switch (pHTInfo->ForcedAMPDUMode) {
330 case HT_AGG_AUTO:
331 break;
332
333 case HT_AGG_FORCE_ENABLE:
334 tcb_desc->bAMPDUEnable = true;
335 tcb_desc->ampdu_density = pHTInfo->ForcedMPDUDensity;
336 tcb_desc->ampdu_factor = pHTInfo->ForcedAMPDUFactor;
337 break;
338
339 case HT_AGG_FORCE_DISABLE:
340 tcb_desc->bAMPDUEnable = false;
341 tcb_desc->ampdu_density = 0;
342 tcb_desc->ampdu_factor = 0;
343 break;
344
345 }
346 return;
347 }
348
ieee80211_qurey_ShortPreambleMode(struct ieee80211_device * ieee,struct cb_desc * tcb_desc)349 static void ieee80211_qurey_ShortPreambleMode(struct ieee80211_device *ieee,
350 struct cb_desc *tcb_desc)
351 {
352 tcb_desc->bUseShortPreamble = false;
353 if (tcb_desc->data_rate == 2) {//// 1M can only use Long Preamble. 11B spec
354 return;
355 } else if (ieee->current_network.capability & WLAN_CAPABILITY_SHORT_PREAMBLE) {
356 tcb_desc->bUseShortPreamble = true;
357 }
358 return;
359 }
360 static void
ieee80211_query_HTCapShortGI(struct ieee80211_device * ieee,struct cb_desc * tcb_desc)361 ieee80211_query_HTCapShortGI(struct ieee80211_device *ieee, struct cb_desc *tcb_desc)
362 {
363 PRT_HIGH_THROUGHPUT pHTInfo = ieee->pHTInfo;
364
365 tcb_desc->bUseShortGI = false;
366
367 if (!pHTInfo->bCurrentHTSupport || !pHTInfo->bEnableHT)
368 return;
369
370 if (pHTInfo->bForcedShortGI) {
371 tcb_desc->bUseShortGI = true;
372 return;
373 }
374
375 if (pHTInfo->bCurBW40MHz && pHTInfo->bCurShortGI40MHz)
376 tcb_desc->bUseShortGI = true;
377 else if (!pHTInfo->bCurBW40MHz && pHTInfo->bCurShortGI20MHz)
378 tcb_desc->bUseShortGI = true;
379 }
380
ieee80211_query_BandwidthMode(struct ieee80211_device * ieee,struct cb_desc * tcb_desc)381 static void ieee80211_query_BandwidthMode(struct ieee80211_device *ieee,
382 struct cb_desc *tcb_desc)
383 {
384 PRT_HIGH_THROUGHPUT pHTInfo = ieee->pHTInfo;
385
386 tcb_desc->bPacketBW = false;
387
388 if (!pHTInfo->bCurrentHTSupport || !pHTInfo->bEnableHT)
389 return;
390
391 if (tcb_desc->bMulticast || tcb_desc->bBroadcast)
392 return;
393
394 if ((tcb_desc->data_rate & 0x80) == 0) // If using legacy rate, it shall use 20MHz channel.
395 return;
396 //BandWidthAutoSwitch is for auto switch to 20 or 40 in long distance
397 if (pHTInfo->bCurBW40MHz && pHTInfo->bCurTxBW40MHz && !ieee->bandwidth_auto_switch.bforced_tx20Mhz)
398 tcb_desc->bPacketBW = true;
399 return;
400 }
401
ieee80211_query_protectionmode(struct ieee80211_device * ieee,struct cb_desc * tcb_desc,struct sk_buff * skb)402 static void ieee80211_query_protectionmode(struct ieee80211_device *ieee,
403 struct cb_desc *tcb_desc,
404 struct sk_buff *skb)
405 {
406 // Common Settings
407 tcb_desc->bRTSSTBC = false;
408 tcb_desc->bRTSUseShortGI = false; // Since protection frames are always sent by legacy rate, ShortGI will never be used.
409 tcb_desc->bCTSEnable = false; // Most of protection using RTS/CTS
410 tcb_desc->RTSSC = 0; // 20MHz: Don't care; 40MHz: Duplicate.
411 tcb_desc->bRTSBW = false; // RTS frame bandwidth is always 20MHz
412
413 if (tcb_desc->bBroadcast || tcb_desc->bMulticast) //only unicast frame will use rts/cts
414 return;
415
416 if (is_broadcast_ether_addr(skb->data + 16)) //check addr3 as infrastructure add3 is DA.
417 return;
418
419 if (ieee->mode < IEEE_N_24G) /* b, g mode */ {
420 // (1) RTS_Threshold is compared to the MPDU, not MSDU.
421 // (2) If there are more than one frag in this MSDU, only the first frag uses protection frame.
422 // Other fragments are protected by previous fragment.
423 // So we only need to check the length of first fragment.
424 if (skb->len > ieee->rts) {
425 tcb_desc->bRTSEnable = true;
426 tcb_desc->rts_rate = MGN_24M;
427 } else if (ieee->current_network.buseprotection) {
428 // Use CTS-to-SELF in protection mode.
429 tcb_desc->bRTSEnable = true;
430 tcb_desc->bCTSEnable = true;
431 tcb_desc->rts_rate = MGN_24M;
432 }
433 //otherwise return;
434 return;
435 } else { // 11n High throughput case.
436 PRT_HIGH_THROUGHPUT pHTInfo = ieee->pHTInfo;
437 while (true) {
438 //check ERP protection
439 if (ieee->current_network.buseprotection) {// CTS-to-SELF
440 tcb_desc->bRTSEnable = true;
441 tcb_desc->bCTSEnable = true;
442 tcb_desc->rts_rate = MGN_24M;
443 break;
444 }
445 //check HT op mode
446 if (pHTInfo->bCurrentHTSupport && pHTInfo->bEnableHT) {
447 u8 HTOpMode = pHTInfo->CurrentOpMode;
448 if ((pHTInfo->bCurBW40MHz && (HTOpMode == 2 || HTOpMode == 3)) ||
449 (!pHTInfo->bCurBW40MHz && HTOpMode == 3)) {
450 tcb_desc->rts_rate = MGN_24M; // Rate is 24Mbps.
451 tcb_desc->bRTSEnable = true;
452 break;
453 }
454 }
455 //check rts
456 if (skb->len > ieee->rts) {
457 tcb_desc->rts_rate = MGN_24M; // Rate is 24Mbps.
458 tcb_desc->bRTSEnable = true;
459 break;
460 }
461 //to do list: check MIMO power save condition.
462 //check AMPDU aggregation for TXOP
463 if (tcb_desc->bAMPDUEnable) {
464 tcb_desc->rts_rate = MGN_24M; // Rate is 24Mbps.
465 // According to 8190 design, firmware sends CF-End only if RTS/CTS is enabled. However, it degrads
466 // throughput around 10M, so we disable of this mechanism. 2007.08.03 by Emily
467 tcb_desc->bRTSEnable = false;
468 break;
469 }
470 //check IOT action
471 if (pHTInfo->IOTAction & HT_IOT_ACT_FORCED_CTS2SELF) {
472 tcb_desc->bCTSEnable = true;
473 tcb_desc->rts_rate = MGN_24M;
474 tcb_desc->bRTSEnable = true;
475 break;
476 }
477 // Totally no protection case!!
478 goto NO_PROTECTION;
479 }
480 }
481 // For test , CTS replace with RTS
482 if (0) {
483 tcb_desc->bCTSEnable = true;
484 tcb_desc->rts_rate = MGN_24M;
485 tcb_desc->bRTSEnable = true;
486 }
487 if (ieee->current_network.capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
488 tcb_desc->bUseShortPreamble = true;
489 if (ieee->mode == IW_MODE_MASTER)
490 goto NO_PROTECTION;
491 return;
492 NO_PROTECTION:
493 tcb_desc->bRTSEnable = false;
494 tcb_desc->bCTSEnable = false;
495 tcb_desc->rts_rate = 0;
496 tcb_desc->RTSSC = 0;
497 tcb_desc->bRTSBW = false;
498 }
499
500
ieee80211_txrate_selectmode(struct ieee80211_device * ieee,struct cb_desc * tcb_desc)501 static void ieee80211_txrate_selectmode(struct ieee80211_device *ieee,
502 struct cb_desc *tcb_desc)
503 {
504 if (ieee->bTxDisableRateFallBack)
505 tcb_desc->bTxDisableRateFallBack = true;
506
507 if (ieee->bTxUseDriverAssingedRate)
508 tcb_desc->bTxUseDriverAssingedRate = true;
509 if (!tcb_desc->bTxDisableRateFallBack || !tcb_desc->bTxUseDriverAssingedRate) {
510 if (ieee->iw_mode == IW_MODE_INFRA || ieee->iw_mode == IW_MODE_ADHOC)
511 tcb_desc->RATRIndex = 0;
512 }
513 }
514
ieee80211_query_seqnum(struct ieee80211_device * ieee,struct sk_buff * skb,u8 * dst)515 static void ieee80211_query_seqnum(struct ieee80211_device *ieee,
516 struct sk_buff *skb, u8 *dst)
517 {
518 if (is_multicast_ether_addr(dst))
519 return;
520 if (IsQoSDataFrame(skb->data)) /* we deal qos data only */ {
521 struct tx_ts_record *pTS = NULL;
522 if (!GetTs(ieee, (struct ts_common_info **)(&pTS), dst, skb->priority, TX_DIR, true)) {
523 return;
524 }
525 pTS->tx_cur_seq = (pTS->tx_cur_seq + 1) % 4096;
526 }
527 }
528
ieee80211_xmit(struct sk_buff * skb,struct net_device * dev)529 netdev_tx_t ieee80211_xmit(struct sk_buff *skb, struct net_device *dev)
530 {
531 struct ieee80211_device *ieee = netdev_priv(dev);
532 struct ieee80211_txb *txb = NULL;
533 struct rtl_80211_hdr_3addrqos *frag_hdr;
534 int i, bytes_per_frag, nr_frags, bytes_last_frag, frag_size;
535 unsigned long flags;
536 struct net_device_stats *stats = &ieee->stats;
537 int ether_type = 0, encrypt;
538 int bytes, fc, qos_ctl = 0, hdr_len;
539 struct sk_buff *skb_frag;
540 struct rtl_80211_hdr_3addrqos header = { /* Ensure zero initialized */
541 .duration_id = 0,
542 .seq_ctl = 0,
543 .qos_ctl = 0
544 };
545 u8 dest[ETH_ALEN], src[ETH_ALEN];
546 int qos_actived = ieee->current_network.qos_data.active;
547
548 struct ieee80211_crypt_data *crypt;
549
550 struct cb_desc *tcb_desc;
551
552 spin_lock_irqsave(&ieee->lock, flags);
553
554 /* If there is no driver handler to take the TXB, dont' bother
555 * creating it...
556 */
557 if ((!ieee->hard_start_xmit && !(ieee->softmac_features & IEEE_SOFTMAC_TX_QUEUE)) ||
558 ((!ieee->softmac_data_hard_start_xmit && (ieee->softmac_features & IEEE_SOFTMAC_TX_QUEUE)))) {
559 netdev_warn(ieee->dev, "No xmit handler.\n");
560 goto success;
561 }
562
563
564 if (likely(ieee->raw_tx == 0)) {
565 if (unlikely(skb->len < SNAP_SIZE + sizeof(u16))) {
566 netdev_warn(ieee->dev, "skb too small (%d).\n",
567 skb->len);
568 goto success;
569 }
570
571 memset(skb->cb, 0, sizeof(skb->cb));
572 ether_type = ntohs(((struct ethhdr *)skb->data)->h_proto);
573
574 crypt = ieee->crypt[ieee->tx_keyidx];
575
576 encrypt = !(ether_type == ETH_P_PAE && ieee->ieee802_1x) &&
577 ieee->host_encrypt && crypt && crypt->ops;
578
579 if (!encrypt && ieee->ieee802_1x &&
580 ieee->drop_unencrypted && ether_type != ETH_P_PAE) {
581 stats->tx_dropped++;
582 goto success;
583 }
584 #ifdef CONFIG_IEEE80211_DEBUG
585 if (crypt && !encrypt && ether_type == ETH_P_PAE) {
586 struct eapol *eap = (struct eapol *)(skb->data +
587 sizeof(struct ethhdr) - SNAP_SIZE - sizeof(u16));
588 IEEE80211_DEBUG_EAP("TX: IEEE 802.11 EAPOL frame: %s\n",
589 eap_get_type(eap->type));
590 }
591 #endif
592
593 /* Save source and destination addresses */
594 memcpy(&dest, skb->data, ETH_ALEN);
595 memcpy(&src, skb->data + ETH_ALEN, ETH_ALEN);
596
597 /* Advance the SKB to the start of the payload */
598 skb_pull(skb, sizeof(struct ethhdr));
599
600 /* Determine total amount of storage required for TXB packets */
601 bytes = skb->len + SNAP_SIZE + sizeof(u16);
602
603 if (encrypt)
604 fc = IEEE80211_FTYPE_DATA | IEEE80211_FCTL_WEP;
605 else
606
607 fc = IEEE80211_FTYPE_DATA;
608
609 //if(ieee->current_network.QoS_Enable)
610 if (qos_actived)
611 fc |= IEEE80211_STYPE_QOS_DATA;
612 else
613 fc |= IEEE80211_STYPE_DATA;
614
615 if (ieee->iw_mode == IW_MODE_INFRA) {
616 fc |= IEEE80211_FCTL_TODS;
617 /* To DS: Addr1 = BSSID, Addr2 = SA,
618 * Addr3 = DA
619 */
620 memcpy(&header.addr1, ieee->current_network.bssid, ETH_ALEN);
621 memcpy(&header.addr2, &src, ETH_ALEN);
622 memcpy(&header.addr3, &dest, ETH_ALEN);
623 } else if (ieee->iw_mode == IW_MODE_ADHOC) {
624 /* not From/To DS: Addr1 = DA, Addr2 = SA,
625 * Addr3 = BSSID
626 */
627 memcpy(&header.addr1, dest, ETH_ALEN);
628 memcpy(&header.addr2, src, ETH_ALEN);
629 memcpy(&header.addr3, ieee->current_network.bssid, ETH_ALEN);
630 }
631
632 header.frame_ctl = cpu_to_le16(fc);
633
634 /* Determine fragmentation size based on destination (multicast
635 * and broadcast are not fragmented)
636 */
637 if (is_multicast_ether_addr(header.addr1)) {
638 frag_size = MAX_FRAG_THRESHOLD;
639 qos_ctl |= QOS_CTL_NOTCONTAIN_ACK;
640 } else {
641 frag_size = ieee->fts;//default:392
642 qos_ctl = 0;
643 }
644
645 //if (ieee->current_network.QoS_Enable)
646 if (qos_actived) {
647 hdr_len = IEEE80211_3ADDR_LEN + 2;
648
649 skb->priority = ieee80211_classify(skb, &ieee->current_network);
650 qos_ctl |= skb->priority; //set in the ieee80211_classify
651 header.qos_ctl = cpu_to_le16(qos_ctl & IEEE80211_QOS_TID);
652 } else {
653 hdr_len = IEEE80211_3ADDR_LEN;
654 }
655 /* Determine amount of payload per fragment. Regardless of if
656 * this stack is providing the full 802.11 header, one will
657 * eventually be affixed to this fragment -- so we must account for
658 * it when determining the amount of payload space.
659 */
660 bytes_per_frag = frag_size - hdr_len;
661 if (ieee->config &
662 (CFG_IEEE80211_COMPUTE_FCS | CFG_IEEE80211_RESERVE_FCS))
663 bytes_per_frag -= IEEE80211_FCS_LEN;
664
665 /* Each fragment may need to have room for encryption pre/postfix */
666 if (encrypt)
667 bytes_per_frag -= crypt->ops->extra_prefix_len +
668 crypt->ops->extra_postfix_len;
669
670 /* Number of fragments is the total bytes_per_frag /
671 * payload_per_fragment
672 */
673 nr_frags = bytes / bytes_per_frag;
674 bytes_last_frag = bytes % bytes_per_frag;
675 if (bytes_last_frag)
676 nr_frags++;
677 else
678 bytes_last_frag = bytes_per_frag;
679
680 /* When we allocate the TXB we allocate enough space for the reserve
681 * and full fragment bytes (bytes_per_frag doesn't include prefix,
682 * postfix, header, FCS, etc.)
683 */
684 txb = ieee80211_alloc_txb(nr_frags, frag_size + ieee->tx_headroom, GFP_ATOMIC);
685 if (unlikely(!txb)) {
686 netdev_warn(ieee->dev, "Could not allocate TXB\n");
687 goto failed;
688 }
689 txb->encrypted = encrypt;
690 txb->payload_size = __cpu_to_le16(bytes);
691
692 //if (ieee->current_network.QoS_Enable)
693 if (qos_actived)
694 txb->queue_index = UP2AC(skb->priority);
695 else
696 txb->queue_index = WME_AC_BK;
697
698
699
700 for (i = 0; i < nr_frags; i++) {
701 skb_frag = txb->fragments[i];
702 tcb_desc = (struct cb_desc *)(skb_frag->cb + MAX_DEV_ADDR_SIZE);
703 if (qos_actived) {
704 skb_frag->priority = skb->priority;//UP2AC(skb->priority);
705 tcb_desc->queue_index = UP2AC(skb->priority);
706 } else {
707 skb_frag->priority = WME_AC_BK;
708 tcb_desc->queue_index = WME_AC_BK;
709 }
710 skb_reserve(skb_frag, ieee->tx_headroom);
711
712 if (encrypt) {
713 if (ieee->hwsec_active)
714 tcb_desc->bHwSec = 1;
715 else
716 tcb_desc->bHwSec = 0;
717 skb_reserve(skb_frag, crypt->ops->extra_prefix_len);
718 } else {
719 tcb_desc->bHwSec = 0;
720 }
721 frag_hdr = skb_put_data(skb_frag, &header, hdr_len);
722
723 /* If this is not the last fragment, then add the MOREFRAGS
724 * bit to the frame control
725 */
726 if (i != nr_frags - 1) {
727 frag_hdr->frame_ctl = cpu_to_le16(
728 fc | IEEE80211_FCTL_MOREFRAGS);
729 bytes = bytes_per_frag;
730
731 } else {
732 /* The last fragment takes the remaining length */
733 bytes = bytes_last_frag;
734 }
735 //if(ieee->current_network.QoS_Enable)
736 if (qos_actived) {
737 // add 1 only indicate to corresponding seq number control 2006/7/12
738 frag_hdr->seq_ctl = cpu_to_le16(ieee->seq_ctrl[UP2AC(skb->priority) + 1] << 4 | i);
739 } else {
740 frag_hdr->seq_ctl = cpu_to_le16(ieee->seq_ctrl[0] << 4 | i);
741 }
742
743 /* Put a SNAP header on the first fragment */
744 if (i == 0) {
745 ieee80211_put_snap(
746 skb_put(skb_frag, SNAP_SIZE + sizeof(u16)),
747 ether_type);
748 bytes -= SNAP_SIZE + sizeof(u16);
749 }
750
751 skb_put_data(skb_frag, skb->data, bytes);
752
753 /* Advance the SKB... */
754 skb_pull(skb, bytes);
755
756 /* Encryption routine will move the header forward in order
757 * to insert the IV between the header and the payload
758 */
759 if (encrypt)
760 ieee80211_encrypt_fragment(ieee, skb_frag, hdr_len);
761 if (ieee->config &
762 (CFG_IEEE80211_COMPUTE_FCS | CFG_IEEE80211_RESERVE_FCS))
763 skb_put(skb_frag, 4);
764 }
765
766 if (qos_actived) {
767 if (ieee->seq_ctrl[UP2AC(skb->priority) + 1] == 0xFFF)
768 ieee->seq_ctrl[UP2AC(skb->priority) + 1] = 0;
769 else
770 ieee->seq_ctrl[UP2AC(skb->priority) + 1]++;
771 } else {
772 if (ieee->seq_ctrl[0] == 0xFFF)
773 ieee->seq_ctrl[0] = 0;
774 else
775 ieee->seq_ctrl[0]++;
776 }
777 } else {
778 if (unlikely(skb->len < sizeof(struct rtl_80211_hdr_3addr))) {
779 netdev_warn(ieee->dev, "skb too small (%d).\n",
780 skb->len);
781 goto success;
782 }
783
784 txb = ieee80211_alloc_txb(1, skb->len, GFP_ATOMIC);
785 if (!txb) {
786 netdev_warn(ieee->dev, "Could not allocate TXB\n");
787 goto failed;
788 }
789
790 txb->encrypted = 0;
791 txb->payload_size = __cpu_to_le16(skb->len);
792 skb_put_data(txb->fragments[0], skb->data, skb->len);
793 }
794
795 success:
796 //WB add to fill data tcb_desc here. only first fragment is considered, need to change, and you may remove to other place.
797 if (txb) {
798 tcb_desc = (struct cb_desc *)(txb->fragments[0]->cb + MAX_DEV_ADDR_SIZE);
799 tcb_desc->bTxEnableFwCalcDur = 1;
800 if (is_multicast_ether_addr(header.addr1))
801 tcb_desc->bMulticast = 1;
802 if (is_broadcast_ether_addr(header.addr1))
803 tcb_desc->bBroadcast = 1;
804 ieee80211_txrate_selectmode(ieee, tcb_desc);
805 if (tcb_desc->bMulticast || tcb_desc->bBroadcast)
806 tcb_desc->data_rate = ieee->basic_rate;
807 else
808 tcb_desc->data_rate = CURRENT_RATE(ieee->mode, ieee->rate, ieee->HTCurrentOperaRate);
809 ieee80211_qurey_ShortPreambleMode(ieee, tcb_desc);
810 ieee80211_tx_query_agg_cap(ieee, txb->fragments[0], tcb_desc);
811 ieee80211_query_HTCapShortGI(ieee, tcb_desc);
812 ieee80211_query_BandwidthMode(ieee, tcb_desc);
813 ieee80211_query_protectionmode(ieee, tcb_desc, txb->fragments[0]);
814 ieee80211_query_seqnum(ieee, txb->fragments[0], header.addr1);
815 }
816 spin_unlock_irqrestore(&ieee->lock, flags);
817 dev_kfree_skb_any(skb);
818 if (txb) {
819 if (ieee->softmac_features & IEEE_SOFTMAC_TX_QUEUE) {
820 ieee80211_softmac_xmit(txb, ieee);
821 } else {
822 if ((*ieee->hard_start_xmit)(txb, dev) == 0) {
823 stats->tx_packets++;
824 stats->tx_bytes += __le16_to_cpu(txb->payload_size);
825 return NETDEV_TX_OK;
826 }
827 ieee80211_txb_free(txb);
828 }
829 }
830
831 return NETDEV_TX_OK;
832
833 failed:
834 spin_unlock_irqrestore(&ieee->lock, flags);
835 netif_stop_queue(dev);
836 stats->tx_errors++;
837 return 1;
838
839 }
840